1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 } else { 238 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 240 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 242 } 243 244 // PowerPC does not support direct load/store of condition registers. 245 setOperationAction(ISD::LOAD, MVT::i1, Custom); 246 setOperationAction(ISD::STORE, MVT::i1, Custom); 247 248 // FIXME: Remove this once the ANDI glue bug is fixed: 249 if (ANDIGlueBug) 250 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 251 252 for (MVT VT : MVT::integer_valuetypes()) { 253 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 254 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 255 setTruncStoreAction(VT, MVT::i1, Expand); 256 } 257 258 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 259 } 260 261 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 262 // PPC (the libcall is not available). 263 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 264 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 265 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 266 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 267 268 // We do not currently implement these libm ops for PowerPC. 269 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 270 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 271 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 272 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 273 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 274 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 275 276 // PowerPC has no SREM/UREM instructions unless we are on P9 277 // On P9 we may use a hardware instruction to compute the remainder. 278 // When the result of both the remainder and the division is required it is 279 // more efficient to compute the remainder from the result of the division 280 // rather than use the remainder instruction. The instructions are legalized 281 // directly because the DivRemPairsPass performs the transformation at the IR 282 // level. 283 if (Subtarget.isISA3_0()) { 284 setOperationAction(ISD::SREM, MVT::i32, Legal); 285 setOperationAction(ISD::UREM, MVT::i32, Legal); 286 setOperationAction(ISD::SREM, MVT::i64, Legal); 287 setOperationAction(ISD::UREM, MVT::i64, Legal); 288 } else { 289 setOperationAction(ISD::SREM, MVT::i32, Expand); 290 setOperationAction(ISD::UREM, MVT::i32, Expand); 291 setOperationAction(ISD::SREM, MVT::i64, Expand); 292 setOperationAction(ISD::UREM, MVT::i64, Expand); 293 } 294 295 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 296 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 297 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 298 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 299 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 300 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 301 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 302 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 303 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 304 305 // Handle constrained floating-point operations of scalar. 306 // TODO: Handle SPE specific operation. 307 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 309 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 311 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 313 314 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 315 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 316 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 319 if (Subtarget.hasVSX()) { 320 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 321 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 322 } 323 324 if (Subtarget.hasFSQRT()) { 325 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 327 } 328 329 if (Subtarget.hasFPRND()) { 330 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 334 335 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 336 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 337 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 338 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 339 } 340 341 // We don't support sin/cos/sqrt/fmod/pow 342 setOperationAction(ISD::FSIN , MVT::f64, Expand); 343 setOperationAction(ISD::FCOS , MVT::f64, Expand); 344 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 345 setOperationAction(ISD::FREM , MVT::f64, Expand); 346 setOperationAction(ISD::FPOW , MVT::f64, Expand); 347 setOperationAction(ISD::FSIN , MVT::f32, Expand); 348 setOperationAction(ISD::FCOS , MVT::f32, Expand); 349 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 350 setOperationAction(ISD::FREM , MVT::f32, Expand); 351 setOperationAction(ISD::FPOW , MVT::f32, Expand); 352 if (Subtarget.hasSPE()) { 353 setOperationAction(ISD::FMA , MVT::f64, Expand); 354 setOperationAction(ISD::FMA , MVT::f32, Expand); 355 } else { 356 setOperationAction(ISD::FMA , MVT::f64, Legal); 357 setOperationAction(ISD::FMA , MVT::f32, Legal); 358 } 359 360 if (Subtarget.hasSPE()) 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 363 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 364 365 // If we're enabling GP optimizations, use hardware square root 366 if (!Subtarget.hasFSQRT() && 367 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 368 Subtarget.hasFRE())) 369 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 370 371 if (!Subtarget.hasFSQRT() && 372 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 373 Subtarget.hasFRES())) 374 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 375 376 if (Subtarget.hasFCPSGN()) { 377 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 378 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 379 } else { 380 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 381 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 382 } 383 384 if (Subtarget.hasFPRND()) { 385 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 386 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 387 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 388 setOperationAction(ISD::FROUND, MVT::f64, Legal); 389 390 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 391 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 392 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 393 setOperationAction(ISD::FROUND, MVT::f32, Legal); 394 } 395 396 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 397 // to speed up scalar BSWAP64. 398 // CTPOP or CTTZ were introduced in P8/P9 respectively 399 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 400 if (Subtarget.hasP9Vector()) 401 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 402 else 403 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 404 if (Subtarget.isISA3_0()) { 405 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 406 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 407 } else { 408 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 409 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 410 } 411 412 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 413 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 414 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 415 } else { 416 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 417 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 418 } 419 420 // PowerPC does not have ROTR 421 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 422 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 423 424 if (!Subtarget.useCRBits()) { 425 // PowerPC does not have Select 426 setOperationAction(ISD::SELECT, MVT::i32, Expand); 427 setOperationAction(ISD::SELECT, MVT::i64, Expand); 428 setOperationAction(ISD::SELECT, MVT::f32, Expand); 429 setOperationAction(ISD::SELECT, MVT::f64, Expand); 430 } 431 432 // PowerPC wants to turn select_cc of FP into fsel when possible. 433 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 434 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 435 436 // PowerPC wants to optimize integer setcc a bit 437 if (!Subtarget.useCRBits()) 438 setOperationAction(ISD::SETCC, MVT::i32, Custom); 439 440 if (Subtarget.hasFPU()) { 441 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 442 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 443 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 444 445 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 446 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 447 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 448 } 449 450 // PowerPC does not have BRCOND which requires SetCC 451 if (!Subtarget.useCRBits()) 452 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 453 454 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 455 456 if (Subtarget.hasSPE()) { 457 // SPE has built-in conversions 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 459 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 460 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 461 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 462 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 464 } else { 465 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 467 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 468 469 // PowerPC does not have [U|S]INT_TO_FP 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 472 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 473 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 474 } 475 476 if (Subtarget.hasDirectMove() && isPPC64) { 477 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 478 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 479 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 480 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 481 if (TM.Options.UnsafeFPMath) { 482 setOperationAction(ISD::LRINT, MVT::f64, Legal); 483 setOperationAction(ISD::LRINT, MVT::f32, Legal); 484 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 485 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 486 setOperationAction(ISD::LROUND, MVT::f64, Legal); 487 setOperationAction(ISD::LROUND, MVT::f32, Legal); 488 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 489 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 490 } 491 } else { 492 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 493 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 494 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 495 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 496 } 497 498 // We cannot sextinreg(i1). Expand to shifts. 499 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 500 501 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 502 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 503 // support continuation, user-level threading, and etc.. As a result, no 504 // other SjLj exception interfaces are implemented and please don't build 505 // your own exception handling based on them. 506 // LLVM/Clang supports zero-cost DWARF exception handling. 507 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 508 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 509 510 // We want to legalize GlobalAddress and ConstantPool nodes into the 511 // appropriate instructions to materialize the address. 512 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 513 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 514 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 515 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 516 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 517 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 518 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 519 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 520 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 521 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 522 523 // TRAP is legal. 524 setOperationAction(ISD::TRAP, MVT::Other, Legal); 525 526 // TRAMPOLINE is custom lowered. 527 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 528 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 529 530 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 531 setOperationAction(ISD::VASTART , MVT::Other, Custom); 532 533 if (Subtarget.is64BitELFABI()) { 534 // VAARG always uses double-word chunks, so promote anything smaller. 535 setOperationAction(ISD::VAARG, MVT::i1, Promote); 536 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 537 setOperationAction(ISD::VAARG, MVT::i8, Promote); 538 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 539 setOperationAction(ISD::VAARG, MVT::i16, Promote); 540 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 541 setOperationAction(ISD::VAARG, MVT::i32, Promote); 542 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 543 setOperationAction(ISD::VAARG, MVT::Other, Expand); 544 } else if (Subtarget.is32BitELFABI()) { 545 // VAARG is custom lowered with the 32-bit SVR4 ABI. 546 setOperationAction(ISD::VAARG, MVT::Other, Custom); 547 setOperationAction(ISD::VAARG, MVT::i64, Custom); 548 } else 549 setOperationAction(ISD::VAARG, MVT::Other, Expand); 550 551 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 552 if (Subtarget.is32BitELFABI()) 553 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 554 else 555 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 556 557 // Use the default implementation. 558 setOperationAction(ISD::VAEND , MVT::Other, Expand); 559 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 560 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 561 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 562 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 563 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 564 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 565 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 566 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 567 568 // We want to custom lower some of our intrinsics. 569 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 570 571 // To handle counter-based loop conditions. 572 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 573 574 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 575 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 576 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 577 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 578 579 // Comparisons that require checking two conditions. 580 if (Subtarget.hasSPE()) { 581 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 582 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 583 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 584 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 585 } 586 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 587 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 588 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 589 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 590 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 591 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 592 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 593 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 594 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 595 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 596 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 597 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 598 599 if (Subtarget.has64BitSupport()) { 600 // They also have instructions for converting between i64 and fp. 601 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 602 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 603 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 604 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 605 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 606 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 607 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 608 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 609 // This is just the low 32 bits of a (signed) fp->i64 conversion. 610 // We cannot do this with Promote because i64 is not a legal type. 611 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 612 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 613 614 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 615 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 616 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 617 } 618 } else { 619 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 620 if (Subtarget.hasSPE()) { 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 622 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 623 } else { 624 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 626 } 627 } 628 629 // With the instructions enabled under FPCVT, we can do everything. 630 if (Subtarget.hasFPCVT()) { 631 if (Subtarget.has64BitSupport()) { 632 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 633 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 635 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 636 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 637 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 638 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 639 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 640 } 641 642 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 645 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 646 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 647 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 648 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 649 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 650 } 651 652 if (Subtarget.use64BitRegs()) { 653 // 64-bit PowerPC implementations can support i64 types directly 654 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 655 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 656 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 657 // 64-bit PowerPC wants to expand i128 shifts itself. 658 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 659 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 660 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 661 } else { 662 // 32-bit PowerPC wants to expand i64 shifts itself. 663 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 664 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 665 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 666 } 667 668 // PowerPC has better expansions for funnel shifts than the generic 669 // TargetLowering::expandFunnelShift. 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::FSHL, MVT::i64, Custom); 672 setOperationAction(ISD::FSHR, MVT::i64, Custom); 673 } 674 setOperationAction(ISD::FSHL, MVT::i32, Custom); 675 setOperationAction(ISD::FSHR, MVT::i32, Custom); 676 677 if (Subtarget.hasVSX()) { 678 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 679 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 680 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 681 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 682 } 683 684 if (Subtarget.hasAltivec()) { 685 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 686 setOperationAction(ISD::SADDSAT, VT, Legal); 687 setOperationAction(ISD::SSUBSAT, VT, Legal); 688 setOperationAction(ISD::UADDSAT, VT, Legal); 689 setOperationAction(ISD::USUBSAT, VT, Legal); 690 } 691 // First set operation action for all vector types to expand. Then we 692 // will selectively turn on ones that can be effectively codegen'd. 693 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 694 // add/sub are legal for all supported vector VT's. 695 setOperationAction(ISD::ADD, VT, Legal); 696 setOperationAction(ISD::SUB, VT, Legal); 697 698 // For v2i64, these are only valid with P8Vector. This is corrected after 699 // the loop. 700 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 701 setOperationAction(ISD::SMAX, VT, Legal); 702 setOperationAction(ISD::SMIN, VT, Legal); 703 setOperationAction(ISD::UMAX, VT, Legal); 704 setOperationAction(ISD::UMIN, VT, Legal); 705 } 706 else { 707 setOperationAction(ISD::SMAX, VT, Expand); 708 setOperationAction(ISD::SMIN, VT, Expand); 709 setOperationAction(ISD::UMAX, VT, Expand); 710 setOperationAction(ISD::UMIN, VT, Expand); 711 } 712 713 if (Subtarget.hasVSX()) { 714 setOperationAction(ISD::FMAXNUM, VT, Legal); 715 setOperationAction(ISD::FMINNUM, VT, Legal); 716 } 717 718 // Vector instructions introduced in P8 719 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 720 setOperationAction(ISD::CTPOP, VT, Legal); 721 setOperationAction(ISD::CTLZ, VT, Legal); 722 } 723 else { 724 setOperationAction(ISD::CTPOP, VT, Expand); 725 setOperationAction(ISD::CTLZ, VT, Expand); 726 } 727 728 // Vector instructions introduced in P9 729 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 730 setOperationAction(ISD::CTTZ, VT, Legal); 731 else 732 setOperationAction(ISD::CTTZ, VT, Expand); 733 734 // We promote all shuffles to v16i8. 735 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 736 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 737 738 // We promote all non-typed operations to v4i32. 739 setOperationAction(ISD::AND , VT, Promote); 740 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 741 setOperationAction(ISD::OR , VT, Promote); 742 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 743 setOperationAction(ISD::XOR , VT, Promote); 744 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 745 setOperationAction(ISD::LOAD , VT, Promote); 746 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 747 setOperationAction(ISD::SELECT, VT, Promote); 748 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 749 setOperationAction(ISD::VSELECT, VT, Legal); 750 setOperationAction(ISD::SELECT_CC, VT, Promote); 751 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 752 setOperationAction(ISD::STORE, VT, Promote); 753 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 754 755 // No other operations are legal. 756 setOperationAction(ISD::MUL , VT, Expand); 757 setOperationAction(ISD::SDIV, VT, Expand); 758 setOperationAction(ISD::SREM, VT, Expand); 759 setOperationAction(ISD::UDIV, VT, Expand); 760 setOperationAction(ISD::UREM, VT, Expand); 761 setOperationAction(ISD::FDIV, VT, Expand); 762 setOperationAction(ISD::FREM, VT, Expand); 763 setOperationAction(ISD::FNEG, VT, Expand); 764 setOperationAction(ISD::FSQRT, VT, Expand); 765 setOperationAction(ISD::FLOG, VT, Expand); 766 setOperationAction(ISD::FLOG10, VT, Expand); 767 setOperationAction(ISD::FLOG2, VT, Expand); 768 setOperationAction(ISD::FEXP, VT, Expand); 769 setOperationAction(ISD::FEXP2, VT, Expand); 770 setOperationAction(ISD::FSIN, VT, Expand); 771 setOperationAction(ISD::FCOS, VT, Expand); 772 setOperationAction(ISD::FABS, VT, Expand); 773 setOperationAction(ISD::FFLOOR, VT, Expand); 774 setOperationAction(ISD::FCEIL, VT, Expand); 775 setOperationAction(ISD::FTRUNC, VT, Expand); 776 setOperationAction(ISD::FRINT, VT, Expand); 777 setOperationAction(ISD::FNEARBYINT, VT, Expand); 778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 779 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 780 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 781 setOperationAction(ISD::MULHU, VT, Expand); 782 setOperationAction(ISD::MULHS, VT, Expand); 783 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 784 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 785 setOperationAction(ISD::UDIVREM, VT, Expand); 786 setOperationAction(ISD::SDIVREM, VT, Expand); 787 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 788 setOperationAction(ISD::FPOW, VT, Expand); 789 setOperationAction(ISD::BSWAP, VT, Expand); 790 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 791 setOperationAction(ISD::ROTL, VT, Expand); 792 setOperationAction(ISD::ROTR, VT, Expand); 793 794 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 795 setTruncStoreAction(VT, InnerVT, Expand); 796 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 797 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 798 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 799 } 800 } 801 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 802 if (!Subtarget.hasP8Vector()) { 803 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 804 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 805 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 806 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 807 } 808 809 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 810 setOperationAction(ISD::ABS, VT, Custom); 811 812 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 813 // with merges, splats, etc. 814 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 815 816 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 817 // are cheap, so handle them before they get expanded to scalar. 818 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 819 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 820 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 821 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 822 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 823 824 setOperationAction(ISD::AND , MVT::v4i32, Legal); 825 setOperationAction(ISD::OR , MVT::v4i32, Legal); 826 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 827 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 828 setOperationAction(ISD::SELECT, MVT::v4i32, 829 Subtarget.useCRBits() ? Legal : Expand); 830 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 831 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 832 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 833 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 834 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 835 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 836 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 837 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 838 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 839 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 840 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 841 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 842 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 843 844 // Without hasP8Altivec set, v2i64 SMAX isn't available. 845 // But ABS custom lowering requires SMAX support. 846 if (!Subtarget.hasP8Altivec()) 847 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 848 849 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 850 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 851 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 852 if (Subtarget.hasAltivec()) 853 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 854 setOperationAction(ISD::ROTL, VT, Legal); 855 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 856 if (Subtarget.hasP8Altivec()) 857 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 858 859 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 860 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 861 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 862 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 863 864 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 865 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 866 867 if (Subtarget.hasVSX()) { 868 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 869 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 870 } 871 872 if (Subtarget.hasP8Altivec()) 873 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 874 else 875 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 876 877 if (Subtarget.isISA3_1()) { 878 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 879 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 880 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 881 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 882 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 883 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 884 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 885 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 886 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 887 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 888 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 889 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 890 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 891 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 892 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 893 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 894 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 895 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 896 } 897 898 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 899 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 900 901 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 902 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 903 904 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 905 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 906 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 907 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 908 909 // Altivec does not contain unordered floating-point compare instructions 910 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 911 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 912 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 913 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 914 915 if (Subtarget.hasVSX()) { 916 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 917 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 918 if (Subtarget.hasP8Vector()) { 919 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 920 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 921 } 922 if (Subtarget.hasDirectMove() && isPPC64) { 923 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 924 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 925 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 926 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 927 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 929 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 930 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 931 } 932 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 933 934 // The nearbyint variants are not allowed to raise the inexact exception 935 // so we can only code-gen them with unsafe math. 936 if (TM.Options.UnsafeFPMath) { 937 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 938 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 939 } 940 941 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 942 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 943 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 944 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 945 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 946 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 947 setOperationAction(ISD::FROUND, MVT::f64, Legal); 948 setOperationAction(ISD::FRINT, MVT::f64, Legal); 949 950 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 951 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 952 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 953 setOperationAction(ISD::FROUND, MVT::f32, Legal); 954 setOperationAction(ISD::FRINT, MVT::f32, Legal); 955 956 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 957 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 958 959 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 960 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 961 962 // Share the Altivec comparison restrictions. 963 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 964 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 965 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 966 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 967 968 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 969 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 970 971 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 972 973 if (Subtarget.hasP8Vector()) 974 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 975 976 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 977 978 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 979 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 980 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 981 982 if (Subtarget.hasP8Altivec()) { 983 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 984 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 985 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 986 987 // 128 bit shifts can be accomplished via 3 instructions for SHL and 988 // SRL, but not for SRA because of the instructions available: 989 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 990 // doing 991 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 992 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 993 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 994 995 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 996 } 997 else { 998 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 999 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1000 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1001 1002 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1003 1004 // VSX v2i64 only supports non-arithmetic operations. 1005 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1006 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1007 } 1008 1009 if (Subtarget.isISA3_1()) 1010 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1011 else 1012 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1013 1014 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1015 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1016 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1017 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1018 1019 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1020 1021 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1022 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1023 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1024 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1025 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1026 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1027 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1028 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1029 1030 // Custom handling for partial vectors of integers converted to 1031 // floating point. We already have optimal handling for v2i32 through 1032 // the DAG combine, so those aren't necessary. 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1034 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1035 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1036 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1037 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1038 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1039 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1040 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1041 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1042 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1043 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1044 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1045 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1046 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1047 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1048 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1049 1050 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1051 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1052 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1053 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1054 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1055 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1056 1057 if (Subtarget.hasDirectMove()) 1058 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1059 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1060 1061 // Handle constrained floating-point operations of vector. 1062 // The predictor is `hasVSX` because altivec instruction has 1063 // no exception but VSX vector instruction has. 1064 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1065 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1066 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1067 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1068 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1069 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1070 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1071 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1072 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1073 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1074 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1075 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1077 1078 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1079 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1080 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1081 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1082 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1083 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1084 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1085 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1086 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1087 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1088 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1089 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1091 1092 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1093 } 1094 1095 if (Subtarget.hasP8Altivec()) { 1096 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1097 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1098 } 1099 1100 if (Subtarget.hasP9Vector()) { 1101 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1102 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1103 1104 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1105 // SRL, but not for SRA because of the instructions available: 1106 // VS{RL} and VS{RL}O. 1107 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1108 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1109 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1110 1111 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1112 setOperationAction(ISD::FADD, MVT::f128, Legal); 1113 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1114 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1115 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1116 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1117 // No extending loads to f128 on PPC. 1118 for (MVT FPT : MVT::fp_valuetypes()) 1119 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1120 setOperationAction(ISD::FMA, MVT::f128, Legal); 1121 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1122 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1123 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1124 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1125 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1126 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1127 1128 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1129 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1130 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1131 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1132 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1133 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1134 1135 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1136 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1137 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1138 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1139 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1140 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1141 // No implementation for these ops for PowerPC. 1142 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1143 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1144 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1145 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1146 setOperationAction(ISD::FREM, MVT::f128, Expand); 1147 1148 // Handle constrained floating-point operations of fp128 1149 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1150 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1152 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1153 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1154 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1155 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1156 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1157 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1158 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1159 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1160 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1164 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1165 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1166 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1167 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1168 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1169 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1170 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1171 1172 for (MVT FPT : MVT::fp_valuetypes()) 1173 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1174 1175 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1176 setOperationAction(ISD::STORE, MVT::f128, Promote); 1177 1178 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1179 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1180 1181 setOperationAction(ISD::FADD, MVT::f128, Expand); 1182 setOperationAction(ISD::FSUB, MVT::f128, Expand); 1183 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1184 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1185 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1186 setOperationAction(ISD::FABS, MVT::f128, Expand); 1187 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1188 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1189 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1190 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1191 setOperationAction(ISD::FREM, MVT::f128, Expand); 1192 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1193 setOperationAction(ISD::FMA, MVT::f128, Expand); 1194 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1195 } 1196 1197 if (Subtarget.hasP9Altivec()) { 1198 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1199 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1200 1201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1207 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1208 } 1209 } 1210 1211 if (Subtarget.pairedVectorMemops()) { 1212 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1213 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1214 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1215 } 1216 if (Subtarget.hasMMA()) { 1217 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1218 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1219 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1220 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1221 } 1222 1223 if (Subtarget.has64BitSupport()) 1224 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1225 1226 if (Subtarget.isISA3_1()) 1227 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1228 1229 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1230 1231 if (!isPPC64) { 1232 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1233 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1234 } 1235 1236 setBooleanContents(ZeroOrOneBooleanContent); 1237 1238 if (Subtarget.hasAltivec()) { 1239 // Altivec instructions set fields to all zeros or all ones. 1240 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1241 } 1242 1243 if (!isPPC64) { 1244 // These libcalls are not available in 32-bit. 1245 setLibcallName(RTLIB::SHL_I128, nullptr); 1246 setLibcallName(RTLIB::SRL_I128, nullptr); 1247 setLibcallName(RTLIB::SRA_I128, nullptr); 1248 } 1249 1250 if (!isPPC64) 1251 setMaxAtomicSizeInBitsSupported(32); 1252 1253 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1254 1255 // We have target-specific dag combine patterns for the following nodes: 1256 setTargetDAGCombine(ISD::ADD); 1257 setTargetDAGCombine(ISD::SHL); 1258 setTargetDAGCombine(ISD::SRA); 1259 setTargetDAGCombine(ISD::SRL); 1260 setTargetDAGCombine(ISD::MUL); 1261 setTargetDAGCombine(ISD::FMA); 1262 setTargetDAGCombine(ISD::SINT_TO_FP); 1263 setTargetDAGCombine(ISD::BUILD_VECTOR); 1264 if (Subtarget.hasFPCVT()) 1265 setTargetDAGCombine(ISD::UINT_TO_FP); 1266 setTargetDAGCombine(ISD::LOAD); 1267 setTargetDAGCombine(ISD::STORE); 1268 setTargetDAGCombine(ISD::BR_CC); 1269 if (Subtarget.useCRBits()) 1270 setTargetDAGCombine(ISD::BRCOND); 1271 setTargetDAGCombine(ISD::BSWAP); 1272 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1273 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1274 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1275 1276 setTargetDAGCombine(ISD::SIGN_EXTEND); 1277 setTargetDAGCombine(ISD::ZERO_EXTEND); 1278 setTargetDAGCombine(ISD::ANY_EXTEND); 1279 1280 setTargetDAGCombine(ISD::TRUNCATE); 1281 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1282 1283 1284 if (Subtarget.useCRBits()) { 1285 setTargetDAGCombine(ISD::TRUNCATE); 1286 setTargetDAGCombine(ISD::SETCC); 1287 setTargetDAGCombine(ISD::SELECT_CC); 1288 } 1289 1290 if (Subtarget.hasP9Altivec()) { 1291 setTargetDAGCombine(ISD::ABS); 1292 setTargetDAGCombine(ISD::VSELECT); 1293 } 1294 1295 setLibcallName(RTLIB::LOG_F128, "logf128"); 1296 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1297 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1298 setLibcallName(RTLIB::EXP_F128, "expf128"); 1299 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1300 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1301 setLibcallName(RTLIB::COS_F128, "cosf128"); 1302 setLibcallName(RTLIB::POW_F128, "powf128"); 1303 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1304 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1305 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1306 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1307 1308 // With 32 condition bits, we don't need to sink (and duplicate) compares 1309 // aggressively in CodeGenPrep. 1310 if (Subtarget.useCRBits()) { 1311 setHasMultipleConditionRegisters(); 1312 setJumpIsExpensive(); 1313 } 1314 1315 setMinFunctionAlignment(Align(4)); 1316 1317 switch (Subtarget.getCPUDirective()) { 1318 default: break; 1319 case PPC::DIR_970: 1320 case PPC::DIR_A2: 1321 case PPC::DIR_E500: 1322 case PPC::DIR_E500mc: 1323 case PPC::DIR_E5500: 1324 case PPC::DIR_PWR4: 1325 case PPC::DIR_PWR5: 1326 case PPC::DIR_PWR5X: 1327 case PPC::DIR_PWR6: 1328 case PPC::DIR_PWR6X: 1329 case PPC::DIR_PWR7: 1330 case PPC::DIR_PWR8: 1331 case PPC::DIR_PWR9: 1332 case PPC::DIR_PWR10: 1333 case PPC::DIR_PWR_FUTURE: 1334 setPrefLoopAlignment(Align(16)); 1335 setPrefFunctionAlignment(Align(16)); 1336 break; 1337 } 1338 1339 if (Subtarget.enableMachineScheduler()) 1340 setSchedulingPreference(Sched::Source); 1341 else 1342 setSchedulingPreference(Sched::Hybrid); 1343 1344 computeRegisterProperties(STI.getRegisterInfo()); 1345 1346 // The Freescale cores do better with aggressive inlining of memcpy and 1347 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1348 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1349 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1350 MaxStoresPerMemset = 32; 1351 MaxStoresPerMemsetOptSize = 16; 1352 MaxStoresPerMemcpy = 32; 1353 MaxStoresPerMemcpyOptSize = 8; 1354 MaxStoresPerMemmove = 32; 1355 MaxStoresPerMemmoveOptSize = 8; 1356 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1357 // The A2 also benefits from (very) aggressive inlining of memcpy and 1358 // friends. The overhead of a the function call, even when warm, can be 1359 // over one hundred cycles. 1360 MaxStoresPerMemset = 128; 1361 MaxStoresPerMemcpy = 128; 1362 MaxStoresPerMemmove = 128; 1363 MaxLoadsPerMemcmp = 128; 1364 } else { 1365 MaxLoadsPerMemcmp = 8; 1366 MaxLoadsPerMemcmpOptSize = 4; 1367 } 1368 1369 IsStrictFPEnabled = true; 1370 1371 // Let the subtarget (CPU) decide if a predictable select is more expensive 1372 // than the corresponding branch. This information is used in CGP to decide 1373 // when to convert selects into branches. 1374 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1375 } 1376 1377 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1378 /// the desired ByVal argument alignment. 1379 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1380 if (MaxAlign == MaxMaxAlign) 1381 return; 1382 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1383 if (MaxMaxAlign >= 32 && 1384 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1385 MaxAlign = Align(32); 1386 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1387 MaxAlign < 16) 1388 MaxAlign = Align(16); 1389 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1390 Align EltAlign; 1391 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1392 if (EltAlign > MaxAlign) 1393 MaxAlign = EltAlign; 1394 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1395 for (auto *EltTy : STy->elements()) { 1396 Align EltAlign; 1397 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1398 if (EltAlign > MaxAlign) 1399 MaxAlign = EltAlign; 1400 if (MaxAlign == MaxMaxAlign) 1401 break; 1402 } 1403 } 1404 } 1405 1406 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1407 /// function arguments in the caller parameter area. 1408 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1409 const DataLayout &DL) const { 1410 // 16byte and wider vectors are passed on 16byte boundary. 1411 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1412 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1413 if (Subtarget.hasAltivec()) 1414 getMaxByValAlign(Ty, Alignment, Align(16)); 1415 return Alignment.value(); 1416 } 1417 1418 bool PPCTargetLowering::useSoftFloat() const { 1419 return Subtarget.useSoftFloat(); 1420 } 1421 1422 bool PPCTargetLowering::hasSPE() const { 1423 return Subtarget.hasSPE(); 1424 } 1425 1426 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1427 return VT.isScalarInteger(); 1428 } 1429 1430 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1431 switch ((PPCISD::NodeType)Opcode) { 1432 case PPCISD::FIRST_NUMBER: break; 1433 case PPCISD::FSEL: return "PPCISD::FSEL"; 1434 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1435 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1436 case PPCISD::FCFID: return "PPCISD::FCFID"; 1437 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1438 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1439 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1440 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1441 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1442 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1443 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1444 case PPCISD::FP_TO_UINT_IN_VSR: 1445 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1446 case PPCISD::FP_TO_SINT_IN_VSR: 1447 return "PPCISD::FP_TO_SINT_IN_VSR"; 1448 case PPCISD::FRE: return "PPCISD::FRE"; 1449 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1450 case PPCISD::FTSQRT: 1451 return "PPCISD::FTSQRT"; 1452 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1453 case PPCISD::VPERM: return "PPCISD::VPERM"; 1454 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1455 case PPCISD::XXSPLTI_SP_TO_DP: 1456 return "PPCISD::XXSPLTI_SP_TO_DP"; 1457 case PPCISD::XXSPLTI32DX: 1458 return "PPCISD::XXSPLTI32DX"; 1459 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1460 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1461 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1462 case PPCISD::CMPB: return "PPCISD::CMPB"; 1463 case PPCISD::Hi: return "PPCISD::Hi"; 1464 case PPCISD::Lo: return "PPCISD::Lo"; 1465 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1466 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1467 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1468 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1469 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1470 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1471 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1472 case PPCISD::SRL: return "PPCISD::SRL"; 1473 case PPCISD::SRA: return "PPCISD::SRA"; 1474 case PPCISD::SHL: return "PPCISD::SHL"; 1475 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1476 case PPCISD::CALL: return "PPCISD::CALL"; 1477 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1478 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1479 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1480 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1481 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1482 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1483 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1484 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1485 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1486 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1487 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1488 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1489 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1490 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1491 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1492 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1493 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1494 case PPCISD::ANDI_rec_1_EQ_BIT: 1495 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1496 case PPCISD::ANDI_rec_1_GT_BIT: 1497 return "PPCISD::ANDI_rec_1_GT_BIT"; 1498 case PPCISD::VCMP: return "PPCISD::VCMP"; 1499 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1500 case PPCISD::LBRX: return "PPCISD::LBRX"; 1501 case PPCISD::STBRX: return "PPCISD::STBRX"; 1502 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1503 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1504 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1505 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1506 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1507 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1508 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1509 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1510 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1511 case PPCISD::ST_VSR_SCAL_INT: 1512 return "PPCISD::ST_VSR_SCAL_INT"; 1513 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1514 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1515 case PPCISD::BDZ: return "PPCISD::BDZ"; 1516 case PPCISD::MFFS: return "PPCISD::MFFS"; 1517 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1518 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1519 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1520 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1521 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1522 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1523 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1524 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1525 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1526 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1527 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1528 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1529 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1530 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1531 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1532 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1533 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1534 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1535 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1536 case PPCISD::PADDI_DTPREL: 1537 return "PPCISD::PADDI_DTPREL"; 1538 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1539 case PPCISD::SC: return "PPCISD::SC"; 1540 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1541 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1542 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1543 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1544 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1545 case PPCISD::VABSD: return "PPCISD::VABSD"; 1546 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1547 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1548 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1549 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1550 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1551 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1552 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1553 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1554 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1555 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1556 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1557 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1558 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1559 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1560 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1561 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1562 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1563 case PPCISD::STRICT_FADDRTZ: 1564 return "PPCISD::STRICT_FADDRTZ"; 1565 case PPCISD::STRICT_FCTIDZ: 1566 return "PPCISD::STRICT_FCTIDZ"; 1567 case PPCISD::STRICT_FCTIWZ: 1568 return "PPCISD::STRICT_FCTIWZ"; 1569 case PPCISD::STRICT_FCTIDUZ: 1570 return "PPCISD::STRICT_FCTIDUZ"; 1571 case PPCISD::STRICT_FCTIWUZ: 1572 return "PPCISD::STRICT_FCTIWUZ"; 1573 case PPCISD::STRICT_FCFID: 1574 return "PPCISD::STRICT_FCFID"; 1575 case PPCISD::STRICT_FCFIDU: 1576 return "PPCISD::STRICT_FCFIDU"; 1577 case PPCISD::STRICT_FCFIDS: 1578 return "PPCISD::STRICT_FCFIDS"; 1579 case PPCISD::STRICT_FCFIDUS: 1580 return "PPCISD::STRICT_FCFIDUS"; 1581 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1582 } 1583 return nullptr; 1584 } 1585 1586 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1587 EVT VT) const { 1588 if (!VT.isVector()) 1589 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1590 1591 return VT.changeVectorElementTypeToInteger(); 1592 } 1593 1594 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1595 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1596 return true; 1597 } 1598 1599 //===----------------------------------------------------------------------===// 1600 // Node matching predicates, for use by the tblgen matching code. 1601 //===----------------------------------------------------------------------===// 1602 1603 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1604 static bool isFloatingPointZero(SDValue Op) { 1605 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1606 return CFP->getValueAPF().isZero(); 1607 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1608 // Maybe this has already been legalized into the constant pool? 1609 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1610 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1611 return CFP->getValueAPF().isZero(); 1612 } 1613 return false; 1614 } 1615 1616 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1617 /// true if Op is undef or if it matches the specified value. 1618 static bool isConstantOrUndef(int Op, int Val) { 1619 return Op < 0 || Op == Val; 1620 } 1621 1622 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1623 /// VPKUHUM instruction. 1624 /// The ShuffleKind distinguishes between big-endian operations with 1625 /// two different inputs (0), either-endian operations with two identical 1626 /// inputs (1), and little-endian operations with two different inputs (2). 1627 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1628 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1629 SelectionDAG &DAG) { 1630 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1631 if (ShuffleKind == 0) { 1632 if (IsLE) 1633 return false; 1634 for (unsigned i = 0; i != 16; ++i) 1635 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1636 return false; 1637 } else if (ShuffleKind == 2) { 1638 if (!IsLE) 1639 return false; 1640 for (unsigned i = 0; i != 16; ++i) 1641 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1642 return false; 1643 } else if (ShuffleKind == 1) { 1644 unsigned j = IsLE ? 0 : 1; 1645 for (unsigned i = 0; i != 8; ++i) 1646 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1647 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1648 return false; 1649 } 1650 return true; 1651 } 1652 1653 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1654 /// VPKUWUM instruction. 1655 /// The ShuffleKind distinguishes between big-endian operations with 1656 /// two different inputs (0), either-endian operations with two identical 1657 /// inputs (1), and little-endian operations with two different inputs (2). 1658 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1659 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1660 SelectionDAG &DAG) { 1661 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1662 if (ShuffleKind == 0) { 1663 if (IsLE) 1664 return false; 1665 for (unsigned i = 0; i != 16; i += 2) 1666 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1667 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1668 return false; 1669 } else if (ShuffleKind == 2) { 1670 if (!IsLE) 1671 return false; 1672 for (unsigned i = 0; i != 16; i += 2) 1673 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1674 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1675 return false; 1676 } else if (ShuffleKind == 1) { 1677 unsigned j = IsLE ? 0 : 2; 1678 for (unsigned i = 0; i != 8; i += 2) 1679 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1680 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1681 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1682 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1689 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1690 /// current subtarget. 1691 /// 1692 /// The ShuffleKind distinguishes between big-endian operations with 1693 /// two different inputs (0), either-endian operations with two identical 1694 /// inputs (1), and little-endian operations with two different inputs (2). 1695 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1696 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1697 SelectionDAG &DAG) { 1698 const PPCSubtarget& Subtarget = 1699 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1700 if (!Subtarget.hasP8Vector()) 1701 return false; 1702 1703 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1704 if (ShuffleKind == 0) { 1705 if (IsLE) 1706 return false; 1707 for (unsigned i = 0; i != 16; i += 4) 1708 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1709 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1710 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1711 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1712 return false; 1713 } else if (ShuffleKind == 2) { 1714 if (!IsLE) 1715 return false; 1716 for (unsigned i = 0; i != 16; i += 4) 1717 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1718 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1719 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1720 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1721 return false; 1722 } else if (ShuffleKind == 1) { 1723 unsigned j = IsLE ? 0 : 4; 1724 for (unsigned i = 0; i != 8; i += 4) 1725 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1726 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1727 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1728 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1729 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1730 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1731 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1732 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1733 return false; 1734 } 1735 return true; 1736 } 1737 1738 /// isVMerge - Common function, used to match vmrg* shuffles. 1739 /// 1740 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1741 unsigned LHSStart, unsigned RHSStart) { 1742 if (N->getValueType(0) != MVT::v16i8) 1743 return false; 1744 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1745 "Unsupported merge size!"); 1746 1747 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1748 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1749 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1750 LHSStart+j+i*UnitSize) || 1751 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1752 RHSStart+j+i*UnitSize)) 1753 return false; 1754 } 1755 return true; 1756 } 1757 1758 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1759 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1760 /// The ShuffleKind distinguishes between big-endian merges with two 1761 /// different inputs (0), either-endian merges with two identical inputs (1), 1762 /// and little-endian merges with two different inputs (2). For the latter, 1763 /// the input operands are swapped (see PPCInstrAltivec.td). 1764 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1765 unsigned ShuffleKind, SelectionDAG &DAG) { 1766 if (DAG.getDataLayout().isLittleEndian()) { 1767 if (ShuffleKind == 1) // unary 1768 return isVMerge(N, UnitSize, 0, 0); 1769 else if (ShuffleKind == 2) // swapped 1770 return isVMerge(N, UnitSize, 0, 16); 1771 else 1772 return false; 1773 } else { 1774 if (ShuffleKind == 1) // unary 1775 return isVMerge(N, UnitSize, 8, 8); 1776 else if (ShuffleKind == 0) // normal 1777 return isVMerge(N, UnitSize, 8, 24); 1778 else 1779 return false; 1780 } 1781 } 1782 1783 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1784 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1785 /// The ShuffleKind distinguishes between big-endian merges with two 1786 /// different inputs (0), either-endian merges with two identical inputs (1), 1787 /// and little-endian merges with two different inputs (2). For the latter, 1788 /// the input operands are swapped (see PPCInstrAltivec.td). 1789 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1790 unsigned ShuffleKind, SelectionDAG &DAG) { 1791 if (DAG.getDataLayout().isLittleEndian()) { 1792 if (ShuffleKind == 1) // unary 1793 return isVMerge(N, UnitSize, 8, 8); 1794 else if (ShuffleKind == 2) // swapped 1795 return isVMerge(N, UnitSize, 8, 24); 1796 else 1797 return false; 1798 } else { 1799 if (ShuffleKind == 1) // unary 1800 return isVMerge(N, UnitSize, 0, 0); 1801 else if (ShuffleKind == 0) // normal 1802 return isVMerge(N, UnitSize, 0, 16); 1803 else 1804 return false; 1805 } 1806 } 1807 1808 /** 1809 * Common function used to match vmrgew and vmrgow shuffles 1810 * 1811 * The indexOffset determines whether to look for even or odd words in 1812 * the shuffle mask. This is based on the of the endianness of the target 1813 * machine. 1814 * - Little Endian: 1815 * - Use offset of 0 to check for odd elements 1816 * - Use offset of 4 to check for even elements 1817 * - Big Endian: 1818 * - Use offset of 0 to check for even elements 1819 * - Use offset of 4 to check for odd elements 1820 * A detailed description of the vector element ordering for little endian and 1821 * big endian can be found at 1822 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1823 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1824 * compiler differences mean to you 1825 * 1826 * The mask to the shuffle vector instruction specifies the indices of the 1827 * elements from the two input vectors to place in the result. The elements are 1828 * numbered in array-access order, starting with the first vector. These vectors 1829 * are always of type v16i8, thus each vector will contain 16 elements of size 1830 * 8. More info on the shuffle vector can be found in the 1831 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1832 * Language Reference. 1833 * 1834 * The RHSStartValue indicates whether the same input vectors are used (unary) 1835 * or two different input vectors are used, based on the following: 1836 * - If the instruction uses the same vector for both inputs, the range of the 1837 * indices will be 0 to 15. In this case, the RHSStart value passed should 1838 * be 0. 1839 * - If the instruction has two different vectors then the range of the 1840 * indices will be 0 to 31. In this case, the RHSStart value passed should 1841 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1842 * to 31 specify elements in the second vector). 1843 * 1844 * \param[in] N The shuffle vector SD Node to analyze 1845 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1846 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1847 * vector to the shuffle_vector instruction 1848 * \return true iff this shuffle vector represents an even or odd word merge 1849 */ 1850 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1851 unsigned RHSStartValue) { 1852 if (N->getValueType(0) != MVT::v16i8) 1853 return false; 1854 1855 for (unsigned i = 0; i < 2; ++i) 1856 for (unsigned j = 0; j < 4; ++j) 1857 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1858 i*RHSStartValue+j+IndexOffset) || 1859 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1860 i*RHSStartValue+j+IndexOffset+8)) 1861 return false; 1862 return true; 1863 } 1864 1865 /** 1866 * Determine if the specified shuffle mask is suitable for the vmrgew or 1867 * vmrgow instructions. 1868 * 1869 * \param[in] N The shuffle vector SD Node to analyze 1870 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1871 * \param[in] ShuffleKind Identify the type of merge: 1872 * - 0 = big-endian merge with two different inputs; 1873 * - 1 = either-endian merge with two identical inputs; 1874 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1875 * little-endian merges). 1876 * \param[in] DAG The current SelectionDAG 1877 * \return true iff this shuffle mask 1878 */ 1879 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1880 unsigned ShuffleKind, SelectionDAG &DAG) { 1881 if (DAG.getDataLayout().isLittleEndian()) { 1882 unsigned indexOffset = CheckEven ? 4 : 0; 1883 if (ShuffleKind == 1) // Unary 1884 return isVMerge(N, indexOffset, 0); 1885 else if (ShuffleKind == 2) // swapped 1886 return isVMerge(N, indexOffset, 16); 1887 else 1888 return false; 1889 } 1890 else { 1891 unsigned indexOffset = CheckEven ? 0 : 4; 1892 if (ShuffleKind == 1) // Unary 1893 return isVMerge(N, indexOffset, 0); 1894 else if (ShuffleKind == 0) // Normal 1895 return isVMerge(N, indexOffset, 16); 1896 else 1897 return false; 1898 } 1899 return false; 1900 } 1901 1902 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1903 /// amount, otherwise return -1. 1904 /// The ShuffleKind distinguishes between big-endian operations with two 1905 /// different inputs (0), either-endian operations with two identical inputs 1906 /// (1), and little-endian operations with two different inputs (2). For the 1907 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1908 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1909 SelectionDAG &DAG) { 1910 if (N->getValueType(0) != MVT::v16i8) 1911 return -1; 1912 1913 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1914 1915 // Find the first non-undef value in the shuffle mask. 1916 unsigned i; 1917 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1918 /*search*/; 1919 1920 if (i == 16) return -1; // all undef. 1921 1922 // Otherwise, check to see if the rest of the elements are consecutively 1923 // numbered from this value. 1924 unsigned ShiftAmt = SVOp->getMaskElt(i); 1925 if (ShiftAmt < i) return -1; 1926 1927 ShiftAmt -= i; 1928 bool isLE = DAG.getDataLayout().isLittleEndian(); 1929 1930 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1931 // Check the rest of the elements to see if they are consecutive. 1932 for (++i; i != 16; ++i) 1933 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1934 return -1; 1935 } else if (ShuffleKind == 1) { 1936 // Check the rest of the elements to see if they are consecutive. 1937 for (++i; i != 16; ++i) 1938 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1939 return -1; 1940 } else 1941 return -1; 1942 1943 if (isLE) 1944 ShiftAmt = 16 - ShiftAmt; 1945 1946 return ShiftAmt; 1947 } 1948 1949 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1950 /// specifies a splat of a single element that is suitable for input to 1951 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1952 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1953 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1954 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1955 1956 // The consecutive indices need to specify an element, not part of two 1957 // different elements. So abandon ship early if this isn't the case. 1958 if (N->getMaskElt(0) % EltSize != 0) 1959 return false; 1960 1961 // This is a splat operation if each element of the permute is the same, and 1962 // if the value doesn't reference the second vector. 1963 unsigned ElementBase = N->getMaskElt(0); 1964 1965 // FIXME: Handle UNDEF elements too! 1966 if (ElementBase >= 16) 1967 return false; 1968 1969 // Check that the indices are consecutive, in the case of a multi-byte element 1970 // splatted with a v16i8 mask. 1971 for (unsigned i = 1; i != EltSize; ++i) 1972 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1973 return false; 1974 1975 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1976 if (N->getMaskElt(i) < 0) continue; 1977 for (unsigned j = 0; j != EltSize; ++j) 1978 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1979 return false; 1980 } 1981 return true; 1982 } 1983 1984 /// Check that the mask is shuffling N byte elements. Within each N byte 1985 /// element of the mask, the indices could be either in increasing or 1986 /// decreasing order as long as they are consecutive. 1987 /// \param[in] N the shuffle vector SD Node to analyze 1988 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1989 /// Word/DoubleWord/QuadWord). 1990 /// \param[in] StepLen the delta indices number among the N byte element, if 1991 /// the mask is in increasing/decreasing order then it is 1/-1. 1992 /// \return true iff the mask is shuffling N byte elements. 1993 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1994 int StepLen) { 1995 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1996 "Unexpected element width."); 1997 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1998 1999 unsigned NumOfElem = 16 / Width; 2000 unsigned MaskVal[16]; // Width is never greater than 16 2001 for (unsigned i = 0; i < NumOfElem; ++i) { 2002 MaskVal[0] = N->getMaskElt(i * Width); 2003 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2004 return false; 2005 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2006 return false; 2007 } 2008 2009 for (unsigned int j = 1; j < Width; ++j) { 2010 MaskVal[j] = N->getMaskElt(i * Width + j); 2011 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2012 return false; 2013 } 2014 } 2015 } 2016 2017 return true; 2018 } 2019 2020 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2021 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2022 if (!isNByteElemShuffleMask(N, 4, 1)) 2023 return false; 2024 2025 // Now we look at mask elements 0,4,8,12 2026 unsigned M0 = N->getMaskElt(0) / 4; 2027 unsigned M1 = N->getMaskElt(4) / 4; 2028 unsigned M2 = N->getMaskElt(8) / 4; 2029 unsigned M3 = N->getMaskElt(12) / 4; 2030 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2031 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2032 2033 // Below, let H and L be arbitrary elements of the shuffle mask 2034 // where H is in the range [4,7] and L is in the range [0,3]. 2035 // H, 1, 2, 3 or L, 5, 6, 7 2036 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2037 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2038 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2039 InsertAtByte = IsLE ? 12 : 0; 2040 Swap = M0 < 4; 2041 return true; 2042 } 2043 // 0, H, 2, 3 or 4, L, 6, 7 2044 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2045 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2046 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2047 InsertAtByte = IsLE ? 8 : 4; 2048 Swap = M1 < 4; 2049 return true; 2050 } 2051 // 0, 1, H, 3 or 4, 5, L, 7 2052 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2053 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2054 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2055 InsertAtByte = IsLE ? 4 : 8; 2056 Swap = M2 < 4; 2057 return true; 2058 } 2059 // 0, 1, 2, H or 4, 5, 6, L 2060 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2061 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2062 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2063 InsertAtByte = IsLE ? 0 : 12; 2064 Swap = M3 < 4; 2065 return true; 2066 } 2067 2068 // If both vector operands for the shuffle are the same vector, the mask will 2069 // contain only elements from the first one and the second one will be undef. 2070 if (N->getOperand(1).isUndef()) { 2071 ShiftElts = 0; 2072 Swap = true; 2073 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2074 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2075 InsertAtByte = IsLE ? 12 : 0; 2076 return true; 2077 } 2078 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2079 InsertAtByte = IsLE ? 8 : 4; 2080 return true; 2081 } 2082 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2083 InsertAtByte = IsLE ? 4 : 8; 2084 return true; 2085 } 2086 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2087 InsertAtByte = IsLE ? 0 : 12; 2088 return true; 2089 } 2090 } 2091 2092 return false; 2093 } 2094 2095 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2096 bool &Swap, bool IsLE) { 2097 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2098 // Ensure each byte index of the word is consecutive. 2099 if (!isNByteElemShuffleMask(N, 4, 1)) 2100 return false; 2101 2102 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2103 unsigned M0 = N->getMaskElt(0) / 4; 2104 unsigned M1 = N->getMaskElt(4) / 4; 2105 unsigned M2 = N->getMaskElt(8) / 4; 2106 unsigned M3 = N->getMaskElt(12) / 4; 2107 2108 // If both vector operands for the shuffle are the same vector, the mask will 2109 // contain only elements from the first one and the second one will be undef. 2110 if (N->getOperand(1).isUndef()) { 2111 assert(M0 < 4 && "Indexing into an undef vector?"); 2112 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2113 return false; 2114 2115 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2116 Swap = false; 2117 return true; 2118 } 2119 2120 // Ensure each word index of the ShuffleVector Mask is consecutive. 2121 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2122 return false; 2123 2124 if (IsLE) { 2125 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2126 // Input vectors don't need to be swapped if the leading element 2127 // of the result is one of the 3 left elements of the second vector 2128 // (or if there is no shift to be done at all). 2129 Swap = false; 2130 ShiftElts = (8 - M0) % 8; 2131 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2132 // Input vectors need to be swapped if the leading element 2133 // of the result is one of the 3 left elements of the first vector 2134 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2135 Swap = true; 2136 ShiftElts = (4 - M0) % 4; 2137 } 2138 2139 return true; 2140 } else { // BE 2141 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2142 // Input vectors don't need to be swapped if the leading element 2143 // of the result is one of the 4 elements of the first vector. 2144 Swap = false; 2145 ShiftElts = M0; 2146 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2147 // Input vectors need to be swapped if the leading element 2148 // of the result is one of the 4 elements of the right vector. 2149 Swap = true; 2150 ShiftElts = M0 - 4; 2151 } 2152 2153 return true; 2154 } 2155 } 2156 2157 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2158 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2159 2160 if (!isNByteElemShuffleMask(N, Width, -1)) 2161 return false; 2162 2163 for (int i = 0; i < 16; i += Width) 2164 if (N->getMaskElt(i) != i + Width - 1) 2165 return false; 2166 2167 return true; 2168 } 2169 2170 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2171 return isXXBRShuffleMaskHelper(N, 2); 2172 } 2173 2174 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2175 return isXXBRShuffleMaskHelper(N, 4); 2176 } 2177 2178 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2179 return isXXBRShuffleMaskHelper(N, 8); 2180 } 2181 2182 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2183 return isXXBRShuffleMaskHelper(N, 16); 2184 } 2185 2186 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2187 /// if the inputs to the instruction should be swapped and set \p DM to the 2188 /// value for the immediate. 2189 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2190 /// AND element 0 of the result comes from the first input (LE) or second input 2191 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2192 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2193 /// mask. 2194 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2195 bool &Swap, bool IsLE) { 2196 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2197 2198 // Ensure each byte index of the double word is consecutive. 2199 if (!isNByteElemShuffleMask(N, 8, 1)) 2200 return false; 2201 2202 unsigned M0 = N->getMaskElt(0) / 8; 2203 unsigned M1 = N->getMaskElt(8) / 8; 2204 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2205 2206 // If both vector operands for the shuffle are the same vector, the mask will 2207 // contain only elements from the first one and the second one will be undef. 2208 if (N->getOperand(1).isUndef()) { 2209 if ((M0 | M1) < 2) { 2210 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2211 Swap = false; 2212 return true; 2213 } else 2214 return false; 2215 } 2216 2217 if (IsLE) { 2218 if (M0 > 1 && M1 < 2) { 2219 Swap = false; 2220 } else if (M0 < 2 && M1 > 1) { 2221 M0 = (M0 + 2) % 4; 2222 M1 = (M1 + 2) % 4; 2223 Swap = true; 2224 } else 2225 return false; 2226 2227 // Note: if control flow comes here that means Swap is already set above 2228 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2229 return true; 2230 } else { // BE 2231 if (M0 < 2 && M1 > 1) { 2232 Swap = false; 2233 } else if (M0 > 1 && M1 < 2) { 2234 M0 = (M0 + 2) % 4; 2235 M1 = (M1 + 2) % 4; 2236 Swap = true; 2237 } else 2238 return false; 2239 2240 // Note: if control flow comes here that means Swap is already set above 2241 DM = (M0 << 1) + (M1 & 1); 2242 return true; 2243 } 2244 } 2245 2246 2247 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2248 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2249 /// elements are counted from the left of the vector register). 2250 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2251 SelectionDAG &DAG) { 2252 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2253 assert(isSplatShuffleMask(SVOp, EltSize)); 2254 if (DAG.getDataLayout().isLittleEndian()) 2255 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2256 else 2257 return SVOp->getMaskElt(0) / EltSize; 2258 } 2259 2260 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2261 /// by using a vspltis[bhw] instruction of the specified element size, return 2262 /// the constant being splatted. The ByteSize field indicates the number of 2263 /// bytes of each element [124] -> [bhw]. 2264 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2265 SDValue OpVal(nullptr, 0); 2266 2267 // If ByteSize of the splat is bigger than the element size of the 2268 // build_vector, then we have a case where we are checking for a splat where 2269 // multiple elements of the buildvector are folded together into a single 2270 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2271 unsigned EltSize = 16/N->getNumOperands(); 2272 if (EltSize < ByteSize) { 2273 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2274 SDValue UniquedVals[4]; 2275 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2276 2277 // See if all of the elements in the buildvector agree across. 2278 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2279 if (N->getOperand(i).isUndef()) continue; 2280 // If the element isn't a constant, bail fully out. 2281 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2282 2283 if (!UniquedVals[i&(Multiple-1)].getNode()) 2284 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2285 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2286 return SDValue(); // no match. 2287 } 2288 2289 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2290 // either constant or undef values that are identical for each chunk. See 2291 // if these chunks can form into a larger vspltis*. 2292 2293 // Check to see if all of the leading entries are either 0 or -1. If 2294 // neither, then this won't fit into the immediate field. 2295 bool LeadingZero = true; 2296 bool LeadingOnes = true; 2297 for (unsigned i = 0; i != Multiple-1; ++i) { 2298 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2299 2300 LeadingZero &= isNullConstant(UniquedVals[i]); 2301 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2302 } 2303 // Finally, check the least significant entry. 2304 if (LeadingZero) { 2305 if (!UniquedVals[Multiple-1].getNode()) 2306 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2307 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2308 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2309 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2310 } 2311 if (LeadingOnes) { 2312 if (!UniquedVals[Multiple-1].getNode()) 2313 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2314 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2315 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2316 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2317 } 2318 2319 return SDValue(); 2320 } 2321 2322 // Check to see if this buildvec has a single non-undef value in its elements. 2323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2324 if (N->getOperand(i).isUndef()) continue; 2325 if (!OpVal.getNode()) 2326 OpVal = N->getOperand(i); 2327 else if (OpVal != N->getOperand(i)) 2328 return SDValue(); 2329 } 2330 2331 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2332 2333 unsigned ValSizeInBytes = EltSize; 2334 uint64_t Value = 0; 2335 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2336 Value = CN->getZExtValue(); 2337 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2338 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2339 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2340 } 2341 2342 // If the splat value is larger than the element value, then we can never do 2343 // this splat. The only case that we could fit the replicated bits into our 2344 // immediate field for would be zero, and we prefer to use vxor for it. 2345 if (ValSizeInBytes < ByteSize) return SDValue(); 2346 2347 // If the element value is larger than the splat value, check if it consists 2348 // of a repeated bit pattern of size ByteSize. 2349 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2350 return SDValue(); 2351 2352 // Properly sign extend the value. 2353 int MaskVal = SignExtend32(Value, ByteSize * 8); 2354 2355 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2356 if (MaskVal == 0) return SDValue(); 2357 2358 // Finally, if this value fits in a 5 bit sext field, return it 2359 if (SignExtend32<5>(MaskVal) == MaskVal) 2360 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2361 return SDValue(); 2362 } 2363 2364 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2365 /// amount, otherwise return -1. 2366 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2367 EVT VT = N->getValueType(0); 2368 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2369 return -1; 2370 2371 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2372 2373 // Find the first non-undef value in the shuffle mask. 2374 unsigned i; 2375 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2376 /*search*/; 2377 2378 if (i == 4) return -1; // all undef. 2379 2380 // Otherwise, check to see if the rest of the elements are consecutively 2381 // numbered from this value. 2382 unsigned ShiftAmt = SVOp->getMaskElt(i); 2383 if (ShiftAmt < i) return -1; 2384 ShiftAmt -= i; 2385 2386 // Check the rest of the elements to see if they are consecutive. 2387 for (++i; i != 4; ++i) 2388 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2389 return -1; 2390 2391 return ShiftAmt; 2392 } 2393 2394 //===----------------------------------------------------------------------===// 2395 // Addressing Mode Selection 2396 //===----------------------------------------------------------------------===// 2397 2398 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2399 /// or 64-bit immediate, and if the value can be accurately represented as a 2400 /// sign extension from a 16-bit value. If so, this returns true and the 2401 /// immediate. 2402 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2403 if (!isa<ConstantSDNode>(N)) 2404 return false; 2405 2406 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2407 if (N->getValueType(0) == MVT::i32) 2408 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2409 else 2410 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2411 } 2412 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2413 return isIntS16Immediate(Op.getNode(), Imm); 2414 } 2415 2416 2417 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2418 /// be represented as an indexed [r+r] operation. 2419 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2420 SDValue &Index, 2421 SelectionDAG &DAG) const { 2422 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2423 UI != E; ++UI) { 2424 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2425 if (Memop->getMemoryVT() == MVT::f64) { 2426 Base = N.getOperand(0); 2427 Index = N.getOperand(1); 2428 return true; 2429 } 2430 } 2431 } 2432 return false; 2433 } 2434 2435 /// isIntS34Immediate - This method tests if value of node given can be 2436 /// accurately represented as a sign extension from a 34-bit value. If so, 2437 /// this returns true and the immediate. 2438 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2439 if (!isa<ConstantSDNode>(N)) 2440 return false; 2441 2442 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2443 return isInt<34>(Imm); 2444 } 2445 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2446 return isIntS34Immediate(Op.getNode(), Imm); 2447 } 2448 2449 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2450 /// can be represented as an indexed [r+r] operation. Returns false if it 2451 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2452 /// non-zero and N can be represented by a base register plus a signed 16-bit 2453 /// displacement, make a more precise judgement by checking (displacement % \p 2454 /// EncodingAlignment). 2455 bool PPCTargetLowering::SelectAddressRegReg( 2456 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2457 MaybeAlign EncodingAlignment) const { 2458 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2459 // a [pc+imm]. 2460 if (SelectAddressPCRel(N, Base)) 2461 return false; 2462 2463 int16_t Imm = 0; 2464 if (N.getOpcode() == ISD::ADD) { 2465 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2466 // SPE load/store can only handle 8-bit offsets. 2467 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2468 return true; 2469 if (isIntS16Immediate(N.getOperand(1), Imm) && 2470 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2471 return false; // r+i 2472 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2473 return false; // r+i 2474 2475 Base = N.getOperand(0); 2476 Index = N.getOperand(1); 2477 return true; 2478 } else if (N.getOpcode() == ISD::OR) { 2479 if (isIntS16Immediate(N.getOperand(1), Imm) && 2480 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2481 return false; // r+i can fold it if we can. 2482 2483 // If this is an or of disjoint bitfields, we can codegen this as an add 2484 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2485 // disjoint. 2486 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2487 2488 if (LHSKnown.Zero.getBoolValue()) { 2489 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2490 // If all of the bits are known zero on the LHS or RHS, the add won't 2491 // carry. 2492 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2493 Base = N.getOperand(0); 2494 Index = N.getOperand(1); 2495 return true; 2496 } 2497 } 2498 } 2499 2500 return false; 2501 } 2502 2503 // If we happen to be doing an i64 load or store into a stack slot that has 2504 // less than a 4-byte alignment, then the frame-index elimination may need to 2505 // use an indexed load or store instruction (because the offset may not be a 2506 // multiple of 4). The extra register needed to hold the offset comes from the 2507 // register scavenger, and it is possible that the scavenger will need to use 2508 // an emergency spill slot. As a result, we need to make sure that a spill slot 2509 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2510 // stack slot. 2511 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2512 // FIXME: This does not handle the LWA case. 2513 if (VT != MVT::i64) 2514 return; 2515 2516 // NOTE: We'll exclude negative FIs here, which come from argument 2517 // lowering, because there are no known test cases triggering this problem 2518 // using packed structures (or similar). We can remove this exclusion if 2519 // we find such a test case. The reason why this is so test-case driven is 2520 // because this entire 'fixup' is only to prevent crashes (from the 2521 // register scavenger) on not-really-valid inputs. For example, if we have: 2522 // %a = alloca i1 2523 // %b = bitcast i1* %a to i64* 2524 // store i64* a, i64 b 2525 // then the store should really be marked as 'align 1', but is not. If it 2526 // were marked as 'align 1' then the indexed form would have been 2527 // instruction-selected initially, and the problem this 'fixup' is preventing 2528 // won't happen regardless. 2529 if (FrameIdx < 0) 2530 return; 2531 2532 MachineFunction &MF = DAG.getMachineFunction(); 2533 MachineFrameInfo &MFI = MF.getFrameInfo(); 2534 2535 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2536 return; 2537 2538 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2539 FuncInfo->setHasNonRISpills(); 2540 } 2541 2542 /// Returns true if the address N can be represented by a base register plus 2543 /// a signed 16-bit displacement [r+imm], and if it is not better 2544 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2545 /// displacements that are multiples of that value. 2546 bool PPCTargetLowering::SelectAddressRegImm( 2547 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2548 MaybeAlign EncodingAlignment) const { 2549 // FIXME dl should come from parent load or store, not from address 2550 SDLoc dl(N); 2551 2552 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2553 // a [pc+imm]. 2554 if (SelectAddressPCRel(N, Base)) 2555 return false; 2556 2557 // If this can be more profitably realized as r+r, fail. 2558 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2559 return false; 2560 2561 if (N.getOpcode() == ISD::ADD) { 2562 int16_t imm = 0; 2563 if (isIntS16Immediate(N.getOperand(1), imm) && 2564 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2565 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2566 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2567 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2568 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2569 } else { 2570 Base = N.getOperand(0); 2571 } 2572 return true; // [r+i] 2573 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2574 // Match LOAD (ADD (X, Lo(G))). 2575 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2576 && "Cannot handle constant offsets yet!"); 2577 Disp = N.getOperand(1).getOperand(0); // The global address. 2578 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2579 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2580 Disp.getOpcode() == ISD::TargetConstantPool || 2581 Disp.getOpcode() == ISD::TargetJumpTable); 2582 Base = N.getOperand(0); 2583 return true; // [&g+r] 2584 } 2585 } else if (N.getOpcode() == ISD::OR) { 2586 int16_t imm = 0; 2587 if (isIntS16Immediate(N.getOperand(1), imm) && 2588 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2589 // If this is an or of disjoint bitfields, we can codegen this as an add 2590 // (for better address arithmetic) if the LHS and RHS of the OR are 2591 // provably disjoint. 2592 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2593 2594 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2595 // If all of the bits are known zero on the LHS or RHS, the add won't 2596 // carry. 2597 if (FrameIndexSDNode *FI = 2598 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2599 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2600 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2601 } else { 2602 Base = N.getOperand(0); 2603 } 2604 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2605 return true; 2606 } 2607 } 2608 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2609 // Loading from a constant address. 2610 2611 // If this address fits entirely in a 16-bit sext immediate field, codegen 2612 // this as "d, 0" 2613 int16_t Imm; 2614 if (isIntS16Immediate(CN, Imm) && 2615 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2616 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2617 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2618 CN->getValueType(0)); 2619 return true; 2620 } 2621 2622 // Handle 32-bit sext immediates with LIS + addr mode. 2623 if ((CN->getValueType(0) == MVT::i32 || 2624 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2625 (!EncodingAlignment || 2626 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2627 int Addr = (int)CN->getZExtValue(); 2628 2629 // Otherwise, break this down into an LIS + disp. 2630 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2631 2632 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2633 MVT::i32); 2634 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2635 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2636 return true; 2637 } 2638 } 2639 2640 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2641 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2642 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2643 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2644 } else 2645 Base = N; 2646 return true; // [r+0] 2647 } 2648 2649 /// Similar to the 16-bit case but for instructions that take a 34-bit 2650 /// displacement field (prefixed loads/stores). 2651 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2652 SDValue &Base, 2653 SelectionDAG &DAG) const { 2654 // Only on 64-bit targets. 2655 if (N.getValueType() != MVT::i64) 2656 return false; 2657 2658 SDLoc dl(N); 2659 int64_t Imm = 0; 2660 2661 if (N.getOpcode() == ISD::ADD) { 2662 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2663 return false; 2664 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2665 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2666 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2667 else 2668 Base = N.getOperand(0); 2669 return true; 2670 } 2671 2672 if (N.getOpcode() == ISD::OR) { 2673 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2674 return false; 2675 // If this is an or of disjoint bitfields, we can codegen this as an add 2676 // (for better address arithmetic) if the LHS and RHS of the OR are 2677 // provably disjoint. 2678 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2679 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2680 return false; 2681 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2682 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2683 else 2684 Base = N.getOperand(0); 2685 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2686 return true; 2687 } 2688 2689 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2690 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2691 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2692 return true; 2693 } 2694 2695 return false; 2696 } 2697 2698 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2699 /// represented as an indexed [r+r] operation. 2700 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2701 SDValue &Index, 2702 SelectionDAG &DAG) const { 2703 // Check to see if we can easily represent this as an [r+r] address. This 2704 // will fail if it thinks that the address is more profitably represented as 2705 // reg+imm, e.g. where imm = 0. 2706 if (SelectAddressRegReg(N, Base, Index, DAG)) 2707 return true; 2708 2709 // If the address is the result of an add, we will utilize the fact that the 2710 // address calculation includes an implicit add. However, we can reduce 2711 // register pressure if we do not materialize a constant just for use as the 2712 // index register. We only get rid of the add if it is not an add of a 2713 // value and a 16-bit signed constant and both have a single use. 2714 int16_t imm = 0; 2715 if (N.getOpcode() == ISD::ADD && 2716 (!isIntS16Immediate(N.getOperand(1), imm) || 2717 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2718 Base = N.getOperand(0); 2719 Index = N.getOperand(1); 2720 return true; 2721 } 2722 2723 // Otherwise, do it the hard way, using R0 as the base register. 2724 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2725 N.getValueType()); 2726 Index = N; 2727 return true; 2728 } 2729 2730 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2731 Ty *PCRelCand = dyn_cast<Ty>(N); 2732 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2733 } 2734 2735 /// Returns true if this address is a PC Relative address. 2736 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2737 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2738 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2739 // This is a materialize PC Relative node. Always select this as PC Relative. 2740 Base = N; 2741 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2742 return true; 2743 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2744 isValidPCRelNode<GlobalAddressSDNode>(N) || 2745 isValidPCRelNode<JumpTableSDNode>(N) || 2746 isValidPCRelNode<BlockAddressSDNode>(N)) 2747 return true; 2748 return false; 2749 } 2750 2751 /// Returns true if we should use a direct load into vector instruction 2752 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2753 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2754 2755 // If there are any other uses other than scalar to vector, then we should 2756 // keep it as a scalar load -> direct move pattern to prevent multiple 2757 // loads. 2758 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2759 if (!LD) 2760 return false; 2761 2762 EVT MemVT = LD->getMemoryVT(); 2763 if (!MemVT.isSimple()) 2764 return false; 2765 switch(MemVT.getSimpleVT().SimpleTy) { 2766 case MVT::i64: 2767 break; 2768 case MVT::i32: 2769 if (!ST.hasP8Vector()) 2770 return false; 2771 break; 2772 case MVT::i16: 2773 case MVT::i8: 2774 if (!ST.hasP9Vector()) 2775 return false; 2776 break; 2777 default: 2778 return false; 2779 } 2780 2781 SDValue LoadedVal(N, 0); 2782 if (!LoadedVal.hasOneUse()) 2783 return false; 2784 2785 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2786 UI != UE; ++UI) 2787 if (UI.getUse().get().getResNo() == 0 && 2788 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2789 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2790 return false; 2791 2792 return true; 2793 } 2794 2795 /// getPreIndexedAddressParts - returns true by value, base pointer and 2796 /// offset pointer and addressing mode by reference if the node's address 2797 /// can be legally represented as pre-indexed load / store address. 2798 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2799 SDValue &Offset, 2800 ISD::MemIndexedMode &AM, 2801 SelectionDAG &DAG) const { 2802 if (DisablePPCPreinc) return false; 2803 2804 bool isLoad = true; 2805 SDValue Ptr; 2806 EVT VT; 2807 unsigned Alignment; 2808 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2809 Ptr = LD->getBasePtr(); 2810 VT = LD->getMemoryVT(); 2811 Alignment = LD->getAlignment(); 2812 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2813 Ptr = ST->getBasePtr(); 2814 VT = ST->getMemoryVT(); 2815 Alignment = ST->getAlignment(); 2816 isLoad = false; 2817 } else 2818 return false; 2819 2820 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2821 // instructions because we can fold these into a more efficient instruction 2822 // instead, (such as LXSD). 2823 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2824 return false; 2825 } 2826 2827 // PowerPC doesn't have preinc load/store instructions for vectors 2828 if (VT.isVector()) 2829 return false; 2830 2831 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2832 // Common code will reject creating a pre-inc form if the base pointer 2833 // is a frame index, or if N is a store and the base pointer is either 2834 // the same as or a predecessor of the value being stored. Check for 2835 // those situations here, and try with swapped Base/Offset instead. 2836 bool Swap = false; 2837 2838 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2839 Swap = true; 2840 else if (!isLoad) { 2841 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2842 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2843 Swap = true; 2844 } 2845 2846 if (Swap) 2847 std::swap(Base, Offset); 2848 2849 AM = ISD::PRE_INC; 2850 return true; 2851 } 2852 2853 // LDU/STU can only handle immediates that are a multiple of 4. 2854 if (VT != MVT::i64) { 2855 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2856 return false; 2857 } else { 2858 // LDU/STU need an address with at least 4-byte alignment. 2859 if (Alignment < 4) 2860 return false; 2861 2862 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2863 return false; 2864 } 2865 2866 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2867 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2868 // sext i32 to i64 when addr mode is r+i. 2869 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2870 LD->getExtensionType() == ISD::SEXTLOAD && 2871 isa<ConstantSDNode>(Offset)) 2872 return false; 2873 } 2874 2875 AM = ISD::PRE_INC; 2876 return true; 2877 } 2878 2879 //===----------------------------------------------------------------------===// 2880 // LowerOperation implementation 2881 //===----------------------------------------------------------------------===// 2882 2883 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2884 /// and LoOpFlags to the target MO flags. 2885 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2886 unsigned &HiOpFlags, unsigned &LoOpFlags, 2887 const GlobalValue *GV = nullptr) { 2888 HiOpFlags = PPCII::MO_HA; 2889 LoOpFlags = PPCII::MO_LO; 2890 2891 // Don't use the pic base if not in PIC relocation model. 2892 if (IsPIC) { 2893 HiOpFlags |= PPCII::MO_PIC_FLAG; 2894 LoOpFlags |= PPCII::MO_PIC_FLAG; 2895 } 2896 } 2897 2898 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2899 SelectionDAG &DAG) { 2900 SDLoc DL(HiPart); 2901 EVT PtrVT = HiPart.getValueType(); 2902 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2903 2904 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2905 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2906 2907 // With PIC, the first instruction is actually "GR+hi(&G)". 2908 if (isPIC) 2909 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2910 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2911 2912 // Generate non-pic code that has direct accesses to the constant pool. 2913 // The address of the global is just (hi(&g)+lo(&g)). 2914 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2915 } 2916 2917 static void setUsesTOCBasePtr(MachineFunction &MF) { 2918 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2919 FuncInfo->setUsesTOCBasePtr(); 2920 } 2921 2922 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2923 setUsesTOCBasePtr(DAG.getMachineFunction()); 2924 } 2925 2926 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2927 SDValue GA) const { 2928 const bool Is64Bit = Subtarget.isPPC64(); 2929 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2930 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2931 : Subtarget.isAIXABI() 2932 ? DAG.getRegister(PPC::R2, VT) 2933 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2934 SDValue Ops[] = { GA, Reg }; 2935 return DAG.getMemIntrinsicNode( 2936 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2937 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2938 MachineMemOperand::MOLoad); 2939 } 2940 2941 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2942 SelectionDAG &DAG) const { 2943 EVT PtrVT = Op.getValueType(); 2944 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2945 const Constant *C = CP->getConstVal(); 2946 2947 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2948 // The actual address of the GlobalValue is stored in the TOC. 2949 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2950 if (Subtarget.isUsingPCRelativeCalls()) { 2951 SDLoc DL(CP); 2952 EVT Ty = getPointerTy(DAG.getDataLayout()); 2953 SDValue ConstPool = DAG.getTargetConstantPool( 2954 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2955 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2956 } 2957 setUsesTOCBasePtr(DAG); 2958 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2959 return getTOCEntry(DAG, SDLoc(CP), GA); 2960 } 2961 2962 unsigned MOHiFlag, MOLoFlag; 2963 bool IsPIC = isPositionIndependent(); 2964 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2965 2966 if (IsPIC && Subtarget.isSVR4ABI()) { 2967 SDValue GA = 2968 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2969 return getTOCEntry(DAG, SDLoc(CP), GA); 2970 } 2971 2972 SDValue CPIHi = 2973 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2974 SDValue CPILo = 2975 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2976 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2977 } 2978 2979 // For 64-bit PowerPC, prefer the more compact relative encodings. 2980 // This trades 32 bits per jump table entry for one or two instructions 2981 // on the jump site. 2982 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2983 if (isJumpTableRelative()) 2984 return MachineJumpTableInfo::EK_LabelDifference32; 2985 2986 return TargetLowering::getJumpTableEncoding(); 2987 } 2988 2989 bool PPCTargetLowering::isJumpTableRelative() const { 2990 if (UseAbsoluteJumpTables) 2991 return false; 2992 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2993 return true; 2994 return TargetLowering::isJumpTableRelative(); 2995 } 2996 2997 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2998 SelectionDAG &DAG) const { 2999 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3000 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3001 3002 switch (getTargetMachine().getCodeModel()) { 3003 case CodeModel::Small: 3004 case CodeModel::Medium: 3005 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3006 default: 3007 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3008 getPointerTy(DAG.getDataLayout())); 3009 } 3010 } 3011 3012 const MCExpr * 3013 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3014 unsigned JTI, 3015 MCContext &Ctx) const { 3016 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3017 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3018 3019 switch (getTargetMachine().getCodeModel()) { 3020 case CodeModel::Small: 3021 case CodeModel::Medium: 3022 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3023 default: 3024 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3025 } 3026 } 3027 3028 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3029 EVT PtrVT = Op.getValueType(); 3030 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3031 3032 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3033 if (Subtarget.isUsingPCRelativeCalls()) { 3034 SDLoc DL(JT); 3035 EVT Ty = getPointerTy(DAG.getDataLayout()); 3036 SDValue GA = 3037 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3038 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3039 return MatAddr; 3040 } 3041 3042 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3043 // The actual address of the GlobalValue is stored in the TOC. 3044 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3045 setUsesTOCBasePtr(DAG); 3046 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3047 return getTOCEntry(DAG, SDLoc(JT), GA); 3048 } 3049 3050 unsigned MOHiFlag, MOLoFlag; 3051 bool IsPIC = isPositionIndependent(); 3052 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3053 3054 if (IsPIC && Subtarget.isSVR4ABI()) { 3055 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3056 PPCII::MO_PIC_FLAG); 3057 return getTOCEntry(DAG, SDLoc(GA), GA); 3058 } 3059 3060 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3061 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3062 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3063 } 3064 3065 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3066 SelectionDAG &DAG) const { 3067 EVT PtrVT = Op.getValueType(); 3068 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3069 const BlockAddress *BA = BASDN->getBlockAddress(); 3070 3071 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3072 if (Subtarget.isUsingPCRelativeCalls()) { 3073 SDLoc DL(BASDN); 3074 EVT Ty = getPointerTy(DAG.getDataLayout()); 3075 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3076 PPCII::MO_PCREL_FLAG); 3077 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3078 return MatAddr; 3079 } 3080 3081 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3082 // The actual BlockAddress is stored in the TOC. 3083 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3084 setUsesTOCBasePtr(DAG); 3085 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3086 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3087 } 3088 3089 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3090 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3091 return getTOCEntry( 3092 DAG, SDLoc(BASDN), 3093 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3094 3095 unsigned MOHiFlag, MOLoFlag; 3096 bool IsPIC = isPositionIndependent(); 3097 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3098 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3099 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3100 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3101 } 3102 3103 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3104 SelectionDAG &DAG) const { 3105 // FIXME: TLS addresses currently use medium model code sequences, 3106 // which is the most useful form. Eventually support for small and 3107 // large models could be added if users need it, at the cost of 3108 // additional complexity. 3109 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3110 if (DAG.getTarget().useEmulatedTLS()) 3111 return LowerToTLSEmulatedModel(GA, DAG); 3112 3113 SDLoc dl(GA); 3114 const GlobalValue *GV = GA->getGlobal(); 3115 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3116 bool is64bit = Subtarget.isPPC64(); 3117 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3118 PICLevel::Level picLevel = M->getPICLevel(); 3119 3120 const TargetMachine &TM = getTargetMachine(); 3121 TLSModel::Model Model = TM.getTLSModel(GV); 3122 3123 if (Model == TLSModel::LocalExec) { 3124 if (Subtarget.isUsingPCRelativeCalls()) { 3125 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3126 SDValue TGA = DAG.getTargetGlobalAddress( 3127 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3128 SDValue MatAddr = 3129 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3130 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3131 } 3132 3133 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3134 PPCII::MO_TPREL_HA); 3135 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3136 PPCII::MO_TPREL_LO); 3137 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3138 : DAG.getRegister(PPC::R2, MVT::i32); 3139 3140 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3141 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3142 } 3143 3144 if (Model == TLSModel::InitialExec) { 3145 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3146 SDValue TGA = DAG.getTargetGlobalAddress( 3147 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3148 SDValue TGATLS = DAG.getTargetGlobalAddress( 3149 GV, dl, PtrVT, 0, 3150 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3151 SDValue TPOffset; 3152 if (IsPCRel) { 3153 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3154 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3155 MachinePointerInfo()); 3156 } else { 3157 SDValue GOTPtr; 3158 if (is64bit) { 3159 setUsesTOCBasePtr(DAG); 3160 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3161 GOTPtr = 3162 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3163 } else { 3164 if (!TM.isPositionIndependent()) 3165 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3166 else if (picLevel == PICLevel::SmallPIC) 3167 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3168 else 3169 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3170 } 3171 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3172 } 3173 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3174 } 3175 3176 if (Model == TLSModel::GeneralDynamic) { 3177 if (Subtarget.isUsingPCRelativeCalls()) { 3178 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3179 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3180 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3181 } 3182 3183 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3184 SDValue GOTPtr; 3185 if (is64bit) { 3186 setUsesTOCBasePtr(DAG); 3187 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3188 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3189 GOTReg, TGA); 3190 } else { 3191 if (picLevel == PICLevel::SmallPIC) 3192 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3193 else 3194 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3195 } 3196 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3197 GOTPtr, TGA, TGA); 3198 } 3199 3200 if (Model == TLSModel::LocalDynamic) { 3201 if (Subtarget.isUsingPCRelativeCalls()) { 3202 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3203 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3204 SDValue MatPCRel = 3205 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3206 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3207 } 3208 3209 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3210 SDValue GOTPtr; 3211 if (is64bit) { 3212 setUsesTOCBasePtr(DAG); 3213 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3214 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3215 GOTReg, TGA); 3216 } else { 3217 if (picLevel == PICLevel::SmallPIC) 3218 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3219 else 3220 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3221 } 3222 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3223 PtrVT, GOTPtr, TGA, TGA); 3224 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3225 PtrVT, TLSAddr, TGA); 3226 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3227 } 3228 3229 llvm_unreachable("Unknown TLS model!"); 3230 } 3231 3232 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3233 SelectionDAG &DAG) const { 3234 EVT PtrVT = Op.getValueType(); 3235 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3236 SDLoc DL(GSDN); 3237 const GlobalValue *GV = GSDN->getGlobal(); 3238 3239 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3240 // The actual address of the GlobalValue is stored in the TOC. 3241 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3242 if (Subtarget.isUsingPCRelativeCalls()) { 3243 EVT Ty = getPointerTy(DAG.getDataLayout()); 3244 if (isAccessedAsGotIndirect(Op)) { 3245 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3246 PPCII::MO_PCREL_FLAG | 3247 PPCII::MO_GOT_FLAG); 3248 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3249 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3250 MachinePointerInfo()); 3251 return Load; 3252 } else { 3253 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3254 PPCII::MO_PCREL_FLAG); 3255 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3256 } 3257 } 3258 setUsesTOCBasePtr(DAG); 3259 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3260 return getTOCEntry(DAG, DL, GA); 3261 } 3262 3263 unsigned MOHiFlag, MOLoFlag; 3264 bool IsPIC = isPositionIndependent(); 3265 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3266 3267 if (IsPIC && Subtarget.isSVR4ABI()) { 3268 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3269 GSDN->getOffset(), 3270 PPCII::MO_PIC_FLAG); 3271 return getTOCEntry(DAG, DL, GA); 3272 } 3273 3274 SDValue GAHi = 3275 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3276 SDValue GALo = 3277 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3278 3279 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3280 } 3281 3282 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3283 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3284 SDLoc dl(Op); 3285 3286 if (Op.getValueType() == MVT::v2i64) { 3287 // When the operands themselves are v2i64 values, we need to do something 3288 // special because VSX has no underlying comparison operations for these. 3289 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3290 // Equality can be handled by casting to the legal type for Altivec 3291 // comparisons, everything else needs to be expanded. 3292 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3293 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3294 DAG.getSetCC(dl, MVT::v4i32, 3295 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3296 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3297 CC)); 3298 } 3299 3300 return SDValue(); 3301 } 3302 3303 // We handle most of these in the usual way. 3304 return Op; 3305 } 3306 3307 // If we're comparing for equality to zero, expose the fact that this is 3308 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3309 // fold the new nodes. 3310 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3311 return V; 3312 3313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3314 // Leave comparisons against 0 and -1 alone for now, since they're usually 3315 // optimized. FIXME: revisit this when we can custom lower all setcc 3316 // optimizations. 3317 if (C->isAllOnesValue() || C->isNullValue()) 3318 return SDValue(); 3319 } 3320 3321 // If we have an integer seteq/setne, turn it into a compare against zero 3322 // by xor'ing the rhs with the lhs, which is faster than setting a 3323 // condition register, reading it back out, and masking the correct bit. The 3324 // normal approach here uses sub to do this instead of xor. Using xor exposes 3325 // the result to other bit-twiddling opportunities. 3326 EVT LHSVT = Op.getOperand(0).getValueType(); 3327 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3328 EVT VT = Op.getValueType(); 3329 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3330 Op.getOperand(1)); 3331 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3332 } 3333 return SDValue(); 3334 } 3335 3336 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3337 SDNode *Node = Op.getNode(); 3338 EVT VT = Node->getValueType(0); 3339 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3340 SDValue InChain = Node->getOperand(0); 3341 SDValue VAListPtr = Node->getOperand(1); 3342 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3343 SDLoc dl(Node); 3344 3345 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3346 3347 // gpr_index 3348 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3349 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3350 InChain = GprIndex.getValue(1); 3351 3352 if (VT == MVT::i64) { 3353 // Check if GprIndex is even 3354 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3355 DAG.getConstant(1, dl, MVT::i32)); 3356 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3357 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3358 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3359 DAG.getConstant(1, dl, MVT::i32)); 3360 // Align GprIndex to be even if it isn't 3361 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3362 GprIndex); 3363 } 3364 3365 // fpr index is 1 byte after gpr 3366 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3367 DAG.getConstant(1, dl, MVT::i32)); 3368 3369 // fpr 3370 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3371 FprPtr, MachinePointerInfo(SV), MVT::i8); 3372 InChain = FprIndex.getValue(1); 3373 3374 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3375 DAG.getConstant(8, dl, MVT::i32)); 3376 3377 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3378 DAG.getConstant(4, dl, MVT::i32)); 3379 3380 // areas 3381 SDValue OverflowArea = 3382 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3383 InChain = OverflowArea.getValue(1); 3384 3385 SDValue RegSaveArea = 3386 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3387 InChain = RegSaveArea.getValue(1); 3388 3389 // select overflow_area if index > 8 3390 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3391 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3392 3393 // adjustment constant gpr_index * 4/8 3394 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3395 VT.isInteger() ? GprIndex : FprIndex, 3396 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3397 MVT::i32)); 3398 3399 // OurReg = RegSaveArea + RegConstant 3400 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3401 RegConstant); 3402 3403 // Floating types are 32 bytes into RegSaveArea 3404 if (VT.isFloatingPoint()) 3405 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3406 DAG.getConstant(32, dl, MVT::i32)); 3407 3408 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3409 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3410 VT.isInteger() ? GprIndex : FprIndex, 3411 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3412 MVT::i32)); 3413 3414 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3415 VT.isInteger() ? VAListPtr : FprPtr, 3416 MachinePointerInfo(SV), MVT::i8); 3417 3418 // determine if we should load from reg_save_area or overflow_area 3419 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3420 3421 // increase overflow_area by 4/8 if gpr/fpr > 8 3422 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3423 DAG.getConstant(VT.isInteger() ? 4 : 8, 3424 dl, MVT::i32)); 3425 3426 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3427 OverflowAreaPlusN); 3428 3429 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3430 MachinePointerInfo(), MVT::i32); 3431 3432 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3433 } 3434 3435 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3436 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3437 3438 // We have to copy the entire va_list struct: 3439 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3440 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3441 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3442 false, true, false, MachinePointerInfo(), 3443 MachinePointerInfo()); 3444 } 3445 3446 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3447 SelectionDAG &DAG) const { 3448 if (Subtarget.isAIXABI()) 3449 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3450 3451 return Op.getOperand(0); 3452 } 3453 3454 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3455 SelectionDAG &DAG) const { 3456 if (Subtarget.isAIXABI()) 3457 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3458 3459 SDValue Chain = Op.getOperand(0); 3460 SDValue Trmp = Op.getOperand(1); // trampoline 3461 SDValue FPtr = Op.getOperand(2); // nested function 3462 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3463 SDLoc dl(Op); 3464 3465 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3466 bool isPPC64 = (PtrVT == MVT::i64); 3467 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3468 3469 TargetLowering::ArgListTy Args; 3470 TargetLowering::ArgListEntry Entry; 3471 3472 Entry.Ty = IntPtrTy; 3473 Entry.Node = Trmp; Args.push_back(Entry); 3474 3475 // TrampSize == (isPPC64 ? 48 : 40); 3476 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3477 isPPC64 ? MVT::i64 : MVT::i32); 3478 Args.push_back(Entry); 3479 3480 Entry.Node = FPtr; Args.push_back(Entry); 3481 Entry.Node = Nest; Args.push_back(Entry); 3482 3483 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3484 TargetLowering::CallLoweringInfo CLI(DAG); 3485 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3486 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3487 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3488 3489 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3490 return CallResult.second; 3491 } 3492 3493 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3494 MachineFunction &MF = DAG.getMachineFunction(); 3495 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3496 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3497 3498 SDLoc dl(Op); 3499 3500 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3501 // vastart just stores the address of the VarArgsFrameIndex slot into the 3502 // memory location argument. 3503 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3504 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3505 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3506 MachinePointerInfo(SV)); 3507 } 3508 3509 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3510 // We suppose the given va_list is already allocated. 3511 // 3512 // typedef struct { 3513 // char gpr; /* index into the array of 8 GPRs 3514 // * stored in the register save area 3515 // * gpr=0 corresponds to r3, 3516 // * gpr=1 to r4, etc. 3517 // */ 3518 // char fpr; /* index into the array of 8 FPRs 3519 // * stored in the register save area 3520 // * fpr=0 corresponds to f1, 3521 // * fpr=1 to f2, etc. 3522 // */ 3523 // char *overflow_arg_area; 3524 // /* location on stack that holds 3525 // * the next overflow argument 3526 // */ 3527 // char *reg_save_area; 3528 // /* where r3:r10 and f1:f8 (if saved) 3529 // * are stored 3530 // */ 3531 // } va_list[1]; 3532 3533 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3534 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3535 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3536 PtrVT); 3537 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3538 PtrVT); 3539 3540 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3541 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3542 3543 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3544 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3545 3546 uint64_t FPROffset = 1; 3547 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3548 3549 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3550 3551 // Store first byte : number of int regs 3552 SDValue firstStore = 3553 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3554 MachinePointerInfo(SV), MVT::i8); 3555 uint64_t nextOffset = FPROffset; 3556 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3557 ConstFPROffset); 3558 3559 // Store second byte : number of float regs 3560 SDValue secondStore = 3561 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3562 MachinePointerInfo(SV, nextOffset), MVT::i8); 3563 nextOffset += StackOffset; 3564 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3565 3566 // Store second word : arguments given on stack 3567 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3568 MachinePointerInfo(SV, nextOffset)); 3569 nextOffset += FrameOffset; 3570 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3571 3572 // Store third word : arguments given in registers 3573 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3574 MachinePointerInfo(SV, nextOffset)); 3575 } 3576 3577 /// FPR - The set of FP registers that should be allocated for arguments 3578 /// on Darwin and AIX. 3579 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3580 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3581 PPC::F11, PPC::F12, PPC::F13}; 3582 3583 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3584 /// the stack. 3585 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3586 unsigned PtrByteSize) { 3587 unsigned ArgSize = ArgVT.getStoreSize(); 3588 if (Flags.isByVal()) 3589 ArgSize = Flags.getByValSize(); 3590 3591 // Round up to multiples of the pointer size, except for array members, 3592 // which are always packed. 3593 if (!Flags.isInConsecutiveRegs()) 3594 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3595 3596 return ArgSize; 3597 } 3598 3599 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3600 /// on the stack. 3601 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3602 ISD::ArgFlagsTy Flags, 3603 unsigned PtrByteSize) { 3604 Align Alignment(PtrByteSize); 3605 3606 // Altivec parameters are padded to a 16 byte boundary. 3607 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3608 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3609 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3610 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3611 Alignment = Align(16); 3612 3613 // ByVal parameters are aligned as requested. 3614 if (Flags.isByVal()) { 3615 auto BVAlign = Flags.getNonZeroByValAlign(); 3616 if (BVAlign > PtrByteSize) { 3617 if (BVAlign.value() % PtrByteSize != 0) 3618 llvm_unreachable( 3619 "ByVal alignment is not a multiple of the pointer size"); 3620 3621 Alignment = BVAlign; 3622 } 3623 } 3624 3625 // Array members are always packed to their original alignment. 3626 if (Flags.isInConsecutiveRegs()) { 3627 // If the array member was split into multiple registers, the first 3628 // needs to be aligned to the size of the full type. (Except for 3629 // ppcf128, which is only aligned as its f64 components.) 3630 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3631 Alignment = Align(OrigVT.getStoreSize()); 3632 else 3633 Alignment = Align(ArgVT.getStoreSize()); 3634 } 3635 3636 return Alignment; 3637 } 3638 3639 /// CalculateStackSlotUsed - Return whether this argument will use its 3640 /// stack slot (instead of being passed in registers). ArgOffset, 3641 /// AvailableFPRs, and AvailableVRs must hold the current argument 3642 /// position, and will be updated to account for this argument. 3643 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3644 unsigned PtrByteSize, unsigned LinkageSize, 3645 unsigned ParamAreaSize, unsigned &ArgOffset, 3646 unsigned &AvailableFPRs, 3647 unsigned &AvailableVRs) { 3648 bool UseMemory = false; 3649 3650 // Respect alignment of argument on the stack. 3651 Align Alignment = 3652 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3653 ArgOffset = alignTo(ArgOffset, Alignment); 3654 // If there's no space left in the argument save area, we must 3655 // use memory (this check also catches zero-sized arguments). 3656 if (ArgOffset >= LinkageSize + ParamAreaSize) 3657 UseMemory = true; 3658 3659 // Allocate argument on the stack. 3660 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3661 if (Flags.isInConsecutiveRegsLast()) 3662 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3663 // If we overran the argument save area, we must use memory 3664 // (this check catches arguments passed partially in memory) 3665 if (ArgOffset > LinkageSize + ParamAreaSize) 3666 UseMemory = true; 3667 3668 // However, if the argument is actually passed in an FPR or a VR, 3669 // we don't use memory after all. 3670 if (!Flags.isByVal()) { 3671 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3672 if (AvailableFPRs > 0) { 3673 --AvailableFPRs; 3674 return false; 3675 } 3676 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3677 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3678 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3679 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3680 if (AvailableVRs > 0) { 3681 --AvailableVRs; 3682 return false; 3683 } 3684 } 3685 3686 return UseMemory; 3687 } 3688 3689 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3690 /// ensure minimum alignment required for target. 3691 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3692 unsigned NumBytes) { 3693 return alignTo(NumBytes, Lowering->getStackAlign()); 3694 } 3695 3696 SDValue PPCTargetLowering::LowerFormalArguments( 3697 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3698 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3699 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3700 if (Subtarget.isAIXABI()) 3701 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3702 InVals); 3703 if (Subtarget.is64BitELFABI()) 3704 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3705 InVals); 3706 if (Subtarget.is32BitELFABI()) 3707 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3708 InVals); 3709 3710 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3711 InVals); 3712 } 3713 3714 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3715 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3716 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3717 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3718 3719 // 32-bit SVR4 ABI Stack Frame Layout: 3720 // +-----------------------------------+ 3721 // +--> | Back chain | 3722 // | +-----------------------------------+ 3723 // | | Floating-point register save area | 3724 // | +-----------------------------------+ 3725 // | | General register save area | 3726 // | +-----------------------------------+ 3727 // | | CR save word | 3728 // | +-----------------------------------+ 3729 // | | VRSAVE save word | 3730 // | +-----------------------------------+ 3731 // | | Alignment padding | 3732 // | +-----------------------------------+ 3733 // | | Vector register save area | 3734 // | +-----------------------------------+ 3735 // | | Local variable space | 3736 // | +-----------------------------------+ 3737 // | | Parameter list area | 3738 // | +-----------------------------------+ 3739 // | | LR save word | 3740 // | +-----------------------------------+ 3741 // SP--> +--- | Back chain | 3742 // +-----------------------------------+ 3743 // 3744 // Specifications: 3745 // System V Application Binary Interface PowerPC Processor Supplement 3746 // AltiVec Technology Programming Interface Manual 3747 3748 MachineFunction &MF = DAG.getMachineFunction(); 3749 MachineFrameInfo &MFI = MF.getFrameInfo(); 3750 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3751 3752 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3753 // Potential tail calls could cause overwriting of argument stack slots. 3754 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3755 (CallConv == CallingConv::Fast)); 3756 const Align PtrAlign(4); 3757 3758 // Assign locations to all of the incoming arguments. 3759 SmallVector<CCValAssign, 16> ArgLocs; 3760 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3761 *DAG.getContext()); 3762 3763 // Reserve space for the linkage area on the stack. 3764 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3765 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3766 if (useSoftFloat()) 3767 CCInfo.PreAnalyzeFormalArguments(Ins); 3768 3769 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3770 CCInfo.clearWasPPCF128(); 3771 3772 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3773 CCValAssign &VA = ArgLocs[i]; 3774 3775 // Arguments stored in registers. 3776 if (VA.isRegLoc()) { 3777 const TargetRegisterClass *RC; 3778 EVT ValVT = VA.getValVT(); 3779 3780 switch (ValVT.getSimpleVT().SimpleTy) { 3781 default: 3782 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3783 case MVT::i1: 3784 case MVT::i32: 3785 RC = &PPC::GPRCRegClass; 3786 break; 3787 case MVT::f32: 3788 if (Subtarget.hasP8Vector()) 3789 RC = &PPC::VSSRCRegClass; 3790 else if (Subtarget.hasSPE()) 3791 RC = &PPC::GPRCRegClass; 3792 else 3793 RC = &PPC::F4RCRegClass; 3794 break; 3795 case MVT::f64: 3796 if (Subtarget.hasVSX()) 3797 RC = &PPC::VSFRCRegClass; 3798 else if (Subtarget.hasSPE()) 3799 // SPE passes doubles in GPR pairs. 3800 RC = &PPC::GPRCRegClass; 3801 else 3802 RC = &PPC::F8RCRegClass; 3803 break; 3804 case MVT::v16i8: 3805 case MVT::v8i16: 3806 case MVT::v4i32: 3807 RC = &PPC::VRRCRegClass; 3808 break; 3809 case MVT::v4f32: 3810 RC = &PPC::VRRCRegClass; 3811 break; 3812 case MVT::v2f64: 3813 case MVT::v2i64: 3814 RC = &PPC::VRRCRegClass; 3815 break; 3816 } 3817 3818 SDValue ArgValue; 3819 // Transform the arguments stored in physical registers into 3820 // virtual ones. 3821 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3822 assert(i + 1 < e && "No second half of double precision argument"); 3823 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3824 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3825 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3826 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3827 if (!Subtarget.isLittleEndian()) 3828 std::swap (ArgValueLo, ArgValueHi); 3829 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3830 ArgValueHi); 3831 } else { 3832 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3833 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3834 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3835 if (ValVT == MVT::i1) 3836 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3837 } 3838 3839 InVals.push_back(ArgValue); 3840 } else { 3841 // Argument stored in memory. 3842 assert(VA.isMemLoc()); 3843 3844 // Get the extended size of the argument type in stack 3845 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3846 // Get the actual size of the argument type 3847 unsigned ObjSize = VA.getValVT().getStoreSize(); 3848 unsigned ArgOffset = VA.getLocMemOffset(); 3849 // Stack objects in PPC32 are right justified. 3850 ArgOffset += ArgSize - ObjSize; 3851 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3852 3853 // Create load nodes to retrieve arguments from the stack. 3854 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3855 InVals.push_back( 3856 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3857 } 3858 } 3859 3860 // Assign locations to all of the incoming aggregate by value arguments. 3861 // Aggregates passed by value are stored in the local variable space of the 3862 // caller's stack frame, right above the parameter list area. 3863 SmallVector<CCValAssign, 16> ByValArgLocs; 3864 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3865 ByValArgLocs, *DAG.getContext()); 3866 3867 // Reserve stack space for the allocations in CCInfo. 3868 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3869 3870 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3871 3872 // Area that is at least reserved in the caller of this function. 3873 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3874 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3875 3876 // Set the size that is at least reserved in caller of this function. Tail 3877 // call optimized function's reserved stack space needs to be aligned so that 3878 // taking the difference between two stack areas will result in an aligned 3879 // stack. 3880 MinReservedArea = 3881 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3882 FuncInfo->setMinReservedArea(MinReservedArea); 3883 3884 SmallVector<SDValue, 8> MemOps; 3885 3886 // If the function takes variable number of arguments, make a frame index for 3887 // the start of the first vararg value... for expansion of llvm.va_start. 3888 if (isVarArg) { 3889 static const MCPhysReg GPArgRegs[] = { 3890 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3891 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3892 }; 3893 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3894 3895 static const MCPhysReg FPArgRegs[] = { 3896 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3897 PPC::F8 3898 }; 3899 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3900 3901 if (useSoftFloat() || hasSPE()) 3902 NumFPArgRegs = 0; 3903 3904 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3905 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3906 3907 // Make room for NumGPArgRegs and NumFPArgRegs. 3908 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3909 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3910 3911 FuncInfo->setVarArgsStackOffset( 3912 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3913 CCInfo.getNextStackOffset(), true)); 3914 3915 FuncInfo->setVarArgsFrameIndex( 3916 MFI.CreateStackObject(Depth, Align(8), false)); 3917 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3918 3919 // The fixed integer arguments of a variadic function are stored to the 3920 // VarArgsFrameIndex on the stack so that they may be loaded by 3921 // dereferencing the result of va_next. 3922 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3923 // Get an existing live-in vreg, or add a new one. 3924 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3925 if (!VReg) 3926 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3927 3928 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3929 SDValue Store = 3930 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3931 MemOps.push_back(Store); 3932 // Increment the address by four for the next argument to store 3933 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3934 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3935 } 3936 3937 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3938 // is set. 3939 // The double arguments are stored to the VarArgsFrameIndex 3940 // on the stack. 3941 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3942 // Get an existing live-in vreg, or add a new one. 3943 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3944 if (!VReg) 3945 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3946 3947 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3948 SDValue Store = 3949 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3950 MemOps.push_back(Store); 3951 // Increment the address by eight for the next argument to store 3952 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3953 PtrVT); 3954 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3955 } 3956 } 3957 3958 if (!MemOps.empty()) 3959 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3960 3961 return Chain; 3962 } 3963 3964 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3965 // value to MVT::i64 and then truncate to the correct register size. 3966 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3967 EVT ObjectVT, SelectionDAG &DAG, 3968 SDValue ArgVal, 3969 const SDLoc &dl) const { 3970 if (Flags.isSExt()) 3971 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3972 DAG.getValueType(ObjectVT)); 3973 else if (Flags.isZExt()) 3974 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3975 DAG.getValueType(ObjectVT)); 3976 3977 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3978 } 3979 3980 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3981 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3982 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3983 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3984 // TODO: add description of PPC stack frame format, or at least some docs. 3985 // 3986 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3987 bool isLittleEndian = Subtarget.isLittleEndian(); 3988 MachineFunction &MF = DAG.getMachineFunction(); 3989 MachineFrameInfo &MFI = MF.getFrameInfo(); 3990 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3991 3992 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3993 "fastcc not supported on varargs functions"); 3994 3995 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3996 // Potential tail calls could cause overwriting of argument stack slots. 3997 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3998 (CallConv == CallingConv::Fast)); 3999 unsigned PtrByteSize = 8; 4000 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4001 4002 static const MCPhysReg GPR[] = { 4003 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4004 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4005 }; 4006 static const MCPhysReg VR[] = { 4007 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4008 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4009 }; 4010 4011 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4012 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4013 const unsigned Num_VR_Regs = array_lengthof(VR); 4014 4015 // Do a first pass over the arguments to determine whether the ABI 4016 // guarantees that our caller has allocated the parameter save area 4017 // on its stack frame. In the ELFv1 ABI, this is always the case; 4018 // in the ELFv2 ABI, it is true if this is a vararg function or if 4019 // any parameter is located in a stack slot. 4020 4021 bool HasParameterArea = !isELFv2ABI || isVarArg; 4022 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4023 unsigned NumBytes = LinkageSize; 4024 unsigned AvailableFPRs = Num_FPR_Regs; 4025 unsigned AvailableVRs = Num_VR_Regs; 4026 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4027 if (Ins[i].Flags.isNest()) 4028 continue; 4029 4030 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4031 PtrByteSize, LinkageSize, ParamAreaSize, 4032 NumBytes, AvailableFPRs, AvailableVRs)) 4033 HasParameterArea = true; 4034 } 4035 4036 // Add DAG nodes to load the arguments or copy them out of registers. On 4037 // entry to a function on PPC, the arguments start after the linkage area, 4038 // although the first ones are often in registers. 4039 4040 unsigned ArgOffset = LinkageSize; 4041 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4042 SmallVector<SDValue, 8> MemOps; 4043 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4044 unsigned CurArgIdx = 0; 4045 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4046 SDValue ArgVal; 4047 bool needsLoad = false; 4048 EVT ObjectVT = Ins[ArgNo].VT; 4049 EVT OrigVT = Ins[ArgNo].ArgVT; 4050 unsigned ObjSize = ObjectVT.getStoreSize(); 4051 unsigned ArgSize = ObjSize; 4052 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4053 if (Ins[ArgNo].isOrigArg()) { 4054 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4055 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4056 } 4057 // We re-align the argument offset for each argument, except when using the 4058 // fast calling convention, when we need to make sure we do that only when 4059 // we'll actually use a stack slot. 4060 unsigned CurArgOffset; 4061 Align Alignment; 4062 auto ComputeArgOffset = [&]() { 4063 /* Respect alignment of argument on the stack. */ 4064 Alignment = 4065 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4066 ArgOffset = alignTo(ArgOffset, Alignment); 4067 CurArgOffset = ArgOffset; 4068 }; 4069 4070 if (CallConv != CallingConv::Fast) { 4071 ComputeArgOffset(); 4072 4073 /* Compute GPR index associated with argument offset. */ 4074 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4075 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4076 } 4077 4078 // FIXME the codegen can be much improved in some cases. 4079 // We do not have to keep everything in memory. 4080 if (Flags.isByVal()) { 4081 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4082 4083 if (CallConv == CallingConv::Fast) 4084 ComputeArgOffset(); 4085 4086 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4087 ObjSize = Flags.getByValSize(); 4088 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4089 // Empty aggregate parameters do not take up registers. Examples: 4090 // struct { } a; 4091 // union { } b; 4092 // int c[0]; 4093 // etc. However, we have to provide a place-holder in InVals, so 4094 // pretend we have an 8-byte item at the current address for that 4095 // purpose. 4096 if (!ObjSize) { 4097 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4098 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4099 InVals.push_back(FIN); 4100 continue; 4101 } 4102 4103 // Create a stack object covering all stack doublewords occupied 4104 // by the argument. If the argument is (fully or partially) on 4105 // the stack, or if the argument is fully in registers but the 4106 // caller has allocated the parameter save anyway, we can refer 4107 // directly to the caller's stack frame. Otherwise, create a 4108 // local copy in our own frame. 4109 int FI; 4110 if (HasParameterArea || 4111 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4112 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4113 else 4114 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4115 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4116 4117 // Handle aggregates smaller than 8 bytes. 4118 if (ObjSize < PtrByteSize) { 4119 // The value of the object is its address, which differs from the 4120 // address of the enclosing doubleword on big-endian systems. 4121 SDValue Arg = FIN; 4122 if (!isLittleEndian) { 4123 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4124 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4125 } 4126 InVals.push_back(Arg); 4127 4128 if (GPR_idx != Num_GPR_Regs) { 4129 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4130 FuncInfo->addLiveInAttr(VReg, Flags); 4131 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4132 SDValue Store; 4133 4134 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4135 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4136 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4137 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4138 MachinePointerInfo(&*FuncArg), ObjType); 4139 } else { 4140 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4141 // store the whole register as-is to the parameter save area 4142 // slot. 4143 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4144 MachinePointerInfo(&*FuncArg)); 4145 } 4146 4147 MemOps.push_back(Store); 4148 } 4149 // Whether we copied from a register or not, advance the offset 4150 // into the parameter save area by a full doubleword. 4151 ArgOffset += PtrByteSize; 4152 continue; 4153 } 4154 4155 // The value of the object is its address, which is the address of 4156 // its first stack doubleword. 4157 InVals.push_back(FIN); 4158 4159 // Store whatever pieces of the object are in registers to memory. 4160 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4161 if (GPR_idx == Num_GPR_Regs) 4162 break; 4163 4164 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4165 FuncInfo->addLiveInAttr(VReg, Flags); 4166 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4167 SDValue Addr = FIN; 4168 if (j) { 4169 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4170 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4171 } 4172 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4173 MachinePointerInfo(&*FuncArg, j)); 4174 MemOps.push_back(Store); 4175 ++GPR_idx; 4176 } 4177 ArgOffset += ArgSize; 4178 continue; 4179 } 4180 4181 switch (ObjectVT.getSimpleVT().SimpleTy) { 4182 default: llvm_unreachable("Unhandled argument type!"); 4183 case MVT::i1: 4184 case MVT::i32: 4185 case MVT::i64: 4186 if (Flags.isNest()) { 4187 // The 'nest' parameter, if any, is passed in R11. 4188 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4189 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4190 4191 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4192 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4193 4194 break; 4195 } 4196 4197 // These can be scalar arguments or elements of an integer array type 4198 // passed directly. Clang may use those instead of "byval" aggregate 4199 // types to avoid forcing arguments to memory unnecessarily. 4200 if (GPR_idx != Num_GPR_Regs) { 4201 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4202 FuncInfo->addLiveInAttr(VReg, Flags); 4203 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4204 4205 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4206 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4207 // value to MVT::i64 and then truncate to the correct register size. 4208 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4209 } else { 4210 if (CallConv == CallingConv::Fast) 4211 ComputeArgOffset(); 4212 4213 needsLoad = true; 4214 ArgSize = PtrByteSize; 4215 } 4216 if (CallConv != CallingConv::Fast || needsLoad) 4217 ArgOffset += 8; 4218 break; 4219 4220 case MVT::f32: 4221 case MVT::f64: 4222 // These can be scalar arguments or elements of a float array type 4223 // passed directly. The latter are used to implement ELFv2 homogenous 4224 // float aggregates. 4225 if (FPR_idx != Num_FPR_Regs) { 4226 unsigned VReg; 4227 4228 if (ObjectVT == MVT::f32) 4229 VReg = MF.addLiveIn(FPR[FPR_idx], 4230 Subtarget.hasP8Vector() 4231 ? &PPC::VSSRCRegClass 4232 : &PPC::F4RCRegClass); 4233 else 4234 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4235 ? &PPC::VSFRCRegClass 4236 : &PPC::F8RCRegClass); 4237 4238 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4239 ++FPR_idx; 4240 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4241 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4242 // once we support fp <-> gpr moves. 4243 4244 // This can only ever happen in the presence of f32 array types, 4245 // since otherwise we never run out of FPRs before running out 4246 // of GPRs. 4247 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4248 FuncInfo->addLiveInAttr(VReg, Flags); 4249 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4250 4251 if (ObjectVT == MVT::f32) { 4252 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4253 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4254 DAG.getConstant(32, dl, MVT::i32)); 4255 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4256 } 4257 4258 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4259 } else { 4260 if (CallConv == CallingConv::Fast) 4261 ComputeArgOffset(); 4262 4263 needsLoad = true; 4264 } 4265 4266 // When passing an array of floats, the array occupies consecutive 4267 // space in the argument area; only round up to the next doubleword 4268 // at the end of the array. Otherwise, each float takes 8 bytes. 4269 if (CallConv != CallingConv::Fast || needsLoad) { 4270 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4271 ArgOffset += ArgSize; 4272 if (Flags.isInConsecutiveRegsLast()) 4273 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4274 } 4275 break; 4276 case MVT::v4f32: 4277 case MVT::v4i32: 4278 case MVT::v8i16: 4279 case MVT::v16i8: 4280 case MVT::v2f64: 4281 case MVT::v2i64: 4282 case MVT::v1i128: 4283 case MVT::f128: 4284 // These can be scalar arguments or elements of a vector array type 4285 // passed directly. The latter are used to implement ELFv2 homogenous 4286 // vector aggregates. 4287 if (VR_idx != Num_VR_Regs) { 4288 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4289 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4290 ++VR_idx; 4291 } else { 4292 if (CallConv == CallingConv::Fast) 4293 ComputeArgOffset(); 4294 needsLoad = true; 4295 } 4296 if (CallConv != CallingConv::Fast || needsLoad) 4297 ArgOffset += 16; 4298 break; 4299 } 4300 4301 // We need to load the argument to a virtual register if we determined 4302 // above that we ran out of physical registers of the appropriate type. 4303 if (needsLoad) { 4304 if (ObjSize < ArgSize && !isLittleEndian) 4305 CurArgOffset += ArgSize - ObjSize; 4306 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4307 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4308 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4309 } 4310 4311 InVals.push_back(ArgVal); 4312 } 4313 4314 // Area that is at least reserved in the caller of this function. 4315 unsigned MinReservedArea; 4316 if (HasParameterArea) 4317 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4318 else 4319 MinReservedArea = LinkageSize; 4320 4321 // Set the size that is at least reserved in caller of this function. Tail 4322 // call optimized functions' reserved stack space needs to be aligned so that 4323 // taking the difference between two stack areas will result in an aligned 4324 // stack. 4325 MinReservedArea = 4326 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4327 FuncInfo->setMinReservedArea(MinReservedArea); 4328 4329 // If the function takes variable number of arguments, make a frame index for 4330 // the start of the first vararg value... for expansion of llvm.va_start. 4331 // On ELFv2ABI spec, it writes: 4332 // C programs that are intended to be *portable* across different compilers 4333 // and architectures must use the header file <stdarg.h> to deal with variable 4334 // argument lists. 4335 if (isVarArg && MFI.hasVAStart()) { 4336 int Depth = ArgOffset; 4337 4338 FuncInfo->setVarArgsFrameIndex( 4339 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4340 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4341 4342 // If this function is vararg, store any remaining integer argument regs 4343 // to their spots on the stack so that they may be loaded by dereferencing 4344 // the result of va_next. 4345 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4346 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4347 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4348 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4349 SDValue Store = 4350 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4351 MemOps.push_back(Store); 4352 // Increment the address by four for the next argument to store 4353 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4354 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4355 } 4356 } 4357 4358 if (!MemOps.empty()) 4359 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4360 4361 return Chain; 4362 } 4363 4364 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4365 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4366 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4367 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4368 // TODO: add description of PPC stack frame format, or at least some docs. 4369 // 4370 MachineFunction &MF = DAG.getMachineFunction(); 4371 MachineFrameInfo &MFI = MF.getFrameInfo(); 4372 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4373 4374 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4375 bool isPPC64 = PtrVT == MVT::i64; 4376 // Potential tail calls could cause overwriting of argument stack slots. 4377 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4378 (CallConv == CallingConv::Fast)); 4379 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4380 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4381 unsigned ArgOffset = LinkageSize; 4382 // Area that is at least reserved in caller of this function. 4383 unsigned MinReservedArea = ArgOffset; 4384 4385 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4386 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4387 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4388 }; 4389 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4390 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4391 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4392 }; 4393 static const MCPhysReg VR[] = { 4394 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4395 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4396 }; 4397 4398 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4399 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4400 const unsigned Num_VR_Regs = array_lengthof( VR); 4401 4402 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4403 4404 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4405 4406 // In 32-bit non-varargs functions, the stack space for vectors is after the 4407 // stack space for non-vectors. We do not use this space unless we have 4408 // too many vectors to fit in registers, something that only occurs in 4409 // constructed examples:), but we have to walk the arglist to figure 4410 // that out...for the pathological case, compute VecArgOffset as the 4411 // start of the vector parameter area. Computing VecArgOffset is the 4412 // entire point of the following loop. 4413 unsigned VecArgOffset = ArgOffset; 4414 if (!isVarArg && !isPPC64) { 4415 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4416 ++ArgNo) { 4417 EVT ObjectVT = Ins[ArgNo].VT; 4418 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4419 4420 if (Flags.isByVal()) { 4421 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4422 unsigned ObjSize = Flags.getByValSize(); 4423 unsigned ArgSize = 4424 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4425 VecArgOffset += ArgSize; 4426 continue; 4427 } 4428 4429 switch(ObjectVT.getSimpleVT().SimpleTy) { 4430 default: llvm_unreachable("Unhandled argument type!"); 4431 case MVT::i1: 4432 case MVT::i32: 4433 case MVT::f32: 4434 VecArgOffset += 4; 4435 break; 4436 case MVT::i64: // PPC64 4437 case MVT::f64: 4438 // FIXME: We are guaranteed to be !isPPC64 at this point. 4439 // Does MVT::i64 apply? 4440 VecArgOffset += 8; 4441 break; 4442 case MVT::v4f32: 4443 case MVT::v4i32: 4444 case MVT::v8i16: 4445 case MVT::v16i8: 4446 // Nothing to do, we're only looking at Nonvector args here. 4447 break; 4448 } 4449 } 4450 } 4451 // We've found where the vector parameter area in memory is. Skip the 4452 // first 12 parameters; these don't use that memory. 4453 VecArgOffset = ((VecArgOffset+15)/16)*16; 4454 VecArgOffset += 12*16; 4455 4456 // Add DAG nodes to load the arguments or copy them out of registers. On 4457 // entry to a function on PPC, the arguments start after the linkage area, 4458 // although the first ones are often in registers. 4459 4460 SmallVector<SDValue, 8> MemOps; 4461 unsigned nAltivecParamsAtEnd = 0; 4462 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4463 unsigned CurArgIdx = 0; 4464 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4465 SDValue ArgVal; 4466 bool needsLoad = false; 4467 EVT ObjectVT = Ins[ArgNo].VT; 4468 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4469 unsigned ArgSize = ObjSize; 4470 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4471 if (Ins[ArgNo].isOrigArg()) { 4472 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4473 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4474 } 4475 unsigned CurArgOffset = ArgOffset; 4476 4477 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4478 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4479 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4480 if (isVarArg || isPPC64) { 4481 MinReservedArea = ((MinReservedArea+15)/16)*16; 4482 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4483 Flags, 4484 PtrByteSize); 4485 } else nAltivecParamsAtEnd++; 4486 } else 4487 // Calculate min reserved area. 4488 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4489 Flags, 4490 PtrByteSize); 4491 4492 // FIXME the codegen can be much improved in some cases. 4493 // We do not have to keep everything in memory. 4494 if (Flags.isByVal()) { 4495 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4496 4497 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4498 ObjSize = Flags.getByValSize(); 4499 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4500 // Objects of size 1 and 2 are right justified, everything else is 4501 // left justified. This means the memory address is adjusted forwards. 4502 if (ObjSize==1 || ObjSize==2) { 4503 CurArgOffset = CurArgOffset + (4 - ObjSize); 4504 } 4505 // The value of the object is its address. 4506 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4507 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4508 InVals.push_back(FIN); 4509 if (ObjSize==1 || ObjSize==2) { 4510 if (GPR_idx != Num_GPR_Regs) { 4511 unsigned VReg; 4512 if (isPPC64) 4513 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4514 else 4515 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4516 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4517 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4518 SDValue Store = 4519 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4520 MachinePointerInfo(&*FuncArg), ObjType); 4521 MemOps.push_back(Store); 4522 ++GPR_idx; 4523 } 4524 4525 ArgOffset += PtrByteSize; 4526 4527 continue; 4528 } 4529 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4530 // Store whatever pieces of the object are in registers 4531 // to memory. ArgOffset will be the address of the beginning 4532 // of the object. 4533 if (GPR_idx != Num_GPR_Regs) { 4534 unsigned VReg; 4535 if (isPPC64) 4536 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4537 else 4538 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4539 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4540 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4541 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4542 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4543 MachinePointerInfo(&*FuncArg, j)); 4544 MemOps.push_back(Store); 4545 ++GPR_idx; 4546 ArgOffset += PtrByteSize; 4547 } else { 4548 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4549 break; 4550 } 4551 } 4552 continue; 4553 } 4554 4555 switch (ObjectVT.getSimpleVT().SimpleTy) { 4556 default: llvm_unreachable("Unhandled argument type!"); 4557 case MVT::i1: 4558 case MVT::i32: 4559 if (!isPPC64) { 4560 if (GPR_idx != Num_GPR_Regs) { 4561 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4562 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4563 4564 if (ObjectVT == MVT::i1) 4565 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4566 4567 ++GPR_idx; 4568 } else { 4569 needsLoad = true; 4570 ArgSize = PtrByteSize; 4571 } 4572 // All int arguments reserve stack space in the Darwin ABI. 4573 ArgOffset += PtrByteSize; 4574 break; 4575 } 4576 LLVM_FALLTHROUGH; 4577 case MVT::i64: // PPC64 4578 if (GPR_idx != Num_GPR_Regs) { 4579 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4580 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4581 4582 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4583 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4584 // value to MVT::i64 and then truncate to the correct register size. 4585 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4586 4587 ++GPR_idx; 4588 } else { 4589 needsLoad = true; 4590 ArgSize = PtrByteSize; 4591 } 4592 // All int arguments reserve stack space in the Darwin ABI. 4593 ArgOffset += 8; 4594 break; 4595 4596 case MVT::f32: 4597 case MVT::f64: 4598 // Every 4 bytes of argument space consumes one of the GPRs available for 4599 // argument passing. 4600 if (GPR_idx != Num_GPR_Regs) { 4601 ++GPR_idx; 4602 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4603 ++GPR_idx; 4604 } 4605 if (FPR_idx != Num_FPR_Regs) { 4606 unsigned VReg; 4607 4608 if (ObjectVT == MVT::f32) 4609 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4610 else 4611 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4612 4613 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4614 ++FPR_idx; 4615 } else { 4616 needsLoad = true; 4617 } 4618 4619 // All FP arguments reserve stack space in the Darwin ABI. 4620 ArgOffset += isPPC64 ? 8 : ObjSize; 4621 break; 4622 case MVT::v4f32: 4623 case MVT::v4i32: 4624 case MVT::v8i16: 4625 case MVT::v16i8: 4626 // Note that vector arguments in registers don't reserve stack space, 4627 // except in varargs functions. 4628 if (VR_idx != Num_VR_Regs) { 4629 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4630 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4631 if (isVarArg) { 4632 while ((ArgOffset % 16) != 0) { 4633 ArgOffset += PtrByteSize; 4634 if (GPR_idx != Num_GPR_Regs) 4635 GPR_idx++; 4636 } 4637 ArgOffset += 16; 4638 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4639 } 4640 ++VR_idx; 4641 } else { 4642 if (!isVarArg && !isPPC64) { 4643 // Vectors go after all the nonvectors. 4644 CurArgOffset = VecArgOffset; 4645 VecArgOffset += 16; 4646 } else { 4647 // Vectors are aligned. 4648 ArgOffset = ((ArgOffset+15)/16)*16; 4649 CurArgOffset = ArgOffset; 4650 ArgOffset += 16; 4651 } 4652 needsLoad = true; 4653 } 4654 break; 4655 } 4656 4657 // We need to load the argument to a virtual register if we determined above 4658 // that we ran out of physical registers of the appropriate type. 4659 if (needsLoad) { 4660 int FI = MFI.CreateFixedObject(ObjSize, 4661 CurArgOffset + (ArgSize - ObjSize), 4662 isImmutable); 4663 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4664 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4665 } 4666 4667 InVals.push_back(ArgVal); 4668 } 4669 4670 // Allow for Altivec parameters at the end, if needed. 4671 if (nAltivecParamsAtEnd) { 4672 MinReservedArea = ((MinReservedArea+15)/16)*16; 4673 MinReservedArea += 16*nAltivecParamsAtEnd; 4674 } 4675 4676 // Area that is at least reserved in the caller of this function. 4677 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4678 4679 // Set the size that is at least reserved in caller of this function. Tail 4680 // call optimized functions' reserved stack space needs to be aligned so that 4681 // taking the difference between two stack areas will result in an aligned 4682 // stack. 4683 MinReservedArea = 4684 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4685 FuncInfo->setMinReservedArea(MinReservedArea); 4686 4687 // If the function takes variable number of arguments, make a frame index for 4688 // the start of the first vararg value... for expansion of llvm.va_start. 4689 if (isVarArg) { 4690 int Depth = ArgOffset; 4691 4692 FuncInfo->setVarArgsFrameIndex( 4693 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4694 Depth, true)); 4695 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4696 4697 // If this function is vararg, store any remaining integer argument regs 4698 // to their spots on the stack so that they may be loaded by dereferencing 4699 // the result of va_next. 4700 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4701 unsigned VReg; 4702 4703 if (isPPC64) 4704 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4705 else 4706 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4707 4708 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4709 SDValue Store = 4710 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4711 MemOps.push_back(Store); 4712 // Increment the address by four for the next argument to store 4713 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4714 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4715 } 4716 } 4717 4718 if (!MemOps.empty()) 4719 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4720 4721 return Chain; 4722 } 4723 4724 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4725 /// adjusted to accommodate the arguments for the tailcall. 4726 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4727 unsigned ParamSize) { 4728 4729 if (!isTailCall) return 0; 4730 4731 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4732 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4733 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4734 // Remember only if the new adjustment is bigger. 4735 if (SPDiff < FI->getTailCallSPDelta()) 4736 FI->setTailCallSPDelta(SPDiff); 4737 4738 return SPDiff; 4739 } 4740 4741 static bool isFunctionGlobalAddress(SDValue Callee); 4742 4743 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4744 const TargetMachine &TM) { 4745 // It does not make sense to call callsShareTOCBase() with a caller that 4746 // is PC Relative since PC Relative callers do not have a TOC. 4747 #ifndef NDEBUG 4748 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4749 assert(!STICaller->isUsingPCRelativeCalls() && 4750 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4751 #endif 4752 4753 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4754 // don't have enough information to determine if the caller and callee share 4755 // the same TOC base, so we have to pessimistically assume they don't for 4756 // correctness. 4757 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4758 if (!G) 4759 return false; 4760 4761 const GlobalValue *GV = G->getGlobal(); 4762 4763 // If the callee is preemptable, then the static linker will use a plt-stub 4764 // which saves the toc to the stack, and needs a nop after the call 4765 // instruction to convert to a toc-restore. 4766 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4767 return false; 4768 4769 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4770 // We may need a TOC restore in the situation where the caller requires a 4771 // valid TOC but the callee is PC Relative and does not. 4772 const Function *F = dyn_cast<Function>(GV); 4773 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4774 4775 // If we have an Alias we can try to get the function from there. 4776 if (Alias) { 4777 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4778 F = dyn_cast<Function>(GlobalObj); 4779 } 4780 4781 // If we still have no valid function pointer we do not have enough 4782 // information to determine if the callee uses PC Relative calls so we must 4783 // assume that it does. 4784 if (!F) 4785 return false; 4786 4787 // If the callee uses PC Relative we cannot guarantee that the callee won't 4788 // clobber the TOC of the caller and so we must assume that the two 4789 // functions do not share a TOC base. 4790 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4791 if (STICallee->isUsingPCRelativeCalls()) 4792 return false; 4793 4794 // The medium and large code models are expected to provide a sufficiently 4795 // large TOC to provide all data addressing needs of a module with a 4796 // single TOC. 4797 if (CodeModel::Medium == TM.getCodeModel() || 4798 CodeModel::Large == TM.getCodeModel()) 4799 return true; 4800 4801 // Otherwise we need to ensure callee and caller are in the same section, 4802 // since the linker may allocate multiple TOCs, and we don't know which 4803 // sections will belong to the same TOC base. 4804 if (!GV->isStrongDefinitionForLinker()) 4805 return false; 4806 4807 // Any explicitly-specified sections and section prefixes must also match. 4808 // Also, if we're using -ffunction-sections, then each function is always in 4809 // a different section (the same is true for COMDAT functions). 4810 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4811 GV->getSection() != Caller->getSection()) 4812 return false; 4813 if (const auto *F = dyn_cast<Function>(GV)) { 4814 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4815 return false; 4816 } 4817 4818 return true; 4819 } 4820 4821 static bool 4822 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4823 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4824 assert(Subtarget.is64BitELFABI()); 4825 4826 const unsigned PtrByteSize = 8; 4827 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4828 4829 static const MCPhysReg GPR[] = { 4830 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4831 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4832 }; 4833 static const MCPhysReg VR[] = { 4834 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4835 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4836 }; 4837 4838 const unsigned NumGPRs = array_lengthof(GPR); 4839 const unsigned NumFPRs = 13; 4840 const unsigned NumVRs = array_lengthof(VR); 4841 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4842 4843 unsigned NumBytes = LinkageSize; 4844 unsigned AvailableFPRs = NumFPRs; 4845 unsigned AvailableVRs = NumVRs; 4846 4847 for (const ISD::OutputArg& Param : Outs) { 4848 if (Param.Flags.isNest()) continue; 4849 4850 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4851 LinkageSize, ParamAreaSize, NumBytes, 4852 AvailableFPRs, AvailableVRs)) 4853 return true; 4854 } 4855 return false; 4856 } 4857 4858 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4859 if (CB.arg_size() != CallerFn->arg_size()) 4860 return false; 4861 4862 auto CalleeArgIter = CB.arg_begin(); 4863 auto CalleeArgEnd = CB.arg_end(); 4864 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4865 4866 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4867 const Value* CalleeArg = *CalleeArgIter; 4868 const Value* CallerArg = &(*CallerArgIter); 4869 if (CalleeArg == CallerArg) 4870 continue; 4871 4872 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4873 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4874 // } 4875 // 1st argument of callee is undef and has the same type as caller. 4876 if (CalleeArg->getType() == CallerArg->getType() && 4877 isa<UndefValue>(CalleeArg)) 4878 continue; 4879 4880 return false; 4881 } 4882 4883 return true; 4884 } 4885 4886 // Returns true if TCO is possible between the callers and callees 4887 // calling conventions. 4888 static bool 4889 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4890 CallingConv::ID CalleeCC) { 4891 // Tail calls are possible with fastcc and ccc. 4892 auto isTailCallableCC = [] (CallingConv::ID CC){ 4893 return CC == CallingConv::C || CC == CallingConv::Fast; 4894 }; 4895 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4896 return false; 4897 4898 // We can safely tail call both fastcc and ccc callees from a c calling 4899 // convention caller. If the caller is fastcc, we may have less stack space 4900 // than a non-fastcc caller with the same signature so disable tail-calls in 4901 // that case. 4902 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4903 } 4904 4905 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4906 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4907 const SmallVectorImpl<ISD::OutputArg> &Outs, 4908 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4909 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4910 4911 if (DisableSCO && !TailCallOpt) return false; 4912 4913 // Variadic argument functions are not supported. 4914 if (isVarArg) return false; 4915 4916 auto &Caller = DAG.getMachineFunction().getFunction(); 4917 // Check that the calling conventions are compatible for tco. 4918 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4919 return false; 4920 4921 // Caller contains any byval parameter is not supported. 4922 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4923 return false; 4924 4925 // Callee contains any byval parameter is not supported, too. 4926 // Note: This is a quick work around, because in some cases, e.g. 4927 // caller's stack size > callee's stack size, we are still able to apply 4928 // sibling call optimization. For example, gcc is able to do SCO for caller1 4929 // in the following example, but not for caller2. 4930 // struct test { 4931 // long int a; 4932 // char ary[56]; 4933 // } gTest; 4934 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4935 // b->a = v.a; 4936 // return 0; 4937 // } 4938 // void caller1(struct test a, struct test c, struct test *b) { 4939 // callee(gTest, b); } 4940 // void caller2(struct test *b) { callee(gTest, b); } 4941 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4942 return false; 4943 4944 // If callee and caller use different calling conventions, we cannot pass 4945 // parameters on stack since offsets for the parameter area may be different. 4946 if (Caller.getCallingConv() != CalleeCC && 4947 needStackSlotPassParameters(Subtarget, Outs)) 4948 return false; 4949 4950 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4951 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4952 // callee potentially have different TOC bases then we cannot tail call since 4953 // we need to restore the TOC pointer after the call. 4954 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4955 // We cannot guarantee this for indirect calls or calls to external functions. 4956 // When PC-Relative addressing is used, the concept of the TOC is no longer 4957 // applicable so this check is not required. 4958 // Check first for indirect calls. 4959 if (!Subtarget.isUsingPCRelativeCalls() && 4960 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4961 return false; 4962 4963 // Check if we share the TOC base. 4964 if (!Subtarget.isUsingPCRelativeCalls() && 4965 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4966 return false; 4967 4968 // TCO allows altering callee ABI, so we don't have to check further. 4969 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4970 return true; 4971 4972 if (DisableSCO) return false; 4973 4974 // If callee use the same argument list that caller is using, then we can 4975 // apply SCO on this case. If it is not, then we need to check if callee needs 4976 // stack for passing arguments. 4977 // PC Relative tail calls may not have a CallBase. 4978 // If there is no CallBase we cannot verify if we have the same argument 4979 // list so assume that we don't have the same argument list. 4980 if (CB && !hasSameArgumentList(&Caller, *CB) && 4981 needStackSlotPassParameters(Subtarget, Outs)) 4982 return false; 4983 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4984 return false; 4985 4986 return true; 4987 } 4988 4989 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4990 /// for tail call optimization. Targets which want to do tail call 4991 /// optimization should implement this function. 4992 bool 4993 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4994 CallingConv::ID CalleeCC, 4995 bool isVarArg, 4996 const SmallVectorImpl<ISD::InputArg> &Ins, 4997 SelectionDAG& DAG) const { 4998 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4999 return false; 5000 5001 // Variable argument functions are not supported. 5002 if (isVarArg) 5003 return false; 5004 5005 MachineFunction &MF = DAG.getMachineFunction(); 5006 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 5007 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 5008 // Functions containing by val parameters are not supported. 5009 for (unsigned i = 0; i != Ins.size(); i++) { 5010 ISD::ArgFlagsTy Flags = Ins[i].Flags; 5011 if (Flags.isByVal()) return false; 5012 } 5013 5014 // Non-PIC/GOT tail calls are supported. 5015 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 5016 return true; 5017 5018 // At the moment we can only do local tail calls (in same module, hidden 5019 // or protected) if we are generating PIC. 5020 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 5021 return G->getGlobal()->hasHiddenVisibility() 5022 || G->getGlobal()->hasProtectedVisibility(); 5023 } 5024 5025 return false; 5026 } 5027 5028 /// isCallCompatibleAddress - Return the immediate to use if the specified 5029 /// 32-bit value is representable in the immediate field of a BxA instruction. 5030 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 5031 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5032 if (!C) return nullptr; 5033 5034 int Addr = C->getZExtValue(); 5035 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5036 SignExtend32<26>(Addr) != Addr) 5037 return nullptr; // Top 6 bits have to be sext of immediate. 5038 5039 return DAG 5040 .getConstant( 5041 (int)C->getZExtValue() >> 2, SDLoc(Op), 5042 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5043 .getNode(); 5044 } 5045 5046 namespace { 5047 5048 struct TailCallArgumentInfo { 5049 SDValue Arg; 5050 SDValue FrameIdxOp; 5051 int FrameIdx = 0; 5052 5053 TailCallArgumentInfo() = default; 5054 }; 5055 5056 } // end anonymous namespace 5057 5058 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5059 static void StoreTailCallArgumentsToStackSlot( 5060 SelectionDAG &DAG, SDValue Chain, 5061 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5062 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5063 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5064 SDValue Arg = TailCallArgs[i].Arg; 5065 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5066 int FI = TailCallArgs[i].FrameIdx; 5067 // Store relative to framepointer. 5068 MemOpChains.push_back(DAG.getStore( 5069 Chain, dl, Arg, FIN, 5070 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5071 } 5072 } 5073 5074 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5075 /// the appropriate stack slot for the tail call optimized function call. 5076 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5077 SDValue OldRetAddr, SDValue OldFP, 5078 int SPDiff, const SDLoc &dl) { 5079 if (SPDiff) { 5080 // Calculate the new stack slot for the return address. 5081 MachineFunction &MF = DAG.getMachineFunction(); 5082 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5083 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5084 bool isPPC64 = Subtarget.isPPC64(); 5085 int SlotSize = isPPC64 ? 8 : 4; 5086 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5087 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5088 NewRetAddrLoc, true); 5089 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5090 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5091 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5092 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5093 } 5094 return Chain; 5095 } 5096 5097 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5098 /// the position of the argument. 5099 static void 5100 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5101 SDValue Arg, int SPDiff, unsigned ArgOffset, 5102 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5103 int Offset = ArgOffset + SPDiff; 5104 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5105 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5106 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5107 SDValue FIN = DAG.getFrameIndex(FI, VT); 5108 TailCallArgumentInfo Info; 5109 Info.Arg = Arg; 5110 Info.FrameIdxOp = FIN; 5111 Info.FrameIdx = FI; 5112 TailCallArguments.push_back(Info); 5113 } 5114 5115 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5116 /// stack slot. Returns the chain as result and the loaded frame pointers in 5117 /// LROpOut/FPOpout. Used when tail calling. 5118 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5119 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5120 SDValue &FPOpOut, const SDLoc &dl) const { 5121 if (SPDiff) { 5122 // Load the LR and FP stack slot for later adjusting. 5123 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5124 LROpOut = getReturnAddrFrameIndex(DAG); 5125 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5126 Chain = SDValue(LROpOut.getNode(), 1); 5127 } 5128 return Chain; 5129 } 5130 5131 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5132 /// by "Src" to address "Dst" of size "Size". Alignment information is 5133 /// specified by the specific parameter attribute. The copy will be passed as 5134 /// a byval function parameter. 5135 /// Sometimes what we are copying is the end of a larger object, the part that 5136 /// does not fit in registers. 5137 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5138 SDValue Chain, ISD::ArgFlagsTy Flags, 5139 SelectionDAG &DAG, const SDLoc &dl) { 5140 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5141 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5142 Flags.getNonZeroByValAlign(), false, false, false, 5143 MachinePointerInfo(), MachinePointerInfo()); 5144 } 5145 5146 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5147 /// tail calls. 5148 static void LowerMemOpCallTo( 5149 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5150 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5151 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5152 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5153 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5154 if (!isTailCall) { 5155 if (isVector) { 5156 SDValue StackPtr; 5157 if (isPPC64) 5158 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5159 else 5160 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5161 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5162 DAG.getConstant(ArgOffset, dl, PtrVT)); 5163 } 5164 MemOpChains.push_back( 5165 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5166 // Calculate and remember argument location. 5167 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5168 TailCallArguments); 5169 } 5170 5171 static void 5172 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5173 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5174 SDValue FPOp, 5175 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5176 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5177 // might overwrite each other in case of tail call optimization. 5178 SmallVector<SDValue, 8> MemOpChains2; 5179 // Do not flag preceding copytoreg stuff together with the following stuff. 5180 InFlag = SDValue(); 5181 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5182 MemOpChains2, dl); 5183 if (!MemOpChains2.empty()) 5184 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5185 5186 // Store the return address to the appropriate stack slot. 5187 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5188 5189 // Emit callseq_end just before tailcall node. 5190 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5191 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5192 InFlag = Chain.getValue(1); 5193 } 5194 5195 // Is this global address that of a function that can be called by name? (as 5196 // opposed to something that must hold a descriptor for an indirect call). 5197 static bool isFunctionGlobalAddress(SDValue Callee) { 5198 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5199 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5200 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5201 return false; 5202 5203 return G->getGlobal()->getValueType()->isFunctionTy(); 5204 } 5205 5206 return false; 5207 } 5208 5209 SDValue PPCTargetLowering::LowerCallResult( 5210 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5211 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5212 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5213 SmallVector<CCValAssign, 16> RVLocs; 5214 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5215 *DAG.getContext()); 5216 5217 CCRetInfo.AnalyzeCallResult( 5218 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5219 ? RetCC_PPC_Cold 5220 : RetCC_PPC); 5221 5222 // Copy all of the result registers out of their specified physreg. 5223 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5224 CCValAssign &VA = RVLocs[i]; 5225 assert(VA.isRegLoc() && "Can only return in registers!"); 5226 5227 SDValue Val; 5228 5229 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5230 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5231 InFlag); 5232 Chain = Lo.getValue(1); 5233 InFlag = Lo.getValue(2); 5234 VA = RVLocs[++i]; // skip ahead to next loc 5235 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5236 InFlag); 5237 Chain = Hi.getValue(1); 5238 InFlag = Hi.getValue(2); 5239 if (!Subtarget.isLittleEndian()) 5240 std::swap (Lo, Hi); 5241 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5242 } else { 5243 Val = DAG.getCopyFromReg(Chain, dl, 5244 VA.getLocReg(), VA.getLocVT(), InFlag); 5245 Chain = Val.getValue(1); 5246 InFlag = Val.getValue(2); 5247 } 5248 5249 switch (VA.getLocInfo()) { 5250 default: llvm_unreachable("Unknown loc info!"); 5251 case CCValAssign::Full: break; 5252 case CCValAssign::AExt: 5253 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5254 break; 5255 case CCValAssign::ZExt: 5256 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5257 DAG.getValueType(VA.getValVT())); 5258 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5259 break; 5260 case CCValAssign::SExt: 5261 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5262 DAG.getValueType(VA.getValVT())); 5263 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5264 break; 5265 } 5266 5267 InVals.push_back(Val); 5268 } 5269 5270 return Chain; 5271 } 5272 5273 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5274 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5275 // PatchPoint calls are not indirect. 5276 if (isPatchPoint) 5277 return false; 5278 5279 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5280 return false; 5281 5282 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5283 // becuase the immediate function pointer points to a descriptor instead of 5284 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5285 // pointer immediate points to the global entry point, while the BLA would 5286 // need to jump to the local entry point (see rL211174). 5287 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5288 isBLACompatibleAddress(Callee, DAG)) 5289 return false; 5290 5291 return true; 5292 } 5293 5294 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5295 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5296 return Subtarget.isAIXABI() || 5297 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5298 } 5299 5300 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5301 const Function &Caller, 5302 const SDValue &Callee, 5303 const PPCSubtarget &Subtarget, 5304 const TargetMachine &TM) { 5305 if (CFlags.IsTailCall) 5306 return PPCISD::TC_RETURN; 5307 5308 // This is a call through a function pointer. 5309 if (CFlags.IsIndirect) { 5310 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5311 // indirect calls. The save of the caller's TOC pointer to the stack will be 5312 // inserted into the DAG as part of call lowering. The restore of the TOC 5313 // pointer is modeled by using a pseudo instruction for the call opcode that 5314 // represents the 2 instruction sequence of an indirect branch and link, 5315 // immediately followed by a load of the TOC pointer from the the stack save 5316 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5317 // as it is not saved or used. 5318 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5319 : PPCISD::BCTRL; 5320 } 5321 5322 if (Subtarget.isUsingPCRelativeCalls()) { 5323 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5324 return PPCISD::CALL_NOTOC; 5325 } 5326 5327 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5328 // immediately following the call instruction if the caller and callee may 5329 // have different TOC bases. At link time if the linker determines the calls 5330 // may not share a TOC base, the call is redirected to a trampoline inserted 5331 // by the linker. The trampoline will (among other things) save the callers 5332 // TOC pointer at an ABI designated offset in the linkage area and the linker 5333 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5334 // into gpr2. 5335 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5336 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5337 : PPCISD::CALL_NOP; 5338 5339 return PPCISD::CALL; 5340 } 5341 5342 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5343 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5344 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5345 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5346 return SDValue(Dest, 0); 5347 5348 // Returns true if the callee is local, and false otherwise. 5349 auto isLocalCallee = [&]() { 5350 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5351 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5352 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5353 5354 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5355 !dyn_cast_or_null<GlobalIFunc>(GV); 5356 }; 5357 5358 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5359 // a static relocation model causes some versions of GNU LD (2.17.50, at 5360 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5361 // built with secure-PLT. 5362 bool UsePlt = 5363 Subtarget.is32BitELFABI() && !isLocalCallee() && 5364 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5365 5366 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5367 const TargetMachine &TM = Subtarget.getTargetMachine(); 5368 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5369 MCSymbolXCOFF *S = 5370 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5371 5372 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5373 return DAG.getMCSymbol(S, PtrVT); 5374 }; 5375 5376 if (isFunctionGlobalAddress(Callee)) { 5377 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5378 5379 if (Subtarget.isAIXABI()) { 5380 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5381 return getAIXFuncEntryPointSymbolSDNode(GV); 5382 } 5383 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5384 UsePlt ? PPCII::MO_PLT : 0); 5385 } 5386 5387 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5388 const char *SymName = S->getSymbol(); 5389 if (Subtarget.isAIXABI()) { 5390 // If there exists a user-declared function whose name is the same as the 5391 // ExternalSymbol's, then we pick up the user-declared version. 5392 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5393 if (const Function *F = 5394 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5395 return getAIXFuncEntryPointSymbolSDNode(F); 5396 5397 // On AIX, direct function calls reference the symbol for the function's 5398 // entry point, which is named by prepending a "." before the function's 5399 // C-linkage name. A Qualname is returned here because an external 5400 // function entry point is a csect with XTY_ER property. 5401 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5402 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5403 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5404 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5405 SectionKind::getMetadata()); 5406 return Sec->getQualNameSymbol(); 5407 }; 5408 5409 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5410 } 5411 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5412 UsePlt ? PPCII::MO_PLT : 0); 5413 } 5414 5415 // No transformation needed. 5416 assert(Callee.getNode() && "What no callee?"); 5417 return Callee; 5418 } 5419 5420 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5421 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5422 "Expected a CALLSEQ_STARTSDNode."); 5423 5424 // The last operand is the chain, except when the node has glue. If the node 5425 // has glue, then the last operand is the glue, and the chain is the second 5426 // last operand. 5427 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5428 if (LastValue.getValueType() != MVT::Glue) 5429 return LastValue; 5430 5431 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5432 } 5433 5434 // Creates the node that moves a functions address into the count register 5435 // to prepare for an indirect call instruction. 5436 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5437 SDValue &Glue, SDValue &Chain, 5438 const SDLoc &dl) { 5439 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5440 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5441 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5442 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5443 // The glue is the second value produced. 5444 Glue = Chain.getValue(1); 5445 } 5446 5447 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5448 SDValue &Glue, SDValue &Chain, 5449 SDValue CallSeqStart, 5450 const CallBase *CB, const SDLoc &dl, 5451 bool hasNest, 5452 const PPCSubtarget &Subtarget) { 5453 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5454 // entry point, but to the function descriptor (the function entry point 5455 // address is part of the function descriptor though). 5456 // The function descriptor is a three doubleword structure with the 5457 // following fields: function entry point, TOC base address and 5458 // environment pointer. 5459 // Thus for a call through a function pointer, the following actions need 5460 // to be performed: 5461 // 1. Save the TOC of the caller in the TOC save area of its stack 5462 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5463 // 2. Load the address of the function entry point from the function 5464 // descriptor. 5465 // 3. Load the TOC of the callee from the function descriptor into r2. 5466 // 4. Load the environment pointer from the function descriptor into 5467 // r11. 5468 // 5. Branch to the function entry point address. 5469 // 6. On return of the callee, the TOC of the caller needs to be 5470 // restored (this is done in FinishCall()). 5471 // 5472 // The loads are scheduled at the beginning of the call sequence, and the 5473 // register copies are flagged together to ensure that no other 5474 // operations can be scheduled in between. E.g. without flagging the 5475 // copies together, a TOC access in the caller could be scheduled between 5476 // the assignment of the callee TOC and the branch to the callee, which leads 5477 // to incorrect code. 5478 5479 // Start by loading the function address from the descriptor. 5480 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5481 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5482 ? (MachineMemOperand::MODereferenceable | 5483 MachineMemOperand::MOInvariant) 5484 : MachineMemOperand::MONone; 5485 5486 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5487 5488 // Registers used in building the DAG. 5489 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5490 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5491 5492 // Offsets of descriptor members. 5493 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5494 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5495 5496 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5497 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5498 5499 // One load for the functions entry point address. 5500 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5501 Alignment, MMOFlags); 5502 5503 // One for loading the TOC anchor for the module that contains the called 5504 // function. 5505 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5506 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5507 SDValue TOCPtr = 5508 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5509 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5510 5511 // One for loading the environment pointer. 5512 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5513 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5514 SDValue LoadEnvPtr = 5515 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5516 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5517 5518 5519 // Then copy the newly loaded TOC anchor to the TOC pointer. 5520 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5521 Chain = TOCVal.getValue(0); 5522 Glue = TOCVal.getValue(1); 5523 5524 // If the function call has an explicit 'nest' parameter, it takes the 5525 // place of the environment pointer. 5526 assert((!hasNest || !Subtarget.isAIXABI()) && 5527 "Nest parameter is not supported on AIX."); 5528 if (!hasNest) { 5529 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5530 Chain = EnvVal.getValue(0); 5531 Glue = EnvVal.getValue(1); 5532 } 5533 5534 // The rest of the indirect call sequence is the same as the non-descriptor 5535 // DAG. 5536 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5537 } 5538 5539 static void 5540 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5541 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5542 SelectionDAG &DAG, 5543 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5544 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5545 const PPCSubtarget &Subtarget) { 5546 const bool IsPPC64 = Subtarget.isPPC64(); 5547 // MVT for a general purpose register. 5548 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5549 5550 // First operand is always the chain. 5551 Ops.push_back(Chain); 5552 5553 // If it's a direct call pass the callee as the second operand. 5554 if (!CFlags.IsIndirect) 5555 Ops.push_back(Callee); 5556 else { 5557 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5558 5559 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5560 // on the stack (this would have been done in `LowerCall_64SVR4` or 5561 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5562 // represents both the indirect branch and a load that restores the TOC 5563 // pointer from the linkage area. The operand for the TOC restore is an add 5564 // of the TOC save offset to the stack pointer. This must be the second 5565 // operand: after the chain input but before any other variadic arguments. 5566 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5567 // saved or used. 5568 if (isTOCSaveRestoreRequired(Subtarget)) { 5569 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5570 5571 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5572 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5573 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5574 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5575 Ops.push_back(AddTOC); 5576 } 5577 5578 // Add the register used for the environment pointer. 5579 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5580 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5581 RegVT)); 5582 5583 5584 // Add CTR register as callee so a bctr can be emitted later. 5585 if (CFlags.IsTailCall) 5586 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5587 } 5588 5589 // If this is a tail call add stack pointer delta. 5590 if (CFlags.IsTailCall) 5591 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5592 5593 // Add argument registers to the end of the list so that they are known live 5594 // into the call. 5595 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5596 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5597 RegsToPass[i].second.getValueType())); 5598 5599 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5600 // no way to mark dependencies as implicit here. 5601 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5602 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5603 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5604 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5605 5606 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5607 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5608 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5609 5610 // Add a register mask operand representing the call-preserved registers. 5611 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5612 const uint32_t *Mask = 5613 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5614 assert(Mask && "Missing call preserved mask for calling convention"); 5615 Ops.push_back(DAG.getRegisterMask(Mask)); 5616 5617 // If the glue is valid, it is the last operand. 5618 if (Glue.getNode()) 5619 Ops.push_back(Glue); 5620 } 5621 5622 SDValue PPCTargetLowering::FinishCall( 5623 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5624 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5625 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5626 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5627 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5628 5629 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5630 Subtarget.isAIXABI()) 5631 setUsesTOCBasePtr(DAG); 5632 5633 unsigned CallOpc = 5634 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5635 Subtarget, DAG.getTarget()); 5636 5637 if (!CFlags.IsIndirect) 5638 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5639 else if (Subtarget.usesFunctionDescriptors()) 5640 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5641 dl, CFlags.HasNest, Subtarget); 5642 else 5643 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5644 5645 // Build the operand list for the call instruction. 5646 SmallVector<SDValue, 8> Ops; 5647 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5648 SPDiff, Subtarget); 5649 5650 // Emit tail call. 5651 if (CFlags.IsTailCall) { 5652 // Indirect tail call when using PC Relative calls do not have the same 5653 // constraints. 5654 assert(((Callee.getOpcode() == ISD::Register && 5655 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5656 Callee.getOpcode() == ISD::TargetExternalSymbol || 5657 Callee.getOpcode() == ISD::TargetGlobalAddress || 5658 isa<ConstantSDNode>(Callee) || 5659 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5660 "Expecting a global address, external symbol, absolute value, " 5661 "register or an indirect tail call when PC Relative calls are " 5662 "used."); 5663 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5664 assert(CallOpc == PPCISD::TC_RETURN && 5665 "Unexpected call opcode for a tail call."); 5666 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5667 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5668 } 5669 5670 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5671 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5672 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5673 Glue = Chain.getValue(1); 5674 5675 // When performing tail call optimization the callee pops its arguments off 5676 // the stack. Account for this here so these bytes can be pushed back on in 5677 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5678 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5679 getTargetMachine().Options.GuaranteedTailCallOpt) 5680 ? NumBytes 5681 : 0; 5682 5683 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5684 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5685 Glue, dl); 5686 Glue = Chain.getValue(1); 5687 5688 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5689 DAG, InVals); 5690 } 5691 5692 SDValue 5693 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5694 SmallVectorImpl<SDValue> &InVals) const { 5695 SelectionDAG &DAG = CLI.DAG; 5696 SDLoc &dl = CLI.DL; 5697 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5698 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5699 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5700 SDValue Chain = CLI.Chain; 5701 SDValue Callee = CLI.Callee; 5702 bool &isTailCall = CLI.IsTailCall; 5703 CallingConv::ID CallConv = CLI.CallConv; 5704 bool isVarArg = CLI.IsVarArg; 5705 bool isPatchPoint = CLI.IsPatchPoint; 5706 const CallBase *CB = CLI.CB; 5707 5708 if (isTailCall) { 5709 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5710 isTailCall = false; 5711 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5712 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5713 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5714 else 5715 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5716 Ins, DAG); 5717 if (isTailCall) { 5718 ++NumTailCalls; 5719 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5720 ++NumSiblingCalls; 5721 5722 // PC Relative calls no longer guarantee that the callee is a Global 5723 // Address Node. The callee could be an indirect tail call in which 5724 // case the SDValue for the callee could be a load (to load the address 5725 // of a function pointer) or it may be a register copy (to move the 5726 // address of the callee from a function parameter into a virtual 5727 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5728 assert((Subtarget.isUsingPCRelativeCalls() || 5729 isa<GlobalAddressSDNode>(Callee)) && 5730 "Callee should be an llvm::Function object."); 5731 5732 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5733 << "\nTCO callee: "); 5734 LLVM_DEBUG(Callee.dump()); 5735 } 5736 } 5737 5738 if (!isTailCall && CB && CB->isMustTailCall()) 5739 report_fatal_error("failed to perform tail call elimination on a call " 5740 "site marked musttail"); 5741 5742 // When long calls (i.e. indirect calls) are always used, calls are always 5743 // made via function pointer. If we have a function name, first translate it 5744 // into a pointer. 5745 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5746 !isTailCall) 5747 Callee = LowerGlobalAddress(Callee, DAG); 5748 5749 CallFlags CFlags( 5750 CallConv, isTailCall, isVarArg, isPatchPoint, 5751 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5752 // hasNest 5753 Subtarget.is64BitELFABI() && 5754 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5755 CLI.NoMerge); 5756 5757 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5758 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5759 InVals, CB); 5760 5761 if (Subtarget.isSVR4ABI()) 5762 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5763 InVals, CB); 5764 5765 if (Subtarget.isAIXABI()) 5766 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5767 InVals, CB); 5768 5769 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5770 InVals, CB); 5771 } 5772 5773 SDValue PPCTargetLowering::LowerCall_32SVR4( 5774 SDValue Chain, SDValue Callee, CallFlags CFlags, 5775 const SmallVectorImpl<ISD::OutputArg> &Outs, 5776 const SmallVectorImpl<SDValue> &OutVals, 5777 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5778 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5779 const CallBase *CB) const { 5780 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5781 // of the 32-bit SVR4 ABI stack frame layout. 5782 5783 const CallingConv::ID CallConv = CFlags.CallConv; 5784 const bool IsVarArg = CFlags.IsVarArg; 5785 const bool IsTailCall = CFlags.IsTailCall; 5786 5787 assert((CallConv == CallingConv::C || 5788 CallConv == CallingConv::Cold || 5789 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5790 5791 const Align PtrAlign(4); 5792 5793 MachineFunction &MF = DAG.getMachineFunction(); 5794 5795 // Mark this function as potentially containing a function that contains a 5796 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5797 // and restoring the callers stack pointer in this functions epilog. This is 5798 // done because by tail calling the called function might overwrite the value 5799 // in this function's (MF) stack pointer stack slot 0(SP). 5800 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5801 CallConv == CallingConv::Fast) 5802 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5803 5804 // Count how many bytes are to be pushed on the stack, including the linkage 5805 // area, parameter list area and the part of the local variable space which 5806 // contains copies of aggregates which are passed by value. 5807 5808 // Assign locations to all of the outgoing arguments. 5809 SmallVector<CCValAssign, 16> ArgLocs; 5810 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5811 5812 // Reserve space for the linkage area on the stack. 5813 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5814 PtrAlign); 5815 if (useSoftFloat()) 5816 CCInfo.PreAnalyzeCallOperands(Outs); 5817 5818 if (IsVarArg) { 5819 // Handle fixed and variable vector arguments differently. 5820 // Fixed vector arguments go into registers as long as registers are 5821 // available. Variable vector arguments always go into memory. 5822 unsigned NumArgs = Outs.size(); 5823 5824 for (unsigned i = 0; i != NumArgs; ++i) { 5825 MVT ArgVT = Outs[i].VT; 5826 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5827 bool Result; 5828 5829 if (Outs[i].IsFixed) { 5830 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5831 CCInfo); 5832 } else { 5833 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5834 ArgFlags, CCInfo); 5835 } 5836 5837 if (Result) { 5838 #ifndef NDEBUG 5839 errs() << "Call operand #" << i << " has unhandled type " 5840 << EVT(ArgVT).getEVTString() << "\n"; 5841 #endif 5842 llvm_unreachable(nullptr); 5843 } 5844 } 5845 } else { 5846 // All arguments are treated the same. 5847 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5848 } 5849 CCInfo.clearWasPPCF128(); 5850 5851 // Assign locations to all of the outgoing aggregate by value arguments. 5852 SmallVector<CCValAssign, 16> ByValArgLocs; 5853 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5854 5855 // Reserve stack space for the allocations in CCInfo. 5856 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5857 5858 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5859 5860 // Size of the linkage area, parameter list area and the part of the local 5861 // space variable where copies of aggregates which are passed by value are 5862 // stored. 5863 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5864 5865 // Calculate by how many bytes the stack has to be adjusted in case of tail 5866 // call optimization. 5867 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5868 5869 // Adjust the stack pointer for the new arguments... 5870 // These operations are automatically eliminated by the prolog/epilog pass 5871 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5872 SDValue CallSeqStart = Chain; 5873 5874 // Load the return address and frame pointer so it can be moved somewhere else 5875 // later. 5876 SDValue LROp, FPOp; 5877 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5878 5879 // Set up a copy of the stack pointer for use loading and storing any 5880 // arguments that may not fit in the registers available for argument 5881 // passing. 5882 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5883 5884 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5885 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5886 SmallVector<SDValue, 8> MemOpChains; 5887 5888 bool seenFloatArg = false; 5889 // Walk the register/memloc assignments, inserting copies/loads. 5890 // i - Tracks the index into the list of registers allocated for the call 5891 // RealArgIdx - Tracks the index into the list of actual function arguments 5892 // j - Tracks the index into the list of byval arguments 5893 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5894 i != e; 5895 ++i, ++RealArgIdx) { 5896 CCValAssign &VA = ArgLocs[i]; 5897 SDValue Arg = OutVals[RealArgIdx]; 5898 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5899 5900 if (Flags.isByVal()) { 5901 // Argument is an aggregate which is passed by value, thus we need to 5902 // create a copy of it in the local variable space of the current stack 5903 // frame (which is the stack frame of the caller) and pass the address of 5904 // this copy to the callee. 5905 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5906 CCValAssign &ByValVA = ByValArgLocs[j++]; 5907 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5908 5909 // Memory reserved in the local variable space of the callers stack frame. 5910 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5911 5912 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5913 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5914 StackPtr, PtrOff); 5915 5916 // Create a copy of the argument in the local area of the current 5917 // stack frame. 5918 SDValue MemcpyCall = 5919 CreateCopyOfByValArgument(Arg, PtrOff, 5920 CallSeqStart.getNode()->getOperand(0), 5921 Flags, DAG, dl); 5922 5923 // This must go outside the CALLSEQ_START..END. 5924 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5925 SDLoc(MemcpyCall)); 5926 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5927 NewCallSeqStart.getNode()); 5928 Chain = CallSeqStart = NewCallSeqStart; 5929 5930 // Pass the address of the aggregate copy on the stack either in a 5931 // physical register or in the parameter list area of the current stack 5932 // frame to the callee. 5933 Arg = PtrOff; 5934 } 5935 5936 // When useCRBits() is true, there can be i1 arguments. 5937 // It is because getRegisterType(MVT::i1) => MVT::i1, 5938 // and for other integer types getRegisterType() => MVT::i32. 5939 // Extend i1 and ensure callee will get i32. 5940 if (Arg.getValueType() == MVT::i1) 5941 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5942 dl, MVT::i32, Arg); 5943 5944 if (VA.isRegLoc()) { 5945 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5946 // Put argument in a physical register. 5947 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5948 bool IsLE = Subtarget.isLittleEndian(); 5949 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5950 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5951 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5952 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5953 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5954 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5955 SVal.getValue(0))); 5956 } else 5957 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5958 } else { 5959 // Put argument in the parameter list area of the current stack frame. 5960 assert(VA.isMemLoc()); 5961 unsigned LocMemOffset = VA.getLocMemOffset(); 5962 5963 if (!IsTailCall) { 5964 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5965 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5966 StackPtr, PtrOff); 5967 5968 MemOpChains.push_back( 5969 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5970 } else { 5971 // Calculate and remember argument location. 5972 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5973 TailCallArguments); 5974 } 5975 } 5976 } 5977 5978 if (!MemOpChains.empty()) 5979 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5980 5981 // Build a sequence of copy-to-reg nodes chained together with token chain 5982 // and flag operands which copy the outgoing args into the appropriate regs. 5983 SDValue InFlag; 5984 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5985 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5986 RegsToPass[i].second, InFlag); 5987 InFlag = Chain.getValue(1); 5988 } 5989 5990 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5991 // registers. 5992 if (IsVarArg) { 5993 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5994 SDValue Ops[] = { Chain, InFlag }; 5995 5996 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5997 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5998 5999 InFlag = Chain.getValue(1); 6000 } 6001 6002 if (IsTailCall) 6003 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6004 TailCallArguments); 6005 6006 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6007 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6008 } 6009 6010 // Copy an argument into memory, being careful to do this outside the 6011 // call sequence for the call to which the argument belongs. 6012 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 6013 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 6014 SelectionDAG &DAG, const SDLoc &dl) const { 6015 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 6016 CallSeqStart.getNode()->getOperand(0), 6017 Flags, DAG, dl); 6018 // The MEMCPY must go outside the CALLSEQ_START..END. 6019 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6020 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6021 SDLoc(MemcpyCall)); 6022 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6023 NewCallSeqStart.getNode()); 6024 return NewCallSeqStart; 6025 } 6026 6027 SDValue PPCTargetLowering::LowerCall_64SVR4( 6028 SDValue Chain, SDValue Callee, CallFlags CFlags, 6029 const SmallVectorImpl<ISD::OutputArg> &Outs, 6030 const SmallVectorImpl<SDValue> &OutVals, 6031 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6032 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6033 const CallBase *CB) const { 6034 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6035 bool isLittleEndian = Subtarget.isLittleEndian(); 6036 unsigned NumOps = Outs.size(); 6037 bool IsSibCall = false; 6038 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6039 6040 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6041 unsigned PtrByteSize = 8; 6042 6043 MachineFunction &MF = DAG.getMachineFunction(); 6044 6045 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6046 IsSibCall = true; 6047 6048 // Mark this function as potentially containing a function that contains a 6049 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6050 // and restoring the callers stack pointer in this functions epilog. This is 6051 // done because by tail calling the called function might overwrite the value 6052 // in this function's (MF) stack pointer stack slot 0(SP). 6053 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6054 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6055 6056 assert(!(IsFastCall && CFlags.IsVarArg) && 6057 "fastcc not supported on varargs functions"); 6058 6059 // Count how many bytes are to be pushed on the stack, including the linkage 6060 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6061 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6062 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6063 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6064 unsigned NumBytes = LinkageSize; 6065 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6066 6067 static const MCPhysReg GPR[] = { 6068 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6069 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6070 }; 6071 static const MCPhysReg VR[] = { 6072 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6073 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6074 }; 6075 6076 const unsigned NumGPRs = array_lengthof(GPR); 6077 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6078 const unsigned NumVRs = array_lengthof(VR); 6079 6080 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6081 // can be passed to the callee in registers. 6082 // For the fast calling convention, there is another check below. 6083 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6084 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6085 if (!HasParameterArea) { 6086 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6087 unsigned AvailableFPRs = NumFPRs; 6088 unsigned AvailableVRs = NumVRs; 6089 unsigned NumBytesTmp = NumBytes; 6090 for (unsigned i = 0; i != NumOps; ++i) { 6091 if (Outs[i].Flags.isNest()) continue; 6092 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6093 PtrByteSize, LinkageSize, ParamAreaSize, 6094 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6095 HasParameterArea = true; 6096 } 6097 } 6098 6099 // When using the fast calling convention, we don't provide backing for 6100 // arguments that will be in registers. 6101 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6102 6103 // Avoid allocating parameter area for fastcc functions if all the arguments 6104 // can be passed in the registers. 6105 if (IsFastCall) 6106 HasParameterArea = false; 6107 6108 // Add up all the space actually used. 6109 for (unsigned i = 0; i != NumOps; ++i) { 6110 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6111 EVT ArgVT = Outs[i].VT; 6112 EVT OrigVT = Outs[i].ArgVT; 6113 6114 if (Flags.isNest()) 6115 continue; 6116 6117 if (IsFastCall) { 6118 if (Flags.isByVal()) { 6119 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6120 if (NumGPRsUsed > NumGPRs) 6121 HasParameterArea = true; 6122 } else { 6123 switch (ArgVT.getSimpleVT().SimpleTy) { 6124 default: llvm_unreachable("Unexpected ValueType for argument!"); 6125 case MVT::i1: 6126 case MVT::i32: 6127 case MVT::i64: 6128 if (++NumGPRsUsed <= NumGPRs) 6129 continue; 6130 break; 6131 case MVT::v4i32: 6132 case MVT::v8i16: 6133 case MVT::v16i8: 6134 case MVT::v2f64: 6135 case MVT::v2i64: 6136 case MVT::v1i128: 6137 case MVT::f128: 6138 if (++NumVRsUsed <= NumVRs) 6139 continue; 6140 break; 6141 case MVT::v4f32: 6142 if (++NumVRsUsed <= NumVRs) 6143 continue; 6144 break; 6145 case MVT::f32: 6146 case MVT::f64: 6147 if (++NumFPRsUsed <= NumFPRs) 6148 continue; 6149 break; 6150 } 6151 HasParameterArea = true; 6152 } 6153 } 6154 6155 /* Respect alignment of argument on the stack. */ 6156 auto Alignement = 6157 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6158 NumBytes = alignTo(NumBytes, Alignement); 6159 6160 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6161 if (Flags.isInConsecutiveRegsLast()) 6162 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6163 } 6164 6165 unsigned NumBytesActuallyUsed = NumBytes; 6166 6167 // In the old ELFv1 ABI, 6168 // the prolog code of the callee may store up to 8 GPR argument registers to 6169 // the stack, allowing va_start to index over them in memory if its varargs. 6170 // Because we cannot tell if this is needed on the caller side, we have to 6171 // conservatively assume that it is needed. As such, make sure we have at 6172 // least enough stack space for the caller to store the 8 GPRs. 6173 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6174 // really requires memory operands, e.g. a vararg function. 6175 if (HasParameterArea) 6176 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6177 else 6178 NumBytes = LinkageSize; 6179 6180 // Tail call needs the stack to be aligned. 6181 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6182 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6183 6184 int SPDiff = 0; 6185 6186 // Calculate by how many bytes the stack has to be adjusted in case of tail 6187 // call optimization. 6188 if (!IsSibCall) 6189 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6190 6191 // To protect arguments on the stack from being clobbered in a tail call, 6192 // force all the loads to happen before doing any other lowering. 6193 if (CFlags.IsTailCall) 6194 Chain = DAG.getStackArgumentTokenFactor(Chain); 6195 6196 // Adjust the stack pointer for the new arguments... 6197 // These operations are automatically eliminated by the prolog/epilog pass 6198 if (!IsSibCall) 6199 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6200 SDValue CallSeqStart = Chain; 6201 6202 // Load the return address and frame pointer so it can be move somewhere else 6203 // later. 6204 SDValue LROp, FPOp; 6205 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6206 6207 // Set up a copy of the stack pointer for use loading and storing any 6208 // arguments that may not fit in the registers available for argument 6209 // passing. 6210 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6211 6212 // Figure out which arguments are going to go in registers, and which in 6213 // memory. Also, if this is a vararg function, floating point operations 6214 // must be stored to our stack, and loaded into integer regs as well, if 6215 // any integer regs are available for argument passing. 6216 unsigned ArgOffset = LinkageSize; 6217 6218 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6219 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6220 6221 SmallVector<SDValue, 8> MemOpChains; 6222 for (unsigned i = 0; i != NumOps; ++i) { 6223 SDValue Arg = OutVals[i]; 6224 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6225 EVT ArgVT = Outs[i].VT; 6226 EVT OrigVT = Outs[i].ArgVT; 6227 6228 // PtrOff will be used to store the current argument to the stack if a 6229 // register cannot be found for it. 6230 SDValue PtrOff; 6231 6232 // We re-align the argument offset for each argument, except when using the 6233 // fast calling convention, when we need to make sure we do that only when 6234 // we'll actually use a stack slot. 6235 auto ComputePtrOff = [&]() { 6236 /* Respect alignment of argument on the stack. */ 6237 auto Alignment = 6238 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6239 ArgOffset = alignTo(ArgOffset, Alignment); 6240 6241 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6242 6243 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6244 }; 6245 6246 if (!IsFastCall) { 6247 ComputePtrOff(); 6248 6249 /* Compute GPR index associated with argument offset. */ 6250 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6251 GPR_idx = std::min(GPR_idx, NumGPRs); 6252 } 6253 6254 // Promote integers to 64-bit values. 6255 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6256 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6257 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6258 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6259 } 6260 6261 // FIXME memcpy is used way more than necessary. Correctness first. 6262 // Note: "by value" is code for passing a structure by value, not 6263 // basic types. 6264 if (Flags.isByVal()) { 6265 // Note: Size includes alignment padding, so 6266 // struct x { short a; char b; } 6267 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6268 // These are the proper values we need for right-justifying the 6269 // aggregate in a parameter register. 6270 unsigned Size = Flags.getByValSize(); 6271 6272 // An empty aggregate parameter takes up no storage and no 6273 // registers. 6274 if (Size == 0) 6275 continue; 6276 6277 if (IsFastCall) 6278 ComputePtrOff(); 6279 6280 // All aggregates smaller than 8 bytes must be passed right-justified. 6281 if (Size==1 || Size==2 || Size==4) { 6282 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6283 if (GPR_idx != NumGPRs) { 6284 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6285 MachinePointerInfo(), VT); 6286 MemOpChains.push_back(Load.getValue(1)); 6287 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6288 6289 ArgOffset += PtrByteSize; 6290 continue; 6291 } 6292 } 6293 6294 if (GPR_idx == NumGPRs && Size < 8) { 6295 SDValue AddPtr = PtrOff; 6296 if (!isLittleEndian) { 6297 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6298 PtrOff.getValueType()); 6299 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6300 } 6301 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6302 CallSeqStart, 6303 Flags, DAG, dl); 6304 ArgOffset += PtrByteSize; 6305 continue; 6306 } 6307 // Copy entire object into memory. There are cases where gcc-generated 6308 // code assumes it is there, even if it could be put entirely into 6309 // registers. (This is not what the doc says.) 6310 6311 // FIXME: The above statement is likely due to a misunderstanding of the 6312 // documents. All arguments must be copied into the parameter area BY 6313 // THE CALLEE in the event that the callee takes the address of any 6314 // formal argument. That has not yet been implemented. However, it is 6315 // reasonable to use the stack area as a staging area for the register 6316 // load. 6317 6318 // Skip this for small aggregates, as we will use the same slot for a 6319 // right-justified copy, below. 6320 if (Size >= 8) 6321 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6322 CallSeqStart, 6323 Flags, DAG, dl); 6324 6325 // When a register is available, pass a small aggregate right-justified. 6326 if (Size < 8 && GPR_idx != NumGPRs) { 6327 // The easiest way to get this right-justified in a register 6328 // is to copy the structure into the rightmost portion of a 6329 // local variable slot, then load the whole slot into the 6330 // register. 6331 // FIXME: The memcpy seems to produce pretty awful code for 6332 // small aggregates, particularly for packed ones. 6333 // FIXME: It would be preferable to use the slot in the 6334 // parameter save area instead of a new local variable. 6335 SDValue AddPtr = PtrOff; 6336 if (!isLittleEndian) { 6337 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6338 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6339 } 6340 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6341 CallSeqStart, 6342 Flags, DAG, dl); 6343 6344 // Load the slot into the register. 6345 SDValue Load = 6346 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6347 MemOpChains.push_back(Load.getValue(1)); 6348 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6349 6350 // Done with this argument. 6351 ArgOffset += PtrByteSize; 6352 continue; 6353 } 6354 6355 // For aggregates larger than PtrByteSize, copy the pieces of the 6356 // object that fit into registers from the parameter save area. 6357 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6358 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6359 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6360 if (GPR_idx != NumGPRs) { 6361 SDValue Load = 6362 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6363 MemOpChains.push_back(Load.getValue(1)); 6364 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6365 ArgOffset += PtrByteSize; 6366 } else { 6367 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6368 break; 6369 } 6370 } 6371 continue; 6372 } 6373 6374 switch (Arg.getSimpleValueType().SimpleTy) { 6375 default: llvm_unreachable("Unexpected ValueType for argument!"); 6376 case MVT::i1: 6377 case MVT::i32: 6378 case MVT::i64: 6379 if (Flags.isNest()) { 6380 // The 'nest' parameter, if any, is passed in R11. 6381 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6382 break; 6383 } 6384 6385 // These can be scalar arguments or elements of an integer array type 6386 // passed directly. Clang may use those instead of "byval" aggregate 6387 // types to avoid forcing arguments to memory unnecessarily. 6388 if (GPR_idx != NumGPRs) { 6389 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6390 } else { 6391 if (IsFastCall) 6392 ComputePtrOff(); 6393 6394 assert(HasParameterArea && 6395 "Parameter area must exist to pass an argument in memory."); 6396 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6397 true, CFlags.IsTailCall, false, MemOpChains, 6398 TailCallArguments, dl); 6399 if (IsFastCall) 6400 ArgOffset += PtrByteSize; 6401 } 6402 if (!IsFastCall) 6403 ArgOffset += PtrByteSize; 6404 break; 6405 case MVT::f32: 6406 case MVT::f64: { 6407 // These can be scalar arguments or elements of a float array type 6408 // passed directly. The latter are used to implement ELFv2 homogenous 6409 // float aggregates. 6410 6411 // Named arguments go into FPRs first, and once they overflow, the 6412 // remaining arguments go into GPRs and then the parameter save area. 6413 // Unnamed arguments for vararg functions always go to GPRs and 6414 // then the parameter save area. For now, put all arguments to vararg 6415 // routines always in both locations (FPR *and* GPR or stack slot). 6416 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6417 bool NeededLoad = false; 6418 6419 // First load the argument into the next available FPR. 6420 if (FPR_idx != NumFPRs) 6421 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6422 6423 // Next, load the argument into GPR or stack slot if needed. 6424 if (!NeedGPROrStack) 6425 ; 6426 else if (GPR_idx != NumGPRs && !IsFastCall) { 6427 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6428 // once we support fp <-> gpr moves. 6429 6430 // In the non-vararg case, this can only ever happen in the 6431 // presence of f32 array types, since otherwise we never run 6432 // out of FPRs before running out of GPRs. 6433 SDValue ArgVal; 6434 6435 // Double values are always passed in a single GPR. 6436 if (Arg.getValueType() != MVT::f32) { 6437 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6438 6439 // Non-array float values are extended and passed in a GPR. 6440 } else if (!Flags.isInConsecutiveRegs()) { 6441 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6442 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6443 6444 // If we have an array of floats, we collect every odd element 6445 // together with its predecessor into one GPR. 6446 } else if (ArgOffset % PtrByteSize != 0) { 6447 SDValue Lo, Hi; 6448 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6449 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6450 if (!isLittleEndian) 6451 std::swap(Lo, Hi); 6452 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6453 6454 // The final element, if even, goes into the first half of a GPR. 6455 } else if (Flags.isInConsecutiveRegsLast()) { 6456 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6457 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6458 if (!isLittleEndian) 6459 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6460 DAG.getConstant(32, dl, MVT::i32)); 6461 6462 // Non-final even elements are skipped; they will be handled 6463 // together the with subsequent argument on the next go-around. 6464 } else 6465 ArgVal = SDValue(); 6466 6467 if (ArgVal.getNode()) 6468 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6469 } else { 6470 if (IsFastCall) 6471 ComputePtrOff(); 6472 6473 // Single-precision floating-point values are mapped to the 6474 // second (rightmost) word of the stack doubleword. 6475 if (Arg.getValueType() == MVT::f32 && 6476 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6477 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6478 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6479 } 6480 6481 assert(HasParameterArea && 6482 "Parameter area must exist to pass an argument in memory."); 6483 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6484 true, CFlags.IsTailCall, false, MemOpChains, 6485 TailCallArguments, dl); 6486 6487 NeededLoad = true; 6488 } 6489 // When passing an array of floats, the array occupies consecutive 6490 // space in the argument area; only round up to the next doubleword 6491 // at the end of the array. Otherwise, each float takes 8 bytes. 6492 if (!IsFastCall || NeededLoad) { 6493 ArgOffset += (Arg.getValueType() == MVT::f32 && 6494 Flags.isInConsecutiveRegs()) ? 4 : 8; 6495 if (Flags.isInConsecutiveRegsLast()) 6496 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6497 } 6498 break; 6499 } 6500 case MVT::v4f32: 6501 case MVT::v4i32: 6502 case MVT::v8i16: 6503 case MVT::v16i8: 6504 case MVT::v2f64: 6505 case MVT::v2i64: 6506 case MVT::v1i128: 6507 case MVT::f128: 6508 // These can be scalar arguments or elements of a vector array type 6509 // passed directly. The latter are used to implement ELFv2 homogenous 6510 // vector aggregates. 6511 6512 // For a varargs call, named arguments go into VRs or on the stack as 6513 // usual; unnamed arguments always go to the stack or the corresponding 6514 // GPRs when within range. For now, we always put the value in both 6515 // locations (or even all three). 6516 if (CFlags.IsVarArg) { 6517 assert(HasParameterArea && 6518 "Parameter area must exist if we have a varargs call."); 6519 // We could elide this store in the case where the object fits 6520 // entirely in R registers. Maybe later. 6521 SDValue Store = 6522 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6523 MemOpChains.push_back(Store); 6524 if (VR_idx != NumVRs) { 6525 SDValue Load = 6526 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6527 MemOpChains.push_back(Load.getValue(1)); 6528 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6529 } 6530 ArgOffset += 16; 6531 for (unsigned i=0; i<16; i+=PtrByteSize) { 6532 if (GPR_idx == NumGPRs) 6533 break; 6534 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6535 DAG.getConstant(i, dl, PtrVT)); 6536 SDValue Load = 6537 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6538 MemOpChains.push_back(Load.getValue(1)); 6539 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6540 } 6541 break; 6542 } 6543 6544 // Non-varargs Altivec params go into VRs or on the stack. 6545 if (VR_idx != NumVRs) { 6546 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6547 } else { 6548 if (IsFastCall) 6549 ComputePtrOff(); 6550 6551 assert(HasParameterArea && 6552 "Parameter area must exist to pass an argument in memory."); 6553 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6554 true, CFlags.IsTailCall, true, MemOpChains, 6555 TailCallArguments, dl); 6556 if (IsFastCall) 6557 ArgOffset += 16; 6558 } 6559 6560 if (!IsFastCall) 6561 ArgOffset += 16; 6562 break; 6563 } 6564 } 6565 6566 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6567 "mismatch in size of parameter area"); 6568 (void)NumBytesActuallyUsed; 6569 6570 if (!MemOpChains.empty()) 6571 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6572 6573 // Check if this is an indirect call (MTCTR/BCTRL). 6574 // See prepareDescriptorIndirectCall and buildCallOperands for more 6575 // information about calls through function pointers in the 64-bit SVR4 ABI. 6576 if (CFlags.IsIndirect) { 6577 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6578 // caller in the TOC save area. 6579 if (isTOCSaveRestoreRequired(Subtarget)) { 6580 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6581 // Load r2 into a virtual register and store it to the TOC save area. 6582 setUsesTOCBasePtr(DAG); 6583 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6584 // TOC save area offset. 6585 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6586 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6587 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6588 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6589 MachinePointerInfo::getStack( 6590 DAG.getMachineFunction(), TOCSaveOffset)); 6591 } 6592 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6593 // This does not mean the MTCTR instruction must use R12; it's easier 6594 // to model this as an extra parameter, so do that. 6595 if (isELFv2ABI && !CFlags.IsPatchPoint) 6596 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6597 } 6598 6599 // Build a sequence of copy-to-reg nodes chained together with token chain 6600 // and flag operands which copy the outgoing args into the appropriate regs. 6601 SDValue InFlag; 6602 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6603 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6604 RegsToPass[i].second, InFlag); 6605 InFlag = Chain.getValue(1); 6606 } 6607 6608 if (CFlags.IsTailCall && !IsSibCall) 6609 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6610 TailCallArguments); 6611 6612 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6613 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6614 } 6615 6616 SDValue PPCTargetLowering::LowerCall_Darwin( 6617 SDValue Chain, SDValue Callee, CallFlags CFlags, 6618 const SmallVectorImpl<ISD::OutputArg> &Outs, 6619 const SmallVectorImpl<SDValue> &OutVals, 6620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6622 const CallBase *CB) const { 6623 unsigned NumOps = Outs.size(); 6624 6625 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6626 bool isPPC64 = PtrVT == MVT::i64; 6627 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6628 6629 MachineFunction &MF = DAG.getMachineFunction(); 6630 6631 // Mark this function as potentially containing a function that contains a 6632 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6633 // and restoring the callers stack pointer in this functions epilog. This is 6634 // done because by tail calling the called function might overwrite the value 6635 // in this function's (MF) stack pointer stack slot 0(SP). 6636 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6637 CFlags.CallConv == CallingConv::Fast) 6638 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6639 6640 // Count how many bytes are to be pushed on the stack, including the linkage 6641 // area, and parameter passing area. We start with 24/48 bytes, which is 6642 // prereserved space for [SP][CR][LR][3 x unused]. 6643 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6644 unsigned NumBytes = LinkageSize; 6645 6646 // Add up all the space actually used. 6647 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6648 // they all go in registers, but we must reserve stack space for them for 6649 // possible use by the caller. In varargs or 64-bit calls, parameters are 6650 // assigned stack space in order, with padding so Altivec parameters are 6651 // 16-byte aligned. 6652 unsigned nAltivecParamsAtEnd = 0; 6653 for (unsigned i = 0; i != NumOps; ++i) { 6654 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6655 EVT ArgVT = Outs[i].VT; 6656 // Varargs Altivec parameters are padded to a 16 byte boundary. 6657 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6658 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6659 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6660 if (!CFlags.IsVarArg && !isPPC64) { 6661 // Non-varargs Altivec parameters go after all the non-Altivec 6662 // parameters; handle those later so we know how much padding we need. 6663 nAltivecParamsAtEnd++; 6664 continue; 6665 } 6666 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6667 NumBytes = ((NumBytes+15)/16)*16; 6668 } 6669 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6670 } 6671 6672 // Allow for Altivec parameters at the end, if needed. 6673 if (nAltivecParamsAtEnd) { 6674 NumBytes = ((NumBytes+15)/16)*16; 6675 NumBytes += 16*nAltivecParamsAtEnd; 6676 } 6677 6678 // The prolog code of the callee may store up to 8 GPR argument registers to 6679 // the stack, allowing va_start to index over them in memory if its varargs. 6680 // Because we cannot tell if this is needed on the caller side, we have to 6681 // conservatively assume that it is needed. As such, make sure we have at 6682 // least enough stack space for the caller to store the 8 GPRs. 6683 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6684 6685 // Tail call needs the stack to be aligned. 6686 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6687 CFlags.CallConv == CallingConv::Fast) 6688 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6689 6690 // Calculate by how many bytes the stack has to be adjusted in case of tail 6691 // call optimization. 6692 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6693 6694 // To protect arguments on the stack from being clobbered in a tail call, 6695 // force all the loads to happen before doing any other lowering. 6696 if (CFlags.IsTailCall) 6697 Chain = DAG.getStackArgumentTokenFactor(Chain); 6698 6699 // Adjust the stack pointer for the new arguments... 6700 // These operations are automatically eliminated by the prolog/epilog pass 6701 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6702 SDValue CallSeqStart = Chain; 6703 6704 // Load the return address and frame pointer so it can be move somewhere else 6705 // later. 6706 SDValue LROp, FPOp; 6707 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6708 6709 // Set up a copy of the stack pointer for use loading and storing any 6710 // arguments that may not fit in the registers available for argument 6711 // passing. 6712 SDValue StackPtr; 6713 if (isPPC64) 6714 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6715 else 6716 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6717 6718 // Figure out which arguments are going to go in registers, and which in 6719 // memory. Also, if this is a vararg function, floating point operations 6720 // must be stored to our stack, and loaded into integer regs as well, if 6721 // any integer regs are available for argument passing. 6722 unsigned ArgOffset = LinkageSize; 6723 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6724 6725 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6726 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6727 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6728 }; 6729 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6730 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6731 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6732 }; 6733 static const MCPhysReg VR[] = { 6734 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6735 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6736 }; 6737 const unsigned NumGPRs = array_lengthof(GPR_32); 6738 const unsigned NumFPRs = 13; 6739 const unsigned NumVRs = array_lengthof(VR); 6740 6741 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6742 6743 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6744 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6745 6746 SmallVector<SDValue, 8> MemOpChains; 6747 for (unsigned i = 0; i != NumOps; ++i) { 6748 SDValue Arg = OutVals[i]; 6749 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6750 6751 // PtrOff will be used to store the current argument to the stack if a 6752 // register cannot be found for it. 6753 SDValue PtrOff; 6754 6755 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6756 6757 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6758 6759 // On PPC64, promote integers to 64-bit values. 6760 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6761 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6762 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6763 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6764 } 6765 6766 // FIXME memcpy is used way more than necessary. Correctness first. 6767 // Note: "by value" is code for passing a structure by value, not 6768 // basic types. 6769 if (Flags.isByVal()) { 6770 unsigned Size = Flags.getByValSize(); 6771 // Very small objects are passed right-justified. Everything else is 6772 // passed left-justified. 6773 if (Size==1 || Size==2) { 6774 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6775 if (GPR_idx != NumGPRs) { 6776 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6777 MachinePointerInfo(), VT); 6778 MemOpChains.push_back(Load.getValue(1)); 6779 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6780 6781 ArgOffset += PtrByteSize; 6782 } else { 6783 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6784 PtrOff.getValueType()); 6785 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6786 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6787 CallSeqStart, 6788 Flags, DAG, dl); 6789 ArgOffset += PtrByteSize; 6790 } 6791 continue; 6792 } 6793 // Copy entire object into memory. There are cases where gcc-generated 6794 // code assumes it is there, even if it could be put entirely into 6795 // registers. (This is not what the doc says.) 6796 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6797 CallSeqStart, 6798 Flags, DAG, dl); 6799 6800 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6801 // copy the pieces of the object that fit into registers from the 6802 // parameter save area. 6803 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6804 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6805 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6806 if (GPR_idx != NumGPRs) { 6807 SDValue Load = 6808 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6809 MemOpChains.push_back(Load.getValue(1)); 6810 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6811 ArgOffset += PtrByteSize; 6812 } else { 6813 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6814 break; 6815 } 6816 } 6817 continue; 6818 } 6819 6820 switch (Arg.getSimpleValueType().SimpleTy) { 6821 default: llvm_unreachable("Unexpected ValueType for argument!"); 6822 case MVT::i1: 6823 case MVT::i32: 6824 case MVT::i64: 6825 if (GPR_idx != NumGPRs) { 6826 if (Arg.getValueType() == MVT::i1) 6827 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6828 6829 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6830 } else { 6831 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6832 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6833 TailCallArguments, dl); 6834 } 6835 ArgOffset += PtrByteSize; 6836 break; 6837 case MVT::f32: 6838 case MVT::f64: 6839 if (FPR_idx != NumFPRs) { 6840 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6841 6842 if (CFlags.IsVarArg) { 6843 SDValue Store = 6844 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6845 MemOpChains.push_back(Store); 6846 6847 // Float varargs are always shadowed in available integer registers 6848 if (GPR_idx != NumGPRs) { 6849 SDValue Load = 6850 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6851 MemOpChains.push_back(Load.getValue(1)); 6852 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6853 } 6854 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6855 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6856 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6857 SDValue Load = 6858 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6859 MemOpChains.push_back(Load.getValue(1)); 6860 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6861 } 6862 } else { 6863 // If we have any FPRs remaining, we may also have GPRs remaining. 6864 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6865 // GPRs. 6866 if (GPR_idx != NumGPRs) 6867 ++GPR_idx; 6868 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6869 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6870 ++GPR_idx; 6871 } 6872 } else 6873 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6874 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6875 TailCallArguments, dl); 6876 if (isPPC64) 6877 ArgOffset += 8; 6878 else 6879 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6880 break; 6881 case MVT::v4f32: 6882 case MVT::v4i32: 6883 case MVT::v8i16: 6884 case MVT::v16i8: 6885 if (CFlags.IsVarArg) { 6886 // These go aligned on the stack, or in the corresponding R registers 6887 // when within range. The Darwin PPC ABI doc claims they also go in 6888 // V registers; in fact gcc does this only for arguments that are 6889 // prototyped, not for those that match the ... We do it for all 6890 // arguments, seems to work. 6891 while (ArgOffset % 16 !=0) { 6892 ArgOffset += PtrByteSize; 6893 if (GPR_idx != NumGPRs) 6894 GPR_idx++; 6895 } 6896 // We could elide this store in the case where the object fits 6897 // entirely in R registers. Maybe later. 6898 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6899 DAG.getConstant(ArgOffset, dl, PtrVT)); 6900 SDValue Store = 6901 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6902 MemOpChains.push_back(Store); 6903 if (VR_idx != NumVRs) { 6904 SDValue Load = 6905 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6906 MemOpChains.push_back(Load.getValue(1)); 6907 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6908 } 6909 ArgOffset += 16; 6910 for (unsigned i=0; i<16; i+=PtrByteSize) { 6911 if (GPR_idx == NumGPRs) 6912 break; 6913 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6914 DAG.getConstant(i, dl, PtrVT)); 6915 SDValue Load = 6916 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6917 MemOpChains.push_back(Load.getValue(1)); 6918 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6919 } 6920 break; 6921 } 6922 6923 // Non-varargs Altivec params generally go in registers, but have 6924 // stack space allocated at the end. 6925 if (VR_idx != NumVRs) { 6926 // Doesn't have GPR space allocated. 6927 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6928 } else if (nAltivecParamsAtEnd==0) { 6929 // We are emitting Altivec params in order. 6930 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6931 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6932 TailCallArguments, dl); 6933 ArgOffset += 16; 6934 } 6935 break; 6936 } 6937 } 6938 // If all Altivec parameters fit in registers, as they usually do, 6939 // they get stack space following the non-Altivec parameters. We 6940 // don't track this here because nobody below needs it. 6941 // If there are more Altivec parameters than fit in registers emit 6942 // the stores here. 6943 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6944 unsigned j = 0; 6945 // Offset is aligned; skip 1st 12 params which go in V registers. 6946 ArgOffset = ((ArgOffset+15)/16)*16; 6947 ArgOffset += 12*16; 6948 for (unsigned i = 0; i != NumOps; ++i) { 6949 SDValue Arg = OutVals[i]; 6950 EVT ArgType = Outs[i].VT; 6951 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6952 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6953 if (++j > NumVRs) { 6954 SDValue PtrOff; 6955 // We are emitting Altivec params in order. 6956 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6957 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6958 TailCallArguments, dl); 6959 ArgOffset += 16; 6960 } 6961 } 6962 } 6963 } 6964 6965 if (!MemOpChains.empty()) 6966 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6967 6968 // On Darwin, R12 must contain the address of an indirect callee. This does 6969 // not mean the MTCTR instruction must use R12; it's easier to model this as 6970 // an extra parameter, so do that. 6971 if (CFlags.IsIndirect) { 6972 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6973 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6974 PPC::R12), Callee)); 6975 } 6976 6977 // Build a sequence of copy-to-reg nodes chained together with token chain 6978 // and flag operands which copy the outgoing args into the appropriate regs. 6979 SDValue InFlag; 6980 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6981 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6982 RegsToPass[i].second, InFlag); 6983 InFlag = Chain.getValue(1); 6984 } 6985 6986 if (CFlags.IsTailCall) 6987 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6988 TailCallArguments); 6989 6990 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6991 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6992 } 6993 6994 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6995 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6996 CCState &State) { 6997 6998 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6999 State.getMachineFunction().getSubtarget()); 7000 const bool IsPPC64 = Subtarget.isPPC64(); 7001 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7002 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7003 7004 if (ValVT.isVector() && !State.getMachineFunction() 7005 .getTarget() 7006 .Options.EnableAIXExtendedAltivecABI) 7007 report_fatal_error("the default Altivec AIX ABI is not yet supported"); 7008 7009 if (ValVT.isVector() && State.getMachineFunction() 7010 .getTarget() 7011 .Options.EnableAIXExtendedAltivecABI) 7012 report_fatal_error("the extended Altivec AIX ABI is not yet supported"); 7013 7014 assert((!ValVT.isInteger() || 7015 (ValVT.getFixedSizeInBits() <= RegVT.getFixedSizeInBits())) && 7016 "Integer argument exceeds register size: should have been legalized"); 7017 7018 if (ValVT == MVT::f128) 7019 report_fatal_error("f128 is unimplemented on AIX."); 7020 7021 if (ArgFlags.isNest()) 7022 report_fatal_error("Nest arguments are unimplemented."); 7023 7024 if (ValVT.isVector() || LocVT.isVector()) 7025 report_fatal_error("Vector arguments are unimplemented on AIX."); 7026 7027 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7028 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7029 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7030 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7031 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7032 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7033 7034 if (ArgFlags.isByVal()) { 7035 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7036 report_fatal_error("Pass-by-value arguments with alignment greater than " 7037 "register width are not supported."); 7038 7039 const unsigned ByValSize = ArgFlags.getByValSize(); 7040 7041 // An empty aggregate parameter takes up no storage and no registers, 7042 // but needs a MemLoc for a stack slot for the formal arguments side. 7043 if (ByValSize == 0) { 7044 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7045 State.getNextStackOffset(), RegVT, 7046 LocInfo)); 7047 return false; 7048 } 7049 7050 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7051 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7052 for (const unsigned E = Offset + StackSize; Offset < E; 7053 Offset += PtrAlign.value()) { 7054 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7055 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7056 else { 7057 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7058 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7059 LocInfo)); 7060 break; 7061 } 7062 } 7063 return false; 7064 } 7065 7066 // Arguments always reserve parameter save area. 7067 switch (ValVT.SimpleTy) { 7068 default: 7069 report_fatal_error("Unhandled value type for argument."); 7070 case MVT::i64: 7071 // i64 arguments should have been split to i32 for PPC32. 7072 assert(IsPPC64 && "PPC32 should have split i64 values."); 7073 LLVM_FALLTHROUGH; 7074 case MVT::i1: 7075 case MVT::i32: { 7076 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7077 // AIX integer arguments are always passed in register width. 7078 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 7079 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7080 : CCValAssign::LocInfo::ZExt; 7081 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7082 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7083 else 7084 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7085 7086 return false; 7087 } 7088 case MVT::f32: 7089 case MVT::f64: { 7090 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7091 const unsigned StoreSize = LocVT.getStoreSize(); 7092 // Floats are always 4-byte aligned in the PSA on AIX. 7093 // This includes f64 in 64-bit mode for ABI compatibility. 7094 const unsigned Offset = 7095 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7096 unsigned FReg = State.AllocateReg(FPR); 7097 if (FReg) 7098 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7099 7100 // Reserve and initialize GPRs or initialize the PSA as required. 7101 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7102 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7103 assert(FReg && "An FPR should be available when a GPR is reserved."); 7104 if (State.isVarArg()) { 7105 // Successfully reserved GPRs are only initialized for vararg calls. 7106 // Custom handling is required for: 7107 // f64 in PPC32 needs to be split into 2 GPRs. 7108 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7109 State.addLoc( 7110 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7111 } 7112 } else { 7113 // If there are insufficient GPRs, the PSA needs to be initialized. 7114 // Initialization occurs even if an FPR was initialized for 7115 // compatibility with the AIX XL compiler. The full memory for the 7116 // argument will be initialized even if a prior word is saved in GPR. 7117 // A custom memLoc is used when the argument also passes in FPR so 7118 // that the callee handling can skip over it easily. 7119 State.addLoc( 7120 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7121 LocInfo) 7122 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7123 break; 7124 } 7125 } 7126 7127 return false; 7128 } 7129 } 7130 return true; 7131 } 7132 7133 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7134 bool IsPPC64) { 7135 assert((IsPPC64 || SVT != MVT::i64) && 7136 "i64 should have been split for 32-bit codegen."); 7137 7138 switch (SVT) { 7139 default: 7140 report_fatal_error("Unexpected value type for formal argument"); 7141 case MVT::i1: 7142 case MVT::i32: 7143 case MVT::i64: 7144 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7145 case MVT::f32: 7146 return &PPC::F4RCRegClass; 7147 case MVT::f64: 7148 return &PPC::F8RCRegClass; 7149 } 7150 } 7151 7152 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7153 SelectionDAG &DAG, SDValue ArgValue, 7154 MVT LocVT, const SDLoc &dl) { 7155 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7156 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7157 7158 if (Flags.isSExt()) 7159 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7160 DAG.getValueType(ValVT)); 7161 else if (Flags.isZExt()) 7162 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7163 DAG.getValueType(ValVT)); 7164 7165 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7166 } 7167 7168 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7169 const unsigned LASize = FL->getLinkageSize(); 7170 7171 if (PPC::GPRCRegClass.contains(Reg)) { 7172 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7173 "Reg must be a valid argument register!"); 7174 return LASize + 4 * (Reg - PPC::R3); 7175 } 7176 7177 if (PPC::G8RCRegClass.contains(Reg)) { 7178 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7179 "Reg must be a valid argument register!"); 7180 return LASize + 8 * (Reg - PPC::X3); 7181 } 7182 7183 llvm_unreachable("Only general purpose registers expected."); 7184 } 7185 7186 // AIX ABI Stack Frame Layout: 7187 // 7188 // Low Memory +--------------------------------------------+ 7189 // SP +---> | Back chain | ---+ 7190 // | +--------------------------------------------+ | 7191 // | | Saved Condition Register | | 7192 // | +--------------------------------------------+ | 7193 // | | Saved Linkage Register | | 7194 // | +--------------------------------------------+ | Linkage Area 7195 // | | Reserved for compilers | | 7196 // | +--------------------------------------------+ | 7197 // | | Reserved for binders | | 7198 // | +--------------------------------------------+ | 7199 // | | Saved TOC pointer | ---+ 7200 // | +--------------------------------------------+ 7201 // | | Parameter save area | 7202 // | +--------------------------------------------+ 7203 // | | Alloca space | 7204 // | +--------------------------------------------+ 7205 // | | Local variable space | 7206 // | +--------------------------------------------+ 7207 // | | Float/int conversion temporary | 7208 // | +--------------------------------------------+ 7209 // | | Save area for AltiVec registers | 7210 // | +--------------------------------------------+ 7211 // | | AltiVec alignment padding | 7212 // | +--------------------------------------------+ 7213 // | | Save area for VRSAVE register | 7214 // | +--------------------------------------------+ 7215 // | | Save area for General Purpose registers | 7216 // | +--------------------------------------------+ 7217 // | | Save area for Floating Point registers | 7218 // | +--------------------------------------------+ 7219 // +---- | Back chain | 7220 // High Memory +--------------------------------------------+ 7221 // 7222 // Specifications: 7223 // AIX 7.2 Assembler Language Reference 7224 // Subroutine linkage convention 7225 7226 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7227 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7228 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7229 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7230 7231 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7232 CallConv == CallingConv::Fast) && 7233 "Unexpected calling convention!"); 7234 7235 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7236 report_fatal_error("Tail call support is unimplemented on AIX."); 7237 7238 if (useSoftFloat()) 7239 report_fatal_error("Soft float support is unimplemented on AIX."); 7240 7241 const PPCSubtarget &Subtarget = 7242 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7243 7244 const bool IsPPC64 = Subtarget.isPPC64(); 7245 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7246 7247 // Assign locations to all of the incoming arguments. 7248 SmallVector<CCValAssign, 16> ArgLocs; 7249 MachineFunction &MF = DAG.getMachineFunction(); 7250 MachineFrameInfo &MFI = MF.getFrameInfo(); 7251 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7252 7253 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7254 // Reserve space for the linkage area on the stack. 7255 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7256 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7257 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7258 7259 SmallVector<SDValue, 8> MemOps; 7260 7261 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7262 CCValAssign &VA = ArgLocs[I++]; 7263 MVT LocVT = VA.getLocVT(); 7264 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7265 7266 // For compatibility with the AIX XL compiler, the float args in the 7267 // parameter save area are initialized even if the argument is available 7268 // in register. The caller is required to initialize both the register 7269 // and memory, however, the callee can choose to expect it in either. 7270 // The memloc is dismissed here because the argument is retrieved from 7271 // the register. 7272 if (VA.isMemLoc() && VA.needsCustom()) 7273 continue; 7274 7275 if (Flags.isByVal() && VA.isMemLoc()) { 7276 const unsigned Size = 7277 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7278 PtrByteSize); 7279 const int FI = MF.getFrameInfo().CreateFixedObject( 7280 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7281 /* IsAliased */ true); 7282 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7283 InVals.push_back(FIN); 7284 7285 continue; 7286 } 7287 7288 if (Flags.isByVal()) { 7289 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7290 7291 const MCPhysReg ArgReg = VA.getLocReg(); 7292 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7293 7294 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7295 report_fatal_error("Over aligned byvals not supported yet."); 7296 7297 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7298 const int FI = MF.getFrameInfo().CreateFixedObject( 7299 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7300 /* IsAliased */ true); 7301 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7302 InVals.push_back(FIN); 7303 7304 // Add live ins for all the RegLocs for the same ByVal. 7305 const TargetRegisterClass *RegClass = 7306 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7307 7308 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7309 unsigned Offset) { 7310 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7311 // Since the callers side has left justified the aggregate in the 7312 // register, we can simply store the entire register into the stack 7313 // slot. 7314 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7315 // The store to the fixedstack object is needed becuase accessing a 7316 // field of the ByVal will use a gep and load. Ideally we will optimize 7317 // to extracting the value from the register directly, and elide the 7318 // stores when the arguments address is not taken, but that will need to 7319 // be future work. 7320 SDValue Store = DAG.getStore( 7321 CopyFrom.getValue(1), dl, CopyFrom, 7322 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7323 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7324 7325 MemOps.push_back(Store); 7326 }; 7327 7328 unsigned Offset = 0; 7329 HandleRegLoc(VA.getLocReg(), Offset); 7330 Offset += PtrByteSize; 7331 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7332 Offset += PtrByteSize) { 7333 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7334 "RegLocs should be for ByVal argument."); 7335 7336 const CCValAssign RL = ArgLocs[I++]; 7337 HandleRegLoc(RL.getLocReg(), Offset); 7338 } 7339 7340 if (Offset != StackSize) { 7341 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7342 "Expected MemLoc for remaining bytes."); 7343 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7344 // Consume the MemLoc.The InVal has already been emitted, so nothing 7345 // more needs to be done. 7346 ++I; 7347 } 7348 7349 continue; 7350 } 7351 7352 EVT ValVT = VA.getValVT(); 7353 if (VA.isRegLoc() && !VA.needsCustom()) { 7354 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7355 unsigned VReg = 7356 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7357 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7358 if (ValVT.isScalarInteger() && 7359 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7360 ArgValue = 7361 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7362 } 7363 InVals.push_back(ArgValue); 7364 continue; 7365 } 7366 if (VA.isMemLoc()) { 7367 const unsigned LocSize = LocVT.getStoreSize(); 7368 const unsigned ValSize = ValVT.getStoreSize(); 7369 assert((ValSize <= LocSize) && 7370 "Object size is larger than size of MemLoc"); 7371 int CurArgOffset = VA.getLocMemOffset(); 7372 // Objects are right-justified because AIX is big-endian. 7373 if (LocSize > ValSize) 7374 CurArgOffset += LocSize - ValSize; 7375 // Potential tail calls could cause overwriting of argument stack slots. 7376 const bool IsImmutable = 7377 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7378 (CallConv == CallingConv::Fast)); 7379 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7380 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7381 SDValue ArgValue = 7382 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7383 InVals.push_back(ArgValue); 7384 continue; 7385 } 7386 } 7387 7388 // On AIX a minimum of 8 words is saved to the parameter save area. 7389 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7390 // Area that is at least reserved in the caller of this function. 7391 unsigned CallerReservedArea = 7392 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7393 7394 // Set the size that is at least reserved in caller of this function. Tail 7395 // call optimized function's reserved stack space needs to be aligned so 7396 // that taking the difference between two stack areas will result in an 7397 // aligned stack. 7398 CallerReservedArea = 7399 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7400 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7401 FuncInfo->setMinReservedArea(CallerReservedArea); 7402 7403 if (isVarArg) { 7404 FuncInfo->setVarArgsFrameIndex( 7405 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7406 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7407 7408 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7409 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7410 7411 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7412 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7413 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7414 7415 // The fixed integer arguments of a variadic function are stored to the 7416 // VarArgsFrameIndex on the stack so that they may be loaded by 7417 // dereferencing the result of va_next. 7418 for (unsigned GPRIndex = 7419 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7420 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7421 7422 const unsigned VReg = 7423 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7424 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7425 7426 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7427 SDValue Store = 7428 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7429 MemOps.push_back(Store); 7430 // Increment the address for the next argument to store. 7431 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7432 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7433 } 7434 } 7435 7436 if (!MemOps.empty()) 7437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7438 7439 return Chain; 7440 } 7441 7442 SDValue PPCTargetLowering::LowerCall_AIX( 7443 SDValue Chain, SDValue Callee, CallFlags CFlags, 7444 const SmallVectorImpl<ISD::OutputArg> &Outs, 7445 const SmallVectorImpl<SDValue> &OutVals, 7446 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7447 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7448 const CallBase *CB) const { 7449 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7450 // AIX ABI stack frame layout. 7451 7452 assert((CFlags.CallConv == CallingConv::C || 7453 CFlags.CallConv == CallingConv::Cold || 7454 CFlags.CallConv == CallingConv::Fast) && 7455 "Unexpected calling convention!"); 7456 7457 if (CFlags.IsPatchPoint) 7458 report_fatal_error("This call type is unimplemented on AIX."); 7459 7460 const PPCSubtarget& Subtarget = 7461 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7462 if (Subtarget.hasAltivec()) 7463 report_fatal_error("Altivec support is unimplemented on AIX."); 7464 7465 MachineFunction &MF = DAG.getMachineFunction(); 7466 SmallVector<CCValAssign, 16> ArgLocs; 7467 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7468 *DAG.getContext()); 7469 7470 // Reserve space for the linkage save area (LSA) on the stack. 7471 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7472 // [SP][CR][LR][2 x reserved][TOC]. 7473 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7474 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7475 const bool IsPPC64 = Subtarget.isPPC64(); 7476 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7477 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7478 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7479 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7480 7481 // The prolog code of the callee may store up to 8 GPR argument registers to 7482 // the stack, allowing va_start to index over them in memory if the callee 7483 // is variadic. 7484 // Because we cannot tell if this is needed on the caller side, we have to 7485 // conservatively assume that it is needed. As such, make sure we have at 7486 // least enough stack space for the caller to store the 8 GPRs. 7487 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7488 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7489 CCInfo.getNextStackOffset()); 7490 7491 // Adjust the stack pointer for the new arguments... 7492 // These operations are automatically eliminated by the prolog/epilog pass. 7493 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7494 SDValue CallSeqStart = Chain; 7495 7496 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7497 SmallVector<SDValue, 8> MemOpChains; 7498 7499 // Set up a copy of the stack pointer for loading and storing any 7500 // arguments that may not fit in the registers available for argument 7501 // passing. 7502 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7503 : DAG.getRegister(PPC::R1, MVT::i32); 7504 7505 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7506 const unsigned ValNo = ArgLocs[I].getValNo(); 7507 SDValue Arg = OutVals[ValNo]; 7508 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7509 7510 if (Flags.isByVal()) { 7511 const unsigned ByValSize = Flags.getByValSize(); 7512 7513 // Nothing to do for zero-sized ByVals on the caller side. 7514 if (!ByValSize) { 7515 ++I; 7516 continue; 7517 } 7518 7519 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7520 return DAG.getExtLoad( 7521 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7522 (LoadOffset != 0) 7523 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7524 : Arg, 7525 MachinePointerInfo(), VT); 7526 }; 7527 7528 unsigned LoadOffset = 0; 7529 7530 // Initialize registers, which are fully occupied by the by-val argument. 7531 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7532 SDValue Load = GetLoad(PtrVT, LoadOffset); 7533 MemOpChains.push_back(Load.getValue(1)); 7534 LoadOffset += PtrByteSize; 7535 const CCValAssign &ByValVA = ArgLocs[I++]; 7536 assert(ByValVA.getValNo() == ValNo && 7537 "Unexpected location for pass-by-value argument."); 7538 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7539 } 7540 7541 if (LoadOffset == ByValSize) 7542 continue; 7543 7544 // There must be one more loc to handle the remainder. 7545 assert(ArgLocs[I].getValNo() == ValNo && 7546 "Expected additional location for by-value argument."); 7547 7548 if (ArgLocs[I].isMemLoc()) { 7549 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7550 const CCValAssign &ByValVA = ArgLocs[I++]; 7551 ISD::ArgFlagsTy MemcpyFlags = Flags; 7552 // Only memcpy the bytes that don't pass in register. 7553 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7554 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7555 (LoadOffset != 0) 7556 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7557 : Arg, 7558 DAG.getObjectPtrOffset(dl, StackPtr, 7559 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7560 CallSeqStart, MemcpyFlags, DAG, dl); 7561 continue; 7562 } 7563 7564 // Initialize the final register residue. 7565 // Any residue that occupies the final by-val arg register must be 7566 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7567 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7568 // 2 and 1 byte loads. 7569 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7570 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7571 "Unexpected register residue for by-value argument."); 7572 SDValue ResidueVal; 7573 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7574 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7575 const MVT VT = 7576 N == 1 ? MVT::i8 7577 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7578 SDValue Load = GetLoad(VT, LoadOffset); 7579 MemOpChains.push_back(Load.getValue(1)); 7580 LoadOffset += N; 7581 Bytes += N; 7582 7583 // By-val arguments are passed left-justfied in register. 7584 // Every load here needs to be shifted, otherwise a full register load 7585 // should have been used. 7586 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7587 "Unexpected load emitted during handling of pass-by-value " 7588 "argument."); 7589 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7590 EVT ShiftAmountTy = 7591 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7592 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7593 SDValue ShiftedLoad = 7594 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7595 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7596 ShiftedLoad) 7597 : ShiftedLoad; 7598 } 7599 7600 const CCValAssign &ByValVA = ArgLocs[I++]; 7601 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7602 continue; 7603 } 7604 7605 CCValAssign &VA = ArgLocs[I++]; 7606 const MVT LocVT = VA.getLocVT(); 7607 const MVT ValVT = VA.getValVT(); 7608 7609 switch (VA.getLocInfo()) { 7610 default: 7611 report_fatal_error("Unexpected argument extension type."); 7612 case CCValAssign::Full: 7613 break; 7614 case CCValAssign::ZExt: 7615 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7616 break; 7617 case CCValAssign::SExt: 7618 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7619 break; 7620 } 7621 7622 if (VA.isRegLoc() && !VA.needsCustom()) { 7623 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7624 continue; 7625 } 7626 7627 if (VA.isMemLoc()) { 7628 SDValue PtrOff = 7629 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7630 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7631 MemOpChains.push_back( 7632 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7633 7634 continue; 7635 } 7636 7637 // Custom handling is used for GPR initializations for vararg float 7638 // arguments. 7639 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7640 ValVT.isFloatingPoint() && LocVT.isInteger() && 7641 "Unexpected register handling for calling convention."); 7642 7643 SDValue ArgAsInt = 7644 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7645 7646 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7647 // f32 in 32-bit GPR 7648 // f64 in 64-bit GPR 7649 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7650 else if (Arg.getValueType().getFixedSizeInBits() < 7651 LocVT.getFixedSizeInBits()) 7652 // f32 in 64-bit GPR. 7653 RegsToPass.push_back(std::make_pair( 7654 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7655 else { 7656 // f64 in two 32-bit GPRs 7657 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7658 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7659 "Unexpected custom register for argument!"); 7660 CCValAssign &GPR1 = VA; 7661 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7662 DAG.getConstant(32, dl, MVT::i8)); 7663 RegsToPass.push_back(std::make_pair( 7664 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7665 7666 if (I != E) { 7667 // If only 1 GPR was available, there will only be one custom GPR and 7668 // the argument will also pass in memory. 7669 CCValAssign &PeekArg = ArgLocs[I]; 7670 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7671 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7672 CCValAssign &GPR2 = ArgLocs[I++]; 7673 RegsToPass.push_back(std::make_pair( 7674 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7675 } 7676 } 7677 } 7678 } 7679 7680 if (!MemOpChains.empty()) 7681 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7682 7683 // For indirect calls, we need to save the TOC base to the stack for 7684 // restoration after the call. 7685 if (CFlags.IsIndirect) { 7686 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7687 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7688 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7689 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7690 const unsigned TOCSaveOffset = 7691 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7692 7693 setUsesTOCBasePtr(DAG); 7694 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7695 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7696 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7697 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7698 Chain = DAG.getStore( 7699 Val.getValue(1), dl, Val, AddPtr, 7700 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7701 } 7702 7703 // Build a sequence of copy-to-reg nodes chained together with token chain 7704 // and flag operands which copy the outgoing args into the appropriate regs. 7705 SDValue InFlag; 7706 for (auto Reg : RegsToPass) { 7707 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7708 InFlag = Chain.getValue(1); 7709 } 7710 7711 const int SPDiff = 0; 7712 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7713 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7714 } 7715 7716 bool 7717 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7718 MachineFunction &MF, bool isVarArg, 7719 const SmallVectorImpl<ISD::OutputArg> &Outs, 7720 LLVMContext &Context) const { 7721 SmallVector<CCValAssign, 16> RVLocs; 7722 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7723 return CCInfo.CheckReturn( 7724 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7725 ? RetCC_PPC_Cold 7726 : RetCC_PPC); 7727 } 7728 7729 SDValue 7730 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7731 bool isVarArg, 7732 const SmallVectorImpl<ISD::OutputArg> &Outs, 7733 const SmallVectorImpl<SDValue> &OutVals, 7734 const SDLoc &dl, SelectionDAG &DAG) const { 7735 SmallVector<CCValAssign, 16> RVLocs; 7736 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7737 *DAG.getContext()); 7738 CCInfo.AnalyzeReturn(Outs, 7739 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7740 ? RetCC_PPC_Cold 7741 : RetCC_PPC); 7742 7743 SDValue Flag; 7744 SmallVector<SDValue, 4> RetOps(1, Chain); 7745 7746 // Copy the result values into the output registers. 7747 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7748 CCValAssign &VA = RVLocs[i]; 7749 assert(VA.isRegLoc() && "Can only return in registers!"); 7750 7751 SDValue Arg = OutVals[RealResIdx]; 7752 7753 if (Subtarget.isAIXABI() && 7754 (VA.getLocVT().isVector() || VA.getValVT().isVector())) 7755 report_fatal_error("Returning vector types not yet supported on AIX."); 7756 7757 switch (VA.getLocInfo()) { 7758 default: llvm_unreachable("Unknown loc info!"); 7759 case CCValAssign::Full: break; 7760 case CCValAssign::AExt: 7761 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7762 break; 7763 case CCValAssign::ZExt: 7764 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7765 break; 7766 case CCValAssign::SExt: 7767 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7768 break; 7769 } 7770 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7771 bool isLittleEndian = Subtarget.isLittleEndian(); 7772 // Legalize ret f64 -> ret 2 x i32. 7773 SDValue SVal = 7774 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7775 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7776 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7777 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7778 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7779 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7780 Flag = Chain.getValue(1); 7781 VA = RVLocs[++i]; // skip ahead to next loc 7782 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7783 } else 7784 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7785 Flag = Chain.getValue(1); 7786 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7787 } 7788 7789 RetOps[0] = Chain; // Update chain. 7790 7791 // Add the flag if we have it. 7792 if (Flag.getNode()) 7793 RetOps.push_back(Flag); 7794 7795 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7796 } 7797 7798 SDValue 7799 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7800 SelectionDAG &DAG) const { 7801 SDLoc dl(Op); 7802 7803 // Get the correct type for integers. 7804 EVT IntVT = Op.getValueType(); 7805 7806 // Get the inputs. 7807 SDValue Chain = Op.getOperand(0); 7808 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7809 // Build a DYNAREAOFFSET node. 7810 SDValue Ops[2] = {Chain, FPSIdx}; 7811 SDVTList VTs = DAG.getVTList(IntVT); 7812 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7813 } 7814 7815 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7816 SelectionDAG &DAG) const { 7817 // When we pop the dynamic allocation we need to restore the SP link. 7818 SDLoc dl(Op); 7819 7820 // Get the correct type for pointers. 7821 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7822 7823 // Construct the stack pointer operand. 7824 bool isPPC64 = Subtarget.isPPC64(); 7825 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7826 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7827 7828 // Get the operands for the STACKRESTORE. 7829 SDValue Chain = Op.getOperand(0); 7830 SDValue SaveSP = Op.getOperand(1); 7831 7832 // Load the old link SP. 7833 SDValue LoadLinkSP = 7834 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7835 7836 // Restore the stack pointer. 7837 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7838 7839 // Store the old link SP. 7840 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7841 } 7842 7843 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7844 MachineFunction &MF = DAG.getMachineFunction(); 7845 bool isPPC64 = Subtarget.isPPC64(); 7846 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7847 7848 // Get current frame pointer save index. The users of this index will be 7849 // primarily DYNALLOC instructions. 7850 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7851 int RASI = FI->getReturnAddrSaveIndex(); 7852 7853 // If the frame pointer save index hasn't been defined yet. 7854 if (!RASI) { 7855 // Find out what the fix offset of the frame pointer save area. 7856 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7857 // Allocate the frame index for frame pointer save area. 7858 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7859 // Save the result. 7860 FI->setReturnAddrSaveIndex(RASI); 7861 } 7862 return DAG.getFrameIndex(RASI, PtrVT); 7863 } 7864 7865 SDValue 7866 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7867 MachineFunction &MF = DAG.getMachineFunction(); 7868 bool isPPC64 = Subtarget.isPPC64(); 7869 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7870 7871 // Get current frame pointer save index. The users of this index will be 7872 // primarily DYNALLOC instructions. 7873 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7874 int FPSI = FI->getFramePointerSaveIndex(); 7875 7876 // If the frame pointer save index hasn't been defined yet. 7877 if (!FPSI) { 7878 // Find out what the fix offset of the frame pointer save area. 7879 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7880 // Allocate the frame index for frame pointer save area. 7881 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7882 // Save the result. 7883 FI->setFramePointerSaveIndex(FPSI); 7884 } 7885 return DAG.getFrameIndex(FPSI, PtrVT); 7886 } 7887 7888 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7889 SelectionDAG &DAG) const { 7890 MachineFunction &MF = DAG.getMachineFunction(); 7891 // Get the inputs. 7892 SDValue Chain = Op.getOperand(0); 7893 SDValue Size = Op.getOperand(1); 7894 SDLoc dl(Op); 7895 7896 // Get the correct type for pointers. 7897 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7898 // Negate the size. 7899 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7900 DAG.getConstant(0, dl, PtrVT), Size); 7901 // Construct a node for the frame pointer save index. 7902 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7903 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7904 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7905 if (hasInlineStackProbe(MF)) 7906 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7907 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7908 } 7909 7910 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7911 SelectionDAG &DAG) const { 7912 MachineFunction &MF = DAG.getMachineFunction(); 7913 7914 bool isPPC64 = Subtarget.isPPC64(); 7915 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7916 7917 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7918 return DAG.getFrameIndex(FI, PtrVT); 7919 } 7920 7921 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7922 SelectionDAG &DAG) const { 7923 SDLoc DL(Op); 7924 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7925 DAG.getVTList(MVT::i32, MVT::Other), 7926 Op.getOperand(0), Op.getOperand(1)); 7927 } 7928 7929 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7930 SelectionDAG &DAG) const { 7931 SDLoc DL(Op); 7932 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7933 Op.getOperand(0), Op.getOperand(1)); 7934 } 7935 7936 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7937 if (Op.getValueType().isVector()) 7938 return LowerVectorLoad(Op, DAG); 7939 7940 assert(Op.getValueType() == MVT::i1 && 7941 "Custom lowering only for i1 loads"); 7942 7943 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7944 7945 SDLoc dl(Op); 7946 LoadSDNode *LD = cast<LoadSDNode>(Op); 7947 7948 SDValue Chain = LD->getChain(); 7949 SDValue BasePtr = LD->getBasePtr(); 7950 MachineMemOperand *MMO = LD->getMemOperand(); 7951 7952 SDValue NewLD = 7953 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7954 BasePtr, MVT::i8, MMO); 7955 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7956 7957 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7958 return DAG.getMergeValues(Ops, dl); 7959 } 7960 7961 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7962 if (Op.getOperand(1).getValueType().isVector()) 7963 return LowerVectorStore(Op, DAG); 7964 7965 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7966 "Custom lowering only for i1 stores"); 7967 7968 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7969 7970 SDLoc dl(Op); 7971 StoreSDNode *ST = cast<StoreSDNode>(Op); 7972 7973 SDValue Chain = ST->getChain(); 7974 SDValue BasePtr = ST->getBasePtr(); 7975 SDValue Value = ST->getValue(); 7976 MachineMemOperand *MMO = ST->getMemOperand(); 7977 7978 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7979 Value); 7980 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7981 } 7982 7983 // FIXME: Remove this once the ANDI glue bug is fixed: 7984 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7985 assert(Op.getValueType() == MVT::i1 && 7986 "Custom lowering only for i1 results"); 7987 7988 SDLoc DL(Op); 7989 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7990 } 7991 7992 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7993 SelectionDAG &DAG) const { 7994 7995 // Implements a vector truncate that fits in a vector register as a shuffle. 7996 // We want to legalize vector truncates down to where the source fits in 7997 // a vector register (and target is therefore smaller than vector register 7998 // size). At that point legalization will try to custom lower the sub-legal 7999 // result and get here - where we can contain the truncate as a single target 8000 // operation. 8001 8002 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8003 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8004 // 8005 // We will implement it for big-endian ordering as this (where x denotes 8006 // undefined): 8007 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8008 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8009 // 8010 // The same operation in little-endian ordering will be: 8011 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8012 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8013 8014 EVT TrgVT = Op.getValueType(); 8015 assert(TrgVT.isVector() && "Vector type expected."); 8016 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8017 EVT EltVT = TrgVT.getVectorElementType(); 8018 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 8019 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 8020 !isPowerOf2_32(EltVT.getSizeInBits())) 8021 return SDValue(); 8022 8023 SDValue N1 = Op.getOperand(0); 8024 EVT SrcVT = N1.getValueType(); 8025 unsigned SrcSize = SrcVT.getSizeInBits(); 8026 if (SrcSize > 256 || 8027 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 8028 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 8029 return SDValue(); 8030 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 8031 return SDValue(); 8032 8033 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8034 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8035 8036 SDLoc DL(Op); 8037 SDValue Op1, Op2; 8038 if (SrcSize == 256) { 8039 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 8040 EVT SplitVT = 8041 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 8042 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 8043 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8044 DAG.getConstant(0, DL, VecIdxTy)); 8045 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8046 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 8047 } 8048 else { 8049 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8050 Op2 = DAG.getUNDEF(WideVT); 8051 } 8052 8053 // First list the elements we want to keep. 8054 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8055 SmallVector<int, 16> ShuffV; 8056 if (Subtarget.isLittleEndian()) 8057 for (unsigned i = 0; i < TrgNumElts; ++i) 8058 ShuffV.push_back(i * SizeMult); 8059 else 8060 for (unsigned i = 1; i <= TrgNumElts; ++i) 8061 ShuffV.push_back(i * SizeMult - 1); 8062 8063 // Populate the remaining elements with undefs. 8064 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8065 // ShuffV.push_back(i + WideNumElts); 8066 ShuffV.push_back(WideNumElts + 1); 8067 8068 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 8069 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 8070 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 8071 } 8072 8073 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8074 /// possible. 8075 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8076 // Not FP, or using SPE? Not a fsel. 8077 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8078 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 8079 return Op; 8080 8081 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8082 8083 EVT ResVT = Op.getValueType(); 8084 EVT CmpVT = Op.getOperand(0).getValueType(); 8085 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8086 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8087 SDLoc dl(Op); 8088 SDNodeFlags Flags = Op.getNode()->getFlags(); 8089 8090 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8091 // presence of infinities. 8092 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8093 switch (CC) { 8094 default: 8095 break; 8096 case ISD::SETOGT: 8097 case ISD::SETGT: 8098 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8099 case ISD::SETOLT: 8100 case ISD::SETLT: 8101 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8102 } 8103 } 8104 8105 // We might be able to do better than this under some circumstances, but in 8106 // general, fsel-based lowering of select is a finite-math-only optimization. 8107 // For more information, see section F.3 of the 2.06 ISA specification. 8108 // With ISA 3.0 8109 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8110 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8111 return Op; 8112 8113 // If the RHS of the comparison is a 0.0, we don't need to do the 8114 // subtraction at all. 8115 SDValue Sel1; 8116 if (isFloatingPointZero(RHS)) 8117 switch (CC) { 8118 default: break; // SETUO etc aren't handled by fsel. 8119 case ISD::SETNE: 8120 std::swap(TV, FV); 8121 LLVM_FALLTHROUGH; 8122 case ISD::SETEQ: 8123 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8124 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8125 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8126 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8127 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8128 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8129 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8130 case ISD::SETULT: 8131 case ISD::SETLT: 8132 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8133 LLVM_FALLTHROUGH; 8134 case ISD::SETOGE: 8135 case ISD::SETGE: 8136 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8137 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8138 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8139 case ISD::SETUGT: 8140 case ISD::SETGT: 8141 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8142 LLVM_FALLTHROUGH; 8143 case ISD::SETOLE: 8144 case ISD::SETLE: 8145 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8146 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8147 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8148 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8149 } 8150 8151 SDValue Cmp; 8152 switch (CC) { 8153 default: break; // SETUO etc aren't handled by fsel. 8154 case ISD::SETNE: 8155 std::swap(TV, FV); 8156 LLVM_FALLTHROUGH; 8157 case ISD::SETEQ: 8158 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8159 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8160 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8161 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8162 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8163 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8164 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8165 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8166 case ISD::SETULT: 8167 case ISD::SETLT: 8168 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8169 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8170 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8171 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8172 case ISD::SETOGE: 8173 case ISD::SETGE: 8174 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8175 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8176 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8177 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8178 case ISD::SETUGT: 8179 case ISD::SETGT: 8180 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8181 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8182 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8183 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8184 case ISD::SETOLE: 8185 case ISD::SETLE: 8186 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8187 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8188 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8189 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8190 } 8191 return Op; 8192 } 8193 8194 static unsigned getPPCStrictOpcode(unsigned Opc) { 8195 switch (Opc) { 8196 default: 8197 llvm_unreachable("No strict version of this opcode!"); 8198 case PPCISD::FCTIDZ: 8199 return PPCISD::STRICT_FCTIDZ; 8200 case PPCISD::FCTIWZ: 8201 return PPCISD::STRICT_FCTIWZ; 8202 case PPCISD::FCTIDUZ: 8203 return PPCISD::STRICT_FCTIDUZ; 8204 case PPCISD::FCTIWUZ: 8205 return PPCISD::STRICT_FCTIWUZ; 8206 case PPCISD::FCFID: 8207 return PPCISD::STRICT_FCFID; 8208 case PPCISD::FCFIDU: 8209 return PPCISD::STRICT_FCFIDU; 8210 case PPCISD::FCFIDS: 8211 return PPCISD::STRICT_FCFIDS; 8212 case PPCISD::FCFIDUS: 8213 return PPCISD::STRICT_FCFIDUS; 8214 } 8215 } 8216 8217 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8218 const PPCSubtarget &Subtarget) { 8219 SDLoc dl(Op); 8220 bool IsStrict = Op->isStrictFPOpcode(); 8221 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8222 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8223 8224 // TODO: Any other flags to propagate? 8225 SDNodeFlags Flags; 8226 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8227 8228 // For strict nodes, source is the second operand. 8229 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8230 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8231 assert(Src.getValueType().isFloatingPoint()); 8232 if (Src.getValueType() == MVT::f32) { 8233 if (IsStrict) { 8234 Src = 8235 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8236 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8237 Chain = Src.getValue(1); 8238 } else 8239 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8240 } 8241 SDValue Conv; 8242 unsigned Opc = ISD::DELETED_NODE; 8243 switch (Op.getSimpleValueType().SimpleTy) { 8244 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8245 case MVT::i32: 8246 Opc = IsSigned ? PPCISD::FCTIWZ 8247 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8248 break; 8249 case MVT::i64: 8250 assert((IsSigned || Subtarget.hasFPCVT()) && 8251 "i64 FP_TO_UINT is supported only with FPCVT"); 8252 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8253 } 8254 if (IsStrict) { 8255 Opc = getPPCStrictOpcode(Opc); 8256 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8257 {Chain, Src}, Flags); 8258 } else { 8259 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8260 } 8261 return Conv; 8262 } 8263 8264 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8265 SelectionDAG &DAG, 8266 const SDLoc &dl) const { 8267 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8268 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8269 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8270 bool IsStrict = Op->isStrictFPOpcode(); 8271 8272 // Convert the FP value to an int value through memory. 8273 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8274 (IsSigned || Subtarget.hasFPCVT()); 8275 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8276 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8277 MachinePointerInfo MPI = 8278 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8279 8280 // Emit a store to the stack slot. 8281 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8282 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8283 if (i32Stack) { 8284 MachineFunction &MF = DAG.getMachineFunction(); 8285 Alignment = Align(4); 8286 MachineMemOperand *MMO = 8287 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8288 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8289 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8290 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8291 } else 8292 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8293 8294 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8295 // add in a bias on big endian. 8296 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8297 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8298 DAG.getConstant(4, dl, FIPtr.getValueType())); 8299 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8300 } 8301 8302 RLI.Chain = Chain; 8303 RLI.Ptr = FIPtr; 8304 RLI.MPI = MPI; 8305 RLI.Alignment = Alignment; 8306 } 8307 8308 /// Custom lowers floating point to integer conversions to use 8309 /// the direct move instructions available in ISA 2.07 to avoid the 8310 /// need for load/store combinations. 8311 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8312 SelectionDAG &DAG, 8313 const SDLoc &dl) const { 8314 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8315 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8316 if (Op->isStrictFPOpcode()) 8317 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8318 else 8319 return Mov; 8320 } 8321 8322 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8323 const SDLoc &dl) const { 8324 bool IsStrict = Op->isStrictFPOpcode(); 8325 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8326 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8327 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8328 EVT SrcVT = Src.getValueType(); 8329 EVT DstVT = Op.getValueType(); 8330 8331 // FP to INT conversions are legal for f128. 8332 if (SrcVT == MVT::f128) 8333 return Op; 8334 8335 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8336 // PPC (the libcall is not available). 8337 if (SrcVT == MVT::ppcf128) { 8338 if (DstVT == MVT::i32) { 8339 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8340 // set other fast-math flags to FP operations in both strict and 8341 // non-strict cases. (FP_TO_SINT, FSUB) 8342 SDNodeFlags Flags; 8343 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8344 8345 if (IsSigned) { 8346 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8347 DAG.getIntPtrConstant(0, dl)); 8348 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8349 DAG.getIntPtrConstant(1, dl)); 8350 8351 // Add the two halves of the long double in round-to-zero mode, and use 8352 // a smaller FP_TO_SINT. 8353 if (IsStrict) { 8354 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8355 DAG.getVTList(MVT::f64, MVT::Other), 8356 {Op.getOperand(0), Lo, Hi}, Flags); 8357 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8358 DAG.getVTList(MVT::i32, MVT::Other), 8359 {Res.getValue(1), Res}, Flags); 8360 } else { 8361 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8362 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8363 } 8364 } else { 8365 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8366 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8367 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8368 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8369 if (IsStrict) { 8370 // Sel = Src < 0x80000000 8371 // FltOfs = select Sel, 0.0, 0x80000000 8372 // IntOfs = select Sel, 0, 0x80000000 8373 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8374 SDValue Chain = Op.getOperand(0); 8375 EVT SetCCVT = 8376 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8377 EVT DstSetCCVT = 8378 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8379 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8380 Chain, true); 8381 Chain = Sel.getValue(1); 8382 8383 SDValue FltOfs = DAG.getSelect( 8384 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8385 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8386 8387 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8388 DAG.getVTList(SrcVT, MVT::Other), 8389 {Chain, Src, FltOfs}, Flags); 8390 Chain = Val.getValue(1); 8391 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8392 DAG.getVTList(DstVT, MVT::Other), 8393 {Chain, Val}, Flags); 8394 Chain = SInt.getValue(1); 8395 SDValue IntOfs = DAG.getSelect( 8396 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8397 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8398 return DAG.getMergeValues({Result, Chain}, dl); 8399 } else { 8400 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8401 // FIXME: generated code sucks. 8402 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8403 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8404 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8405 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8406 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8407 } 8408 } 8409 } 8410 8411 return SDValue(); 8412 } 8413 8414 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8415 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8416 8417 ReuseLoadInfo RLI; 8418 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8419 8420 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8421 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8422 } 8423 8424 // We're trying to insert a regular store, S, and then a load, L. If the 8425 // incoming value, O, is a load, we might just be able to have our load use the 8426 // address used by O. However, we don't know if anything else will store to 8427 // that address before we can load from it. To prevent this situation, we need 8428 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8429 // the same chain operand as O, we create a token factor from the chain results 8430 // of O and L, and we replace all uses of O's chain result with that token 8431 // factor (see spliceIntoChain below for this last part). 8432 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8433 ReuseLoadInfo &RLI, 8434 SelectionDAG &DAG, 8435 ISD::LoadExtType ET) const { 8436 // Conservatively skip reusing for constrained FP nodes. 8437 if (Op->isStrictFPOpcode()) 8438 return false; 8439 8440 SDLoc dl(Op); 8441 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8442 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8443 if (ET == ISD::NON_EXTLOAD && 8444 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8445 isOperationLegalOrCustom(Op.getOpcode(), 8446 Op.getOperand(0).getValueType())) { 8447 8448 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8449 return true; 8450 } 8451 8452 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8453 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8454 LD->isNonTemporal()) 8455 return false; 8456 if (LD->getMemoryVT() != MemVT) 8457 return false; 8458 8459 // If the result of the load is an illegal type, then we can't build a 8460 // valid chain for reuse since the legalised loads and token factor node that 8461 // ties the legalised loads together uses a different output chain then the 8462 // illegal load. 8463 if (!isTypeLegal(LD->getValueType(0))) 8464 return false; 8465 8466 RLI.Ptr = LD->getBasePtr(); 8467 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8468 assert(LD->getAddressingMode() == ISD::PRE_INC && 8469 "Non-pre-inc AM on PPC?"); 8470 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8471 LD->getOffset()); 8472 } 8473 8474 RLI.Chain = LD->getChain(); 8475 RLI.MPI = LD->getPointerInfo(); 8476 RLI.IsDereferenceable = LD->isDereferenceable(); 8477 RLI.IsInvariant = LD->isInvariant(); 8478 RLI.Alignment = LD->getAlign(); 8479 RLI.AAInfo = LD->getAAInfo(); 8480 RLI.Ranges = LD->getRanges(); 8481 8482 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8483 return true; 8484 } 8485 8486 // Given the head of the old chain, ResChain, insert a token factor containing 8487 // it and NewResChain, and make users of ResChain now be users of that token 8488 // factor. 8489 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8490 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8491 SDValue NewResChain, 8492 SelectionDAG &DAG) const { 8493 if (!ResChain) 8494 return; 8495 8496 SDLoc dl(NewResChain); 8497 8498 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8499 NewResChain, DAG.getUNDEF(MVT::Other)); 8500 assert(TF.getNode() != NewResChain.getNode() && 8501 "A new TF really is required here"); 8502 8503 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8504 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8505 } 8506 8507 /// Analyze profitability of direct move 8508 /// prefer float load to int load plus direct move 8509 /// when there is no integer use of int load 8510 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8511 SDNode *Origin = Op.getOperand(0).getNode(); 8512 if (Origin->getOpcode() != ISD::LOAD) 8513 return true; 8514 8515 // If there is no LXSIBZX/LXSIHZX, like Power8, 8516 // prefer direct move if the memory size is 1 or 2 bytes. 8517 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8518 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8519 return true; 8520 8521 for (SDNode::use_iterator UI = Origin->use_begin(), 8522 UE = Origin->use_end(); 8523 UI != UE; ++UI) { 8524 8525 // Only look at the users of the loaded value. 8526 if (UI.getUse().get().getResNo() != 0) 8527 continue; 8528 8529 if (UI->getOpcode() != ISD::SINT_TO_FP && 8530 UI->getOpcode() != ISD::UINT_TO_FP && 8531 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8532 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8533 return true; 8534 } 8535 8536 return false; 8537 } 8538 8539 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8540 const PPCSubtarget &Subtarget, 8541 SDValue Chain = SDValue()) { 8542 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8543 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8544 SDLoc dl(Op); 8545 8546 // TODO: Any other flags to propagate? 8547 SDNodeFlags Flags; 8548 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8549 8550 // If we have FCFIDS, then use it when converting to single-precision. 8551 // Otherwise, convert to double-precision and then round. 8552 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8553 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8554 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8555 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8556 if (Op->isStrictFPOpcode()) { 8557 if (!Chain) 8558 Chain = Op.getOperand(0); 8559 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8560 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8561 } else 8562 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8563 } 8564 8565 /// Custom lowers integer to floating point conversions to use 8566 /// the direct move instructions available in ISA 2.07 to avoid the 8567 /// need for load/store combinations. 8568 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8569 SelectionDAG &DAG, 8570 const SDLoc &dl) const { 8571 assert((Op.getValueType() == MVT::f32 || 8572 Op.getValueType() == MVT::f64) && 8573 "Invalid floating point type as target of conversion"); 8574 assert(Subtarget.hasFPCVT() && 8575 "Int to FP conversions with direct moves require FPCVT"); 8576 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8577 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8578 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8579 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8580 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8581 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8582 return convertIntToFP(Op, Mov, DAG, Subtarget); 8583 } 8584 8585 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8586 8587 EVT VecVT = Vec.getValueType(); 8588 assert(VecVT.isVector() && "Expected a vector type."); 8589 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8590 8591 EVT EltVT = VecVT.getVectorElementType(); 8592 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8593 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8594 8595 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8596 SmallVector<SDValue, 16> Ops(NumConcat); 8597 Ops[0] = Vec; 8598 SDValue UndefVec = DAG.getUNDEF(VecVT); 8599 for (unsigned i = 1; i < NumConcat; ++i) 8600 Ops[i] = UndefVec; 8601 8602 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8603 } 8604 8605 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8606 const SDLoc &dl) const { 8607 bool IsStrict = Op->isStrictFPOpcode(); 8608 unsigned Opc = Op.getOpcode(); 8609 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8610 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8611 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8612 "Unexpected conversion type"); 8613 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8614 "Supports conversions to v2f64/v4f32 only."); 8615 8616 // TODO: Any other flags to propagate? 8617 SDNodeFlags Flags; 8618 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8619 8620 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8621 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8622 8623 SDValue Wide = widenVec(DAG, Src, dl); 8624 EVT WideVT = Wide.getValueType(); 8625 unsigned WideNumElts = WideVT.getVectorNumElements(); 8626 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8627 8628 SmallVector<int, 16> ShuffV; 8629 for (unsigned i = 0; i < WideNumElts; ++i) 8630 ShuffV.push_back(i + WideNumElts); 8631 8632 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8633 int SaveElts = FourEltRes ? 4 : 2; 8634 if (Subtarget.isLittleEndian()) 8635 for (int i = 0; i < SaveElts; i++) 8636 ShuffV[i * Stride] = i; 8637 else 8638 for (int i = 1; i <= SaveElts; i++) 8639 ShuffV[i * Stride - 1] = i - 1; 8640 8641 SDValue ShuffleSrc2 = 8642 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8643 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8644 8645 SDValue Extend; 8646 if (SignedConv) { 8647 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8648 EVT ExtVT = Src.getValueType(); 8649 if (Subtarget.hasP9Altivec()) 8650 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8651 IntermediateVT.getVectorNumElements()); 8652 8653 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8654 DAG.getValueType(ExtVT)); 8655 } else 8656 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8657 8658 if (IsStrict) 8659 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8660 {Op.getOperand(0), Extend}, Flags); 8661 8662 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8663 } 8664 8665 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8666 SelectionDAG &DAG) const { 8667 SDLoc dl(Op); 8668 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8669 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8670 bool IsStrict = Op->isStrictFPOpcode(); 8671 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8672 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8673 8674 // TODO: Any other flags to propagate? 8675 SDNodeFlags Flags; 8676 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8677 8678 EVT InVT = Src.getValueType(); 8679 EVT OutVT = Op.getValueType(); 8680 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8681 isOperationCustom(Op.getOpcode(), InVT)) 8682 return LowerINT_TO_FPVector(Op, DAG, dl); 8683 8684 // Conversions to f128 are legal. 8685 if (Op.getValueType() == MVT::f128) 8686 return Op; 8687 8688 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8689 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8690 return SDValue(); 8691 8692 if (Src.getValueType() == MVT::i1) 8693 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8694 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8695 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8696 8697 // If we have direct moves, we can do all the conversion, skip the store/load 8698 // however, without FPCVT we can't do most conversions. 8699 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8700 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8701 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8702 8703 assert((IsSigned || Subtarget.hasFPCVT()) && 8704 "UINT_TO_FP is supported only with FPCVT"); 8705 8706 if (Src.getValueType() == MVT::i64) { 8707 SDValue SINT = Src; 8708 // When converting to single-precision, we actually need to convert 8709 // to double-precision first and then round to single-precision. 8710 // To avoid double-rounding effects during that operation, we have 8711 // to prepare the input operand. Bits that might be truncated when 8712 // converting to double-precision are replaced by a bit that won't 8713 // be lost at this stage, but is below the single-precision rounding 8714 // position. 8715 // 8716 // However, if -enable-unsafe-fp-math is in effect, accept double 8717 // rounding to avoid the extra overhead. 8718 if (Op.getValueType() == MVT::f32 && 8719 !Subtarget.hasFPCVT() && 8720 !DAG.getTarget().Options.UnsafeFPMath) { 8721 8722 // Twiddle input to make sure the low 11 bits are zero. (If this 8723 // is the case, we are guaranteed the value will fit into the 53 bit 8724 // mantissa of an IEEE double-precision value without rounding.) 8725 // If any of those low 11 bits were not zero originally, make sure 8726 // bit 12 (value 2048) is set instead, so that the final rounding 8727 // to single-precision gets the correct result. 8728 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8729 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8730 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8731 Round, DAG.getConstant(2047, dl, MVT::i64)); 8732 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8733 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8734 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8735 8736 // However, we cannot use that value unconditionally: if the magnitude 8737 // of the input value is small, the bit-twiddling we did above might 8738 // end up visibly changing the output. Fortunately, in that case, we 8739 // don't need to twiddle bits since the original input will convert 8740 // exactly to double-precision floating-point already. Therefore, 8741 // construct a conditional to use the original value if the top 11 8742 // bits are all sign-bit copies, and use the rounded value computed 8743 // above otherwise. 8744 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8745 SINT, DAG.getConstant(53, dl, MVT::i32)); 8746 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8747 Cond, DAG.getConstant(1, dl, MVT::i64)); 8748 Cond = DAG.getSetCC( 8749 dl, 8750 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8751 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8752 8753 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8754 } 8755 8756 ReuseLoadInfo RLI; 8757 SDValue Bits; 8758 8759 MachineFunction &MF = DAG.getMachineFunction(); 8760 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8761 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8762 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8763 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8764 } else if (Subtarget.hasLFIWAX() && 8765 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8766 MachineMemOperand *MMO = 8767 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8768 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8769 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8770 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8771 DAG.getVTList(MVT::f64, MVT::Other), 8772 Ops, MVT::i32, MMO); 8773 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8774 } else if (Subtarget.hasFPCVT() && 8775 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8776 MachineMemOperand *MMO = 8777 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8778 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8779 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8780 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8781 DAG.getVTList(MVT::f64, MVT::Other), 8782 Ops, MVT::i32, MMO); 8783 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8784 } else if (((Subtarget.hasLFIWAX() && 8785 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8786 (Subtarget.hasFPCVT() && 8787 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8788 SINT.getOperand(0).getValueType() == MVT::i32) { 8789 MachineFrameInfo &MFI = MF.getFrameInfo(); 8790 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8791 8792 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8793 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8794 8795 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8796 MachinePointerInfo::getFixedStack( 8797 DAG.getMachineFunction(), FrameIdx)); 8798 Chain = Store; 8799 8800 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8801 "Expected an i32 store"); 8802 8803 RLI.Ptr = FIdx; 8804 RLI.Chain = Chain; 8805 RLI.MPI = 8806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8807 RLI.Alignment = Align(4); 8808 8809 MachineMemOperand *MMO = 8810 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8811 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8812 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8813 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8814 PPCISD::LFIWZX : PPCISD::LFIWAX, 8815 dl, DAG.getVTList(MVT::f64, MVT::Other), 8816 Ops, MVT::i32, MMO); 8817 Chain = Bits.getValue(1); 8818 } else 8819 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8820 8821 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8822 if (IsStrict) 8823 Chain = FP.getValue(1); 8824 8825 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8826 if (IsStrict) 8827 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8828 DAG.getVTList(MVT::f32, MVT::Other), 8829 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8830 else 8831 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8832 DAG.getIntPtrConstant(0, dl)); 8833 } 8834 return FP; 8835 } 8836 8837 assert(Src.getValueType() == MVT::i32 && 8838 "Unhandled INT_TO_FP type in custom expander!"); 8839 // Since we only generate this in 64-bit mode, we can take advantage of 8840 // 64-bit registers. In particular, sign extend the input value into the 8841 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8842 // then lfd it and fcfid it. 8843 MachineFunction &MF = DAG.getMachineFunction(); 8844 MachineFrameInfo &MFI = MF.getFrameInfo(); 8845 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8846 8847 SDValue Ld; 8848 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8849 ReuseLoadInfo RLI; 8850 bool ReusingLoad; 8851 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8852 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8853 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8854 8855 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8856 MachinePointerInfo::getFixedStack( 8857 DAG.getMachineFunction(), FrameIdx)); 8858 Chain = Store; 8859 8860 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8861 "Expected an i32 store"); 8862 8863 RLI.Ptr = FIdx; 8864 RLI.Chain = Chain; 8865 RLI.MPI = 8866 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8867 RLI.Alignment = Align(4); 8868 } 8869 8870 MachineMemOperand *MMO = 8871 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8872 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8873 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8874 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8875 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8876 MVT::i32, MMO); 8877 Chain = Ld.getValue(1); 8878 if (ReusingLoad) 8879 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8880 } else { 8881 assert(Subtarget.isPPC64() && 8882 "i32->FP without LFIWAX supported only on PPC64"); 8883 8884 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8885 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8886 8887 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8888 8889 // STD the extended value into the stack slot. 8890 SDValue Store = DAG.getStore( 8891 Chain, dl, Ext64, FIdx, 8892 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8893 Chain = Store; 8894 8895 // Load the value as a double. 8896 Ld = DAG.getLoad( 8897 MVT::f64, dl, Chain, FIdx, 8898 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8899 Chain = Ld.getValue(1); 8900 } 8901 8902 // FCFID it and return it. 8903 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8904 if (IsStrict) 8905 Chain = FP.getValue(1); 8906 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8907 if (IsStrict) 8908 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8909 DAG.getVTList(MVT::f32, MVT::Other), 8910 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8911 else 8912 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8913 DAG.getIntPtrConstant(0, dl)); 8914 } 8915 return FP; 8916 } 8917 8918 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8919 SelectionDAG &DAG) const { 8920 SDLoc dl(Op); 8921 /* 8922 The rounding mode is in bits 30:31 of FPSR, and has the following 8923 settings: 8924 00 Round to nearest 8925 01 Round to 0 8926 10 Round to +inf 8927 11 Round to -inf 8928 8929 FLT_ROUNDS, on the other hand, expects the following: 8930 -1 Undefined 8931 0 Round to 0 8932 1 Round to nearest 8933 2 Round to +inf 8934 3 Round to -inf 8935 8936 To perform the conversion, we do: 8937 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8938 */ 8939 8940 MachineFunction &MF = DAG.getMachineFunction(); 8941 EVT VT = Op.getValueType(); 8942 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8943 8944 // Save FP Control Word to register 8945 SDValue Chain = Op.getOperand(0); 8946 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8947 Chain = MFFS.getValue(1); 8948 8949 // Save FP register to stack slot 8950 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8951 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8952 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8953 8954 // Load FP Control Word from low 32 bits of stack slot. 8955 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8956 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8957 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8958 Chain = CWD.getValue(1); 8959 8960 // Transform as necessary 8961 SDValue CWD1 = 8962 DAG.getNode(ISD::AND, dl, MVT::i32, 8963 CWD, DAG.getConstant(3, dl, MVT::i32)); 8964 SDValue CWD2 = 8965 DAG.getNode(ISD::SRL, dl, MVT::i32, 8966 DAG.getNode(ISD::AND, dl, MVT::i32, 8967 DAG.getNode(ISD::XOR, dl, MVT::i32, 8968 CWD, DAG.getConstant(3, dl, MVT::i32)), 8969 DAG.getConstant(3, dl, MVT::i32)), 8970 DAG.getConstant(1, dl, MVT::i32)); 8971 8972 SDValue RetVal = 8973 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8974 8975 RetVal = 8976 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8977 dl, VT, RetVal); 8978 8979 return DAG.getMergeValues({RetVal, Chain}, dl); 8980 } 8981 8982 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8983 EVT VT = Op.getValueType(); 8984 unsigned BitWidth = VT.getSizeInBits(); 8985 SDLoc dl(Op); 8986 assert(Op.getNumOperands() == 3 && 8987 VT == Op.getOperand(1).getValueType() && 8988 "Unexpected SHL!"); 8989 8990 // Expand into a bunch of logical ops. Note that these ops 8991 // depend on the PPC behavior for oversized shift amounts. 8992 SDValue Lo = Op.getOperand(0); 8993 SDValue Hi = Op.getOperand(1); 8994 SDValue Amt = Op.getOperand(2); 8995 EVT AmtVT = Amt.getValueType(); 8996 8997 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8998 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8999 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 9000 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 9001 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 9002 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9003 DAG.getConstant(-BitWidth, dl, AmtVT)); 9004 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 9005 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9006 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 9007 SDValue OutOps[] = { OutLo, OutHi }; 9008 return DAG.getMergeValues(OutOps, dl); 9009 } 9010 9011 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 9012 EVT VT = Op.getValueType(); 9013 SDLoc dl(Op); 9014 unsigned BitWidth = VT.getSizeInBits(); 9015 assert(Op.getNumOperands() == 3 && 9016 VT == Op.getOperand(1).getValueType() && 9017 "Unexpected SRL!"); 9018 9019 // Expand into a bunch of logical ops. Note that these ops 9020 // depend on the PPC behavior for oversized shift amounts. 9021 SDValue Lo = Op.getOperand(0); 9022 SDValue Hi = Op.getOperand(1); 9023 SDValue Amt = Op.getOperand(2); 9024 EVT AmtVT = Amt.getValueType(); 9025 9026 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9027 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9028 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9029 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9030 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9031 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9032 DAG.getConstant(-BitWidth, dl, AmtVT)); 9033 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 9034 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9035 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 9036 SDValue OutOps[] = { OutLo, OutHi }; 9037 return DAG.getMergeValues(OutOps, dl); 9038 } 9039 9040 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 9041 SDLoc dl(Op); 9042 EVT VT = Op.getValueType(); 9043 unsigned BitWidth = VT.getSizeInBits(); 9044 assert(Op.getNumOperands() == 3 && 9045 VT == Op.getOperand(1).getValueType() && 9046 "Unexpected SRA!"); 9047 9048 // Expand into a bunch of logical ops, followed by a select_cc. 9049 SDValue Lo = Op.getOperand(0); 9050 SDValue Hi = Op.getOperand(1); 9051 SDValue Amt = Op.getOperand(2); 9052 EVT AmtVT = Amt.getValueType(); 9053 9054 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9055 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9056 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9057 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9058 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9059 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9060 DAG.getConstant(-BitWidth, dl, AmtVT)); 9061 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 9062 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 9063 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 9064 Tmp4, Tmp6, ISD::SETLE); 9065 SDValue OutOps[] = { OutLo, OutHi }; 9066 return DAG.getMergeValues(OutOps, dl); 9067 } 9068 9069 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 9070 SelectionDAG &DAG) const { 9071 SDLoc dl(Op); 9072 EVT VT = Op.getValueType(); 9073 unsigned BitWidth = VT.getSizeInBits(); 9074 9075 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 9076 SDValue X = Op.getOperand(0); 9077 SDValue Y = Op.getOperand(1); 9078 SDValue Z = Op.getOperand(2); 9079 EVT AmtVT = Z.getValueType(); 9080 9081 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 9082 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 9083 // This is simpler than TargetLowering::expandFunnelShift because we can rely 9084 // on PowerPC shift by BW being well defined. 9085 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 9086 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 9087 SDValue SubZ = 9088 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 9089 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 9090 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 9091 return DAG.getNode(ISD::OR, dl, VT, X, Y); 9092 } 9093 9094 //===----------------------------------------------------------------------===// 9095 // Vector related lowering. 9096 // 9097 9098 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9099 /// element size of SplatSize. Cast the result to VT. 9100 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9101 SelectionDAG &DAG, const SDLoc &dl) { 9102 static const MVT VTys[] = { // canonical VT to use for each size. 9103 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9104 }; 9105 9106 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9107 9108 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9109 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 9110 SplatSize = 1; 9111 Val = 0xFF; 9112 } 9113 9114 EVT CanonicalVT = VTys[SplatSize-1]; 9115 9116 // Build a canonical splat for this value. 9117 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9118 } 9119 9120 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9121 /// specified intrinsic ID. 9122 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9123 const SDLoc &dl, EVT DestVT = MVT::Other) { 9124 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9125 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9126 DAG.getConstant(IID, dl, MVT::i32), Op); 9127 } 9128 9129 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9130 /// specified intrinsic ID. 9131 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9132 SelectionDAG &DAG, const SDLoc &dl, 9133 EVT DestVT = MVT::Other) { 9134 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9135 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9136 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9137 } 9138 9139 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9140 /// specified intrinsic ID. 9141 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9142 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9143 EVT DestVT = MVT::Other) { 9144 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9145 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9146 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9147 } 9148 9149 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9150 /// amount. The result has the specified value type. 9151 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9152 SelectionDAG &DAG, const SDLoc &dl) { 9153 // Force LHS/RHS to be the right type. 9154 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9155 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9156 9157 int Ops[16]; 9158 for (unsigned i = 0; i != 16; ++i) 9159 Ops[i] = i + Amt; 9160 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9161 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9162 } 9163 9164 /// Do we have an efficient pattern in a .td file for this node? 9165 /// 9166 /// \param V - pointer to the BuildVectorSDNode being matched 9167 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9168 /// 9169 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9170 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9171 /// the opposite is true (expansion is beneficial) are: 9172 /// - The node builds a vector out of integers that are not 32 or 64-bits 9173 /// - The node builds a vector out of constants 9174 /// - The node is a "load-and-splat" 9175 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9176 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9177 bool HasDirectMove, 9178 bool HasP8Vector) { 9179 EVT VecVT = V->getValueType(0); 9180 bool RightType = VecVT == MVT::v2f64 || 9181 (HasP8Vector && VecVT == MVT::v4f32) || 9182 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9183 if (!RightType) 9184 return false; 9185 9186 bool IsSplat = true; 9187 bool IsLoad = false; 9188 SDValue Op0 = V->getOperand(0); 9189 9190 // This function is called in a block that confirms the node is not a constant 9191 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9192 // different constants. 9193 if (V->isConstant()) 9194 return false; 9195 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9196 if (V->getOperand(i).isUndef()) 9197 return false; 9198 // We want to expand nodes that represent load-and-splat even if the 9199 // loaded value is a floating point truncation or conversion to int. 9200 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9201 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9202 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9203 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9204 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9205 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9206 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9207 IsLoad = true; 9208 // If the operands are different or the input is not a load and has more 9209 // uses than just this BV node, then it isn't a splat. 9210 if (V->getOperand(i) != Op0 || 9211 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9212 IsSplat = false; 9213 } 9214 return !(IsSplat && IsLoad); 9215 } 9216 9217 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9218 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9219 9220 SDLoc dl(Op); 9221 SDValue Op0 = Op->getOperand(0); 9222 9223 if ((Op.getValueType() != MVT::f128) || 9224 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9225 (Op0.getOperand(0).getValueType() != MVT::i64) || 9226 (Op0.getOperand(1).getValueType() != MVT::i64)) 9227 return SDValue(); 9228 9229 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9230 Op0.getOperand(1)); 9231 } 9232 9233 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9234 const SDValue *InputLoad = &Op; 9235 if (InputLoad->getOpcode() == ISD::BITCAST) 9236 InputLoad = &InputLoad->getOperand(0); 9237 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9238 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9239 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9240 InputLoad = &InputLoad->getOperand(0); 9241 } 9242 if (InputLoad->getOpcode() != ISD::LOAD) 9243 return nullptr; 9244 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9245 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9246 } 9247 9248 // Convert the argument APFloat to a single precision APFloat if there is no 9249 // loss in information during the conversion to single precision APFloat and the 9250 // resulting number is not a denormal number. Return true if successful. 9251 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9252 APFloat APFloatToConvert = ArgAPFloat; 9253 bool LosesInfo = true; 9254 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9255 &LosesInfo); 9256 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9257 if (Success) 9258 ArgAPFloat = APFloatToConvert; 9259 return Success; 9260 } 9261 9262 // Bitcast the argument APInt to a double and convert it to a single precision 9263 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9264 // argument if there is no loss in information during the conversion from 9265 // double to single precision APFloat and the resulting number is not a denormal 9266 // number. Return true if successful. 9267 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9268 double DpValue = ArgAPInt.bitsToDouble(); 9269 APFloat APFloatDp(DpValue); 9270 bool Success = convertToNonDenormSingle(APFloatDp); 9271 if (Success) 9272 ArgAPInt = APFloatDp.bitcastToAPInt(); 9273 return Success; 9274 } 9275 9276 // If this is a case we can't handle, return null and let the default 9277 // expansion code take care of it. If we CAN select this case, and if it 9278 // selects to a single instruction, return Op. Otherwise, if we can codegen 9279 // this case more efficiently than a constant pool load, lower it to the 9280 // sequence of ops that should be used. 9281 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9282 SelectionDAG &DAG) const { 9283 SDLoc dl(Op); 9284 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9285 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9286 9287 // Check if this is a splat of a constant value. 9288 APInt APSplatBits, APSplatUndef; 9289 unsigned SplatBitSize; 9290 bool HasAnyUndefs; 9291 bool BVNIsConstantSplat = 9292 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9293 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9294 9295 // If it is a splat of a double, check if we can shrink it to a 32 bit 9296 // non-denormal float which when converted back to double gives us the same 9297 // double. This is to exploit the XXSPLTIDP instruction. 9298 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9299 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9300 convertToNonDenormSingle(APSplatBits)) { 9301 SDValue SplatNode = DAG.getNode( 9302 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9303 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9304 return DAG.getBitcast(Op.getValueType(), SplatNode); 9305 } 9306 9307 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9308 9309 bool IsPermutedLoad = false; 9310 const SDValue *InputLoad = 9311 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9312 // Handle load-and-splat patterns as we have instructions that will do this 9313 // in one go. 9314 if (InputLoad && DAG.isSplatValue(Op, true)) { 9315 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9316 9317 // We have handling for 4 and 8 byte elements. 9318 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9319 9320 // Checking for a single use of this load, we have to check for vector 9321 // width (128 bits) / ElementSize uses (since each operand of the 9322 // BUILD_VECTOR is a separate use of the value. 9323 unsigned NumUsesOfInputLD = 128 / ElementSize; 9324 for (SDValue BVInOp : Op->ops()) 9325 if (BVInOp.isUndef()) 9326 NumUsesOfInputLD--; 9327 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9328 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9329 ((Subtarget.hasVSX() && ElementSize == 64) || 9330 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9331 SDValue Ops[] = { 9332 LD->getChain(), // Chain 9333 LD->getBasePtr(), // Ptr 9334 DAG.getValueType(Op.getValueType()) // VT 9335 }; 9336 SDValue LdSplt = DAG.getMemIntrinsicNode( 9337 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9338 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9339 // Replace all uses of the output chain of the original load with the 9340 // output chain of the new load. 9341 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9342 LdSplt.getValue(1)); 9343 return LdSplt; 9344 } 9345 } 9346 9347 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9348 // lowered to VSX instructions under certain conditions. 9349 // Without VSX, there is no pattern more efficient than expanding the node. 9350 if (Subtarget.hasVSX() && 9351 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9352 Subtarget.hasP8Vector())) 9353 return Op; 9354 return SDValue(); 9355 } 9356 9357 uint64_t SplatBits = APSplatBits.getZExtValue(); 9358 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9359 unsigned SplatSize = SplatBitSize / 8; 9360 9361 // First, handle single instruction cases. 9362 9363 // All zeros? 9364 if (SplatBits == 0) { 9365 // Canonicalize all zero vectors to be v4i32. 9366 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9367 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9368 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9369 } 9370 return Op; 9371 } 9372 9373 // We have XXSPLTIW for constant splats four bytes wide. 9374 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9375 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9376 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9377 // turned into a 4-byte splat of 0xABABABAB. 9378 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9379 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9380 Op.getValueType(), DAG, dl); 9381 9382 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9383 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9384 dl); 9385 9386 // We have XXSPLTIB for constant splats one byte wide. 9387 if (Subtarget.hasP9Vector() && SplatSize == 1) 9388 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9389 dl); 9390 9391 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9392 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9393 (32-SplatBitSize)); 9394 if (SextVal >= -16 && SextVal <= 15) 9395 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9396 dl); 9397 9398 // Two instruction sequences. 9399 9400 // If this value is in the range [-32,30] and is even, use: 9401 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9402 // If this value is in the range [17,31] and is odd, use: 9403 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9404 // If this value is in the range [-31,-17] and is odd, use: 9405 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9406 // Note the last two are three-instruction sequences. 9407 if (SextVal >= -32 && SextVal <= 31) { 9408 // To avoid having these optimizations undone by constant folding, 9409 // we convert to a pseudo that will be expanded later into one of 9410 // the above forms. 9411 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9412 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9413 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9414 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9415 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9416 if (VT == Op.getValueType()) 9417 return RetVal; 9418 else 9419 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9420 } 9421 9422 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9423 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9424 // for fneg/fabs. 9425 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9426 // Make -1 and vspltisw -1: 9427 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9428 9429 // Make the VSLW intrinsic, computing 0x8000_0000. 9430 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9431 OnesV, DAG, dl); 9432 9433 // xor by OnesV to invert it. 9434 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9435 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9436 } 9437 9438 // Check to see if this is a wide variety of vsplti*, binop self cases. 9439 static const signed char SplatCsts[] = { 9440 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9441 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9442 }; 9443 9444 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9445 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9446 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9447 int i = SplatCsts[idx]; 9448 9449 // Figure out what shift amount will be used by altivec if shifted by i in 9450 // this splat size. 9451 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9452 9453 // vsplti + shl self. 9454 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9455 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9456 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9457 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9458 Intrinsic::ppc_altivec_vslw 9459 }; 9460 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9461 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9462 } 9463 9464 // vsplti + srl self. 9465 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9466 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9467 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9468 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9469 Intrinsic::ppc_altivec_vsrw 9470 }; 9471 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9472 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9473 } 9474 9475 // vsplti + sra self. 9476 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9477 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9478 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9479 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9480 Intrinsic::ppc_altivec_vsraw 9481 }; 9482 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9483 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9484 } 9485 9486 // vsplti + rol self. 9487 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9488 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9489 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9490 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9491 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9492 Intrinsic::ppc_altivec_vrlw 9493 }; 9494 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9495 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9496 } 9497 9498 // t = vsplti c, result = vsldoi t, t, 1 9499 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9500 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9501 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9502 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9503 } 9504 // t = vsplti c, result = vsldoi t, t, 2 9505 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9506 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9507 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9508 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9509 } 9510 // t = vsplti c, result = vsldoi t, t, 3 9511 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9512 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9513 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9514 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9515 } 9516 } 9517 9518 return SDValue(); 9519 } 9520 9521 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9522 /// the specified operations to build the shuffle. 9523 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9524 SDValue RHS, SelectionDAG &DAG, 9525 const SDLoc &dl) { 9526 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9527 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9528 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9529 9530 enum { 9531 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9532 OP_VMRGHW, 9533 OP_VMRGLW, 9534 OP_VSPLTISW0, 9535 OP_VSPLTISW1, 9536 OP_VSPLTISW2, 9537 OP_VSPLTISW3, 9538 OP_VSLDOI4, 9539 OP_VSLDOI8, 9540 OP_VSLDOI12 9541 }; 9542 9543 if (OpNum == OP_COPY) { 9544 if (LHSID == (1*9+2)*9+3) return LHS; 9545 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9546 return RHS; 9547 } 9548 9549 SDValue OpLHS, OpRHS; 9550 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9551 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9552 9553 int ShufIdxs[16]; 9554 switch (OpNum) { 9555 default: llvm_unreachable("Unknown i32 permute!"); 9556 case OP_VMRGHW: 9557 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9558 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9559 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9560 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9561 break; 9562 case OP_VMRGLW: 9563 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9564 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9565 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9566 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9567 break; 9568 case OP_VSPLTISW0: 9569 for (unsigned i = 0; i != 16; ++i) 9570 ShufIdxs[i] = (i&3)+0; 9571 break; 9572 case OP_VSPLTISW1: 9573 for (unsigned i = 0; i != 16; ++i) 9574 ShufIdxs[i] = (i&3)+4; 9575 break; 9576 case OP_VSPLTISW2: 9577 for (unsigned i = 0; i != 16; ++i) 9578 ShufIdxs[i] = (i&3)+8; 9579 break; 9580 case OP_VSPLTISW3: 9581 for (unsigned i = 0; i != 16; ++i) 9582 ShufIdxs[i] = (i&3)+12; 9583 break; 9584 case OP_VSLDOI4: 9585 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9586 case OP_VSLDOI8: 9587 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9588 case OP_VSLDOI12: 9589 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9590 } 9591 EVT VT = OpLHS.getValueType(); 9592 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9593 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9594 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9595 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9596 } 9597 9598 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9599 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9600 /// SDValue. 9601 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9602 SelectionDAG &DAG) const { 9603 const unsigned BytesInVector = 16; 9604 bool IsLE = Subtarget.isLittleEndian(); 9605 SDLoc dl(N); 9606 SDValue V1 = N->getOperand(0); 9607 SDValue V2 = N->getOperand(1); 9608 unsigned ShiftElts = 0, InsertAtByte = 0; 9609 bool Swap = false; 9610 9611 // Shifts required to get the byte we want at element 7. 9612 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9613 0, 15, 14, 13, 12, 11, 10, 9}; 9614 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9615 1, 2, 3, 4, 5, 6, 7, 8}; 9616 9617 ArrayRef<int> Mask = N->getMask(); 9618 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9619 9620 // For each mask element, find out if we're just inserting something 9621 // from V2 into V1 or vice versa. 9622 // Possible permutations inserting an element from V2 into V1: 9623 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9624 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9625 // ... 9626 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9627 // Inserting from V1 into V2 will be similar, except mask range will be 9628 // [16,31]. 9629 9630 bool FoundCandidate = false; 9631 // If both vector operands for the shuffle are the same vector, the mask 9632 // will contain only elements from the first one and the second one will be 9633 // undef. 9634 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9635 // Go through the mask of half-words to find an element that's being moved 9636 // from one vector to the other. 9637 for (unsigned i = 0; i < BytesInVector; ++i) { 9638 unsigned CurrentElement = Mask[i]; 9639 // If 2nd operand is undefined, we should only look for element 7 in the 9640 // Mask. 9641 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9642 continue; 9643 9644 bool OtherElementsInOrder = true; 9645 // Examine the other elements in the Mask to see if they're in original 9646 // order. 9647 for (unsigned j = 0; j < BytesInVector; ++j) { 9648 if (j == i) 9649 continue; 9650 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9651 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9652 // in which we always assume we're always picking from the 1st operand. 9653 int MaskOffset = 9654 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9655 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9656 OtherElementsInOrder = false; 9657 break; 9658 } 9659 } 9660 // If other elements are in original order, we record the number of shifts 9661 // we need to get the element we want into element 7. Also record which byte 9662 // in the vector we should insert into. 9663 if (OtherElementsInOrder) { 9664 // If 2nd operand is undefined, we assume no shifts and no swapping. 9665 if (V2.isUndef()) { 9666 ShiftElts = 0; 9667 Swap = false; 9668 } else { 9669 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9670 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9671 : BigEndianShifts[CurrentElement & 0xF]; 9672 Swap = CurrentElement < BytesInVector; 9673 } 9674 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9675 FoundCandidate = true; 9676 break; 9677 } 9678 } 9679 9680 if (!FoundCandidate) 9681 return SDValue(); 9682 9683 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9684 // optionally with VECSHL if shift is required. 9685 if (Swap) 9686 std::swap(V1, V2); 9687 if (V2.isUndef()) 9688 V2 = V1; 9689 if (ShiftElts) { 9690 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9691 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9692 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9693 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9694 } 9695 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9696 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9697 } 9698 9699 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9700 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9701 /// SDValue. 9702 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9703 SelectionDAG &DAG) const { 9704 const unsigned NumHalfWords = 8; 9705 const unsigned BytesInVector = NumHalfWords * 2; 9706 // Check that the shuffle is on half-words. 9707 if (!isNByteElemShuffleMask(N, 2, 1)) 9708 return SDValue(); 9709 9710 bool IsLE = Subtarget.isLittleEndian(); 9711 SDLoc dl(N); 9712 SDValue V1 = N->getOperand(0); 9713 SDValue V2 = N->getOperand(1); 9714 unsigned ShiftElts = 0, InsertAtByte = 0; 9715 bool Swap = false; 9716 9717 // Shifts required to get the half-word we want at element 3. 9718 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9719 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9720 9721 uint32_t Mask = 0; 9722 uint32_t OriginalOrderLow = 0x1234567; 9723 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9724 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9725 // 32-bit space, only need 4-bit nibbles per element. 9726 for (unsigned i = 0; i < NumHalfWords; ++i) { 9727 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9728 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9729 } 9730 9731 // For each mask element, find out if we're just inserting something 9732 // from V2 into V1 or vice versa. Possible permutations inserting an element 9733 // from V2 into V1: 9734 // X, 1, 2, 3, 4, 5, 6, 7 9735 // 0, X, 2, 3, 4, 5, 6, 7 9736 // 0, 1, X, 3, 4, 5, 6, 7 9737 // 0, 1, 2, X, 4, 5, 6, 7 9738 // 0, 1, 2, 3, X, 5, 6, 7 9739 // 0, 1, 2, 3, 4, X, 6, 7 9740 // 0, 1, 2, 3, 4, 5, X, 7 9741 // 0, 1, 2, 3, 4, 5, 6, X 9742 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9743 9744 bool FoundCandidate = false; 9745 // Go through the mask of half-words to find an element that's being moved 9746 // from one vector to the other. 9747 for (unsigned i = 0; i < NumHalfWords; ++i) { 9748 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9749 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9750 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9751 uint32_t TargetOrder = 0x0; 9752 9753 // If both vector operands for the shuffle are the same vector, the mask 9754 // will contain only elements from the first one and the second one will be 9755 // undef. 9756 if (V2.isUndef()) { 9757 ShiftElts = 0; 9758 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9759 TargetOrder = OriginalOrderLow; 9760 Swap = false; 9761 // Skip if not the correct element or mask of other elements don't equal 9762 // to our expected order. 9763 if (MaskOneElt == VINSERTHSrcElem && 9764 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9765 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9766 FoundCandidate = true; 9767 break; 9768 } 9769 } else { // If both operands are defined. 9770 // Target order is [8,15] if the current mask is between [0,7]. 9771 TargetOrder = 9772 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9773 // Skip if mask of other elements don't equal our expected order. 9774 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9775 // We only need the last 3 bits for the number of shifts. 9776 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9777 : BigEndianShifts[MaskOneElt & 0x7]; 9778 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9779 Swap = MaskOneElt < NumHalfWords; 9780 FoundCandidate = true; 9781 break; 9782 } 9783 } 9784 } 9785 9786 if (!FoundCandidate) 9787 return SDValue(); 9788 9789 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9790 // optionally with VECSHL if shift is required. 9791 if (Swap) 9792 std::swap(V1, V2); 9793 if (V2.isUndef()) 9794 V2 = V1; 9795 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9796 if (ShiftElts) { 9797 // Double ShiftElts because we're left shifting on v16i8 type. 9798 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9799 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9800 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9801 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9802 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9803 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9804 } 9805 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9806 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9807 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9808 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9809 } 9810 9811 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9812 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9813 /// return the default SDValue. 9814 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9815 SelectionDAG &DAG) const { 9816 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9817 // to v16i8. Peek through the bitcasts to get the actual operands. 9818 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9819 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9820 9821 auto ShuffleMask = SVN->getMask(); 9822 SDValue VecShuffle(SVN, 0); 9823 SDLoc DL(SVN); 9824 9825 // Check that we have a four byte shuffle. 9826 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9827 return SDValue(); 9828 9829 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9830 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9831 std::swap(LHS, RHS); 9832 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9833 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9834 } 9835 9836 // Ensure that the RHS is a vector of constants. 9837 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9838 if (!BVN) 9839 return SDValue(); 9840 9841 // Check if RHS is a splat of 4-bytes (or smaller). 9842 APInt APSplatValue, APSplatUndef; 9843 unsigned SplatBitSize; 9844 bool HasAnyUndefs; 9845 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9846 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9847 SplatBitSize > 32) 9848 return SDValue(); 9849 9850 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9851 // The instruction splats a constant C into two words of the source vector 9852 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9853 // Thus we check that the shuffle mask is the equivalent of 9854 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9855 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9856 // within each word are consecutive, so we only need to check the first byte. 9857 SDValue Index; 9858 bool IsLE = Subtarget.isLittleEndian(); 9859 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9860 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9861 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9862 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9863 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9864 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9865 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9866 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9867 else 9868 return SDValue(); 9869 9870 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9871 // for XXSPLTI32DX. 9872 unsigned SplatVal = APSplatValue.getZExtValue(); 9873 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9874 SplatVal |= (SplatVal << SplatBitSize); 9875 9876 SDValue SplatNode = DAG.getNode( 9877 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9878 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9879 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9880 } 9881 9882 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9883 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9884 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9885 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9886 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9887 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9888 assert(Op.getValueType() == MVT::v1i128 && 9889 "Only set v1i128 as custom, other type shouldn't reach here!"); 9890 SDLoc dl(Op); 9891 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9892 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9893 unsigned SHLAmt = N1.getConstantOperandVal(0); 9894 if (SHLAmt % 8 == 0) { 9895 SmallVector<int, 16> Mask(16, 0); 9896 std::iota(Mask.begin(), Mask.end(), 0); 9897 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9898 if (SDValue Shuffle = 9899 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9900 DAG.getUNDEF(MVT::v16i8), Mask)) 9901 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9902 } 9903 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9904 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9905 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9906 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9907 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9908 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9909 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9910 } 9911 9912 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9913 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9914 /// return the code it can be lowered into. Worst case, it can always be 9915 /// lowered into a vperm. 9916 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9917 SelectionDAG &DAG) const { 9918 SDLoc dl(Op); 9919 SDValue V1 = Op.getOperand(0); 9920 SDValue V2 = Op.getOperand(1); 9921 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9922 9923 // Any nodes that were combined in the target-independent combiner prior 9924 // to vector legalization will not be sent to the target combine. Try to 9925 // combine it here. 9926 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9927 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9928 return NewShuffle; 9929 Op = NewShuffle; 9930 SVOp = cast<ShuffleVectorSDNode>(Op); 9931 V1 = Op.getOperand(0); 9932 V2 = Op.getOperand(1); 9933 } 9934 EVT VT = Op.getValueType(); 9935 bool isLittleEndian = Subtarget.isLittleEndian(); 9936 9937 unsigned ShiftElts, InsertAtByte; 9938 bool Swap = false; 9939 9940 // If this is a load-and-splat, we can do that with a single instruction 9941 // in some cases. However if the load has multiple uses, we don't want to 9942 // combine it because that will just produce multiple loads. 9943 bool IsPermutedLoad = false; 9944 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9945 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9946 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9947 InputLoad->hasOneUse()) { 9948 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9949 int SplatIdx = 9950 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9951 9952 // The splat index for permuted loads will be in the left half of the vector 9953 // which is strictly wider than the loaded value by 8 bytes. So we need to 9954 // adjust the splat index to point to the correct address in memory. 9955 if (IsPermutedLoad) { 9956 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9957 SplatIdx += IsFourByte ? 2 : 1; 9958 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9959 "Splat of a value outside of the loaded memory"); 9960 } 9961 9962 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9963 // For 4-byte load-and-splat, we need Power9. 9964 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9965 uint64_t Offset = 0; 9966 if (IsFourByte) 9967 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9968 else 9969 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9970 9971 SDValue BasePtr = LD->getBasePtr(); 9972 if (Offset != 0) 9973 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9974 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9975 SDValue Ops[] = { 9976 LD->getChain(), // Chain 9977 BasePtr, // BasePtr 9978 DAG.getValueType(Op.getValueType()) // VT 9979 }; 9980 SDVTList VTL = 9981 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9982 SDValue LdSplt = 9983 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9984 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9985 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9986 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9987 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9988 return LdSplt; 9989 } 9990 } 9991 if (Subtarget.hasP9Vector() && 9992 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9993 isLittleEndian)) { 9994 if (Swap) 9995 std::swap(V1, V2); 9996 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9997 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9998 if (ShiftElts) { 9999 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 10000 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10001 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 10002 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10003 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10004 } 10005 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 10006 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10007 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10008 } 10009 10010 if (Subtarget.hasPrefixInstrs()) { 10011 SDValue SplatInsertNode; 10012 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 10013 return SplatInsertNode; 10014 } 10015 10016 if (Subtarget.hasP9Altivec()) { 10017 SDValue NewISDNode; 10018 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 10019 return NewISDNode; 10020 10021 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 10022 return NewISDNode; 10023 } 10024 10025 if (Subtarget.hasVSX() && 10026 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10027 if (Swap) 10028 std::swap(V1, V2); 10029 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10030 SDValue Conv2 = 10031 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10032 10033 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10034 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10035 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10036 } 10037 10038 if (Subtarget.hasVSX() && 10039 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10040 if (Swap) 10041 std::swap(V1, V2); 10042 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10043 SDValue Conv2 = 10044 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10045 10046 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10047 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10048 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10049 } 10050 10051 if (Subtarget.hasP9Vector()) { 10052 if (PPC::isXXBRHShuffleMask(SVOp)) { 10053 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10054 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10055 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10056 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10057 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10058 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10059 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10060 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10061 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10062 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10063 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10064 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10065 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10066 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10067 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10068 } 10069 } 10070 10071 if (Subtarget.hasVSX()) { 10072 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10073 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10074 10075 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10076 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10077 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10078 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10079 } 10080 10081 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10082 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10083 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10084 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10085 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10086 } 10087 } 10088 10089 // Cases that are handled by instructions that take permute immediates 10090 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10091 // selected by the instruction selector. 10092 if (V2.isUndef()) { 10093 if (PPC::isSplatShuffleMask(SVOp, 1) || 10094 PPC::isSplatShuffleMask(SVOp, 2) || 10095 PPC::isSplatShuffleMask(SVOp, 4) || 10096 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10097 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10098 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10099 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10100 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10101 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10102 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10103 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10104 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10105 (Subtarget.hasP8Altivec() && ( 10106 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10107 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10108 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10109 return Op; 10110 } 10111 } 10112 10113 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10114 // and produce a fixed permutation. If any of these match, do not lower to 10115 // VPERM. 10116 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10117 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10118 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10119 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10120 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10121 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10122 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10123 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10124 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10125 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10126 (Subtarget.hasP8Altivec() && ( 10127 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10128 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10129 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10130 return Op; 10131 10132 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10133 // perfect shuffle table to emit an optimal matching sequence. 10134 ArrayRef<int> PermMask = SVOp->getMask(); 10135 10136 unsigned PFIndexes[4]; 10137 bool isFourElementShuffle = true; 10138 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10139 unsigned EltNo = 8; // Start out undef. 10140 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10141 if (PermMask[i*4+j] < 0) 10142 continue; // Undef, ignore it. 10143 10144 unsigned ByteSource = PermMask[i*4+j]; 10145 if ((ByteSource & 3) != j) { 10146 isFourElementShuffle = false; 10147 break; 10148 } 10149 10150 if (EltNo == 8) { 10151 EltNo = ByteSource/4; 10152 } else if (EltNo != ByteSource/4) { 10153 isFourElementShuffle = false; 10154 break; 10155 } 10156 } 10157 PFIndexes[i] = EltNo; 10158 } 10159 10160 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10161 // perfect shuffle vector to determine if it is cost effective to do this as 10162 // discrete instructions, or whether we should use a vperm. 10163 // For now, we skip this for little endian until such time as we have a 10164 // little-endian perfect shuffle table. 10165 if (isFourElementShuffle && !isLittleEndian) { 10166 // Compute the index in the perfect shuffle table. 10167 unsigned PFTableIndex = 10168 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10169 10170 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10171 unsigned Cost = (PFEntry >> 30); 10172 10173 // Determining when to avoid vperm is tricky. Many things affect the cost 10174 // of vperm, particularly how many times the perm mask needs to be computed. 10175 // For example, if the perm mask can be hoisted out of a loop or is already 10176 // used (perhaps because there are multiple permutes with the same shuffle 10177 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10178 // the loop requires an extra register. 10179 // 10180 // As a compromise, we only emit discrete instructions if the shuffle can be 10181 // generated in 3 or fewer operations. When we have loop information 10182 // available, if this block is within a loop, we should avoid using vperm 10183 // for 3-operation perms and use a constant pool load instead. 10184 if (Cost < 3) 10185 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10186 } 10187 10188 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10189 // vector that will get spilled to the constant pool. 10190 if (V2.isUndef()) V2 = V1; 10191 10192 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10193 // that it is in input element units, not in bytes. Convert now. 10194 10195 // For little endian, the order of the input vectors is reversed, and 10196 // the permutation mask is complemented with respect to 31. This is 10197 // necessary to produce proper semantics with the big-endian-biased vperm 10198 // instruction. 10199 EVT EltVT = V1.getValueType().getVectorElementType(); 10200 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10201 10202 SmallVector<SDValue, 16> ResultMask; 10203 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10204 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10205 10206 for (unsigned j = 0; j != BytesPerElement; ++j) 10207 if (isLittleEndian) 10208 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10209 dl, MVT::i32)); 10210 else 10211 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10212 MVT::i32)); 10213 } 10214 10215 ShufflesHandledWithVPERM++; 10216 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10217 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10218 LLVM_DEBUG(SVOp->dump()); 10219 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10220 LLVM_DEBUG(VPermMask.dump()); 10221 10222 if (isLittleEndian) 10223 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10224 V2, V1, VPermMask); 10225 else 10226 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10227 V1, V2, VPermMask); 10228 } 10229 10230 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10231 /// vector comparison. If it is, return true and fill in Opc/isDot with 10232 /// information about the intrinsic. 10233 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10234 bool &isDot, const PPCSubtarget &Subtarget) { 10235 unsigned IntrinsicID = 10236 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10237 CompareOpc = -1; 10238 isDot = false; 10239 switch (IntrinsicID) { 10240 default: 10241 return false; 10242 // Comparison predicates. 10243 case Intrinsic::ppc_altivec_vcmpbfp_p: 10244 CompareOpc = 966; 10245 isDot = true; 10246 break; 10247 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10248 CompareOpc = 198; 10249 isDot = true; 10250 break; 10251 case Intrinsic::ppc_altivec_vcmpequb_p: 10252 CompareOpc = 6; 10253 isDot = true; 10254 break; 10255 case Intrinsic::ppc_altivec_vcmpequh_p: 10256 CompareOpc = 70; 10257 isDot = true; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpequw_p: 10260 CompareOpc = 134; 10261 isDot = true; 10262 break; 10263 case Intrinsic::ppc_altivec_vcmpequd_p: 10264 if (Subtarget.hasP8Altivec()) { 10265 CompareOpc = 199; 10266 isDot = true; 10267 } else 10268 return false; 10269 break; 10270 case Intrinsic::ppc_altivec_vcmpneb_p: 10271 case Intrinsic::ppc_altivec_vcmpneh_p: 10272 case Intrinsic::ppc_altivec_vcmpnew_p: 10273 case Intrinsic::ppc_altivec_vcmpnezb_p: 10274 case Intrinsic::ppc_altivec_vcmpnezh_p: 10275 case Intrinsic::ppc_altivec_vcmpnezw_p: 10276 if (Subtarget.hasP9Altivec()) { 10277 switch (IntrinsicID) { 10278 default: 10279 llvm_unreachable("Unknown comparison intrinsic."); 10280 case Intrinsic::ppc_altivec_vcmpneb_p: 10281 CompareOpc = 7; 10282 break; 10283 case Intrinsic::ppc_altivec_vcmpneh_p: 10284 CompareOpc = 71; 10285 break; 10286 case Intrinsic::ppc_altivec_vcmpnew_p: 10287 CompareOpc = 135; 10288 break; 10289 case Intrinsic::ppc_altivec_vcmpnezb_p: 10290 CompareOpc = 263; 10291 break; 10292 case Intrinsic::ppc_altivec_vcmpnezh_p: 10293 CompareOpc = 327; 10294 break; 10295 case Intrinsic::ppc_altivec_vcmpnezw_p: 10296 CompareOpc = 391; 10297 break; 10298 } 10299 isDot = true; 10300 } else 10301 return false; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgefp_p: 10304 CompareOpc = 454; 10305 isDot = true; 10306 break; 10307 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10308 CompareOpc = 710; 10309 isDot = true; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10312 CompareOpc = 774; 10313 isDot = true; 10314 break; 10315 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10316 CompareOpc = 838; 10317 isDot = true; 10318 break; 10319 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10320 CompareOpc = 902; 10321 isDot = true; 10322 break; 10323 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10324 if (Subtarget.hasP8Altivec()) { 10325 CompareOpc = 967; 10326 isDot = true; 10327 } else 10328 return false; 10329 break; 10330 case Intrinsic::ppc_altivec_vcmpgtub_p: 10331 CompareOpc = 518; 10332 isDot = true; 10333 break; 10334 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10335 CompareOpc = 582; 10336 isDot = true; 10337 break; 10338 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10339 CompareOpc = 646; 10340 isDot = true; 10341 break; 10342 case Intrinsic::ppc_altivec_vcmpgtud_p: 10343 if (Subtarget.hasP8Altivec()) { 10344 CompareOpc = 711; 10345 isDot = true; 10346 } else 10347 return false; 10348 break; 10349 10350 case Intrinsic::ppc_altivec_vcmpequq: 10351 case Intrinsic::ppc_altivec_vcmpgtsq: 10352 case Intrinsic::ppc_altivec_vcmpgtuq: 10353 if (!Subtarget.isISA3_1()) 10354 return false; 10355 switch (IntrinsicID) { 10356 default: 10357 llvm_unreachable("Unknown comparison intrinsic."); 10358 case Intrinsic::ppc_altivec_vcmpequq: 10359 CompareOpc = 455; 10360 break; 10361 case Intrinsic::ppc_altivec_vcmpgtsq: 10362 CompareOpc = 903; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpgtuq: 10365 CompareOpc = 647; 10366 break; 10367 } 10368 break; 10369 10370 // VSX predicate comparisons use the same infrastructure 10371 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10372 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10373 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10374 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10375 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10376 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10377 if (Subtarget.hasVSX()) { 10378 switch (IntrinsicID) { 10379 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10380 CompareOpc = 99; 10381 break; 10382 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10383 CompareOpc = 115; 10384 break; 10385 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10386 CompareOpc = 107; 10387 break; 10388 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10389 CompareOpc = 67; 10390 break; 10391 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10392 CompareOpc = 83; 10393 break; 10394 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10395 CompareOpc = 75; 10396 break; 10397 } 10398 isDot = true; 10399 } else 10400 return false; 10401 break; 10402 10403 // Normal Comparisons. 10404 case Intrinsic::ppc_altivec_vcmpbfp: 10405 CompareOpc = 966; 10406 break; 10407 case Intrinsic::ppc_altivec_vcmpeqfp: 10408 CompareOpc = 198; 10409 break; 10410 case Intrinsic::ppc_altivec_vcmpequb: 10411 CompareOpc = 6; 10412 break; 10413 case Intrinsic::ppc_altivec_vcmpequh: 10414 CompareOpc = 70; 10415 break; 10416 case Intrinsic::ppc_altivec_vcmpequw: 10417 CompareOpc = 134; 10418 break; 10419 case Intrinsic::ppc_altivec_vcmpequd: 10420 if (Subtarget.hasP8Altivec()) 10421 CompareOpc = 199; 10422 else 10423 return false; 10424 break; 10425 case Intrinsic::ppc_altivec_vcmpneb: 10426 case Intrinsic::ppc_altivec_vcmpneh: 10427 case Intrinsic::ppc_altivec_vcmpnew: 10428 case Intrinsic::ppc_altivec_vcmpnezb: 10429 case Intrinsic::ppc_altivec_vcmpnezh: 10430 case Intrinsic::ppc_altivec_vcmpnezw: 10431 if (Subtarget.hasP9Altivec()) 10432 switch (IntrinsicID) { 10433 default: 10434 llvm_unreachable("Unknown comparison intrinsic."); 10435 case Intrinsic::ppc_altivec_vcmpneb: 10436 CompareOpc = 7; 10437 break; 10438 case Intrinsic::ppc_altivec_vcmpneh: 10439 CompareOpc = 71; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpnew: 10442 CompareOpc = 135; 10443 break; 10444 case Intrinsic::ppc_altivec_vcmpnezb: 10445 CompareOpc = 263; 10446 break; 10447 case Intrinsic::ppc_altivec_vcmpnezh: 10448 CompareOpc = 327; 10449 break; 10450 case Intrinsic::ppc_altivec_vcmpnezw: 10451 CompareOpc = 391; 10452 break; 10453 } 10454 else 10455 return false; 10456 break; 10457 case Intrinsic::ppc_altivec_vcmpgefp: 10458 CompareOpc = 454; 10459 break; 10460 case Intrinsic::ppc_altivec_vcmpgtfp: 10461 CompareOpc = 710; 10462 break; 10463 case Intrinsic::ppc_altivec_vcmpgtsb: 10464 CompareOpc = 774; 10465 break; 10466 case Intrinsic::ppc_altivec_vcmpgtsh: 10467 CompareOpc = 838; 10468 break; 10469 case Intrinsic::ppc_altivec_vcmpgtsw: 10470 CompareOpc = 902; 10471 break; 10472 case Intrinsic::ppc_altivec_vcmpgtsd: 10473 if (Subtarget.hasP8Altivec()) 10474 CompareOpc = 967; 10475 else 10476 return false; 10477 break; 10478 case Intrinsic::ppc_altivec_vcmpgtub: 10479 CompareOpc = 518; 10480 break; 10481 case Intrinsic::ppc_altivec_vcmpgtuh: 10482 CompareOpc = 582; 10483 break; 10484 case Intrinsic::ppc_altivec_vcmpgtuw: 10485 CompareOpc = 646; 10486 break; 10487 case Intrinsic::ppc_altivec_vcmpgtud: 10488 if (Subtarget.hasP8Altivec()) 10489 CompareOpc = 711; 10490 else 10491 return false; 10492 break; 10493 case Intrinsic::ppc_altivec_vcmpequq_p: 10494 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10495 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10496 if (!Subtarget.isISA3_1()) 10497 return false; 10498 switch (IntrinsicID) { 10499 default: 10500 llvm_unreachable("Unknown comparison intrinsic."); 10501 case Intrinsic::ppc_altivec_vcmpequq_p: 10502 CompareOpc = 455; 10503 break; 10504 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10505 CompareOpc = 903; 10506 break; 10507 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10508 CompareOpc = 647; 10509 break; 10510 } 10511 isDot = true; 10512 break; 10513 } 10514 return true; 10515 } 10516 10517 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10518 /// lower, do it, otherwise return null. 10519 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10520 SelectionDAG &DAG) const { 10521 unsigned IntrinsicID = 10522 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10523 10524 SDLoc dl(Op); 10525 10526 switch (IntrinsicID) { 10527 case Intrinsic::thread_pointer: 10528 // Reads the thread pointer register, used for __builtin_thread_pointer. 10529 if (Subtarget.isPPC64()) 10530 return DAG.getRegister(PPC::X13, MVT::i64); 10531 return DAG.getRegister(PPC::R2, MVT::i32); 10532 10533 case Intrinsic::ppc_mma_disassemble_acc: 10534 case Intrinsic::ppc_mma_disassemble_pair: { 10535 int NumVecs = 2; 10536 SDValue WideVec = Op.getOperand(1); 10537 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10538 NumVecs = 4; 10539 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10540 } 10541 SmallVector<SDValue, 4> RetOps; 10542 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10543 SDValue Extract = DAG.getNode( 10544 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10545 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10546 : VecNo, 10547 dl, MVT::i64)); 10548 RetOps.push_back(Extract); 10549 } 10550 return DAG.getMergeValues(RetOps, dl); 10551 } 10552 } 10553 10554 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10555 // opcode number of the comparison. 10556 int CompareOpc; 10557 bool isDot; 10558 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10559 return SDValue(); // Don't custom lower most intrinsics. 10560 10561 // If this is a non-dot comparison, make the VCMP node and we are done. 10562 if (!isDot) { 10563 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10564 Op.getOperand(1), Op.getOperand(2), 10565 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10566 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10567 } 10568 10569 // Create the PPCISD altivec 'dot' comparison node. 10570 SDValue Ops[] = { 10571 Op.getOperand(2), // LHS 10572 Op.getOperand(3), // RHS 10573 DAG.getConstant(CompareOpc, dl, MVT::i32) 10574 }; 10575 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10576 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10577 10578 // Now that we have the comparison, emit a copy from the CR to a GPR. 10579 // This is flagged to the above dot comparison. 10580 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10581 DAG.getRegister(PPC::CR6, MVT::i32), 10582 CompNode.getValue(1)); 10583 10584 // Unpack the result based on how the target uses it. 10585 unsigned BitNo; // Bit # of CR6. 10586 bool InvertBit; // Invert result? 10587 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10588 default: // Can't happen, don't crash on invalid number though. 10589 case 0: // Return the value of the EQ bit of CR6. 10590 BitNo = 0; InvertBit = false; 10591 break; 10592 case 1: // Return the inverted value of the EQ bit of CR6. 10593 BitNo = 0; InvertBit = true; 10594 break; 10595 case 2: // Return the value of the LT bit of CR6. 10596 BitNo = 2; InvertBit = false; 10597 break; 10598 case 3: // Return the inverted value of the LT bit of CR6. 10599 BitNo = 2; InvertBit = true; 10600 break; 10601 } 10602 10603 // Shift the bit into the low position. 10604 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10605 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10606 // Isolate the bit. 10607 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10608 DAG.getConstant(1, dl, MVT::i32)); 10609 10610 // If we are supposed to, toggle the bit. 10611 if (InvertBit) 10612 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10613 DAG.getConstant(1, dl, MVT::i32)); 10614 return Flags; 10615 } 10616 10617 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10618 SelectionDAG &DAG) const { 10619 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10620 // the beginning of the argument list. 10621 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10622 SDLoc DL(Op); 10623 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10624 case Intrinsic::ppc_cfence: { 10625 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10626 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10627 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10628 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10629 Op.getOperand(ArgStart + 1)), 10630 Op.getOperand(0)), 10631 0); 10632 } 10633 default: 10634 break; 10635 } 10636 return SDValue(); 10637 } 10638 10639 // Lower scalar BSWAP64 to xxbrd. 10640 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10641 SDLoc dl(Op); 10642 // MTVSRDD 10643 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10644 Op.getOperand(0)); 10645 // XXBRD 10646 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10647 // MFVSRD 10648 int VectorIndex = 0; 10649 if (Subtarget.isLittleEndian()) 10650 VectorIndex = 1; 10651 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10652 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10653 return Op; 10654 } 10655 10656 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10657 // compared to a value that is atomically loaded (atomic loads zero-extend). 10658 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10659 SelectionDAG &DAG) const { 10660 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10661 "Expecting an atomic compare-and-swap here."); 10662 SDLoc dl(Op); 10663 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10664 EVT MemVT = AtomicNode->getMemoryVT(); 10665 if (MemVT.getSizeInBits() >= 32) 10666 return Op; 10667 10668 SDValue CmpOp = Op.getOperand(2); 10669 // If this is already correctly zero-extended, leave it alone. 10670 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10671 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10672 return Op; 10673 10674 // Clear the high bits of the compare operand. 10675 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10676 SDValue NewCmpOp = 10677 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10678 DAG.getConstant(MaskVal, dl, MVT::i32)); 10679 10680 // Replace the existing compare operand with the properly zero-extended one. 10681 SmallVector<SDValue, 4> Ops; 10682 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10683 Ops.push_back(AtomicNode->getOperand(i)); 10684 Ops[2] = NewCmpOp; 10685 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10686 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10687 auto NodeTy = 10688 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10689 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10690 } 10691 10692 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10693 SelectionDAG &DAG) const { 10694 SDLoc dl(Op); 10695 // Create a stack slot that is 16-byte aligned. 10696 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10697 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10698 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10699 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10700 10701 // Store the input value into Value#0 of the stack slot. 10702 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10703 MachinePointerInfo()); 10704 // Load it out. 10705 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10706 } 10707 10708 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10709 SelectionDAG &DAG) const { 10710 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10711 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10712 10713 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10714 // We have legal lowering for constant indices but not for variable ones. 10715 if (!C) 10716 return SDValue(); 10717 10718 EVT VT = Op.getValueType(); 10719 SDLoc dl(Op); 10720 SDValue V1 = Op.getOperand(0); 10721 SDValue V2 = Op.getOperand(1); 10722 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10723 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10724 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10725 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10726 unsigned InsertAtElement = C->getZExtValue(); 10727 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10728 if (Subtarget.isLittleEndian()) { 10729 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10730 } 10731 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10732 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10733 } 10734 return Op; 10735 } 10736 10737 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10738 SelectionDAG &DAG) const { 10739 SDLoc dl(Op); 10740 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10741 SDValue LoadChain = LN->getChain(); 10742 SDValue BasePtr = LN->getBasePtr(); 10743 EVT VT = Op.getValueType(); 10744 10745 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10746 return Op; 10747 10748 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10749 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10750 // 2 or 4 vsx registers. 10751 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10752 "Type unsupported without MMA"); 10753 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10754 "Type unsupported without paired vector support"); 10755 Align Alignment = LN->getAlign(); 10756 SmallVector<SDValue, 4> Loads; 10757 SmallVector<SDValue, 4> LoadChains; 10758 unsigned NumVecs = VT.getSizeInBits() / 128; 10759 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10760 SDValue Load = 10761 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10762 LN->getPointerInfo().getWithOffset(Idx * 16), 10763 commonAlignment(Alignment, Idx * 16), 10764 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10765 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10766 DAG.getConstant(16, dl, BasePtr.getValueType())); 10767 Loads.push_back(Load); 10768 LoadChains.push_back(Load.getValue(1)); 10769 } 10770 if (Subtarget.isLittleEndian()) { 10771 std::reverse(Loads.begin(), Loads.end()); 10772 std::reverse(LoadChains.begin(), LoadChains.end()); 10773 } 10774 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10775 SDValue Value = 10776 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10777 dl, VT, Loads); 10778 SDValue RetOps[] = {Value, TF}; 10779 return DAG.getMergeValues(RetOps, dl); 10780 } 10781 10782 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10783 SelectionDAG &DAG) const { 10784 SDLoc dl(Op); 10785 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10786 SDValue StoreChain = SN->getChain(); 10787 SDValue BasePtr = SN->getBasePtr(); 10788 SDValue Value = SN->getValue(); 10789 EVT StoreVT = Value.getValueType(); 10790 10791 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10792 return Op; 10793 10794 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10795 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10796 // underlying registers individually. 10797 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10798 "Type unsupported without MMA"); 10799 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10800 "Type unsupported without paired vector support"); 10801 Align Alignment = SN->getAlign(); 10802 SmallVector<SDValue, 4> Stores; 10803 unsigned NumVecs = 2; 10804 if (StoreVT == MVT::v512i1) { 10805 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10806 NumVecs = 4; 10807 } 10808 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10809 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10810 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10811 DAG.getConstant(VecNum, dl, MVT::i64)); 10812 SDValue Store = 10813 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10814 SN->getPointerInfo().getWithOffset(Idx * 16), 10815 commonAlignment(Alignment, Idx * 16), 10816 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10817 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10818 DAG.getConstant(16, dl, BasePtr.getValueType())); 10819 Stores.push_back(Store); 10820 } 10821 SDValue TF = DAG.getTokenFactor(dl, Stores); 10822 return TF; 10823 } 10824 10825 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10826 SDLoc dl(Op); 10827 if (Op.getValueType() == MVT::v4i32) { 10828 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10829 10830 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10831 // +16 as shift amt. 10832 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10833 SDValue RHSSwap = // = vrlw RHS, 16 10834 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10835 10836 // Shrinkify inputs to v8i16. 10837 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10838 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10839 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10840 10841 // Low parts multiplied together, generating 32-bit results (we ignore the 10842 // top parts). 10843 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10844 LHS, RHS, DAG, dl, MVT::v4i32); 10845 10846 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10847 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10848 // Shift the high parts up 16 bits. 10849 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10850 Neg16, DAG, dl); 10851 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10852 } else if (Op.getValueType() == MVT::v16i8) { 10853 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10854 bool isLittleEndian = Subtarget.isLittleEndian(); 10855 10856 // Multiply the even 8-bit parts, producing 16-bit sums. 10857 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10858 LHS, RHS, DAG, dl, MVT::v8i16); 10859 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10860 10861 // Multiply the odd 8-bit parts, producing 16-bit sums. 10862 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10863 LHS, RHS, DAG, dl, MVT::v8i16); 10864 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10865 10866 // Merge the results together. Because vmuleub and vmuloub are 10867 // instructions with a big-endian bias, we must reverse the 10868 // element numbering and reverse the meaning of "odd" and "even" 10869 // when generating little endian code. 10870 int Ops[16]; 10871 for (unsigned i = 0; i != 8; ++i) { 10872 if (isLittleEndian) { 10873 Ops[i*2 ] = 2*i; 10874 Ops[i*2+1] = 2*i+16; 10875 } else { 10876 Ops[i*2 ] = 2*i+1; 10877 Ops[i*2+1] = 2*i+1+16; 10878 } 10879 } 10880 if (isLittleEndian) 10881 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10882 else 10883 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10884 } else { 10885 llvm_unreachable("Unknown mul to lower!"); 10886 } 10887 } 10888 10889 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10890 10891 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10892 10893 EVT VT = Op.getValueType(); 10894 assert(VT.isVector() && 10895 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10896 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10897 VT == MVT::v16i8) && 10898 "Unexpected vector element type!"); 10899 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10900 "Current subtarget doesn't support smax v2i64!"); 10901 10902 // For vector abs, it can be lowered to: 10903 // abs x 10904 // ==> 10905 // y = -x 10906 // smax(x, y) 10907 10908 SDLoc dl(Op); 10909 SDValue X = Op.getOperand(0); 10910 SDValue Zero = DAG.getConstant(0, dl, VT); 10911 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10912 10913 // SMAX patch https://reviews.llvm.org/D47332 10914 // hasn't landed yet, so use intrinsic first here. 10915 // TODO: Should use SMAX directly once SMAX patch landed 10916 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10917 if (VT == MVT::v2i64) 10918 BifID = Intrinsic::ppc_altivec_vmaxsd; 10919 else if (VT == MVT::v8i16) 10920 BifID = Intrinsic::ppc_altivec_vmaxsh; 10921 else if (VT == MVT::v16i8) 10922 BifID = Intrinsic::ppc_altivec_vmaxsb; 10923 10924 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10925 } 10926 10927 // Custom lowering for fpext vf32 to v2f64 10928 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10929 10930 assert(Op.getOpcode() == ISD::FP_EXTEND && 10931 "Should only be called for ISD::FP_EXTEND"); 10932 10933 // FIXME: handle extends from half precision float vectors on P9. 10934 // We only want to custom lower an extend from v2f32 to v2f64. 10935 if (Op.getValueType() != MVT::v2f64 || 10936 Op.getOperand(0).getValueType() != MVT::v2f32) 10937 return SDValue(); 10938 10939 SDLoc dl(Op); 10940 SDValue Op0 = Op.getOperand(0); 10941 10942 switch (Op0.getOpcode()) { 10943 default: 10944 return SDValue(); 10945 case ISD::EXTRACT_SUBVECTOR: { 10946 assert(Op0.getNumOperands() == 2 && 10947 isa<ConstantSDNode>(Op0->getOperand(1)) && 10948 "Node should have 2 operands with second one being a constant!"); 10949 10950 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10951 return SDValue(); 10952 10953 // Custom lower is only done for high or low doubleword. 10954 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10955 if (Idx % 2 != 0) 10956 return SDValue(); 10957 10958 // Since input is v4f32, at this point Idx is either 0 or 2. 10959 // Shift to get the doubleword position we want. 10960 int DWord = Idx >> 1; 10961 10962 // High and low word positions are different on little endian. 10963 if (Subtarget.isLittleEndian()) 10964 DWord ^= 0x1; 10965 10966 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10967 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10968 } 10969 case ISD::FADD: 10970 case ISD::FMUL: 10971 case ISD::FSUB: { 10972 SDValue NewLoad[2]; 10973 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10974 // Ensure both input are loads. 10975 SDValue LdOp = Op0.getOperand(i); 10976 if (LdOp.getOpcode() != ISD::LOAD) 10977 return SDValue(); 10978 // Generate new load node. 10979 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10980 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10981 NewLoad[i] = DAG.getMemIntrinsicNode( 10982 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10983 LD->getMemoryVT(), LD->getMemOperand()); 10984 } 10985 SDValue NewOp = 10986 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10987 NewLoad[1], Op0.getNode()->getFlags()); 10988 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10989 DAG.getConstant(0, dl, MVT::i32)); 10990 } 10991 case ISD::LOAD: { 10992 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10993 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10994 SDValue NewLd = DAG.getMemIntrinsicNode( 10995 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10996 LD->getMemoryVT(), LD->getMemOperand()); 10997 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10998 DAG.getConstant(0, dl, MVT::i32)); 10999 } 11000 } 11001 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11002 } 11003 11004 /// LowerOperation - Provide custom lowering hooks for some operations. 11005 /// 11006 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11007 switch (Op.getOpcode()) { 11008 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11009 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11010 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11011 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11012 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11013 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11014 case ISD::SETCC: return LowerSETCC(Op, DAG); 11015 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11016 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11017 11018 // Variable argument lowering. 11019 case ISD::VASTART: return LowerVASTART(Op, DAG); 11020 case ISD::VAARG: return LowerVAARG(Op, DAG); 11021 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11022 11023 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11024 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11025 case ISD::GET_DYNAMIC_AREA_OFFSET: 11026 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11027 11028 // Exception handling lowering. 11029 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11030 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11031 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11032 11033 case ISD::LOAD: return LowerLOAD(Op, DAG); 11034 case ISD::STORE: return LowerSTORE(Op, DAG); 11035 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11036 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11037 case ISD::STRICT_FP_TO_UINT: 11038 case ISD::STRICT_FP_TO_SINT: 11039 case ISD::FP_TO_UINT: 11040 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11041 case ISD::STRICT_UINT_TO_FP: 11042 case ISD::STRICT_SINT_TO_FP: 11043 case ISD::UINT_TO_FP: 11044 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11045 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11046 11047 // Lower 64-bit shifts. 11048 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11049 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11050 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11051 11052 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11053 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11054 11055 // Vector-related lowering. 11056 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11057 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11058 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11059 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11060 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11061 case ISD::MUL: return LowerMUL(Op, DAG); 11062 case ISD::ABS: return LowerABS(Op, DAG); 11063 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11064 case ISD::ROTL: return LowerROTL(Op, DAG); 11065 11066 // For counter-based loop handling. 11067 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11068 11069 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11070 11071 // Frame & Return address. 11072 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11073 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11074 11075 case ISD::INTRINSIC_VOID: 11076 return LowerINTRINSIC_VOID(Op, DAG); 11077 case ISD::BSWAP: 11078 return LowerBSWAP(Op, DAG); 11079 case ISD::ATOMIC_CMP_SWAP: 11080 return LowerATOMIC_CMP_SWAP(Op, DAG); 11081 } 11082 } 11083 11084 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11085 SmallVectorImpl<SDValue>&Results, 11086 SelectionDAG &DAG) const { 11087 SDLoc dl(N); 11088 switch (N->getOpcode()) { 11089 default: 11090 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11091 case ISD::READCYCLECOUNTER: { 11092 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11093 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11094 11095 Results.push_back( 11096 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11097 Results.push_back(RTB.getValue(2)); 11098 break; 11099 } 11100 case ISD::INTRINSIC_W_CHAIN: { 11101 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11102 Intrinsic::loop_decrement) 11103 break; 11104 11105 assert(N->getValueType(0) == MVT::i1 && 11106 "Unexpected result type for CTR decrement intrinsic"); 11107 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11108 N->getValueType(0)); 11109 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11110 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11111 N->getOperand(1)); 11112 11113 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11114 Results.push_back(NewInt.getValue(1)); 11115 break; 11116 } 11117 case ISD::VAARG: { 11118 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11119 return; 11120 11121 EVT VT = N->getValueType(0); 11122 11123 if (VT == MVT::i64) { 11124 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11125 11126 Results.push_back(NewNode); 11127 Results.push_back(NewNode.getValue(1)); 11128 } 11129 return; 11130 } 11131 case ISD::STRICT_FP_TO_SINT: 11132 case ISD::STRICT_FP_TO_UINT: 11133 case ISD::FP_TO_SINT: 11134 case ISD::FP_TO_UINT: 11135 // LowerFP_TO_INT() can only handle f32 and f64. 11136 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11137 MVT::ppcf128) 11138 return; 11139 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11140 return; 11141 case ISD::TRUNCATE: { 11142 if (!N->getValueType(0).isVector()) 11143 return; 11144 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11145 if (Lowered) 11146 Results.push_back(Lowered); 11147 return; 11148 } 11149 case ISD::FSHL: 11150 case ISD::FSHR: 11151 // Don't handle funnel shifts here. 11152 return; 11153 case ISD::BITCAST: 11154 // Don't handle bitcast here. 11155 return; 11156 case ISD::FP_EXTEND: 11157 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11158 if (Lowered) 11159 Results.push_back(Lowered); 11160 return; 11161 } 11162 } 11163 11164 //===----------------------------------------------------------------------===// 11165 // Other Lowering Code 11166 //===----------------------------------------------------------------------===// 11167 11168 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11169 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11170 Function *Func = Intrinsic::getDeclaration(M, Id); 11171 return Builder.CreateCall(Func, {}); 11172 } 11173 11174 // The mappings for emitLeading/TrailingFence is taken from 11175 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11176 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11177 Instruction *Inst, 11178 AtomicOrdering Ord) const { 11179 if (Ord == AtomicOrdering::SequentiallyConsistent) 11180 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11181 if (isReleaseOrStronger(Ord)) 11182 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11183 return nullptr; 11184 } 11185 11186 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11187 Instruction *Inst, 11188 AtomicOrdering Ord) const { 11189 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11190 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11191 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11192 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11193 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11194 return Builder.CreateCall( 11195 Intrinsic::getDeclaration( 11196 Builder.GetInsertBlock()->getParent()->getParent(), 11197 Intrinsic::ppc_cfence, {Inst->getType()}), 11198 {Inst}); 11199 // FIXME: Can use isync for rmw operation. 11200 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11201 } 11202 return nullptr; 11203 } 11204 11205 MachineBasicBlock * 11206 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11207 unsigned AtomicSize, 11208 unsigned BinOpcode, 11209 unsigned CmpOpcode, 11210 unsigned CmpPred) const { 11211 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11212 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11213 11214 auto LoadMnemonic = PPC::LDARX; 11215 auto StoreMnemonic = PPC::STDCX; 11216 switch (AtomicSize) { 11217 default: 11218 llvm_unreachable("Unexpected size of atomic entity"); 11219 case 1: 11220 LoadMnemonic = PPC::LBARX; 11221 StoreMnemonic = PPC::STBCX; 11222 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11223 break; 11224 case 2: 11225 LoadMnemonic = PPC::LHARX; 11226 StoreMnemonic = PPC::STHCX; 11227 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11228 break; 11229 case 4: 11230 LoadMnemonic = PPC::LWARX; 11231 StoreMnemonic = PPC::STWCX; 11232 break; 11233 case 8: 11234 LoadMnemonic = PPC::LDARX; 11235 StoreMnemonic = PPC::STDCX; 11236 break; 11237 } 11238 11239 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11240 MachineFunction *F = BB->getParent(); 11241 MachineFunction::iterator It = ++BB->getIterator(); 11242 11243 Register dest = MI.getOperand(0).getReg(); 11244 Register ptrA = MI.getOperand(1).getReg(); 11245 Register ptrB = MI.getOperand(2).getReg(); 11246 Register incr = MI.getOperand(3).getReg(); 11247 DebugLoc dl = MI.getDebugLoc(); 11248 11249 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11250 MachineBasicBlock *loop2MBB = 11251 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11252 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11253 F->insert(It, loopMBB); 11254 if (CmpOpcode) 11255 F->insert(It, loop2MBB); 11256 F->insert(It, exitMBB); 11257 exitMBB->splice(exitMBB->begin(), BB, 11258 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11259 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11260 11261 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11262 Register TmpReg = (!BinOpcode) ? incr : 11263 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11264 : &PPC::GPRCRegClass); 11265 11266 // thisMBB: 11267 // ... 11268 // fallthrough --> loopMBB 11269 BB->addSuccessor(loopMBB); 11270 11271 // loopMBB: 11272 // l[wd]arx dest, ptr 11273 // add r0, dest, incr 11274 // st[wd]cx. r0, ptr 11275 // bne- loopMBB 11276 // fallthrough --> exitMBB 11277 11278 // For max/min... 11279 // loopMBB: 11280 // l[wd]arx dest, ptr 11281 // cmpl?[wd] incr, dest 11282 // bgt exitMBB 11283 // loop2MBB: 11284 // st[wd]cx. dest, ptr 11285 // bne- loopMBB 11286 // fallthrough --> exitMBB 11287 11288 BB = loopMBB; 11289 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11290 .addReg(ptrA).addReg(ptrB); 11291 if (BinOpcode) 11292 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11293 if (CmpOpcode) { 11294 // Signed comparisons of byte or halfword values must be sign-extended. 11295 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11296 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11297 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11298 ExtReg).addReg(dest); 11299 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11300 .addReg(incr).addReg(ExtReg); 11301 } else 11302 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11303 .addReg(incr).addReg(dest); 11304 11305 BuildMI(BB, dl, TII->get(PPC::BCC)) 11306 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11307 BB->addSuccessor(loop2MBB); 11308 BB->addSuccessor(exitMBB); 11309 BB = loop2MBB; 11310 } 11311 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11312 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11313 BuildMI(BB, dl, TII->get(PPC::BCC)) 11314 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11315 BB->addSuccessor(loopMBB); 11316 BB->addSuccessor(exitMBB); 11317 11318 // exitMBB: 11319 // ... 11320 BB = exitMBB; 11321 return BB; 11322 } 11323 11324 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11325 MachineInstr &MI, MachineBasicBlock *BB, 11326 bool is8bit, // operation 11327 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11328 // If we support part-word atomic mnemonics, just use them 11329 if (Subtarget.hasPartwordAtomics()) 11330 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11331 CmpPred); 11332 11333 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11334 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11335 // In 64 bit mode we have to use 64 bits for addresses, even though the 11336 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11337 // registers without caring whether they're 32 or 64, but here we're 11338 // doing actual arithmetic on the addresses. 11339 bool is64bit = Subtarget.isPPC64(); 11340 bool isLittleEndian = Subtarget.isLittleEndian(); 11341 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11342 11343 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11344 MachineFunction *F = BB->getParent(); 11345 MachineFunction::iterator It = ++BB->getIterator(); 11346 11347 Register dest = MI.getOperand(0).getReg(); 11348 Register ptrA = MI.getOperand(1).getReg(); 11349 Register ptrB = MI.getOperand(2).getReg(); 11350 Register incr = MI.getOperand(3).getReg(); 11351 DebugLoc dl = MI.getDebugLoc(); 11352 11353 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11354 MachineBasicBlock *loop2MBB = 11355 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11356 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11357 F->insert(It, loopMBB); 11358 if (CmpOpcode) 11359 F->insert(It, loop2MBB); 11360 F->insert(It, exitMBB); 11361 exitMBB->splice(exitMBB->begin(), BB, 11362 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11363 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11364 11365 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11366 const TargetRegisterClass *RC = 11367 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11368 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11369 11370 Register PtrReg = RegInfo.createVirtualRegister(RC); 11371 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11372 Register ShiftReg = 11373 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11374 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11375 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11376 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11377 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11378 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11379 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11380 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11381 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11382 Register Ptr1Reg; 11383 Register TmpReg = 11384 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11385 11386 // thisMBB: 11387 // ... 11388 // fallthrough --> loopMBB 11389 BB->addSuccessor(loopMBB); 11390 11391 // The 4-byte load must be aligned, while a char or short may be 11392 // anywhere in the word. Hence all this nasty bookkeeping code. 11393 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11394 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11395 // xori shift, shift1, 24 [16] 11396 // rlwinm ptr, ptr1, 0, 0, 29 11397 // slw incr2, incr, shift 11398 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11399 // slw mask, mask2, shift 11400 // loopMBB: 11401 // lwarx tmpDest, ptr 11402 // add tmp, tmpDest, incr2 11403 // andc tmp2, tmpDest, mask 11404 // and tmp3, tmp, mask 11405 // or tmp4, tmp3, tmp2 11406 // stwcx. tmp4, ptr 11407 // bne- loopMBB 11408 // fallthrough --> exitMBB 11409 // srw dest, tmpDest, shift 11410 if (ptrA != ZeroReg) { 11411 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11412 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11413 .addReg(ptrA) 11414 .addReg(ptrB); 11415 } else { 11416 Ptr1Reg = ptrB; 11417 } 11418 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11419 // mode. 11420 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11421 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11422 .addImm(3) 11423 .addImm(27) 11424 .addImm(is8bit ? 28 : 27); 11425 if (!isLittleEndian) 11426 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11427 .addReg(Shift1Reg) 11428 .addImm(is8bit ? 24 : 16); 11429 if (is64bit) 11430 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11431 .addReg(Ptr1Reg) 11432 .addImm(0) 11433 .addImm(61); 11434 else 11435 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11436 .addReg(Ptr1Reg) 11437 .addImm(0) 11438 .addImm(0) 11439 .addImm(29); 11440 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11441 if (is8bit) 11442 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11443 else { 11444 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11445 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11446 .addReg(Mask3Reg) 11447 .addImm(65535); 11448 } 11449 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11450 .addReg(Mask2Reg) 11451 .addReg(ShiftReg); 11452 11453 BB = loopMBB; 11454 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11455 .addReg(ZeroReg) 11456 .addReg(PtrReg); 11457 if (BinOpcode) 11458 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11459 .addReg(Incr2Reg) 11460 .addReg(TmpDestReg); 11461 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11462 .addReg(TmpDestReg) 11463 .addReg(MaskReg); 11464 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11465 if (CmpOpcode) { 11466 // For unsigned comparisons, we can directly compare the shifted values. 11467 // For signed comparisons we shift and sign extend. 11468 Register SReg = RegInfo.createVirtualRegister(GPRC); 11469 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11470 .addReg(TmpDestReg) 11471 .addReg(MaskReg); 11472 unsigned ValueReg = SReg; 11473 unsigned CmpReg = Incr2Reg; 11474 if (CmpOpcode == PPC::CMPW) { 11475 ValueReg = RegInfo.createVirtualRegister(GPRC); 11476 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11477 .addReg(SReg) 11478 .addReg(ShiftReg); 11479 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11480 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11481 .addReg(ValueReg); 11482 ValueReg = ValueSReg; 11483 CmpReg = incr; 11484 } 11485 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11486 .addReg(CmpReg) 11487 .addReg(ValueReg); 11488 BuildMI(BB, dl, TII->get(PPC::BCC)) 11489 .addImm(CmpPred) 11490 .addReg(PPC::CR0) 11491 .addMBB(exitMBB); 11492 BB->addSuccessor(loop2MBB); 11493 BB->addSuccessor(exitMBB); 11494 BB = loop2MBB; 11495 } 11496 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11497 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11498 .addReg(Tmp4Reg) 11499 .addReg(ZeroReg) 11500 .addReg(PtrReg); 11501 BuildMI(BB, dl, TII->get(PPC::BCC)) 11502 .addImm(PPC::PRED_NE) 11503 .addReg(PPC::CR0) 11504 .addMBB(loopMBB); 11505 BB->addSuccessor(loopMBB); 11506 BB->addSuccessor(exitMBB); 11507 11508 // exitMBB: 11509 // ... 11510 BB = exitMBB; 11511 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11512 .addReg(TmpDestReg) 11513 .addReg(ShiftReg); 11514 return BB; 11515 } 11516 11517 llvm::MachineBasicBlock * 11518 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11519 MachineBasicBlock *MBB) const { 11520 DebugLoc DL = MI.getDebugLoc(); 11521 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11522 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11523 11524 MachineFunction *MF = MBB->getParent(); 11525 MachineRegisterInfo &MRI = MF->getRegInfo(); 11526 11527 const BasicBlock *BB = MBB->getBasicBlock(); 11528 MachineFunction::iterator I = ++MBB->getIterator(); 11529 11530 Register DstReg = MI.getOperand(0).getReg(); 11531 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11532 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11533 Register mainDstReg = MRI.createVirtualRegister(RC); 11534 Register restoreDstReg = MRI.createVirtualRegister(RC); 11535 11536 MVT PVT = getPointerTy(MF->getDataLayout()); 11537 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11538 "Invalid Pointer Size!"); 11539 // For v = setjmp(buf), we generate 11540 // 11541 // thisMBB: 11542 // SjLjSetup mainMBB 11543 // bl mainMBB 11544 // v_restore = 1 11545 // b sinkMBB 11546 // 11547 // mainMBB: 11548 // buf[LabelOffset] = LR 11549 // v_main = 0 11550 // 11551 // sinkMBB: 11552 // v = phi(main, restore) 11553 // 11554 11555 MachineBasicBlock *thisMBB = MBB; 11556 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11557 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11558 MF->insert(I, mainMBB); 11559 MF->insert(I, sinkMBB); 11560 11561 MachineInstrBuilder MIB; 11562 11563 // Transfer the remainder of BB and its successor edges to sinkMBB. 11564 sinkMBB->splice(sinkMBB->begin(), MBB, 11565 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11566 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11567 11568 // Note that the structure of the jmp_buf used here is not compatible 11569 // with that used by libc, and is not designed to be. Specifically, it 11570 // stores only those 'reserved' registers that LLVM does not otherwise 11571 // understand how to spill. Also, by convention, by the time this 11572 // intrinsic is called, Clang has already stored the frame address in the 11573 // first slot of the buffer and stack address in the third. Following the 11574 // X86 target code, we'll store the jump address in the second slot. We also 11575 // need to save the TOC pointer (R2) to handle jumps between shared 11576 // libraries, and that will be stored in the fourth slot. The thread 11577 // identifier (R13) is not affected. 11578 11579 // thisMBB: 11580 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11581 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11582 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11583 11584 // Prepare IP either in reg. 11585 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11586 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11587 Register BufReg = MI.getOperand(1).getReg(); 11588 11589 if (Subtarget.is64BitELFABI()) { 11590 setUsesTOCBasePtr(*MBB->getParent()); 11591 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11592 .addReg(PPC::X2) 11593 .addImm(TOCOffset) 11594 .addReg(BufReg) 11595 .cloneMemRefs(MI); 11596 } 11597 11598 // Naked functions never have a base pointer, and so we use r1. For all 11599 // other functions, this decision must be delayed until during PEI. 11600 unsigned BaseReg; 11601 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11602 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11603 else 11604 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11605 11606 MIB = BuildMI(*thisMBB, MI, DL, 11607 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11608 .addReg(BaseReg) 11609 .addImm(BPOffset) 11610 .addReg(BufReg) 11611 .cloneMemRefs(MI); 11612 11613 // Setup 11614 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11615 MIB.addRegMask(TRI->getNoPreservedMask()); 11616 11617 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11618 11619 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11620 .addMBB(mainMBB); 11621 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11622 11623 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11624 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11625 11626 // mainMBB: 11627 // mainDstReg = 0 11628 MIB = 11629 BuildMI(mainMBB, DL, 11630 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11631 11632 // Store IP 11633 if (Subtarget.isPPC64()) { 11634 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11635 .addReg(LabelReg) 11636 .addImm(LabelOffset) 11637 .addReg(BufReg); 11638 } else { 11639 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11640 .addReg(LabelReg) 11641 .addImm(LabelOffset) 11642 .addReg(BufReg); 11643 } 11644 MIB.cloneMemRefs(MI); 11645 11646 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11647 mainMBB->addSuccessor(sinkMBB); 11648 11649 // sinkMBB: 11650 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11651 TII->get(PPC::PHI), DstReg) 11652 .addReg(mainDstReg).addMBB(mainMBB) 11653 .addReg(restoreDstReg).addMBB(thisMBB); 11654 11655 MI.eraseFromParent(); 11656 return sinkMBB; 11657 } 11658 11659 MachineBasicBlock * 11660 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11661 MachineBasicBlock *MBB) const { 11662 DebugLoc DL = MI.getDebugLoc(); 11663 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11664 11665 MachineFunction *MF = MBB->getParent(); 11666 MachineRegisterInfo &MRI = MF->getRegInfo(); 11667 11668 MVT PVT = getPointerTy(MF->getDataLayout()); 11669 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11670 "Invalid Pointer Size!"); 11671 11672 const TargetRegisterClass *RC = 11673 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11674 Register Tmp = MRI.createVirtualRegister(RC); 11675 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11676 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11677 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11678 unsigned BP = 11679 (PVT == MVT::i64) 11680 ? PPC::X30 11681 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11682 : PPC::R30); 11683 11684 MachineInstrBuilder MIB; 11685 11686 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11687 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11688 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11689 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11690 11691 Register BufReg = MI.getOperand(0).getReg(); 11692 11693 // Reload FP (the jumped-to function may not have had a 11694 // frame pointer, and if so, then its r31 will be restored 11695 // as necessary). 11696 if (PVT == MVT::i64) { 11697 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11698 .addImm(0) 11699 .addReg(BufReg); 11700 } else { 11701 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11702 .addImm(0) 11703 .addReg(BufReg); 11704 } 11705 MIB.cloneMemRefs(MI); 11706 11707 // Reload IP 11708 if (PVT == MVT::i64) { 11709 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11710 .addImm(LabelOffset) 11711 .addReg(BufReg); 11712 } else { 11713 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11714 .addImm(LabelOffset) 11715 .addReg(BufReg); 11716 } 11717 MIB.cloneMemRefs(MI); 11718 11719 // Reload SP 11720 if (PVT == MVT::i64) { 11721 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11722 .addImm(SPOffset) 11723 .addReg(BufReg); 11724 } else { 11725 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11726 .addImm(SPOffset) 11727 .addReg(BufReg); 11728 } 11729 MIB.cloneMemRefs(MI); 11730 11731 // Reload BP 11732 if (PVT == MVT::i64) { 11733 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11734 .addImm(BPOffset) 11735 .addReg(BufReg); 11736 } else { 11737 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11738 .addImm(BPOffset) 11739 .addReg(BufReg); 11740 } 11741 MIB.cloneMemRefs(MI); 11742 11743 // Reload TOC 11744 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11745 setUsesTOCBasePtr(*MBB->getParent()); 11746 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11747 .addImm(TOCOffset) 11748 .addReg(BufReg) 11749 .cloneMemRefs(MI); 11750 } 11751 11752 // Jump 11753 BuildMI(*MBB, MI, DL, 11754 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11755 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11756 11757 MI.eraseFromParent(); 11758 return MBB; 11759 } 11760 11761 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11762 // If the function specifically requests inline stack probes, emit them. 11763 if (MF.getFunction().hasFnAttribute("probe-stack")) 11764 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11765 "inline-asm"; 11766 return false; 11767 } 11768 11769 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11770 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11771 unsigned StackAlign = TFI->getStackAlignment(); 11772 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11773 "Unexpected stack alignment"); 11774 // The default stack probe size is 4096 if the function has no 11775 // stack-probe-size attribute. 11776 unsigned StackProbeSize = 4096; 11777 const Function &Fn = MF.getFunction(); 11778 if (Fn.hasFnAttribute("stack-probe-size")) 11779 Fn.getFnAttribute("stack-probe-size") 11780 .getValueAsString() 11781 .getAsInteger(0, StackProbeSize); 11782 // Round down to the stack alignment. 11783 StackProbeSize &= ~(StackAlign - 1); 11784 return StackProbeSize ? StackProbeSize : StackAlign; 11785 } 11786 11787 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11788 // into three phases. In the first phase, it uses pseudo instruction 11789 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11790 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11791 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11792 // MaxCallFrameSize so that it can calculate correct data area pointer. 11793 MachineBasicBlock * 11794 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11795 MachineBasicBlock *MBB) const { 11796 const bool isPPC64 = Subtarget.isPPC64(); 11797 MachineFunction *MF = MBB->getParent(); 11798 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11799 DebugLoc DL = MI.getDebugLoc(); 11800 const unsigned ProbeSize = getStackProbeSize(*MF); 11801 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11802 MachineRegisterInfo &MRI = MF->getRegInfo(); 11803 // The CFG of probing stack looks as 11804 // +-----+ 11805 // | MBB | 11806 // +--+--+ 11807 // | 11808 // +----v----+ 11809 // +--->+ TestMBB +---+ 11810 // | +----+----+ | 11811 // | | | 11812 // | +-----v----+ | 11813 // +---+ BlockMBB | | 11814 // +----------+ | 11815 // | 11816 // +---------+ | 11817 // | TailMBB +<--+ 11818 // +---------+ 11819 // In MBB, calculate previous frame pointer and final stack pointer. 11820 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11821 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11822 // TailMBB is spliced via \p MI. 11823 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11824 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11825 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11826 11827 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11828 MF->insert(MBBIter, TestMBB); 11829 MF->insert(MBBIter, BlockMBB); 11830 MF->insert(MBBIter, TailMBB); 11831 11832 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11833 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11834 11835 Register DstReg = MI.getOperand(0).getReg(); 11836 Register NegSizeReg = MI.getOperand(1).getReg(); 11837 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11838 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11839 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11840 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11841 11842 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11843 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11844 // NegSize. 11845 unsigned ProbeOpc; 11846 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11847 ProbeOpc = 11848 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11849 else 11850 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11851 // and NegSizeReg will be allocated in the same phyreg to avoid 11852 // redundant copy when NegSizeReg has only one use which is current MI and 11853 // will be replaced by PREPARE_PROBED_ALLOCA then. 11854 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11855 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11856 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11857 .addDef(ActualNegSizeReg) 11858 .addReg(NegSizeReg) 11859 .add(MI.getOperand(2)) 11860 .add(MI.getOperand(3)); 11861 11862 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11863 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11864 FinalStackPtr) 11865 .addReg(SPReg) 11866 .addReg(ActualNegSizeReg); 11867 11868 // Materialize a scratch register for update. 11869 int64_t NegProbeSize = -(int64_t)ProbeSize; 11870 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11871 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11872 if (!isInt<16>(NegProbeSize)) { 11873 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11874 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11875 .addImm(NegProbeSize >> 16); 11876 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11877 ScratchReg) 11878 .addReg(TempReg) 11879 .addImm(NegProbeSize & 0xFFFF); 11880 } else 11881 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11882 .addImm(NegProbeSize); 11883 11884 { 11885 // Probing leading residual part. 11886 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11887 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11888 .addReg(ActualNegSizeReg) 11889 .addReg(ScratchReg); 11890 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11891 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11892 .addReg(Div) 11893 .addReg(ScratchReg); 11894 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11895 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11896 .addReg(Mul) 11897 .addReg(ActualNegSizeReg); 11898 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11899 .addReg(FramePointer) 11900 .addReg(SPReg) 11901 .addReg(NegMod); 11902 } 11903 11904 { 11905 // Remaining part should be multiple of ProbeSize. 11906 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11907 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11908 .addReg(SPReg) 11909 .addReg(FinalStackPtr); 11910 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11911 .addImm(PPC::PRED_EQ) 11912 .addReg(CmpResult) 11913 .addMBB(TailMBB); 11914 TestMBB->addSuccessor(BlockMBB); 11915 TestMBB->addSuccessor(TailMBB); 11916 } 11917 11918 { 11919 // Touch the block. 11920 // |P...|P...|P... 11921 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11922 .addReg(FramePointer) 11923 .addReg(SPReg) 11924 .addReg(ScratchReg); 11925 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11926 BlockMBB->addSuccessor(TestMBB); 11927 } 11928 11929 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11930 // DYNAREAOFFSET pseudo instruction to get the future result. 11931 Register MaxCallFrameSizeReg = 11932 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11933 BuildMI(TailMBB, DL, 11934 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11935 MaxCallFrameSizeReg) 11936 .add(MI.getOperand(2)) 11937 .add(MI.getOperand(3)); 11938 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11939 .addReg(SPReg) 11940 .addReg(MaxCallFrameSizeReg); 11941 11942 // Splice instructions after MI to TailMBB. 11943 TailMBB->splice(TailMBB->end(), MBB, 11944 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11945 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11946 MBB->addSuccessor(TestMBB); 11947 11948 // Delete the pseudo instruction. 11949 MI.eraseFromParent(); 11950 11951 ++NumDynamicAllocaProbed; 11952 return TailMBB; 11953 } 11954 11955 MachineBasicBlock * 11956 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11957 MachineBasicBlock *BB) const { 11958 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11959 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11960 if (Subtarget.is64BitELFABI() && 11961 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11962 !Subtarget.isUsingPCRelativeCalls()) { 11963 // Call lowering should have added an r2 operand to indicate a dependence 11964 // on the TOC base pointer value. It can't however, because there is no 11965 // way to mark the dependence as implicit there, and so the stackmap code 11966 // will confuse it with a regular operand. Instead, add the dependence 11967 // here. 11968 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11969 } 11970 11971 return emitPatchPoint(MI, BB); 11972 } 11973 11974 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11975 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11976 return emitEHSjLjSetJmp(MI, BB); 11977 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11978 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11979 return emitEHSjLjLongJmp(MI, BB); 11980 } 11981 11982 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11983 11984 // To "insert" these instructions we actually have to insert their 11985 // control-flow patterns. 11986 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11987 MachineFunction::iterator It = ++BB->getIterator(); 11988 11989 MachineFunction *F = BB->getParent(); 11990 11991 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11992 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11993 MI.getOpcode() == PPC::SELECT_I8) { 11994 SmallVector<MachineOperand, 2> Cond; 11995 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11996 MI.getOpcode() == PPC::SELECT_CC_I8) 11997 Cond.push_back(MI.getOperand(4)); 11998 else 11999 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12000 Cond.push_back(MI.getOperand(1)); 12001 12002 DebugLoc dl = MI.getDebugLoc(); 12003 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12004 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12005 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12006 MI.getOpcode() == PPC::SELECT_CC_F8 || 12007 MI.getOpcode() == PPC::SELECT_CC_F16 || 12008 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12009 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12010 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12011 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12012 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12013 MI.getOpcode() == PPC::SELECT_CC_SPE || 12014 MI.getOpcode() == PPC::SELECT_F4 || 12015 MI.getOpcode() == PPC::SELECT_F8 || 12016 MI.getOpcode() == PPC::SELECT_F16 || 12017 MI.getOpcode() == PPC::SELECT_SPE || 12018 MI.getOpcode() == PPC::SELECT_SPE4 || 12019 MI.getOpcode() == PPC::SELECT_VRRC || 12020 MI.getOpcode() == PPC::SELECT_VSFRC || 12021 MI.getOpcode() == PPC::SELECT_VSSRC || 12022 MI.getOpcode() == PPC::SELECT_VSRC) { 12023 // The incoming instruction knows the destination vreg to set, the 12024 // condition code register to branch on, the true/false values to 12025 // select between, and a branch opcode to use. 12026 12027 // thisMBB: 12028 // ... 12029 // TrueVal = ... 12030 // cmpTY ccX, r1, r2 12031 // bCC copy1MBB 12032 // fallthrough --> copy0MBB 12033 MachineBasicBlock *thisMBB = BB; 12034 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12035 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12036 DebugLoc dl = MI.getDebugLoc(); 12037 F->insert(It, copy0MBB); 12038 F->insert(It, sinkMBB); 12039 12040 // Transfer the remainder of BB and its successor edges to sinkMBB. 12041 sinkMBB->splice(sinkMBB->begin(), BB, 12042 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12043 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12044 12045 // Next, add the true and fallthrough blocks as its successors. 12046 BB->addSuccessor(copy0MBB); 12047 BB->addSuccessor(sinkMBB); 12048 12049 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12050 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12051 MI.getOpcode() == PPC::SELECT_F16 || 12052 MI.getOpcode() == PPC::SELECT_SPE4 || 12053 MI.getOpcode() == PPC::SELECT_SPE || 12054 MI.getOpcode() == PPC::SELECT_VRRC || 12055 MI.getOpcode() == PPC::SELECT_VSFRC || 12056 MI.getOpcode() == PPC::SELECT_VSSRC || 12057 MI.getOpcode() == PPC::SELECT_VSRC) { 12058 BuildMI(BB, dl, TII->get(PPC::BC)) 12059 .addReg(MI.getOperand(1).getReg()) 12060 .addMBB(sinkMBB); 12061 } else { 12062 unsigned SelectPred = MI.getOperand(4).getImm(); 12063 BuildMI(BB, dl, TII->get(PPC::BCC)) 12064 .addImm(SelectPred) 12065 .addReg(MI.getOperand(1).getReg()) 12066 .addMBB(sinkMBB); 12067 } 12068 12069 // copy0MBB: 12070 // %FalseValue = ... 12071 // # fallthrough to sinkMBB 12072 BB = copy0MBB; 12073 12074 // Update machine-CFG edges 12075 BB->addSuccessor(sinkMBB); 12076 12077 // sinkMBB: 12078 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12079 // ... 12080 BB = sinkMBB; 12081 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12082 .addReg(MI.getOperand(3).getReg()) 12083 .addMBB(copy0MBB) 12084 .addReg(MI.getOperand(2).getReg()) 12085 .addMBB(thisMBB); 12086 } else if (MI.getOpcode() == PPC::ReadTB) { 12087 // To read the 64-bit time-base register on a 32-bit target, we read the 12088 // two halves. Should the counter have wrapped while it was being read, we 12089 // need to try again. 12090 // ... 12091 // readLoop: 12092 // mfspr Rx,TBU # load from TBU 12093 // mfspr Ry,TB # load from TB 12094 // mfspr Rz,TBU # load from TBU 12095 // cmpw crX,Rx,Rz # check if 'old'='new' 12096 // bne readLoop # branch if they're not equal 12097 // ... 12098 12099 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12100 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12101 DebugLoc dl = MI.getDebugLoc(); 12102 F->insert(It, readMBB); 12103 F->insert(It, sinkMBB); 12104 12105 // Transfer the remainder of BB and its successor edges to sinkMBB. 12106 sinkMBB->splice(sinkMBB->begin(), BB, 12107 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12108 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12109 12110 BB->addSuccessor(readMBB); 12111 BB = readMBB; 12112 12113 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12114 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12115 Register LoReg = MI.getOperand(0).getReg(); 12116 Register HiReg = MI.getOperand(1).getReg(); 12117 12118 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12119 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12120 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12121 12122 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12123 12124 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12125 .addReg(HiReg) 12126 .addReg(ReadAgainReg); 12127 BuildMI(BB, dl, TII->get(PPC::BCC)) 12128 .addImm(PPC::PRED_NE) 12129 .addReg(CmpReg) 12130 .addMBB(readMBB); 12131 12132 BB->addSuccessor(readMBB); 12133 BB->addSuccessor(sinkMBB); 12134 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12135 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12136 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12137 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12138 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12139 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12140 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12141 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12142 12143 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12144 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12145 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12146 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12147 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12148 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12149 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12150 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12151 12152 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12153 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12154 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12155 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12156 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12157 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12158 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12159 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12160 12161 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12162 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12163 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12164 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12165 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12166 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12167 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12168 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12169 12170 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12171 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12172 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12173 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12174 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12175 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12176 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12177 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12178 12179 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12180 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12181 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12182 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12183 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12184 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12185 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12186 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12187 12188 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12189 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12190 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12191 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12192 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12193 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12194 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12195 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12196 12197 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12198 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12199 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12200 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12201 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12202 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12203 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12204 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12205 12206 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12207 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12208 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12209 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12210 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12211 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12212 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12213 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12214 12215 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12216 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12217 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12218 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12219 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12220 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12221 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12222 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12223 12224 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12225 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12226 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12227 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12228 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12229 BB = EmitAtomicBinary(MI, BB, 4, 0); 12230 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12231 BB = EmitAtomicBinary(MI, BB, 8, 0); 12232 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12233 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12234 (Subtarget.hasPartwordAtomics() && 12235 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12236 (Subtarget.hasPartwordAtomics() && 12237 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12238 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12239 12240 auto LoadMnemonic = PPC::LDARX; 12241 auto StoreMnemonic = PPC::STDCX; 12242 switch (MI.getOpcode()) { 12243 default: 12244 llvm_unreachable("Compare and swap of unknown size"); 12245 case PPC::ATOMIC_CMP_SWAP_I8: 12246 LoadMnemonic = PPC::LBARX; 12247 StoreMnemonic = PPC::STBCX; 12248 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12249 break; 12250 case PPC::ATOMIC_CMP_SWAP_I16: 12251 LoadMnemonic = PPC::LHARX; 12252 StoreMnemonic = PPC::STHCX; 12253 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12254 break; 12255 case PPC::ATOMIC_CMP_SWAP_I32: 12256 LoadMnemonic = PPC::LWARX; 12257 StoreMnemonic = PPC::STWCX; 12258 break; 12259 case PPC::ATOMIC_CMP_SWAP_I64: 12260 LoadMnemonic = PPC::LDARX; 12261 StoreMnemonic = PPC::STDCX; 12262 break; 12263 } 12264 Register dest = MI.getOperand(0).getReg(); 12265 Register ptrA = MI.getOperand(1).getReg(); 12266 Register ptrB = MI.getOperand(2).getReg(); 12267 Register oldval = MI.getOperand(3).getReg(); 12268 Register newval = MI.getOperand(4).getReg(); 12269 DebugLoc dl = MI.getDebugLoc(); 12270 12271 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12272 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12273 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12274 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12275 F->insert(It, loop1MBB); 12276 F->insert(It, loop2MBB); 12277 F->insert(It, midMBB); 12278 F->insert(It, exitMBB); 12279 exitMBB->splice(exitMBB->begin(), BB, 12280 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12281 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12282 12283 // thisMBB: 12284 // ... 12285 // fallthrough --> loopMBB 12286 BB->addSuccessor(loop1MBB); 12287 12288 // loop1MBB: 12289 // l[bhwd]arx dest, ptr 12290 // cmp[wd] dest, oldval 12291 // bne- midMBB 12292 // loop2MBB: 12293 // st[bhwd]cx. newval, ptr 12294 // bne- loopMBB 12295 // b exitBB 12296 // midMBB: 12297 // st[bhwd]cx. dest, ptr 12298 // exitBB: 12299 BB = loop1MBB; 12300 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12301 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12302 .addReg(oldval) 12303 .addReg(dest); 12304 BuildMI(BB, dl, TII->get(PPC::BCC)) 12305 .addImm(PPC::PRED_NE) 12306 .addReg(PPC::CR0) 12307 .addMBB(midMBB); 12308 BB->addSuccessor(loop2MBB); 12309 BB->addSuccessor(midMBB); 12310 12311 BB = loop2MBB; 12312 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12313 .addReg(newval) 12314 .addReg(ptrA) 12315 .addReg(ptrB); 12316 BuildMI(BB, dl, TII->get(PPC::BCC)) 12317 .addImm(PPC::PRED_NE) 12318 .addReg(PPC::CR0) 12319 .addMBB(loop1MBB); 12320 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12321 BB->addSuccessor(loop1MBB); 12322 BB->addSuccessor(exitMBB); 12323 12324 BB = midMBB; 12325 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12326 .addReg(dest) 12327 .addReg(ptrA) 12328 .addReg(ptrB); 12329 BB->addSuccessor(exitMBB); 12330 12331 // exitMBB: 12332 // ... 12333 BB = exitMBB; 12334 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12335 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12336 // We must use 64-bit registers for addresses when targeting 64-bit, 12337 // since we're actually doing arithmetic on them. Other registers 12338 // can be 32-bit. 12339 bool is64bit = Subtarget.isPPC64(); 12340 bool isLittleEndian = Subtarget.isLittleEndian(); 12341 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12342 12343 Register dest = MI.getOperand(0).getReg(); 12344 Register ptrA = MI.getOperand(1).getReg(); 12345 Register ptrB = MI.getOperand(2).getReg(); 12346 Register oldval = MI.getOperand(3).getReg(); 12347 Register newval = MI.getOperand(4).getReg(); 12348 DebugLoc dl = MI.getDebugLoc(); 12349 12350 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12351 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12352 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12353 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12354 F->insert(It, loop1MBB); 12355 F->insert(It, loop2MBB); 12356 F->insert(It, midMBB); 12357 F->insert(It, exitMBB); 12358 exitMBB->splice(exitMBB->begin(), BB, 12359 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12360 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12361 12362 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12363 const TargetRegisterClass *RC = 12364 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12365 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12366 12367 Register PtrReg = RegInfo.createVirtualRegister(RC); 12368 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12369 Register ShiftReg = 12370 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12371 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12372 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12373 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12374 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12375 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12376 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12377 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12378 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12379 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12380 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12381 Register Ptr1Reg; 12382 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12383 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12384 // thisMBB: 12385 // ... 12386 // fallthrough --> loopMBB 12387 BB->addSuccessor(loop1MBB); 12388 12389 // The 4-byte load must be aligned, while a char or short may be 12390 // anywhere in the word. Hence all this nasty bookkeeping code. 12391 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12392 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12393 // xori shift, shift1, 24 [16] 12394 // rlwinm ptr, ptr1, 0, 0, 29 12395 // slw newval2, newval, shift 12396 // slw oldval2, oldval,shift 12397 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12398 // slw mask, mask2, shift 12399 // and newval3, newval2, mask 12400 // and oldval3, oldval2, mask 12401 // loop1MBB: 12402 // lwarx tmpDest, ptr 12403 // and tmp, tmpDest, mask 12404 // cmpw tmp, oldval3 12405 // bne- midMBB 12406 // loop2MBB: 12407 // andc tmp2, tmpDest, mask 12408 // or tmp4, tmp2, newval3 12409 // stwcx. tmp4, ptr 12410 // bne- loop1MBB 12411 // b exitBB 12412 // midMBB: 12413 // stwcx. tmpDest, ptr 12414 // exitBB: 12415 // srw dest, tmpDest, shift 12416 if (ptrA != ZeroReg) { 12417 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12418 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12419 .addReg(ptrA) 12420 .addReg(ptrB); 12421 } else { 12422 Ptr1Reg = ptrB; 12423 } 12424 12425 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12426 // mode. 12427 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12428 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12429 .addImm(3) 12430 .addImm(27) 12431 .addImm(is8bit ? 28 : 27); 12432 if (!isLittleEndian) 12433 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12434 .addReg(Shift1Reg) 12435 .addImm(is8bit ? 24 : 16); 12436 if (is64bit) 12437 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12438 .addReg(Ptr1Reg) 12439 .addImm(0) 12440 .addImm(61); 12441 else 12442 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12443 .addReg(Ptr1Reg) 12444 .addImm(0) 12445 .addImm(0) 12446 .addImm(29); 12447 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12448 .addReg(newval) 12449 .addReg(ShiftReg); 12450 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12451 .addReg(oldval) 12452 .addReg(ShiftReg); 12453 if (is8bit) 12454 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12455 else { 12456 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12457 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12458 .addReg(Mask3Reg) 12459 .addImm(65535); 12460 } 12461 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12462 .addReg(Mask2Reg) 12463 .addReg(ShiftReg); 12464 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12465 .addReg(NewVal2Reg) 12466 .addReg(MaskReg); 12467 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12468 .addReg(OldVal2Reg) 12469 .addReg(MaskReg); 12470 12471 BB = loop1MBB; 12472 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12473 .addReg(ZeroReg) 12474 .addReg(PtrReg); 12475 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12476 .addReg(TmpDestReg) 12477 .addReg(MaskReg); 12478 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12479 .addReg(TmpReg) 12480 .addReg(OldVal3Reg); 12481 BuildMI(BB, dl, TII->get(PPC::BCC)) 12482 .addImm(PPC::PRED_NE) 12483 .addReg(PPC::CR0) 12484 .addMBB(midMBB); 12485 BB->addSuccessor(loop2MBB); 12486 BB->addSuccessor(midMBB); 12487 12488 BB = loop2MBB; 12489 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12490 .addReg(TmpDestReg) 12491 .addReg(MaskReg); 12492 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12493 .addReg(Tmp2Reg) 12494 .addReg(NewVal3Reg); 12495 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12496 .addReg(Tmp4Reg) 12497 .addReg(ZeroReg) 12498 .addReg(PtrReg); 12499 BuildMI(BB, dl, TII->get(PPC::BCC)) 12500 .addImm(PPC::PRED_NE) 12501 .addReg(PPC::CR0) 12502 .addMBB(loop1MBB); 12503 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12504 BB->addSuccessor(loop1MBB); 12505 BB->addSuccessor(exitMBB); 12506 12507 BB = midMBB; 12508 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12509 .addReg(TmpDestReg) 12510 .addReg(ZeroReg) 12511 .addReg(PtrReg); 12512 BB->addSuccessor(exitMBB); 12513 12514 // exitMBB: 12515 // ... 12516 BB = exitMBB; 12517 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12518 .addReg(TmpReg) 12519 .addReg(ShiftReg); 12520 } else if (MI.getOpcode() == PPC::FADDrtz) { 12521 // This pseudo performs an FADD with rounding mode temporarily forced 12522 // to round-to-zero. We emit this via custom inserter since the FPSCR 12523 // is not modeled at the SelectionDAG level. 12524 Register Dest = MI.getOperand(0).getReg(); 12525 Register Src1 = MI.getOperand(1).getReg(); 12526 Register Src2 = MI.getOperand(2).getReg(); 12527 DebugLoc dl = MI.getDebugLoc(); 12528 12529 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12530 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12531 12532 // Save FPSCR value. 12533 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12534 12535 // Set rounding mode to round-to-zero. 12536 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12537 .addImm(31) 12538 .addReg(PPC::RM, RegState::ImplicitDefine); 12539 12540 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12541 .addImm(30) 12542 .addReg(PPC::RM, RegState::ImplicitDefine); 12543 12544 // Perform addition. 12545 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12546 .addReg(Src1) 12547 .addReg(Src2); 12548 if (MI.getFlag(MachineInstr::NoFPExcept)) 12549 MIB.setMIFlag(MachineInstr::NoFPExcept); 12550 12551 // Restore FPSCR value. 12552 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12553 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12554 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12555 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12556 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12557 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12558 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12559 ? PPC::ANDI8_rec 12560 : PPC::ANDI_rec; 12561 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12562 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12563 12564 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12565 Register Dest = RegInfo.createVirtualRegister( 12566 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12567 12568 DebugLoc Dl = MI.getDebugLoc(); 12569 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12570 .addReg(MI.getOperand(1).getReg()) 12571 .addImm(1); 12572 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12573 MI.getOperand(0).getReg()) 12574 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12575 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12576 DebugLoc Dl = MI.getDebugLoc(); 12577 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12578 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12579 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12580 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12581 MI.getOperand(0).getReg()) 12582 .addReg(CRReg); 12583 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12584 DebugLoc Dl = MI.getDebugLoc(); 12585 unsigned Imm = MI.getOperand(1).getImm(); 12586 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12587 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12588 MI.getOperand(0).getReg()) 12589 .addReg(PPC::CR0EQ); 12590 } else if (MI.getOpcode() == PPC::SETRNDi) { 12591 DebugLoc dl = MI.getDebugLoc(); 12592 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12593 12594 // Save FPSCR value. 12595 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12596 12597 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12598 // the following settings: 12599 // 00 Round to nearest 12600 // 01 Round to 0 12601 // 10 Round to +inf 12602 // 11 Round to -inf 12603 12604 // When the operand is immediate, using the two least significant bits of 12605 // the immediate to set the bits 62:63 of FPSCR. 12606 unsigned Mode = MI.getOperand(1).getImm(); 12607 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12608 .addImm(31) 12609 .addReg(PPC::RM, RegState::ImplicitDefine); 12610 12611 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12612 .addImm(30) 12613 .addReg(PPC::RM, RegState::ImplicitDefine); 12614 } else if (MI.getOpcode() == PPC::SETRND) { 12615 DebugLoc dl = MI.getDebugLoc(); 12616 12617 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12618 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12619 // If the target doesn't have DirectMove, we should use stack to do the 12620 // conversion, because the target doesn't have the instructions like mtvsrd 12621 // or mfvsrd to do this conversion directly. 12622 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12623 if (Subtarget.hasDirectMove()) { 12624 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12625 .addReg(SrcReg); 12626 } else { 12627 // Use stack to do the register copy. 12628 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12629 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12630 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12631 if (RC == &PPC::F8RCRegClass) { 12632 // Copy register from F8RCRegClass to G8RCRegclass. 12633 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12634 "Unsupported RegClass."); 12635 12636 StoreOp = PPC::STFD; 12637 LoadOp = PPC::LD; 12638 } else { 12639 // Copy register from G8RCRegClass to F8RCRegclass. 12640 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12641 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12642 "Unsupported RegClass."); 12643 } 12644 12645 MachineFrameInfo &MFI = F->getFrameInfo(); 12646 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12647 12648 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12649 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12650 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12651 MFI.getObjectAlign(FrameIdx)); 12652 12653 // Store the SrcReg into the stack. 12654 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12655 .addReg(SrcReg) 12656 .addImm(0) 12657 .addFrameIndex(FrameIdx) 12658 .addMemOperand(MMOStore); 12659 12660 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12661 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12662 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12663 MFI.getObjectAlign(FrameIdx)); 12664 12665 // Load from the stack where SrcReg is stored, and save to DestReg, 12666 // so we have done the RegClass conversion from RegClass::SrcReg to 12667 // RegClass::DestReg. 12668 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12669 .addImm(0) 12670 .addFrameIndex(FrameIdx) 12671 .addMemOperand(MMOLoad); 12672 } 12673 }; 12674 12675 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12676 12677 // Save FPSCR value. 12678 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12679 12680 // When the operand is gprc register, use two least significant bits of the 12681 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12682 // 12683 // copy OldFPSCRTmpReg, OldFPSCRReg 12684 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12685 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12686 // copy NewFPSCRReg, NewFPSCRTmpReg 12687 // mtfsf 255, NewFPSCRReg 12688 MachineOperand SrcOp = MI.getOperand(1); 12689 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12690 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12691 12692 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12693 12694 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12695 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12696 12697 // The first operand of INSERT_SUBREG should be a register which has 12698 // subregisters, we only care about its RegClass, so we should use an 12699 // IMPLICIT_DEF register. 12700 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12701 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12702 .addReg(ImDefReg) 12703 .add(SrcOp) 12704 .addImm(1); 12705 12706 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12707 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12708 .addReg(OldFPSCRTmpReg) 12709 .addReg(ExtSrcReg) 12710 .addImm(0) 12711 .addImm(62); 12712 12713 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12714 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12715 12716 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12717 // bits of FPSCR. 12718 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12719 .addImm(255) 12720 .addReg(NewFPSCRReg) 12721 .addImm(0) 12722 .addImm(0); 12723 } else if (MI.getOpcode() == PPC::SETFLM) { 12724 DebugLoc Dl = MI.getDebugLoc(); 12725 12726 // Result of setflm is previous FPSCR content, so we need to save it first. 12727 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12728 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12729 12730 // Put bits in 32:63 to FPSCR. 12731 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12732 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12733 .addImm(255) 12734 .addReg(NewFPSCRReg) 12735 .addImm(0) 12736 .addImm(0); 12737 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12738 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12739 return emitProbedAlloca(MI, BB); 12740 } else { 12741 llvm_unreachable("Unexpected instr type to insert"); 12742 } 12743 12744 MI.eraseFromParent(); // The pseudo instruction is gone now. 12745 return BB; 12746 } 12747 12748 //===----------------------------------------------------------------------===// 12749 // Target Optimization Hooks 12750 //===----------------------------------------------------------------------===// 12751 12752 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12753 // For the estimates, convergence is quadratic, so we essentially double the 12754 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12755 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12756 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12757 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12758 if (VT.getScalarType() == MVT::f64) 12759 RefinementSteps++; 12760 return RefinementSteps; 12761 } 12762 12763 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12764 const DenormalMode &Mode) const { 12765 // TODO - add support for v2f64/v4f32 12766 EVT VT = Op.getValueType(); 12767 if (VT != MVT::f64) 12768 return SDValue(); 12769 12770 SDLoc DL(Op); 12771 // The output register of FTSQRT is CR field. 12772 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12773 // ftsqrt BF,FRB 12774 // Let e_b be the unbiased exponent of the double-precision 12775 // floating-point operand in register FRB. 12776 // fe_flag is set to 1 if either of the following conditions occurs. 12777 // - The double-precision floating-point operand in register FRB is a zero, 12778 // a NaN, or an infinity, or a negative value. 12779 // - e_b is less than or equal to -970. 12780 // Otherwise fe_flag is set to 0. 12781 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12782 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12783 // exponent is less than -970) 12784 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12785 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12786 FTSQRT, SRIdxVal), 12787 0); 12788 } 12789 12790 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12791 int Enabled, int &RefinementSteps, 12792 bool &UseOneConstNR, 12793 bool Reciprocal) const { 12794 EVT VT = Operand.getValueType(); 12795 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12796 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12797 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12798 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12799 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12800 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12801 12802 // The Newton-Raphson computation with a single constant does not provide 12803 // enough accuracy on some CPUs. 12804 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12805 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12806 } 12807 return SDValue(); 12808 } 12809 12810 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12811 int Enabled, 12812 int &RefinementSteps) const { 12813 EVT VT = Operand.getValueType(); 12814 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12815 (VT == MVT::f64 && Subtarget.hasFRE()) || 12816 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12817 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12818 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12819 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12820 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12821 } 12822 return SDValue(); 12823 } 12824 12825 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12826 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12827 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12828 // enabled for division), this functionality is redundant with the default 12829 // combiner logic (once the division -> reciprocal/multiply transformation 12830 // has taken place). As a result, this matters more for older cores than for 12831 // newer ones. 12832 12833 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12834 // reciprocal if there are two or more FDIVs (for embedded cores with only 12835 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12836 switch (Subtarget.getCPUDirective()) { 12837 default: 12838 return 3; 12839 case PPC::DIR_440: 12840 case PPC::DIR_A2: 12841 case PPC::DIR_E500: 12842 case PPC::DIR_E500mc: 12843 case PPC::DIR_E5500: 12844 return 2; 12845 } 12846 } 12847 12848 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12849 // collapsed, and so we need to look through chains of them. 12850 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12851 int64_t& Offset, SelectionDAG &DAG) { 12852 if (DAG.isBaseWithConstantOffset(Loc)) { 12853 Base = Loc.getOperand(0); 12854 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12855 12856 // The base might itself be a base plus an offset, and if so, accumulate 12857 // that as well. 12858 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12859 } 12860 } 12861 12862 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12863 unsigned Bytes, int Dist, 12864 SelectionDAG &DAG) { 12865 if (VT.getSizeInBits() / 8 != Bytes) 12866 return false; 12867 12868 SDValue BaseLoc = Base->getBasePtr(); 12869 if (Loc.getOpcode() == ISD::FrameIndex) { 12870 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12871 return false; 12872 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12873 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12874 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12875 int FS = MFI.getObjectSize(FI); 12876 int BFS = MFI.getObjectSize(BFI); 12877 if (FS != BFS || FS != (int)Bytes) return false; 12878 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12879 } 12880 12881 SDValue Base1 = Loc, Base2 = BaseLoc; 12882 int64_t Offset1 = 0, Offset2 = 0; 12883 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12884 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12885 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12886 return true; 12887 12888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12889 const GlobalValue *GV1 = nullptr; 12890 const GlobalValue *GV2 = nullptr; 12891 Offset1 = 0; 12892 Offset2 = 0; 12893 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12894 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12895 if (isGA1 && isGA2 && GV1 == GV2) 12896 return Offset1 == (Offset2 + Dist*Bytes); 12897 return false; 12898 } 12899 12900 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12901 // not enforce equality of the chain operands. 12902 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12903 unsigned Bytes, int Dist, 12904 SelectionDAG &DAG) { 12905 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12906 EVT VT = LS->getMemoryVT(); 12907 SDValue Loc = LS->getBasePtr(); 12908 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12909 } 12910 12911 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12912 EVT VT; 12913 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12914 default: return false; 12915 case Intrinsic::ppc_altivec_lvx: 12916 case Intrinsic::ppc_altivec_lvxl: 12917 case Intrinsic::ppc_vsx_lxvw4x: 12918 case Intrinsic::ppc_vsx_lxvw4x_be: 12919 VT = MVT::v4i32; 12920 break; 12921 case Intrinsic::ppc_vsx_lxvd2x: 12922 case Intrinsic::ppc_vsx_lxvd2x_be: 12923 VT = MVT::v2f64; 12924 break; 12925 case Intrinsic::ppc_altivec_lvebx: 12926 VT = MVT::i8; 12927 break; 12928 case Intrinsic::ppc_altivec_lvehx: 12929 VT = MVT::i16; 12930 break; 12931 case Intrinsic::ppc_altivec_lvewx: 12932 VT = MVT::i32; 12933 break; 12934 } 12935 12936 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12937 } 12938 12939 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12940 EVT VT; 12941 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12942 default: return false; 12943 case Intrinsic::ppc_altivec_stvx: 12944 case Intrinsic::ppc_altivec_stvxl: 12945 case Intrinsic::ppc_vsx_stxvw4x: 12946 VT = MVT::v4i32; 12947 break; 12948 case Intrinsic::ppc_vsx_stxvd2x: 12949 VT = MVT::v2f64; 12950 break; 12951 case Intrinsic::ppc_vsx_stxvw4x_be: 12952 VT = MVT::v4i32; 12953 break; 12954 case Intrinsic::ppc_vsx_stxvd2x_be: 12955 VT = MVT::v2f64; 12956 break; 12957 case Intrinsic::ppc_altivec_stvebx: 12958 VT = MVT::i8; 12959 break; 12960 case Intrinsic::ppc_altivec_stvehx: 12961 VT = MVT::i16; 12962 break; 12963 case Intrinsic::ppc_altivec_stvewx: 12964 VT = MVT::i32; 12965 break; 12966 } 12967 12968 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12969 } 12970 12971 return false; 12972 } 12973 12974 // Return true is there is a nearyby consecutive load to the one provided 12975 // (regardless of alignment). We search up and down the chain, looking though 12976 // token factors and other loads (but nothing else). As a result, a true result 12977 // indicates that it is safe to create a new consecutive load adjacent to the 12978 // load provided. 12979 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12980 SDValue Chain = LD->getChain(); 12981 EVT VT = LD->getMemoryVT(); 12982 12983 SmallSet<SDNode *, 16> LoadRoots; 12984 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12985 SmallSet<SDNode *, 16> Visited; 12986 12987 // First, search up the chain, branching to follow all token-factor operands. 12988 // If we find a consecutive load, then we're done, otherwise, record all 12989 // nodes just above the top-level loads and token factors. 12990 while (!Queue.empty()) { 12991 SDNode *ChainNext = Queue.pop_back_val(); 12992 if (!Visited.insert(ChainNext).second) 12993 continue; 12994 12995 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12996 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12997 return true; 12998 12999 if (!Visited.count(ChainLD->getChain().getNode())) 13000 Queue.push_back(ChainLD->getChain().getNode()); 13001 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13002 for (const SDUse &O : ChainNext->ops()) 13003 if (!Visited.count(O.getNode())) 13004 Queue.push_back(O.getNode()); 13005 } else 13006 LoadRoots.insert(ChainNext); 13007 } 13008 13009 // Second, search down the chain, starting from the top-level nodes recorded 13010 // in the first phase. These top-level nodes are the nodes just above all 13011 // loads and token factors. Starting with their uses, recursively look though 13012 // all loads (just the chain uses) and token factors to find a consecutive 13013 // load. 13014 Visited.clear(); 13015 Queue.clear(); 13016 13017 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13018 IE = LoadRoots.end(); I != IE; ++I) { 13019 Queue.push_back(*I); 13020 13021 while (!Queue.empty()) { 13022 SDNode *LoadRoot = Queue.pop_back_val(); 13023 if (!Visited.insert(LoadRoot).second) 13024 continue; 13025 13026 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13027 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13028 return true; 13029 13030 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13031 UE = LoadRoot->use_end(); UI != UE; ++UI) 13032 if (((isa<MemSDNode>(*UI) && 13033 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13034 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13035 Queue.push_back(*UI); 13036 } 13037 } 13038 13039 return false; 13040 } 13041 13042 /// This function is called when we have proved that a SETCC node can be replaced 13043 /// by subtraction (and other supporting instructions) so that the result of 13044 /// comparison is kept in a GPR instead of CR. This function is purely for 13045 /// codegen purposes and has some flags to guide the codegen process. 13046 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13047 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13048 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13049 13050 // Zero extend the operands to the largest legal integer. Originally, they 13051 // must be of a strictly smaller size. 13052 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13053 DAG.getConstant(Size, DL, MVT::i32)); 13054 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13055 DAG.getConstant(Size, DL, MVT::i32)); 13056 13057 // Swap if needed. Depends on the condition code. 13058 if (Swap) 13059 std::swap(Op0, Op1); 13060 13061 // Subtract extended integers. 13062 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13063 13064 // Move the sign bit to the least significant position and zero out the rest. 13065 // Now the least significant bit carries the result of original comparison. 13066 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13067 DAG.getConstant(Size - 1, DL, MVT::i32)); 13068 auto Final = Shifted; 13069 13070 // Complement the result if needed. Based on the condition code. 13071 if (Complement) 13072 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13073 DAG.getConstant(1, DL, MVT::i64)); 13074 13075 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13076 } 13077 13078 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13079 DAGCombinerInfo &DCI) const { 13080 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13081 13082 SelectionDAG &DAG = DCI.DAG; 13083 SDLoc DL(N); 13084 13085 // Size of integers being compared has a critical role in the following 13086 // analysis, so we prefer to do this when all types are legal. 13087 if (!DCI.isAfterLegalizeDAG()) 13088 return SDValue(); 13089 13090 // If all users of SETCC extend its value to a legal integer type 13091 // then we replace SETCC with a subtraction 13092 for (SDNode::use_iterator UI = N->use_begin(), 13093 UE = N->use_end(); UI != UE; ++UI) { 13094 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13095 return SDValue(); 13096 } 13097 13098 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13099 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13100 13101 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13102 13103 if (OpSize < Size) { 13104 switch (CC) { 13105 default: break; 13106 case ISD::SETULT: 13107 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13108 case ISD::SETULE: 13109 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13110 case ISD::SETUGT: 13111 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13112 case ISD::SETUGE: 13113 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13114 } 13115 } 13116 13117 return SDValue(); 13118 } 13119 13120 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13121 DAGCombinerInfo &DCI) const { 13122 SelectionDAG &DAG = DCI.DAG; 13123 SDLoc dl(N); 13124 13125 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13126 // If we're tracking CR bits, we need to be careful that we don't have: 13127 // trunc(binary-ops(zext(x), zext(y))) 13128 // or 13129 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13130 // such that we're unnecessarily moving things into GPRs when it would be 13131 // better to keep them in CR bits. 13132 13133 // Note that trunc here can be an actual i1 trunc, or can be the effective 13134 // truncation that comes from a setcc or select_cc. 13135 if (N->getOpcode() == ISD::TRUNCATE && 13136 N->getValueType(0) != MVT::i1) 13137 return SDValue(); 13138 13139 if (N->getOperand(0).getValueType() != MVT::i32 && 13140 N->getOperand(0).getValueType() != MVT::i64) 13141 return SDValue(); 13142 13143 if (N->getOpcode() == ISD::SETCC || 13144 N->getOpcode() == ISD::SELECT_CC) { 13145 // If we're looking at a comparison, then we need to make sure that the 13146 // high bits (all except for the first) don't matter the result. 13147 ISD::CondCode CC = 13148 cast<CondCodeSDNode>(N->getOperand( 13149 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13150 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13151 13152 if (ISD::isSignedIntSetCC(CC)) { 13153 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13154 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13155 return SDValue(); 13156 } else if (ISD::isUnsignedIntSetCC(CC)) { 13157 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13158 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13159 !DAG.MaskedValueIsZero(N->getOperand(1), 13160 APInt::getHighBitsSet(OpBits, OpBits-1))) 13161 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13162 : SDValue()); 13163 } else { 13164 // This is neither a signed nor an unsigned comparison, just make sure 13165 // that the high bits are equal. 13166 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13167 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13168 13169 // We don't really care about what is known about the first bit (if 13170 // anything), so clear it in all masks prior to comparing them. 13171 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13172 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13173 13174 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13175 return SDValue(); 13176 } 13177 } 13178 13179 // We now know that the higher-order bits are irrelevant, we just need to 13180 // make sure that all of the intermediate operations are bit operations, and 13181 // all inputs are extensions. 13182 if (N->getOperand(0).getOpcode() != ISD::AND && 13183 N->getOperand(0).getOpcode() != ISD::OR && 13184 N->getOperand(0).getOpcode() != ISD::XOR && 13185 N->getOperand(0).getOpcode() != ISD::SELECT && 13186 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13187 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13188 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13189 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13190 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13191 return SDValue(); 13192 13193 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13194 N->getOperand(1).getOpcode() != ISD::AND && 13195 N->getOperand(1).getOpcode() != ISD::OR && 13196 N->getOperand(1).getOpcode() != ISD::XOR && 13197 N->getOperand(1).getOpcode() != ISD::SELECT && 13198 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13199 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13200 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13201 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13202 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13203 return SDValue(); 13204 13205 SmallVector<SDValue, 4> Inputs; 13206 SmallVector<SDValue, 8> BinOps, PromOps; 13207 SmallPtrSet<SDNode *, 16> Visited; 13208 13209 for (unsigned i = 0; i < 2; ++i) { 13210 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13211 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13212 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13213 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13214 isa<ConstantSDNode>(N->getOperand(i))) 13215 Inputs.push_back(N->getOperand(i)); 13216 else 13217 BinOps.push_back(N->getOperand(i)); 13218 13219 if (N->getOpcode() == ISD::TRUNCATE) 13220 break; 13221 } 13222 13223 // Visit all inputs, collect all binary operations (and, or, xor and 13224 // select) that are all fed by extensions. 13225 while (!BinOps.empty()) { 13226 SDValue BinOp = BinOps.back(); 13227 BinOps.pop_back(); 13228 13229 if (!Visited.insert(BinOp.getNode()).second) 13230 continue; 13231 13232 PromOps.push_back(BinOp); 13233 13234 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13235 // The condition of the select is not promoted. 13236 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13237 continue; 13238 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13239 continue; 13240 13241 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13242 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13243 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13244 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13245 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13246 Inputs.push_back(BinOp.getOperand(i)); 13247 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13248 BinOp.getOperand(i).getOpcode() == ISD::OR || 13249 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13250 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13251 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13252 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13253 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13254 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13255 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13256 BinOps.push_back(BinOp.getOperand(i)); 13257 } else { 13258 // We have an input that is not an extension or another binary 13259 // operation; we'll abort this transformation. 13260 return SDValue(); 13261 } 13262 } 13263 } 13264 13265 // Make sure that this is a self-contained cluster of operations (which 13266 // is not quite the same thing as saying that everything has only one 13267 // use). 13268 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13269 if (isa<ConstantSDNode>(Inputs[i])) 13270 continue; 13271 13272 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13273 UE = Inputs[i].getNode()->use_end(); 13274 UI != UE; ++UI) { 13275 SDNode *User = *UI; 13276 if (User != N && !Visited.count(User)) 13277 return SDValue(); 13278 13279 // Make sure that we're not going to promote the non-output-value 13280 // operand(s) or SELECT or SELECT_CC. 13281 // FIXME: Although we could sometimes handle this, and it does occur in 13282 // practice that one of the condition inputs to the select is also one of 13283 // the outputs, we currently can't deal with this. 13284 if (User->getOpcode() == ISD::SELECT) { 13285 if (User->getOperand(0) == Inputs[i]) 13286 return SDValue(); 13287 } else if (User->getOpcode() == ISD::SELECT_CC) { 13288 if (User->getOperand(0) == Inputs[i] || 13289 User->getOperand(1) == Inputs[i]) 13290 return SDValue(); 13291 } 13292 } 13293 } 13294 13295 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13296 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13297 UE = PromOps[i].getNode()->use_end(); 13298 UI != UE; ++UI) { 13299 SDNode *User = *UI; 13300 if (User != N && !Visited.count(User)) 13301 return SDValue(); 13302 13303 // Make sure that we're not going to promote the non-output-value 13304 // operand(s) or SELECT or SELECT_CC. 13305 // FIXME: Although we could sometimes handle this, and it does occur in 13306 // practice that one of the condition inputs to the select is also one of 13307 // the outputs, we currently can't deal with this. 13308 if (User->getOpcode() == ISD::SELECT) { 13309 if (User->getOperand(0) == PromOps[i]) 13310 return SDValue(); 13311 } else if (User->getOpcode() == ISD::SELECT_CC) { 13312 if (User->getOperand(0) == PromOps[i] || 13313 User->getOperand(1) == PromOps[i]) 13314 return SDValue(); 13315 } 13316 } 13317 } 13318 13319 // Replace all inputs with the extension operand. 13320 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13321 // Constants may have users outside the cluster of to-be-promoted nodes, 13322 // and so we need to replace those as we do the promotions. 13323 if (isa<ConstantSDNode>(Inputs[i])) 13324 continue; 13325 else 13326 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13327 } 13328 13329 std::list<HandleSDNode> PromOpHandles; 13330 for (auto &PromOp : PromOps) 13331 PromOpHandles.emplace_back(PromOp); 13332 13333 // Replace all operations (these are all the same, but have a different 13334 // (i1) return type). DAG.getNode will validate that the types of 13335 // a binary operator match, so go through the list in reverse so that 13336 // we've likely promoted both operands first. Any intermediate truncations or 13337 // extensions disappear. 13338 while (!PromOpHandles.empty()) { 13339 SDValue PromOp = PromOpHandles.back().getValue(); 13340 PromOpHandles.pop_back(); 13341 13342 if (PromOp.getOpcode() == ISD::TRUNCATE || 13343 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13344 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13345 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13346 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13347 PromOp.getOperand(0).getValueType() != MVT::i1) { 13348 // The operand is not yet ready (see comment below). 13349 PromOpHandles.emplace_front(PromOp); 13350 continue; 13351 } 13352 13353 SDValue RepValue = PromOp.getOperand(0); 13354 if (isa<ConstantSDNode>(RepValue)) 13355 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13356 13357 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13358 continue; 13359 } 13360 13361 unsigned C; 13362 switch (PromOp.getOpcode()) { 13363 default: C = 0; break; 13364 case ISD::SELECT: C = 1; break; 13365 case ISD::SELECT_CC: C = 2; break; 13366 } 13367 13368 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13369 PromOp.getOperand(C).getValueType() != MVT::i1) || 13370 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13371 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13372 // The to-be-promoted operands of this node have not yet been 13373 // promoted (this should be rare because we're going through the 13374 // list backward, but if one of the operands has several users in 13375 // this cluster of to-be-promoted nodes, it is possible). 13376 PromOpHandles.emplace_front(PromOp); 13377 continue; 13378 } 13379 13380 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13381 PromOp.getNode()->op_end()); 13382 13383 // If there are any constant inputs, make sure they're replaced now. 13384 for (unsigned i = 0; i < 2; ++i) 13385 if (isa<ConstantSDNode>(Ops[C+i])) 13386 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13387 13388 DAG.ReplaceAllUsesOfValueWith(PromOp, 13389 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13390 } 13391 13392 // Now we're left with the initial truncation itself. 13393 if (N->getOpcode() == ISD::TRUNCATE) 13394 return N->getOperand(0); 13395 13396 // Otherwise, this is a comparison. The operands to be compared have just 13397 // changed type (to i1), but everything else is the same. 13398 return SDValue(N, 0); 13399 } 13400 13401 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13402 DAGCombinerInfo &DCI) const { 13403 SelectionDAG &DAG = DCI.DAG; 13404 SDLoc dl(N); 13405 13406 // If we're tracking CR bits, we need to be careful that we don't have: 13407 // zext(binary-ops(trunc(x), trunc(y))) 13408 // or 13409 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13410 // such that we're unnecessarily moving things into CR bits that can more 13411 // efficiently stay in GPRs. Note that if we're not certain that the high 13412 // bits are set as required by the final extension, we still may need to do 13413 // some masking to get the proper behavior. 13414 13415 // This same functionality is important on PPC64 when dealing with 13416 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13417 // the return values of functions. Because it is so similar, it is handled 13418 // here as well. 13419 13420 if (N->getValueType(0) != MVT::i32 && 13421 N->getValueType(0) != MVT::i64) 13422 return SDValue(); 13423 13424 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13425 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13426 return SDValue(); 13427 13428 if (N->getOperand(0).getOpcode() != ISD::AND && 13429 N->getOperand(0).getOpcode() != ISD::OR && 13430 N->getOperand(0).getOpcode() != ISD::XOR && 13431 N->getOperand(0).getOpcode() != ISD::SELECT && 13432 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13433 return SDValue(); 13434 13435 SmallVector<SDValue, 4> Inputs; 13436 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13437 SmallPtrSet<SDNode *, 16> Visited; 13438 13439 // Visit all inputs, collect all binary operations (and, or, xor and 13440 // select) that are all fed by truncations. 13441 while (!BinOps.empty()) { 13442 SDValue BinOp = BinOps.back(); 13443 BinOps.pop_back(); 13444 13445 if (!Visited.insert(BinOp.getNode()).second) 13446 continue; 13447 13448 PromOps.push_back(BinOp); 13449 13450 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13451 // The condition of the select is not promoted. 13452 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13453 continue; 13454 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13455 continue; 13456 13457 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13458 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13459 Inputs.push_back(BinOp.getOperand(i)); 13460 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13461 BinOp.getOperand(i).getOpcode() == ISD::OR || 13462 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13463 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13464 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13465 BinOps.push_back(BinOp.getOperand(i)); 13466 } else { 13467 // We have an input that is not a truncation or another binary 13468 // operation; we'll abort this transformation. 13469 return SDValue(); 13470 } 13471 } 13472 } 13473 13474 // The operands of a select that must be truncated when the select is 13475 // promoted because the operand is actually part of the to-be-promoted set. 13476 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13477 13478 // Make sure that this is a self-contained cluster of operations (which 13479 // is not quite the same thing as saying that everything has only one 13480 // use). 13481 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13482 if (isa<ConstantSDNode>(Inputs[i])) 13483 continue; 13484 13485 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13486 UE = Inputs[i].getNode()->use_end(); 13487 UI != UE; ++UI) { 13488 SDNode *User = *UI; 13489 if (User != N && !Visited.count(User)) 13490 return SDValue(); 13491 13492 // If we're going to promote the non-output-value operand(s) or SELECT or 13493 // SELECT_CC, record them for truncation. 13494 if (User->getOpcode() == ISD::SELECT) { 13495 if (User->getOperand(0) == Inputs[i]) 13496 SelectTruncOp[0].insert(std::make_pair(User, 13497 User->getOperand(0).getValueType())); 13498 } else if (User->getOpcode() == ISD::SELECT_CC) { 13499 if (User->getOperand(0) == Inputs[i]) 13500 SelectTruncOp[0].insert(std::make_pair(User, 13501 User->getOperand(0).getValueType())); 13502 if (User->getOperand(1) == Inputs[i]) 13503 SelectTruncOp[1].insert(std::make_pair(User, 13504 User->getOperand(1).getValueType())); 13505 } 13506 } 13507 } 13508 13509 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13510 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13511 UE = PromOps[i].getNode()->use_end(); 13512 UI != UE; ++UI) { 13513 SDNode *User = *UI; 13514 if (User != N && !Visited.count(User)) 13515 return SDValue(); 13516 13517 // If we're going to promote the non-output-value operand(s) or SELECT or 13518 // SELECT_CC, record them for truncation. 13519 if (User->getOpcode() == ISD::SELECT) { 13520 if (User->getOperand(0) == PromOps[i]) 13521 SelectTruncOp[0].insert(std::make_pair(User, 13522 User->getOperand(0).getValueType())); 13523 } else if (User->getOpcode() == ISD::SELECT_CC) { 13524 if (User->getOperand(0) == PromOps[i]) 13525 SelectTruncOp[0].insert(std::make_pair(User, 13526 User->getOperand(0).getValueType())); 13527 if (User->getOperand(1) == PromOps[i]) 13528 SelectTruncOp[1].insert(std::make_pair(User, 13529 User->getOperand(1).getValueType())); 13530 } 13531 } 13532 } 13533 13534 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13535 bool ReallyNeedsExt = false; 13536 if (N->getOpcode() != ISD::ANY_EXTEND) { 13537 // If all of the inputs are not already sign/zero extended, then 13538 // we'll still need to do that at the end. 13539 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13540 if (isa<ConstantSDNode>(Inputs[i])) 13541 continue; 13542 13543 unsigned OpBits = 13544 Inputs[i].getOperand(0).getValueSizeInBits(); 13545 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13546 13547 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13548 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13549 APInt::getHighBitsSet(OpBits, 13550 OpBits-PromBits))) || 13551 (N->getOpcode() == ISD::SIGN_EXTEND && 13552 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13553 (OpBits-(PromBits-1)))) { 13554 ReallyNeedsExt = true; 13555 break; 13556 } 13557 } 13558 } 13559 13560 // Replace all inputs, either with the truncation operand, or a 13561 // truncation or extension to the final output type. 13562 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13563 // Constant inputs need to be replaced with the to-be-promoted nodes that 13564 // use them because they might have users outside of the cluster of 13565 // promoted nodes. 13566 if (isa<ConstantSDNode>(Inputs[i])) 13567 continue; 13568 13569 SDValue InSrc = Inputs[i].getOperand(0); 13570 if (Inputs[i].getValueType() == N->getValueType(0)) 13571 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13572 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13573 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13574 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13575 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13576 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13577 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13578 else 13579 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13580 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13581 } 13582 13583 std::list<HandleSDNode> PromOpHandles; 13584 for (auto &PromOp : PromOps) 13585 PromOpHandles.emplace_back(PromOp); 13586 13587 // Replace all operations (these are all the same, but have a different 13588 // (promoted) return type). DAG.getNode will validate that the types of 13589 // a binary operator match, so go through the list in reverse so that 13590 // we've likely promoted both operands first. 13591 while (!PromOpHandles.empty()) { 13592 SDValue PromOp = PromOpHandles.back().getValue(); 13593 PromOpHandles.pop_back(); 13594 13595 unsigned C; 13596 switch (PromOp.getOpcode()) { 13597 default: C = 0; break; 13598 case ISD::SELECT: C = 1; break; 13599 case ISD::SELECT_CC: C = 2; break; 13600 } 13601 13602 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13603 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13604 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13605 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13606 // The to-be-promoted operands of this node have not yet been 13607 // promoted (this should be rare because we're going through the 13608 // list backward, but if one of the operands has several users in 13609 // this cluster of to-be-promoted nodes, it is possible). 13610 PromOpHandles.emplace_front(PromOp); 13611 continue; 13612 } 13613 13614 // For SELECT and SELECT_CC nodes, we do a similar check for any 13615 // to-be-promoted comparison inputs. 13616 if (PromOp.getOpcode() == ISD::SELECT || 13617 PromOp.getOpcode() == ISD::SELECT_CC) { 13618 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13619 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13620 (SelectTruncOp[1].count(PromOp.getNode()) && 13621 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13622 PromOpHandles.emplace_front(PromOp); 13623 continue; 13624 } 13625 } 13626 13627 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13628 PromOp.getNode()->op_end()); 13629 13630 // If this node has constant inputs, then they'll need to be promoted here. 13631 for (unsigned i = 0; i < 2; ++i) { 13632 if (!isa<ConstantSDNode>(Ops[C+i])) 13633 continue; 13634 if (Ops[C+i].getValueType() == N->getValueType(0)) 13635 continue; 13636 13637 if (N->getOpcode() == ISD::SIGN_EXTEND) 13638 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13639 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13640 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13641 else 13642 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13643 } 13644 13645 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13646 // truncate them again to the original value type. 13647 if (PromOp.getOpcode() == ISD::SELECT || 13648 PromOp.getOpcode() == ISD::SELECT_CC) { 13649 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13650 if (SI0 != SelectTruncOp[0].end()) 13651 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13652 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13653 if (SI1 != SelectTruncOp[1].end()) 13654 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13655 } 13656 13657 DAG.ReplaceAllUsesOfValueWith(PromOp, 13658 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13659 } 13660 13661 // Now we're left with the initial extension itself. 13662 if (!ReallyNeedsExt) 13663 return N->getOperand(0); 13664 13665 // To zero extend, just mask off everything except for the first bit (in the 13666 // i1 case). 13667 if (N->getOpcode() == ISD::ZERO_EXTEND) 13668 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13669 DAG.getConstant(APInt::getLowBitsSet( 13670 N->getValueSizeInBits(0), PromBits), 13671 dl, N->getValueType(0))); 13672 13673 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13674 "Invalid extension type"); 13675 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13676 SDValue ShiftCst = 13677 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13678 return DAG.getNode( 13679 ISD::SRA, dl, N->getValueType(0), 13680 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13681 ShiftCst); 13682 } 13683 13684 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13685 DAGCombinerInfo &DCI) const { 13686 assert(N->getOpcode() == ISD::SETCC && 13687 "Should be called with a SETCC node"); 13688 13689 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13690 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13691 SDValue LHS = N->getOperand(0); 13692 SDValue RHS = N->getOperand(1); 13693 13694 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13695 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13696 LHS.hasOneUse()) 13697 std::swap(LHS, RHS); 13698 13699 // x == 0-y --> x+y == 0 13700 // x != 0-y --> x+y != 0 13701 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13702 RHS.hasOneUse()) { 13703 SDLoc DL(N); 13704 SelectionDAG &DAG = DCI.DAG; 13705 EVT VT = N->getValueType(0); 13706 EVT OpVT = LHS.getValueType(); 13707 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13708 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13709 } 13710 } 13711 13712 return DAGCombineTruncBoolExt(N, DCI); 13713 } 13714 13715 // Is this an extending load from an f32 to an f64? 13716 static bool isFPExtLoad(SDValue Op) { 13717 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13718 return LD->getExtensionType() == ISD::EXTLOAD && 13719 Op.getValueType() == MVT::f64; 13720 return false; 13721 } 13722 13723 /// Reduces the number of fp-to-int conversion when building a vector. 13724 /// 13725 /// If this vector is built out of floating to integer conversions, 13726 /// transform it to a vector built out of floating point values followed by a 13727 /// single floating to integer conversion of the vector. 13728 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13729 /// becomes (fptosi (build_vector ($A, $B, ...))) 13730 SDValue PPCTargetLowering:: 13731 combineElementTruncationToVectorTruncation(SDNode *N, 13732 DAGCombinerInfo &DCI) const { 13733 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13734 "Should be called with a BUILD_VECTOR node"); 13735 13736 SelectionDAG &DAG = DCI.DAG; 13737 SDLoc dl(N); 13738 13739 SDValue FirstInput = N->getOperand(0); 13740 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13741 "The input operand must be an fp-to-int conversion."); 13742 13743 // This combine happens after legalization so the fp_to_[su]i nodes are 13744 // already converted to PPCSISD nodes. 13745 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13746 if (FirstConversion == PPCISD::FCTIDZ || 13747 FirstConversion == PPCISD::FCTIDUZ || 13748 FirstConversion == PPCISD::FCTIWZ || 13749 FirstConversion == PPCISD::FCTIWUZ) { 13750 bool IsSplat = true; 13751 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13752 FirstConversion == PPCISD::FCTIWUZ; 13753 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13754 SmallVector<SDValue, 4> Ops; 13755 EVT TargetVT = N->getValueType(0); 13756 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13757 SDValue NextOp = N->getOperand(i); 13758 if (NextOp.getOpcode() != PPCISD::MFVSR) 13759 return SDValue(); 13760 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13761 if (NextConversion != FirstConversion) 13762 return SDValue(); 13763 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13764 // This is not valid if the input was originally double precision. It is 13765 // also not profitable to do unless this is an extending load in which 13766 // case doing this combine will allow us to combine consecutive loads. 13767 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13768 return SDValue(); 13769 if (N->getOperand(i) != FirstInput) 13770 IsSplat = false; 13771 } 13772 13773 // If this is a splat, we leave it as-is since there will be only a single 13774 // fp-to-int conversion followed by a splat of the integer. This is better 13775 // for 32-bit and smaller ints and neutral for 64-bit ints. 13776 if (IsSplat) 13777 return SDValue(); 13778 13779 // Now that we know we have the right type of node, get its operands 13780 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13781 SDValue In = N->getOperand(i).getOperand(0); 13782 if (Is32Bit) { 13783 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13784 // here, we know that all inputs are extending loads so this is safe). 13785 if (In.isUndef()) 13786 Ops.push_back(DAG.getUNDEF(SrcVT)); 13787 else { 13788 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13789 MVT::f32, In.getOperand(0), 13790 DAG.getIntPtrConstant(1, dl)); 13791 Ops.push_back(Trunc); 13792 } 13793 } else 13794 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13795 } 13796 13797 unsigned Opcode; 13798 if (FirstConversion == PPCISD::FCTIDZ || 13799 FirstConversion == PPCISD::FCTIWZ) 13800 Opcode = ISD::FP_TO_SINT; 13801 else 13802 Opcode = ISD::FP_TO_UINT; 13803 13804 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13805 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13806 return DAG.getNode(Opcode, dl, TargetVT, BV); 13807 } 13808 return SDValue(); 13809 } 13810 13811 /// Reduce the number of loads when building a vector. 13812 /// 13813 /// Building a vector out of multiple loads can be converted to a load 13814 /// of the vector type if the loads are consecutive. If the loads are 13815 /// consecutive but in descending order, a shuffle is added at the end 13816 /// to reorder the vector. 13817 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13818 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13819 "Should be called with a BUILD_VECTOR node"); 13820 13821 SDLoc dl(N); 13822 13823 // Return early for non byte-sized type, as they can't be consecutive. 13824 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13825 return SDValue(); 13826 13827 bool InputsAreConsecutiveLoads = true; 13828 bool InputsAreReverseConsecutive = true; 13829 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13830 SDValue FirstInput = N->getOperand(0); 13831 bool IsRoundOfExtLoad = false; 13832 13833 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13834 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13835 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13836 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13837 } 13838 // Not a build vector of (possibly fp_rounded) loads. 13839 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13840 N->getNumOperands() == 1) 13841 return SDValue(); 13842 13843 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13844 // If any inputs are fp_round(extload), they all must be. 13845 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13846 return SDValue(); 13847 13848 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13849 N->getOperand(i); 13850 if (NextInput.getOpcode() != ISD::LOAD) 13851 return SDValue(); 13852 13853 SDValue PreviousInput = 13854 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13855 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13856 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13857 13858 // If any inputs are fp_round(extload), they all must be. 13859 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13860 return SDValue(); 13861 13862 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13863 InputsAreConsecutiveLoads = false; 13864 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13865 InputsAreReverseConsecutive = false; 13866 13867 // Exit early if the loads are neither consecutive nor reverse consecutive. 13868 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13869 return SDValue(); 13870 } 13871 13872 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13873 "The loads cannot be both consecutive and reverse consecutive."); 13874 13875 SDValue FirstLoadOp = 13876 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13877 SDValue LastLoadOp = 13878 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13879 N->getOperand(N->getNumOperands()-1); 13880 13881 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13882 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13883 if (InputsAreConsecutiveLoads) { 13884 assert(LD1 && "Input needs to be a LoadSDNode."); 13885 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13886 LD1->getBasePtr(), LD1->getPointerInfo(), 13887 LD1->getAlignment()); 13888 } 13889 if (InputsAreReverseConsecutive) { 13890 assert(LDL && "Input needs to be a LoadSDNode."); 13891 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13892 LDL->getBasePtr(), LDL->getPointerInfo(), 13893 LDL->getAlignment()); 13894 SmallVector<int, 16> Ops; 13895 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13896 Ops.push_back(i); 13897 13898 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13899 DAG.getUNDEF(N->getValueType(0)), Ops); 13900 } 13901 return SDValue(); 13902 } 13903 13904 // This function adds the required vector_shuffle needed to get 13905 // the elements of the vector extract in the correct position 13906 // as specified by the CorrectElems encoding. 13907 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13908 SDValue Input, uint64_t Elems, 13909 uint64_t CorrectElems) { 13910 SDLoc dl(N); 13911 13912 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13913 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13914 13915 // Knowing the element indices being extracted from the original 13916 // vector and the order in which they're being inserted, just put 13917 // them at element indices required for the instruction. 13918 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13919 if (DAG.getDataLayout().isLittleEndian()) 13920 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13921 else 13922 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13923 CorrectElems = CorrectElems >> 8; 13924 Elems = Elems >> 8; 13925 } 13926 13927 SDValue Shuffle = 13928 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13929 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13930 13931 EVT VT = N->getValueType(0); 13932 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13933 13934 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13935 Input.getValueType().getVectorElementType(), 13936 VT.getVectorNumElements()); 13937 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13938 DAG.getValueType(ExtVT)); 13939 } 13940 13941 // Look for build vector patterns where input operands come from sign 13942 // extended vector_extract elements of specific indices. If the correct indices 13943 // aren't used, add a vector shuffle to fix up the indices and create 13944 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13945 // during instruction selection. 13946 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13947 // This array encodes the indices that the vector sign extend instructions 13948 // extract from when extending from one type to another for both BE and LE. 13949 // The right nibble of each byte corresponds to the LE incides. 13950 // and the left nibble of each byte corresponds to the BE incides. 13951 // For example: 0x3074B8FC byte->word 13952 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13953 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13954 // For example: 0x000070F8 byte->double word 13955 // For LE: the allowed indices are: 0x0,0x8 13956 // For BE: the allowed indices are: 0x7,0xF 13957 uint64_t TargetElems[] = { 13958 0x3074B8FC, // b->w 13959 0x000070F8, // b->d 13960 0x10325476, // h->w 13961 0x00003074, // h->d 13962 0x00001032, // w->d 13963 }; 13964 13965 uint64_t Elems = 0; 13966 int Index; 13967 SDValue Input; 13968 13969 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13970 if (!Op) 13971 return false; 13972 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13973 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13974 return false; 13975 13976 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13977 // of the right width. 13978 SDValue Extract = Op.getOperand(0); 13979 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13980 Extract = Extract.getOperand(0); 13981 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13982 return false; 13983 13984 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13985 if (!ExtOp) 13986 return false; 13987 13988 Index = ExtOp->getZExtValue(); 13989 if (Input && Input != Extract.getOperand(0)) 13990 return false; 13991 13992 if (!Input) 13993 Input = Extract.getOperand(0); 13994 13995 Elems = Elems << 8; 13996 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13997 Elems |= Index; 13998 13999 return true; 14000 }; 14001 14002 // If the build vector operands aren't sign extended vector extracts, 14003 // of the same input vector, then return. 14004 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14005 if (!isSExtOfVecExtract(N->getOperand(i))) { 14006 return SDValue(); 14007 } 14008 } 14009 14010 // If the vector extract indicies are not correct, add the appropriate 14011 // vector_shuffle. 14012 int TgtElemArrayIdx; 14013 int InputSize = Input.getValueType().getScalarSizeInBits(); 14014 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14015 if (InputSize + OutputSize == 40) 14016 TgtElemArrayIdx = 0; 14017 else if (InputSize + OutputSize == 72) 14018 TgtElemArrayIdx = 1; 14019 else if (InputSize + OutputSize == 48) 14020 TgtElemArrayIdx = 2; 14021 else if (InputSize + OutputSize == 80) 14022 TgtElemArrayIdx = 3; 14023 else if (InputSize + OutputSize == 96) 14024 TgtElemArrayIdx = 4; 14025 else 14026 return SDValue(); 14027 14028 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14029 CorrectElems = DAG.getDataLayout().isLittleEndian() 14030 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14031 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14032 if (Elems != CorrectElems) { 14033 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14034 } 14035 14036 // Regular lowering will catch cases where a shuffle is not needed. 14037 return SDValue(); 14038 } 14039 14040 // Look for the pattern of a load from a narrow width to i128, feeding 14041 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14042 // (LXVRZX). This node represents a zero extending load that will be matched 14043 // to the Load VSX Vector Rightmost instructions. 14044 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14045 SDLoc DL(N); 14046 14047 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14048 if (N->getValueType(0) != MVT::v1i128) 14049 return SDValue(); 14050 14051 SDValue Operand = N->getOperand(0); 14052 // Proceed with the transformation if the operand to the BUILD_VECTOR 14053 // is a load instruction. 14054 if (Operand.getOpcode() != ISD::LOAD) 14055 return SDValue(); 14056 14057 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 14058 EVT MemoryType = LD->getMemoryVT(); 14059 14060 // This transformation is only valid if the we are loading either a byte, 14061 // halfword, word, or doubleword. 14062 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14063 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14064 14065 // Ensure that the load from the narrow width is being zero extended to i128. 14066 if (!ValidLDType || 14067 (LD->getExtensionType() != ISD::ZEXTLOAD && 14068 LD->getExtensionType() != ISD::EXTLOAD)) 14069 return SDValue(); 14070 14071 SDValue LoadOps[] = { 14072 LD->getChain(), LD->getBasePtr(), 14073 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14074 14075 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14076 DAG.getVTList(MVT::v1i128, MVT::Other), 14077 LoadOps, MemoryType, LD->getMemOperand()); 14078 } 14079 14080 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14081 DAGCombinerInfo &DCI) const { 14082 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14083 "Should be called with a BUILD_VECTOR node"); 14084 14085 SelectionDAG &DAG = DCI.DAG; 14086 SDLoc dl(N); 14087 14088 if (!Subtarget.hasVSX()) 14089 return SDValue(); 14090 14091 // The target independent DAG combiner will leave a build_vector of 14092 // float-to-int conversions intact. We can generate MUCH better code for 14093 // a float-to-int conversion of a vector of floats. 14094 SDValue FirstInput = N->getOperand(0); 14095 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14096 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14097 if (Reduced) 14098 return Reduced; 14099 } 14100 14101 // If we're building a vector out of consecutive loads, just load that 14102 // vector type. 14103 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14104 if (Reduced) 14105 return Reduced; 14106 14107 // If we're building a vector out of extended elements from another vector 14108 // we have P9 vector integer extend instructions. The code assumes legal 14109 // input types (i.e. it can't handle things like v4i16) so do not run before 14110 // legalization. 14111 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14112 Reduced = combineBVOfVecSExt(N, DAG); 14113 if (Reduced) 14114 return Reduced; 14115 } 14116 14117 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14118 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14119 // is a load from <valid narrow width> to i128. 14120 if (Subtarget.isISA3_1()) { 14121 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14122 if (BVOfZLoad) 14123 return BVOfZLoad; 14124 } 14125 14126 if (N->getValueType(0) != MVT::v2f64) 14127 return SDValue(); 14128 14129 // Looking for: 14130 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14131 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14132 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14133 return SDValue(); 14134 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14135 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14136 return SDValue(); 14137 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14138 return SDValue(); 14139 14140 SDValue Ext1 = FirstInput.getOperand(0); 14141 SDValue Ext2 = N->getOperand(1).getOperand(0); 14142 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14143 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14144 return SDValue(); 14145 14146 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14147 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14148 if (!Ext1Op || !Ext2Op) 14149 return SDValue(); 14150 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14151 Ext1.getOperand(0) != Ext2.getOperand(0)) 14152 return SDValue(); 14153 14154 int FirstElem = Ext1Op->getZExtValue(); 14155 int SecondElem = Ext2Op->getZExtValue(); 14156 int SubvecIdx; 14157 if (FirstElem == 0 && SecondElem == 1) 14158 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14159 else if (FirstElem == 2 && SecondElem == 3) 14160 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14161 else 14162 return SDValue(); 14163 14164 SDValue SrcVec = Ext1.getOperand(0); 14165 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14166 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14167 return DAG.getNode(NodeType, dl, MVT::v2f64, 14168 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14169 } 14170 14171 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14172 DAGCombinerInfo &DCI) const { 14173 assert((N->getOpcode() == ISD::SINT_TO_FP || 14174 N->getOpcode() == ISD::UINT_TO_FP) && 14175 "Need an int -> FP conversion node here"); 14176 14177 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14178 return SDValue(); 14179 14180 SelectionDAG &DAG = DCI.DAG; 14181 SDLoc dl(N); 14182 SDValue Op(N, 0); 14183 14184 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14185 // from the hardware. 14186 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14187 return SDValue(); 14188 if (!Op.getOperand(0).getValueType().isSimple()) 14189 return SDValue(); 14190 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14191 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14192 return SDValue(); 14193 14194 SDValue FirstOperand(Op.getOperand(0)); 14195 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14196 (FirstOperand.getValueType() == MVT::i8 || 14197 FirstOperand.getValueType() == MVT::i16); 14198 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14199 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14200 bool DstDouble = Op.getValueType() == MVT::f64; 14201 unsigned ConvOp = Signed ? 14202 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14203 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14204 SDValue WidthConst = 14205 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14206 dl, false); 14207 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14208 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14209 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14210 DAG.getVTList(MVT::f64, MVT::Other), 14211 Ops, MVT::i8, LDN->getMemOperand()); 14212 14213 // For signed conversion, we need to sign-extend the value in the VSR 14214 if (Signed) { 14215 SDValue ExtOps[] = { Ld, WidthConst }; 14216 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14217 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14218 } else 14219 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14220 } 14221 14222 14223 // For i32 intermediate values, unfortunately, the conversion functions 14224 // leave the upper 32 bits of the value are undefined. Within the set of 14225 // scalar instructions, we have no method for zero- or sign-extending the 14226 // value. Thus, we cannot handle i32 intermediate values here. 14227 if (Op.getOperand(0).getValueType() == MVT::i32) 14228 return SDValue(); 14229 14230 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14231 "UINT_TO_FP is supported only with FPCVT"); 14232 14233 // If we have FCFIDS, then use it when converting to single-precision. 14234 // Otherwise, convert to double-precision and then round. 14235 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14236 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14237 : PPCISD::FCFIDS) 14238 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14239 : PPCISD::FCFID); 14240 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14241 ? MVT::f32 14242 : MVT::f64; 14243 14244 // If we're converting from a float, to an int, and back to a float again, 14245 // then we don't need the store/load pair at all. 14246 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14247 Subtarget.hasFPCVT()) || 14248 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14249 SDValue Src = Op.getOperand(0).getOperand(0); 14250 if (Src.getValueType() == MVT::f32) { 14251 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14252 DCI.AddToWorklist(Src.getNode()); 14253 } else if (Src.getValueType() != MVT::f64) { 14254 // Make sure that we don't pick up a ppc_fp128 source value. 14255 return SDValue(); 14256 } 14257 14258 unsigned FCTOp = 14259 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14260 PPCISD::FCTIDUZ; 14261 14262 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14263 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14264 14265 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14266 FP = DAG.getNode(ISD::FP_ROUND, dl, 14267 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14268 DCI.AddToWorklist(FP.getNode()); 14269 } 14270 14271 return FP; 14272 } 14273 14274 return SDValue(); 14275 } 14276 14277 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14278 // builtins) into loads with swaps. 14279 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14280 DAGCombinerInfo &DCI) const { 14281 SelectionDAG &DAG = DCI.DAG; 14282 SDLoc dl(N); 14283 SDValue Chain; 14284 SDValue Base; 14285 MachineMemOperand *MMO; 14286 14287 switch (N->getOpcode()) { 14288 default: 14289 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14290 case ISD::LOAD: { 14291 LoadSDNode *LD = cast<LoadSDNode>(N); 14292 Chain = LD->getChain(); 14293 Base = LD->getBasePtr(); 14294 MMO = LD->getMemOperand(); 14295 // If the MMO suggests this isn't a load of a full vector, leave 14296 // things alone. For a built-in, we have to make the change for 14297 // correctness, so if there is a size problem that will be a bug. 14298 if (MMO->getSize() < 16) 14299 return SDValue(); 14300 break; 14301 } 14302 case ISD::INTRINSIC_W_CHAIN: { 14303 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14304 Chain = Intrin->getChain(); 14305 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14306 // us what we want. Get operand 2 instead. 14307 Base = Intrin->getOperand(2); 14308 MMO = Intrin->getMemOperand(); 14309 break; 14310 } 14311 } 14312 14313 MVT VecTy = N->getValueType(0).getSimpleVT(); 14314 14315 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14316 // aligned and the type is a vector with elements up to 4 bytes 14317 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14318 VecTy.getScalarSizeInBits() <= 32) { 14319 return SDValue(); 14320 } 14321 14322 SDValue LoadOps[] = { Chain, Base }; 14323 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14324 DAG.getVTList(MVT::v2f64, MVT::Other), 14325 LoadOps, MVT::v2f64, MMO); 14326 14327 DCI.AddToWorklist(Load.getNode()); 14328 Chain = Load.getValue(1); 14329 SDValue Swap = DAG.getNode( 14330 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14331 DCI.AddToWorklist(Swap.getNode()); 14332 14333 // Add a bitcast if the resulting load type doesn't match v2f64. 14334 if (VecTy != MVT::v2f64) { 14335 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14336 DCI.AddToWorklist(N.getNode()); 14337 // Package {bitcast value, swap's chain} to match Load's shape. 14338 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14339 N, Swap.getValue(1)); 14340 } 14341 14342 return Swap; 14343 } 14344 14345 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14346 // builtins) into stores with swaps. 14347 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14348 DAGCombinerInfo &DCI) const { 14349 SelectionDAG &DAG = DCI.DAG; 14350 SDLoc dl(N); 14351 SDValue Chain; 14352 SDValue Base; 14353 unsigned SrcOpnd; 14354 MachineMemOperand *MMO; 14355 14356 switch (N->getOpcode()) { 14357 default: 14358 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14359 case ISD::STORE: { 14360 StoreSDNode *ST = cast<StoreSDNode>(N); 14361 Chain = ST->getChain(); 14362 Base = ST->getBasePtr(); 14363 MMO = ST->getMemOperand(); 14364 SrcOpnd = 1; 14365 // If the MMO suggests this isn't a store of a full vector, leave 14366 // things alone. For a built-in, we have to make the change for 14367 // correctness, so if there is a size problem that will be a bug. 14368 if (MMO->getSize() < 16) 14369 return SDValue(); 14370 break; 14371 } 14372 case ISD::INTRINSIC_VOID: { 14373 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14374 Chain = Intrin->getChain(); 14375 // Intrin->getBasePtr() oddly does not get what we want. 14376 Base = Intrin->getOperand(3); 14377 MMO = Intrin->getMemOperand(); 14378 SrcOpnd = 2; 14379 break; 14380 } 14381 } 14382 14383 SDValue Src = N->getOperand(SrcOpnd); 14384 MVT VecTy = Src.getValueType().getSimpleVT(); 14385 14386 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14387 // aligned and the type is a vector with elements up to 4 bytes 14388 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14389 VecTy.getScalarSizeInBits() <= 32) { 14390 return SDValue(); 14391 } 14392 14393 // All stores are done as v2f64 and possible bit cast. 14394 if (VecTy != MVT::v2f64) { 14395 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14396 DCI.AddToWorklist(Src.getNode()); 14397 } 14398 14399 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14400 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14401 DCI.AddToWorklist(Swap.getNode()); 14402 Chain = Swap.getValue(1); 14403 SDValue StoreOps[] = { Chain, Swap, Base }; 14404 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14405 DAG.getVTList(MVT::Other), 14406 StoreOps, VecTy, MMO); 14407 DCI.AddToWorklist(Store.getNode()); 14408 return Store; 14409 } 14410 14411 // Handle DAG combine for STORE (FP_TO_INT F). 14412 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14413 DAGCombinerInfo &DCI) const { 14414 14415 SelectionDAG &DAG = DCI.DAG; 14416 SDLoc dl(N); 14417 unsigned Opcode = N->getOperand(1).getOpcode(); 14418 14419 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14420 && "Not a FP_TO_INT Instruction!"); 14421 14422 SDValue Val = N->getOperand(1).getOperand(0); 14423 EVT Op1VT = N->getOperand(1).getValueType(); 14424 EVT ResVT = Val.getValueType(); 14425 14426 if (!isTypeLegal(ResVT)) 14427 return SDValue(); 14428 14429 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14430 bool ValidTypeForStoreFltAsInt = 14431 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14432 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14433 14434 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14435 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14436 return SDValue(); 14437 14438 // Extend f32 values to f64 14439 if (ResVT.getScalarSizeInBits() == 32) { 14440 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14441 DCI.AddToWorklist(Val.getNode()); 14442 } 14443 14444 // Set signed or unsigned conversion opcode. 14445 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14446 PPCISD::FP_TO_SINT_IN_VSR : 14447 PPCISD::FP_TO_UINT_IN_VSR; 14448 14449 Val = DAG.getNode(ConvOpcode, 14450 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14451 DCI.AddToWorklist(Val.getNode()); 14452 14453 // Set number of bytes being converted. 14454 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14455 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14456 DAG.getIntPtrConstant(ByteSize, dl, false), 14457 DAG.getValueType(Op1VT) }; 14458 14459 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14460 DAG.getVTList(MVT::Other), Ops, 14461 cast<StoreSDNode>(N)->getMemoryVT(), 14462 cast<StoreSDNode>(N)->getMemOperand()); 14463 14464 DCI.AddToWorklist(Val.getNode()); 14465 return Val; 14466 } 14467 14468 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14469 // Check that the source of the element keeps flipping 14470 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14471 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14472 for (int i = 1, e = Mask.size(); i < e; i++) { 14473 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14474 return false; 14475 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14476 return false; 14477 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14478 } 14479 return true; 14480 } 14481 14482 static bool isSplatBV(SDValue Op) { 14483 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14484 return false; 14485 SDValue FirstOp; 14486 14487 // Find first non-undef input. 14488 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14489 FirstOp = Op.getOperand(i); 14490 if (!FirstOp.isUndef()) 14491 break; 14492 } 14493 14494 // All inputs are undef or the same as the first non-undef input. 14495 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14496 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14497 return false; 14498 return true; 14499 } 14500 14501 static SDValue isScalarToVec(SDValue Op) { 14502 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14503 return Op; 14504 if (Op.getOpcode() != ISD::BITCAST) 14505 return SDValue(); 14506 Op = Op.getOperand(0); 14507 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14508 return Op; 14509 return SDValue(); 14510 } 14511 14512 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14513 int LHSMaxIdx, int RHSMinIdx, 14514 int RHSMaxIdx, int HalfVec) { 14515 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14516 int Idx = ShuffV[i]; 14517 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14518 ShuffV[i] += HalfVec; 14519 } 14520 return; 14521 } 14522 14523 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14524 // the original is: 14525 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14526 // In such a case, just change the shuffle mask to extract the element 14527 // from the permuted index. 14528 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14529 SDLoc dl(OrigSToV); 14530 EVT VT = OrigSToV.getValueType(); 14531 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14532 "Expecting a SCALAR_TO_VECTOR here"); 14533 SDValue Input = OrigSToV.getOperand(0); 14534 14535 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14536 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14537 SDValue OrigVector = Input.getOperand(0); 14538 14539 // Can't handle non-const element indices or different vector types 14540 // for the input to the extract and the output of the scalar_to_vector. 14541 if (Idx && VT == OrigVector.getValueType()) { 14542 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14543 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14544 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14545 } 14546 } 14547 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14548 OrigSToV.getOperand(0)); 14549 } 14550 14551 // On little endian subtargets, combine shuffles such as: 14552 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14553 // into: 14554 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14555 // because the latter can be matched to a single instruction merge. 14556 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14557 // to put the value into element zero. Adjust the shuffle mask so that the 14558 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14559 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14560 SelectionDAG &DAG) const { 14561 SDValue LHS = SVN->getOperand(0); 14562 SDValue RHS = SVN->getOperand(1); 14563 auto Mask = SVN->getMask(); 14564 int NumElts = LHS.getValueType().getVectorNumElements(); 14565 SDValue Res(SVN, 0); 14566 SDLoc dl(SVN); 14567 14568 // None of these combines are useful on big endian systems since the ISA 14569 // already has a big endian bias. 14570 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14571 return Res; 14572 14573 // If this is not a shuffle of a shuffle and the first element comes from 14574 // the second vector, canonicalize to the commuted form. This will make it 14575 // more likely to match one of the single instruction patterns. 14576 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14577 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14578 std::swap(LHS, RHS); 14579 Res = DAG.getCommutedVectorShuffle(*SVN); 14580 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14581 } 14582 14583 // Adjust the shuffle mask if either input vector comes from a 14584 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14585 // form (to prevent the need for a swap). 14586 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14587 SDValue SToVLHS = isScalarToVec(LHS); 14588 SDValue SToVRHS = isScalarToVec(RHS); 14589 if (SToVLHS || SToVRHS) { 14590 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14591 : SToVRHS.getValueType().getVectorNumElements(); 14592 int NumEltsOut = ShuffV.size(); 14593 14594 // Initially assume that neither input is permuted. These will be adjusted 14595 // accordingly if either input is. 14596 int LHSMaxIdx = -1; 14597 int RHSMinIdx = -1; 14598 int RHSMaxIdx = -1; 14599 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14600 14601 // Get the permuted scalar to vector nodes for the source(s) that come from 14602 // ISD::SCALAR_TO_VECTOR. 14603 if (SToVLHS) { 14604 // Set up the values for the shuffle vector fixup. 14605 LHSMaxIdx = NumEltsOut / NumEltsIn; 14606 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14607 if (SToVLHS.getValueType() != LHS.getValueType()) 14608 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14609 LHS = SToVLHS; 14610 } 14611 if (SToVRHS) { 14612 RHSMinIdx = NumEltsOut; 14613 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14614 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14615 if (SToVRHS.getValueType() != RHS.getValueType()) 14616 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14617 RHS = SToVRHS; 14618 } 14619 14620 // Fix up the shuffle mask to reflect where the desired element actually is. 14621 // The minimum and maximum indices that correspond to element zero for both 14622 // the LHS and RHS are computed and will control which shuffle mask entries 14623 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14624 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14625 // HalfVec to refer to the corresponding element in the permuted vector. 14626 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14627 HalfVec); 14628 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14629 14630 // We may have simplified away the shuffle. We won't be able to do anything 14631 // further with it here. 14632 if (!isa<ShuffleVectorSDNode>(Res)) 14633 return Res; 14634 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14635 } 14636 14637 // The common case after we commuted the shuffle is that the RHS is a splat 14638 // and we have elements coming in from the splat at indices that are not 14639 // conducive to using a merge. 14640 // Example: 14641 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14642 if (!isSplatBV(RHS)) 14643 return Res; 14644 14645 // We are looking for a mask such that all even elements are from 14646 // one vector and all odd elements from the other. 14647 if (!isAlternatingShuffMask(Mask, NumElts)) 14648 return Res; 14649 14650 // Adjust the mask so we are pulling in the same index from the splat 14651 // as the index from the interesting vector in consecutive elements. 14652 // Example (even elements from first vector): 14653 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14654 if (Mask[0] < NumElts) 14655 for (int i = 1, e = Mask.size(); i < e; i += 2) 14656 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14657 // Example (odd elements from first vector): 14658 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14659 else 14660 for (int i = 0, e = Mask.size(); i < e; i += 2) 14661 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14662 14663 // If the RHS has undefs, we need to remove them since we may have created 14664 // a shuffle that adds those instead of the splat value. 14665 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14666 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14667 14668 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14669 return Res; 14670 } 14671 14672 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14673 LSBaseSDNode *LSBase, 14674 DAGCombinerInfo &DCI) const { 14675 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14676 "Not a reverse memop pattern!"); 14677 14678 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14679 auto Mask = SVN->getMask(); 14680 int i = 0; 14681 auto I = Mask.rbegin(); 14682 auto E = Mask.rend(); 14683 14684 for (; I != E; ++I) { 14685 if (*I != i) 14686 return false; 14687 i++; 14688 } 14689 return true; 14690 }; 14691 14692 SelectionDAG &DAG = DCI.DAG; 14693 EVT VT = SVN->getValueType(0); 14694 14695 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14696 return SDValue(); 14697 14698 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14699 // See comment in PPCVSXSwapRemoval.cpp. 14700 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14701 if (!Subtarget.hasP9Vector()) 14702 return SDValue(); 14703 14704 if(!IsElementReverse(SVN)) 14705 return SDValue(); 14706 14707 if (LSBase->getOpcode() == ISD::LOAD) { 14708 SDLoc dl(SVN); 14709 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14710 return DAG.getMemIntrinsicNode( 14711 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14712 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14713 } 14714 14715 if (LSBase->getOpcode() == ISD::STORE) { 14716 SDLoc dl(LSBase); 14717 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14718 LSBase->getBasePtr()}; 14719 return DAG.getMemIntrinsicNode( 14720 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14721 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14722 } 14723 14724 llvm_unreachable("Expected a load or store node here"); 14725 } 14726 14727 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14728 DAGCombinerInfo &DCI) const { 14729 SelectionDAG &DAG = DCI.DAG; 14730 SDLoc dl(N); 14731 switch (N->getOpcode()) { 14732 default: break; 14733 case ISD::ADD: 14734 return combineADD(N, DCI); 14735 case ISD::SHL: 14736 return combineSHL(N, DCI); 14737 case ISD::SRA: 14738 return combineSRA(N, DCI); 14739 case ISD::SRL: 14740 return combineSRL(N, DCI); 14741 case ISD::MUL: 14742 return combineMUL(N, DCI); 14743 case ISD::FMA: 14744 case PPCISD::FNMSUB: 14745 return combineFMALike(N, DCI); 14746 case PPCISD::SHL: 14747 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14748 return N->getOperand(0); 14749 break; 14750 case PPCISD::SRL: 14751 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14752 return N->getOperand(0); 14753 break; 14754 case PPCISD::SRA: 14755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14756 if (C->isNullValue() || // 0 >>s V -> 0. 14757 C->isAllOnesValue()) // -1 >>s V -> -1. 14758 return N->getOperand(0); 14759 } 14760 break; 14761 case ISD::SIGN_EXTEND: 14762 case ISD::ZERO_EXTEND: 14763 case ISD::ANY_EXTEND: 14764 return DAGCombineExtBoolTrunc(N, DCI); 14765 case ISD::TRUNCATE: 14766 return combineTRUNCATE(N, DCI); 14767 case ISD::SETCC: 14768 if (SDValue CSCC = combineSetCC(N, DCI)) 14769 return CSCC; 14770 LLVM_FALLTHROUGH; 14771 case ISD::SELECT_CC: 14772 return DAGCombineTruncBoolExt(N, DCI); 14773 case ISD::SINT_TO_FP: 14774 case ISD::UINT_TO_FP: 14775 return combineFPToIntToFP(N, DCI); 14776 case ISD::VECTOR_SHUFFLE: 14777 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14778 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14779 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14780 } 14781 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14782 case ISD::STORE: { 14783 14784 EVT Op1VT = N->getOperand(1).getValueType(); 14785 unsigned Opcode = N->getOperand(1).getOpcode(); 14786 14787 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14788 SDValue Val= combineStoreFPToInt(N, DCI); 14789 if (Val) 14790 return Val; 14791 } 14792 14793 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14794 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14795 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14796 if (Val) 14797 return Val; 14798 } 14799 14800 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14801 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14802 N->getOperand(1).getNode()->hasOneUse() && 14803 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14804 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14805 14806 // STBRX can only handle simple types and it makes no sense to store less 14807 // two bytes in byte-reversed order. 14808 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14809 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14810 break; 14811 14812 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14813 // Do an any-extend to 32-bits if this is a half-word input. 14814 if (BSwapOp.getValueType() == MVT::i16) 14815 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14816 14817 // If the type of BSWAP operand is wider than stored memory width 14818 // it need to be shifted to the right side before STBRX. 14819 if (Op1VT.bitsGT(mVT)) { 14820 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14821 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14822 DAG.getConstant(Shift, dl, MVT::i32)); 14823 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14824 if (Op1VT == MVT::i64) 14825 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14826 } 14827 14828 SDValue Ops[] = { 14829 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14830 }; 14831 return 14832 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14833 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14834 cast<StoreSDNode>(N)->getMemOperand()); 14835 } 14836 14837 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14838 // So it can increase the chance of CSE constant construction. 14839 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14840 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14841 // Need to sign-extended to 64-bits to handle negative values. 14842 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14843 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14844 MemVT.getSizeInBits()); 14845 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14846 14847 // DAG.getTruncStore() can't be used here because it doesn't accept 14848 // the general (base + offset) addressing mode. 14849 // So we use UpdateNodeOperands and setTruncatingStore instead. 14850 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14851 N->getOperand(3)); 14852 cast<StoreSDNode>(N)->setTruncatingStore(true); 14853 return SDValue(N, 0); 14854 } 14855 14856 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14857 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14858 if (Op1VT.isSimple()) { 14859 MVT StoreVT = Op1VT.getSimpleVT(); 14860 if (Subtarget.needsSwapsForVSXMemOps() && 14861 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14862 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14863 return expandVSXStoreForLE(N, DCI); 14864 } 14865 break; 14866 } 14867 case ISD::LOAD: { 14868 LoadSDNode *LD = cast<LoadSDNode>(N); 14869 EVT VT = LD->getValueType(0); 14870 14871 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14872 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14873 if (VT.isSimple()) { 14874 MVT LoadVT = VT.getSimpleVT(); 14875 if (Subtarget.needsSwapsForVSXMemOps() && 14876 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14877 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14878 return expandVSXLoadForLE(N, DCI); 14879 } 14880 14881 // We sometimes end up with a 64-bit integer load, from which we extract 14882 // two single-precision floating-point numbers. This happens with 14883 // std::complex<float>, and other similar structures, because of the way we 14884 // canonicalize structure copies. However, if we lack direct moves, 14885 // then the final bitcasts from the extracted integer values to the 14886 // floating-point numbers turn into store/load pairs. Even with direct moves, 14887 // just loading the two floating-point numbers is likely better. 14888 auto ReplaceTwoFloatLoad = [&]() { 14889 if (VT != MVT::i64) 14890 return false; 14891 14892 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14893 LD->isVolatile()) 14894 return false; 14895 14896 // We're looking for a sequence like this: 14897 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14898 // t16: i64 = srl t13, Constant:i32<32> 14899 // t17: i32 = truncate t16 14900 // t18: f32 = bitcast t17 14901 // t19: i32 = truncate t13 14902 // t20: f32 = bitcast t19 14903 14904 if (!LD->hasNUsesOfValue(2, 0)) 14905 return false; 14906 14907 auto UI = LD->use_begin(); 14908 while (UI.getUse().getResNo() != 0) ++UI; 14909 SDNode *Trunc = *UI++; 14910 while (UI.getUse().getResNo() != 0) ++UI; 14911 SDNode *RightShift = *UI; 14912 if (Trunc->getOpcode() != ISD::TRUNCATE) 14913 std::swap(Trunc, RightShift); 14914 14915 if (Trunc->getOpcode() != ISD::TRUNCATE || 14916 Trunc->getValueType(0) != MVT::i32 || 14917 !Trunc->hasOneUse()) 14918 return false; 14919 if (RightShift->getOpcode() != ISD::SRL || 14920 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14921 RightShift->getConstantOperandVal(1) != 32 || 14922 !RightShift->hasOneUse()) 14923 return false; 14924 14925 SDNode *Trunc2 = *RightShift->use_begin(); 14926 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14927 Trunc2->getValueType(0) != MVT::i32 || 14928 !Trunc2->hasOneUse()) 14929 return false; 14930 14931 SDNode *Bitcast = *Trunc->use_begin(); 14932 SDNode *Bitcast2 = *Trunc2->use_begin(); 14933 14934 if (Bitcast->getOpcode() != ISD::BITCAST || 14935 Bitcast->getValueType(0) != MVT::f32) 14936 return false; 14937 if (Bitcast2->getOpcode() != ISD::BITCAST || 14938 Bitcast2->getValueType(0) != MVT::f32) 14939 return false; 14940 14941 if (Subtarget.isLittleEndian()) 14942 std::swap(Bitcast, Bitcast2); 14943 14944 // Bitcast has the second float (in memory-layout order) and Bitcast2 14945 // has the first one. 14946 14947 SDValue BasePtr = LD->getBasePtr(); 14948 if (LD->isIndexed()) { 14949 assert(LD->getAddressingMode() == ISD::PRE_INC && 14950 "Non-pre-inc AM on PPC?"); 14951 BasePtr = 14952 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14953 LD->getOffset()); 14954 } 14955 14956 auto MMOFlags = 14957 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14958 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14959 LD->getPointerInfo(), LD->getAlignment(), 14960 MMOFlags, LD->getAAInfo()); 14961 SDValue AddPtr = 14962 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14963 BasePtr, DAG.getIntPtrConstant(4, dl)); 14964 SDValue FloatLoad2 = DAG.getLoad( 14965 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14966 LD->getPointerInfo().getWithOffset(4), 14967 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14968 14969 if (LD->isIndexed()) { 14970 // Note that DAGCombine should re-form any pre-increment load(s) from 14971 // what is produced here if that makes sense. 14972 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14973 } 14974 14975 DCI.CombineTo(Bitcast2, FloatLoad); 14976 DCI.CombineTo(Bitcast, FloatLoad2); 14977 14978 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14979 SDValue(FloatLoad2.getNode(), 1)); 14980 return true; 14981 }; 14982 14983 if (ReplaceTwoFloatLoad()) 14984 return SDValue(N, 0); 14985 14986 EVT MemVT = LD->getMemoryVT(); 14987 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14988 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14989 if (LD->isUnindexed() && VT.isVector() && 14990 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14991 // P8 and later hardware should just use LOAD. 14992 !Subtarget.hasP8Vector() && 14993 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14994 VT == MVT::v4f32))) && 14995 LD->getAlign() < ABIAlignment) { 14996 // This is a type-legal unaligned Altivec load. 14997 SDValue Chain = LD->getChain(); 14998 SDValue Ptr = LD->getBasePtr(); 14999 bool isLittleEndian = Subtarget.isLittleEndian(); 15000 15001 // This implements the loading of unaligned vectors as described in 15002 // the venerable Apple Velocity Engine overview. Specifically: 15003 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15004 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15005 // 15006 // The general idea is to expand a sequence of one or more unaligned 15007 // loads into an alignment-based permutation-control instruction (lvsl 15008 // or lvsr), a series of regular vector loads (which always truncate 15009 // their input address to an aligned address), and a series of 15010 // permutations. The results of these permutations are the requested 15011 // loaded values. The trick is that the last "extra" load is not taken 15012 // from the address you might suspect (sizeof(vector) bytes after the 15013 // last requested load), but rather sizeof(vector) - 1 bytes after the 15014 // last requested vector. The point of this is to avoid a page fault if 15015 // the base address happened to be aligned. This works because if the 15016 // base address is aligned, then adding less than a full vector length 15017 // will cause the last vector in the sequence to be (re)loaded. 15018 // Otherwise, the next vector will be fetched as you might suspect was 15019 // necessary. 15020 15021 // We might be able to reuse the permutation generation from 15022 // a different base address offset from this one by an aligned amount. 15023 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15024 // optimization later. 15025 Intrinsic::ID Intr, IntrLD, IntrPerm; 15026 MVT PermCntlTy, PermTy, LDTy; 15027 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15028 : Intrinsic::ppc_altivec_lvsl; 15029 IntrLD = Intrinsic::ppc_altivec_lvx; 15030 IntrPerm = Intrinsic::ppc_altivec_vperm; 15031 PermCntlTy = MVT::v16i8; 15032 PermTy = MVT::v4i32; 15033 LDTy = MVT::v4i32; 15034 15035 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15036 15037 // Create the new MMO for the new base load. It is like the original MMO, 15038 // but represents an area in memory almost twice the vector size centered 15039 // on the original address. If the address is unaligned, we might start 15040 // reading up to (sizeof(vector)-1) bytes below the address of the 15041 // original unaligned load. 15042 MachineFunction &MF = DAG.getMachineFunction(); 15043 MachineMemOperand *BaseMMO = 15044 MF.getMachineMemOperand(LD->getMemOperand(), 15045 -(long)MemVT.getStoreSize()+1, 15046 2*MemVT.getStoreSize()-1); 15047 15048 // Create the new base load. 15049 SDValue LDXIntID = 15050 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15051 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15052 SDValue BaseLoad = 15053 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15054 DAG.getVTList(PermTy, MVT::Other), 15055 BaseLoadOps, LDTy, BaseMMO); 15056 15057 // Note that the value of IncOffset (which is provided to the next 15058 // load's pointer info offset value, and thus used to calculate the 15059 // alignment), and the value of IncValue (which is actually used to 15060 // increment the pointer value) are different! This is because we 15061 // require the next load to appear to be aligned, even though it 15062 // is actually offset from the base pointer by a lesser amount. 15063 int IncOffset = VT.getSizeInBits() / 8; 15064 int IncValue = IncOffset; 15065 15066 // Walk (both up and down) the chain looking for another load at the real 15067 // (aligned) offset (the alignment of the other load does not matter in 15068 // this case). If found, then do not use the offset reduction trick, as 15069 // that will prevent the loads from being later combined (as they would 15070 // otherwise be duplicates). 15071 if (!findConsecutiveLoad(LD, DAG)) 15072 --IncValue; 15073 15074 SDValue Increment = 15075 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15076 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15077 15078 MachineMemOperand *ExtraMMO = 15079 MF.getMachineMemOperand(LD->getMemOperand(), 15080 1, 2*MemVT.getStoreSize()-1); 15081 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15082 SDValue ExtraLoad = 15083 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15084 DAG.getVTList(PermTy, MVT::Other), 15085 ExtraLoadOps, LDTy, ExtraMMO); 15086 15087 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15088 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15089 15090 // Because vperm has a big-endian bias, we must reverse the order 15091 // of the input vectors and complement the permute control vector 15092 // when generating little endian code. We have already handled the 15093 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15094 // and ExtraLoad here. 15095 SDValue Perm; 15096 if (isLittleEndian) 15097 Perm = BuildIntrinsicOp(IntrPerm, 15098 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15099 else 15100 Perm = BuildIntrinsicOp(IntrPerm, 15101 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15102 15103 if (VT != PermTy) 15104 Perm = Subtarget.hasAltivec() 15105 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15106 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15107 DAG.getTargetConstant(1, dl, MVT::i64)); 15108 // second argument is 1 because this rounding 15109 // is always exact. 15110 15111 // The output of the permutation is our loaded result, the TokenFactor is 15112 // our new chain. 15113 DCI.CombineTo(N, Perm, TF); 15114 return SDValue(N, 0); 15115 } 15116 } 15117 break; 15118 case ISD::INTRINSIC_WO_CHAIN: { 15119 bool isLittleEndian = Subtarget.isLittleEndian(); 15120 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15121 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15122 : Intrinsic::ppc_altivec_lvsl); 15123 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15124 SDValue Add = N->getOperand(1); 15125 15126 int Bits = 4 /* 16 byte alignment */; 15127 15128 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15129 APInt::getAllOnesValue(Bits /* alignment */) 15130 .zext(Add.getScalarValueSizeInBits()))) { 15131 SDNode *BasePtr = Add->getOperand(0).getNode(); 15132 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15133 UE = BasePtr->use_end(); 15134 UI != UE; ++UI) { 15135 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15136 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15137 IID) { 15138 // We've found another LVSL/LVSR, and this address is an aligned 15139 // multiple of that one. The results will be the same, so use the 15140 // one we've just found instead. 15141 15142 return SDValue(*UI, 0); 15143 } 15144 } 15145 } 15146 15147 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15148 SDNode *BasePtr = Add->getOperand(0).getNode(); 15149 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15150 UE = BasePtr->use_end(); UI != UE; ++UI) { 15151 if (UI->getOpcode() == ISD::ADD && 15152 isa<ConstantSDNode>(UI->getOperand(1)) && 15153 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15154 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15155 (1ULL << Bits) == 0) { 15156 SDNode *OtherAdd = *UI; 15157 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15158 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15159 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15160 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15161 return SDValue(*VI, 0); 15162 } 15163 } 15164 } 15165 } 15166 } 15167 } 15168 15169 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15170 // Expose the vabsduw/h/b opportunity for down stream 15171 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15172 (IID == Intrinsic::ppc_altivec_vmaxsw || 15173 IID == Intrinsic::ppc_altivec_vmaxsh || 15174 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15175 SDValue V1 = N->getOperand(1); 15176 SDValue V2 = N->getOperand(2); 15177 if ((V1.getSimpleValueType() == MVT::v4i32 || 15178 V1.getSimpleValueType() == MVT::v8i16 || 15179 V1.getSimpleValueType() == MVT::v16i8) && 15180 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15181 // (0-a, a) 15182 if (V1.getOpcode() == ISD::SUB && 15183 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15184 V1.getOperand(1) == V2) { 15185 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15186 } 15187 // (a, 0-a) 15188 if (V2.getOpcode() == ISD::SUB && 15189 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15190 V2.getOperand(1) == V1) { 15191 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15192 } 15193 // (x-y, y-x) 15194 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15195 V1.getOperand(0) == V2.getOperand(1) && 15196 V1.getOperand(1) == V2.getOperand(0)) { 15197 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15198 } 15199 } 15200 } 15201 } 15202 15203 break; 15204 case ISD::INTRINSIC_W_CHAIN: 15205 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15206 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15207 if (Subtarget.needsSwapsForVSXMemOps()) { 15208 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15209 default: 15210 break; 15211 case Intrinsic::ppc_vsx_lxvw4x: 15212 case Intrinsic::ppc_vsx_lxvd2x: 15213 return expandVSXLoadForLE(N, DCI); 15214 } 15215 } 15216 break; 15217 case ISD::INTRINSIC_VOID: 15218 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15219 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15220 if (Subtarget.needsSwapsForVSXMemOps()) { 15221 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15222 default: 15223 break; 15224 case Intrinsic::ppc_vsx_stxvw4x: 15225 case Intrinsic::ppc_vsx_stxvd2x: 15226 return expandVSXStoreForLE(N, DCI); 15227 } 15228 } 15229 break; 15230 case ISD::BSWAP: 15231 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15232 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15233 N->getOperand(0).hasOneUse() && 15234 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15235 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15236 N->getValueType(0) == MVT::i64))) { 15237 SDValue Load = N->getOperand(0); 15238 LoadSDNode *LD = cast<LoadSDNode>(Load); 15239 // Create the byte-swapping load. 15240 SDValue Ops[] = { 15241 LD->getChain(), // Chain 15242 LD->getBasePtr(), // Ptr 15243 DAG.getValueType(N->getValueType(0)) // VT 15244 }; 15245 SDValue BSLoad = 15246 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15247 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15248 MVT::i64 : MVT::i32, MVT::Other), 15249 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15250 15251 // If this is an i16 load, insert the truncate. 15252 SDValue ResVal = BSLoad; 15253 if (N->getValueType(0) == MVT::i16) 15254 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15255 15256 // First, combine the bswap away. This makes the value produced by the 15257 // load dead. 15258 DCI.CombineTo(N, ResVal); 15259 15260 // Next, combine the load away, we give it a bogus result value but a real 15261 // chain result. The result value is dead because the bswap is dead. 15262 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15263 15264 // Return N so it doesn't get rechecked! 15265 return SDValue(N, 0); 15266 } 15267 break; 15268 case PPCISD::VCMP: 15269 // If a VCMP_rec node already exists with exactly the same operands as this 15270 // node, use its result instead of this node (VCMP_rec computes both a CR6 15271 // and a normal output). 15272 // 15273 if (!N->getOperand(0).hasOneUse() && 15274 !N->getOperand(1).hasOneUse() && 15275 !N->getOperand(2).hasOneUse()) { 15276 15277 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15278 SDNode *VCMPrecNode = nullptr; 15279 15280 SDNode *LHSN = N->getOperand(0).getNode(); 15281 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15282 UI != E; ++UI) 15283 if (UI->getOpcode() == PPCISD::VCMP_rec && 15284 UI->getOperand(1) == N->getOperand(1) && 15285 UI->getOperand(2) == N->getOperand(2) && 15286 UI->getOperand(0) == N->getOperand(0)) { 15287 VCMPrecNode = *UI; 15288 break; 15289 } 15290 15291 // If there is no VCMP_rec node, or if the flag value has a single use, 15292 // don't transform this. 15293 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15294 break; 15295 15296 // Look at the (necessarily single) use of the flag value. If it has a 15297 // chain, this transformation is more complex. Note that multiple things 15298 // could use the value result, which we should ignore. 15299 SDNode *FlagUser = nullptr; 15300 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15301 FlagUser == nullptr; ++UI) { 15302 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15303 SDNode *User = *UI; 15304 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15305 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15306 FlagUser = User; 15307 break; 15308 } 15309 } 15310 } 15311 15312 // If the user is a MFOCRF instruction, we know this is safe. 15313 // Otherwise we give up for right now. 15314 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15315 return SDValue(VCMPrecNode, 0); 15316 } 15317 break; 15318 case ISD::BRCOND: { 15319 SDValue Cond = N->getOperand(1); 15320 SDValue Target = N->getOperand(2); 15321 15322 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15323 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15324 Intrinsic::loop_decrement) { 15325 15326 // We now need to make the intrinsic dead (it cannot be instruction 15327 // selected). 15328 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15329 assert(Cond.getNode()->hasOneUse() && 15330 "Counter decrement has more than one use"); 15331 15332 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15333 N->getOperand(0), Target); 15334 } 15335 } 15336 break; 15337 case ISD::BR_CC: { 15338 // If this is a branch on an altivec predicate comparison, lower this so 15339 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15340 // lowering is done pre-legalize, because the legalizer lowers the predicate 15341 // compare down to code that is difficult to reassemble. 15342 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15343 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15344 15345 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15346 // value. If so, pass-through the AND to get to the intrinsic. 15347 if (LHS.getOpcode() == ISD::AND && 15348 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15349 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15350 Intrinsic::loop_decrement && 15351 isa<ConstantSDNode>(LHS.getOperand(1)) && 15352 !isNullConstant(LHS.getOperand(1))) 15353 LHS = LHS.getOperand(0); 15354 15355 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15356 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15357 Intrinsic::loop_decrement && 15358 isa<ConstantSDNode>(RHS)) { 15359 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15360 "Counter decrement comparison is not EQ or NE"); 15361 15362 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15363 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15364 (CC == ISD::SETNE && !Val); 15365 15366 // We now need to make the intrinsic dead (it cannot be instruction 15367 // selected). 15368 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15369 assert(LHS.getNode()->hasOneUse() && 15370 "Counter decrement has more than one use"); 15371 15372 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15373 N->getOperand(0), N->getOperand(4)); 15374 } 15375 15376 int CompareOpc; 15377 bool isDot; 15378 15379 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15380 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15381 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15382 assert(isDot && "Can't compare against a vector result!"); 15383 15384 // If this is a comparison against something other than 0/1, then we know 15385 // that the condition is never/always true. 15386 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15387 if (Val != 0 && Val != 1) { 15388 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15389 return N->getOperand(0); 15390 // Always !=, turn it into an unconditional branch. 15391 return DAG.getNode(ISD::BR, dl, MVT::Other, 15392 N->getOperand(0), N->getOperand(4)); 15393 } 15394 15395 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15396 15397 // Create the PPCISD altivec 'dot' comparison node. 15398 SDValue Ops[] = { 15399 LHS.getOperand(2), // LHS of compare 15400 LHS.getOperand(3), // RHS of compare 15401 DAG.getConstant(CompareOpc, dl, MVT::i32) 15402 }; 15403 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15404 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15405 15406 // Unpack the result based on how the target uses it. 15407 PPC::Predicate CompOpc; 15408 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15409 default: // Can't happen, don't crash on invalid number though. 15410 case 0: // Branch on the value of the EQ bit of CR6. 15411 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15412 break; 15413 case 1: // Branch on the inverted value of the EQ bit of CR6. 15414 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15415 break; 15416 case 2: // Branch on the value of the LT bit of CR6. 15417 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15418 break; 15419 case 3: // Branch on the inverted value of the LT bit of CR6. 15420 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15421 break; 15422 } 15423 15424 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15425 DAG.getConstant(CompOpc, dl, MVT::i32), 15426 DAG.getRegister(PPC::CR6, MVT::i32), 15427 N->getOperand(4), CompNode.getValue(1)); 15428 } 15429 break; 15430 } 15431 case ISD::BUILD_VECTOR: 15432 return DAGCombineBuildVector(N, DCI); 15433 case ISD::ABS: 15434 return combineABS(N, DCI); 15435 case ISD::VSELECT: 15436 return combineVSelect(N, DCI); 15437 } 15438 15439 return SDValue(); 15440 } 15441 15442 SDValue 15443 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15444 SelectionDAG &DAG, 15445 SmallVectorImpl<SDNode *> &Created) const { 15446 // fold (sdiv X, pow2) 15447 EVT VT = N->getValueType(0); 15448 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15449 return SDValue(); 15450 if ((VT != MVT::i32 && VT != MVT::i64) || 15451 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15452 return SDValue(); 15453 15454 SDLoc DL(N); 15455 SDValue N0 = N->getOperand(0); 15456 15457 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15458 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15459 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15460 15461 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15462 Created.push_back(Op.getNode()); 15463 15464 if (IsNegPow2) { 15465 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15466 Created.push_back(Op.getNode()); 15467 } 15468 15469 return Op; 15470 } 15471 15472 //===----------------------------------------------------------------------===// 15473 // Inline Assembly Support 15474 //===----------------------------------------------------------------------===// 15475 15476 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15477 KnownBits &Known, 15478 const APInt &DemandedElts, 15479 const SelectionDAG &DAG, 15480 unsigned Depth) const { 15481 Known.resetAll(); 15482 switch (Op.getOpcode()) { 15483 default: break; 15484 case PPCISD::LBRX: { 15485 // lhbrx is known to have the top bits cleared out. 15486 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15487 Known.Zero = 0xFFFF0000; 15488 break; 15489 } 15490 case ISD::INTRINSIC_WO_CHAIN: { 15491 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15492 default: break; 15493 case Intrinsic::ppc_altivec_vcmpbfp_p: 15494 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15495 case Intrinsic::ppc_altivec_vcmpequb_p: 15496 case Intrinsic::ppc_altivec_vcmpequh_p: 15497 case Intrinsic::ppc_altivec_vcmpequw_p: 15498 case Intrinsic::ppc_altivec_vcmpequd_p: 15499 case Intrinsic::ppc_altivec_vcmpequq_p: 15500 case Intrinsic::ppc_altivec_vcmpgefp_p: 15501 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15502 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15503 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15504 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15505 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15506 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15507 case Intrinsic::ppc_altivec_vcmpgtub_p: 15508 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15509 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15510 case Intrinsic::ppc_altivec_vcmpgtud_p: 15511 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15512 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15513 break; 15514 } 15515 } 15516 } 15517 } 15518 15519 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15520 switch (Subtarget.getCPUDirective()) { 15521 default: break; 15522 case PPC::DIR_970: 15523 case PPC::DIR_PWR4: 15524 case PPC::DIR_PWR5: 15525 case PPC::DIR_PWR5X: 15526 case PPC::DIR_PWR6: 15527 case PPC::DIR_PWR6X: 15528 case PPC::DIR_PWR7: 15529 case PPC::DIR_PWR8: 15530 case PPC::DIR_PWR9: 15531 case PPC::DIR_PWR10: 15532 case PPC::DIR_PWR_FUTURE: { 15533 if (!ML) 15534 break; 15535 15536 if (!DisableInnermostLoopAlign32) { 15537 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15538 // so that we can decrease cache misses and branch-prediction misses. 15539 // Actual alignment of the loop will depend on the hotness check and other 15540 // logic in alignBlocks. 15541 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15542 return Align(32); 15543 } 15544 15545 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15546 15547 // For small loops (between 5 and 8 instructions), align to a 32-byte 15548 // boundary so that the entire loop fits in one instruction-cache line. 15549 uint64_t LoopSize = 0; 15550 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15551 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15552 LoopSize += TII->getInstSizeInBytes(*J); 15553 if (LoopSize > 32) 15554 break; 15555 } 15556 15557 if (LoopSize > 16 && LoopSize <= 32) 15558 return Align(32); 15559 15560 break; 15561 } 15562 } 15563 15564 return TargetLowering::getPrefLoopAlignment(ML); 15565 } 15566 15567 /// getConstraintType - Given a constraint, return the type of 15568 /// constraint it is for this target. 15569 PPCTargetLowering::ConstraintType 15570 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15571 if (Constraint.size() == 1) { 15572 switch (Constraint[0]) { 15573 default: break; 15574 case 'b': 15575 case 'r': 15576 case 'f': 15577 case 'd': 15578 case 'v': 15579 case 'y': 15580 return C_RegisterClass; 15581 case 'Z': 15582 // FIXME: While Z does indicate a memory constraint, it specifically 15583 // indicates an r+r address (used in conjunction with the 'y' modifier 15584 // in the replacement string). Currently, we're forcing the base 15585 // register to be r0 in the asm printer (which is interpreted as zero) 15586 // and forming the complete address in the second register. This is 15587 // suboptimal. 15588 return C_Memory; 15589 } 15590 } else if (Constraint == "wc") { // individual CR bits. 15591 return C_RegisterClass; 15592 } else if (Constraint == "wa" || Constraint == "wd" || 15593 Constraint == "wf" || Constraint == "ws" || 15594 Constraint == "wi" || Constraint == "ww") { 15595 return C_RegisterClass; // VSX registers. 15596 } 15597 return TargetLowering::getConstraintType(Constraint); 15598 } 15599 15600 /// Examine constraint type and operand type and determine a weight value. 15601 /// This object must already have been set up with the operand type 15602 /// and the current alternative constraint selected. 15603 TargetLowering::ConstraintWeight 15604 PPCTargetLowering::getSingleConstraintMatchWeight( 15605 AsmOperandInfo &info, const char *constraint) const { 15606 ConstraintWeight weight = CW_Invalid; 15607 Value *CallOperandVal = info.CallOperandVal; 15608 // If we don't have a value, we can't do a match, 15609 // but allow it at the lowest weight. 15610 if (!CallOperandVal) 15611 return CW_Default; 15612 Type *type = CallOperandVal->getType(); 15613 15614 // Look at the constraint type. 15615 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15616 return CW_Register; // an individual CR bit. 15617 else if ((StringRef(constraint) == "wa" || 15618 StringRef(constraint) == "wd" || 15619 StringRef(constraint) == "wf") && 15620 type->isVectorTy()) 15621 return CW_Register; 15622 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15623 return CW_Register; // just hold 64-bit integers data. 15624 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15625 return CW_Register; 15626 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15627 return CW_Register; 15628 15629 switch (*constraint) { 15630 default: 15631 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15632 break; 15633 case 'b': 15634 if (type->isIntegerTy()) 15635 weight = CW_Register; 15636 break; 15637 case 'f': 15638 if (type->isFloatTy()) 15639 weight = CW_Register; 15640 break; 15641 case 'd': 15642 if (type->isDoubleTy()) 15643 weight = CW_Register; 15644 break; 15645 case 'v': 15646 if (type->isVectorTy()) 15647 weight = CW_Register; 15648 break; 15649 case 'y': 15650 weight = CW_Register; 15651 break; 15652 case 'Z': 15653 weight = CW_Memory; 15654 break; 15655 } 15656 return weight; 15657 } 15658 15659 std::pair<unsigned, const TargetRegisterClass *> 15660 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15661 StringRef Constraint, 15662 MVT VT) const { 15663 if (Constraint.size() == 1) { 15664 // GCC RS6000 Constraint Letters 15665 switch (Constraint[0]) { 15666 case 'b': // R1-R31 15667 if (VT == MVT::i64 && Subtarget.isPPC64()) 15668 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15669 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15670 case 'r': // R0-R31 15671 if (VT == MVT::i64 && Subtarget.isPPC64()) 15672 return std::make_pair(0U, &PPC::G8RCRegClass); 15673 return std::make_pair(0U, &PPC::GPRCRegClass); 15674 // 'd' and 'f' constraints are both defined to be "the floating point 15675 // registers", where one is for 32-bit and the other for 64-bit. We don't 15676 // really care overly much here so just give them all the same reg classes. 15677 case 'd': 15678 case 'f': 15679 if (Subtarget.hasSPE()) { 15680 if (VT == MVT::f32 || VT == MVT::i32) 15681 return std::make_pair(0U, &PPC::GPRCRegClass); 15682 if (VT == MVT::f64 || VT == MVT::i64) 15683 return std::make_pair(0U, &PPC::SPERCRegClass); 15684 } else { 15685 if (VT == MVT::f32 || VT == MVT::i32) 15686 return std::make_pair(0U, &PPC::F4RCRegClass); 15687 if (VT == MVT::f64 || VT == MVT::i64) 15688 return std::make_pair(0U, &PPC::F8RCRegClass); 15689 } 15690 break; 15691 case 'v': 15692 if (Subtarget.hasAltivec()) 15693 return std::make_pair(0U, &PPC::VRRCRegClass); 15694 break; 15695 case 'y': // crrc 15696 return std::make_pair(0U, &PPC::CRRCRegClass); 15697 } 15698 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15699 // An individual CR bit. 15700 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15701 } else if ((Constraint == "wa" || Constraint == "wd" || 15702 Constraint == "wf" || Constraint == "wi") && 15703 Subtarget.hasVSX()) { 15704 return std::make_pair(0U, &PPC::VSRCRegClass); 15705 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15706 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15707 return std::make_pair(0U, &PPC::VSSRCRegClass); 15708 else 15709 return std::make_pair(0U, &PPC::VSFRCRegClass); 15710 } 15711 15712 // If we name a VSX register, we can't defer to the base class because it 15713 // will not recognize the correct register (their names will be VSL{0-31} 15714 // and V{0-31} so they won't match). So we match them here. 15715 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15716 int VSNum = atoi(Constraint.data() + 3); 15717 assert(VSNum >= 0 && VSNum <= 63 && 15718 "Attempted to access a vsr out of range"); 15719 if (VSNum < 32) 15720 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15721 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15722 } 15723 std::pair<unsigned, const TargetRegisterClass *> R = 15724 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15725 15726 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15727 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15728 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15729 // register. 15730 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15731 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15732 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15733 PPC::GPRCRegClass.contains(R.first)) 15734 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15735 PPC::sub_32, &PPC::G8RCRegClass), 15736 &PPC::G8RCRegClass); 15737 15738 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15739 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15740 R.first = PPC::CR0; 15741 R.second = &PPC::CRRCRegClass; 15742 } 15743 15744 return R; 15745 } 15746 15747 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15748 /// vector. If it is invalid, don't add anything to Ops. 15749 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15750 std::string &Constraint, 15751 std::vector<SDValue>&Ops, 15752 SelectionDAG &DAG) const { 15753 SDValue Result; 15754 15755 // Only support length 1 constraints. 15756 if (Constraint.length() > 1) return; 15757 15758 char Letter = Constraint[0]; 15759 switch (Letter) { 15760 default: break; 15761 case 'I': 15762 case 'J': 15763 case 'K': 15764 case 'L': 15765 case 'M': 15766 case 'N': 15767 case 'O': 15768 case 'P': { 15769 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15770 if (!CST) return; // Must be an immediate to match. 15771 SDLoc dl(Op); 15772 int64_t Value = CST->getSExtValue(); 15773 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15774 // numbers are printed as such. 15775 switch (Letter) { 15776 default: llvm_unreachable("Unknown constraint letter!"); 15777 case 'I': // "I" is a signed 16-bit constant. 15778 if (isInt<16>(Value)) 15779 Result = DAG.getTargetConstant(Value, dl, TCVT); 15780 break; 15781 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15782 if (isShiftedUInt<16, 16>(Value)) 15783 Result = DAG.getTargetConstant(Value, dl, TCVT); 15784 break; 15785 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15786 if (isShiftedInt<16, 16>(Value)) 15787 Result = DAG.getTargetConstant(Value, dl, TCVT); 15788 break; 15789 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15790 if (isUInt<16>(Value)) 15791 Result = DAG.getTargetConstant(Value, dl, TCVT); 15792 break; 15793 case 'M': // "M" is a constant that is greater than 31. 15794 if (Value > 31) 15795 Result = DAG.getTargetConstant(Value, dl, TCVT); 15796 break; 15797 case 'N': // "N" is a positive constant that is an exact power of two. 15798 if (Value > 0 && isPowerOf2_64(Value)) 15799 Result = DAG.getTargetConstant(Value, dl, TCVT); 15800 break; 15801 case 'O': // "O" is the constant zero. 15802 if (Value == 0) 15803 Result = DAG.getTargetConstant(Value, dl, TCVT); 15804 break; 15805 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15806 if (isInt<16>(-Value)) 15807 Result = DAG.getTargetConstant(Value, dl, TCVT); 15808 break; 15809 } 15810 break; 15811 } 15812 } 15813 15814 if (Result.getNode()) { 15815 Ops.push_back(Result); 15816 return; 15817 } 15818 15819 // Handle standard constraint letters. 15820 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15821 } 15822 15823 // isLegalAddressingMode - Return true if the addressing mode represented 15824 // by AM is legal for this target, for a load/store of the specified type. 15825 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15826 const AddrMode &AM, Type *Ty, 15827 unsigned AS, 15828 Instruction *I) const { 15829 // Vector type r+i form is supported since power9 as DQ form. We don't check 15830 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15831 // imm form is preferred and the offset can be adjusted to use imm form later 15832 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15833 // max offset to check legal addressing mode, we should be a little aggressive 15834 // to contain other offsets for that LSRUse. 15835 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15836 return false; 15837 15838 // PPC allows a sign-extended 16-bit immediate field. 15839 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15840 return false; 15841 15842 // No global is ever allowed as a base. 15843 if (AM.BaseGV) 15844 return false; 15845 15846 // PPC only support r+r, 15847 switch (AM.Scale) { 15848 case 0: // "r+i" or just "i", depending on HasBaseReg. 15849 break; 15850 case 1: 15851 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15852 return false; 15853 // Otherwise we have r+r or r+i. 15854 break; 15855 case 2: 15856 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15857 return false; 15858 // Allow 2*r as r+r. 15859 break; 15860 default: 15861 // No other scales are supported. 15862 return false; 15863 } 15864 15865 return true; 15866 } 15867 15868 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15869 SelectionDAG &DAG) const { 15870 MachineFunction &MF = DAG.getMachineFunction(); 15871 MachineFrameInfo &MFI = MF.getFrameInfo(); 15872 MFI.setReturnAddressIsTaken(true); 15873 15874 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15875 return SDValue(); 15876 15877 SDLoc dl(Op); 15878 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15879 15880 // Make sure the function does not optimize away the store of the RA to 15881 // the stack. 15882 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15883 FuncInfo->setLRStoreRequired(); 15884 bool isPPC64 = Subtarget.isPPC64(); 15885 auto PtrVT = getPointerTy(MF.getDataLayout()); 15886 15887 if (Depth > 0) { 15888 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15889 SDValue Offset = 15890 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15891 isPPC64 ? MVT::i64 : MVT::i32); 15892 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15893 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15894 MachinePointerInfo()); 15895 } 15896 15897 // Just load the return address off the stack. 15898 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15899 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15900 MachinePointerInfo()); 15901 } 15902 15903 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15904 SelectionDAG &DAG) const { 15905 SDLoc dl(Op); 15906 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15907 15908 MachineFunction &MF = DAG.getMachineFunction(); 15909 MachineFrameInfo &MFI = MF.getFrameInfo(); 15910 MFI.setFrameAddressIsTaken(true); 15911 15912 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15913 bool isPPC64 = PtrVT == MVT::i64; 15914 15915 // Naked functions never have a frame pointer, and so we use r1. For all 15916 // other functions, this decision must be delayed until during PEI. 15917 unsigned FrameReg; 15918 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15919 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15920 else 15921 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15922 15923 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15924 PtrVT); 15925 while (Depth--) 15926 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15927 FrameAddr, MachinePointerInfo()); 15928 return FrameAddr; 15929 } 15930 15931 // FIXME? Maybe this could be a TableGen attribute on some registers and 15932 // this table could be generated automatically from RegInfo. 15933 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15934 const MachineFunction &MF) const { 15935 bool isPPC64 = Subtarget.isPPC64(); 15936 15937 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15938 if (!is64Bit && VT != LLT::scalar(32)) 15939 report_fatal_error("Invalid register global variable type"); 15940 15941 Register Reg = StringSwitch<Register>(RegName) 15942 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15943 .Case("r2", isPPC64 ? Register() : PPC::R2) 15944 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15945 .Default(Register()); 15946 15947 if (Reg) 15948 return Reg; 15949 report_fatal_error("Invalid register name global variable"); 15950 } 15951 15952 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15953 // 32-bit SVR4 ABI access everything as got-indirect. 15954 if (Subtarget.is32BitELFABI()) 15955 return true; 15956 15957 // AIX accesses everything indirectly through the TOC, which is similar to 15958 // the GOT. 15959 if (Subtarget.isAIXABI()) 15960 return true; 15961 15962 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15963 // If it is small or large code model, module locals are accessed 15964 // indirectly by loading their address from .toc/.got. 15965 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15966 return true; 15967 15968 // JumpTable and BlockAddress are accessed as got-indirect. 15969 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15970 return true; 15971 15972 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15973 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15974 15975 return false; 15976 } 15977 15978 bool 15979 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15980 // The PowerPC target isn't yet aware of offsets. 15981 return false; 15982 } 15983 15984 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15985 const CallInst &I, 15986 MachineFunction &MF, 15987 unsigned Intrinsic) const { 15988 switch (Intrinsic) { 15989 case Intrinsic::ppc_altivec_lvx: 15990 case Intrinsic::ppc_altivec_lvxl: 15991 case Intrinsic::ppc_altivec_lvebx: 15992 case Intrinsic::ppc_altivec_lvehx: 15993 case Intrinsic::ppc_altivec_lvewx: 15994 case Intrinsic::ppc_vsx_lxvd2x: 15995 case Intrinsic::ppc_vsx_lxvw4x: 15996 case Intrinsic::ppc_vsx_lxvd2x_be: 15997 case Intrinsic::ppc_vsx_lxvw4x_be: 15998 case Intrinsic::ppc_vsx_lxvl: 15999 case Intrinsic::ppc_vsx_lxvll: { 16000 EVT VT; 16001 switch (Intrinsic) { 16002 case Intrinsic::ppc_altivec_lvebx: 16003 VT = MVT::i8; 16004 break; 16005 case Intrinsic::ppc_altivec_lvehx: 16006 VT = MVT::i16; 16007 break; 16008 case Intrinsic::ppc_altivec_lvewx: 16009 VT = MVT::i32; 16010 break; 16011 case Intrinsic::ppc_vsx_lxvd2x: 16012 case Intrinsic::ppc_vsx_lxvd2x_be: 16013 VT = MVT::v2f64; 16014 break; 16015 default: 16016 VT = MVT::v4i32; 16017 break; 16018 } 16019 16020 Info.opc = ISD::INTRINSIC_W_CHAIN; 16021 Info.memVT = VT; 16022 Info.ptrVal = I.getArgOperand(0); 16023 Info.offset = -VT.getStoreSize()+1; 16024 Info.size = 2*VT.getStoreSize()-1; 16025 Info.align = Align(1); 16026 Info.flags = MachineMemOperand::MOLoad; 16027 return true; 16028 } 16029 case Intrinsic::ppc_altivec_stvx: 16030 case Intrinsic::ppc_altivec_stvxl: 16031 case Intrinsic::ppc_altivec_stvebx: 16032 case Intrinsic::ppc_altivec_stvehx: 16033 case Intrinsic::ppc_altivec_stvewx: 16034 case Intrinsic::ppc_vsx_stxvd2x: 16035 case Intrinsic::ppc_vsx_stxvw4x: 16036 case Intrinsic::ppc_vsx_stxvd2x_be: 16037 case Intrinsic::ppc_vsx_stxvw4x_be: 16038 case Intrinsic::ppc_vsx_stxvl: 16039 case Intrinsic::ppc_vsx_stxvll: { 16040 EVT VT; 16041 switch (Intrinsic) { 16042 case Intrinsic::ppc_altivec_stvebx: 16043 VT = MVT::i8; 16044 break; 16045 case Intrinsic::ppc_altivec_stvehx: 16046 VT = MVT::i16; 16047 break; 16048 case Intrinsic::ppc_altivec_stvewx: 16049 VT = MVT::i32; 16050 break; 16051 case Intrinsic::ppc_vsx_stxvd2x: 16052 case Intrinsic::ppc_vsx_stxvd2x_be: 16053 VT = MVT::v2f64; 16054 break; 16055 default: 16056 VT = MVT::v4i32; 16057 break; 16058 } 16059 16060 Info.opc = ISD::INTRINSIC_VOID; 16061 Info.memVT = VT; 16062 Info.ptrVal = I.getArgOperand(1); 16063 Info.offset = -VT.getStoreSize()+1; 16064 Info.size = 2*VT.getStoreSize()-1; 16065 Info.align = Align(1); 16066 Info.flags = MachineMemOperand::MOStore; 16067 return true; 16068 } 16069 default: 16070 break; 16071 } 16072 16073 return false; 16074 } 16075 16076 /// It returns EVT::Other if the type should be determined using generic 16077 /// target-independent logic. 16078 EVT PPCTargetLowering::getOptimalMemOpType( 16079 const MemOp &Op, const AttributeList &FuncAttributes) const { 16080 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16081 // We should use Altivec/VSX loads and stores when available. For unaligned 16082 // addresses, unaligned VSX loads are only fast starting with the P8. 16083 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16084 (Op.isAligned(Align(16)) || 16085 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16086 return MVT::v4i32; 16087 } 16088 16089 if (Subtarget.isPPC64()) { 16090 return MVT::i64; 16091 } 16092 16093 return MVT::i32; 16094 } 16095 16096 /// Returns true if it is beneficial to convert a load of a constant 16097 /// to just the constant itself. 16098 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16099 Type *Ty) const { 16100 assert(Ty->isIntegerTy()); 16101 16102 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16103 return !(BitSize == 0 || BitSize > 64); 16104 } 16105 16106 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16107 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16108 return false; 16109 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16110 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16111 return NumBits1 == 64 && NumBits2 == 32; 16112 } 16113 16114 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16115 if (!VT1.isInteger() || !VT2.isInteger()) 16116 return false; 16117 unsigned NumBits1 = VT1.getSizeInBits(); 16118 unsigned NumBits2 = VT2.getSizeInBits(); 16119 return NumBits1 == 64 && NumBits2 == 32; 16120 } 16121 16122 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16123 // Generally speaking, zexts are not free, but they are free when they can be 16124 // folded with other operations. 16125 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16126 EVT MemVT = LD->getMemoryVT(); 16127 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16128 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16129 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16130 LD->getExtensionType() == ISD::ZEXTLOAD)) 16131 return true; 16132 } 16133 16134 // FIXME: Add other cases... 16135 // - 32-bit shifts with a zext to i64 16136 // - zext after ctlz, bswap, etc. 16137 // - zext after and by a constant mask 16138 16139 return TargetLowering::isZExtFree(Val, VT2); 16140 } 16141 16142 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16143 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16144 "invalid fpext types"); 16145 // Extending to float128 is not free. 16146 if (DestVT == MVT::f128) 16147 return false; 16148 return true; 16149 } 16150 16151 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16152 return isInt<16>(Imm) || isUInt<16>(Imm); 16153 } 16154 16155 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16156 return isInt<16>(Imm) || isUInt<16>(Imm); 16157 } 16158 16159 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16160 unsigned, 16161 unsigned, 16162 MachineMemOperand::Flags, 16163 bool *Fast) const { 16164 if (DisablePPCUnaligned) 16165 return false; 16166 16167 // PowerPC supports unaligned memory access for simple non-vector types. 16168 // Although accessing unaligned addresses is not as efficient as accessing 16169 // aligned addresses, it is generally more efficient than manual expansion, 16170 // and generally only traps for software emulation when crossing page 16171 // boundaries. 16172 16173 if (!VT.isSimple()) 16174 return false; 16175 16176 if (VT.isFloatingPoint() && !VT.isVector() && 16177 !Subtarget.allowsUnalignedFPAccess()) 16178 return false; 16179 16180 if (VT.getSimpleVT().isVector()) { 16181 if (Subtarget.hasVSX()) { 16182 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16183 VT != MVT::v4f32 && VT != MVT::v4i32) 16184 return false; 16185 } else { 16186 return false; 16187 } 16188 } 16189 16190 if (VT == MVT::ppcf128) 16191 return false; 16192 16193 if (Fast) 16194 *Fast = true; 16195 16196 return true; 16197 } 16198 16199 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16200 SDValue C) const { 16201 // Check integral scalar types. 16202 if (!VT.isScalarInteger()) 16203 return false; 16204 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16205 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16206 return false; 16207 // This transformation will generate >= 2 operations. But the following 16208 // cases will generate <= 2 instructions during ISEL. So exclude them. 16209 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16210 // HW instruction, ie. MULLI 16211 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16212 // instruction is needed than case 1, ie. MULLI and RLDICR 16213 int64_t Imm = ConstNode->getSExtValue(); 16214 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16215 Imm >>= Shift; 16216 if (isInt<16>(Imm)) 16217 return false; 16218 uint64_t UImm = static_cast<uint64_t>(Imm); 16219 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16220 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16221 return true; 16222 } 16223 return false; 16224 } 16225 16226 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16227 EVT VT) const { 16228 return isFMAFasterThanFMulAndFAdd( 16229 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16230 } 16231 16232 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16233 Type *Ty) const { 16234 switch (Ty->getScalarType()->getTypeID()) { 16235 case Type::FloatTyID: 16236 case Type::DoubleTyID: 16237 return true; 16238 case Type::FP128TyID: 16239 return Subtarget.hasP9Vector(); 16240 default: 16241 return false; 16242 } 16243 } 16244 16245 // FIXME: add more patterns which are not profitable to hoist. 16246 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16247 if (!I->hasOneUse()) 16248 return true; 16249 16250 Instruction *User = I->user_back(); 16251 assert(User && "A single use instruction with no uses."); 16252 16253 switch (I->getOpcode()) { 16254 case Instruction::FMul: { 16255 // Don't break FMA, PowerPC prefers FMA. 16256 if (User->getOpcode() != Instruction::FSub && 16257 User->getOpcode() != Instruction::FAdd) 16258 return true; 16259 16260 const TargetOptions &Options = getTargetMachine().Options; 16261 const Function *F = I->getFunction(); 16262 const DataLayout &DL = F->getParent()->getDataLayout(); 16263 Type *Ty = User->getOperand(0)->getType(); 16264 16265 return !( 16266 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16267 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16268 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16269 } 16270 case Instruction::Load: { 16271 // Don't break "store (load float*)" pattern, this pattern will be combined 16272 // to "store (load int32)" in later InstCombine pass. See function 16273 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16274 // cycles than loading a 32 bit integer. 16275 LoadInst *LI = cast<LoadInst>(I); 16276 // For the loads that combineLoadToOperationType does nothing, like 16277 // ordered load, it should be profitable to hoist them. 16278 // For swifterror load, it can only be used for pointer to pointer type, so 16279 // later type check should get rid of this case. 16280 if (!LI->isUnordered()) 16281 return true; 16282 16283 if (User->getOpcode() != Instruction::Store) 16284 return true; 16285 16286 if (I->getType()->getTypeID() != Type::FloatTyID) 16287 return true; 16288 16289 return false; 16290 } 16291 default: 16292 return true; 16293 } 16294 return true; 16295 } 16296 16297 const MCPhysReg * 16298 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16299 // LR is a callee-save register, but we must treat it as clobbered by any call 16300 // site. Hence we include LR in the scratch registers, which are in turn added 16301 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16302 // to CTR, which is used by any indirect call. 16303 static const MCPhysReg ScratchRegs[] = { 16304 PPC::X12, PPC::LR8, PPC::CTR8, 0 16305 }; 16306 16307 return ScratchRegs; 16308 } 16309 16310 Register PPCTargetLowering::getExceptionPointerRegister( 16311 const Constant *PersonalityFn) const { 16312 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16313 } 16314 16315 Register PPCTargetLowering::getExceptionSelectorRegister( 16316 const Constant *PersonalityFn) const { 16317 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16318 } 16319 16320 bool 16321 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16322 EVT VT , unsigned DefinedValues) const { 16323 if (VT == MVT::v2i64) 16324 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16325 16326 if (Subtarget.hasVSX()) 16327 return true; 16328 16329 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16330 } 16331 16332 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16333 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16334 return TargetLowering::getSchedulingPreference(N); 16335 16336 return Sched::ILP; 16337 } 16338 16339 // Create a fast isel object. 16340 FastISel * 16341 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16342 const TargetLibraryInfo *LibInfo) const { 16343 return PPC::createFastISel(FuncInfo, LibInfo); 16344 } 16345 16346 // 'Inverted' means the FMA opcode after negating one multiplicand. 16347 // For example, (fma -a b c) = (fnmsub a b c) 16348 static unsigned invertFMAOpcode(unsigned Opc) { 16349 switch (Opc) { 16350 default: 16351 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16352 case ISD::FMA: 16353 return PPCISD::FNMSUB; 16354 case PPCISD::FNMSUB: 16355 return ISD::FMA; 16356 } 16357 } 16358 16359 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16360 bool LegalOps, bool OptForSize, 16361 NegatibleCost &Cost, 16362 unsigned Depth) const { 16363 if (Depth > SelectionDAG::MaxRecursionDepth) 16364 return SDValue(); 16365 16366 unsigned Opc = Op.getOpcode(); 16367 EVT VT = Op.getValueType(); 16368 SDNodeFlags Flags = Op.getNode()->getFlags(); 16369 16370 switch (Opc) { 16371 case PPCISD::FNMSUB: 16372 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16373 break; 16374 16375 const TargetOptions &Options = getTargetMachine().Options; 16376 SDValue N0 = Op.getOperand(0); 16377 SDValue N1 = Op.getOperand(1); 16378 SDValue N2 = Op.getOperand(2); 16379 SDLoc Loc(Op); 16380 16381 NegatibleCost N2Cost = NegatibleCost::Expensive; 16382 SDValue NegN2 = 16383 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16384 16385 if (!NegN2) 16386 return SDValue(); 16387 16388 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16389 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16390 // These transformations may change sign of zeroes. For example, 16391 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16392 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16393 // Try and choose the cheaper one to negate. 16394 NegatibleCost N0Cost = NegatibleCost::Expensive; 16395 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16396 N0Cost, Depth + 1); 16397 16398 NegatibleCost N1Cost = NegatibleCost::Expensive; 16399 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16400 N1Cost, Depth + 1); 16401 16402 if (NegN0 && N0Cost <= N1Cost) { 16403 Cost = std::min(N0Cost, N2Cost); 16404 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16405 } else if (NegN1) { 16406 Cost = std::min(N1Cost, N2Cost); 16407 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16408 } 16409 } 16410 16411 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16412 if (isOperationLegal(ISD::FMA, VT)) { 16413 Cost = N2Cost; 16414 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16415 } 16416 16417 break; 16418 } 16419 16420 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16421 Cost, Depth); 16422 } 16423 16424 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16425 bool PPCTargetLowering::useLoadStackGuardNode() const { 16426 if (!Subtarget.isTargetLinux()) 16427 return TargetLowering::useLoadStackGuardNode(); 16428 return true; 16429 } 16430 16431 // Override to disable global variable loading on Linux. 16432 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16433 if (!Subtarget.isTargetLinux()) 16434 return TargetLowering::insertSSPDeclarations(M); 16435 } 16436 16437 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16438 bool ForCodeSize) const { 16439 if (!VT.isSimple() || !Subtarget.hasVSX()) 16440 return false; 16441 16442 switch(VT.getSimpleVT().SimpleTy) { 16443 default: 16444 // For FP types that are currently not supported by PPC backend, return 16445 // false. Examples: f16, f80. 16446 return false; 16447 case MVT::f32: 16448 case MVT::f64: 16449 if (Subtarget.hasPrefixInstrs()) { 16450 // With prefixed instructions, we can materialize anything that can be 16451 // represented with a 32-bit immediate, not just positive zero. 16452 APFloat APFloatOfImm = Imm; 16453 return convertToNonDenormSingle(APFloatOfImm); 16454 } 16455 LLVM_FALLTHROUGH; 16456 case MVT::ppcf128: 16457 return Imm.isPosZero(); 16458 } 16459 } 16460 16461 // For vector shift operation op, fold 16462 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16463 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16464 SelectionDAG &DAG) { 16465 SDValue N0 = N->getOperand(0); 16466 SDValue N1 = N->getOperand(1); 16467 EVT VT = N0.getValueType(); 16468 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16469 unsigned Opcode = N->getOpcode(); 16470 unsigned TargetOpcode; 16471 16472 switch (Opcode) { 16473 default: 16474 llvm_unreachable("Unexpected shift operation"); 16475 case ISD::SHL: 16476 TargetOpcode = PPCISD::SHL; 16477 break; 16478 case ISD::SRL: 16479 TargetOpcode = PPCISD::SRL; 16480 break; 16481 case ISD::SRA: 16482 TargetOpcode = PPCISD::SRA; 16483 break; 16484 } 16485 16486 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16487 N1->getOpcode() == ISD::AND) 16488 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16489 if (Mask->getZExtValue() == OpSizeInBits - 1) 16490 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16491 16492 return SDValue(); 16493 } 16494 16495 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16496 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16497 return Value; 16498 16499 SDValue N0 = N->getOperand(0); 16500 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16501 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16502 N0.getOpcode() != ISD::SIGN_EXTEND || 16503 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16504 N->getValueType(0) != MVT::i64) 16505 return SDValue(); 16506 16507 // We can't save an operation here if the value is already extended, and 16508 // the existing shift is easier to combine. 16509 SDValue ExtsSrc = N0.getOperand(0); 16510 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16511 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16512 return SDValue(); 16513 16514 SDLoc DL(N0); 16515 SDValue ShiftBy = SDValue(CN1, 0); 16516 // We want the shift amount to be i32 on the extswli, but the shift could 16517 // have an i64. 16518 if (ShiftBy.getValueType() == MVT::i64) 16519 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16520 16521 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16522 ShiftBy); 16523 } 16524 16525 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16526 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16527 return Value; 16528 16529 return SDValue(); 16530 } 16531 16532 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16533 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16534 return Value; 16535 16536 return SDValue(); 16537 } 16538 16539 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16540 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16541 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16542 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16543 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16544 const PPCSubtarget &Subtarget) { 16545 if (!Subtarget.isPPC64()) 16546 return SDValue(); 16547 16548 SDValue LHS = N->getOperand(0); 16549 SDValue RHS = N->getOperand(1); 16550 16551 auto isZextOfCompareWithConstant = [](SDValue Op) { 16552 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16553 Op.getValueType() != MVT::i64) 16554 return false; 16555 16556 SDValue Cmp = Op.getOperand(0); 16557 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16558 Cmp.getOperand(0).getValueType() != MVT::i64) 16559 return false; 16560 16561 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16562 int64_t NegConstant = 0 - Constant->getSExtValue(); 16563 // Due to the limitations of the addi instruction, 16564 // -C is required to be [-32768, 32767]. 16565 return isInt<16>(NegConstant); 16566 } 16567 16568 return false; 16569 }; 16570 16571 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16572 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16573 16574 // If there is a pattern, canonicalize a zext operand to the RHS. 16575 if (LHSHasPattern && !RHSHasPattern) 16576 std::swap(LHS, RHS); 16577 else if (!LHSHasPattern && !RHSHasPattern) 16578 return SDValue(); 16579 16580 SDLoc DL(N); 16581 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16582 SDValue Cmp = RHS.getOperand(0); 16583 SDValue Z = Cmp.getOperand(0); 16584 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16585 16586 assert(Constant && "Constant Should not be a null pointer."); 16587 int64_t NegConstant = 0 - Constant->getSExtValue(); 16588 16589 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16590 default: break; 16591 case ISD::SETNE: { 16592 // when C == 0 16593 // --> addze X, (addic Z, -1).carry 16594 // / 16595 // add X, (zext(setne Z, C))-- 16596 // \ when -32768 <= -C <= 32767 && C != 0 16597 // --> addze X, (addic (addi Z, -C), -1).carry 16598 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16599 DAG.getConstant(NegConstant, DL, MVT::i64)); 16600 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16601 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16602 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16603 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16604 SDValue(Addc.getNode(), 1)); 16605 } 16606 case ISD::SETEQ: { 16607 // when C == 0 16608 // --> addze X, (subfic Z, 0).carry 16609 // / 16610 // add X, (zext(sete Z, C))-- 16611 // \ when -32768 <= -C <= 32767 && C != 0 16612 // --> addze X, (subfic (addi Z, -C), 0).carry 16613 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16614 DAG.getConstant(NegConstant, DL, MVT::i64)); 16615 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16616 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16617 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16618 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16619 SDValue(Subc.getNode(), 1)); 16620 } 16621 } 16622 16623 return SDValue(); 16624 } 16625 16626 // Transform 16627 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16628 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16629 // In this case both C1 and C2 must be known constants. 16630 // C1+C2 must fit into a 34 bit signed integer. 16631 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16632 const PPCSubtarget &Subtarget) { 16633 if (!Subtarget.isUsingPCRelativeCalls()) 16634 return SDValue(); 16635 16636 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16637 // If we find that node try to cast the Global Address and the Constant. 16638 SDValue LHS = N->getOperand(0); 16639 SDValue RHS = N->getOperand(1); 16640 16641 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16642 std::swap(LHS, RHS); 16643 16644 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16645 return SDValue(); 16646 16647 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16648 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16649 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16650 16651 // Check that both casts succeeded. 16652 if (!GSDN || !ConstNode) 16653 return SDValue(); 16654 16655 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16656 SDLoc DL(GSDN); 16657 16658 // The signed int offset needs to fit in 34 bits. 16659 if (!isInt<34>(NewOffset)) 16660 return SDValue(); 16661 16662 // The new global address is a copy of the old global address except 16663 // that it has the updated Offset. 16664 SDValue GA = 16665 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16666 NewOffset, GSDN->getTargetFlags()); 16667 SDValue MatPCRel = 16668 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16669 return MatPCRel; 16670 } 16671 16672 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16673 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16674 return Value; 16675 16676 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16677 return Value; 16678 16679 return SDValue(); 16680 } 16681 16682 // Detect TRUNCATE operations on bitcasts of float128 values. 16683 // What we are looking for here is the situtation where we extract a subset 16684 // of bits from a 128 bit float. 16685 // This can be of two forms: 16686 // 1) BITCAST of f128 feeding TRUNCATE 16687 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16688 // The reason this is required is because we do not have a legal i128 type 16689 // and so we want to prevent having to store the f128 and then reload part 16690 // of it. 16691 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16692 DAGCombinerInfo &DCI) const { 16693 // If we are using CRBits then try that first. 16694 if (Subtarget.useCRBits()) { 16695 // Check if CRBits did anything and return that if it did. 16696 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16697 return CRTruncValue; 16698 } 16699 16700 SDLoc dl(N); 16701 SDValue Op0 = N->getOperand(0); 16702 16703 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16704 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16705 EVT VT = N->getValueType(0); 16706 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16707 return SDValue(); 16708 SDValue Sub = Op0.getOperand(0); 16709 if (Sub.getOpcode() == ISD::SUB) { 16710 SDValue SubOp0 = Sub.getOperand(0); 16711 SDValue SubOp1 = Sub.getOperand(1); 16712 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16713 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16714 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16715 SubOp1.getOperand(0), 16716 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16717 } 16718 } 16719 } 16720 16721 // Looking for a truncate of i128 to i64. 16722 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16723 return SDValue(); 16724 16725 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16726 16727 // SRL feeding TRUNCATE. 16728 if (Op0.getOpcode() == ISD::SRL) { 16729 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16730 // The right shift has to be by 64 bits. 16731 if (!ConstNode || ConstNode->getZExtValue() != 64) 16732 return SDValue(); 16733 16734 // Switch the element number to extract. 16735 EltToExtract = EltToExtract ? 0 : 1; 16736 // Update Op0 past the SRL. 16737 Op0 = Op0.getOperand(0); 16738 } 16739 16740 // BITCAST feeding a TRUNCATE possibly via SRL. 16741 if (Op0.getOpcode() == ISD::BITCAST && 16742 Op0.getValueType() == MVT::i128 && 16743 Op0.getOperand(0).getValueType() == MVT::f128) { 16744 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16745 return DCI.DAG.getNode( 16746 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16747 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16748 } 16749 return SDValue(); 16750 } 16751 16752 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16753 SelectionDAG &DAG = DCI.DAG; 16754 16755 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16756 if (!ConstOpOrElement) 16757 return SDValue(); 16758 16759 // An imul is usually smaller than the alternative sequence for legal type. 16760 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16761 isOperationLegal(ISD::MUL, N->getValueType(0))) 16762 return SDValue(); 16763 16764 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16765 switch (this->Subtarget.getCPUDirective()) { 16766 default: 16767 // TODO: enhance the condition for subtarget before pwr8 16768 return false; 16769 case PPC::DIR_PWR8: 16770 // type mul add shl 16771 // scalar 4 1 1 16772 // vector 7 2 2 16773 return true; 16774 case PPC::DIR_PWR9: 16775 case PPC::DIR_PWR10: 16776 case PPC::DIR_PWR_FUTURE: 16777 // type mul add shl 16778 // scalar 5 2 2 16779 // vector 7 2 2 16780 16781 // The cycle RATIO of related operations are showed as a table above. 16782 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16783 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16784 // are 4, it is always profitable; but for 3 instrs patterns 16785 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16786 // So we should only do it for vector type. 16787 return IsAddOne && IsNeg ? VT.isVector() : true; 16788 } 16789 }; 16790 16791 EVT VT = N->getValueType(0); 16792 SDLoc DL(N); 16793 16794 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16795 bool IsNeg = MulAmt.isNegative(); 16796 APInt MulAmtAbs = MulAmt.abs(); 16797 16798 if ((MulAmtAbs - 1).isPowerOf2()) { 16799 // (mul x, 2^N + 1) => (add (shl x, N), x) 16800 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16801 16802 if (!IsProfitable(IsNeg, true, VT)) 16803 return SDValue(); 16804 16805 SDValue Op0 = N->getOperand(0); 16806 SDValue Op1 = 16807 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16808 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16809 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16810 16811 if (!IsNeg) 16812 return Res; 16813 16814 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16815 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16816 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16817 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16818 16819 if (!IsProfitable(IsNeg, false, VT)) 16820 return SDValue(); 16821 16822 SDValue Op0 = N->getOperand(0); 16823 SDValue Op1 = 16824 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16825 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16826 16827 if (!IsNeg) 16828 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16829 else 16830 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16831 16832 } else { 16833 return SDValue(); 16834 } 16835 } 16836 16837 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16838 // in combiner since we need to check SD flags and other subtarget features. 16839 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16840 DAGCombinerInfo &DCI) const { 16841 SDValue N0 = N->getOperand(0); 16842 SDValue N1 = N->getOperand(1); 16843 SDValue N2 = N->getOperand(2); 16844 SDNodeFlags Flags = N->getFlags(); 16845 EVT VT = N->getValueType(0); 16846 SelectionDAG &DAG = DCI.DAG; 16847 const TargetOptions &Options = getTargetMachine().Options; 16848 unsigned Opc = N->getOpcode(); 16849 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16850 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16851 SDLoc Loc(N); 16852 16853 if (!isOperationLegal(ISD::FMA, VT)) 16854 return SDValue(); 16855 16856 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16857 // since (fnmsub a b c)=-0 while c-ab=+0. 16858 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16859 return SDValue(); 16860 16861 // (fma (fneg a) b c) => (fnmsub a b c) 16862 // (fnmsub (fneg a) b c) => (fma a b c) 16863 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16864 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16865 16866 // (fma a (fneg b) c) => (fnmsub a b c) 16867 // (fnmsub a (fneg b) c) => (fma a b c) 16868 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16869 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16870 16871 return SDValue(); 16872 } 16873 16874 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16875 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16876 if (!Subtarget.is64BitELFABI()) 16877 return false; 16878 16879 // If not a tail call then no need to proceed. 16880 if (!CI->isTailCall()) 16881 return false; 16882 16883 // If sibling calls have been disabled and tail-calls aren't guaranteed 16884 // there is no reason to duplicate. 16885 auto &TM = getTargetMachine(); 16886 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16887 return false; 16888 16889 // Can't tail call a function called indirectly, or if it has variadic args. 16890 const Function *Callee = CI->getCalledFunction(); 16891 if (!Callee || Callee->isVarArg()) 16892 return false; 16893 16894 // Make sure the callee and caller calling conventions are eligible for tco. 16895 const Function *Caller = CI->getParent()->getParent(); 16896 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16897 CI->getCallingConv())) 16898 return false; 16899 16900 // If the function is local then we have a good chance at tail-calling it 16901 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16902 } 16903 16904 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16905 if (!Subtarget.hasVSX()) 16906 return false; 16907 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16908 return true; 16909 return VT == MVT::f32 || VT == MVT::f64 || 16910 VT == MVT::v4f32 || VT == MVT::v2f64; 16911 } 16912 16913 bool PPCTargetLowering:: 16914 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16915 const Value *Mask = AndI.getOperand(1); 16916 // If the mask is suitable for andi. or andis. we should sink the and. 16917 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16918 // Can't handle constants wider than 64-bits. 16919 if (CI->getBitWidth() > 64) 16920 return false; 16921 int64_t ConstVal = CI->getZExtValue(); 16922 return isUInt<16>(ConstVal) || 16923 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16924 } 16925 16926 // For non-constant masks, we can always use the record-form and. 16927 return true; 16928 } 16929 16930 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16931 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16932 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16933 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16934 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16935 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16936 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16937 assert(Subtarget.hasP9Altivec() && 16938 "Only combine this when P9 altivec supported!"); 16939 EVT VT = N->getValueType(0); 16940 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16941 return SDValue(); 16942 16943 SelectionDAG &DAG = DCI.DAG; 16944 SDLoc dl(N); 16945 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16946 // Even for signed integers, if it's known to be positive (as signed 16947 // integer) due to zero-extended inputs. 16948 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16949 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16950 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16951 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16952 (SubOpcd1 == ISD::ZERO_EXTEND || 16953 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16954 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16955 N->getOperand(0)->getOperand(0), 16956 N->getOperand(0)->getOperand(1), 16957 DAG.getTargetConstant(0, dl, MVT::i32)); 16958 } 16959 16960 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16961 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16962 N->getOperand(0).hasOneUse()) { 16963 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16964 N->getOperand(0)->getOperand(0), 16965 N->getOperand(0)->getOperand(1), 16966 DAG.getTargetConstant(1, dl, MVT::i32)); 16967 } 16968 } 16969 16970 return SDValue(); 16971 } 16972 16973 // For type v4i32/v8ii16/v16i8, transform 16974 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16975 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16976 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16977 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16978 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16979 DAGCombinerInfo &DCI) const { 16980 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16981 assert(Subtarget.hasP9Altivec() && 16982 "Only combine this when P9 altivec supported!"); 16983 16984 SelectionDAG &DAG = DCI.DAG; 16985 SDLoc dl(N); 16986 SDValue Cond = N->getOperand(0); 16987 SDValue TrueOpnd = N->getOperand(1); 16988 SDValue FalseOpnd = N->getOperand(2); 16989 EVT VT = N->getOperand(1).getValueType(); 16990 16991 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16992 FalseOpnd.getOpcode() != ISD::SUB) 16993 return SDValue(); 16994 16995 // ABSD only available for type v4i32/v8i16/v16i8 16996 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16997 return SDValue(); 16998 16999 // At least to save one more dependent computation 17000 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17001 return SDValue(); 17002 17003 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17004 17005 // Can only handle unsigned comparison here 17006 switch (CC) { 17007 default: 17008 return SDValue(); 17009 case ISD::SETUGT: 17010 case ISD::SETUGE: 17011 break; 17012 case ISD::SETULT: 17013 case ISD::SETULE: 17014 std::swap(TrueOpnd, FalseOpnd); 17015 break; 17016 } 17017 17018 SDValue CmpOpnd1 = Cond.getOperand(0); 17019 SDValue CmpOpnd2 = Cond.getOperand(1); 17020 17021 // SETCC CmpOpnd1 CmpOpnd2 cond 17022 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17023 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17024 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17025 TrueOpnd.getOperand(1) == CmpOpnd2 && 17026 FalseOpnd.getOperand(0) == CmpOpnd2 && 17027 FalseOpnd.getOperand(1) == CmpOpnd1) { 17028 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17029 CmpOpnd1, CmpOpnd2, 17030 DAG.getTargetConstant(0, dl, MVT::i32)); 17031 } 17032 17033 return SDValue(); 17034 } 17035