1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/AtomicOrdering.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/Format.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <list> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 100 #define DEBUG_TYPE "ppc-lowering" 101 102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 104 105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableSCO("disable-ppc-sco", 112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 113 114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 115 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 116 117 STATISTIC(NumTailCalls, "Number of tail calls"); 118 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 119 120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 121 122 // FIXME: Remove this once the bug has been fixed! 123 extern cl::opt<bool> ANDIGlueBug; 124 125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 126 const PPCSubtarget &STI) 127 : TargetLowering(TM), Subtarget(STI) { 128 // Use _setjmp/_longjmp instead of setjmp/longjmp. 129 setUseUnderscoreSetJmp(true); 130 setUseUnderscoreLongJmp(true); 131 132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 133 // arguments are at least 4/8 bytes aligned. 134 bool isPPC64 = Subtarget.isPPC64(); 135 setMinStackArgumentAlignment(isPPC64 ? 8:4); 136 137 // Set up the register classes. 138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 139 if (!useSoftFloat()) { 140 if (hasSPE()) { 141 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 142 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 143 } else { 144 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 145 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 146 } 147 } 148 149 // Match BITREVERSE to customized fast code sequence in the td file. 150 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 151 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 152 153 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 154 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 155 156 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 157 for (MVT VT : MVT::integer_valuetypes()) { 158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 160 } 161 162 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 163 164 // PowerPC has pre-inc load and store's. 165 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 166 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 167 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 168 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 169 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 170 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 174 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 175 if (!Subtarget.hasSPE()) { 176 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 180 } 181 182 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 183 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 184 for (MVT VT : ScalarIntVTs) { 185 setOperationAction(ISD::ADDC, VT, Legal); 186 setOperationAction(ISD::ADDE, VT, Legal); 187 setOperationAction(ISD::SUBC, VT, Legal); 188 setOperationAction(ISD::SUBE, VT, Legal); 189 } 190 191 if (Subtarget.useCRBits()) { 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 194 if (isPPC64 || Subtarget.hasFPCVT()) { 195 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 196 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 197 isPPC64 ? MVT::i64 : MVT::i32); 198 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 199 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 200 isPPC64 ? MVT::i64 : MVT::i32); 201 } else { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 203 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 204 } 205 206 // PowerPC does not support direct load/store of condition registers. 207 setOperationAction(ISD::LOAD, MVT::i1, Custom); 208 setOperationAction(ISD::STORE, MVT::i1, Custom); 209 210 // FIXME: Remove this once the ANDI glue bug is fixed: 211 if (ANDIGlueBug) 212 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 213 214 for (MVT VT : MVT::integer_valuetypes()) { 215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 217 setTruncStoreAction(VT, MVT::i1, Expand); 218 } 219 220 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 221 } 222 223 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 224 // PPC (the libcall is not available). 225 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 226 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 227 228 // We do not currently implement these libm ops for PowerPC. 229 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 230 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 231 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 232 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 233 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 234 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 235 236 // PowerPC has no SREM/UREM instructions unless we are on P9 237 // On P9 we may use a hardware instruction to compute the remainder. 238 // The instructions are not legalized directly because in the cases where the 239 // result of both the remainder and the division is required it is more 240 // efficient to compute the remainder from the result of the division rather 241 // than use the remainder instruction. 242 if (Subtarget.isISA3_0()) { 243 setOperationAction(ISD::SREM, MVT::i32, Custom); 244 setOperationAction(ISD::UREM, MVT::i32, Custom); 245 setOperationAction(ISD::SREM, MVT::i64, Custom); 246 setOperationAction(ISD::UREM, MVT::i64, Custom); 247 } else { 248 setOperationAction(ISD::SREM, MVT::i32, Expand); 249 setOperationAction(ISD::UREM, MVT::i32, Expand); 250 setOperationAction(ISD::SREM, MVT::i64, Expand); 251 setOperationAction(ISD::UREM, MVT::i64, Expand); 252 } 253 254 if (Subtarget.hasP9Vector()) { 255 setOperationAction(ISD::ABS, MVT::v4i32, Legal); 256 setOperationAction(ISD::ABS, MVT::v8i16, Legal); 257 setOperationAction(ISD::ABS, MVT::v16i8, Legal); 258 } 259 260 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 261 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 262 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 266 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 269 270 // We don't support sin/cos/sqrt/fmod/pow 271 setOperationAction(ISD::FSIN , MVT::f64, Expand); 272 setOperationAction(ISD::FCOS , MVT::f64, Expand); 273 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 274 setOperationAction(ISD::FREM , MVT::f64, Expand); 275 setOperationAction(ISD::FPOW , MVT::f64, Expand); 276 setOperationAction(ISD::FSIN , MVT::f32, Expand); 277 setOperationAction(ISD::FCOS , MVT::f32, Expand); 278 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 279 setOperationAction(ISD::FREM , MVT::f32, Expand); 280 setOperationAction(ISD::FPOW , MVT::f32, Expand); 281 if (Subtarget.hasSPE()) { 282 setOperationAction(ISD::FMA , MVT::f64, Expand); 283 setOperationAction(ISD::FMA , MVT::f32, Expand); 284 } else { 285 setOperationAction(ISD::FMA , MVT::f64, Legal); 286 setOperationAction(ISD::FMA , MVT::f32, Legal); 287 } 288 289 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 290 291 // If we're enabling GP optimizations, use hardware square root 292 if (!Subtarget.hasFSQRT() && 293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 294 Subtarget.hasFRE())) 295 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 296 297 if (!Subtarget.hasFSQRT() && 298 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 299 Subtarget.hasFRES())) 300 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 301 302 if (Subtarget.hasFCPSGN()) { 303 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 304 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 305 } else { 306 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 307 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 308 } 309 310 if (Subtarget.hasFPRND()) { 311 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 312 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 314 setOperationAction(ISD::FROUND, MVT::f64, Legal); 315 316 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 317 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 318 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 319 setOperationAction(ISD::FROUND, MVT::f32, Legal); 320 } 321 322 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 323 // to speed up scalar BSWAP64. 324 // CTPOP or CTTZ were introduced in P8/P9 respectively 325 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 326 if (Subtarget.isISA3_0()) { 327 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 328 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 329 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 330 } else { 331 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 332 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 334 } 335 336 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 337 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 338 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 339 } else { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 342 } 343 344 // PowerPC does not have ROTR 345 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 346 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 347 348 if (!Subtarget.useCRBits()) { 349 // PowerPC does not have Select 350 setOperationAction(ISD::SELECT, MVT::i32, Expand); 351 setOperationAction(ISD::SELECT, MVT::i64, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Expand); 353 setOperationAction(ISD::SELECT, MVT::f64, Expand); 354 } 355 356 // PowerPC wants to turn select_cc of FP into fsel when possible. 357 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 358 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 359 360 // PowerPC wants to optimize integer setcc a bit 361 if (!Subtarget.useCRBits()) 362 setOperationAction(ISD::SETCC, MVT::i32, Custom); 363 364 // PowerPC does not have BRCOND which requires SetCC 365 if (!Subtarget.useCRBits()) 366 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 367 368 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 369 370 if (Subtarget.hasSPE()) { 371 // SPE has built-in conversions 372 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 373 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 374 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 375 } else { 376 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 377 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 378 379 // PowerPC does not have [U|S]INT_TO_FP 380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 382 } 383 384 if (Subtarget.hasDirectMove() && isPPC64) { 385 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 386 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 387 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 388 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 389 } else { 390 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 391 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 392 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 393 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 394 } 395 396 // We cannot sextinreg(i1). Expand to shifts. 397 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 398 399 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 400 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 401 // support continuation, user-level threading, and etc.. As a result, no 402 // other SjLj exception interfaces are implemented and please don't build 403 // your own exception handling based on them. 404 // LLVM/Clang supports zero-cost DWARF exception handling. 405 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 406 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 407 408 // We want to legalize GlobalAddress and ConstantPool nodes into the 409 // appropriate instructions to materialize the address. 410 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 411 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 412 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 413 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 414 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 415 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 416 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 417 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 418 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 419 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 420 421 // TRAP is legal. 422 setOperationAction(ISD::TRAP, MVT::Other, Legal); 423 424 // TRAMPOLINE is custom lowered. 425 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 426 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 427 428 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 429 setOperationAction(ISD::VASTART , MVT::Other, Custom); 430 431 if (Subtarget.isSVR4ABI()) { 432 if (isPPC64) { 433 // VAARG always uses double-word chunks, so promote anything smaller. 434 setOperationAction(ISD::VAARG, MVT::i1, Promote); 435 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 436 setOperationAction(ISD::VAARG, MVT::i8, Promote); 437 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::i16, Promote); 439 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 440 setOperationAction(ISD::VAARG, MVT::i32, Promote); 441 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::Other, Expand); 443 } else { 444 // VAARG is custom lowered with the 32-bit SVR4 ABI. 445 setOperationAction(ISD::VAARG, MVT::Other, Custom); 446 setOperationAction(ISD::VAARG, MVT::i64, Custom); 447 } 448 } else 449 setOperationAction(ISD::VAARG, MVT::Other, Expand); 450 451 if (Subtarget.isSVR4ABI() && !isPPC64) 452 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 453 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 454 else 455 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 456 457 // Use the default implementation. 458 setOperationAction(ISD::VAEND , MVT::Other, Expand); 459 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 460 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 461 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 463 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 465 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 467 468 // We want to custom lower some of our intrinsics. 469 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 470 471 // To handle counter-based loop conditions. 472 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 473 474 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 478 479 // Comparisons that require checking two conditions. 480 if (Subtarget.hasSPE()) { 481 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 482 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 483 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 484 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 485 } 486 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 488 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 489 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 490 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 491 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 492 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 493 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 494 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 495 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 496 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 497 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 498 499 if (Subtarget.has64BitSupport()) { 500 // They also have instructions for converting between i64 and fp. 501 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 502 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 503 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 504 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 505 // This is just the low 32 bits of a (signed) fp->i64 conversion. 506 // We cannot do this with Promote because i64 is not a legal type. 507 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 508 509 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 510 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 511 } else { 512 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 513 if (Subtarget.hasSPE()) 514 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 515 else 516 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 517 } 518 519 // With the instructions enabled under FPCVT, we can do everything. 520 if (Subtarget.hasFPCVT()) { 521 if (Subtarget.has64BitSupport()) { 522 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 523 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 524 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 525 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 526 } 527 528 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 529 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 532 } 533 534 if (Subtarget.use64BitRegs()) { 535 // 64-bit PowerPC implementations can support i64 types directly 536 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 537 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 538 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 539 // 64-bit PowerPC wants to expand i128 shifts itself. 540 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 541 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 542 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 543 } else { 544 // 32-bit PowerPC wants to expand i64 shifts itself. 545 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 546 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 547 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 548 } 549 550 if (Subtarget.hasAltivec()) { 551 // First set operation action for all vector types to expand. Then we 552 // will selectively turn on ones that can be effectively codegen'd. 553 for (MVT VT : MVT::vector_valuetypes()) { 554 // add/sub are legal for all supported vector VT's. 555 setOperationAction(ISD::ADD, VT, Legal); 556 setOperationAction(ISD::SUB, VT, Legal); 557 558 // Vector instructions introduced in P8 559 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 560 setOperationAction(ISD::CTPOP, VT, Legal); 561 setOperationAction(ISD::CTLZ, VT, Legal); 562 } 563 else { 564 setOperationAction(ISD::CTPOP, VT, Expand); 565 setOperationAction(ISD::CTLZ, VT, Expand); 566 } 567 568 // Vector instructions introduced in P9 569 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 570 setOperationAction(ISD::CTTZ, VT, Legal); 571 else 572 setOperationAction(ISD::CTTZ, VT, Expand); 573 574 // We promote all shuffles to v16i8. 575 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 576 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 577 578 // We promote all non-typed operations to v4i32. 579 setOperationAction(ISD::AND , VT, Promote); 580 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 581 setOperationAction(ISD::OR , VT, Promote); 582 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 583 setOperationAction(ISD::XOR , VT, Promote); 584 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 585 setOperationAction(ISD::LOAD , VT, Promote); 586 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 587 setOperationAction(ISD::SELECT, VT, Promote); 588 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 589 setOperationAction(ISD::SELECT_CC, VT, Promote); 590 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 591 setOperationAction(ISD::STORE, VT, Promote); 592 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 593 594 // No other operations are legal. 595 setOperationAction(ISD::MUL , VT, Expand); 596 setOperationAction(ISD::SDIV, VT, Expand); 597 setOperationAction(ISD::SREM, VT, Expand); 598 setOperationAction(ISD::UDIV, VT, Expand); 599 setOperationAction(ISD::UREM, VT, Expand); 600 setOperationAction(ISD::FDIV, VT, Expand); 601 setOperationAction(ISD::FREM, VT, Expand); 602 setOperationAction(ISD::FNEG, VT, Expand); 603 setOperationAction(ISD::FSQRT, VT, Expand); 604 setOperationAction(ISD::FLOG, VT, Expand); 605 setOperationAction(ISD::FLOG10, VT, Expand); 606 setOperationAction(ISD::FLOG2, VT, Expand); 607 setOperationAction(ISD::FEXP, VT, Expand); 608 setOperationAction(ISD::FEXP2, VT, Expand); 609 setOperationAction(ISD::FSIN, VT, Expand); 610 setOperationAction(ISD::FCOS, VT, Expand); 611 setOperationAction(ISD::FABS, VT, Expand); 612 setOperationAction(ISD::FFLOOR, VT, Expand); 613 setOperationAction(ISD::FCEIL, VT, Expand); 614 setOperationAction(ISD::FTRUNC, VT, Expand); 615 setOperationAction(ISD::FRINT, VT, Expand); 616 setOperationAction(ISD::FNEARBYINT, VT, Expand); 617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 619 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 620 setOperationAction(ISD::MULHU, VT, Expand); 621 setOperationAction(ISD::MULHS, VT, Expand); 622 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 623 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 624 setOperationAction(ISD::UDIVREM, VT, Expand); 625 setOperationAction(ISD::SDIVREM, VT, Expand); 626 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 627 setOperationAction(ISD::FPOW, VT, Expand); 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 setOperationAction(ISD::VSELECT, VT, Expand); 630 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 631 setOperationAction(ISD::ROTL, VT, Expand); 632 setOperationAction(ISD::ROTR, VT, Expand); 633 634 for (MVT InnerVT : MVT::vector_valuetypes()) { 635 setTruncStoreAction(VT, InnerVT, Expand); 636 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 637 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 638 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 639 } 640 } 641 642 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 643 // with merges, splats, etc. 644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 645 646 setOperationAction(ISD::AND , MVT::v4i32, Legal); 647 setOperationAction(ISD::OR , MVT::v4i32, Legal); 648 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 649 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 650 setOperationAction(ISD::SELECT, MVT::v4i32, 651 Subtarget.useCRBits() ? Legal : Expand); 652 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 653 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 654 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 655 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 656 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 657 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 658 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 659 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 660 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 661 662 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 663 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 664 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 665 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 666 667 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 668 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 669 670 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 671 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 672 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 673 } 674 675 if (Subtarget.hasP8Altivec()) 676 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 677 else 678 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 679 680 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 681 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 682 683 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 684 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 685 686 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 687 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 688 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 689 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 690 691 // Altivec does not contain unordered floating-point compare instructions 692 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 693 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 694 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 695 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 696 697 if (Subtarget.hasVSX()) { 698 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 699 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 700 if (Subtarget.hasP8Vector()) { 701 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 703 } 704 if (Subtarget.hasDirectMove() && isPPC64) { 705 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 706 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 707 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 709 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 710 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 713 } 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 715 716 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 717 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 718 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 719 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 720 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 721 722 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 723 724 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 725 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 726 727 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 728 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 729 730 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 731 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 732 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 733 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 734 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 735 736 // Share the Altivec comparison restrictions. 737 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 738 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 739 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 740 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 741 742 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 743 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 744 745 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 746 747 if (Subtarget.hasP8Vector()) 748 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 749 750 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 751 752 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 753 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 754 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 755 756 if (Subtarget.hasP8Altivec()) { 757 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 758 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 759 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 760 761 // 128 bit shifts can be accomplished via 3 instructions for SHL and 762 // SRL, but not for SRA because of the instructions available: 763 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 764 // doing 765 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 766 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 767 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 768 769 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 770 } 771 else { 772 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 773 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 774 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 775 776 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 777 778 // VSX v2i64 only supports non-arithmetic operations. 779 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 780 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 781 } 782 783 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 784 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 785 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 786 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 787 788 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 789 790 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 791 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 792 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 793 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 794 795 // Vector operation legalization checks the result type of 796 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 797 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 798 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 799 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 800 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 801 802 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 803 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 804 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 805 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 806 807 if (Subtarget.hasDirectMove()) 808 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 809 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 810 811 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 812 } 813 814 if (Subtarget.hasP8Altivec()) { 815 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 816 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 817 } 818 819 if (Subtarget.hasP9Vector()) { 820 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 821 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 822 823 // 128 bit shifts can be accomplished via 3 instructions for SHL and 824 // SRL, but not for SRA because of the instructions available: 825 // VS{RL} and VS{RL}O. 826 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 827 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 828 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 829 830 if (EnableQuadPrecision) { 831 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 832 setOperationAction(ISD::FADD, MVT::f128, Legal); 833 setOperationAction(ISD::FSUB, MVT::f128, Legal); 834 setOperationAction(ISD::FDIV, MVT::f128, Legal); 835 setOperationAction(ISD::FMUL, MVT::f128, Legal); 836 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 837 // No extending loads to f128 on PPC. 838 for (MVT FPT : MVT::fp_valuetypes()) 839 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 840 setOperationAction(ISD::FMA, MVT::f128, Legal); 841 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 842 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 843 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 844 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 845 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 846 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 847 848 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 849 setOperationAction(ISD::FRINT, MVT::f128, Legal); 850 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 851 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 852 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 853 setOperationAction(ISD::FROUND, MVT::f128, Legal); 854 855 setOperationAction(ISD::SELECT, MVT::f128, Expand); 856 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 857 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 858 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 859 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 860 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 861 // No implementation for these ops for PowerPC. 862 setOperationAction(ISD::FSIN , MVT::f128, Expand); 863 setOperationAction(ISD::FCOS , MVT::f128, Expand); 864 setOperationAction(ISD::FPOW, MVT::f128, Expand); 865 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 866 setOperationAction(ISD::FREM, MVT::f128, Expand); 867 } 868 869 } 870 871 if (Subtarget.hasP9Altivec()) { 872 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 874 } 875 } 876 877 if (Subtarget.hasQPX()) { 878 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 879 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 880 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 881 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 882 883 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 884 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 885 886 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 887 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 888 889 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 890 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 891 892 if (!Subtarget.useCRBits()) 893 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 894 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 895 896 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 897 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 898 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 899 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 900 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 901 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 902 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 903 904 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 905 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 906 907 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 908 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 909 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 910 911 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 912 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 913 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 914 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 915 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 916 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 917 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 918 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 919 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 920 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 921 922 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 923 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 924 925 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 926 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 927 928 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 929 930 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 931 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 932 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 933 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 934 935 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 936 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 937 938 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 939 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 940 941 if (!Subtarget.useCRBits()) 942 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 943 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 944 945 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 946 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 947 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 948 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 949 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 950 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 951 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 952 953 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 954 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 955 956 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 957 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 958 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 959 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 960 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 961 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 962 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 963 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 964 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 965 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 966 967 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 968 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 969 970 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 971 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 972 973 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 974 975 setOperationAction(ISD::AND , MVT::v4i1, Legal); 976 setOperationAction(ISD::OR , MVT::v4i1, Legal); 977 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 978 979 if (!Subtarget.useCRBits()) 980 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 981 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 982 983 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 984 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 985 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 987 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 988 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 989 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 990 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 991 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 992 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 993 994 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 995 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 996 997 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 998 999 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1002 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1003 1004 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1005 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1006 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1008 1009 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1010 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1011 1012 // These need to set FE_INEXACT, and so cannot be vectorized here. 1013 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1014 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1015 1016 if (TM.Options.UnsafeFPMath) { 1017 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1019 1020 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1021 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1022 } else { 1023 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1024 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1025 1026 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1027 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1028 } 1029 } 1030 1031 if (Subtarget.has64BitSupport()) 1032 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1033 1034 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1035 1036 if (!isPPC64) { 1037 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1038 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1039 } 1040 1041 setBooleanContents(ZeroOrOneBooleanContent); 1042 1043 if (Subtarget.hasAltivec()) { 1044 // Altivec instructions set fields to all zeros or all ones. 1045 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1046 } 1047 1048 if (!isPPC64) { 1049 // These libcalls are not available in 32-bit. 1050 setLibcallName(RTLIB::SHL_I128, nullptr); 1051 setLibcallName(RTLIB::SRL_I128, nullptr); 1052 setLibcallName(RTLIB::SRA_I128, nullptr); 1053 } 1054 1055 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1056 1057 // We have target-specific dag combine patterns for the following nodes: 1058 setTargetDAGCombine(ISD::ADD); 1059 setTargetDAGCombine(ISD::SHL); 1060 setTargetDAGCombine(ISD::SRA); 1061 setTargetDAGCombine(ISD::SRL); 1062 setTargetDAGCombine(ISD::SINT_TO_FP); 1063 setTargetDAGCombine(ISD::BUILD_VECTOR); 1064 if (Subtarget.hasFPCVT()) 1065 setTargetDAGCombine(ISD::UINT_TO_FP); 1066 setTargetDAGCombine(ISD::LOAD); 1067 setTargetDAGCombine(ISD::STORE); 1068 setTargetDAGCombine(ISD::BR_CC); 1069 if (Subtarget.useCRBits()) 1070 setTargetDAGCombine(ISD::BRCOND); 1071 setTargetDAGCombine(ISD::BSWAP); 1072 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1073 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1074 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1075 1076 setTargetDAGCombine(ISD::SIGN_EXTEND); 1077 setTargetDAGCombine(ISD::ZERO_EXTEND); 1078 setTargetDAGCombine(ISD::ANY_EXTEND); 1079 1080 if (Subtarget.useCRBits()) { 1081 setTargetDAGCombine(ISD::TRUNCATE); 1082 setTargetDAGCombine(ISD::SETCC); 1083 setTargetDAGCombine(ISD::SELECT_CC); 1084 } 1085 1086 // Use reciprocal estimates. 1087 if (TM.Options.UnsafeFPMath) { 1088 setTargetDAGCombine(ISD::FDIV); 1089 setTargetDAGCombine(ISD::FSQRT); 1090 } 1091 1092 // Darwin long double math library functions have $LDBL128 appended. 1093 if (Subtarget.isDarwin()) { 1094 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1095 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1096 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1097 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1098 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1099 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1100 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1101 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1102 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1103 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1104 } 1105 1106 if (EnableQuadPrecision) { 1107 setLibcallName(RTLIB::LOG_F128, "logf128"); 1108 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1109 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1110 setLibcallName(RTLIB::EXP_F128, "expf128"); 1111 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1112 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1113 setLibcallName(RTLIB::COS_F128, "cosf128"); 1114 setLibcallName(RTLIB::POW_F128, "powf128"); 1115 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1116 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1117 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1118 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1119 } 1120 1121 // With 32 condition bits, we don't need to sink (and duplicate) compares 1122 // aggressively in CodeGenPrep. 1123 if (Subtarget.useCRBits()) { 1124 setHasMultipleConditionRegisters(); 1125 setJumpIsExpensive(); 1126 } 1127 1128 setMinFunctionAlignment(2); 1129 if (Subtarget.isDarwin()) 1130 setPrefFunctionAlignment(4); 1131 1132 switch (Subtarget.getDarwinDirective()) { 1133 default: break; 1134 case PPC::DIR_970: 1135 case PPC::DIR_A2: 1136 case PPC::DIR_E500: 1137 case PPC::DIR_E500mc: 1138 case PPC::DIR_E5500: 1139 case PPC::DIR_PWR4: 1140 case PPC::DIR_PWR5: 1141 case PPC::DIR_PWR5X: 1142 case PPC::DIR_PWR6: 1143 case PPC::DIR_PWR6X: 1144 case PPC::DIR_PWR7: 1145 case PPC::DIR_PWR8: 1146 case PPC::DIR_PWR9: 1147 setPrefFunctionAlignment(4); 1148 setPrefLoopAlignment(4); 1149 break; 1150 } 1151 1152 if (Subtarget.enableMachineScheduler()) 1153 setSchedulingPreference(Sched::Source); 1154 else 1155 setSchedulingPreference(Sched::Hybrid); 1156 1157 computeRegisterProperties(STI.getRegisterInfo()); 1158 1159 // The Freescale cores do better with aggressive inlining of memcpy and 1160 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1161 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1162 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1163 MaxStoresPerMemset = 32; 1164 MaxStoresPerMemsetOptSize = 16; 1165 MaxStoresPerMemcpy = 32; 1166 MaxStoresPerMemcpyOptSize = 8; 1167 MaxStoresPerMemmove = 32; 1168 MaxStoresPerMemmoveOptSize = 8; 1169 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1170 // The A2 also benefits from (very) aggressive inlining of memcpy and 1171 // friends. The overhead of a the function call, even when warm, can be 1172 // over one hundred cycles. 1173 MaxStoresPerMemset = 128; 1174 MaxStoresPerMemcpy = 128; 1175 MaxStoresPerMemmove = 128; 1176 MaxLoadsPerMemcmp = 128; 1177 } else { 1178 MaxLoadsPerMemcmp = 8; 1179 MaxLoadsPerMemcmpOptSize = 4; 1180 } 1181 } 1182 1183 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1184 /// the desired ByVal argument alignment. 1185 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1186 unsigned MaxMaxAlign) { 1187 if (MaxAlign == MaxMaxAlign) 1188 return; 1189 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1190 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1191 MaxAlign = 32; 1192 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1193 MaxAlign = 16; 1194 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1195 unsigned EltAlign = 0; 1196 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1197 if (EltAlign > MaxAlign) 1198 MaxAlign = EltAlign; 1199 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1200 for (auto *EltTy : STy->elements()) { 1201 unsigned EltAlign = 0; 1202 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1203 if (EltAlign > MaxAlign) 1204 MaxAlign = EltAlign; 1205 if (MaxAlign == MaxMaxAlign) 1206 break; 1207 } 1208 } 1209 } 1210 1211 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1212 /// function arguments in the caller parameter area. 1213 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1214 const DataLayout &DL) const { 1215 // Darwin passes everything on 4 byte boundary. 1216 if (Subtarget.isDarwin()) 1217 return 4; 1218 1219 // 16byte and wider vectors are passed on 16byte boundary. 1220 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1221 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1222 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1223 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1224 return Align; 1225 } 1226 1227 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1228 CallingConv:: ID CC, 1229 EVT VT) const { 1230 if (Subtarget.hasSPE() && VT == MVT::f64) 1231 return 2; 1232 return PPCTargetLowering::getNumRegisters(Context, VT); 1233 } 1234 1235 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1236 CallingConv:: ID CC, 1237 EVT VT) const { 1238 if (Subtarget.hasSPE() && VT == MVT::f64) 1239 return MVT::i32; 1240 return PPCTargetLowering::getRegisterType(Context, VT); 1241 } 1242 1243 bool PPCTargetLowering::useSoftFloat() const { 1244 return Subtarget.useSoftFloat(); 1245 } 1246 1247 bool PPCTargetLowering::hasSPE() const { 1248 return Subtarget.hasSPE(); 1249 } 1250 1251 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1252 switch ((PPCISD::NodeType)Opcode) { 1253 case PPCISD::FIRST_NUMBER: break; 1254 case PPCISD::FSEL: return "PPCISD::FSEL"; 1255 case PPCISD::FCFID: return "PPCISD::FCFID"; 1256 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1257 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1258 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1259 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1260 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1261 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1262 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1263 case PPCISD::FP_TO_UINT_IN_VSR: 1264 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1265 case PPCISD::FP_TO_SINT_IN_VSR: 1266 return "PPCISD::FP_TO_SINT_IN_VSR"; 1267 case PPCISD::FRE: return "PPCISD::FRE"; 1268 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1269 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1270 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1271 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1272 case PPCISD::VPERM: return "PPCISD::VPERM"; 1273 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1274 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1275 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1276 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1277 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1278 case PPCISD::CMPB: return "PPCISD::CMPB"; 1279 case PPCISD::Hi: return "PPCISD::Hi"; 1280 case PPCISD::Lo: return "PPCISD::Lo"; 1281 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1282 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1283 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1284 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1285 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1286 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1287 case PPCISD::SRL: return "PPCISD::SRL"; 1288 case PPCISD::SRA: return "PPCISD::SRA"; 1289 case PPCISD::SHL: return "PPCISD::SHL"; 1290 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1291 case PPCISD::CALL: return "PPCISD::CALL"; 1292 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1293 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1294 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1295 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1296 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1297 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1298 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1299 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1300 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1301 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1302 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1303 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1304 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1305 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1306 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1307 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1308 case PPCISD::VCMP: return "PPCISD::VCMP"; 1309 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1310 case PPCISD::LBRX: return "PPCISD::LBRX"; 1311 case PPCISD::STBRX: return "PPCISD::STBRX"; 1312 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1313 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1314 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1315 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1316 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1317 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1318 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1319 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1320 case PPCISD::ST_VSR_SCAL_INT: 1321 return "PPCISD::ST_VSR_SCAL_INT"; 1322 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1323 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1324 case PPCISD::BDZ: return "PPCISD::BDZ"; 1325 case PPCISD::MFFS: return "PPCISD::MFFS"; 1326 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1327 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1328 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1329 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1330 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1331 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1332 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1333 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1334 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1335 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1336 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1337 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1338 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1339 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1340 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1341 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1342 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1343 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1344 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1345 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1346 case PPCISD::SC: return "PPCISD::SC"; 1347 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1348 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1349 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1350 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1351 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1352 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1353 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1354 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1355 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1356 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1357 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1358 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1359 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1360 } 1361 return nullptr; 1362 } 1363 1364 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1365 EVT VT) const { 1366 if (!VT.isVector()) 1367 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1368 1369 if (Subtarget.hasQPX()) 1370 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1371 1372 return VT.changeVectorElementTypeToInteger(); 1373 } 1374 1375 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1376 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1377 return true; 1378 } 1379 1380 //===----------------------------------------------------------------------===// 1381 // Node matching predicates, for use by the tblgen matching code. 1382 //===----------------------------------------------------------------------===// 1383 1384 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1385 static bool isFloatingPointZero(SDValue Op) { 1386 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1387 return CFP->getValueAPF().isZero(); 1388 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1389 // Maybe this has already been legalized into the constant pool? 1390 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1391 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1392 return CFP->getValueAPF().isZero(); 1393 } 1394 return false; 1395 } 1396 1397 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1398 /// true if Op is undef or if it matches the specified value. 1399 static bool isConstantOrUndef(int Op, int Val) { 1400 return Op < 0 || Op == Val; 1401 } 1402 1403 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1404 /// VPKUHUM instruction. 1405 /// The ShuffleKind distinguishes between big-endian operations with 1406 /// two different inputs (0), either-endian operations with two identical 1407 /// inputs (1), and little-endian operations with two different inputs (2). 1408 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1409 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1410 SelectionDAG &DAG) { 1411 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1412 if (ShuffleKind == 0) { 1413 if (IsLE) 1414 return false; 1415 for (unsigned i = 0; i != 16; ++i) 1416 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1417 return false; 1418 } else if (ShuffleKind == 2) { 1419 if (!IsLE) 1420 return false; 1421 for (unsigned i = 0; i != 16; ++i) 1422 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1423 return false; 1424 } else if (ShuffleKind == 1) { 1425 unsigned j = IsLE ? 0 : 1; 1426 for (unsigned i = 0; i != 8; ++i) 1427 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1428 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1429 return false; 1430 } 1431 return true; 1432 } 1433 1434 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1435 /// VPKUWUM instruction. 1436 /// The ShuffleKind distinguishes between big-endian operations with 1437 /// two different inputs (0), either-endian operations with two identical 1438 /// inputs (1), and little-endian operations with two different inputs (2). 1439 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1440 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1441 SelectionDAG &DAG) { 1442 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1443 if (ShuffleKind == 0) { 1444 if (IsLE) 1445 return false; 1446 for (unsigned i = 0; i != 16; i += 2) 1447 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1448 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1449 return false; 1450 } else if (ShuffleKind == 2) { 1451 if (!IsLE) 1452 return false; 1453 for (unsigned i = 0; i != 16; i += 2) 1454 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1455 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1456 return false; 1457 } else if (ShuffleKind == 1) { 1458 unsigned j = IsLE ? 0 : 2; 1459 for (unsigned i = 0; i != 8; i += 2) 1460 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1461 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1462 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1463 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1464 return false; 1465 } 1466 return true; 1467 } 1468 1469 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1470 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1471 /// current subtarget. 1472 /// 1473 /// The ShuffleKind distinguishes between big-endian operations with 1474 /// two different inputs (0), either-endian operations with two identical 1475 /// inputs (1), and little-endian operations with two different inputs (2). 1476 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1477 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1478 SelectionDAG &DAG) { 1479 const PPCSubtarget& Subtarget = 1480 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1481 if (!Subtarget.hasP8Vector()) 1482 return false; 1483 1484 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1485 if (ShuffleKind == 0) { 1486 if (IsLE) 1487 return false; 1488 for (unsigned i = 0; i != 16; i += 4) 1489 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1490 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1491 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1492 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1493 return false; 1494 } else if (ShuffleKind == 2) { 1495 if (!IsLE) 1496 return false; 1497 for (unsigned i = 0; i != 16; i += 4) 1498 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1499 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1500 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1501 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1502 return false; 1503 } else if (ShuffleKind == 1) { 1504 unsigned j = IsLE ? 0 : 4; 1505 for (unsigned i = 0; i != 8; i += 4) 1506 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1507 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1508 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1509 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1510 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1511 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1512 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1513 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1514 return false; 1515 } 1516 return true; 1517 } 1518 1519 /// isVMerge - Common function, used to match vmrg* shuffles. 1520 /// 1521 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1522 unsigned LHSStart, unsigned RHSStart) { 1523 if (N->getValueType(0) != MVT::v16i8) 1524 return false; 1525 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1526 "Unsupported merge size!"); 1527 1528 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1529 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1530 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1531 LHSStart+j+i*UnitSize) || 1532 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1533 RHSStart+j+i*UnitSize)) 1534 return false; 1535 } 1536 return true; 1537 } 1538 1539 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1540 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1541 /// The ShuffleKind distinguishes between big-endian merges with two 1542 /// different inputs (0), either-endian merges with two identical inputs (1), 1543 /// and little-endian merges with two different inputs (2). For the latter, 1544 /// the input operands are swapped (see PPCInstrAltivec.td). 1545 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1546 unsigned ShuffleKind, SelectionDAG &DAG) { 1547 if (DAG.getDataLayout().isLittleEndian()) { 1548 if (ShuffleKind == 1) // unary 1549 return isVMerge(N, UnitSize, 0, 0); 1550 else if (ShuffleKind == 2) // swapped 1551 return isVMerge(N, UnitSize, 0, 16); 1552 else 1553 return false; 1554 } else { 1555 if (ShuffleKind == 1) // unary 1556 return isVMerge(N, UnitSize, 8, 8); 1557 else if (ShuffleKind == 0) // normal 1558 return isVMerge(N, UnitSize, 8, 24); 1559 else 1560 return false; 1561 } 1562 } 1563 1564 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1565 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1566 /// The ShuffleKind distinguishes between big-endian merges with two 1567 /// different inputs (0), either-endian merges with two identical inputs (1), 1568 /// and little-endian merges with two different inputs (2). For the latter, 1569 /// the input operands are swapped (see PPCInstrAltivec.td). 1570 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1571 unsigned ShuffleKind, SelectionDAG &DAG) { 1572 if (DAG.getDataLayout().isLittleEndian()) { 1573 if (ShuffleKind == 1) // unary 1574 return isVMerge(N, UnitSize, 8, 8); 1575 else if (ShuffleKind == 2) // swapped 1576 return isVMerge(N, UnitSize, 8, 24); 1577 else 1578 return false; 1579 } else { 1580 if (ShuffleKind == 1) // unary 1581 return isVMerge(N, UnitSize, 0, 0); 1582 else if (ShuffleKind == 0) // normal 1583 return isVMerge(N, UnitSize, 0, 16); 1584 else 1585 return false; 1586 } 1587 } 1588 1589 /** 1590 * Common function used to match vmrgew and vmrgow shuffles 1591 * 1592 * The indexOffset determines whether to look for even or odd words in 1593 * the shuffle mask. This is based on the of the endianness of the target 1594 * machine. 1595 * - Little Endian: 1596 * - Use offset of 0 to check for odd elements 1597 * - Use offset of 4 to check for even elements 1598 * - Big Endian: 1599 * - Use offset of 0 to check for even elements 1600 * - Use offset of 4 to check for odd elements 1601 * A detailed description of the vector element ordering for little endian and 1602 * big endian can be found at 1603 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1604 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1605 * compiler differences mean to you 1606 * 1607 * The mask to the shuffle vector instruction specifies the indices of the 1608 * elements from the two input vectors to place in the result. The elements are 1609 * numbered in array-access order, starting with the first vector. These vectors 1610 * are always of type v16i8, thus each vector will contain 16 elements of size 1611 * 8. More info on the shuffle vector can be found in the 1612 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1613 * Language Reference. 1614 * 1615 * The RHSStartValue indicates whether the same input vectors are used (unary) 1616 * or two different input vectors are used, based on the following: 1617 * - If the instruction uses the same vector for both inputs, the range of the 1618 * indices will be 0 to 15. In this case, the RHSStart value passed should 1619 * be 0. 1620 * - If the instruction has two different vectors then the range of the 1621 * indices will be 0 to 31. In this case, the RHSStart value passed should 1622 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1623 * to 31 specify elements in the second vector). 1624 * 1625 * \param[in] N The shuffle vector SD Node to analyze 1626 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1627 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1628 * vector to the shuffle_vector instruction 1629 * \return true iff this shuffle vector represents an even or odd word merge 1630 */ 1631 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1632 unsigned RHSStartValue) { 1633 if (N->getValueType(0) != MVT::v16i8) 1634 return false; 1635 1636 for (unsigned i = 0; i < 2; ++i) 1637 for (unsigned j = 0; j < 4; ++j) 1638 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1639 i*RHSStartValue+j+IndexOffset) || 1640 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1641 i*RHSStartValue+j+IndexOffset+8)) 1642 return false; 1643 return true; 1644 } 1645 1646 /** 1647 * Determine if the specified shuffle mask is suitable for the vmrgew or 1648 * vmrgow instructions. 1649 * 1650 * \param[in] N The shuffle vector SD Node to analyze 1651 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1652 * \param[in] ShuffleKind Identify the type of merge: 1653 * - 0 = big-endian merge with two different inputs; 1654 * - 1 = either-endian merge with two identical inputs; 1655 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1656 * little-endian merges). 1657 * \param[in] DAG The current SelectionDAG 1658 * \return true iff this shuffle mask 1659 */ 1660 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1661 unsigned ShuffleKind, SelectionDAG &DAG) { 1662 if (DAG.getDataLayout().isLittleEndian()) { 1663 unsigned indexOffset = CheckEven ? 4 : 0; 1664 if (ShuffleKind == 1) // Unary 1665 return isVMerge(N, indexOffset, 0); 1666 else if (ShuffleKind == 2) // swapped 1667 return isVMerge(N, indexOffset, 16); 1668 else 1669 return false; 1670 } 1671 else { 1672 unsigned indexOffset = CheckEven ? 0 : 4; 1673 if (ShuffleKind == 1) // Unary 1674 return isVMerge(N, indexOffset, 0); 1675 else if (ShuffleKind == 0) // Normal 1676 return isVMerge(N, indexOffset, 16); 1677 else 1678 return false; 1679 } 1680 return false; 1681 } 1682 1683 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1684 /// amount, otherwise return -1. 1685 /// The ShuffleKind distinguishes between big-endian operations with two 1686 /// different inputs (0), either-endian operations with two identical inputs 1687 /// (1), and little-endian operations with two different inputs (2). For the 1688 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1689 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1690 SelectionDAG &DAG) { 1691 if (N->getValueType(0) != MVT::v16i8) 1692 return -1; 1693 1694 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1695 1696 // Find the first non-undef value in the shuffle mask. 1697 unsigned i; 1698 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1699 /*search*/; 1700 1701 if (i == 16) return -1; // all undef. 1702 1703 // Otherwise, check to see if the rest of the elements are consecutively 1704 // numbered from this value. 1705 unsigned ShiftAmt = SVOp->getMaskElt(i); 1706 if (ShiftAmt < i) return -1; 1707 1708 ShiftAmt -= i; 1709 bool isLE = DAG.getDataLayout().isLittleEndian(); 1710 1711 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1712 // Check the rest of the elements to see if they are consecutive. 1713 for (++i; i != 16; ++i) 1714 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1715 return -1; 1716 } else if (ShuffleKind == 1) { 1717 // Check the rest of the elements to see if they are consecutive. 1718 for (++i; i != 16; ++i) 1719 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1720 return -1; 1721 } else 1722 return -1; 1723 1724 if (isLE) 1725 ShiftAmt = 16 - ShiftAmt; 1726 1727 return ShiftAmt; 1728 } 1729 1730 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1731 /// specifies a splat of a single element that is suitable for input to 1732 /// VSPLTB/VSPLTH/VSPLTW. 1733 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1734 assert(N->getValueType(0) == MVT::v16i8 && 1735 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1736 1737 // The consecutive indices need to specify an element, not part of two 1738 // different elements. So abandon ship early if this isn't the case. 1739 if (N->getMaskElt(0) % EltSize != 0) 1740 return false; 1741 1742 // This is a splat operation if each element of the permute is the same, and 1743 // if the value doesn't reference the second vector. 1744 unsigned ElementBase = N->getMaskElt(0); 1745 1746 // FIXME: Handle UNDEF elements too! 1747 if (ElementBase >= 16) 1748 return false; 1749 1750 // Check that the indices are consecutive, in the case of a multi-byte element 1751 // splatted with a v16i8 mask. 1752 for (unsigned i = 1; i != EltSize; ++i) 1753 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1754 return false; 1755 1756 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1757 if (N->getMaskElt(i) < 0) continue; 1758 for (unsigned j = 0; j != EltSize; ++j) 1759 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1760 return false; 1761 } 1762 return true; 1763 } 1764 1765 /// Check that the mask is shuffling N byte elements. Within each N byte 1766 /// element of the mask, the indices could be either in increasing or 1767 /// decreasing order as long as they are consecutive. 1768 /// \param[in] N the shuffle vector SD Node to analyze 1769 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1770 /// Word/DoubleWord/QuadWord). 1771 /// \param[in] StepLen the delta indices number among the N byte element, if 1772 /// the mask is in increasing/decreasing order then it is 1/-1. 1773 /// \return true iff the mask is shuffling N byte elements. 1774 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1775 int StepLen) { 1776 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1777 "Unexpected element width."); 1778 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1779 1780 unsigned NumOfElem = 16 / Width; 1781 unsigned MaskVal[16]; // Width is never greater than 16 1782 for (unsigned i = 0; i < NumOfElem; ++i) { 1783 MaskVal[0] = N->getMaskElt(i * Width); 1784 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1785 return false; 1786 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1787 return false; 1788 } 1789 1790 for (unsigned int j = 1; j < Width; ++j) { 1791 MaskVal[j] = N->getMaskElt(i * Width + j); 1792 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1793 return false; 1794 } 1795 } 1796 } 1797 1798 return true; 1799 } 1800 1801 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1802 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1803 if (!isNByteElemShuffleMask(N, 4, 1)) 1804 return false; 1805 1806 // Now we look at mask elements 0,4,8,12 1807 unsigned M0 = N->getMaskElt(0) / 4; 1808 unsigned M1 = N->getMaskElt(4) / 4; 1809 unsigned M2 = N->getMaskElt(8) / 4; 1810 unsigned M3 = N->getMaskElt(12) / 4; 1811 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1812 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1813 1814 // Below, let H and L be arbitrary elements of the shuffle mask 1815 // where H is in the range [4,7] and L is in the range [0,3]. 1816 // H, 1, 2, 3 or L, 5, 6, 7 1817 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1818 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1819 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1820 InsertAtByte = IsLE ? 12 : 0; 1821 Swap = M0 < 4; 1822 return true; 1823 } 1824 // 0, H, 2, 3 or 4, L, 6, 7 1825 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1826 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1827 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1828 InsertAtByte = IsLE ? 8 : 4; 1829 Swap = M1 < 4; 1830 return true; 1831 } 1832 // 0, 1, H, 3 or 4, 5, L, 7 1833 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1834 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1835 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1836 InsertAtByte = IsLE ? 4 : 8; 1837 Swap = M2 < 4; 1838 return true; 1839 } 1840 // 0, 1, 2, H or 4, 5, 6, L 1841 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1842 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1843 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1844 InsertAtByte = IsLE ? 0 : 12; 1845 Swap = M3 < 4; 1846 return true; 1847 } 1848 1849 // If both vector operands for the shuffle are the same vector, the mask will 1850 // contain only elements from the first one and the second one will be undef. 1851 if (N->getOperand(1).isUndef()) { 1852 ShiftElts = 0; 1853 Swap = true; 1854 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1855 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1856 InsertAtByte = IsLE ? 12 : 0; 1857 return true; 1858 } 1859 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1860 InsertAtByte = IsLE ? 8 : 4; 1861 return true; 1862 } 1863 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1864 InsertAtByte = IsLE ? 4 : 8; 1865 return true; 1866 } 1867 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1868 InsertAtByte = IsLE ? 0 : 12; 1869 return true; 1870 } 1871 } 1872 1873 return false; 1874 } 1875 1876 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1877 bool &Swap, bool IsLE) { 1878 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1879 // Ensure each byte index of the word is consecutive. 1880 if (!isNByteElemShuffleMask(N, 4, 1)) 1881 return false; 1882 1883 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1884 unsigned M0 = N->getMaskElt(0) / 4; 1885 unsigned M1 = N->getMaskElt(4) / 4; 1886 unsigned M2 = N->getMaskElt(8) / 4; 1887 unsigned M3 = N->getMaskElt(12) / 4; 1888 1889 // If both vector operands for the shuffle are the same vector, the mask will 1890 // contain only elements from the first one and the second one will be undef. 1891 if (N->getOperand(1).isUndef()) { 1892 assert(M0 < 4 && "Indexing into an undef vector?"); 1893 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1894 return false; 1895 1896 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1897 Swap = false; 1898 return true; 1899 } 1900 1901 // Ensure each word index of the ShuffleVector Mask is consecutive. 1902 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1903 return false; 1904 1905 if (IsLE) { 1906 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1907 // Input vectors don't need to be swapped if the leading element 1908 // of the result is one of the 3 left elements of the second vector 1909 // (or if there is no shift to be done at all). 1910 Swap = false; 1911 ShiftElts = (8 - M0) % 8; 1912 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1913 // Input vectors need to be swapped if the leading element 1914 // of the result is one of the 3 left elements of the first vector 1915 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1916 Swap = true; 1917 ShiftElts = (4 - M0) % 4; 1918 } 1919 1920 return true; 1921 } else { // BE 1922 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1923 // Input vectors don't need to be swapped if the leading element 1924 // of the result is one of the 4 elements of the first vector. 1925 Swap = false; 1926 ShiftElts = M0; 1927 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1928 // Input vectors need to be swapped if the leading element 1929 // of the result is one of the 4 elements of the right vector. 1930 Swap = true; 1931 ShiftElts = M0 - 4; 1932 } 1933 1934 return true; 1935 } 1936 } 1937 1938 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1939 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1940 1941 if (!isNByteElemShuffleMask(N, Width, -1)) 1942 return false; 1943 1944 for (int i = 0; i < 16; i += Width) 1945 if (N->getMaskElt(i) != i + Width - 1) 1946 return false; 1947 1948 return true; 1949 } 1950 1951 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1952 return isXXBRShuffleMaskHelper(N, 2); 1953 } 1954 1955 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1956 return isXXBRShuffleMaskHelper(N, 4); 1957 } 1958 1959 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1960 return isXXBRShuffleMaskHelper(N, 8); 1961 } 1962 1963 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1964 return isXXBRShuffleMaskHelper(N, 16); 1965 } 1966 1967 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1968 /// if the inputs to the instruction should be swapped and set \p DM to the 1969 /// value for the immediate. 1970 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1971 /// AND element 0 of the result comes from the first input (LE) or second input 1972 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1973 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1974 /// mask. 1975 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 1976 bool &Swap, bool IsLE) { 1977 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1978 1979 // Ensure each byte index of the double word is consecutive. 1980 if (!isNByteElemShuffleMask(N, 8, 1)) 1981 return false; 1982 1983 unsigned M0 = N->getMaskElt(0) / 8; 1984 unsigned M1 = N->getMaskElt(8) / 8; 1985 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 1986 1987 // If both vector operands for the shuffle are the same vector, the mask will 1988 // contain only elements from the first one and the second one will be undef. 1989 if (N->getOperand(1).isUndef()) { 1990 if ((M0 | M1) < 2) { 1991 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 1992 Swap = false; 1993 return true; 1994 } else 1995 return false; 1996 } 1997 1998 if (IsLE) { 1999 if (M0 > 1 && M1 < 2) { 2000 Swap = false; 2001 } else if (M0 < 2 && M1 > 1) { 2002 M0 = (M0 + 2) % 4; 2003 M1 = (M1 + 2) % 4; 2004 Swap = true; 2005 } else 2006 return false; 2007 2008 // Note: if control flow comes here that means Swap is already set above 2009 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2010 return true; 2011 } else { // BE 2012 if (M0 < 2 && M1 > 1) { 2013 Swap = false; 2014 } else if (M0 > 1 && M1 < 2) { 2015 M0 = (M0 + 2) % 4; 2016 M1 = (M1 + 2) % 4; 2017 Swap = true; 2018 } else 2019 return false; 2020 2021 // Note: if control flow comes here that means Swap is already set above 2022 DM = (M0 << 1) + (M1 & 1); 2023 return true; 2024 } 2025 } 2026 2027 2028 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2029 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2030 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2031 SelectionDAG &DAG) { 2032 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2033 assert(isSplatShuffleMask(SVOp, EltSize)); 2034 if (DAG.getDataLayout().isLittleEndian()) 2035 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2036 else 2037 return SVOp->getMaskElt(0) / EltSize; 2038 } 2039 2040 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2041 /// by using a vspltis[bhw] instruction of the specified element size, return 2042 /// the constant being splatted. The ByteSize field indicates the number of 2043 /// bytes of each element [124] -> [bhw]. 2044 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2045 SDValue OpVal(nullptr, 0); 2046 2047 // If ByteSize of the splat is bigger than the element size of the 2048 // build_vector, then we have a case where we are checking for a splat where 2049 // multiple elements of the buildvector are folded together into a single 2050 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2051 unsigned EltSize = 16/N->getNumOperands(); 2052 if (EltSize < ByteSize) { 2053 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2054 SDValue UniquedVals[4]; 2055 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2056 2057 // See if all of the elements in the buildvector agree across. 2058 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2059 if (N->getOperand(i).isUndef()) continue; 2060 // If the element isn't a constant, bail fully out. 2061 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2062 2063 if (!UniquedVals[i&(Multiple-1)].getNode()) 2064 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2065 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2066 return SDValue(); // no match. 2067 } 2068 2069 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2070 // either constant or undef values that are identical for each chunk. See 2071 // if these chunks can form into a larger vspltis*. 2072 2073 // Check to see if all of the leading entries are either 0 or -1. If 2074 // neither, then this won't fit into the immediate field. 2075 bool LeadingZero = true; 2076 bool LeadingOnes = true; 2077 for (unsigned i = 0; i != Multiple-1; ++i) { 2078 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2079 2080 LeadingZero &= isNullConstant(UniquedVals[i]); 2081 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2082 } 2083 // Finally, check the least significant entry. 2084 if (LeadingZero) { 2085 if (!UniquedVals[Multiple-1].getNode()) 2086 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2087 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2088 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2089 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2090 } 2091 if (LeadingOnes) { 2092 if (!UniquedVals[Multiple-1].getNode()) 2093 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2094 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2095 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2096 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2097 } 2098 2099 return SDValue(); 2100 } 2101 2102 // Check to see if this buildvec has a single non-undef value in its elements. 2103 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2104 if (N->getOperand(i).isUndef()) continue; 2105 if (!OpVal.getNode()) 2106 OpVal = N->getOperand(i); 2107 else if (OpVal != N->getOperand(i)) 2108 return SDValue(); 2109 } 2110 2111 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2112 2113 unsigned ValSizeInBytes = EltSize; 2114 uint64_t Value = 0; 2115 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2116 Value = CN->getZExtValue(); 2117 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2118 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2119 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2120 } 2121 2122 // If the splat value is larger than the element value, then we can never do 2123 // this splat. The only case that we could fit the replicated bits into our 2124 // immediate field for would be zero, and we prefer to use vxor for it. 2125 if (ValSizeInBytes < ByteSize) return SDValue(); 2126 2127 // If the element value is larger than the splat value, check if it consists 2128 // of a repeated bit pattern of size ByteSize. 2129 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2130 return SDValue(); 2131 2132 // Properly sign extend the value. 2133 int MaskVal = SignExtend32(Value, ByteSize * 8); 2134 2135 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2136 if (MaskVal == 0) return SDValue(); 2137 2138 // Finally, if this value fits in a 5 bit sext field, return it 2139 if (SignExtend32<5>(MaskVal) == MaskVal) 2140 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2141 return SDValue(); 2142 } 2143 2144 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2145 /// amount, otherwise return -1. 2146 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2147 EVT VT = N->getValueType(0); 2148 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2149 return -1; 2150 2151 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2152 2153 // Find the first non-undef value in the shuffle mask. 2154 unsigned i; 2155 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2156 /*search*/; 2157 2158 if (i == 4) return -1; // all undef. 2159 2160 // Otherwise, check to see if the rest of the elements are consecutively 2161 // numbered from this value. 2162 unsigned ShiftAmt = SVOp->getMaskElt(i); 2163 if (ShiftAmt < i) return -1; 2164 ShiftAmt -= i; 2165 2166 // Check the rest of the elements to see if they are consecutive. 2167 for (++i; i != 4; ++i) 2168 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2169 return -1; 2170 2171 return ShiftAmt; 2172 } 2173 2174 //===----------------------------------------------------------------------===// 2175 // Addressing Mode Selection 2176 //===----------------------------------------------------------------------===// 2177 2178 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2179 /// or 64-bit immediate, and if the value can be accurately represented as a 2180 /// sign extension from a 16-bit value. If so, this returns true and the 2181 /// immediate. 2182 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2183 if (!isa<ConstantSDNode>(N)) 2184 return false; 2185 2186 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2187 if (N->getValueType(0) == MVT::i32) 2188 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2189 else 2190 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2191 } 2192 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2193 return isIntS16Immediate(Op.getNode(), Imm); 2194 } 2195 2196 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2197 /// can be represented as an indexed [r+r] operation. Returns false if it 2198 /// can be more efficiently represented with [r+imm]. 2199 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2200 SDValue &Index, 2201 SelectionDAG &DAG) const { 2202 int16_t imm = 0; 2203 if (N.getOpcode() == ISD::ADD) { 2204 if (isIntS16Immediate(N.getOperand(1), imm)) 2205 return false; // r+i 2206 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2207 return false; // r+i 2208 2209 Base = N.getOperand(0); 2210 Index = N.getOperand(1); 2211 return true; 2212 } else if (N.getOpcode() == ISD::OR) { 2213 if (isIntS16Immediate(N.getOperand(1), imm)) 2214 return false; // r+i can fold it if we can. 2215 2216 // If this is an or of disjoint bitfields, we can codegen this as an add 2217 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2218 // disjoint. 2219 KnownBits LHSKnown, RHSKnown; 2220 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2221 2222 if (LHSKnown.Zero.getBoolValue()) { 2223 DAG.computeKnownBits(N.getOperand(1), RHSKnown); 2224 // If all of the bits are known zero on the LHS or RHS, the add won't 2225 // carry. 2226 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2227 Base = N.getOperand(0); 2228 Index = N.getOperand(1); 2229 return true; 2230 } 2231 } 2232 } 2233 2234 return false; 2235 } 2236 2237 // If we happen to be doing an i64 load or store into a stack slot that has 2238 // less than a 4-byte alignment, then the frame-index elimination may need to 2239 // use an indexed load or store instruction (because the offset may not be a 2240 // multiple of 4). The extra register needed to hold the offset comes from the 2241 // register scavenger, and it is possible that the scavenger will need to use 2242 // an emergency spill slot. As a result, we need to make sure that a spill slot 2243 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2244 // stack slot. 2245 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2246 // FIXME: This does not handle the LWA case. 2247 if (VT != MVT::i64) 2248 return; 2249 2250 // NOTE: We'll exclude negative FIs here, which come from argument 2251 // lowering, because there are no known test cases triggering this problem 2252 // using packed structures (or similar). We can remove this exclusion if 2253 // we find such a test case. The reason why this is so test-case driven is 2254 // because this entire 'fixup' is only to prevent crashes (from the 2255 // register scavenger) on not-really-valid inputs. For example, if we have: 2256 // %a = alloca i1 2257 // %b = bitcast i1* %a to i64* 2258 // store i64* a, i64 b 2259 // then the store should really be marked as 'align 1', but is not. If it 2260 // were marked as 'align 1' then the indexed form would have been 2261 // instruction-selected initially, and the problem this 'fixup' is preventing 2262 // won't happen regardless. 2263 if (FrameIdx < 0) 2264 return; 2265 2266 MachineFunction &MF = DAG.getMachineFunction(); 2267 MachineFrameInfo &MFI = MF.getFrameInfo(); 2268 2269 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2270 if (Align >= 4) 2271 return; 2272 2273 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2274 FuncInfo->setHasNonRISpills(); 2275 } 2276 2277 /// Returns true if the address N can be represented by a base register plus 2278 /// a signed 16-bit displacement [r+imm], and if it is not better 2279 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2280 /// displacements that are multiples of that value. 2281 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2282 SDValue &Base, 2283 SelectionDAG &DAG, 2284 unsigned Alignment) const { 2285 // FIXME dl should come from parent load or store, not from address 2286 SDLoc dl(N); 2287 // If this can be more profitably realized as r+r, fail. 2288 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2289 return false; 2290 2291 if (N.getOpcode() == ISD::ADD) { 2292 int16_t imm = 0; 2293 if (isIntS16Immediate(N.getOperand(1), imm) && 2294 (!Alignment || (imm % Alignment) == 0)) { 2295 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2296 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2297 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2298 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2299 } else { 2300 Base = N.getOperand(0); 2301 } 2302 return true; // [r+i] 2303 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2304 // Match LOAD (ADD (X, Lo(G))). 2305 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2306 && "Cannot handle constant offsets yet!"); 2307 Disp = N.getOperand(1).getOperand(0); // The global address. 2308 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2309 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2310 Disp.getOpcode() == ISD::TargetConstantPool || 2311 Disp.getOpcode() == ISD::TargetJumpTable); 2312 Base = N.getOperand(0); 2313 return true; // [&g+r] 2314 } 2315 } else if (N.getOpcode() == ISD::OR) { 2316 int16_t imm = 0; 2317 if (isIntS16Immediate(N.getOperand(1), imm) && 2318 (!Alignment || (imm % Alignment) == 0)) { 2319 // If this is an or of disjoint bitfields, we can codegen this as an add 2320 // (for better address arithmetic) if the LHS and RHS of the OR are 2321 // provably disjoint. 2322 KnownBits LHSKnown; 2323 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2324 2325 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2326 // If all of the bits are known zero on the LHS or RHS, the add won't 2327 // carry. 2328 if (FrameIndexSDNode *FI = 2329 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2330 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2331 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2332 } else { 2333 Base = N.getOperand(0); 2334 } 2335 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2336 return true; 2337 } 2338 } 2339 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2340 // Loading from a constant address. 2341 2342 // If this address fits entirely in a 16-bit sext immediate field, codegen 2343 // this as "d, 0" 2344 int16_t Imm; 2345 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2346 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2347 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2348 CN->getValueType(0)); 2349 return true; 2350 } 2351 2352 // Handle 32-bit sext immediates with LIS + addr mode. 2353 if ((CN->getValueType(0) == MVT::i32 || 2354 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2355 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2356 int Addr = (int)CN->getZExtValue(); 2357 2358 // Otherwise, break this down into an LIS + disp. 2359 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2360 2361 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2362 MVT::i32); 2363 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2364 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2365 return true; 2366 } 2367 } 2368 2369 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2370 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2371 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2372 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2373 } else 2374 Base = N; 2375 return true; // [r+0] 2376 } 2377 2378 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2379 /// represented as an indexed [r+r] operation. 2380 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2381 SDValue &Index, 2382 SelectionDAG &DAG) const { 2383 // Check to see if we can easily represent this as an [r+r] address. This 2384 // will fail if it thinks that the address is more profitably represented as 2385 // reg+imm, e.g. where imm = 0. 2386 if (SelectAddressRegReg(N, Base, Index, DAG)) 2387 return true; 2388 2389 // If the address is the result of an add, we will utilize the fact that the 2390 // address calculation includes an implicit add. However, we can reduce 2391 // register pressure if we do not materialize a constant just for use as the 2392 // index register. We only get rid of the add if it is not an add of a 2393 // value and a 16-bit signed constant and both have a single use. 2394 int16_t imm = 0; 2395 if (N.getOpcode() == ISD::ADD && 2396 (!isIntS16Immediate(N.getOperand(1), imm) || 2397 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2398 Base = N.getOperand(0); 2399 Index = N.getOperand(1); 2400 return true; 2401 } 2402 2403 // Otherwise, do it the hard way, using R0 as the base register. 2404 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2405 N.getValueType()); 2406 Index = N; 2407 return true; 2408 } 2409 2410 /// Returns true if we should use a direct load into vector instruction 2411 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2412 static bool usePartialVectorLoads(SDNode *N) { 2413 if (!N->hasOneUse()) 2414 return false; 2415 2416 // If there are any other uses other than scalar to vector, then we should 2417 // keep it as a scalar load -> direct move pattern to prevent multiple 2418 // loads. Currently, only check for i64 since we have lxsd/lfd to do this 2419 // efficiently, but no update equivalent. 2420 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2421 EVT MemVT = LD->getMemoryVT(); 2422 if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) { 2423 SDNode *User = *(LD->use_begin()); 2424 if (User->getOpcode() == ISD::SCALAR_TO_VECTOR) 2425 return true; 2426 } 2427 } 2428 2429 return false; 2430 } 2431 2432 /// getPreIndexedAddressParts - returns true by value, base pointer and 2433 /// offset pointer and addressing mode by reference if the node's address 2434 /// can be legally represented as pre-indexed load / store address. 2435 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2436 SDValue &Offset, 2437 ISD::MemIndexedMode &AM, 2438 SelectionDAG &DAG) const { 2439 if (DisablePPCPreinc) return false; 2440 2441 bool isLoad = true; 2442 SDValue Ptr; 2443 EVT VT; 2444 unsigned Alignment; 2445 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2446 Ptr = LD->getBasePtr(); 2447 VT = LD->getMemoryVT(); 2448 Alignment = LD->getAlignment(); 2449 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2450 Ptr = ST->getBasePtr(); 2451 VT = ST->getMemoryVT(); 2452 Alignment = ST->getAlignment(); 2453 isLoad = false; 2454 } else 2455 return false; 2456 2457 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2458 // instructions because we can fold these into a more efficient instruction 2459 // instead, (such as LXSD). 2460 if (isLoad && usePartialVectorLoads(N)) { 2461 return false; 2462 } 2463 2464 // PowerPC doesn't have preinc load/store instructions for vectors (except 2465 // for QPX, which does have preinc r+r forms). 2466 if (VT.isVector()) { 2467 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2468 return false; 2469 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2470 AM = ISD::PRE_INC; 2471 return true; 2472 } 2473 } 2474 2475 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2476 // Common code will reject creating a pre-inc form if the base pointer 2477 // is a frame index, or if N is a store and the base pointer is either 2478 // the same as or a predecessor of the value being stored. Check for 2479 // those situations here, and try with swapped Base/Offset instead. 2480 bool Swap = false; 2481 2482 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2483 Swap = true; 2484 else if (!isLoad) { 2485 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2486 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2487 Swap = true; 2488 } 2489 2490 if (Swap) 2491 std::swap(Base, Offset); 2492 2493 AM = ISD::PRE_INC; 2494 return true; 2495 } 2496 2497 // LDU/STU can only handle immediates that are a multiple of 4. 2498 if (VT != MVT::i64) { 2499 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2500 return false; 2501 } else { 2502 // LDU/STU need an address with at least 4-byte alignment. 2503 if (Alignment < 4) 2504 return false; 2505 2506 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2507 return false; 2508 } 2509 2510 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2511 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2512 // sext i32 to i64 when addr mode is r+i. 2513 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2514 LD->getExtensionType() == ISD::SEXTLOAD && 2515 isa<ConstantSDNode>(Offset)) 2516 return false; 2517 } 2518 2519 AM = ISD::PRE_INC; 2520 return true; 2521 } 2522 2523 //===----------------------------------------------------------------------===// 2524 // LowerOperation implementation 2525 //===----------------------------------------------------------------------===// 2526 2527 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2528 /// and LoOpFlags to the target MO flags. 2529 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2530 unsigned &HiOpFlags, unsigned &LoOpFlags, 2531 const GlobalValue *GV = nullptr) { 2532 HiOpFlags = PPCII::MO_HA; 2533 LoOpFlags = PPCII::MO_LO; 2534 2535 // Don't use the pic base if not in PIC relocation model. 2536 if (IsPIC) { 2537 HiOpFlags |= PPCII::MO_PIC_FLAG; 2538 LoOpFlags |= PPCII::MO_PIC_FLAG; 2539 } 2540 2541 // If this is a reference to a global value that requires a non-lazy-ptr, make 2542 // sure that instruction lowering adds it. 2543 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2544 HiOpFlags |= PPCII::MO_NLP_FLAG; 2545 LoOpFlags |= PPCII::MO_NLP_FLAG; 2546 2547 if (GV->hasHiddenVisibility()) { 2548 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2549 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2550 } 2551 } 2552 } 2553 2554 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2555 SelectionDAG &DAG) { 2556 SDLoc DL(HiPart); 2557 EVT PtrVT = HiPart.getValueType(); 2558 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2559 2560 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2561 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2562 2563 // With PIC, the first instruction is actually "GR+hi(&G)". 2564 if (isPIC) 2565 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2566 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2567 2568 // Generate non-pic code that has direct accesses to the constant pool. 2569 // The address of the global is just (hi(&g)+lo(&g)). 2570 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2571 } 2572 2573 static void setUsesTOCBasePtr(MachineFunction &MF) { 2574 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2575 FuncInfo->setUsesTOCBasePtr(); 2576 } 2577 2578 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2579 setUsesTOCBasePtr(DAG.getMachineFunction()); 2580 } 2581 2582 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2583 SDValue GA) { 2584 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2585 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2586 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2587 2588 SDValue Ops[] = { GA, Reg }; 2589 return DAG.getMemIntrinsicNode( 2590 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2591 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2592 MachineMemOperand::MOLoad); 2593 } 2594 2595 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2596 SelectionDAG &DAG) const { 2597 EVT PtrVT = Op.getValueType(); 2598 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2599 const Constant *C = CP->getConstVal(); 2600 2601 // 64-bit SVR4 ABI code is always position-independent. 2602 // The actual address of the GlobalValue is stored in the TOC. 2603 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2604 setUsesTOCBasePtr(DAG); 2605 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2606 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2607 } 2608 2609 unsigned MOHiFlag, MOLoFlag; 2610 bool IsPIC = isPositionIndependent(); 2611 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2612 2613 if (IsPIC && Subtarget.isSVR4ABI()) { 2614 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2615 PPCII::MO_PIC_FLAG); 2616 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2617 } 2618 2619 SDValue CPIHi = 2620 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2621 SDValue CPILo = 2622 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2623 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2624 } 2625 2626 // For 64-bit PowerPC, prefer the more compact relative encodings. 2627 // This trades 32 bits per jump table entry for one or two instructions 2628 // on the jump site. 2629 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2630 if (isJumpTableRelative()) 2631 return MachineJumpTableInfo::EK_LabelDifference32; 2632 2633 return TargetLowering::getJumpTableEncoding(); 2634 } 2635 2636 bool PPCTargetLowering::isJumpTableRelative() const { 2637 if (Subtarget.isPPC64()) 2638 return true; 2639 return TargetLowering::isJumpTableRelative(); 2640 } 2641 2642 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2643 SelectionDAG &DAG) const { 2644 if (!Subtarget.isPPC64()) 2645 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2646 2647 switch (getTargetMachine().getCodeModel()) { 2648 case CodeModel::Small: 2649 case CodeModel::Medium: 2650 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2651 default: 2652 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2653 getPointerTy(DAG.getDataLayout())); 2654 } 2655 } 2656 2657 const MCExpr * 2658 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2659 unsigned JTI, 2660 MCContext &Ctx) const { 2661 if (!Subtarget.isPPC64()) 2662 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2663 2664 switch (getTargetMachine().getCodeModel()) { 2665 case CodeModel::Small: 2666 case CodeModel::Medium: 2667 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2668 default: 2669 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2670 } 2671 } 2672 2673 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2674 EVT PtrVT = Op.getValueType(); 2675 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2676 2677 // 64-bit SVR4 ABI code is always position-independent. 2678 // The actual address of the GlobalValue is stored in the TOC. 2679 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2680 setUsesTOCBasePtr(DAG); 2681 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2682 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2683 } 2684 2685 unsigned MOHiFlag, MOLoFlag; 2686 bool IsPIC = isPositionIndependent(); 2687 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2688 2689 if (IsPIC && Subtarget.isSVR4ABI()) { 2690 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2691 PPCII::MO_PIC_FLAG); 2692 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2693 } 2694 2695 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2696 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2697 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2698 } 2699 2700 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2701 SelectionDAG &DAG) const { 2702 EVT PtrVT = Op.getValueType(); 2703 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2704 const BlockAddress *BA = BASDN->getBlockAddress(); 2705 2706 // 64-bit SVR4 ABI code is always position-independent. 2707 // The actual BlockAddress is stored in the TOC. 2708 if (Subtarget.isSVR4ABI() && 2709 (Subtarget.isPPC64() || isPositionIndependent())) { 2710 if (Subtarget.isPPC64()) 2711 setUsesTOCBasePtr(DAG); 2712 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2713 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2714 } 2715 2716 unsigned MOHiFlag, MOLoFlag; 2717 bool IsPIC = isPositionIndependent(); 2718 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2719 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2720 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2721 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2722 } 2723 2724 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2725 SelectionDAG &DAG) const { 2726 // FIXME: TLS addresses currently use medium model code sequences, 2727 // which is the most useful form. Eventually support for small and 2728 // large models could be added if users need it, at the cost of 2729 // additional complexity. 2730 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2731 if (DAG.getTarget().useEmulatedTLS()) 2732 return LowerToTLSEmulatedModel(GA, DAG); 2733 2734 SDLoc dl(GA); 2735 const GlobalValue *GV = GA->getGlobal(); 2736 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2737 bool is64bit = Subtarget.isPPC64(); 2738 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2739 PICLevel::Level picLevel = M->getPICLevel(); 2740 2741 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2742 2743 if (Model == TLSModel::LocalExec) { 2744 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2745 PPCII::MO_TPREL_HA); 2746 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2747 PPCII::MO_TPREL_LO); 2748 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2749 : DAG.getRegister(PPC::R2, MVT::i32); 2750 2751 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2752 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2753 } 2754 2755 if (Model == TLSModel::InitialExec) { 2756 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2757 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2758 PPCII::MO_TLS); 2759 SDValue GOTPtr; 2760 if (is64bit) { 2761 setUsesTOCBasePtr(DAG); 2762 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2763 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2764 PtrVT, GOTReg, TGA); 2765 } else 2766 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2767 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2768 PtrVT, TGA, GOTPtr); 2769 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2770 } 2771 2772 if (Model == TLSModel::GeneralDynamic) { 2773 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2774 SDValue GOTPtr; 2775 if (is64bit) { 2776 setUsesTOCBasePtr(DAG); 2777 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2778 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2779 GOTReg, TGA); 2780 } else { 2781 if (picLevel == PICLevel::SmallPIC) 2782 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2783 else 2784 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2785 } 2786 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2787 GOTPtr, TGA, TGA); 2788 } 2789 2790 if (Model == TLSModel::LocalDynamic) { 2791 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2792 SDValue GOTPtr; 2793 if (is64bit) { 2794 setUsesTOCBasePtr(DAG); 2795 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2796 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2797 GOTReg, TGA); 2798 } else { 2799 if (picLevel == PICLevel::SmallPIC) 2800 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2801 else 2802 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2803 } 2804 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2805 PtrVT, GOTPtr, TGA, TGA); 2806 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2807 PtrVT, TLSAddr, TGA); 2808 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2809 } 2810 2811 llvm_unreachable("Unknown TLS model!"); 2812 } 2813 2814 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2815 SelectionDAG &DAG) const { 2816 EVT PtrVT = Op.getValueType(); 2817 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2818 SDLoc DL(GSDN); 2819 const GlobalValue *GV = GSDN->getGlobal(); 2820 2821 // 64-bit SVR4 ABI code is always position-independent. 2822 // The actual address of the GlobalValue is stored in the TOC. 2823 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2824 setUsesTOCBasePtr(DAG); 2825 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2826 return getTOCEntry(DAG, DL, true, GA); 2827 } 2828 2829 unsigned MOHiFlag, MOLoFlag; 2830 bool IsPIC = isPositionIndependent(); 2831 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2832 2833 if (IsPIC && Subtarget.isSVR4ABI()) { 2834 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2835 GSDN->getOffset(), 2836 PPCII::MO_PIC_FLAG); 2837 return getTOCEntry(DAG, DL, false, GA); 2838 } 2839 2840 SDValue GAHi = 2841 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2842 SDValue GALo = 2843 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2844 2845 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2846 2847 // If the global reference is actually to a non-lazy-pointer, we have to do an 2848 // extra load to get the address of the global. 2849 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2850 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2851 return Ptr; 2852 } 2853 2854 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2855 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2856 SDLoc dl(Op); 2857 2858 if (Op.getValueType() == MVT::v2i64) { 2859 // When the operands themselves are v2i64 values, we need to do something 2860 // special because VSX has no underlying comparison operations for these. 2861 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2862 // Equality can be handled by casting to the legal type for Altivec 2863 // comparisons, everything else needs to be expanded. 2864 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2865 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2866 DAG.getSetCC(dl, MVT::v4i32, 2867 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2868 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2869 CC)); 2870 } 2871 2872 return SDValue(); 2873 } 2874 2875 // We handle most of these in the usual way. 2876 return Op; 2877 } 2878 2879 // If we're comparing for equality to zero, expose the fact that this is 2880 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2881 // fold the new nodes. 2882 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2883 return V; 2884 2885 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2886 // Leave comparisons against 0 and -1 alone for now, since they're usually 2887 // optimized. FIXME: revisit this when we can custom lower all setcc 2888 // optimizations. 2889 if (C->isAllOnesValue() || C->isNullValue()) 2890 return SDValue(); 2891 } 2892 2893 // If we have an integer seteq/setne, turn it into a compare against zero 2894 // by xor'ing the rhs with the lhs, which is faster than setting a 2895 // condition register, reading it back out, and masking the correct bit. The 2896 // normal approach here uses sub to do this instead of xor. Using xor exposes 2897 // the result to other bit-twiddling opportunities. 2898 EVT LHSVT = Op.getOperand(0).getValueType(); 2899 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2900 EVT VT = Op.getValueType(); 2901 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2902 Op.getOperand(1)); 2903 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2904 } 2905 return SDValue(); 2906 } 2907 2908 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2909 SDNode *Node = Op.getNode(); 2910 EVT VT = Node->getValueType(0); 2911 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2912 SDValue InChain = Node->getOperand(0); 2913 SDValue VAListPtr = Node->getOperand(1); 2914 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2915 SDLoc dl(Node); 2916 2917 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2918 2919 // gpr_index 2920 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2921 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2922 InChain = GprIndex.getValue(1); 2923 2924 if (VT == MVT::i64) { 2925 // Check if GprIndex is even 2926 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2927 DAG.getConstant(1, dl, MVT::i32)); 2928 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2929 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2930 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2931 DAG.getConstant(1, dl, MVT::i32)); 2932 // Align GprIndex to be even if it isn't 2933 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2934 GprIndex); 2935 } 2936 2937 // fpr index is 1 byte after gpr 2938 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2939 DAG.getConstant(1, dl, MVT::i32)); 2940 2941 // fpr 2942 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2943 FprPtr, MachinePointerInfo(SV), MVT::i8); 2944 InChain = FprIndex.getValue(1); 2945 2946 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2947 DAG.getConstant(8, dl, MVT::i32)); 2948 2949 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2950 DAG.getConstant(4, dl, MVT::i32)); 2951 2952 // areas 2953 SDValue OverflowArea = 2954 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2955 InChain = OverflowArea.getValue(1); 2956 2957 SDValue RegSaveArea = 2958 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2959 InChain = RegSaveArea.getValue(1); 2960 2961 // select overflow_area if index > 8 2962 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2963 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2964 2965 // adjustment constant gpr_index * 4/8 2966 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2967 VT.isInteger() ? GprIndex : FprIndex, 2968 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2969 MVT::i32)); 2970 2971 // OurReg = RegSaveArea + RegConstant 2972 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2973 RegConstant); 2974 2975 // Floating types are 32 bytes into RegSaveArea 2976 if (VT.isFloatingPoint()) 2977 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2978 DAG.getConstant(32, dl, MVT::i32)); 2979 2980 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2981 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2982 VT.isInteger() ? GprIndex : FprIndex, 2983 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2984 MVT::i32)); 2985 2986 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2987 VT.isInteger() ? VAListPtr : FprPtr, 2988 MachinePointerInfo(SV), MVT::i8); 2989 2990 // determine if we should load from reg_save_area or overflow_area 2991 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2992 2993 // increase overflow_area by 4/8 if gpr/fpr > 8 2994 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2995 DAG.getConstant(VT.isInteger() ? 4 : 8, 2996 dl, MVT::i32)); 2997 2998 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2999 OverflowAreaPlusN); 3000 3001 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3002 MachinePointerInfo(), MVT::i32); 3003 3004 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3005 } 3006 3007 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3008 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3009 3010 // We have to copy the entire va_list struct: 3011 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3012 return DAG.getMemcpy(Op.getOperand(0), Op, 3013 Op.getOperand(1), Op.getOperand(2), 3014 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3015 false, MachinePointerInfo(), MachinePointerInfo()); 3016 } 3017 3018 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3019 SelectionDAG &DAG) const { 3020 return Op.getOperand(0); 3021 } 3022 3023 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3024 SelectionDAG &DAG) const { 3025 SDValue Chain = Op.getOperand(0); 3026 SDValue Trmp = Op.getOperand(1); // trampoline 3027 SDValue FPtr = Op.getOperand(2); // nested function 3028 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3029 SDLoc dl(Op); 3030 3031 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3032 bool isPPC64 = (PtrVT == MVT::i64); 3033 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3034 3035 TargetLowering::ArgListTy Args; 3036 TargetLowering::ArgListEntry Entry; 3037 3038 Entry.Ty = IntPtrTy; 3039 Entry.Node = Trmp; Args.push_back(Entry); 3040 3041 // TrampSize == (isPPC64 ? 48 : 40); 3042 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3043 isPPC64 ? MVT::i64 : MVT::i32); 3044 Args.push_back(Entry); 3045 3046 Entry.Node = FPtr; Args.push_back(Entry); 3047 Entry.Node = Nest; Args.push_back(Entry); 3048 3049 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3050 TargetLowering::CallLoweringInfo CLI(DAG); 3051 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3052 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3053 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3054 3055 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3056 return CallResult.second; 3057 } 3058 3059 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3060 MachineFunction &MF = DAG.getMachineFunction(); 3061 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3062 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3063 3064 SDLoc dl(Op); 3065 3066 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3067 // vastart just stores the address of the VarArgsFrameIndex slot into the 3068 // memory location argument. 3069 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3070 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3071 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3072 MachinePointerInfo(SV)); 3073 } 3074 3075 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3076 // We suppose the given va_list is already allocated. 3077 // 3078 // typedef struct { 3079 // char gpr; /* index into the array of 8 GPRs 3080 // * stored in the register save area 3081 // * gpr=0 corresponds to r3, 3082 // * gpr=1 to r4, etc. 3083 // */ 3084 // char fpr; /* index into the array of 8 FPRs 3085 // * stored in the register save area 3086 // * fpr=0 corresponds to f1, 3087 // * fpr=1 to f2, etc. 3088 // */ 3089 // char *overflow_arg_area; 3090 // /* location on stack that holds 3091 // * the next overflow argument 3092 // */ 3093 // char *reg_save_area; 3094 // /* where r3:r10 and f1:f8 (if saved) 3095 // * are stored 3096 // */ 3097 // } va_list[1]; 3098 3099 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3100 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3101 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3102 PtrVT); 3103 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3104 PtrVT); 3105 3106 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3107 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3108 3109 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3110 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3111 3112 uint64_t FPROffset = 1; 3113 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3114 3115 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3116 3117 // Store first byte : number of int regs 3118 SDValue firstStore = 3119 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3120 MachinePointerInfo(SV), MVT::i8); 3121 uint64_t nextOffset = FPROffset; 3122 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3123 ConstFPROffset); 3124 3125 // Store second byte : number of float regs 3126 SDValue secondStore = 3127 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3128 MachinePointerInfo(SV, nextOffset), MVT::i8); 3129 nextOffset += StackOffset; 3130 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3131 3132 // Store second word : arguments given on stack 3133 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3134 MachinePointerInfo(SV, nextOffset)); 3135 nextOffset += FrameOffset; 3136 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3137 3138 // Store third word : arguments given in registers 3139 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3140 MachinePointerInfo(SV, nextOffset)); 3141 } 3142 3143 #include "PPCGenCallingConv.inc" 3144 3145 // Function whose sole purpose is to kill compiler warnings 3146 // stemming from unused functions included from PPCGenCallingConv.inc. 3147 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 3148 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 3149 } 3150 3151 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 3152 CCValAssign::LocInfo &LocInfo, 3153 ISD::ArgFlagsTy &ArgFlags, 3154 CCState &State) { 3155 return true; 3156 } 3157 3158 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 3159 MVT &LocVT, 3160 CCValAssign::LocInfo &LocInfo, 3161 ISD::ArgFlagsTy &ArgFlags, 3162 CCState &State) { 3163 static const MCPhysReg ArgRegs[] = { 3164 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3165 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3166 }; 3167 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3168 3169 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3170 3171 // Skip one register if the first unallocated register has an even register 3172 // number and there are still argument registers available which have not been 3173 // allocated yet. RegNum is actually an index into ArgRegs, which means we 3174 // need to skip a register if RegNum is odd. 3175 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 3176 State.AllocateReg(ArgRegs[RegNum]); 3177 } 3178 3179 // Always return false here, as this function only makes sure that the first 3180 // unallocated register has an odd register number and does not actually 3181 // allocate a register for the current argument. 3182 return false; 3183 } 3184 3185 bool 3186 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 3187 MVT &LocVT, 3188 CCValAssign::LocInfo &LocInfo, 3189 ISD::ArgFlagsTy &ArgFlags, 3190 CCState &State) { 3191 static const MCPhysReg ArgRegs[] = { 3192 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3193 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3194 }; 3195 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3196 3197 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3198 int RegsLeft = NumArgRegs - RegNum; 3199 3200 // Skip if there is not enough registers left for long double type (4 gpr regs 3201 // in soft float mode) and put long double argument on the stack. 3202 if (RegNum != NumArgRegs && RegsLeft < 4) { 3203 for (int i = 0; i < RegsLeft; i++) { 3204 State.AllocateReg(ArgRegs[RegNum + i]); 3205 } 3206 } 3207 3208 return false; 3209 } 3210 3211 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 3212 MVT &LocVT, 3213 CCValAssign::LocInfo &LocInfo, 3214 ISD::ArgFlagsTy &ArgFlags, 3215 CCState &State) { 3216 static const MCPhysReg ArgRegs[] = { 3217 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3218 PPC::F8 3219 }; 3220 3221 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3222 3223 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3224 3225 // If there is only one Floating-point register left we need to put both f64 3226 // values of a split ppc_fp128 value on the stack. 3227 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 3228 State.AllocateReg(ArgRegs[RegNum]); 3229 } 3230 3231 // Always return false here, as this function only makes sure that the two f64 3232 // values a ppc_fp128 value is split into are both passed in registers or both 3233 // passed on the stack and does not actually allocate a register for the 3234 // current argument. 3235 return false; 3236 } 3237 3238 /// FPR - The set of FP registers that should be allocated for arguments, 3239 /// on Darwin. 3240 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3241 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3242 PPC::F11, PPC::F12, PPC::F13}; 3243 3244 /// QFPR - The set of QPX registers that should be allocated for arguments. 3245 static const MCPhysReg QFPR[] = { 3246 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3247 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3248 3249 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3250 /// the stack. 3251 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3252 unsigned PtrByteSize) { 3253 unsigned ArgSize = ArgVT.getStoreSize(); 3254 if (Flags.isByVal()) 3255 ArgSize = Flags.getByValSize(); 3256 3257 // Round up to multiples of the pointer size, except for array members, 3258 // which are always packed. 3259 if (!Flags.isInConsecutiveRegs()) 3260 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3261 3262 return ArgSize; 3263 } 3264 3265 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3266 /// on the stack. 3267 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3268 ISD::ArgFlagsTy Flags, 3269 unsigned PtrByteSize) { 3270 unsigned Align = PtrByteSize; 3271 3272 // Altivec parameters are padded to a 16 byte boundary. 3273 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3274 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3275 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3276 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3277 Align = 16; 3278 // QPX vector types stored in double-precision are padded to a 32 byte 3279 // boundary. 3280 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3281 Align = 32; 3282 3283 // ByVal parameters are aligned as requested. 3284 if (Flags.isByVal()) { 3285 unsigned BVAlign = Flags.getByValAlign(); 3286 if (BVAlign > PtrByteSize) { 3287 if (BVAlign % PtrByteSize != 0) 3288 llvm_unreachable( 3289 "ByVal alignment is not a multiple of the pointer size"); 3290 3291 Align = BVAlign; 3292 } 3293 } 3294 3295 // Array members are always packed to their original alignment. 3296 if (Flags.isInConsecutiveRegs()) { 3297 // If the array member was split into multiple registers, the first 3298 // needs to be aligned to the size of the full type. (Except for 3299 // ppcf128, which is only aligned as its f64 components.) 3300 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3301 Align = OrigVT.getStoreSize(); 3302 else 3303 Align = ArgVT.getStoreSize(); 3304 } 3305 3306 return Align; 3307 } 3308 3309 /// CalculateStackSlotUsed - Return whether this argument will use its 3310 /// stack slot (instead of being passed in registers). ArgOffset, 3311 /// AvailableFPRs, and AvailableVRs must hold the current argument 3312 /// position, and will be updated to account for this argument. 3313 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3314 ISD::ArgFlagsTy Flags, 3315 unsigned PtrByteSize, 3316 unsigned LinkageSize, 3317 unsigned ParamAreaSize, 3318 unsigned &ArgOffset, 3319 unsigned &AvailableFPRs, 3320 unsigned &AvailableVRs, bool HasQPX) { 3321 bool UseMemory = false; 3322 3323 // Respect alignment of argument on the stack. 3324 unsigned Align = 3325 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3326 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3327 // If there's no space left in the argument save area, we must 3328 // use memory (this check also catches zero-sized arguments). 3329 if (ArgOffset >= LinkageSize + ParamAreaSize) 3330 UseMemory = true; 3331 3332 // Allocate argument on the stack. 3333 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3334 if (Flags.isInConsecutiveRegsLast()) 3335 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3336 // If we overran the argument save area, we must use memory 3337 // (this check catches arguments passed partially in memory) 3338 if (ArgOffset > LinkageSize + ParamAreaSize) 3339 UseMemory = true; 3340 3341 // However, if the argument is actually passed in an FPR or a VR, 3342 // we don't use memory after all. 3343 if (!Flags.isByVal()) { 3344 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3345 // QPX registers overlap with the scalar FP registers. 3346 (HasQPX && (ArgVT == MVT::v4f32 || 3347 ArgVT == MVT::v4f64 || 3348 ArgVT == MVT::v4i1))) 3349 if (AvailableFPRs > 0) { 3350 --AvailableFPRs; 3351 return false; 3352 } 3353 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3354 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3355 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3356 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3357 if (AvailableVRs > 0) { 3358 --AvailableVRs; 3359 return false; 3360 } 3361 } 3362 3363 return UseMemory; 3364 } 3365 3366 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3367 /// ensure minimum alignment required for target. 3368 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3369 unsigned NumBytes) { 3370 unsigned TargetAlign = Lowering->getStackAlignment(); 3371 unsigned AlignMask = TargetAlign - 1; 3372 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3373 return NumBytes; 3374 } 3375 3376 SDValue PPCTargetLowering::LowerFormalArguments( 3377 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3378 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3379 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3380 if (Subtarget.isSVR4ABI()) { 3381 if (Subtarget.isPPC64()) 3382 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3383 dl, DAG, InVals); 3384 else 3385 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3386 dl, DAG, InVals); 3387 } else { 3388 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3389 dl, DAG, InVals); 3390 } 3391 } 3392 3393 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3394 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3395 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3396 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3397 3398 // 32-bit SVR4 ABI Stack Frame Layout: 3399 // +-----------------------------------+ 3400 // +--> | Back chain | 3401 // | +-----------------------------------+ 3402 // | | Floating-point register save area | 3403 // | +-----------------------------------+ 3404 // | | General register save area | 3405 // | +-----------------------------------+ 3406 // | | CR save word | 3407 // | +-----------------------------------+ 3408 // | | VRSAVE save word | 3409 // | +-----------------------------------+ 3410 // | | Alignment padding | 3411 // | +-----------------------------------+ 3412 // | | Vector register save area | 3413 // | +-----------------------------------+ 3414 // | | Local variable space | 3415 // | +-----------------------------------+ 3416 // | | Parameter list area | 3417 // | +-----------------------------------+ 3418 // | | LR save word | 3419 // | +-----------------------------------+ 3420 // SP--> +--- | Back chain | 3421 // +-----------------------------------+ 3422 // 3423 // Specifications: 3424 // System V Application Binary Interface PowerPC Processor Supplement 3425 // AltiVec Technology Programming Interface Manual 3426 3427 MachineFunction &MF = DAG.getMachineFunction(); 3428 MachineFrameInfo &MFI = MF.getFrameInfo(); 3429 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3430 3431 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3432 // Potential tail calls could cause overwriting of argument stack slots. 3433 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3434 (CallConv == CallingConv::Fast)); 3435 unsigned PtrByteSize = 4; 3436 3437 // Assign locations to all of the incoming arguments. 3438 SmallVector<CCValAssign, 16> ArgLocs; 3439 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3440 *DAG.getContext()); 3441 3442 // Reserve space for the linkage area on the stack. 3443 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3444 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3445 if (useSoftFloat() || hasSPE()) 3446 CCInfo.PreAnalyzeFormalArguments(Ins); 3447 3448 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3449 CCInfo.clearWasPPCF128(); 3450 3451 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3452 CCValAssign &VA = ArgLocs[i]; 3453 3454 // Arguments stored in registers. 3455 if (VA.isRegLoc()) { 3456 const TargetRegisterClass *RC; 3457 EVT ValVT = VA.getValVT(); 3458 3459 switch (ValVT.getSimpleVT().SimpleTy) { 3460 default: 3461 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3462 case MVT::i1: 3463 case MVT::i32: 3464 RC = &PPC::GPRCRegClass; 3465 break; 3466 case MVT::f32: 3467 if (Subtarget.hasP8Vector()) 3468 RC = &PPC::VSSRCRegClass; 3469 else if (Subtarget.hasSPE()) 3470 RC = &PPC::SPE4RCRegClass; 3471 else 3472 RC = &PPC::F4RCRegClass; 3473 break; 3474 case MVT::f64: 3475 if (Subtarget.hasVSX()) 3476 RC = &PPC::VSFRCRegClass; 3477 else if (Subtarget.hasSPE()) 3478 RC = &PPC::SPERCRegClass; 3479 else 3480 RC = &PPC::F8RCRegClass; 3481 break; 3482 case MVT::v16i8: 3483 case MVT::v8i16: 3484 case MVT::v4i32: 3485 RC = &PPC::VRRCRegClass; 3486 break; 3487 case MVT::v4f32: 3488 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3489 break; 3490 case MVT::v2f64: 3491 case MVT::v2i64: 3492 RC = &PPC::VRRCRegClass; 3493 break; 3494 case MVT::v4f64: 3495 RC = &PPC::QFRCRegClass; 3496 break; 3497 case MVT::v4i1: 3498 RC = &PPC::QBRCRegClass; 3499 break; 3500 } 3501 3502 // Transform the arguments stored in physical registers into virtual ones. 3503 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3504 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3505 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3506 3507 if (ValVT == MVT::i1) 3508 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3509 3510 InVals.push_back(ArgValue); 3511 } else { 3512 // Argument stored in memory. 3513 assert(VA.isMemLoc()); 3514 3515 // Get the extended size of the argument type in stack 3516 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3517 // Get the actual size of the argument type 3518 unsigned ObjSize = VA.getValVT().getStoreSize(); 3519 unsigned ArgOffset = VA.getLocMemOffset(); 3520 // Stack objects in PPC32 are right justified. 3521 ArgOffset += ArgSize - ObjSize; 3522 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3523 3524 // Create load nodes to retrieve arguments from the stack. 3525 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3526 InVals.push_back( 3527 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3528 } 3529 } 3530 3531 // Assign locations to all of the incoming aggregate by value arguments. 3532 // Aggregates passed by value are stored in the local variable space of the 3533 // caller's stack frame, right above the parameter list area. 3534 SmallVector<CCValAssign, 16> ByValArgLocs; 3535 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3536 ByValArgLocs, *DAG.getContext()); 3537 3538 // Reserve stack space for the allocations in CCInfo. 3539 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3540 3541 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3542 3543 // Area that is at least reserved in the caller of this function. 3544 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3545 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3546 3547 // Set the size that is at least reserved in caller of this function. Tail 3548 // call optimized function's reserved stack space needs to be aligned so that 3549 // taking the difference between two stack areas will result in an aligned 3550 // stack. 3551 MinReservedArea = 3552 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3553 FuncInfo->setMinReservedArea(MinReservedArea); 3554 3555 SmallVector<SDValue, 8> MemOps; 3556 3557 // If the function takes variable number of arguments, make a frame index for 3558 // the start of the first vararg value... for expansion of llvm.va_start. 3559 if (isVarArg) { 3560 static const MCPhysReg GPArgRegs[] = { 3561 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3562 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3563 }; 3564 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3565 3566 static const MCPhysReg FPArgRegs[] = { 3567 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3568 PPC::F8 3569 }; 3570 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3571 3572 if (useSoftFloat() || hasSPE()) 3573 NumFPArgRegs = 0; 3574 3575 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3576 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3577 3578 // Make room for NumGPArgRegs and NumFPArgRegs. 3579 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3580 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3581 3582 FuncInfo->setVarArgsStackOffset( 3583 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3584 CCInfo.getNextStackOffset(), true)); 3585 3586 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3587 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3588 3589 // The fixed integer arguments of a variadic function are stored to the 3590 // VarArgsFrameIndex on the stack so that they may be loaded by 3591 // dereferencing the result of va_next. 3592 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3593 // Get an existing live-in vreg, or add a new one. 3594 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3595 if (!VReg) 3596 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3597 3598 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3599 SDValue Store = 3600 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3601 MemOps.push_back(Store); 3602 // Increment the address by four for the next argument to store 3603 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3604 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3605 } 3606 3607 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3608 // is set. 3609 // The double arguments are stored to the VarArgsFrameIndex 3610 // on the stack. 3611 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3612 // Get an existing live-in vreg, or add a new one. 3613 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3614 if (!VReg) 3615 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3616 3617 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3618 SDValue Store = 3619 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3620 MemOps.push_back(Store); 3621 // Increment the address by eight for the next argument to store 3622 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3623 PtrVT); 3624 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3625 } 3626 } 3627 3628 if (!MemOps.empty()) 3629 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3630 3631 return Chain; 3632 } 3633 3634 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3635 // value to MVT::i64 and then truncate to the correct register size. 3636 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3637 EVT ObjectVT, SelectionDAG &DAG, 3638 SDValue ArgVal, 3639 const SDLoc &dl) const { 3640 if (Flags.isSExt()) 3641 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3642 DAG.getValueType(ObjectVT)); 3643 else if (Flags.isZExt()) 3644 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3645 DAG.getValueType(ObjectVT)); 3646 3647 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3648 } 3649 3650 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3651 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3652 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3653 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3654 // TODO: add description of PPC stack frame format, or at least some docs. 3655 // 3656 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3657 bool isLittleEndian = Subtarget.isLittleEndian(); 3658 MachineFunction &MF = DAG.getMachineFunction(); 3659 MachineFrameInfo &MFI = MF.getFrameInfo(); 3660 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3661 3662 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3663 "fastcc not supported on varargs functions"); 3664 3665 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3666 // Potential tail calls could cause overwriting of argument stack slots. 3667 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3668 (CallConv == CallingConv::Fast)); 3669 unsigned PtrByteSize = 8; 3670 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3671 3672 static const MCPhysReg GPR[] = { 3673 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3674 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3675 }; 3676 static const MCPhysReg VR[] = { 3677 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3678 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3679 }; 3680 3681 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3682 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3683 const unsigned Num_VR_Regs = array_lengthof(VR); 3684 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3685 3686 // Do a first pass over the arguments to determine whether the ABI 3687 // guarantees that our caller has allocated the parameter save area 3688 // on its stack frame. In the ELFv1 ABI, this is always the case; 3689 // in the ELFv2 ABI, it is true if this is a vararg function or if 3690 // any parameter is located in a stack slot. 3691 3692 bool HasParameterArea = !isELFv2ABI || isVarArg; 3693 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3694 unsigned NumBytes = LinkageSize; 3695 unsigned AvailableFPRs = Num_FPR_Regs; 3696 unsigned AvailableVRs = Num_VR_Regs; 3697 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3698 if (Ins[i].Flags.isNest()) 3699 continue; 3700 3701 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3702 PtrByteSize, LinkageSize, ParamAreaSize, 3703 NumBytes, AvailableFPRs, AvailableVRs, 3704 Subtarget.hasQPX())) 3705 HasParameterArea = true; 3706 } 3707 3708 // Add DAG nodes to load the arguments or copy them out of registers. On 3709 // entry to a function on PPC, the arguments start after the linkage area, 3710 // although the first ones are often in registers. 3711 3712 unsigned ArgOffset = LinkageSize; 3713 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3714 unsigned &QFPR_idx = FPR_idx; 3715 SmallVector<SDValue, 8> MemOps; 3716 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3717 unsigned CurArgIdx = 0; 3718 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3719 SDValue ArgVal; 3720 bool needsLoad = false; 3721 EVT ObjectVT = Ins[ArgNo].VT; 3722 EVT OrigVT = Ins[ArgNo].ArgVT; 3723 unsigned ObjSize = ObjectVT.getStoreSize(); 3724 unsigned ArgSize = ObjSize; 3725 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3726 if (Ins[ArgNo].isOrigArg()) { 3727 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3728 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3729 } 3730 // We re-align the argument offset for each argument, except when using the 3731 // fast calling convention, when we need to make sure we do that only when 3732 // we'll actually use a stack slot. 3733 unsigned CurArgOffset, Align; 3734 auto ComputeArgOffset = [&]() { 3735 /* Respect alignment of argument on the stack. */ 3736 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3737 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3738 CurArgOffset = ArgOffset; 3739 }; 3740 3741 if (CallConv != CallingConv::Fast) { 3742 ComputeArgOffset(); 3743 3744 /* Compute GPR index associated with argument offset. */ 3745 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3746 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3747 } 3748 3749 // FIXME the codegen can be much improved in some cases. 3750 // We do not have to keep everything in memory. 3751 if (Flags.isByVal()) { 3752 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3753 3754 if (CallConv == CallingConv::Fast) 3755 ComputeArgOffset(); 3756 3757 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3758 ObjSize = Flags.getByValSize(); 3759 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3760 // Empty aggregate parameters do not take up registers. Examples: 3761 // struct { } a; 3762 // union { } b; 3763 // int c[0]; 3764 // etc. However, we have to provide a place-holder in InVals, so 3765 // pretend we have an 8-byte item at the current address for that 3766 // purpose. 3767 if (!ObjSize) { 3768 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3769 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3770 InVals.push_back(FIN); 3771 continue; 3772 } 3773 3774 // Create a stack object covering all stack doublewords occupied 3775 // by the argument. If the argument is (fully or partially) on 3776 // the stack, or if the argument is fully in registers but the 3777 // caller has allocated the parameter save anyway, we can refer 3778 // directly to the caller's stack frame. Otherwise, create a 3779 // local copy in our own frame. 3780 int FI; 3781 if (HasParameterArea || 3782 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3783 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3784 else 3785 FI = MFI.CreateStackObject(ArgSize, Align, false); 3786 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3787 3788 // Handle aggregates smaller than 8 bytes. 3789 if (ObjSize < PtrByteSize) { 3790 // The value of the object is its address, which differs from the 3791 // address of the enclosing doubleword on big-endian systems. 3792 SDValue Arg = FIN; 3793 if (!isLittleEndian) { 3794 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3795 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3796 } 3797 InVals.push_back(Arg); 3798 3799 if (GPR_idx != Num_GPR_Regs) { 3800 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3801 FuncInfo->addLiveInAttr(VReg, Flags); 3802 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3803 SDValue Store; 3804 3805 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3806 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3807 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3808 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3809 MachinePointerInfo(&*FuncArg), ObjType); 3810 } else { 3811 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3812 // store the whole register as-is to the parameter save area 3813 // slot. 3814 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3815 MachinePointerInfo(&*FuncArg)); 3816 } 3817 3818 MemOps.push_back(Store); 3819 } 3820 // Whether we copied from a register or not, advance the offset 3821 // into the parameter save area by a full doubleword. 3822 ArgOffset += PtrByteSize; 3823 continue; 3824 } 3825 3826 // The value of the object is its address, which is the address of 3827 // its first stack doubleword. 3828 InVals.push_back(FIN); 3829 3830 // Store whatever pieces of the object are in registers to memory. 3831 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3832 if (GPR_idx == Num_GPR_Regs) 3833 break; 3834 3835 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3836 FuncInfo->addLiveInAttr(VReg, Flags); 3837 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3838 SDValue Addr = FIN; 3839 if (j) { 3840 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3841 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3842 } 3843 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3844 MachinePointerInfo(&*FuncArg, j)); 3845 MemOps.push_back(Store); 3846 ++GPR_idx; 3847 } 3848 ArgOffset += ArgSize; 3849 continue; 3850 } 3851 3852 switch (ObjectVT.getSimpleVT().SimpleTy) { 3853 default: llvm_unreachable("Unhandled argument type!"); 3854 case MVT::i1: 3855 case MVT::i32: 3856 case MVT::i64: 3857 if (Flags.isNest()) { 3858 // The 'nest' parameter, if any, is passed in R11. 3859 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3860 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3861 3862 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3863 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3864 3865 break; 3866 } 3867 3868 // These can be scalar arguments or elements of an integer array type 3869 // passed directly. Clang may use those instead of "byval" aggregate 3870 // types to avoid forcing arguments to memory unnecessarily. 3871 if (GPR_idx != Num_GPR_Regs) { 3872 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3873 FuncInfo->addLiveInAttr(VReg, Flags); 3874 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3875 3876 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3877 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3878 // value to MVT::i64 and then truncate to the correct register size. 3879 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3880 } else { 3881 if (CallConv == CallingConv::Fast) 3882 ComputeArgOffset(); 3883 3884 needsLoad = true; 3885 ArgSize = PtrByteSize; 3886 } 3887 if (CallConv != CallingConv::Fast || needsLoad) 3888 ArgOffset += 8; 3889 break; 3890 3891 case MVT::f32: 3892 case MVT::f64: 3893 // These can be scalar arguments or elements of a float array type 3894 // passed directly. The latter are used to implement ELFv2 homogenous 3895 // float aggregates. 3896 if (FPR_idx != Num_FPR_Regs) { 3897 unsigned VReg; 3898 3899 if (ObjectVT == MVT::f32) 3900 VReg = MF.addLiveIn(FPR[FPR_idx], 3901 Subtarget.hasP8Vector() 3902 ? &PPC::VSSRCRegClass 3903 : &PPC::F4RCRegClass); 3904 else 3905 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3906 ? &PPC::VSFRCRegClass 3907 : &PPC::F8RCRegClass); 3908 3909 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3910 ++FPR_idx; 3911 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3912 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3913 // once we support fp <-> gpr moves. 3914 3915 // This can only ever happen in the presence of f32 array types, 3916 // since otherwise we never run out of FPRs before running out 3917 // of GPRs. 3918 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3919 FuncInfo->addLiveInAttr(VReg, Flags); 3920 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3921 3922 if (ObjectVT == MVT::f32) { 3923 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3924 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3925 DAG.getConstant(32, dl, MVT::i32)); 3926 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3927 } 3928 3929 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3930 } else { 3931 if (CallConv == CallingConv::Fast) 3932 ComputeArgOffset(); 3933 3934 needsLoad = true; 3935 } 3936 3937 // When passing an array of floats, the array occupies consecutive 3938 // space in the argument area; only round up to the next doubleword 3939 // at the end of the array. Otherwise, each float takes 8 bytes. 3940 if (CallConv != CallingConv::Fast || needsLoad) { 3941 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3942 ArgOffset += ArgSize; 3943 if (Flags.isInConsecutiveRegsLast()) 3944 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3945 } 3946 break; 3947 case MVT::v4f32: 3948 case MVT::v4i32: 3949 case MVT::v8i16: 3950 case MVT::v16i8: 3951 case MVT::v2f64: 3952 case MVT::v2i64: 3953 case MVT::v1i128: 3954 case MVT::f128: 3955 if (!Subtarget.hasQPX()) { 3956 // These can be scalar arguments or elements of a vector array type 3957 // passed directly. The latter are used to implement ELFv2 homogenous 3958 // vector aggregates. 3959 if (VR_idx != Num_VR_Regs) { 3960 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3961 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3962 ++VR_idx; 3963 } else { 3964 if (CallConv == CallingConv::Fast) 3965 ComputeArgOffset(); 3966 needsLoad = true; 3967 } 3968 if (CallConv != CallingConv::Fast || needsLoad) 3969 ArgOffset += 16; 3970 break; 3971 } // not QPX 3972 3973 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3974 "Invalid QPX parameter type"); 3975 /* fall through */ 3976 3977 case MVT::v4f64: 3978 case MVT::v4i1: 3979 // QPX vectors are treated like their scalar floating-point subregisters 3980 // (except that they're larger). 3981 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3982 if (QFPR_idx != Num_QFPR_Regs) { 3983 const TargetRegisterClass *RC; 3984 switch (ObjectVT.getSimpleVT().SimpleTy) { 3985 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3986 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3987 default: RC = &PPC::QBRCRegClass; break; 3988 } 3989 3990 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3991 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3992 ++QFPR_idx; 3993 } else { 3994 if (CallConv == CallingConv::Fast) 3995 ComputeArgOffset(); 3996 needsLoad = true; 3997 } 3998 if (CallConv != CallingConv::Fast || needsLoad) 3999 ArgOffset += Sz; 4000 break; 4001 } 4002 4003 // We need to load the argument to a virtual register if we determined 4004 // above that we ran out of physical registers of the appropriate type. 4005 if (needsLoad) { 4006 if (ObjSize < ArgSize && !isLittleEndian) 4007 CurArgOffset += ArgSize - ObjSize; 4008 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4009 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4010 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4011 } 4012 4013 InVals.push_back(ArgVal); 4014 } 4015 4016 // Area that is at least reserved in the caller of this function. 4017 unsigned MinReservedArea; 4018 if (HasParameterArea) 4019 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4020 else 4021 MinReservedArea = LinkageSize; 4022 4023 // Set the size that is at least reserved in caller of this function. Tail 4024 // call optimized functions' reserved stack space needs to be aligned so that 4025 // taking the difference between two stack areas will result in an aligned 4026 // stack. 4027 MinReservedArea = 4028 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4029 FuncInfo->setMinReservedArea(MinReservedArea); 4030 4031 // If the function takes variable number of arguments, make a frame index for 4032 // the start of the first vararg value... for expansion of llvm.va_start. 4033 if (isVarArg) { 4034 int Depth = ArgOffset; 4035 4036 FuncInfo->setVarArgsFrameIndex( 4037 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4038 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4039 4040 // If this function is vararg, store any remaining integer argument regs 4041 // to their spots on the stack so that they may be loaded by dereferencing 4042 // the result of va_next. 4043 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4044 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4045 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4046 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4047 SDValue Store = 4048 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4049 MemOps.push_back(Store); 4050 // Increment the address by four for the next argument to store 4051 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4052 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4053 } 4054 } 4055 4056 if (!MemOps.empty()) 4057 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4058 4059 return Chain; 4060 } 4061 4062 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4063 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4064 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4065 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4066 // TODO: add description of PPC stack frame format, or at least some docs. 4067 // 4068 MachineFunction &MF = DAG.getMachineFunction(); 4069 MachineFrameInfo &MFI = MF.getFrameInfo(); 4070 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4071 4072 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4073 bool isPPC64 = PtrVT == MVT::i64; 4074 // Potential tail calls could cause overwriting of argument stack slots. 4075 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4076 (CallConv == CallingConv::Fast)); 4077 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4078 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4079 unsigned ArgOffset = LinkageSize; 4080 // Area that is at least reserved in caller of this function. 4081 unsigned MinReservedArea = ArgOffset; 4082 4083 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4084 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4085 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4086 }; 4087 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4088 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4089 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4090 }; 4091 static const MCPhysReg VR[] = { 4092 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4093 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4094 }; 4095 4096 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4097 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4098 const unsigned Num_VR_Regs = array_lengthof( VR); 4099 4100 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4101 4102 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4103 4104 // In 32-bit non-varargs functions, the stack space for vectors is after the 4105 // stack space for non-vectors. We do not use this space unless we have 4106 // too many vectors to fit in registers, something that only occurs in 4107 // constructed examples:), but we have to walk the arglist to figure 4108 // that out...for the pathological case, compute VecArgOffset as the 4109 // start of the vector parameter area. Computing VecArgOffset is the 4110 // entire point of the following loop. 4111 unsigned VecArgOffset = ArgOffset; 4112 if (!isVarArg && !isPPC64) { 4113 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4114 ++ArgNo) { 4115 EVT ObjectVT = Ins[ArgNo].VT; 4116 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4117 4118 if (Flags.isByVal()) { 4119 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4120 unsigned ObjSize = Flags.getByValSize(); 4121 unsigned ArgSize = 4122 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4123 VecArgOffset += ArgSize; 4124 continue; 4125 } 4126 4127 switch(ObjectVT.getSimpleVT().SimpleTy) { 4128 default: llvm_unreachable("Unhandled argument type!"); 4129 case MVT::i1: 4130 case MVT::i32: 4131 case MVT::f32: 4132 VecArgOffset += 4; 4133 break; 4134 case MVT::i64: // PPC64 4135 case MVT::f64: 4136 // FIXME: We are guaranteed to be !isPPC64 at this point. 4137 // Does MVT::i64 apply? 4138 VecArgOffset += 8; 4139 break; 4140 case MVT::v4f32: 4141 case MVT::v4i32: 4142 case MVT::v8i16: 4143 case MVT::v16i8: 4144 // Nothing to do, we're only looking at Nonvector args here. 4145 break; 4146 } 4147 } 4148 } 4149 // We've found where the vector parameter area in memory is. Skip the 4150 // first 12 parameters; these don't use that memory. 4151 VecArgOffset = ((VecArgOffset+15)/16)*16; 4152 VecArgOffset += 12*16; 4153 4154 // Add DAG nodes to load the arguments or copy them out of registers. On 4155 // entry to a function on PPC, the arguments start after the linkage area, 4156 // although the first ones are often in registers. 4157 4158 SmallVector<SDValue, 8> MemOps; 4159 unsigned nAltivecParamsAtEnd = 0; 4160 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4161 unsigned CurArgIdx = 0; 4162 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4163 SDValue ArgVal; 4164 bool needsLoad = false; 4165 EVT ObjectVT = Ins[ArgNo].VT; 4166 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4167 unsigned ArgSize = ObjSize; 4168 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4169 if (Ins[ArgNo].isOrigArg()) { 4170 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4171 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4172 } 4173 unsigned CurArgOffset = ArgOffset; 4174 4175 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4176 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4177 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4178 if (isVarArg || isPPC64) { 4179 MinReservedArea = ((MinReservedArea+15)/16)*16; 4180 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4181 Flags, 4182 PtrByteSize); 4183 } else nAltivecParamsAtEnd++; 4184 } else 4185 // Calculate min reserved area. 4186 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4187 Flags, 4188 PtrByteSize); 4189 4190 // FIXME the codegen can be much improved in some cases. 4191 // We do not have to keep everything in memory. 4192 if (Flags.isByVal()) { 4193 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4194 4195 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4196 ObjSize = Flags.getByValSize(); 4197 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4198 // Objects of size 1 and 2 are right justified, everything else is 4199 // left justified. This means the memory address is adjusted forwards. 4200 if (ObjSize==1 || ObjSize==2) { 4201 CurArgOffset = CurArgOffset + (4 - ObjSize); 4202 } 4203 // The value of the object is its address. 4204 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4205 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4206 InVals.push_back(FIN); 4207 if (ObjSize==1 || ObjSize==2) { 4208 if (GPR_idx != Num_GPR_Regs) { 4209 unsigned VReg; 4210 if (isPPC64) 4211 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4212 else 4213 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4214 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4215 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4216 SDValue Store = 4217 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4218 MachinePointerInfo(&*FuncArg), ObjType); 4219 MemOps.push_back(Store); 4220 ++GPR_idx; 4221 } 4222 4223 ArgOffset += PtrByteSize; 4224 4225 continue; 4226 } 4227 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4228 // Store whatever pieces of the object are in registers 4229 // to memory. ArgOffset will be the address of the beginning 4230 // of the object. 4231 if (GPR_idx != Num_GPR_Regs) { 4232 unsigned VReg; 4233 if (isPPC64) 4234 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4235 else 4236 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4237 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4238 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4239 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4240 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4241 MachinePointerInfo(&*FuncArg, j)); 4242 MemOps.push_back(Store); 4243 ++GPR_idx; 4244 ArgOffset += PtrByteSize; 4245 } else { 4246 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4247 break; 4248 } 4249 } 4250 continue; 4251 } 4252 4253 switch (ObjectVT.getSimpleVT().SimpleTy) { 4254 default: llvm_unreachable("Unhandled argument type!"); 4255 case MVT::i1: 4256 case MVT::i32: 4257 if (!isPPC64) { 4258 if (GPR_idx != Num_GPR_Regs) { 4259 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4260 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4261 4262 if (ObjectVT == MVT::i1) 4263 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4264 4265 ++GPR_idx; 4266 } else { 4267 needsLoad = true; 4268 ArgSize = PtrByteSize; 4269 } 4270 // All int arguments reserve stack space in the Darwin ABI. 4271 ArgOffset += PtrByteSize; 4272 break; 4273 } 4274 LLVM_FALLTHROUGH; 4275 case MVT::i64: // PPC64 4276 if (GPR_idx != Num_GPR_Regs) { 4277 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4278 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4279 4280 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4281 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4282 // value to MVT::i64 and then truncate to the correct register size. 4283 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4284 4285 ++GPR_idx; 4286 } else { 4287 needsLoad = true; 4288 ArgSize = PtrByteSize; 4289 } 4290 // All int arguments reserve stack space in the Darwin ABI. 4291 ArgOffset += 8; 4292 break; 4293 4294 case MVT::f32: 4295 case MVT::f64: 4296 // Every 4 bytes of argument space consumes one of the GPRs available for 4297 // argument passing. 4298 if (GPR_idx != Num_GPR_Regs) { 4299 ++GPR_idx; 4300 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4301 ++GPR_idx; 4302 } 4303 if (FPR_idx != Num_FPR_Regs) { 4304 unsigned VReg; 4305 4306 if (ObjectVT == MVT::f32) 4307 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4308 else 4309 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4310 4311 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4312 ++FPR_idx; 4313 } else { 4314 needsLoad = true; 4315 } 4316 4317 // All FP arguments reserve stack space in the Darwin ABI. 4318 ArgOffset += isPPC64 ? 8 : ObjSize; 4319 break; 4320 case MVT::v4f32: 4321 case MVT::v4i32: 4322 case MVT::v8i16: 4323 case MVT::v16i8: 4324 // Note that vector arguments in registers don't reserve stack space, 4325 // except in varargs functions. 4326 if (VR_idx != Num_VR_Regs) { 4327 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4328 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4329 if (isVarArg) { 4330 while ((ArgOffset % 16) != 0) { 4331 ArgOffset += PtrByteSize; 4332 if (GPR_idx != Num_GPR_Regs) 4333 GPR_idx++; 4334 } 4335 ArgOffset += 16; 4336 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4337 } 4338 ++VR_idx; 4339 } else { 4340 if (!isVarArg && !isPPC64) { 4341 // Vectors go after all the nonvectors. 4342 CurArgOffset = VecArgOffset; 4343 VecArgOffset += 16; 4344 } else { 4345 // Vectors are aligned. 4346 ArgOffset = ((ArgOffset+15)/16)*16; 4347 CurArgOffset = ArgOffset; 4348 ArgOffset += 16; 4349 } 4350 needsLoad = true; 4351 } 4352 break; 4353 } 4354 4355 // We need to load the argument to a virtual register if we determined above 4356 // that we ran out of physical registers of the appropriate type. 4357 if (needsLoad) { 4358 int FI = MFI.CreateFixedObject(ObjSize, 4359 CurArgOffset + (ArgSize - ObjSize), 4360 isImmutable); 4361 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4362 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4363 } 4364 4365 InVals.push_back(ArgVal); 4366 } 4367 4368 // Allow for Altivec parameters at the end, if needed. 4369 if (nAltivecParamsAtEnd) { 4370 MinReservedArea = ((MinReservedArea+15)/16)*16; 4371 MinReservedArea += 16*nAltivecParamsAtEnd; 4372 } 4373 4374 // Area that is at least reserved in the caller of this function. 4375 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4376 4377 // Set the size that is at least reserved in caller of this function. Tail 4378 // call optimized functions' reserved stack space needs to be aligned so that 4379 // taking the difference between two stack areas will result in an aligned 4380 // stack. 4381 MinReservedArea = 4382 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4383 FuncInfo->setMinReservedArea(MinReservedArea); 4384 4385 // If the function takes variable number of arguments, make a frame index for 4386 // the start of the first vararg value... for expansion of llvm.va_start. 4387 if (isVarArg) { 4388 int Depth = ArgOffset; 4389 4390 FuncInfo->setVarArgsFrameIndex( 4391 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4392 Depth, true)); 4393 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4394 4395 // If this function is vararg, store any remaining integer argument regs 4396 // to their spots on the stack so that they may be loaded by dereferencing 4397 // the result of va_next. 4398 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4399 unsigned VReg; 4400 4401 if (isPPC64) 4402 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4403 else 4404 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4405 4406 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4407 SDValue Store = 4408 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4409 MemOps.push_back(Store); 4410 // Increment the address by four for the next argument to store 4411 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4412 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4413 } 4414 } 4415 4416 if (!MemOps.empty()) 4417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4418 4419 return Chain; 4420 } 4421 4422 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4423 /// adjusted to accommodate the arguments for the tailcall. 4424 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4425 unsigned ParamSize) { 4426 4427 if (!isTailCall) return 0; 4428 4429 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4430 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4431 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4432 // Remember only if the new adjustment is bigger. 4433 if (SPDiff < FI->getTailCallSPDelta()) 4434 FI->setTailCallSPDelta(SPDiff); 4435 4436 return SPDiff; 4437 } 4438 4439 static bool isFunctionGlobalAddress(SDValue Callee); 4440 4441 static bool 4442 callsShareTOCBase(const Function *Caller, SDValue Callee, 4443 const TargetMachine &TM) { 4444 // If !G, Callee can be an external symbol. 4445 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4446 if (!G) 4447 return false; 4448 4449 // The medium and large code models are expected to provide a sufficiently 4450 // large TOC to provide all data addressing needs of a module with a 4451 // single TOC. Since each module will be addressed with a single TOC then we 4452 // only need to check that caller and callee don't cross dso boundaries. 4453 if (CodeModel::Medium == TM.getCodeModel() || 4454 CodeModel::Large == TM.getCodeModel()) 4455 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4456 4457 // Otherwise we need to ensure callee and caller are in the same section, 4458 // since the linker may allocate multiple TOCs, and we don't know which 4459 // sections will belong to the same TOC base. 4460 4461 const GlobalValue *GV = G->getGlobal(); 4462 if (!GV->isStrongDefinitionForLinker()) 4463 return false; 4464 4465 // Any explicitly-specified sections and section prefixes must also match. 4466 // Also, if we're using -ffunction-sections, then each function is always in 4467 // a different section (the same is true for COMDAT functions). 4468 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4469 GV->getSection() != Caller->getSection()) 4470 return false; 4471 if (const auto *F = dyn_cast<Function>(GV)) { 4472 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4473 return false; 4474 } 4475 4476 // If the callee might be interposed, then we can't assume the ultimate call 4477 // target will be in the same section. Even in cases where we can assume that 4478 // interposition won't happen, in any case where the linker might insert a 4479 // stub to allow for interposition, we must generate code as though 4480 // interposition might occur. To understand why this matters, consider a 4481 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4482 // in the same section, but a is in a different module (i.e. has a different 4483 // TOC base pointer). If the linker allows for interposition between b and c, 4484 // then it will generate a stub for the call edge between b and c which will 4485 // save the TOC pointer into the designated stack slot allocated by b. If we 4486 // return true here, and therefore allow a tail call between b and c, that 4487 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4488 // pointer into the stack slot allocated by a (where the a -> b stub saved 4489 // a's TOC base pointer). If we're not considering a tail call, but rather, 4490 // whether a nop is needed after the call instruction in b, because the linker 4491 // will insert a stub, it might complain about a missing nop if we omit it 4492 // (although many don't complain in this case). 4493 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4494 return false; 4495 4496 return true; 4497 } 4498 4499 static bool 4500 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4501 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4502 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4503 4504 const unsigned PtrByteSize = 8; 4505 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4506 4507 static const MCPhysReg GPR[] = { 4508 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4509 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4510 }; 4511 static const MCPhysReg VR[] = { 4512 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4513 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4514 }; 4515 4516 const unsigned NumGPRs = array_lengthof(GPR); 4517 const unsigned NumFPRs = 13; 4518 const unsigned NumVRs = array_lengthof(VR); 4519 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4520 4521 unsigned NumBytes = LinkageSize; 4522 unsigned AvailableFPRs = NumFPRs; 4523 unsigned AvailableVRs = NumVRs; 4524 4525 for (const ISD::OutputArg& Param : Outs) { 4526 if (Param.Flags.isNest()) continue; 4527 4528 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4529 PtrByteSize, LinkageSize, ParamAreaSize, 4530 NumBytes, AvailableFPRs, AvailableVRs, 4531 Subtarget.hasQPX())) 4532 return true; 4533 } 4534 return false; 4535 } 4536 4537 static bool 4538 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4539 if (CS.arg_size() != CallerFn->arg_size()) 4540 return false; 4541 4542 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4543 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4544 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4545 4546 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4547 const Value* CalleeArg = *CalleeArgIter; 4548 const Value* CallerArg = &(*CallerArgIter); 4549 if (CalleeArg == CallerArg) 4550 continue; 4551 4552 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4553 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4554 // } 4555 // 1st argument of callee is undef and has the same type as caller. 4556 if (CalleeArg->getType() == CallerArg->getType() && 4557 isa<UndefValue>(CalleeArg)) 4558 continue; 4559 4560 return false; 4561 } 4562 4563 return true; 4564 } 4565 4566 // Returns true if TCO is possible between the callers and callees 4567 // calling conventions. 4568 static bool 4569 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4570 CallingConv::ID CalleeCC) { 4571 // Tail calls are possible with fastcc and ccc. 4572 auto isTailCallableCC = [] (CallingConv::ID CC){ 4573 return CC == CallingConv::C || CC == CallingConv::Fast; 4574 }; 4575 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4576 return false; 4577 4578 // We can safely tail call both fastcc and ccc callees from a c calling 4579 // convention caller. If the caller is fastcc, we may have less stack space 4580 // than a non-fastcc caller with the same signature so disable tail-calls in 4581 // that case. 4582 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4583 } 4584 4585 bool 4586 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4587 SDValue Callee, 4588 CallingConv::ID CalleeCC, 4589 ImmutableCallSite CS, 4590 bool isVarArg, 4591 const SmallVectorImpl<ISD::OutputArg> &Outs, 4592 const SmallVectorImpl<ISD::InputArg> &Ins, 4593 SelectionDAG& DAG) const { 4594 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4595 4596 if (DisableSCO && !TailCallOpt) return false; 4597 4598 // Variadic argument functions are not supported. 4599 if (isVarArg) return false; 4600 4601 auto &Caller = DAG.getMachineFunction().getFunction(); 4602 // Check that the calling conventions are compatible for tco. 4603 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4604 return false; 4605 4606 // Caller contains any byval parameter is not supported. 4607 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4608 return false; 4609 4610 // Callee contains any byval parameter is not supported, too. 4611 // Note: This is a quick work around, because in some cases, e.g. 4612 // caller's stack size > callee's stack size, we are still able to apply 4613 // sibling call optimization. For example, gcc is able to do SCO for caller1 4614 // in the following example, but not for caller2. 4615 // struct test { 4616 // long int a; 4617 // char ary[56]; 4618 // } gTest; 4619 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4620 // b->a = v.a; 4621 // return 0; 4622 // } 4623 // void caller1(struct test a, struct test c, struct test *b) { 4624 // callee(gTest, b); } 4625 // void caller2(struct test *b) { callee(gTest, b); } 4626 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4627 return false; 4628 4629 // If callee and caller use different calling conventions, we cannot pass 4630 // parameters on stack since offsets for the parameter area may be different. 4631 if (Caller.getCallingConv() != CalleeCC && 4632 needStackSlotPassParameters(Subtarget, Outs)) 4633 return false; 4634 4635 // No TCO/SCO on indirect call because Caller have to restore its TOC 4636 if (!isFunctionGlobalAddress(Callee) && 4637 !isa<ExternalSymbolSDNode>(Callee)) 4638 return false; 4639 4640 // If the caller and callee potentially have different TOC bases then we 4641 // cannot tail call since we need to restore the TOC pointer after the call. 4642 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4643 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4644 return false; 4645 4646 // TCO allows altering callee ABI, so we don't have to check further. 4647 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4648 return true; 4649 4650 if (DisableSCO) return false; 4651 4652 // If callee use the same argument list that caller is using, then we can 4653 // apply SCO on this case. If it is not, then we need to check if callee needs 4654 // stack for passing arguments. 4655 if (!hasSameArgumentList(&Caller, CS) && 4656 needStackSlotPassParameters(Subtarget, Outs)) { 4657 return false; 4658 } 4659 4660 return true; 4661 } 4662 4663 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4664 /// for tail call optimization. Targets which want to do tail call 4665 /// optimization should implement this function. 4666 bool 4667 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4668 CallingConv::ID CalleeCC, 4669 bool isVarArg, 4670 const SmallVectorImpl<ISD::InputArg> &Ins, 4671 SelectionDAG& DAG) const { 4672 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4673 return false; 4674 4675 // Variable argument functions are not supported. 4676 if (isVarArg) 4677 return false; 4678 4679 MachineFunction &MF = DAG.getMachineFunction(); 4680 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4681 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4682 // Functions containing by val parameters are not supported. 4683 for (unsigned i = 0; i != Ins.size(); i++) { 4684 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4685 if (Flags.isByVal()) return false; 4686 } 4687 4688 // Non-PIC/GOT tail calls are supported. 4689 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4690 return true; 4691 4692 // At the moment we can only do local tail calls (in same module, hidden 4693 // or protected) if we are generating PIC. 4694 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4695 return G->getGlobal()->hasHiddenVisibility() 4696 || G->getGlobal()->hasProtectedVisibility(); 4697 } 4698 4699 return false; 4700 } 4701 4702 /// isCallCompatibleAddress - Return the immediate to use if the specified 4703 /// 32-bit value is representable in the immediate field of a BxA instruction. 4704 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4705 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4706 if (!C) return nullptr; 4707 4708 int Addr = C->getZExtValue(); 4709 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4710 SignExtend32<26>(Addr) != Addr) 4711 return nullptr; // Top 6 bits have to be sext of immediate. 4712 4713 return DAG 4714 .getConstant( 4715 (int)C->getZExtValue() >> 2, SDLoc(Op), 4716 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4717 .getNode(); 4718 } 4719 4720 namespace { 4721 4722 struct TailCallArgumentInfo { 4723 SDValue Arg; 4724 SDValue FrameIdxOp; 4725 int FrameIdx = 0; 4726 4727 TailCallArgumentInfo() = default; 4728 }; 4729 4730 } // end anonymous namespace 4731 4732 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4733 static void StoreTailCallArgumentsToStackSlot( 4734 SelectionDAG &DAG, SDValue Chain, 4735 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4736 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4737 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4738 SDValue Arg = TailCallArgs[i].Arg; 4739 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4740 int FI = TailCallArgs[i].FrameIdx; 4741 // Store relative to framepointer. 4742 MemOpChains.push_back(DAG.getStore( 4743 Chain, dl, Arg, FIN, 4744 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4745 } 4746 } 4747 4748 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4749 /// the appropriate stack slot for the tail call optimized function call. 4750 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4751 SDValue OldRetAddr, SDValue OldFP, 4752 int SPDiff, const SDLoc &dl) { 4753 if (SPDiff) { 4754 // Calculate the new stack slot for the return address. 4755 MachineFunction &MF = DAG.getMachineFunction(); 4756 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4757 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4758 bool isPPC64 = Subtarget.isPPC64(); 4759 int SlotSize = isPPC64 ? 8 : 4; 4760 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4761 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4762 NewRetAddrLoc, true); 4763 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4764 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4765 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4766 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4767 4768 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4769 // slot as the FP is never overwritten. 4770 if (Subtarget.isDarwinABI()) { 4771 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4772 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4773 true); 4774 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4775 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4776 MachinePointerInfo::getFixedStack( 4777 DAG.getMachineFunction(), NewFPIdx)); 4778 } 4779 } 4780 return Chain; 4781 } 4782 4783 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4784 /// the position of the argument. 4785 static void 4786 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4787 SDValue Arg, int SPDiff, unsigned ArgOffset, 4788 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4789 int Offset = ArgOffset + SPDiff; 4790 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4791 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4792 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4793 SDValue FIN = DAG.getFrameIndex(FI, VT); 4794 TailCallArgumentInfo Info; 4795 Info.Arg = Arg; 4796 Info.FrameIdxOp = FIN; 4797 Info.FrameIdx = FI; 4798 TailCallArguments.push_back(Info); 4799 } 4800 4801 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4802 /// stack slot. Returns the chain as result and the loaded frame pointers in 4803 /// LROpOut/FPOpout. Used when tail calling. 4804 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4805 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4806 SDValue &FPOpOut, const SDLoc &dl) const { 4807 if (SPDiff) { 4808 // Load the LR and FP stack slot for later adjusting. 4809 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4810 LROpOut = getReturnAddrFrameIndex(DAG); 4811 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4812 Chain = SDValue(LROpOut.getNode(), 1); 4813 4814 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4815 // slot as the FP is never overwritten. 4816 if (Subtarget.isDarwinABI()) { 4817 FPOpOut = getFramePointerFrameIndex(DAG); 4818 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4819 Chain = SDValue(FPOpOut.getNode(), 1); 4820 } 4821 } 4822 return Chain; 4823 } 4824 4825 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4826 /// by "Src" to address "Dst" of size "Size". Alignment information is 4827 /// specified by the specific parameter attribute. The copy will be passed as 4828 /// a byval function parameter. 4829 /// Sometimes what we are copying is the end of a larger object, the part that 4830 /// does not fit in registers. 4831 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4832 SDValue Chain, ISD::ArgFlagsTy Flags, 4833 SelectionDAG &DAG, const SDLoc &dl) { 4834 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4835 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4836 false, false, false, MachinePointerInfo(), 4837 MachinePointerInfo()); 4838 } 4839 4840 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4841 /// tail calls. 4842 static void LowerMemOpCallTo( 4843 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4844 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4845 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4846 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4847 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4848 if (!isTailCall) { 4849 if (isVector) { 4850 SDValue StackPtr; 4851 if (isPPC64) 4852 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4853 else 4854 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4855 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4856 DAG.getConstant(ArgOffset, dl, PtrVT)); 4857 } 4858 MemOpChains.push_back( 4859 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4860 // Calculate and remember argument location. 4861 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4862 TailCallArguments); 4863 } 4864 4865 static void 4866 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4867 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4868 SDValue FPOp, 4869 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4870 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4871 // might overwrite each other in case of tail call optimization. 4872 SmallVector<SDValue, 8> MemOpChains2; 4873 // Do not flag preceding copytoreg stuff together with the following stuff. 4874 InFlag = SDValue(); 4875 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4876 MemOpChains2, dl); 4877 if (!MemOpChains2.empty()) 4878 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4879 4880 // Store the return address to the appropriate stack slot. 4881 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4882 4883 // Emit callseq_end just before tailcall node. 4884 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4885 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4886 InFlag = Chain.getValue(1); 4887 } 4888 4889 // Is this global address that of a function that can be called by name? (as 4890 // opposed to something that must hold a descriptor for an indirect call). 4891 static bool isFunctionGlobalAddress(SDValue Callee) { 4892 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4893 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4894 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4895 return false; 4896 4897 return G->getGlobal()->getValueType()->isFunctionTy(); 4898 } 4899 4900 return false; 4901 } 4902 4903 static unsigned 4904 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4905 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4906 bool isPatchPoint, bool hasNest, 4907 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4908 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4909 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4910 bool isPPC64 = Subtarget.isPPC64(); 4911 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4912 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4913 4914 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4915 NodeTys.push_back(MVT::Other); // Returns a chain 4916 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4917 4918 unsigned CallOpc = PPCISD::CALL; 4919 4920 bool needIndirectCall = true; 4921 if (!isSVR4ABI || !isPPC64) 4922 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4923 // If this is an absolute destination address, use the munged value. 4924 Callee = SDValue(Dest, 0); 4925 needIndirectCall = false; 4926 } 4927 4928 // PC-relative references to external symbols should go through $stub, unless 4929 // we're building with the leopard linker or later, which automatically 4930 // synthesizes these stubs. 4931 const TargetMachine &TM = DAG.getTarget(); 4932 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4933 const GlobalValue *GV = nullptr; 4934 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4935 GV = G->getGlobal(); 4936 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4937 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4938 4939 if (isFunctionGlobalAddress(Callee)) { 4940 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4941 // A call to a TLS address is actually an indirect call to a 4942 // thread-specific pointer. 4943 unsigned OpFlags = 0; 4944 if (UsePlt) 4945 OpFlags = PPCII::MO_PLT; 4946 4947 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4948 // every direct call is) turn it into a TargetGlobalAddress / 4949 // TargetExternalSymbol node so that legalize doesn't hack it. 4950 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4951 Callee.getValueType(), 0, OpFlags); 4952 needIndirectCall = false; 4953 } 4954 4955 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4956 unsigned char OpFlags = 0; 4957 4958 if (UsePlt) 4959 OpFlags = PPCII::MO_PLT; 4960 4961 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4962 OpFlags); 4963 needIndirectCall = false; 4964 } 4965 4966 if (isPatchPoint) { 4967 // We'll form an invalid direct call when lowering a patchpoint; the full 4968 // sequence for an indirect call is complicated, and many of the 4969 // instructions introduced might have side effects (and, thus, can't be 4970 // removed later). The call itself will be removed as soon as the 4971 // argument/return lowering is complete, so the fact that it has the wrong 4972 // kind of operands should not really matter. 4973 needIndirectCall = false; 4974 } 4975 4976 if (needIndirectCall) { 4977 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4978 // to do the call, we can't use PPCISD::CALL. 4979 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4980 4981 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4982 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4983 // entry point, but to the function descriptor (the function entry point 4984 // address is part of the function descriptor though). 4985 // The function descriptor is a three doubleword structure with the 4986 // following fields: function entry point, TOC base address and 4987 // environment pointer. 4988 // Thus for a call through a function pointer, the following actions need 4989 // to be performed: 4990 // 1. Save the TOC of the caller in the TOC save area of its stack 4991 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4992 // 2. Load the address of the function entry point from the function 4993 // descriptor. 4994 // 3. Load the TOC of the callee from the function descriptor into r2. 4995 // 4. Load the environment pointer from the function descriptor into 4996 // r11. 4997 // 5. Branch to the function entry point address. 4998 // 6. On return of the callee, the TOC of the caller needs to be 4999 // restored (this is done in FinishCall()). 5000 // 5001 // The loads are scheduled at the beginning of the call sequence, and the 5002 // register copies are flagged together to ensure that no other 5003 // operations can be scheduled in between. E.g. without flagging the 5004 // copies together, a TOC access in the caller could be scheduled between 5005 // the assignment of the callee TOC and the branch to the callee, which 5006 // results in the TOC access going through the TOC of the callee instead 5007 // of going through the TOC of the caller, which leads to incorrect code. 5008 5009 // Load the address of the function entry point from the function 5010 // descriptor. 5011 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5012 if (LDChain.getValueType() == MVT::Glue) 5013 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5014 5015 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5016 ? (MachineMemOperand::MODereferenceable | 5017 MachineMemOperand::MOInvariant) 5018 : MachineMemOperand::MONone; 5019 5020 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5021 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5022 /* Alignment = */ 8, MMOFlags); 5023 5024 // Load environment pointer into r11. 5025 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5026 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5027 SDValue LoadEnvPtr = 5028 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5029 /* Alignment = */ 8, MMOFlags); 5030 5031 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5032 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5033 SDValue TOCPtr = 5034 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5035 /* Alignment = */ 8, MMOFlags); 5036 5037 setUsesTOCBasePtr(DAG); 5038 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5039 InFlag); 5040 Chain = TOCVal.getValue(0); 5041 InFlag = TOCVal.getValue(1); 5042 5043 // If the function call has an explicit 'nest' parameter, it takes the 5044 // place of the environment pointer. 5045 if (!hasNest) { 5046 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5047 InFlag); 5048 5049 Chain = EnvVal.getValue(0); 5050 InFlag = EnvVal.getValue(1); 5051 } 5052 5053 MTCTROps[0] = Chain; 5054 MTCTROps[1] = LoadFuncPtr; 5055 MTCTROps[2] = InFlag; 5056 } 5057 5058 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5059 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5060 InFlag = Chain.getValue(1); 5061 5062 NodeTys.clear(); 5063 NodeTys.push_back(MVT::Other); 5064 NodeTys.push_back(MVT::Glue); 5065 Ops.push_back(Chain); 5066 CallOpc = PPCISD::BCTRL; 5067 Callee.setNode(nullptr); 5068 // Add use of X11 (holding environment pointer) 5069 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5070 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5071 // Add CTR register as callee so a bctr can be emitted later. 5072 if (isTailCall) 5073 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5074 } 5075 5076 // If this is a direct call, pass the chain and the callee. 5077 if (Callee.getNode()) { 5078 Ops.push_back(Chain); 5079 Ops.push_back(Callee); 5080 } 5081 // If this is a tail call add stack pointer delta. 5082 if (isTailCall) 5083 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5084 5085 // Add argument registers to the end of the list so that they are known live 5086 // into the call. 5087 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5088 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5089 RegsToPass[i].second.getValueType())); 5090 5091 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 5092 // into the call. 5093 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 5094 setUsesTOCBasePtr(DAG); 5095 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 5096 } 5097 5098 return CallOpc; 5099 } 5100 5101 SDValue PPCTargetLowering::LowerCallResult( 5102 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5103 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5104 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5105 SmallVector<CCValAssign, 16> RVLocs; 5106 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5107 *DAG.getContext()); 5108 5109 CCRetInfo.AnalyzeCallResult( 5110 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5111 ? RetCC_PPC_Cold 5112 : RetCC_PPC); 5113 5114 // Copy all of the result registers out of their specified physreg. 5115 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5116 CCValAssign &VA = RVLocs[i]; 5117 assert(VA.isRegLoc() && "Can only return in registers!"); 5118 5119 SDValue Val = DAG.getCopyFromReg(Chain, dl, 5120 VA.getLocReg(), VA.getLocVT(), InFlag); 5121 Chain = Val.getValue(1); 5122 InFlag = Val.getValue(2); 5123 5124 switch (VA.getLocInfo()) { 5125 default: llvm_unreachable("Unknown loc info!"); 5126 case CCValAssign::Full: break; 5127 case CCValAssign::AExt: 5128 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5129 break; 5130 case CCValAssign::ZExt: 5131 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5132 DAG.getValueType(VA.getValVT())); 5133 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5134 break; 5135 case CCValAssign::SExt: 5136 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5137 DAG.getValueType(VA.getValVT())); 5138 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5139 break; 5140 } 5141 5142 InVals.push_back(Val); 5143 } 5144 5145 return Chain; 5146 } 5147 5148 SDValue PPCTargetLowering::FinishCall( 5149 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5150 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5151 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5152 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5153 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5154 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5155 std::vector<EVT> NodeTys; 5156 SmallVector<SDValue, 8> Ops; 5157 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5158 SPDiff, isTailCall, isPatchPoint, hasNest, 5159 RegsToPass, Ops, NodeTys, CS, Subtarget); 5160 5161 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5162 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5163 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5164 5165 // When performing tail call optimization the callee pops its arguments off 5166 // the stack. Account for this here so these bytes can be pushed back on in 5167 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5168 int BytesCalleePops = 5169 (CallConv == CallingConv::Fast && 5170 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5171 5172 // Add a register mask operand representing the call-preserved registers. 5173 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5174 const uint32_t *Mask = 5175 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5176 assert(Mask && "Missing call preserved mask for calling convention"); 5177 Ops.push_back(DAG.getRegisterMask(Mask)); 5178 5179 if (InFlag.getNode()) 5180 Ops.push_back(InFlag); 5181 5182 // Emit tail call. 5183 if (isTailCall) { 5184 assert(((Callee.getOpcode() == ISD::Register && 5185 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5186 Callee.getOpcode() == ISD::TargetExternalSymbol || 5187 Callee.getOpcode() == ISD::TargetGlobalAddress || 5188 isa<ConstantSDNode>(Callee)) && 5189 "Expecting an global address, external symbol, absolute value or register"); 5190 5191 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5192 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5193 } 5194 5195 // Add a NOP immediately after the branch instruction when using the 64-bit 5196 // SVR4 ABI. At link time, if caller and callee are in a different module and 5197 // thus have a different TOC, the call will be replaced with a call to a stub 5198 // function which saves the current TOC, loads the TOC of the callee and 5199 // branches to the callee. The NOP will be replaced with a load instruction 5200 // which restores the TOC of the caller from the TOC save slot of the current 5201 // stack frame. If caller and callee belong to the same module (and have the 5202 // same TOC), the NOP will remain unchanged. 5203 5204 MachineFunction &MF = DAG.getMachineFunction(); 5205 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5206 !isPatchPoint) { 5207 if (CallOpc == PPCISD::BCTRL) { 5208 // This is a call through a function pointer. 5209 // Restore the caller TOC from the save area into R2. 5210 // See PrepareCall() for more information about calls through function 5211 // pointers in the 64-bit SVR4 ABI. 5212 // We are using a target-specific load with r2 hard coded, because the 5213 // result of a target-independent load would never go directly into r2, 5214 // since r2 is a reserved register (which prevents the register allocator 5215 // from allocating it), resulting in an additional register being 5216 // allocated and an unnecessary move instruction being generated. 5217 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5218 5219 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5220 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5221 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5222 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5223 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5224 5225 // The address needs to go after the chain input but before the flag (or 5226 // any other variadic arguments). 5227 Ops.insert(std::next(Ops.begin()), AddTOC); 5228 } else if (CallOpc == PPCISD::CALL && 5229 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5230 // Otherwise insert NOP for non-local calls. 5231 CallOpc = PPCISD::CALL_NOP; 5232 } 5233 } 5234 5235 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5236 InFlag = Chain.getValue(1); 5237 5238 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5239 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5240 InFlag, dl); 5241 if (!Ins.empty()) 5242 InFlag = Chain.getValue(1); 5243 5244 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5245 Ins, dl, DAG, InVals); 5246 } 5247 5248 SDValue 5249 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5250 SmallVectorImpl<SDValue> &InVals) const { 5251 SelectionDAG &DAG = CLI.DAG; 5252 SDLoc &dl = CLI.DL; 5253 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5254 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5255 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5256 SDValue Chain = CLI.Chain; 5257 SDValue Callee = CLI.Callee; 5258 bool &isTailCall = CLI.IsTailCall; 5259 CallingConv::ID CallConv = CLI.CallConv; 5260 bool isVarArg = CLI.IsVarArg; 5261 bool isPatchPoint = CLI.IsPatchPoint; 5262 ImmutableCallSite CS = CLI.CS; 5263 5264 if (isTailCall) { 5265 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5266 isTailCall = false; 5267 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5268 isTailCall = 5269 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5270 isVarArg, Outs, Ins, DAG); 5271 else 5272 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5273 Ins, DAG); 5274 if (isTailCall) { 5275 ++NumTailCalls; 5276 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5277 ++NumSiblingCalls; 5278 5279 assert(isa<GlobalAddressSDNode>(Callee) && 5280 "Callee should be an llvm::Function object."); 5281 LLVM_DEBUG( 5282 const GlobalValue *GV = 5283 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5284 const unsigned Width = 5285 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5286 dbgs() << "TCO caller: " 5287 << left_justify(DAG.getMachineFunction().getName(), Width) 5288 << ", callee linkage: " << GV->getVisibility() << ", " 5289 << GV->getLinkage() << "\n"); 5290 } 5291 } 5292 5293 if (!isTailCall && CS && CS.isMustTailCall()) 5294 report_fatal_error("failed to perform tail call elimination on a call " 5295 "site marked musttail"); 5296 5297 // When long calls (i.e. indirect calls) are always used, calls are always 5298 // made via function pointer. If we have a function name, first translate it 5299 // into a pointer. 5300 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5301 !isTailCall) 5302 Callee = LowerGlobalAddress(Callee, DAG); 5303 5304 if (Subtarget.isSVR4ABI()) { 5305 if (Subtarget.isPPC64()) 5306 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5307 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5308 dl, DAG, InVals, CS); 5309 else 5310 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5311 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5312 dl, DAG, InVals, CS); 5313 } 5314 5315 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5316 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5317 dl, DAG, InVals, CS); 5318 } 5319 5320 SDValue PPCTargetLowering::LowerCall_32SVR4( 5321 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5322 bool isTailCall, bool isPatchPoint, 5323 const SmallVectorImpl<ISD::OutputArg> &Outs, 5324 const SmallVectorImpl<SDValue> &OutVals, 5325 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5326 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5327 ImmutableCallSite CS) const { 5328 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5329 // of the 32-bit SVR4 ABI stack frame layout. 5330 5331 assert((CallConv == CallingConv::C || 5332 CallConv == CallingConv::Cold || 5333 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5334 5335 unsigned PtrByteSize = 4; 5336 5337 MachineFunction &MF = DAG.getMachineFunction(); 5338 5339 // Mark this function as potentially containing a function that contains a 5340 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5341 // and restoring the callers stack pointer in this functions epilog. This is 5342 // done because by tail calling the called function might overwrite the value 5343 // in this function's (MF) stack pointer stack slot 0(SP). 5344 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5345 CallConv == CallingConv::Fast) 5346 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5347 5348 // Count how many bytes are to be pushed on the stack, including the linkage 5349 // area, parameter list area and the part of the local variable space which 5350 // contains copies of aggregates which are passed by value. 5351 5352 // Assign locations to all of the outgoing arguments. 5353 SmallVector<CCValAssign, 16> ArgLocs; 5354 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5355 5356 // Reserve space for the linkage area on the stack. 5357 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5358 PtrByteSize); 5359 if (useSoftFloat()) 5360 CCInfo.PreAnalyzeCallOperands(Outs); 5361 5362 if (isVarArg) { 5363 // Handle fixed and variable vector arguments differently. 5364 // Fixed vector arguments go into registers as long as registers are 5365 // available. Variable vector arguments always go into memory. 5366 unsigned NumArgs = Outs.size(); 5367 5368 for (unsigned i = 0; i != NumArgs; ++i) { 5369 MVT ArgVT = Outs[i].VT; 5370 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5371 bool Result; 5372 5373 if (Outs[i].IsFixed) { 5374 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5375 CCInfo); 5376 } else { 5377 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5378 ArgFlags, CCInfo); 5379 } 5380 5381 if (Result) { 5382 #ifndef NDEBUG 5383 errs() << "Call operand #" << i << " has unhandled type " 5384 << EVT(ArgVT).getEVTString() << "\n"; 5385 #endif 5386 llvm_unreachable(nullptr); 5387 } 5388 } 5389 } else { 5390 // All arguments are treated the same. 5391 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5392 } 5393 CCInfo.clearWasPPCF128(); 5394 5395 // Assign locations to all of the outgoing aggregate by value arguments. 5396 SmallVector<CCValAssign, 16> ByValArgLocs; 5397 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5398 5399 // Reserve stack space for the allocations in CCInfo. 5400 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5401 5402 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5403 5404 // Size of the linkage area, parameter list area and the part of the local 5405 // space variable where copies of aggregates which are passed by value are 5406 // stored. 5407 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5408 5409 // Calculate by how many bytes the stack has to be adjusted in case of tail 5410 // call optimization. 5411 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5412 5413 // Adjust the stack pointer for the new arguments... 5414 // These operations are automatically eliminated by the prolog/epilog pass 5415 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5416 SDValue CallSeqStart = Chain; 5417 5418 // Load the return address and frame pointer so it can be moved somewhere else 5419 // later. 5420 SDValue LROp, FPOp; 5421 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5422 5423 // Set up a copy of the stack pointer for use loading and storing any 5424 // arguments that may not fit in the registers available for argument 5425 // passing. 5426 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5427 5428 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5429 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5430 SmallVector<SDValue, 8> MemOpChains; 5431 5432 bool seenFloatArg = false; 5433 // Walk the register/memloc assignments, inserting copies/loads. 5434 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5435 i != e; 5436 ++i) { 5437 CCValAssign &VA = ArgLocs[i]; 5438 SDValue Arg = OutVals[i]; 5439 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5440 5441 if (Flags.isByVal()) { 5442 // Argument is an aggregate which is passed by value, thus we need to 5443 // create a copy of it in the local variable space of the current stack 5444 // frame (which is the stack frame of the caller) and pass the address of 5445 // this copy to the callee. 5446 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5447 CCValAssign &ByValVA = ByValArgLocs[j++]; 5448 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5449 5450 // Memory reserved in the local variable space of the callers stack frame. 5451 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5452 5453 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5454 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5455 StackPtr, PtrOff); 5456 5457 // Create a copy of the argument in the local area of the current 5458 // stack frame. 5459 SDValue MemcpyCall = 5460 CreateCopyOfByValArgument(Arg, PtrOff, 5461 CallSeqStart.getNode()->getOperand(0), 5462 Flags, DAG, dl); 5463 5464 // This must go outside the CALLSEQ_START..END. 5465 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5466 SDLoc(MemcpyCall)); 5467 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5468 NewCallSeqStart.getNode()); 5469 Chain = CallSeqStart = NewCallSeqStart; 5470 5471 // Pass the address of the aggregate copy on the stack either in a 5472 // physical register or in the parameter list area of the current stack 5473 // frame to the callee. 5474 Arg = PtrOff; 5475 } 5476 5477 // When useCRBits() is true, there can be i1 arguments. 5478 // It is because getRegisterType(MVT::i1) => MVT::i1, 5479 // and for other integer types getRegisterType() => MVT::i32. 5480 // Extend i1 and ensure callee will get i32. 5481 if (Arg.getValueType() == MVT::i1) 5482 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5483 dl, MVT::i32, Arg); 5484 5485 if (VA.isRegLoc()) { 5486 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5487 // Put argument in a physical register. 5488 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5489 } else { 5490 // Put argument in the parameter list area of the current stack frame. 5491 assert(VA.isMemLoc()); 5492 unsigned LocMemOffset = VA.getLocMemOffset(); 5493 5494 if (!isTailCall) { 5495 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5496 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5497 StackPtr, PtrOff); 5498 5499 MemOpChains.push_back( 5500 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5501 } else { 5502 // Calculate and remember argument location. 5503 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5504 TailCallArguments); 5505 } 5506 } 5507 } 5508 5509 if (!MemOpChains.empty()) 5510 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5511 5512 // Build a sequence of copy-to-reg nodes chained together with token chain 5513 // and flag operands which copy the outgoing args into the appropriate regs. 5514 SDValue InFlag; 5515 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5516 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5517 RegsToPass[i].second, InFlag); 5518 InFlag = Chain.getValue(1); 5519 } 5520 5521 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5522 // registers. 5523 if (isVarArg) { 5524 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5525 SDValue Ops[] = { Chain, InFlag }; 5526 5527 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5528 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5529 5530 InFlag = Chain.getValue(1); 5531 } 5532 5533 if (isTailCall) 5534 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5535 TailCallArguments); 5536 5537 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5538 /* unused except on PPC64 ELFv1 */ false, DAG, 5539 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5540 NumBytes, Ins, InVals, CS); 5541 } 5542 5543 // Copy an argument into memory, being careful to do this outside the 5544 // call sequence for the call to which the argument belongs. 5545 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5546 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5547 SelectionDAG &DAG, const SDLoc &dl) const { 5548 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5549 CallSeqStart.getNode()->getOperand(0), 5550 Flags, DAG, dl); 5551 // The MEMCPY must go outside the CALLSEQ_START..END. 5552 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5553 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5554 SDLoc(MemcpyCall)); 5555 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5556 NewCallSeqStart.getNode()); 5557 return NewCallSeqStart; 5558 } 5559 5560 SDValue PPCTargetLowering::LowerCall_64SVR4( 5561 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5562 bool isTailCall, bool isPatchPoint, 5563 const SmallVectorImpl<ISD::OutputArg> &Outs, 5564 const SmallVectorImpl<SDValue> &OutVals, 5565 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5566 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5567 ImmutableCallSite CS) const { 5568 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5569 bool isLittleEndian = Subtarget.isLittleEndian(); 5570 unsigned NumOps = Outs.size(); 5571 bool hasNest = false; 5572 bool IsSibCall = false; 5573 5574 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5575 unsigned PtrByteSize = 8; 5576 5577 MachineFunction &MF = DAG.getMachineFunction(); 5578 5579 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5580 IsSibCall = true; 5581 5582 // Mark this function as potentially containing a function that contains a 5583 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5584 // and restoring the callers stack pointer in this functions epilog. This is 5585 // done because by tail calling the called function might overwrite the value 5586 // in this function's (MF) stack pointer stack slot 0(SP). 5587 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5588 CallConv == CallingConv::Fast) 5589 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5590 5591 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5592 "fastcc not supported on varargs functions"); 5593 5594 // Count how many bytes are to be pushed on the stack, including the linkage 5595 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5596 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5597 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5598 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5599 unsigned NumBytes = LinkageSize; 5600 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5601 unsigned &QFPR_idx = FPR_idx; 5602 5603 static const MCPhysReg GPR[] = { 5604 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5605 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5606 }; 5607 static const MCPhysReg VR[] = { 5608 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5609 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5610 }; 5611 5612 const unsigned NumGPRs = array_lengthof(GPR); 5613 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5614 const unsigned NumVRs = array_lengthof(VR); 5615 const unsigned NumQFPRs = NumFPRs; 5616 5617 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5618 // can be passed to the callee in registers. 5619 // For the fast calling convention, there is another check below. 5620 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5621 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5622 if (!HasParameterArea) { 5623 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5624 unsigned AvailableFPRs = NumFPRs; 5625 unsigned AvailableVRs = NumVRs; 5626 unsigned NumBytesTmp = NumBytes; 5627 for (unsigned i = 0; i != NumOps; ++i) { 5628 if (Outs[i].Flags.isNest()) continue; 5629 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5630 PtrByteSize, LinkageSize, ParamAreaSize, 5631 NumBytesTmp, AvailableFPRs, AvailableVRs, 5632 Subtarget.hasQPX())) 5633 HasParameterArea = true; 5634 } 5635 } 5636 5637 // When using the fast calling convention, we don't provide backing for 5638 // arguments that will be in registers. 5639 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5640 5641 // Avoid allocating parameter area for fastcc functions if all the arguments 5642 // can be passed in the registers. 5643 if (CallConv == CallingConv::Fast) 5644 HasParameterArea = false; 5645 5646 // Add up all the space actually used. 5647 for (unsigned i = 0; i != NumOps; ++i) { 5648 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5649 EVT ArgVT = Outs[i].VT; 5650 EVT OrigVT = Outs[i].ArgVT; 5651 5652 if (Flags.isNest()) 5653 continue; 5654 5655 if (CallConv == CallingConv::Fast) { 5656 if (Flags.isByVal()) { 5657 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5658 if (NumGPRsUsed > NumGPRs) 5659 HasParameterArea = true; 5660 } else { 5661 switch (ArgVT.getSimpleVT().SimpleTy) { 5662 default: llvm_unreachable("Unexpected ValueType for argument!"); 5663 case MVT::i1: 5664 case MVT::i32: 5665 case MVT::i64: 5666 if (++NumGPRsUsed <= NumGPRs) 5667 continue; 5668 break; 5669 case MVT::v4i32: 5670 case MVT::v8i16: 5671 case MVT::v16i8: 5672 case MVT::v2f64: 5673 case MVT::v2i64: 5674 case MVT::v1i128: 5675 case MVT::f128: 5676 if (++NumVRsUsed <= NumVRs) 5677 continue; 5678 break; 5679 case MVT::v4f32: 5680 // When using QPX, this is handled like a FP register, otherwise, it 5681 // is an Altivec register. 5682 if (Subtarget.hasQPX()) { 5683 if (++NumFPRsUsed <= NumFPRs) 5684 continue; 5685 } else { 5686 if (++NumVRsUsed <= NumVRs) 5687 continue; 5688 } 5689 break; 5690 case MVT::f32: 5691 case MVT::f64: 5692 case MVT::v4f64: // QPX 5693 case MVT::v4i1: // QPX 5694 if (++NumFPRsUsed <= NumFPRs) 5695 continue; 5696 break; 5697 } 5698 HasParameterArea = true; 5699 } 5700 } 5701 5702 /* Respect alignment of argument on the stack. */ 5703 unsigned Align = 5704 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5705 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5706 5707 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5708 if (Flags.isInConsecutiveRegsLast()) 5709 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5710 } 5711 5712 unsigned NumBytesActuallyUsed = NumBytes; 5713 5714 // In the old ELFv1 ABI, 5715 // the prolog code of the callee may store up to 8 GPR argument registers to 5716 // the stack, allowing va_start to index over them in memory if its varargs. 5717 // Because we cannot tell if this is needed on the caller side, we have to 5718 // conservatively assume that it is needed. As such, make sure we have at 5719 // least enough stack space for the caller to store the 8 GPRs. 5720 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5721 // really requires memory operands, e.g. a vararg function. 5722 if (HasParameterArea) 5723 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5724 else 5725 NumBytes = LinkageSize; 5726 5727 // Tail call needs the stack to be aligned. 5728 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5729 CallConv == CallingConv::Fast) 5730 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5731 5732 int SPDiff = 0; 5733 5734 // Calculate by how many bytes the stack has to be adjusted in case of tail 5735 // call optimization. 5736 if (!IsSibCall) 5737 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5738 5739 // To protect arguments on the stack from being clobbered in a tail call, 5740 // force all the loads to happen before doing any other lowering. 5741 if (isTailCall) 5742 Chain = DAG.getStackArgumentTokenFactor(Chain); 5743 5744 // Adjust the stack pointer for the new arguments... 5745 // These operations are automatically eliminated by the prolog/epilog pass 5746 if (!IsSibCall) 5747 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5748 SDValue CallSeqStart = Chain; 5749 5750 // Load the return address and frame pointer so it can be move somewhere else 5751 // later. 5752 SDValue LROp, FPOp; 5753 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5754 5755 // Set up a copy of the stack pointer for use loading and storing any 5756 // arguments that may not fit in the registers available for argument 5757 // passing. 5758 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5759 5760 // Figure out which arguments are going to go in registers, and which in 5761 // memory. Also, if this is a vararg function, floating point operations 5762 // must be stored to our stack, and loaded into integer regs as well, if 5763 // any integer regs are available for argument passing. 5764 unsigned ArgOffset = LinkageSize; 5765 5766 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5767 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5768 5769 SmallVector<SDValue, 8> MemOpChains; 5770 for (unsigned i = 0; i != NumOps; ++i) { 5771 SDValue Arg = OutVals[i]; 5772 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5773 EVT ArgVT = Outs[i].VT; 5774 EVT OrigVT = Outs[i].ArgVT; 5775 5776 // PtrOff will be used to store the current argument to the stack if a 5777 // register cannot be found for it. 5778 SDValue PtrOff; 5779 5780 // We re-align the argument offset for each argument, except when using the 5781 // fast calling convention, when we need to make sure we do that only when 5782 // we'll actually use a stack slot. 5783 auto ComputePtrOff = [&]() { 5784 /* Respect alignment of argument on the stack. */ 5785 unsigned Align = 5786 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5787 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5788 5789 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5790 5791 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5792 }; 5793 5794 if (CallConv != CallingConv::Fast) { 5795 ComputePtrOff(); 5796 5797 /* Compute GPR index associated with argument offset. */ 5798 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5799 GPR_idx = std::min(GPR_idx, NumGPRs); 5800 } 5801 5802 // Promote integers to 64-bit values. 5803 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5804 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5805 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5806 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5807 } 5808 5809 // FIXME memcpy is used way more than necessary. Correctness first. 5810 // Note: "by value" is code for passing a structure by value, not 5811 // basic types. 5812 if (Flags.isByVal()) { 5813 // Note: Size includes alignment padding, so 5814 // struct x { short a; char b; } 5815 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5816 // These are the proper values we need for right-justifying the 5817 // aggregate in a parameter register. 5818 unsigned Size = Flags.getByValSize(); 5819 5820 // An empty aggregate parameter takes up no storage and no 5821 // registers. 5822 if (Size == 0) 5823 continue; 5824 5825 if (CallConv == CallingConv::Fast) 5826 ComputePtrOff(); 5827 5828 // All aggregates smaller than 8 bytes must be passed right-justified. 5829 if (Size==1 || Size==2 || Size==4) { 5830 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5831 if (GPR_idx != NumGPRs) { 5832 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5833 MachinePointerInfo(), VT); 5834 MemOpChains.push_back(Load.getValue(1)); 5835 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5836 5837 ArgOffset += PtrByteSize; 5838 continue; 5839 } 5840 } 5841 5842 if (GPR_idx == NumGPRs && Size < 8) { 5843 SDValue AddPtr = PtrOff; 5844 if (!isLittleEndian) { 5845 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5846 PtrOff.getValueType()); 5847 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5848 } 5849 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5850 CallSeqStart, 5851 Flags, DAG, dl); 5852 ArgOffset += PtrByteSize; 5853 continue; 5854 } 5855 // Copy entire object into memory. There are cases where gcc-generated 5856 // code assumes it is there, even if it could be put entirely into 5857 // registers. (This is not what the doc says.) 5858 5859 // FIXME: The above statement is likely due to a misunderstanding of the 5860 // documents. All arguments must be copied into the parameter area BY 5861 // THE CALLEE in the event that the callee takes the address of any 5862 // formal argument. That has not yet been implemented. However, it is 5863 // reasonable to use the stack area as a staging area for the register 5864 // load. 5865 5866 // Skip this for small aggregates, as we will use the same slot for a 5867 // right-justified copy, below. 5868 if (Size >= 8) 5869 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5870 CallSeqStart, 5871 Flags, DAG, dl); 5872 5873 // When a register is available, pass a small aggregate right-justified. 5874 if (Size < 8 && GPR_idx != NumGPRs) { 5875 // The easiest way to get this right-justified in a register 5876 // is to copy the structure into the rightmost portion of a 5877 // local variable slot, then load the whole slot into the 5878 // register. 5879 // FIXME: The memcpy seems to produce pretty awful code for 5880 // small aggregates, particularly for packed ones. 5881 // FIXME: It would be preferable to use the slot in the 5882 // parameter save area instead of a new local variable. 5883 SDValue AddPtr = PtrOff; 5884 if (!isLittleEndian) { 5885 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5886 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5887 } 5888 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5889 CallSeqStart, 5890 Flags, DAG, dl); 5891 5892 // Load the slot into the register. 5893 SDValue Load = 5894 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5895 MemOpChains.push_back(Load.getValue(1)); 5896 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5897 5898 // Done with this argument. 5899 ArgOffset += PtrByteSize; 5900 continue; 5901 } 5902 5903 // For aggregates larger than PtrByteSize, copy the pieces of the 5904 // object that fit into registers from the parameter save area. 5905 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5906 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5907 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5908 if (GPR_idx != NumGPRs) { 5909 SDValue Load = 5910 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5911 MemOpChains.push_back(Load.getValue(1)); 5912 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5913 ArgOffset += PtrByteSize; 5914 } else { 5915 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5916 break; 5917 } 5918 } 5919 continue; 5920 } 5921 5922 switch (Arg.getSimpleValueType().SimpleTy) { 5923 default: llvm_unreachable("Unexpected ValueType for argument!"); 5924 case MVT::i1: 5925 case MVT::i32: 5926 case MVT::i64: 5927 if (Flags.isNest()) { 5928 // The 'nest' parameter, if any, is passed in R11. 5929 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5930 hasNest = true; 5931 break; 5932 } 5933 5934 // These can be scalar arguments or elements of an integer array type 5935 // passed directly. Clang may use those instead of "byval" aggregate 5936 // types to avoid forcing arguments to memory unnecessarily. 5937 if (GPR_idx != NumGPRs) { 5938 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5939 } else { 5940 if (CallConv == CallingConv::Fast) 5941 ComputePtrOff(); 5942 5943 assert(HasParameterArea && 5944 "Parameter area must exist to pass an argument in memory."); 5945 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5946 true, isTailCall, false, MemOpChains, 5947 TailCallArguments, dl); 5948 if (CallConv == CallingConv::Fast) 5949 ArgOffset += PtrByteSize; 5950 } 5951 if (CallConv != CallingConv::Fast) 5952 ArgOffset += PtrByteSize; 5953 break; 5954 case MVT::f32: 5955 case MVT::f64: { 5956 // These can be scalar arguments or elements of a float array type 5957 // passed directly. The latter are used to implement ELFv2 homogenous 5958 // float aggregates. 5959 5960 // Named arguments go into FPRs first, and once they overflow, the 5961 // remaining arguments go into GPRs and then the parameter save area. 5962 // Unnamed arguments for vararg functions always go to GPRs and 5963 // then the parameter save area. For now, put all arguments to vararg 5964 // routines always in both locations (FPR *and* GPR or stack slot). 5965 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5966 bool NeededLoad = false; 5967 5968 // First load the argument into the next available FPR. 5969 if (FPR_idx != NumFPRs) 5970 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5971 5972 // Next, load the argument into GPR or stack slot if needed. 5973 if (!NeedGPROrStack) 5974 ; 5975 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5976 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5977 // once we support fp <-> gpr moves. 5978 5979 // In the non-vararg case, this can only ever happen in the 5980 // presence of f32 array types, since otherwise we never run 5981 // out of FPRs before running out of GPRs. 5982 SDValue ArgVal; 5983 5984 // Double values are always passed in a single GPR. 5985 if (Arg.getValueType() != MVT::f32) { 5986 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5987 5988 // Non-array float values are extended and passed in a GPR. 5989 } else if (!Flags.isInConsecutiveRegs()) { 5990 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5991 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5992 5993 // If we have an array of floats, we collect every odd element 5994 // together with its predecessor into one GPR. 5995 } else if (ArgOffset % PtrByteSize != 0) { 5996 SDValue Lo, Hi; 5997 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5998 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5999 if (!isLittleEndian) 6000 std::swap(Lo, Hi); 6001 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6002 6003 // The final element, if even, goes into the first half of a GPR. 6004 } else if (Flags.isInConsecutiveRegsLast()) { 6005 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6006 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6007 if (!isLittleEndian) 6008 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6009 DAG.getConstant(32, dl, MVT::i32)); 6010 6011 // Non-final even elements are skipped; they will be handled 6012 // together the with subsequent argument on the next go-around. 6013 } else 6014 ArgVal = SDValue(); 6015 6016 if (ArgVal.getNode()) 6017 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6018 } else { 6019 if (CallConv == CallingConv::Fast) 6020 ComputePtrOff(); 6021 6022 // Single-precision floating-point values are mapped to the 6023 // second (rightmost) word of the stack doubleword. 6024 if (Arg.getValueType() == MVT::f32 && 6025 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6026 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6027 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6028 } 6029 6030 assert(HasParameterArea && 6031 "Parameter area must exist to pass an argument in memory."); 6032 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6033 true, isTailCall, false, MemOpChains, 6034 TailCallArguments, dl); 6035 6036 NeededLoad = true; 6037 } 6038 // When passing an array of floats, the array occupies consecutive 6039 // space in the argument area; only round up to the next doubleword 6040 // at the end of the array. Otherwise, each float takes 8 bytes. 6041 if (CallConv != CallingConv::Fast || NeededLoad) { 6042 ArgOffset += (Arg.getValueType() == MVT::f32 && 6043 Flags.isInConsecutiveRegs()) ? 4 : 8; 6044 if (Flags.isInConsecutiveRegsLast()) 6045 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6046 } 6047 break; 6048 } 6049 case MVT::v4f32: 6050 case MVT::v4i32: 6051 case MVT::v8i16: 6052 case MVT::v16i8: 6053 case MVT::v2f64: 6054 case MVT::v2i64: 6055 case MVT::v1i128: 6056 case MVT::f128: 6057 if (!Subtarget.hasQPX()) { 6058 // These can be scalar arguments or elements of a vector array type 6059 // passed directly. The latter are used to implement ELFv2 homogenous 6060 // vector aggregates. 6061 6062 // For a varargs call, named arguments go into VRs or on the stack as 6063 // usual; unnamed arguments always go to the stack or the corresponding 6064 // GPRs when within range. For now, we always put the value in both 6065 // locations (or even all three). 6066 if (isVarArg) { 6067 assert(HasParameterArea && 6068 "Parameter area must exist if we have a varargs call."); 6069 // We could elide this store in the case where the object fits 6070 // entirely in R registers. Maybe later. 6071 SDValue Store = 6072 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6073 MemOpChains.push_back(Store); 6074 if (VR_idx != NumVRs) { 6075 SDValue Load = 6076 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6077 MemOpChains.push_back(Load.getValue(1)); 6078 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6079 } 6080 ArgOffset += 16; 6081 for (unsigned i=0; i<16; i+=PtrByteSize) { 6082 if (GPR_idx == NumGPRs) 6083 break; 6084 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6085 DAG.getConstant(i, dl, PtrVT)); 6086 SDValue Load = 6087 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6088 MemOpChains.push_back(Load.getValue(1)); 6089 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6090 } 6091 break; 6092 } 6093 6094 // Non-varargs Altivec params go into VRs or on the stack. 6095 if (VR_idx != NumVRs) { 6096 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6097 } else { 6098 if (CallConv == CallingConv::Fast) 6099 ComputePtrOff(); 6100 6101 assert(HasParameterArea && 6102 "Parameter area must exist to pass an argument in memory."); 6103 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6104 true, isTailCall, true, MemOpChains, 6105 TailCallArguments, dl); 6106 if (CallConv == CallingConv::Fast) 6107 ArgOffset += 16; 6108 } 6109 6110 if (CallConv != CallingConv::Fast) 6111 ArgOffset += 16; 6112 break; 6113 } // not QPX 6114 6115 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6116 "Invalid QPX parameter type"); 6117 6118 /* fall through */ 6119 case MVT::v4f64: 6120 case MVT::v4i1: { 6121 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6122 if (isVarArg) { 6123 assert(HasParameterArea && 6124 "Parameter area must exist if we have a varargs call."); 6125 // We could elide this store in the case where the object fits 6126 // entirely in R registers. Maybe later. 6127 SDValue Store = 6128 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6129 MemOpChains.push_back(Store); 6130 if (QFPR_idx != NumQFPRs) { 6131 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6132 PtrOff, MachinePointerInfo()); 6133 MemOpChains.push_back(Load.getValue(1)); 6134 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6135 } 6136 ArgOffset += (IsF32 ? 16 : 32); 6137 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6138 if (GPR_idx == NumGPRs) 6139 break; 6140 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6141 DAG.getConstant(i, dl, PtrVT)); 6142 SDValue Load = 6143 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6144 MemOpChains.push_back(Load.getValue(1)); 6145 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6146 } 6147 break; 6148 } 6149 6150 // Non-varargs QPX params go into registers or on the stack. 6151 if (QFPR_idx != NumQFPRs) { 6152 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6153 } else { 6154 if (CallConv == CallingConv::Fast) 6155 ComputePtrOff(); 6156 6157 assert(HasParameterArea && 6158 "Parameter area must exist to pass an argument in memory."); 6159 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6160 true, isTailCall, true, MemOpChains, 6161 TailCallArguments, dl); 6162 if (CallConv == CallingConv::Fast) 6163 ArgOffset += (IsF32 ? 16 : 32); 6164 } 6165 6166 if (CallConv != CallingConv::Fast) 6167 ArgOffset += (IsF32 ? 16 : 32); 6168 break; 6169 } 6170 } 6171 } 6172 6173 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6174 "mismatch in size of parameter area"); 6175 (void)NumBytesActuallyUsed; 6176 6177 if (!MemOpChains.empty()) 6178 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6179 6180 // Check if this is an indirect call (MTCTR/BCTRL). 6181 // See PrepareCall() for more information about calls through function 6182 // pointers in the 64-bit SVR4 ABI. 6183 if (!isTailCall && !isPatchPoint && 6184 !isFunctionGlobalAddress(Callee) && 6185 !isa<ExternalSymbolSDNode>(Callee)) { 6186 // Load r2 into a virtual register and store it to the TOC save area. 6187 setUsesTOCBasePtr(DAG); 6188 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6189 // TOC save area offset. 6190 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6191 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6192 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6193 Chain = DAG.getStore( 6194 Val.getValue(1), dl, Val, AddPtr, 6195 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6196 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6197 // This does not mean the MTCTR instruction must use R12; it's easier 6198 // to model this as an extra parameter, so do that. 6199 if (isELFv2ABI && !isPatchPoint) 6200 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6201 } 6202 6203 // Build a sequence of copy-to-reg nodes chained together with token chain 6204 // and flag operands which copy the outgoing args into the appropriate regs. 6205 SDValue InFlag; 6206 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6207 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6208 RegsToPass[i].second, InFlag); 6209 InFlag = Chain.getValue(1); 6210 } 6211 6212 if (isTailCall && !IsSibCall) 6213 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6214 TailCallArguments); 6215 6216 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6217 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6218 SPDiff, NumBytes, Ins, InVals, CS); 6219 } 6220 6221 SDValue PPCTargetLowering::LowerCall_Darwin( 6222 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6223 bool isTailCall, bool isPatchPoint, 6224 const SmallVectorImpl<ISD::OutputArg> &Outs, 6225 const SmallVectorImpl<SDValue> &OutVals, 6226 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6227 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6228 ImmutableCallSite CS) const { 6229 unsigned NumOps = Outs.size(); 6230 6231 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6232 bool isPPC64 = PtrVT == MVT::i64; 6233 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6234 6235 MachineFunction &MF = DAG.getMachineFunction(); 6236 6237 // Mark this function as potentially containing a function that contains a 6238 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6239 // and restoring the callers stack pointer in this functions epilog. This is 6240 // done because by tail calling the called function might overwrite the value 6241 // in this function's (MF) stack pointer stack slot 0(SP). 6242 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6243 CallConv == CallingConv::Fast) 6244 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6245 6246 // Count how many bytes are to be pushed on the stack, including the linkage 6247 // area, and parameter passing area. We start with 24/48 bytes, which is 6248 // prereserved space for [SP][CR][LR][3 x unused]. 6249 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6250 unsigned NumBytes = LinkageSize; 6251 6252 // Add up all the space actually used. 6253 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6254 // they all go in registers, but we must reserve stack space for them for 6255 // possible use by the caller. In varargs or 64-bit calls, parameters are 6256 // assigned stack space in order, with padding so Altivec parameters are 6257 // 16-byte aligned. 6258 unsigned nAltivecParamsAtEnd = 0; 6259 for (unsigned i = 0; i != NumOps; ++i) { 6260 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6261 EVT ArgVT = Outs[i].VT; 6262 // Varargs Altivec parameters are padded to a 16 byte boundary. 6263 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6264 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6265 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6266 if (!isVarArg && !isPPC64) { 6267 // Non-varargs Altivec parameters go after all the non-Altivec 6268 // parameters; handle those later so we know how much padding we need. 6269 nAltivecParamsAtEnd++; 6270 continue; 6271 } 6272 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6273 NumBytes = ((NumBytes+15)/16)*16; 6274 } 6275 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6276 } 6277 6278 // Allow for Altivec parameters at the end, if needed. 6279 if (nAltivecParamsAtEnd) { 6280 NumBytes = ((NumBytes+15)/16)*16; 6281 NumBytes += 16*nAltivecParamsAtEnd; 6282 } 6283 6284 // The prolog code of the callee may store up to 8 GPR argument registers to 6285 // the stack, allowing va_start to index over them in memory if its varargs. 6286 // Because we cannot tell if this is needed on the caller side, we have to 6287 // conservatively assume that it is needed. As such, make sure we have at 6288 // least enough stack space for the caller to store the 8 GPRs. 6289 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6290 6291 // Tail call needs the stack to be aligned. 6292 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6293 CallConv == CallingConv::Fast) 6294 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6295 6296 // Calculate by how many bytes the stack has to be adjusted in case of tail 6297 // call optimization. 6298 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6299 6300 // To protect arguments on the stack from being clobbered in a tail call, 6301 // force all the loads to happen before doing any other lowering. 6302 if (isTailCall) 6303 Chain = DAG.getStackArgumentTokenFactor(Chain); 6304 6305 // Adjust the stack pointer for the new arguments... 6306 // These operations are automatically eliminated by the prolog/epilog pass 6307 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6308 SDValue CallSeqStart = Chain; 6309 6310 // Load the return address and frame pointer so it can be move somewhere else 6311 // later. 6312 SDValue LROp, FPOp; 6313 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6314 6315 // Set up a copy of the stack pointer for use loading and storing any 6316 // arguments that may not fit in the registers available for argument 6317 // passing. 6318 SDValue StackPtr; 6319 if (isPPC64) 6320 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6321 else 6322 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6323 6324 // Figure out which arguments are going to go in registers, and which in 6325 // memory. Also, if this is a vararg function, floating point operations 6326 // must be stored to our stack, and loaded into integer regs as well, if 6327 // any integer regs are available for argument passing. 6328 unsigned ArgOffset = LinkageSize; 6329 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6330 6331 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6332 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6333 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6334 }; 6335 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6336 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6337 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6338 }; 6339 static const MCPhysReg VR[] = { 6340 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6341 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6342 }; 6343 const unsigned NumGPRs = array_lengthof(GPR_32); 6344 const unsigned NumFPRs = 13; 6345 const unsigned NumVRs = array_lengthof(VR); 6346 6347 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6348 6349 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6350 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6351 6352 SmallVector<SDValue, 8> MemOpChains; 6353 for (unsigned i = 0; i != NumOps; ++i) { 6354 SDValue Arg = OutVals[i]; 6355 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6356 6357 // PtrOff will be used to store the current argument to the stack if a 6358 // register cannot be found for it. 6359 SDValue PtrOff; 6360 6361 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6362 6363 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6364 6365 // On PPC64, promote integers to 64-bit values. 6366 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6367 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6368 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6369 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6370 } 6371 6372 // FIXME memcpy is used way more than necessary. Correctness first. 6373 // Note: "by value" is code for passing a structure by value, not 6374 // basic types. 6375 if (Flags.isByVal()) { 6376 unsigned Size = Flags.getByValSize(); 6377 // Very small objects are passed right-justified. Everything else is 6378 // passed left-justified. 6379 if (Size==1 || Size==2) { 6380 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6381 if (GPR_idx != NumGPRs) { 6382 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6383 MachinePointerInfo(), VT); 6384 MemOpChains.push_back(Load.getValue(1)); 6385 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6386 6387 ArgOffset += PtrByteSize; 6388 } else { 6389 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6390 PtrOff.getValueType()); 6391 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6392 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6393 CallSeqStart, 6394 Flags, DAG, dl); 6395 ArgOffset += PtrByteSize; 6396 } 6397 continue; 6398 } 6399 // Copy entire object into memory. There are cases where gcc-generated 6400 // code assumes it is there, even if it could be put entirely into 6401 // registers. (This is not what the doc says.) 6402 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6403 CallSeqStart, 6404 Flags, DAG, dl); 6405 6406 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6407 // copy the pieces of the object that fit into registers from the 6408 // parameter save area. 6409 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6410 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6411 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6412 if (GPR_idx != NumGPRs) { 6413 SDValue Load = 6414 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6415 MemOpChains.push_back(Load.getValue(1)); 6416 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6417 ArgOffset += PtrByteSize; 6418 } else { 6419 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6420 break; 6421 } 6422 } 6423 continue; 6424 } 6425 6426 switch (Arg.getSimpleValueType().SimpleTy) { 6427 default: llvm_unreachable("Unexpected ValueType for argument!"); 6428 case MVT::i1: 6429 case MVT::i32: 6430 case MVT::i64: 6431 if (GPR_idx != NumGPRs) { 6432 if (Arg.getValueType() == MVT::i1) 6433 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6434 6435 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6436 } else { 6437 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6438 isPPC64, isTailCall, false, MemOpChains, 6439 TailCallArguments, dl); 6440 } 6441 ArgOffset += PtrByteSize; 6442 break; 6443 case MVT::f32: 6444 case MVT::f64: 6445 if (FPR_idx != NumFPRs) { 6446 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6447 6448 if (isVarArg) { 6449 SDValue Store = 6450 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6451 MemOpChains.push_back(Store); 6452 6453 // Float varargs are always shadowed in available integer registers 6454 if (GPR_idx != NumGPRs) { 6455 SDValue Load = 6456 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6457 MemOpChains.push_back(Load.getValue(1)); 6458 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6459 } 6460 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6461 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6462 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6463 SDValue Load = 6464 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6465 MemOpChains.push_back(Load.getValue(1)); 6466 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6467 } 6468 } else { 6469 // If we have any FPRs remaining, we may also have GPRs remaining. 6470 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6471 // GPRs. 6472 if (GPR_idx != NumGPRs) 6473 ++GPR_idx; 6474 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6475 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6476 ++GPR_idx; 6477 } 6478 } else 6479 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6480 isPPC64, isTailCall, false, MemOpChains, 6481 TailCallArguments, dl); 6482 if (isPPC64) 6483 ArgOffset += 8; 6484 else 6485 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6486 break; 6487 case MVT::v4f32: 6488 case MVT::v4i32: 6489 case MVT::v8i16: 6490 case MVT::v16i8: 6491 if (isVarArg) { 6492 // These go aligned on the stack, or in the corresponding R registers 6493 // when within range. The Darwin PPC ABI doc claims they also go in 6494 // V registers; in fact gcc does this only for arguments that are 6495 // prototyped, not for those that match the ... We do it for all 6496 // arguments, seems to work. 6497 while (ArgOffset % 16 !=0) { 6498 ArgOffset += PtrByteSize; 6499 if (GPR_idx != NumGPRs) 6500 GPR_idx++; 6501 } 6502 // We could elide this store in the case where the object fits 6503 // entirely in R registers. Maybe later. 6504 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6505 DAG.getConstant(ArgOffset, dl, PtrVT)); 6506 SDValue Store = 6507 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6508 MemOpChains.push_back(Store); 6509 if (VR_idx != NumVRs) { 6510 SDValue Load = 6511 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6512 MemOpChains.push_back(Load.getValue(1)); 6513 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6514 } 6515 ArgOffset += 16; 6516 for (unsigned i=0; i<16; i+=PtrByteSize) { 6517 if (GPR_idx == NumGPRs) 6518 break; 6519 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6520 DAG.getConstant(i, dl, PtrVT)); 6521 SDValue Load = 6522 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6523 MemOpChains.push_back(Load.getValue(1)); 6524 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6525 } 6526 break; 6527 } 6528 6529 // Non-varargs Altivec params generally go in registers, but have 6530 // stack space allocated at the end. 6531 if (VR_idx != NumVRs) { 6532 // Doesn't have GPR space allocated. 6533 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6534 } else if (nAltivecParamsAtEnd==0) { 6535 // We are emitting Altivec params in order. 6536 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6537 isPPC64, isTailCall, true, MemOpChains, 6538 TailCallArguments, dl); 6539 ArgOffset += 16; 6540 } 6541 break; 6542 } 6543 } 6544 // If all Altivec parameters fit in registers, as they usually do, 6545 // they get stack space following the non-Altivec parameters. We 6546 // don't track this here because nobody below needs it. 6547 // If there are more Altivec parameters than fit in registers emit 6548 // the stores here. 6549 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6550 unsigned j = 0; 6551 // Offset is aligned; skip 1st 12 params which go in V registers. 6552 ArgOffset = ((ArgOffset+15)/16)*16; 6553 ArgOffset += 12*16; 6554 for (unsigned i = 0; i != NumOps; ++i) { 6555 SDValue Arg = OutVals[i]; 6556 EVT ArgType = Outs[i].VT; 6557 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6558 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6559 if (++j > NumVRs) { 6560 SDValue PtrOff; 6561 // We are emitting Altivec params in order. 6562 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6563 isPPC64, isTailCall, true, MemOpChains, 6564 TailCallArguments, dl); 6565 ArgOffset += 16; 6566 } 6567 } 6568 } 6569 } 6570 6571 if (!MemOpChains.empty()) 6572 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6573 6574 // On Darwin, R12 must contain the address of an indirect callee. This does 6575 // not mean the MTCTR instruction must use R12; it's easier to model this as 6576 // an extra parameter, so do that. 6577 if (!isTailCall && 6578 !isFunctionGlobalAddress(Callee) && 6579 !isa<ExternalSymbolSDNode>(Callee) && 6580 !isBLACompatibleAddress(Callee, DAG)) 6581 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6582 PPC::R12), Callee)); 6583 6584 // Build a sequence of copy-to-reg nodes chained together with token chain 6585 // and flag operands which copy the outgoing args into the appropriate regs. 6586 SDValue InFlag; 6587 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6588 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6589 RegsToPass[i].second, InFlag); 6590 InFlag = Chain.getValue(1); 6591 } 6592 6593 if (isTailCall) 6594 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6595 TailCallArguments); 6596 6597 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6598 /* unused except on PPC64 ELFv1 */ false, DAG, 6599 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6600 NumBytes, Ins, InVals, CS); 6601 } 6602 6603 bool 6604 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6605 MachineFunction &MF, bool isVarArg, 6606 const SmallVectorImpl<ISD::OutputArg> &Outs, 6607 LLVMContext &Context) const { 6608 SmallVector<CCValAssign, 16> RVLocs; 6609 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6610 return CCInfo.CheckReturn( 6611 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6612 ? RetCC_PPC_Cold 6613 : RetCC_PPC); 6614 } 6615 6616 SDValue 6617 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6618 bool isVarArg, 6619 const SmallVectorImpl<ISD::OutputArg> &Outs, 6620 const SmallVectorImpl<SDValue> &OutVals, 6621 const SDLoc &dl, SelectionDAG &DAG) const { 6622 SmallVector<CCValAssign, 16> RVLocs; 6623 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6624 *DAG.getContext()); 6625 CCInfo.AnalyzeReturn(Outs, 6626 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6627 ? RetCC_PPC_Cold 6628 : RetCC_PPC); 6629 6630 SDValue Flag; 6631 SmallVector<SDValue, 4> RetOps(1, Chain); 6632 6633 // Copy the result values into the output registers. 6634 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6635 CCValAssign &VA = RVLocs[i]; 6636 assert(VA.isRegLoc() && "Can only return in registers!"); 6637 6638 SDValue Arg = OutVals[i]; 6639 6640 switch (VA.getLocInfo()) { 6641 default: llvm_unreachable("Unknown loc info!"); 6642 case CCValAssign::Full: break; 6643 case CCValAssign::AExt: 6644 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6645 break; 6646 case CCValAssign::ZExt: 6647 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6648 break; 6649 case CCValAssign::SExt: 6650 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6651 break; 6652 } 6653 6654 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6655 Flag = Chain.getValue(1); 6656 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6657 } 6658 6659 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6660 const MCPhysReg *I = 6661 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6662 if (I) { 6663 for (; *I; ++I) { 6664 6665 if (PPC::G8RCRegClass.contains(*I)) 6666 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6667 else if (PPC::F8RCRegClass.contains(*I)) 6668 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6669 else if (PPC::CRRCRegClass.contains(*I)) 6670 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6671 else if (PPC::VRRCRegClass.contains(*I)) 6672 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6673 else 6674 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6675 } 6676 } 6677 6678 RetOps[0] = Chain; // Update chain. 6679 6680 // Add the flag if we have it. 6681 if (Flag.getNode()) 6682 RetOps.push_back(Flag); 6683 6684 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6685 } 6686 6687 SDValue 6688 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6689 SelectionDAG &DAG) const { 6690 SDLoc dl(Op); 6691 6692 // Get the correct type for integers. 6693 EVT IntVT = Op.getValueType(); 6694 6695 // Get the inputs. 6696 SDValue Chain = Op.getOperand(0); 6697 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6698 // Build a DYNAREAOFFSET node. 6699 SDValue Ops[2] = {Chain, FPSIdx}; 6700 SDVTList VTs = DAG.getVTList(IntVT); 6701 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6702 } 6703 6704 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6705 SelectionDAG &DAG) const { 6706 // When we pop the dynamic allocation we need to restore the SP link. 6707 SDLoc dl(Op); 6708 6709 // Get the correct type for pointers. 6710 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6711 6712 // Construct the stack pointer operand. 6713 bool isPPC64 = Subtarget.isPPC64(); 6714 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6715 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6716 6717 // Get the operands for the STACKRESTORE. 6718 SDValue Chain = Op.getOperand(0); 6719 SDValue SaveSP = Op.getOperand(1); 6720 6721 // Load the old link SP. 6722 SDValue LoadLinkSP = 6723 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6724 6725 // Restore the stack pointer. 6726 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6727 6728 // Store the old link SP. 6729 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6730 } 6731 6732 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6733 MachineFunction &MF = DAG.getMachineFunction(); 6734 bool isPPC64 = Subtarget.isPPC64(); 6735 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6736 6737 // Get current frame pointer save index. The users of this index will be 6738 // primarily DYNALLOC instructions. 6739 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6740 int RASI = FI->getReturnAddrSaveIndex(); 6741 6742 // If the frame pointer save index hasn't been defined yet. 6743 if (!RASI) { 6744 // Find out what the fix offset of the frame pointer save area. 6745 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6746 // Allocate the frame index for frame pointer save area. 6747 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6748 // Save the result. 6749 FI->setReturnAddrSaveIndex(RASI); 6750 } 6751 return DAG.getFrameIndex(RASI, PtrVT); 6752 } 6753 6754 SDValue 6755 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6756 MachineFunction &MF = DAG.getMachineFunction(); 6757 bool isPPC64 = Subtarget.isPPC64(); 6758 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6759 6760 // Get current frame pointer save index. The users of this index will be 6761 // primarily DYNALLOC instructions. 6762 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6763 int FPSI = FI->getFramePointerSaveIndex(); 6764 6765 // If the frame pointer save index hasn't been defined yet. 6766 if (!FPSI) { 6767 // Find out what the fix offset of the frame pointer save area. 6768 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6769 // Allocate the frame index for frame pointer save area. 6770 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6771 // Save the result. 6772 FI->setFramePointerSaveIndex(FPSI); 6773 } 6774 return DAG.getFrameIndex(FPSI, PtrVT); 6775 } 6776 6777 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6778 SelectionDAG &DAG) const { 6779 // Get the inputs. 6780 SDValue Chain = Op.getOperand(0); 6781 SDValue Size = Op.getOperand(1); 6782 SDLoc dl(Op); 6783 6784 // Get the correct type for pointers. 6785 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6786 // Negate the size. 6787 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6788 DAG.getConstant(0, dl, PtrVT), Size); 6789 // Construct a node for the frame pointer save index. 6790 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6791 // Build a DYNALLOC node. 6792 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6793 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6794 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6795 } 6796 6797 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6798 SelectionDAG &DAG) const { 6799 MachineFunction &MF = DAG.getMachineFunction(); 6800 6801 bool isPPC64 = Subtarget.isPPC64(); 6802 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6803 6804 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6805 return DAG.getFrameIndex(FI, PtrVT); 6806 } 6807 6808 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6809 SelectionDAG &DAG) const { 6810 SDLoc DL(Op); 6811 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6812 DAG.getVTList(MVT::i32, MVT::Other), 6813 Op.getOperand(0), Op.getOperand(1)); 6814 } 6815 6816 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6817 SelectionDAG &DAG) const { 6818 SDLoc DL(Op); 6819 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6820 Op.getOperand(0), Op.getOperand(1)); 6821 } 6822 6823 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6824 if (Op.getValueType().isVector()) 6825 return LowerVectorLoad(Op, DAG); 6826 6827 assert(Op.getValueType() == MVT::i1 && 6828 "Custom lowering only for i1 loads"); 6829 6830 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6831 6832 SDLoc dl(Op); 6833 LoadSDNode *LD = cast<LoadSDNode>(Op); 6834 6835 SDValue Chain = LD->getChain(); 6836 SDValue BasePtr = LD->getBasePtr(); 6837 MachineMemOperand *MMO = LD->getMemOperand(); 6838 6839 SDValue NewLD = 6840 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6841 BasePtr, MVT::i8, MMO); 6842 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6843 6844 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6845 return DAG.getMergeValues(Ops, dl); 6846 } 6847 6848 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6849 if (Op.getOperand(1).getValueType().isVector()) 6850 return LowerVectorStore(Op, DAG); 6851 6852 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6853 "Custom lowering only for i1 stores"); 6854 6855 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6856 6857 SDLoc dl(Op); 6858 StoreSDNode *ST = cast<StoreSDNode>(Op); 6859 6860 SDValue Chain = ST->getChain(); 6861 SDValue BasePtr = ST->getBasePtr(); 6862 SDValue Value = ST->getValue(); 6863 MachineMemOperand *MMO = ST->getMemOperand(); 6864 6865 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6866 Value); 6867 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6868 } 6869 6870 // FIXME: Remove this once the ANDI glue bug is fixed: 6871 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6872 assert(Op.getValueType() == MVT::i1 && 6873 "Custom lowering only for i1 results"); 6874 6875 SDLoc DL(Op); 6876 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6877 Op.getOperand(0)); 6878 } 6879 6880 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6881 /// possible. 6882 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6883 // Not FP? Not a fsel. 6884 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6885 !Op.getOperand(2).getValueType().isFloatingPoint()) 6886 return Op; 6887 6888 // We might be able to do better than this under some circumstances, but in 6889 // general, fsel-based lowering of select is a finite-math-only optimization. 6890 // For more information, see section F.3 of the 2.06 ISA specification. 6891 if (!DAG.getTarget().Options.NoInfsFPMath || 6892 !DAG.getTarget().Options.NoNaNsFPMath) 6893 return Op; 6894 // TODO: Propagate flags from the select rather than global settings. 6895 SDNodeFlags Flags; 6896 Flags.setNoInfs(true); 6897 Flags.setNoNaNs(true); 6898 6899 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6900 6901 EVT ResVT = Op.getValueType(); 6902 EVT CmpVT = Op.getOperand(0).getValueType(); 6903 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6904 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6905 SDLoc dl(Op); 6906 6907 // If the RHS of the comparison is a 0.0, we don't need to do the 6908 // subtraction at all. 6909 SDValue Sel1; 6910 if (isFloatingPointZero(RHS)) 6911 switch (CC) { 6912 default: break; // SETUO etc aren't handled by fsel. 6913 case ISD::SETNE: 6914 std::swap(TV, FV); 6915 LLVM_FALLTHROUGH; 6916 case ISD::SETEQ: 6917 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6918 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6919 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6920 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6921 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6922 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6923 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6924 case ISD::SETULT: 6925 case ISD::SETLT: 6926 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6927 LLVM_FALLTHROUGH; 6928 case ISD::SETOGE: 6929 case ISD::SETGE: 6930 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6931 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6932 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6933 case ISD::SETUGT: 6934 case ISD::SETGT: 6935 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6936 LLVM_FALLTHROUGH; 6937 case ISD::SETOLE: 6938 case ISD::SETLE: 6939 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6940 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6941 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6942 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6943 } 6944 6945 SDValue Cmp; 6946 switch (CC) { 6947 default: break; // SETUO etc aren't handled by fsel. 6948 case ISD::SETNE: 6949 std::swap(TV, FV); 6950 LLVM_FALLTHROUGH; 6951 case ISD::SETEQ: 6952 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6953 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6954 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6955 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6956 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6957 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6958 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6959 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6960 case ISD::SETULT: 6961 case ISD::SETLT: 6962 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6963 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6964 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6965 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6966 case ISD::SETOGE: 6967 case ISD::SETGE: 6968 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6969 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6970 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6971 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6972 case ISD::SETUGT: 6973 case ISD::SETGT: 6974 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6975 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6976 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6977 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6978 case ISD::SETOLE: 6979 case ISD::SETLE: 6980 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6981 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6982 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6983 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6984 } 6985 return Op; 6986 } 6987 6988 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6989 SelectionDAG &DAG, 6990 const SDLoc &dl) const { 6991 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6992 SDValue Src = Op.getOperand(0); 6993 if (Src.getValueType() == MVT::f32) 6994 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6995 6996 SDValue Tmp; 6997 switch (Op.getSimpleValueType().SimpleTy) { 6998 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6999 case MVT::i32: 7000 Tmp = DAG.getNode( 7001 Op.getOpcode() == ISD::FP_TO_SINT 7002 ? PPCISD::FCTIWZ 7003 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7004 dl, MVT::f64, Src); 7005 break; 7006 case MVT::i64: 7007 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7008 "i64 FP_TO_UINT is supported only with FPCVT"); 7009 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7010 PPCISD::FCTIDUZ, 7011 dl, MVT::f64, Src); 7012 break; 7013 } 7014 7015 // Convert the FP value to an int value through memory. 7016 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7017 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7018 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7019 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7020 MachinePointerInfo MPI = 7021 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7022 7023 // Emit a store to the stack slot. 7024 SDValue Chain; 7025 if (i32Stack) { 7026 MachineFunction &MF = DAG.getMachineFunction(); 7027 MachineMemOperand *MMO = 7028 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7029 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7030 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7031 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7032 } else 7033 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7034 7035 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7036 // add in a bias on big endian. 7037 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7038 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7039 DAG.getConstant(4, dl, FIPtr.getValueType())); 7040 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7041 } 7042 7043 RLI.Chain = Chain; 7044 RLI.Ptr = FIPtr; 7045 RLI.MPI = MPI; 7046 } 7047 7048 /// Custom lowers floating point to integer conversions to use 7049 /// the direct move instructions available in ISA 2.07 to avoid the 7050 /// need for load/store combinations. 7051 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7052 SelectionDAG &DAG, 7053 const SDLoc &dl) const { 7054 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7055 SDValue Src = Op.getOperand(0); 7056 7057 if (Src.getValueType() == MVT::f32) 7058 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7059 7060 SDValue Tmp; 7061 switch (Op.getSimpleValueType().SimpleTy) { 7062 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7063 case MVT::i32: 7064 Tmp = DAG.getNode( 7065 Op.getOpcode() == ISD::FP_TO_SINT 7066 ? PPCISD::FCTIWZ 7067 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7068 dl, MVT::f64, Src); 7069 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7070 break; 7071 case MVT::i64: 7072 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7073 "i64 FP_TO_UINT is supported only with FPCVT"); 7074 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7075 PPCISD::FCTIDUZ, 7076 dl, MVT::f64, Src); 7077 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7078 break; 7079 } 7080 return Tmp; 7081 } 7082 7083 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7084 const SDLoc &dl) const { 7085 7086 // FP to INT conversions are legal for f128. 7087 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7088 return Op; 7089 7090 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7091 // PPC (the libcall is not available). 7092 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7093 if (Op.getValueType() == MVT::i32) { 7094 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7095 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7096 MVT::f64, Op.getOperand(0), 7097 DAG.getIntPtrConstant(0, dl)); 7098 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7099 MVT::f64, Op.getOperand(0), 7100 DAG.getIntPtrConstant(1, dl)); 7101 7102 // Add the two halves of the long double in round-to-zero mode. 7103 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7104 7105 // Now use a smaller FP_TO_SINT. 7106 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7107 } 7108 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7109 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7110 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7111 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7112 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7113 // FIXME: generated code sucks. 7114 // TODO: Are there fast-math-flags to propagate to this FSUB? 7115 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7116 Op.getOperand(0), Tmp); 7117 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7118 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7119 DAG.getConstant(0x80000000, dl, MVT::i32)); 7120 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7121 Op.getOperand(0)); 7122 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7123 ISD::SETGE); 7124 } 7125 } 7126 7127 return SDValue(); 7128 } 7129 7130 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7131 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7132 7133 ReuseLoadInfo RLI; 7134 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7135 7136 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7137 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7138 } 7139 7140 // We're trying to insert a regular store, S, and then a load, L. If the 7141 // incoming value, O, is a load, we might just be able to have our load use the 7142 // address used by O. However, we don't know if anything else will store to 7143 // that address before we can load from it. To prevent this situation, we need 7144 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7145 // the same chain operand as O, we create a token factor from the chain results 7146 // of O and L, and we replace all uses of O's chain result with that token 7147 // factor (see spliceIntoChain below for this last part). 7148 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7149 ReuseLoadInfo &RLI, 7150 SelectionDAG &DAG, 7151 ISD::LoadExtType ET) const { 7152 SDLoc dl(Op); 7153 if (ET == ISD::NON_EXTLOAD && 7154 (Op.getOpcode() == ISD::FP_TO_UINT || 7155 Op.getOpcode() == ISD::FP_TO_SINT) && 7156 isOperationLegalOrCustom(Op.getOpcode(), 7157 Op.getOperand(0).getValueType())) { 7158 7159 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7160 return true; 7161 } 7162 7163 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7164 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7165 LD->isNonTemporal()) 7166 return false; 7167 if (LD->getMemoryVT() != MemVT) 7168 return false; 7169 7170 RLI.Ptr = LD->getBasePtr(); 7171 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7172 assert(LD->getAddressingMode() == ISD::PRE_INC && 7173 "Non-pre-inc AM on PPC?"); 7174 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7175 LD->getOffset()); 7176 } 7177 7178 RLI.Chain = LD->getChain(); 7179 RLI.MPI = LD->getPointerInfo(); 7180 RLI.IsDereferenceable = LD->isDereferenceable(); 7181 RLI.IsInvariant = LD->isInvariant(); 7182 RLI.Alignment = LD->getAlignment(); 7183 RLI.AAInfo = LD->getAAInfo(); 7184 RLI.Ranges = LD->getRanges(); 7185 7186 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7187 return true; 7188 } 7189 7190 // Given the head of the old chain, ResChain, insert a token factor containing 7191 // it and NewResChain, and make users of ResChain now be users of that token 7192 // factor. 7193 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7194 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7195 SDValue NewResChain, 7196 SelectionDAG &DAG) const { 7197 if (!ResChain) 7198 return; 7199 7200 SDLoc dl(NewResChain); 7201 7202 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7203 NewResChain, DAG.getUNDEF(MVT::Other)); 7204 assert(TF.getNode() != NewResChain.getNode() && 7205 "A new TF really is required here"); 7206 7207 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7208 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7209 } 7210 7211 /// Analyze profitability of direct move 7212 /// prefer float load to int load plus direct move 7213 /// when there is no integer use of int load 7214 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7215 SDNode *Origin = Op.getOperand(0).getNode(); 7216 if (Origin->getOpcode() != ISD::LOAD) 7217 return true; 7218 7219 // If there is no LXSIBZX/LXSIHZX, like Power8, 7220 // prefer direct move if the memory size is 1 or 2 bytes. 7221 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7222 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7223 return true; 7224 7225 for (SDNode::use_iterator UI = Origin->use_begin(), 7226 UE = Origin->use_end(); 7227 UI != UE; ++UI) { 7228 7229 // Only look at the users of the loaded value. 7230 if (UI.getUse().get().getResNo() != 0) 7231 continue; 7232 7233 if (UI->getOpcode() != ISD::SINT_TO_FP && 7234 UI->getOpcode() != ISD::UINT_TO_FP) 7235 return true; 7236 } 7237 7238 return false; 7239 } 7240 7241 /// Custom lowers integer to floating point conversions to use 7242 /// the direct move instructions available in ISA 2.07 to avoid the 7243 /// need for load/store combinations. 7244 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7245 SelectionDAG &DAG, 7246 const SDLoc &dl) const { 7247 assert((Op.getValueType() == MVT::f32 || 7248 Op.getValueType() == MVT::f64) && 7249 "Invalid floating point type as target of conversion"); 7250 assert(Subtarget.hasFPCVT() && 7251 "Int to FP conversions with direct moves require FPCVT"); 7252 SDValue FP; 7253 SDValue Src = Op.getOperand(0); 7254 bool SinglePrec = Op.getValueType() == MVT::f32; 7255 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7256 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7257 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7258 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7259 7260 if (WordInt) { 7261 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7262 dl, MVT::f64, Src); 7263 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7264 } 7265 else { 7266 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7267 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7268 } 7269 7270 return FP; 7271 } 7272 7273 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7274 SelectionDAG &DAG) const { 7275 SDLoc dl(Op); 7276 7277 // Conversions to f128 are legal. 7278 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7279 return Op; 7280 7281 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7282 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7283 return SDValue(); 7284 7285 SDValue Value = Op.getOperand(0); 7286 // The values are now known to be -1 (false) or 1 (true). To convert this 7287 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7288 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7289 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7290 7291 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7292 7293 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7294 7295 if (Op.getValueType() != MVT::v4f64) 7296 Value = DAG.getNode(ISD::FP_ROUND, dl, 7297 Op.getValueType(), Value, 7298 DAG.getIntPtrConstant(1, dl)); 7299 return Value; 7300 } 7301 7302 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7303 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7304 return SDValue(); 7305 7306 if (Op.getOperand(0).getValueType() == MVT::i1) 7307 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7308 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7309 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7310 7311 // If we have direct moves, we can do all the conversion, skip the store/load 7312 // however, without FPCVT we can't do most conversions. 7313 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7314 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7315 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7316 7317 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7318 "UINT_TO_FP is supported only with FPCVT"); 7319 7320 // If we have FCFIDS, then use it when converting to single-precision. 7321 // Otherwise, convert to double-precision and then round. 7322 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7323 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7324 : PPCISD::FCFIDS) 7325 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7326 : PPCISD::FCFID); 7327 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7328 ? MVT::f32 7329 : MVT::f64; 7330 7331 if (Op.getOperand(0).getValueType() == MVT::i64) { 7332 SDValue SINT = Op.getOperand(0); 7333 // When converting to single-precision, we actually need to convert 7334 // to double-precision first and then round to single-precision. 7335 // To avoid double-rounding effects during that operation, we have 7336 // to prepare the input operand. Bits that might be truncated when 7337 // converting to double-precision are replaced by a bit that won't 7338 // be lost at this stage, but is below the single-precision rounding 7339 // position. 7340 // 7341 // However, if -enable-unsafe-fp-math is in effect, accept double 7342 // rounding to avoid the extra overhead. 7343 if (Op.getValueType() == MVT::f32 && 7344 !Subtarget.hasFPCVT() && 7345 !DAG.getTarget().Options.UnsafeFPMath) { 7346 7347 // Twiddle input to make sure the low 11 bits are zero. (If this 7348 // is the case, we are guaranteed the value will fit into the 53 bit 7349 // mantissa of an IEEE double-precision value without rounding.) 7350 // If any of those low 11 bits were not zero originally, make sure 7351 // bit 12 (value 2048) is set instead, so that the final rounding 7352 // to single-precision gets the correct result. 7353 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7354 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7355 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7356 Round, DAG.getConstant(2047, dl, MVT::i64)); 7357 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7358 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7359 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7360 7361 // However, we cannot use that value unconditionally: if the magnitude 7362 // of the input value is small, the bit-twiddling we did above might 7363 // end up visibly changing the output. Fortunately, in that case, we 7364 // don't need to twiddle bits since the original input will convert 7365 // exactly to double-precision floating-point already. Therefore, 7366 // construct a conditional to use the original value if the top 11 7367 // bits are all sign-bit copies, and use the rounded value computed 7368 // above otherwise. 7369 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7370 SINT, DAG.getConstant(53, dl, MVT::i32)); 7371 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7372 Cond, DAG.getConstant(1, dl, MVT::i64)); 7373 Cond = DAG.getSetCC(dl, MVT::i32, 7374 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7375 7376 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7377 } 7378 7379 ReuseLoadInfo RLI; 7380 SDValue Bits; 7381 7382 MachineFunction &MF = DAG.getMachineFunction(); 7383 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7384 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7385 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7386 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7387 } else if (Subtarget.hasLFIWAX() && 7388 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7389 MachineMemOperand *MMO = 7390 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7391 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7392 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7393 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7394 DAG.getVTList(MVT::f64, MVT::Other), 7395 Ops, MVT::i32, MMO); 7396 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7397 } else if (Subtarget.hasFPCVT() && 7398 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7399 MachineMemOperand *MMO = 7400 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7401 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7402 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7403 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7404 DAG.getVTList(MVT::f64, MVT::Other), 7405 Ops, MVT::i32, MMO); 7406 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7407 } else if (((Subtarget.hasLFIWAX() && 7408 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7409 (Subtarget.hasFPCVT() && 7410 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7411 SINT.getOperand(0).getValueType() == MVT::i32) { 7412 MachineFrameInfo &MFI = MF.getFrameInfo(); 7413 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7414 7415 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7416 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7417 7418 SDValue Store = 7419 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7420 MachinePointerInfo::getFixedStack( 7421 DAG.getMachineFunction(), FrameIdx)); 7422 7423 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7424 "Expected an i32 store"); 7425 7426 RLI.Ptr = FIdx; 7427 RLI.Chain = Store; 7428 RLI.MPI = 7429 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7430 RLI.Alignment = 4; 7431 7432 MachineMemOperand *MMO = 7433 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7434 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7435 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7436 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7437 PPCISD::LFIWZX : PPCISD::LFIWAX, 7438 dl, DAG.getVTList(MVT::f64, MVT::Other), 7439 Ops, MVT::i32, MMO); 7440 } else 7441 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7442 7443 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7444 7445 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7446 FP = DAG.getNode(ISD::FP_ROUND, dl, 7447 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7448 return FP; 7449 } 7450 7451 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7452 "Unhandled INT_TO_FP type in custom expander!"); 7453 // Since we only generate this in 64-bit mode, we can take advantage of 7454 // 64-bit registers. In particular, sign extend the input value into the 7455 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7456 // then lfd it and fcfid it. 7457 MachineFunction &MF = DAG.getMachineFunction(); 7458 MachineFrameInfo &MFI = MF.getFrameInfo(); 7459 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7460 7461 SDValue Ld; 7462 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7463 ReuseLoadInfo RLI; 7464 bool ReusingLoad; 7465 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7466 DAG))) { 7467 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7468 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7469 7470 SDValue Store = 7471 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7472 MachinePointerInfo::getFixedStack( 7473 DAG.getMachineFunction(), FrameIdx)); 7474 7475 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7476 "Expected an i32 store"); 7477 7478 RLI.Ptr = FIdx; 7479 RLI.Chain = Store; 7480 RLI.MPI = 7481 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7482 RLI.Alignment = 4; 7483 } 7484 7485 MachineMemOperand *MMO = 7486 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7487 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7488 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7489 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7490 PPCISD::LFIWZX : PPCISD::LFIWAX, 7491 dl, DAG.getVTList(MVT::f64, MVT::Other), 7492 Ops, MVT::i32, MMO); 7493 if (ReusingLoad) 7494 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7495 } else { 7496 assert(Subtarget.isPPC64() && 7497 "i32->FP without LFIWAX supported only on PPC64"); 7498 7499 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7500 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7501 7502 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7503 Op.getOperand(0)); 7504 7505 // STD the extended value into the stack slot. 7506 SDValue Store = DAG.getStore( 7507 DAG.getEntryNode(), dl, Ext64, FIdx, 7508 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7509 7510 // Load the value as a double. 7511 Ld = DAG.getLoad( 7512 MVT::f64, dl, Store, FIdx, 7513 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7514 } 7515 7516 // FCFID it and return it. 7517 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7518 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7519 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7520 DAG.getIntPtrConstant(0, dl)); 7521 return FP; 7522 } 7523 7524 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7525 SelectionDAG &DAG) const { 7526 SDLoc dl(Op); 7527 /* 7528 The rounding mode is in bits 30:31 of FPSR, and has the following 7529 settings: 7530 00 Round to nearest 7531 01 Round to 0 7532 10 Round to +inf 7533 11 Round to -inf 7534 7535 FLT_ROUNDS, on the other hand, expects the following: 7536 -1 Undefined 7537 0 Round to 0 7538 1 Round to nearest 7539 2 Round to +inf 7540 3 Round to -inf 7541 7542 To perform the conversion, we do: 7543 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7544 */ 7545 7546 MachineFunction &MF = DAG.getMachineFunction(); 7547 EVT VT = Op.getValueType(); 7548 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7549 7550 // Save FP Control Word to register 7551 EVT NodeTys[] = { 7552 MVT::f64, // return register 7553 MVT::Glue // unused in this context 7554 }; 7555 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7556 7557 // Save FP register to stack slot 7558 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7559 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7560 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7561 MachinePointerInfo()); 7562 7563 // Load FP Control Word from low 32 bits of stack slot. 7564 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7565 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7566 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7567 7568 // Transform as necessary 7569 SDValue CWD1 = 7570 DAG.getNode(ISD::AND, dl, MVT::i32, 7571 CWD, DAG.getConstant(3, dl, MVT::i32)); 7572 SDValue CWD2 = 7573 DAG.getNode(ISD::SRL, dl, MVT::i32, 7574 DAG.getNode(ISD::AND, dl, MVT::i32, 7575 DAG.getNode(ISD::XOR, dl, MVT::i32, 7576 CWD, DAG.getConstant(3, dl, MVT::i32)), 7577 DAG.getConstant(3, dl, MVT::i32)), 7578 DAG.getConstant(1, dl, MVT::i32)); 7579 7580 SDValue RetVal = 7581 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7582 7583 return DAG.getNode((VT.getSizeInBits() < 16 ? 7584 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7585 } 7586 7587 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7588 EVT VT = Op.getValueType(); 7589 unsigned BitWidth = VT.getSizeInBits(); 7590 SDLoc dl(Op); 7591 assert(Op.getNumOperands() == 3 && 7592 VT == Op.getOperand(1).getValueType() && 7593 "Unexpected SHL!"); 7594 7595 // Expand into a bunch of logical ops. Note that these ops 7596 // depend on the PPC behavior for oversized shift amounts. 7597 SDValue Lo = Op.getOperand(0); 7598 SDValue Hi = Op.getOperand(1); 7599 SDValue Amt = Op.getOperand(2); 7600 EVT AmtVT = Amt.getValueType(); 7601 7602 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7603 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7604 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7605 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7606 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7607 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7608 DAG.getConstant(-BitWidth, dl, AmtVT)); 7609 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7610 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7611 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7612 SDValue OutOps[] = { OutLo, OutHi }; 7613 return DAG.getMergeValues(OutOps, dl); 7614 } 7615 7616 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7617 EVT VT = Op.getValueType(); 7618 SDLoc dl(Op); 7619 unsigned BitWidth = VT.getSizeInBits(); 7620 assert(Op.getNumOperands() == 3 && 7621 VT == Op.getOperand(1).getValueType() && 7622 "Unexpected SRL!"); 7623 7624 // Expand into a bunch of logical ops. Note that these ops 7625 // depend on the PPC behavior for oversized shift amounts. 7626 SDValue Lo = Op.getOperand(0); 7627 SDValue Hi = Op.getOperand(1); 7628 SDValue Amt = Op.getOperand(2); 7629 EVT AmtVT = Amt.getValueType(); 7630 7631 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7632 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7633 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7634 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7635 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7636 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7637 DAG.getConstant(-BitWidth, dl, AmtVT)); 7638 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7639 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7640 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7641 SDValue OutOps[] = { OutLo, OutHi }; 7642 return DAG.getMergeValues(OutOps, dl); 7643 } 7644 7645 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7646 SDLoc dl(Op); 7647 EVT VT = Op.getValueType(); 7648 unsigned BitWidth = VT.getSizeInBits(); 7649 assert(Op.getNumOperands() == 3 && 7650 VT == Op.getOperand(1).getValueType() && 7651 "Unexpected SRA!"); 7652 7653 // Expand into a bunch of logical ops, followed by a select_cc. 7654 SDValue Lo = Op.getOperand(0); 7655 SDValue Hi = Op.getOperand(1); 7656 SDValue Amt = Op.getOperand(2); 7657 EVT AmtVT = Amt.getValueType(); 7658 7659 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7660 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7661 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7662 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7663 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7664 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7665 DAG.getConstant(-BitWidth, dl, AmtVT)); 7666 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7667 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7668 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7669 Tmp4, Tmp6, ISD::SETLE); 7670 SDValue OutOps[] = { OutLo, OutHi }; 7671 return DAG.getMergeValues(OutOps, dl); 7672 } 7673 7674 //===----------------------------------------------------------------------===// 7675 // Vector related lowering. 7676 // 7677 7678 /// BuildSplatI - Build a canonical splati of Val with an element size of 7679 /// SplatSize. Cast the result to VT. 7680 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7681 SelectionDAG &DAG, const SDLoc &dl) { 7682 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7683 7684 static const MVT VTys[] = { // canonical VT to use for each size. 7685 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7686 }; 7687 7688 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7689 7690 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7691 if (Val == -1) 7692 SplatSize = 1; 7693 7694 EVT CanonicalVT = VTys[SplatSize-1]; 7695 7696 // Build a canonical splat for this value. 7697 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7698 } 7699 7700 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7701 /// specified intrinsic ID. 7702 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7703 const SDLoc &dl, EVT DestVT = MVT::Other) { 7704 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7705 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7706 DAG.getConstant(IID, dl, MVT::i32), Op); 7707 } 7708 7709 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7710 /// specified intrinsic ID. 7711 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7712 SelectionDAG &DAG, const SDLoc &dl, 7713 EVT DestVT = MVT::Other) { 7714 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7715 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7716 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7717 } 7718 7719 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7720 /// specified intrinsic ID. 7721 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7722 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7723 EVT DestVT = MVT::Other) { 7724 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7725 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7726 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7727 } 7728 7729 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7730 /// amount. The result has the specified value type. 7731 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7732 SelectionDAG &DAG, const SDLoc &dl) { 7733 // Force LHS/RHS to be the right type. 7734 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7735 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7736 7737 int Ops[16]; 7738 for (unsigned i = 0; i != 16; ++i) 7739 Ops[i] = i + Amt; 7740 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7741 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7742 } 7743 7744 /// Do we have an efficient pattern in a .td file for this node? 7745 /// 7746 /// \param V - pointer to the BuildVectorSDNode being matched 7747 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7748 /// 7749 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7750 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7751 /// the opposite is true (expansion is beneficial) are: 7752 /// - The node builds a vector out of integers that are not 32 or 64-bits 7753 /// - The node builds a vector out of constants 7754 /// - The node is a "load-and-splat" 7755 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7756 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7757 bool HasDirectMove, 7758 bool HasP8Vector) { 7759 EVT VecVT = V->getValueType(0); 7760 bool RightType = VecVT == MVT::v2f64 || 7761 (HasP8Vector && VecVT == MVT::v4f32) || 7762 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7763 if (!RightType) 7764 return false; 7765 7766 bool IsSplat = true; 7767 bool IsLoad = false; 7768 SDValue Op0 = V->getOperand(0); 7769 7770 // This function is called in a block that confirms the node is not a constant 7771 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7772 // different constants. 7773 if (V->isConstant()) 7774 return false; 7775 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7776 if (V->getOperand(i).isUndef()) 7777 return false; 7778 // We want to expand nodes that represent load-and-splat even if the 7779 // loaded value is a floating point truncation or conversion to int. 7780 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7781 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7782 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7783 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7784 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7785 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7786 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7787 IsLoad = true; 7788 // If the operands are different or the input is not a load and has more 7789 // uses than just this BV node, then it isn't a splat. 7790 if (V->getOperand(i) != Op0 || 7791 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7792 IsSplat = false; 7793 } 7794 return !(IsSplat && IsLoad); 7795 } 7796 7797 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 7798 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 7799 7800 SDLoc dl(Op); 7801 SDValue Op0 = Op->getOperand(0); 7802 7803 if (!EnableQuadPrecision || 7804 (Op.getValueType() != MVT::f128 ) || 7805 (Op0.getOpcode() != ISD::BUILD_PAIR) || 7806 (Op0.getOperand(0).getValueType() != MVT::i64) || 7807 (Op0.getOperand(1).getValueType() != MVT::i64)) 7808 return SDValue(); 7809 7810 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 7811 Op0.getOperand(1)); 7812 } 7813 7814 // If this is a case we can't handle, return null and let the default 7815 // expansion code take care of it. If we CAN select this case, and if it 7816 // selects to a single instruction, return Op. Otherwise, if we can codegen 7817 // this case more efficiently than a constant pool load, lower it to the 7818 // sequence of ops that should be used. 7819 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7820 SelectionDAG &DAG) const { 7821 SDLoc dl(Op); 7822 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7823 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7824 7825 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7826 // We first build an i32 vector, load it into a QPX register, 7827 // then convert it to a floating-point vector and compare it 7828 // to a zero vector to get the boolean result. 7829 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7830 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7831 MachinePointerInfo PtrInfo = 7832 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7833 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7834 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7835 7836 assert(BVN->getNumOperands() == 4 && 7837 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7838 7839 bool IsConst = true; 7840 for (unsigned i = 0; i < 4; ++i) { 7841 if (BVN->getOperand(i).isUndef()) continue; 7842 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7843 IsConst = false; 7844 break; 7845 } 7846 } 7847 7848 if (IsConst) { 7849 Constant *One = 7850 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7851 Constant *NegOne = 7852 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7853 7854 Constant *CV[4]; 7855 for (unsigned i = 0; i < 4; ++i) { 7856 if (BVN->getOperand(i).isUndef()) 7857 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7858 else if (isNullConstant(BVN->getOperand(i))) 7859 CV[i] = NegOne; 7860 else 7861 CV[i] = One; 7862 } 7863 7864 Constant *CP = ConstantVector::get(CV); 7865 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7866 16 /* alignment */); 7867 7868 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7869 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7870 return DAG.getMemIntrinsicNode( 7871 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7872 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7873 } 7874 7875 SmallVector<SDValue, 4> Stores; 7876 for (unsigned i = 0; i < 4; ++i) { 7877 if (BVN->getOperand(i).isUndef()) continue; 7878 7879 unsigned Offset = 4*i; 7880 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7881 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7882 7883 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7884 if (StoreSize > 4) { 7885 Stores.push_back( 7886 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7887 PtrInfo.getWithOffset(Offset), MVT::i32)); 7888 } else { 7889 SDValue StoreValue = BVN->getOperand(i); 7890 if (StoreSize < 4) 7891 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7892 7893 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7894 PtrInfo.getWithOffset(Offset))); 7895 } 7896 } 7897 7898 SDValue StoreChain; 7899 if (!Stores.empty()) 7900 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7901 else 7902 StoreChain = DAG.getEntryNode(); 7903 7904 // Now load from v4i32 into the QPX register; this will extend it to 7905 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7906 // is typed as v4f64 because the QPX register integer states are not 7907 // explicitly represented. 7908 7909 SDValue Ops[] = {StoreChain, 7910 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7911 FIdx}; 7912 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7913 7914 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7915 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7916 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7917 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7918 LoadedVect); 7919 7920 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7921 7922 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7923 } 7924 7925 // All other QPX vectors are handled by generic code. 7926 if (Subtarget.hasQPX()) 7927 return SDValue(); 7928 7929 // Check if this is a splat of a constant value. 7930 APInt APSplatBits, APSplatUndef; 7931 unsigned SplatBitSize; 7932 bool HasAnyUndefs; 7933 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7934 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7935 SplatBitSize > 32) { 7936 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7937 // lowered to VSX instructions under certain conditions. 7938 // Without VSX, there is no pattern more efficient than expanding the node. 7939 if (Subtarget.hasVSX() && 7940 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 7941 Subtarget.hasP8Vector())) 7942 return Op; 7943 return SDValue(); 7944 } 7945 7946 unsigned SplatBits = APSplatBits.getZExtValue(); 7947 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7948 unsigned SplatSize = SplatBitSize / 8; 7949 7950 // First, handle single instruction cases. 7951 7952 // All zeros? 7953 if (SplatBits == 0) { 7954 // Canonicalize all zero vectors to be v4i32. 7955 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7956 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7957 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7958 } 7959 return Op; 7960 } 7961 7962 // We have XXSPLTIB for constant splats one byte wide 7963 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7964 // This is a splat of 1-byte elements with some elements potentially undef. 7965 // Rather than trying to match undef in the SDAG patterns, ensure that all 7966 // elements are the same constant. 7967 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7968 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7969 dl, MVT::i32)); 7970 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7971 if (Op.getValueType() != MVT::v16i8) 7972 return DAG.getBitcast(Op.getValueType(), NewBV); 7973 return NewBV; 7974 } 7975 7976 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 7977 // detect that constant splats like v8i16: 0xABAB are really just splats 7978 // of a 1-byte constant. In this case, we need to convert the node to a 7979 // splat of v16i8 and a bitcast. 7980 if (Op.getValueType() != MVT::v16i8) 7981 return DAG.getBitcast(Op.getValueType(), 7982 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 7983 7984 return Op; 7985 } 7986 7987 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7988 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7989 (32-SplatBitSize)); 7990 if (SextVal >= -16 && SextVal <= 15) 7991 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7992 7993 // Two instruction sequences. 7994 7995 // If this value is in the range [-32,30] and is even, use: 7996 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7997 // If this value is in the range [17,31] and is odd, use: 7998 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7999 // If this value is in the range [-31,-17] and is odd, use: 8000 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8001 // Note the last two are three-instruction sequences. 8002 if (SextVal >= -32 && SextVal <= 31) { 8003 // To avoid having these optimizations undone by constant folding, 8004 // we convert to a pseudo that will be expanded later into one of 8005 // the above forms. 8006 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8007 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8008 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8009 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8010 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8011 if (VT == Op.getValueType()) 8012 return RetVal; 8013 else 8014 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8015 } 8016 8017 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8018 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8019 // for fneg/fabs. 8020 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8021 // Make -1 and vspltisw -1: 8022 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8023 8024 // Make the VSLW intrinsic, computing 0x8000_0000. 8025 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8026 OnesV, DAG, dl); 8027 8028 // xor by OnesV to invert it. 8029 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8030 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8031 } 8032 8033 // Check to see if this is a wide variety of vsplti*, binop self cases. 8034 static const signed char SplatCsts[] = { 8035 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8036 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8037 }; 8038 8039 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8040 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8041 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8042 int i = SplatCsts[idx]; 8043 8044 // Figure out what shift amount will be used by altivec if shifted by i in 8045 // this splat size. 8046 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8047 8048 // vsplti + shl self. 8049 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8050 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8051 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8052 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8053 Intrinsic::ppc_altivec_vslw 8054 }; 8055 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8056 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8057 } 8058 8059 // vsplti + srl self. 8060 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8061 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8062 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8063 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8064 Intrinsic::ppc_altivec_vsrw 8065 }; 8066 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8067 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8068 } 8069 8070 // vsplti + sra self. 8071 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8072 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8073 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8074 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8075 Intrinsic::ppc_altivec_vsraw 8076 }; 8077 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8078 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8079 } 8080 8081 // vsplti + rol self. 8082 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8083 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8084 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8085 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8086 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8087 Intrinsic::ppc_altivec_vrlw 8088 }; 8089 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8090 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8091 } 8092 8093 // t = vsplti c, result = vsldoi t, t, 1 8094 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8095 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8096 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8097 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8098 } 8099 // t = vsplti c, result = vsldoi t, t, 2 8100 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8101 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8102 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8103 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8104 } 8105 // t = vsplti c, result = vsldoi t, t, 3 8106 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8107 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8108 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8109 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8110 } 8111 } 8112 8113 return SDValue(); 8114 } 8115 8116 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8117 /// the specified operations to build the shuffle. 8118 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8119 SDValue RHS, SelectionDAG &DAG, 8120 const SDLoc &dl) { 8121 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8122 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8123 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8124 8125 enum { 8126 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8127 OP_VMRGHW, 8128 OP_VMRGLW, 8129 OP_VSPLTISW0, 8130 OP_VSPLTISW1, 8131 OP_VSPLTISW2, 8132 OP_VSPLTISW3, 8133 OP_VSLDOI4, 8134 OP_VSLDOI8, 8135 OP_VSLDOI12 8136 }; 8137 8138 if (OpNum == OP_COPY) { 8139 if (LHSID == (1*9+2)*9+3) return LHS; 8140 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8141 return RHS; 8142 } 8143 8144 SDValue OpLHS, OpRHS; 8145 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8146 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8147 8148 int ShufIdxs[16]; 8149 switch (OpNum) { 8150 default: llvm_unreachable("Unknown i32 permute!"); 8151 case OP_VMRGHW: 8152 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8153 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8154 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8155 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8156 break; 8157 case OP_VMRGLW: 8158 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8159 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8160 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8161 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8162 break; 8163 case OP_VSPLTISW0: 8164 for (unsigned i = 0; i != 16; ++i) 8165 ShufIdxs[i] = (i&3)+0; 8166 break; 8167 case OP_VSPLTISW1: 8168 for (unsigned i = 0; i != 16; ++i) 8169 ShufIdxs[i] = (i&3)+4; 8170 break; 8171 case OP_VSPLTISW2: 8172 for (unsigned i = 0; i != 16; ++i) 8173 ShufIdxs[i] = (i&3)+8; 8174 break; 8175 case OP_VSPLTISW3: 8176 for (unsigned i = 0; i != 16; ++i) 8177 ShufIdxs[i] = (i&3)+12; 8178 break; 8179 case OP_VSLDOI4: 8180 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8181 case OP_VSLDOI8: 8182 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8183 case OP_VSLDOI12: 8184 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8185 } 8186 EVT VT = OpLHS.getValueType(); 8187 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8188 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8189 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8190 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8191 } 8192 8193 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8194 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8195 /// SDValue. 8196 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8197 SelectionDAG &DAG) const { 8198 const unsigned BytesInVector = 16; 8199 bool IsLE = Subtarget.isLittleEndian(); 8200 SDLoc dl(N); 8201 SDValue V1 = N->getOperand(0); 8202 SDValue V2 = N->getOperand(1); 8203 unsigned ShiftElts = 0, InsertAtByte = 0; 8204 bool Swap = false; 8205 8206 // Shifts required to get the byte we want at element 7. 8207 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8208 0, 15, 14, 13, 12, 11, 10, 9}; 8209 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8210 1, 2, 3, 4, 5, 6, 7, 8}; 8211 8212 ArrayRef<int> Mask = N->getMask(); 8213 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8214 8215 // For each mask element, find out if we're just inserting something 8216 // from V2 into V1 or vice versa. 8217 // Possible permutations inserting an element from V2 into V1: 8218 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8219 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8220 // ... 8221 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8222 // Inserting from V1 into V2 will be similar, except mask range will be 8223 // [16,31]. 8224 8225 bool FoundCandidate = false; 8226 // If both vector operands for the shuffle are the same vector, the mask 8227 // will contain only elements from the first one and the second one will be 8228 // undef. 8229 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8230 // Go through the mask of half-words to find an element that's being moved 8231 // from one vector to the other. 8232 for (unsigned i = 0; i < BytesInVector; ++i) { 8233 unsigned CurrentElement = Mask[i]; 8234 // If 2nd operand is undefined, we should only look for element 7 in the 8235 // Mask. 8236 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8237 continue; 8238 8239 bool OtherElementsInOrder = true; 8240 // Examine the other elements in the Mask to see if they're in original 8241 // order. 8242 for (unsigned j = 0; j < BytesInVector; ++j) { 8243 if (j == i) 8244 continue; 8245 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8246 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8247 // in which we always assume we're always picking from the 1st operand. 8248 int MaskOffset = 8249 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8250 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8251 OtherElementsInOrder = false; 8252 break; 8253 } 8254 } 8255 // If other elements are in original order, we record the number of shifts 8256 // we need to get the element we want into element 7. Also record which byte 8257 // in the vector we should insert into. 8258 if (OtherElementsInOrder) { 8259 // If 2nd operand is undefined, we assume no shifts and no swapping. 8260 if (V2.isUndef()) { 8261 ShiftElts = 0; 8262 Swap = false; 8263 } else { 8264 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8265 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8266 : BigEndianShifts[CurrentElement & 0xF]; 8267 Swap = CurrentElement < BytesInVector; 8268 } 8269 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8270 FoundCandidate = true; 8271 break; 8272 } 8273 } 8274 8275 if (!FoundCandidate) 8276 return SDValue(); 8277 8278 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8279 // optionally with VECSHL if shift is required. 8280 if (Swap) 8281 std::swap(V1, V2); 8282 if (V2.isUndef()) 8283 V2 = V1; 8284 if (ShiftElts) { 8285 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8286 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8287 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8288 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8289 } 8290 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8291 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8292 } 8293 8294 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8295 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8296 /// SDValue. 8297 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8298 SelectionDAG &DAG) const { 8299 const unsigned NumHalfWords = 8; 8300 const unsigned BytesInVector = NumHalfWords * 2; 8301 // Check that the shuffle is on half-words. 8302 if (!isNByteElemShuffleMask(N, 2, 1)) 8303 return SDValue(); 8304 8305 bool IsLE = Subtarget.isLittleEndian(); 8306 SDLoc dl(N); 8307 SDValue V1 = N->getOperand(0); 8308 SDValue V2 = N->getOperand(1); 8309 unsigned ShiftElts = 0, InsertAtByte = 0; 8310 bool Swap = false; 8311 8312 // Shifts required to get the half-word we want at element 3. 8313 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8314 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8315 8316 uint32_t Mask = 0; 8317 uint32_t OriginalOrderLow = 0x1234567; 8318 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8319 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8320 // 32-bit space, only need 4-bit nibbles per element. 8321 for (unsigned i = 0; i < NumHalfWords; ++i) { 8322 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8323 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8324 } 8325 8326 // For each mask element, find out if we're just inserting something 8327 // from V2 into V1 or vice versa. Possible permutations inserting an element 8328 // from V2 into V1: 8329 // X, 1, 2, 3, 4, 5, 6, 7 8330 // 0, X, 2, 3, 4, 5, 6, 7 8331 // 0, 1, X, 3, 4, 5, 6, 7 8332 // 0, 1, 2, X, 4, 5, 6, 7 8333 // 0, 1, 2, 3, X, 5, 6, 7 8334 // 0, 1, 2, 3, 4, X, 6, 7 8335 // 0, 1, 2, 3, 4, 5, X, 7 8336 // 0, 1, 2, 3, 4, 5, 6, X 8337 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8338 8339 bool FoundCandidate = false; 8340 // Go through the mask of half-words to find an element that's being moved 8341 // from one vector to the other. 8342 for (unsigned i = 0; i < NumHalfWords; ++i) { 8343 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8344 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8345 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8346 uint32_t TargetOrder = 0x0; 8347 8348 // If both vector operands for the shuffle are the same vector, the mask 8349 // will contain only elements from the first one and the second one will be 8350 // undef. 8351 if (V2.isUndef()) { 8352 ShiftElts = 0; 8353 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8354 TargetOrder = OriginalOrderLow; 8355 Swap = false; 8356 // Skip if not the correct element or mask of other elements don't equal 8357 // to our expected order. 8358 if (MaskOneElt == VINSERTHSrcElem && 8359 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8360 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8361 FoundCandidate = true; 8362 break; 8363 } 8364 } else { // If both operands are defined. 8365 // Target order is [8,15] if the current mask is between [0,7]. 8366 TargetOrder = 8367 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8368 // Skip if mask of other elements don't equal our expected order. 8369 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8370 // We only need the last 3 bits for the number of shifts. 8371 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8372 : BigEndianShifts[MaskOneElt & 0x7]; 8373 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8374 Swap = MaskOneElt < NumHalfWords; 8375 FoundCandidate = true; 8376 break; 8377 } 8378 } 8379 } 8380 8381 if (!FoundCandidate) 8382 return SDValue(); 8383 8384 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8385 // optionally with VECSHL if shift is required. 8386 if (Swap) 8387 std::swap(V1, V2); 8388 if (V2.isUndef()) 8389 V2 = V1; 8390 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8391 if (ShiftElts) { 8392 // Double ShiftElts because we're left shifting on v16i8 type. 8393 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8394 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8395 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8396 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8397 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8398 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8399 } 8400 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8401 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8402 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8403 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8404 } 8405 8406 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8407 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8408 /// return the code it can be lowered into. Worst case, it can always be 8409 /// lowered into a vperm. 8410 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8411 SelectionDAG &DAG) const { 8412 SDLoc dl(Op); 8413 SDValue V1 = Op.getOperand(0); 8414 SDValue V2 = Op.getOperand(1); 8415 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8416 EVT VT = Op.getValueType(); 8417 bool isLittleEndian = Subtarget.isLittleEndian(); 8418 8419 unsigned ShiftElts, InsertAtByte; 8420 bool Swap = false; 8421 if (Subtarget.hasP9Vector() && 8422 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8423 isLittleEndian)) { 8424 if (Swap) 8425 std::swap(V1, V2); 8426 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8427 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8428 if (ShiftElts) { 8429 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8430 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8431 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8432 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8433 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8434 } 8435 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8436 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8437 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8438 } 8439 8440 if (Subtarget.hasP9Altivec()) { 8441 SDValue NewISDNode; 8442 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8443 return NewISDNode; 8444 8445 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8446 return NewISDNode; 8447 } 8448 8449 if (Subtarget.hasVSX() && 8450 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8451 if (Swap) 8452 std::swap(V1, V2); 8453 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8454 SDValue Conv2 = 8455 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8456 8457 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8458 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8459 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8460 } 8461 8462 if (Subtarget.hasVSX() && 8463 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8464 if (Swap) 8465 std::swap(V1, V2); 8466 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8467 SDValue Conv2 = 8468 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8469 8470 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8471 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8472 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8473 } 8474 8475 if (Subtarget.hasP9Vector()) { 8476 if (PPC::isXXBRHShuffleMask(SVOp)) { 8477 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8478 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8479 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8480 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8481 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8482 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8483 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8484 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8485 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8486 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8487 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8488 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8489 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8490 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8491 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8492 } 8493 } 8494 8495 if (Subtarget.hasVSX()) { 8496 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8497 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8498 8499 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8500 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8501 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8502 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8503 } 8504 8505 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8506 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8507 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8508 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8509 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8510 } 8511 } 8512 8513 if (Subtarget.hasQPX()) { 8514 if (VT.getVectorNumElements() != 4) 8515 return SDValue(); 8516 8517 if (V2.isUndef()) V2 = V1; 8518 8519 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8520 if (AlignIdx != -1) { 8521 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8522 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8523 } else if (SVOp->isSplat()) { 8524 int SplatIdx = SVOp->getSplatIndex(); 8525 if (SplatIdx >= 4) { 8526 std::swap(V1, V2); 8527 SplatIdx -= 4; 8528 } 8529 8530 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8531 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8532 } 8533 8534 // Lower this into a qvgpci/qvfperm pair. 8535 8536 // Compute the qvgpci literal 8537 unsigned idx = 0; 8538 for (unsigned i = 0; i < 4; ++i) { 8539 int m = SVOp->getMaskElt(i); 8540 unsigned mm = m >= 0 ? (unsigned) m : i; 8541 idx |= mm << (3-i)*3; 8542 } 8543 8544 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8545 DAG.getConstant(idx, dl, MVT::i32)); 8546 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8547 } 8548 8549 // Cases that are handled by instructions that take permute immediates 8550 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8551 // selected by the instruction selector. 8552 if (V2.isUndef()) { 8553 if (PPC::isSplatShuffleMask(SVOp, 1) || 8554 PPC::isSplatShuffleMask(SVOp, 2) || 8555 PPC::isSplatShuffleMask(SVOp, 4) || 8556 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8557 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8558 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8559 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8560 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8561 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8562 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8563 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8564 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8565 (Subtarget.hasP8Altivec() && ( 8566 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8567 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8568 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8569 return Op; 8570 } 8571 } 8572 8573 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8574 // and produce a fixed permutation. If any of these match, do not lower to 8575 // VPERM. 8576 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8577 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8578 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8579 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8580 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8581 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8582 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8583 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8584 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8585 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8586 (Subtarget.hasP8Altivec() && ( 8587 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8588 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8589 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8590 return Op; 8591 8592 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8593 // perfect shuffle table to emit an optimal matching sequence. 8594 ArrayRef<int> PermMask = SVOp->getMask(); 8595 8596 unsigned PFIndexes[4]; 8597 bool isFourElementShuffle = true; 8598 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8599 unsigned EltNo = 8; // Start out undef. 8600 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8601 if (PermMask[i*4+j] < 0) 8602 continue; // Undef, ignore it. 8603 8604 unsigned ByteSource = PermMask[i*4+j]; 8605 if ((ByteSource & 3) != j) { 8606 isFourElementShuffle = false; 8607 break; 8608 } 8609 8610 if (EltNo == 8) { 8611 EltNo = ByteSource/4; 8612 } else if (EltNo != ByteSource/4) { 8613 isFourElementShuffle = false; 8614 break; 8615 } 8616 } 8617 PFIndexes[i] = EltNo; 8618 } 8619 8620 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8621 // perfect shuffle vector to determine if it is cost effective to do this as 8622 // discrete instructions, or whether we should use a vperm. 8623 // For now, we skip this for little endian until such time as we have a 8624 // little-endian perfect shuffle table. 8625 if (isFourElementShuffle && !isLittleEndian) { 8626 // Compute the index in the perfect shuffle table. 8627 unsigned PFTableIndex = 8628 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8629 8630 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8631 unsigned Cost = (PFEntry >> 30); 8632 8633 // Determining when to avoid vperm is tricky. Many things affect the cost 8634 // of vperm, particularly how many times the perm mask needs to be computed. 8635 // For example, if the perm mask can be hoisted out of a loop or is already 8636 // used (perhaps because there are multiple permutes with the same shuffle 8637 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8638 // the loop requires an extra register. 8639 // 8640 // As a compromise, we only emit discrete instructions if the shuffle can be 8641 // generated in 3 or fewer operations. When we have loop information 8642 // available, if this block is within a loop, we should avoid using vperm 8643 // for 3-operation perms and use a constant pool load instead. 8644 if (Cost < 3) 8645 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8646 } 8647 8648 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8649 // vector that will get spilled to the constant pool. 8650 if (V2.isUndef()) V2 = V1; 8651 8652 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8653 // that it is in input element units, not in bytes. Convert now. 8654 8655 // For little endian, the order of the input vectors is reversed, and 8656 // the permutation mask is complemented with respect to 31. This is 8657 // necessary to produce proper semantics with the big-endian-biased vperm 8658 // instruction. 8659 EVT EltVT = V1.getValueType().getVectorElementType(); 8660 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8661 8662 SmallVector<SDValue, 16> ResultMask; 8663 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8664 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8665 8666 for (unsigned j = 0; j != BytesPerElement; ++j) 8667 if (isLittleEndian) 8668 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8669 dl, MVT::i32)); 8670 else 8671 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8672 MVT::i32)); 8673 } 8674 8675 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8676 if (isLittleEndian) 8677 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8678 V2, V1, VPermMask); 8679 else 8680 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8681 V1, V2, VPermMask); 8682 } 8683 8684 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8685 /// vector comparison. If it is, return true and fill in Opc/isDot with 8686 /// information about the intrinsic. 8687 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8688 bool &isDot, const PPCSubtarget &Subtarget) { 8689 unsigned IntrinsicID = 8690 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8691 CompareOpc = -1; 8692 isDot = false; 8693 switch (IntrinsicID) { 8694 default: 8695 return false; 8696 // Comparison predicates. 8697 case Intrinsic::ppc_altivec_vcmpbfp_p: 8698 CompareOpc = 966; 8699 isDot = true; 8700 break; 8701 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8702 CompareOpc = 198; 8703 isDot = true; 8704 break; 8705 case Intrinsic::ppc_altivec_vcmpequb_p: 8706 CompareOpc = 6; 8707 isDot = true; 8708 break; 8709 case Intrinsic::ppc_altivec_vcmpequh_p: 8710 CompareOpc = 70; 8711 isDot = true; 8712 break; 8713 case Intrinsic::ppc_altivec_vcmpequw_p: 8714 CompareOpc = 134; 8715 isDot = true; 8716 break; 8717 case Intrinsic::ppc_altivec_vcmpequd_p: 8718 if (Subtarget.hasP8Altivec()) { 8719 CompareOpc = 199; 8720 isDot = true; 8721 } else 8722 return false; 8723 break; 8724 case Intrinsic::ppc_altivec_vcmpneb_p: 8725 case Intrinsic::ppc_altivec_vcmpneh_p: 8726 case Intrinsic::ppc_altivec_vcmpnew_p: 8727 case Intrinsic::ppc_altivec_vcmpnezb_p: 8728 case Intrinsic::ppc_altivec_vcmpnezh_p: 8729 case Intrinsic::ppc_altivec_vcmpnezw_p: 8730 if (Subtarget.hasP9Altivec()) { 8731 switch (IntrinsicID) { 8732 default: 8733 llvm_unreachable("Unknown comparison intrinsic."); 8734 case Intrinsic::ppc_altivec_vcmpneb_p: 8735 CompareOpc = 7; 8736 break; 8737 case Intrinsic::ppc_altivec_vcmpneh_p: 8738 CompareOpc = 71; 8739 break; 8740 case Intrinsic::ppc_altivec_vcmpnew_p: 8741 CompareOpc = 135; 8742 break; 8743 case Intrinsic::ppc_altivec_vcmpnezb_p: 8744 CompareOpc = 263; 8745 break; 8746 case Intrinsic::ppc_altivec_vcmpnezh_p: 8747 CompareOpc = 327; 8748 break; 8749 case Intrinsic::ppc_altivec_vcmpnezw_p: 8750 CompareOpc = 391; 8751 break; 8752 } 8753 isDot = true; 8754 } else 8755 return false; 8756 break; 8757 case Intrinsic::ppc_altivec_vcmpgefp_p: 8758 CompareOpc = 454; 8759 isDot = true; 8760 break; 8761 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8762 CompareOpc = 710; 8763 isDot = true; 8764 break; 8765 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8766 CompareOpc = 774; 8767 isDot = true; 8768 break; 8769 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8770 CompareOpc = 838; 8771 isDot = true; 8772 break; 8773 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8774 CompareOpc = 902; 8775 isDot = true; 8776 break; 8777 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8778 if (Subtarget.hasP8Altivec()) { 8779 CompareOpc = 967; 8780 isDot = true; 8781 } else 8782 return false; 8783 break; 8784 case Intrinsic::ppc_altivec_vcmpgtub_p: 8785 CompareOpc = 518; 8786 isDot = true; 8787 break; 8788 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8789 CompareOpc = 582; 8790 isDot = true; 8791 break; 8792 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8793 CompareOpc = 646; 8794 isDot = true; 8795 break; 8796 case Intrinsic::ppc_altivec_vcmpgtud_p: 8797 if (Subtarget.hasP8Altivec()) { 8798 CompareOpc = 711; 8799 isDot = true; 8800 } else 8801 return false; 8802 break; 8803 8804 // VSX predicate comparisons use the same infrastructure 8805 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8806 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8807 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8808 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8809 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8810 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8811 if (Subtarget.hasVSX()) { 8812 switch (IntrinsicID) { 8813 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8814 CompareOpc = 99; 8815 break; 8816 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8817 CompareOpc = 115; 8818 break; 8819 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8820 CompareOpc = 107; 8821 break; 8822 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8823 CompareOpc = 67; 8824 break; 8825 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8826 CompareOpc = 83; 8827 break; 8828 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8829 CompareOpc = 75; 8830 break; 8831 } 8832 isDot = true; 8833 } else 8834 return false; 8835 break; 8836 8837 // Normal Comparisons. 8838 case Intrinsic::ppc_altivec_vcmpbfp: 8839 CompareOpc = 966; 8840 break; 8841 case Intrinsic::ppc_altivec_vcmpeqfp: 8842 CompareOpc = 198; 8843 break; 8844 case Intrinsic::ppc_altivec_vcmpequb: 8845 CompareOpc = 6; 8846 break; 8847 case Intrinsic::ppc_altivec_vcmpequh: 8848 CompareOpc = 70; 8849 break; 8850 case Intrinsic::ppc_altivec_vcmpequw: 8851 CompareOpc = 134; 8852 break; 8853 case Intrinsic::ppc_altivec_vcmpequd: 8854 if (Subtarget.hasP8Altivec()) 8855 CompareOpc = 199; 8856 else 8857 return false; 8858 break; 8859 case Intrinsic::ppc_altivec_vcmpneb: 8860 case Intrinsic::ppc_altivec_vcmpneh: 8861 case Intrinsic::ppc_altivec_vcmpnew: 8862 case Intrinsic::ppc_altivec_vcmpnezb: 8863 case Intrinsic::ppc_altivec_vcmpnezh: 8864 case Intrinsic::ppc_altivec_vcmpnezw: 8865 if (Subtarget.hasP9Altivec()) 8866 switch (IntrinsicID) { 8867 default: 8868 llvm_unreachable("Unknown comparison intrinsic."); 8869 case Intrinsic::ppc_altivec_vcmpneb: 8870 CompareOpc = 7; 8871 break; 8872 case Intrinsic::ppc_altivec_vcmpneh: 8873 CompareOpc = 71; 8874 break; 8875 case Intrinsic::ppc_altivec_vcmpnew: 8876 CompareOpc = 135; 8877 break; 8878 case Intrinsic::ppc_altivec_vcmpnezb: 8879 CompareOpc = 263; 8880 break; 8881 case Intrinsic::ppc_altivec_vcmpnezh: 8882 CompareOpc = 327; 8883 break; 8884 case Intrinsic::ppc_altivec_vcmpnezw: 8885 CompareOpc = 391; 8886 break; 8887 } 8888 else 8889 return false; 8890 break; 8891 case Intrinsic::ppc_altivec_vcmpgefp: 8892 CompareOpc = 454; 8893 break; 8894 case Intrinsic::ppc_altivec_vcmpgtfp: 8895 CompareOpc = 710; 8896 break; 8897 case Intrinsic::ppc_altivec_vcmpgtsb: 8898 CompareOpc = 774; 8899 break; 8900 case Intrinsic::ppc_altivec_vcmpgtsh: 8901 CompareOpc = 838; 8902 break; 8903 case Intrinsic::ppc_altivec_vcmpgtsw: 8904 CompareOpc = 902; 8905 break; 8906 case Intrinsic::ppc_altivec_vcmpgtsd: 8907 if (Subtarget.hasP8Altivec()) 8908 CompareOpc = 967; 8909 else 8910 return false; 8911 break; 8912 case Intrinsic::ppc_altivec_vcmpgtub: 8913 CompareOpc = 518; 8914 break; 8915 case Intrinsic::ppc_altivec_vcmpgtuh: 8916 CompareOpc = 582; 8917 break; 8918 case Intrinsic::ppc_altivec_vcmpgtuw: 8919 CompareOpc = 646; 8920 break; 8921 case Intrinsic::ppc_altivec_vcmpgtud: 8922 if (Subtarget.hasP8Altivec()) 8923 CompareOpc = 711; 8924 else 8925 return false; 8926 break; 8927 } 8928 return true; 8929 } 8930 8931 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8932 /// lower, do it, otherwise return null. 8933 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8934 SelectionDAG &DAG) const { 8935 unsigned IntrinsicID = 8936 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8937 8938 SDLoc dl(Op); 8939 8940 if (IntrinsicID == Intrinsic::thread_pointer) { 8941 // Reads the thread pointer register, used for __builtin_thread_pointer. 8942 if (Subtarget.isPPC64()) 8943 return DAG.getRegister(PPC::X13, MVT::i64); 8944 return DAG.getRegister(PPC::R2, MVT::i32); 8945 } 8946 8947 // We are looking for absolute values here. 8948 // The idea is to try to fit one of two patterns: 8949 // max (a, (0-a)) OR max ((0-a), a) 8950 if (Subtarget.hasP9Vector() && 8951 (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw || 8952 IntrinsicID == Intrinsic::ppc_altivec_vmaxsh || 8953 IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) { 8954 SDValue V1 = Op.getOperand(1); 8955 SDValue V2 = Op.getOperand(2); 8956 if (V1.getSimpleValueType() == V2.getSimpleValueType() && 8957 (V1.getSimpleValueType() == MVT::v4i32 || 8958 V1.getSimpleValueType() == MVT::v8i16 || 8959 V1.getSimpleValueType() == MVT::v16i8)) { 8960 if ( V1.getOpcode() == ISD::SUB && 8961 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 8962 V1.getOperand(1) == V2 ) { 8963 // Generate the abs instruction with the operands 8964 return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2); 8965 } 8966 8967 if ( V2.getOpcode() == ISD::SUB && 8968 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 8969 V2.getOperand(1) == V1 ) { 8970 // Generate the abs instruction with the operands 8971 return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1); 8972 } 8973 } 8974 } 8975 8976 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8977 // opcode number of the comparison. 8978 int CompareOpc; 8979 bool isDot; 8980 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8981 return SDValue(); // Don't custom lower most intrinsics. 8982 8983 // If this is a non-dot comparison, make the VCMP node and we are done. 8984 if (!isDot) { 8985 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8986 Op.getOperand(1), Op.getOperand(2), 8987 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8988 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8989 } 8990 8991 // Create the PPCISD altivec 'dot' comparison node. 8992 SDValue Ops[] = { 8993 Op.getOperand(2), // LHS 8994 Op.getOperand(3), // RHS 8995 DAG.getConstant(CompareOpc, dl, MVT::i32) 8996 }; 8997 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8998 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8999 9000 // Now that we have the comparison, emit a copy from the CR to a GPR. 9001 // This is flagged to the above dot comparison. 9002 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9003 DAG.getRegister(PPC::CR6, MVT::i32), 9004 CompNode.getValue(1)); 9005 9006 // Unpack the result based on how the target uses it. 9007 unsigned BitNo; // Bit # of CR6. 9008 bool InvertBit; // Invert result? 9009 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9010 default: // Can't happen, don't crash on invalid number though. 9011 case 0: // Return the value of the EQ bit of CR6. 9012 BitNo = 0; InvertBit = false; 9013 break; 9014 case 1: // Return the inverted value of the EQ bit of CR6. 9015 BitNo = 0; InvertBit = true; 9016 break; 9017 case 2: // Return the value of the LT bit of CR6. 9018 BitNo = 2; InvertBit = false; 9019 break; 9020 case 3: // Return the inverted value of the LT bit of CR6. 9021 BitNo = 2; InvertBit = true; 9022 break; 9023 } 9024 9025 // Shift the bit into the low position. 9026 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9027 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9028 // Isolate the bit. 9029 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9030 DAG.getConstant(1, dl, MVT::i32)); 9031 9032 // If we are supposed to, toggle the bit. 9033 if (InvertBit) 9034 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9035 DAG.getConstant(1, dl, MVT::i32)); 9036 return Flags; 9037 } 9038 9039 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9040 SelectionDAG &DAG) const { 9041 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9042 // the beginning of the argument list. 9043 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9044 SDLoc DL(Op); 9045 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9046 case Intrinsic::ppc_cfence: { 9047 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9048 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9049 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9050 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9051 Op.getOperand(ArgStart + 1)), 9052 Op.getOperand(0)), 9053 0); 9054 } 9055 default: 9056 break; 9057 } 9058 return SDValue(); 9059 } 9060 9061 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9062 // Check for a DIV with the same operands as this REM. 9063 for (auto UI : Op.getOperand(1)->uses()) { 9064 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9065 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9066 if (UI->getOperand(0) == Op.getOperand(0) && 9067 UI->getOperand(1) == Op.getOperand(1)) 9068 return SDValue(); 9069 } 9070 return Op; 9071 } 9072 9073 // Lower scalar BSWAP64 to xxbrd. 9074 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9075 SDLoc dl(Op); 9076 // MTVSRDD 9077 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9078 Op.getOperand(0)); 9079 // XXBRD 9080 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9081 // MFVSRD 9082 int VectorIndex = 0; 9083 if (Subtarget.isLittleEndian()) 9084 VectorIndex = 1; 9085 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9086 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9087 return Op; 9088 } 9089 9090 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9091 // compared to a value that is atomically loaded (atomic loads zero-extend). 9092 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9093 SelectionDAG &DAG) const { 9094 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9095 "Expecting an atomic compare-and-swap here."); 9096 SDLoc dl(Op); 9097 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9098 EVT MemVT = AtomicNode->getMemoryVT(); 9099 if (MemVT.getSizeInBits() >= 32) 9100 return Op; 9101 9102 SDValue CmpOp = Op.getOperand(2); 9103 // If this is already correctly zero-extended, leave it alone. 9104 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9105 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9106 return Op; 9107 9108 // Clear the high bits of the compare operand. 9109 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9110 SDValue NewCmpOp = 9111 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9112 DAG.getConstant(MaskVal, dl, MVT::i32)); 9113 9114 // Replace the existing compare operand with the properly zero-extended one. 9115 SmallVector<SDValue, 4> Ops; 9116 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9117 Ops.push_back(AtomicNode->getOperand(i)); 9118 Ops[2] = NewCmpOp; 9119 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9120 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9121 auto NodeTy = 9122 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9123 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9124 } 9125 9126 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 9127 SelectionDAG &DAG) const { 9128 SDLoc dl(Op); 9129 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 9130 // instructions), but for smaller types, we need to first extend up to v2i32 9131 // before doing going farther. 9132 if (Op.getValueType() == MVT::v2i64) { 9133 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 9134 if (ExtVT != MVT::v2i32) { 9135 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 9136 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 9137 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 9138 ExtVT.getVectorElementType(), 4))); 9139 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 9140 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 9141 DAG.getValueType(MVT::v2i32)); 9142 } 9143 9144 return Op; 9145 } 9146 9147 return SDValue(); 9148 } 9149 9150 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9151 SelectionDAG &DAG) const { 9152 SDLoc dl(Op); 9153 // Create a stack slot that is 16-byte aligned. 9154 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9155 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9156 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9157 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9158 9159 // Store the input value into Value#0 of the stack slot. 9160 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9161 MachinePointerInfo()); 9162 // Load it out. 9163 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9164 } 9165 9166 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9167 SelectionDAG &DAG) const { 9168 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9169 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9170 9171 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9172 // We have legal lowering for constant indices but not for variable ones. 9173 if (!C) 9174 return SDValue(); 9175 9176 EVT VT = Op.getValueType(); 9177 SDLoc dl(Op); 9178 SDValue V1 = Op.getOperand(0); 9179 SDValue V2 = Op.getOperand(1); 9180 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9181 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9182 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9183 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9184 unsigned InsertAtElement = C->getZExtValue(); 9185 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9186 if (Subtarget.isLittleEndian()) { 9187 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9188 } 9189 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9190 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9191 } 9192 return Op; 9193 } 9194 9195 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9196 SelectionDAG &DAG) const { 9197 SDLoc dl(Op); 9198 SDNode *N = Op.getNode(); 9199 9200 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9201 "Unknown extract_vector_elt type"); 9202 9203 SDValue Value = N->getOperand(0); 9204 9205 // The first part of this is like the store lowering except that we don't 9206 // need to track the chain. 9207 9208 // The values are now known to be -1 (false) or 1 (true). To convert this 9209 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9210 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9211 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9212 9213 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9214 // understand how to form the extending load. 9215 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9216 9217 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9218 9219 // Now convert to an integer and store. 9220 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9221 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9222 Value); 9223 9224 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9225 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9226 MachinePointerInfo PtrInfo = 9227 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9228 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9229 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9230 9231 SDValue StoreChain = DAG.getEntryNode(); 9232 SDValue Ops[] = {StoreChain, 9233 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9234 Value, FIdx}; 9235 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9236 9237 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9238 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9239 9240 // Extract the value requested. 9241 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9242 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9243 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9244 9245 SDValue IntVal = 9246 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9247 9248 if (!Subtarget.useCRBits()) 9249 return IntVal; 9250 9251 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9252 } 9253 9254 /// Lowering for QPX v4i1 loads 9255 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9256 SelectionDAG &DAG) const { 9257 SDLoc dl(Op); 9258 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9259 SDValue LoadChain = LN->getChain(); 9260 SDValue BasePtr = LN->getBasePtr(); 9261 9262 if (Op.getValueType() == MVT::v4f64 || 9263 Op.getValueType() == MVT::v4f32) { 9264 EVT MemVT = LN->getMemoryVT(); 9265 unsigned Alignment = LN->getAlignment(); 9266 9267 // If this load is properly aligned, then it is legal. 9268 if (Alignment >= MemVT.getStoreSize()) 9269 return Op; 9270 9271 EVT ScalarVT = Op.getValueType().getScalarType(), 9272 ScalarMemVT = MemVT.getScalarType(); 9273 unsigned Stride = ScalarMemVT.getStoreSize(); 9274 9275 SDValue Vals[4], LoadChains[4]; 9276 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9277 SDValue Load; 9278 if (ScalarVT != ScalarMemVT) 9279 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9280 BasePtr, 9281 LN->getPointerInfo().getWithOffset(Idx * Stride), 9282 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9283 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9284 else 9285 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9286 LN->getPointerInfo().getWithOffset(Idx * Stride), 9287 MinAlign(Alignment, Idx * Stride), 9288 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9289 9290 if (Idx == 0 && LN->isIndexed()) { 9291 assert(LN->getAddressingMode() == ISD::PRE_INC && 9292 "Unknown addressing mode on vector load"); 9293 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9294 LN->getAddressingMode()); 9295 } 9296 9297 Vals[Idx] = Load; 9298 LoadChains[Idx] = Load.getValue(1); 9299 9300 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9301 DAG.getConstant(Stride, dl, 9302 BasePtr.getValueType())); 9303 } 9304 9305 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9306 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9307 9308 if (LN->isIndexed()) { 9309 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9310 return DAG.getMergeValues(RetOps, dl); 9311 } 9312 9313 SDValue RetOps[] = { Value, TF }; 9314 return DAG.getMergeValues(RetOps, dl); 9315 } 9316 9317 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9318 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9319 9320 // To lower v4i1 from a byte array, we load the byte elements of the 9321 // vector and then reuse the BUILD_VECTOR logic. 9322 9323 SDValue VectElmts[4], VectElmtChains[4]; 9324 for (unsigned i = 0; i < 4; ++i) { 9325 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9326 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9327 9328 VectElmts[i] = DAG.getExtLoad( 9329 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9330 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9331 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9332 VectElmtChains[i] = VectElmts[i].getValue(1); 9333 } 9334 9335 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9336 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9337 9338 SDValue RVals[] = { Value, LoadChain }; 9339 return DAG.getMergeValues(RVals, dl); 9340 } 9341 9342 /// Lowering for QPX v4i1 stores 9343 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9344 SelectionDAG &DAG) const { 9345 SDLoc dl(Op); 9346 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9347 SDValue StoreChain = SN->getChain(); 9348 SDValue BasePtr = SN->getBasePtr(); 9349 SDValue Value = SN->getValue(); 9350 9351 if (Value.getValueType() == MVT::v4f64 || 9352 Value.getValueType() == MVT::v4f32) { 9353 EVT MemVT = SN->getMemoryVT(); 9354 unsigned Alignment = SN->getAlignment(); 9355 9356 // If this store is properly aligned, then it is legal. 9357 if (Alignment >= MemVT.getStoreSize()) 9358 return Op; 9359 9360 EVT ScalarVT = Value.getValueType().getScalarType(), 9361 ScalarMemVT = MemVT.getScalarType(); 9362 unsigned Stride = ScalarMemVT.getStoreSize(); 9363 9364 SDValue Stores[4]; 9365 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9366 SDValue Ex = DAG.getNode( 9367 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9368 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9369 SDValue Store; 9370 if (ScalarVT != ScalarMemVT) 9371 Store = 9372 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9373 SN->getPointerInfo().getWithOffset(Idx * Stride), 9374 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9375 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9376 else 9377 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9378 SN->getPointerInfo().getWithOffset(Idx * Stride), 9379 MinAlign(Alignment, Idx * Stride), 9380 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9381 9382 if (Idx == 0 && SN->isIndexed()) { 9383 assert(SN->getAddressingMode() == ISD::PRE_INC && 9384 "Unknown addressing mode on vector store"); 9385 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9386 SN->getAddressingMode()); 9387 } 9388 9389 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9390 DAG.getConstant(Stride, dl, 9391 BasePtr.getValueType())); 9392 Stores[Idx] = Store; 9393 } 9394 9395 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9396 9397 if (SN->isIndexed()) { 9398 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9399 return DAG.getMergeValues(RetOps, dl); 9400 } 9401 9402 return TF; 9403 } 9404 9405 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9406 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9407 9408 // The values are now known to be -1 (false) or 1 (true). To convert this 9409 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9410 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9411 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9412 9413 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9414 // understand how to form the extending load. 9415 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9416 9417 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9418 9419 // Now convert to an integer and store. 9420 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9421 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9422 Value); 9423 9424 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9425 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9426 MachinePointerInfo PtrInfo = 9427 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9428 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9429 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9430 9431 SDValue Ops[] = {StoreChain, 9432 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9433 Value, FIdx}; 9434 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9435 9436 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9437 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9438 9439 // Move data into the byte array. 9440 SDValue Loads[4], LoadChains[4]; 9441 for (unsigned i = 0; i < 4; ++i) { 9442 unsigned Offset = 4*i; 9443 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9444 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9445 9446 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9447 PtrInfo.getWithOffset(Offset)); 9448 LoadChains[i] = Loads[i].getValue(1); 9449 } 9450 9451 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9452 9453 SDValue Stores[4]; 9454 for (unsigned i = 0; i < 4; ++i) { 9455 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9456 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9457 9458 Stores[i] = DAG.getTruncStore( 9459 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9460 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9461 SN->getAAInfo()); 9462 } 9463 9464 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9465 9466 return StoreChain; 9467 } 9468 9469 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9470 SDLoc dl(Op); 9471 if (Op.getValueType() == MVT::v4i32) { 9472 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9473 9474 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9475 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9476 9477 SDValue RHSSwap = // = vrlw RHS, 16 9478 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9479 9480 // Shrinkify inputs to v8i16. 9481 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9482 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9483 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9484 9485 // Low parts multiplied together, generating 32-bit results (we ignore the 9486 // top parts). 9487 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9488 LHS, RHS, DAG, dl, MVT::v4i32); 9489 9490 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9491 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9492 // Shift the high parts up 16 bits. 9493 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9494 Neg16, DAG, dl); 9495 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9496 } else if (Op.getValueType() == MVT::v8i16) { 9497 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9498 9499 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9500 9501 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9502 LHS, RHS, Zero, DAG, dl); 9503 } else if (Op.getValueType() == MVT::v16i8) { 9504 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9505 bool isLittleEndian = Subtarget.isLittleEndian(); 9506 9507 // Multiply the even 8-bit parts, producing 16-bit sums. 9508 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9509 LHS, RHS, DAG, dl, MVT::v8i16); 9510 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9511 9512 // Multiply the odd 8-bit parts, producing 16-bit sums. 9513 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9514 LHS, RHS, DAG, dl, MVT::v8i16); 9515 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9516 9517 // Merge the results together. Because vmuleub and vmuloub are 9518 // instructions with a big-endian bias, we must reverse the 9519 // element numbering and reverse the meaning of "odd" and "even" 9520 // when generating little endian code. 9521 int Ops[16]; 9522 for (unsigned i = 0; i != 8; ++i) { 9523 if (isLittleEndian) { 9524 Ops[i*2 ] = 2*i; 9525 Ops[i*2+1] = 2*i+16; 9526 } else { 9527 Ops[i*2 ] = 2*i+1; 9528 Ops[i*2+1] = 2*i+1+16; 9529 } 9530 } 9531 if (isLittleEndian) 9532 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9533 else 9534 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9535 } else { 9536 llvm_unreachable("Unknown mul to lower!"); 9537 } 9538 } 9539 9540 /// LowerOperation - Provide custom lowering hooks for some operations. 9541 /// 9542 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9543 switch (Op.getOpcode()) { 9544 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9545 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9546 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9547 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9548 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9549 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9550 case ISD::SETCC: return LowerSETCC(Op, DAG); 9551 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9552 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9553 9554 // Variable argument lowering. 9555 case ISD::VASTART: return LowerVASTART(Op, DAG); 9556 case ISD::VAARG: return LowerVAARG(Op, DAG); 9557 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9558 9559 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9560 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9561 case ISD::GET_DYNAMIC_AREA_OFFSET: 9562 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9563 9564 // Exception handling lowering. 9565 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9566 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9567 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9568 9569 case ISD::LOAD: return LowerLOAD(Op, DAG); 9570 case ISD::STORE: return LowerSTORE(Op, DAG); 9571 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9572 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9573 case ISD::FP_TO_UINT: 9574 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9575 case ISD::UINT_TO_FP: 9576 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9577 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9578 9579 // Lower 64-bit shifts. 9580 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9581 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9582 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9583 9584 // Vector-related lowering. 9585 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9586 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9587 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9588 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9589 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 9590 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9591 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9592 case ISD::MUL: return LowerMUL(Op, DAG); 9593 9594 // For counter-based loop handling. 9595 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9596 9597 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9598 9599 // Frame & Return address. 9600 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9601 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9602 9603 case ISD::INTRINSIC_VOID: 9604 return LowerINTRINSIC_VOID(Op, DAG); 9605 case ISD::SREM: 9606 case ISD::UREM: 9607 return LowerREM(Op, DAG); 9608 case ISD::BSWAP: 9609 return LowerBSWAP(Op, DAG); 9610 case ISD::ATOMIC_CMP_SWAP: 9611 return LowerATOMIC_CMP_SWAP(Op, DAG); 9612 } 9613 } 9614 9615 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9616 SmallVectorImpl<SDValue>&Results, 9617 SelectionDAG &DAG) const { 9618 SDLoc dl(N); 9619 switch (N->getOpcode()) { 9620 default: 9621 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9622 case ISD::READCYCLECOUNTER: { 9623 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9624 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9625 9626 Results.push_back(RTB); 9627 Results.push_back(RTB.getValue(1)); 9628 Results.push_back(RTB.getValue(2)); 9629 break; 9630 } 9631 case ISD::INTRINSIC_W_CHAIN: { 9632 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9633 Intrinsic::ppc_is_decremented_ctr_nonzero) 9634 break; 9635 9636 assert(N->getValueType(0) == MVT::i1 && 9637 "Unexpected result type for CTR decrement intrinsic"); 9638 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9639 N->getValueType(0)); 9640 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9641 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9642 N->getOperand(1)); 9643 9644 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9645 Results.push_back(NewInt.getValue(1)); 9646 break; 9647 } 9648 case ISD::VAARG: { 9649 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9650 return; 9651 9652 EVT VT = N->getValueType(0); 9653 9654 if (VT == MVT::i64) { 9655 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9656 9657 Results.push_back(NewNode); 9658 Results.push_back(NewNode.getValue(1)); 9659 } 9660 return; 9661 } 9662 case ISD::FP_TO_SINT: 9663 case ISD::FP_TO_UINT: 9664 // LowerFP_TO_INT() can only handle f32 and f64. 9665 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9666 return; 9667 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9668 return; 9669 } 9670 } 9671 9672 //===----------------------------------------------------------------------===// 9673 // Other Lowering Code 9674 //===----------------------------------------------------------------------===// 9675 9676 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9677 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9678 Function *Func = Intrinsic::getDeclaration(M, Id); 9679 return Builder.CreateCall(Func, {}); 9680 } 9681 9682 // The mappings for emitLeading/TrailingFence is taken from 9683 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9684 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9685 Instruction *Inst, 9686 AtomicOrdering Ord) const { 9687 if (Ord == AtomicOrdering::SequentiallyConsistent) 9688 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9689 if (isReleaseOrStronger(Ord)) 9690 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9691 return nullptr; 9692 } 9693 9694 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9695 Instruction *Inst, 9696 AtomicOrdering Ord) const { 9697 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9698 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9699 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9700 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9701 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9702 return Builder.CreateCall( 9703 Intrinsic::getDeclaration( 9704 Builder.GetInsertBlock()->getParent()->getParent(), 9705 Intrinsic::ppc_cfence, {Inst->getType()}), 9706 {Inst}); 9707 // FIXME: Can use isync for rmw operation. 9708 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9709 } 9710 return nullptr; 9711 } 9712 9713 MachineBasicBlock * 9714 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9715 unsigned AtomicSize, 9716 unsigned BinOpcode, 9717 unsigned CmpOpcode, 9718 unsigned CmpPred) const { 9719 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9720 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9721 9722 auto LoadMnemonic = PPC::LDARX; 9723 auto StoreMnemonic = PPC::STDCX; 9724 switch (AtomicSize) { 9725 default: 9726 llvm_unreachable("Unexpected size of atomic entity"); 9727 case 1: 9728 LoadMnemonic = PPC::LBARX; 9729 StoreMnemonic = PPC::STBCX; 9730 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9731 break; 9732 case 2: 9733 LoadMnemonic = PPC::LHARX; 9734 StoreMnemonic = PPC::STHCX; 9735 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9736 break; 9737 case 4: 9738 LoadMnemonic = PPC::LWARX; 9739 StoreMnemonic = PPC::STWCX; 9740 break; 9741 case 8: 9742 LoadMnemonic = PPC::LDARX; 9743 StoreMnemonic = PPC::STDCX; 9744 break; 9745 } 9746 9747 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9748 MachineFunction *F = BB->getParent(); 9749 MachineFunction::iterator It = ++BB->getIterator(); 9750 9751 unsigned dest = MI.getOperand(0).getReg(); 9752 unsigned ptrA = MI.getOperand(1).getReg(); 9753 unsigned ptrB = MI.getOperand(2).getReg(); 9754 unsigned incr = MI.getOperand(3).getReg(); 9755 DebugLoc dl = MI.getDebugLoc(); 9756 9757 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9758 MachineBasicBlock *loop2MBB = 9759 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9760 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9761 F->insert(It, loopMBB); 9762 if (CmpOpcode) 9763 F->insert(It, loop2MBB); 9764 F->insert(It, exitMBB); 9765 exitMBB->splice(exitMBB->begin(), BB, 9766 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9767 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9768 9769 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9770 unsigned TmpReg = (!BinOpcode) ? incr : 9771 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9772 : &PPC::GPRCRegClass); 9773 9774 // thisMBB: 9775 // ... 9776 // fallthrough --> loopMBB 9777 BB->addSuccessor(loopMBB); 9778 9779 // loopMBB: 9780 // l[wd]arx dest, ptr 9781 // add r0, dest, incr 9782 // st[wd]cx. r0, ptr 9783 // bne- loopMBB 9784 // fallthrough --> exitMBB 9785 9786 // For max/min... 9787 // loopMBB: 9788 // l[wd]arx dest, ptr 9789 // cmpl?[wd] incr, dest 9790 // bgt exitMBB 9791 // loop2MBB: 9792 // st[wd]cx. dest, ptr 9793 // bne- loopMBB 9794 // fallthrough --> exitMBB 9795 9796 BB = loopMBB; 9797 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9798 .addReg(ptrA).addReg(ptrB); 9799 if (BinOpcode) 9800 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9801 if (CmpOpcode) { 9802 // Signed comparisons of byte or halfword values must be sign-extended. 9803 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9804 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9805 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9806 ExtReg).addReg(dest); 9807 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9808 .addReg(incr).addReg(ExtReg); 9809 } else 9810 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9811 .addReg(incr).addReg(dest); 9812 9813 BuildMI(BB, dl, TII->get(PPC::BCC)) 9814 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9815 BB->addSuccessor(loop2MBB); 9816 BB->addSuccessor(exitMBB); 9817 BB = loop2MBB; 9818 } 9819 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9820 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9821 BuildMI(BB, dl, TII->get(PPC::BCC)) 9822 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9823 BB->addSuccessor(loopMBB); 9824 BB->addSuccessor(exitMBB); 9825 9826 // exitMBB: 9827 // ... 9828 BB = exitMBB; 9829 return BB; 9830 } 9831 9832 MachineBasicBlock * 9833 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 9834 MachineBasicBlock *BB, 9835 bool is8bit, // operation 9836 unsigned BinOpcode, 9837 unsigned CmpOpcode, 9838 unsigned CmpPred) const { 9839 // If we support part-word atomic mnemonics, just use them 9840 if (Subtarget.hasPartwordAtomics()) 9841 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 9842 CmpOpcode, CmpPred); 9843 9844 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9845 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9846 // In 64 bit mode we have to use 64 bits for addresses, even though the 9847 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9848 // registers without caring whether they're 32 or 64, but here we're 9849 // doing actual arithmetic on the addresses. 9850 bool is64bit = Subtarget.isPPC64(); 9851 bool isLittleEndian = Subtarget.isLittleEndian(); 9852 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9853 9854 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9855 MachineFunction *F = BB->getParent(); 9856 MachineFunction::iterator It = ++BB->getIterator(); 9857 9858 unsigned dest = MI.getOperand(0).getReg(); 9859 unsigned ptrA = MI.getOperand(1).getReg(); 9860 unsigned ptrB = MI.getOperand(2).getReg(); 9861 unsigned incr = MI.getOperand(3).getReg(); 9862 DebugLoc dl = MI.getDebugLoc(); 9863 9864 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9865 MachineBasicBlock *loop2MBB = 9866 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9867 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9868 F->insert(It, loopMBB); 9869 if (CmpOpcode) 9870 F->insert(It, loop2MBB); 9871 F->insert(It, exitMBB); 9872 exitMBB->splice(exitMBB->begin(), BB, 9873 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9874 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9875 9876 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9877 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9878 : &PPC::GPRCRegClass; 9879 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9880 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9881 unsigned ShiftReg = 9882 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9883 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 9884 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9885 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9886 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9887 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9888 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 9889 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9890 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9891 unsigned Ptr1Reg; 9892 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 9893 9894 // thisMBB: 9895 // ... 9896 // fallthrough --> loopMBB 9897 BB->addSuccessor(loopMBB); 9898 9899 // The 4-byte load must be aligned, while a char or short may be 9900 // anywhere in the word. Hence all this nasty bookkeeping code. 9901 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9902 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9903 // xori shift, shift1, 24 [16] 9904 // rlwinm ptr, ptr1, 0, 0, 29 9905 // slw incr2, incr, shift 9906 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9907 // slw mask, mask2, shift 9908 // loopMBB: 9909 // lwarx tmpDest, ptr 9910 // add tmp, tmpDest, incr2 9911 // andc tmp2, tmpDest, mask 9912 // and tmp3, tmp, mask 9913 // or tmp4, tmp3, tmp2 9914 // stwcx. tmp4, ptr 9915 // bne- loopMBB 9916 // fallthrough --> exitMBB 9917 // srw dest, tmpDest, shift 9918 if (ptrA != ZeroReg) { 9919 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9920 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9921 .addReg(ptrA).addReg(ptrB); 9922 } else { 9923 Ptr1Reg = ptrB; 9924 } 9925 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9926 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9927 if (!isLittleEndian) 9928 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9929 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9930 if (is64bit) 9931 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9932 .addReg(Ptr1Reg).addImm(0).addImm(61); 9933 else 9934 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9935 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9936 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 9937 .addReg(incr).addReg(ShiftReg); 9938 if (is8bit) 9939 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9940 else { 9941 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9942 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 9943 } 9944 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9945 .addReg(Mask2Reg).addReg(ShiftReg); 9946 9947 BB = loopMBB; 9948 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9949 .addReg(ZeroReg).addReg(PtrReg); 9950 if (BinOpcode) 9951 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9952 .addReg(Incr2Reg).addReg(TmpDestReg); 9953 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9954 .addReg(TmpDestReg).addReg(MaskReg); 9955 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9956 .addReg(TmpReg).addReg(MaskReg); 9957 if (CmpOpcode) { 9958 // For unsigned comparisons, we can directly compare the shifted values. 9959 // For signed comparisons we shift and sign extend. 9960 unsigned SReg = RegInfo.createVirtualRegister(RC); 9961 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9962 .addReg(TmpDestReg).addReg(MaskReg); 9963 unsigned ValueReg = SReg; 9964 unsigned CmpReg = Incr2Reg; 9965 if (CmpOpcode == PPC::CMPW) { 9966 ValueReg = RegInfo.createVirtualRegister(RC); 9967 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9968 .addReg(SReg).addReg(ShiftReg); 9969 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9970 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9971 .addReg(ValueReg); 9972 ValueReg = ValueSReg; 9973 CmpReg = incr; 9974 } 9975 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9976 .addReg(CmpReg).addReg(ValueReg); 9977 BuildMI(BB, dl, TII->get(PPC::BCC)) 9978 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9979 BB->addSuccessor(loop2MBB); 9980 BB->addSuccessor(exitMBB); 9981 BB = loop2MBB; 9982 } 9983 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9984 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9985 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9986 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9987 BuildMI(BB, dl, TII->get(PPC::BCC)) 9988 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9989 BB->addSuccessor(loopMBB); 9990 BB->addSuccessor(exitMBB); 9991 9992 // exitMBB: 9993 // ... 9994 BB = exitMBB; 9995 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9996 .addReg(ShiftReg); 9997 return BB; 9998 } 9999 10000 llvm::MachineBasicBlock * 10001 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10002 MachineBasicBlock *MBB) const { 10003 DebugLoc DL = MI.getDebugLoc(); 10004 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10005 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10006 10007 MachineFunction *MF = MBB->getParent(); 10008 MachineRegisterInfo &MRI = MF->getRegInfo(); 10009 10010 const BasicBlock *BB = MBB->getBasicBlock(); 10011 MachineFunction::iterator I = ++MBB->getIterator(); 10012 10013 unsigned DstReg = MI.getOperand(0).getReg(); 10014 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10015 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10016 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10017 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10018 10019 MVT PVT = getPointerTy(MF->getDataLayout()); 10020 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10021 "Invalid Pointer Size!"); 10022 // For v = setjmp(buf), we generate 10023 // 10024 // thisMBB: 10025 // SjLjSetup mainMBB 10026 // bl mainMBB 10027 // v_restore = 1 10028 // b sinkMBB 10029 // 10030 // mainMBB: 10031 // buf[LabelOffset] = LR 10032 // v_main = 0 10033 // 10034 // sinkMBB: 10035 // v = phi(main, restore) 10036 // 10037 10038 MachineBasicBlock *thisMBB = MBB; 10039 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10040 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10041 MF->insert(I, mainMBB); 10042 MF->insert(I, sinkMBB); 10043 10044 MachineInstrBuilder MIB; 10045 10046 // Transfer the remainder of BB and its successor edges to sinkMBB. 10047 sinkMBB->splice(sinkMBB->begin(), MBB, 10048 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10049 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10050 10051 // Note that the structure of the jmp_buf used here is not compatible 10052 // with that used by libc, and is not designed to be. Specifically, it 10053 // stores only those 'reserved' registers that LLVM does not otherwise 10054 // understand how to spill. Also, by convention, by the time this 10055 // intrinsic is called, Clang has already stored the frame address in the 10056 // first slot of the buffer and stack address in the third. Following the 10057 // X86 target code, we'll store the jump address in the second slot. We also 10058 // need to save the TOC pointer (R2) to handle jumps between shared 10059 // libraries, and that will be stored in the fourth slot. The thread 10060 // identifier (R13) is not affected. 10061 10062 // thisMBB: 10063 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10064 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10065 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10066 10067 // Prepare IP either in reg. 10068 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10069 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10070 unsigned BufReg = MI.getOperand(1).getReg(); 10071 10072 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10073 setUsesTOCBasePtr(*MBB->getParent()); 10074 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10075 .addReg(PPC::X2) 10076 .addImm(TOCOffset) 10077 .addReg(BufReg) 10078 .cloneMemRefs(MI); 10079 } 10080 10081 // Naked functions never have a base pointer, and so we use r1. For all 10082 // other functions, this decision must be delayed until during PEI. 10083 unsigned BaseReg; 10084 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10085 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10086 else 10087 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10088 10089 MIB = BuildMI(*thisMBB, MI, DL, 10090 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10091 .addReg(BaseReg) 10092 .addImm(BPOffset) 10093 .addReg(BufReg) 10094 .cloneMemRefs(MI); 10095 10096 // Setup 10097 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10098 MIB.addRegMask(TRI->getNoPreservedMask()); 10099 10100 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10101 10102 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10103 .addMBB(mainMBB); 10104 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10105 10106 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10107 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10108 10109 // mainMBB: 10110 // mainDstReg = 0 10111 MIB = 10112 BuildMI(mainMBB, DL, 10113 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10114 10115 // Store IP 10116 if (Subtarget.isPPC64()) { 10117 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10118 .addReg(LabelReg) 10119 .addImm(LabelOffset) 10120 .addReg(BufReg); 10121 } else { 10122 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10123 .addReg(LabelReg) 10124 .addImm(LabelOffset) 10125 .addReg(BufReg); 10126 } 10127 MIB.cloneMemRefs(MI); 10128 10129 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10130 mainMBB->addSuccessor(sinkMBB); 10131 10132 // sinkMBB: 10133 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10134 TII->get(PPC::PHI), DstReg) 10135 .addReg(mainDstReg).addMBB(mainMBB) 10136 .addReg(restoreDstReg).addMBB(thisMBB); 10137 10138 MI.eraseFromParent(); 10139 return sinkMBB; 10140 } 10141 10142 MachineBasicBlock * 10143 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10144 MachineBasicBlock *MBB) const { 10145 DebugLoc DL = MI.getDebugLoc(); 10146 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10147 10148 MachineFunction *MF = MBB->getParent(); 10149 MachineRegisterInfo &MRI = MF->getRegInfo(); 10150 10151 MVT PVT = getPointerTy(MF->getDataLayout()); 10152 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10153 "Invalid Pointer Size!"); 10154 10155 const TargetRegisterClass *RC = 10156 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10157 unsigned Tmp = MRI.createVirtualRegister(RC); 10158 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10159 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10160 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10161 unsigned BP = 10162 (PVT == MVT::i64) 10163 ? PPC::X30 10164 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10165 : PPC::R30); 10166 10167 MachineInstrBuilder MIB; 10168 10169 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10170 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10171 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10172 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10173 10174 unsigned BufReg = MI.getOperand(0).getReg(); 10175 10176 // Reload FP (the jumped-to function may not have had a 10177 // frame pointer, and if so, then its r31 will be restored 10178 // as necessary). 10179 if (PVT == MVT::i64) { 10180 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10181 .addImm(0) 10182 .addReg(BufReg); 10183 } else { 10184 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10185 .addImm(0) 10186 .addReg(BufReg); 10187 } 10188 MIB.cloneMemRefs(MI); 10189 10190 // Reload IP 10191 if (PVT == MVT::i64) { 10192 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10193 .addImm(LabelOffset) 10194 .addReg(BufReg); 10195 } else { 10196 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10197 .addImm(LabelOffset) 10198 .addReg(BufReg); 10199 } 10200 MIB.cloneMemRefs(MI); 10201 10202 // Reload SP 10203 if (PVT == MVT::i64) { 10204 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10205 .addImm(SPOffset) 10206 .addReg(BufReg); 10207 } else { 10208 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10209 .addImm(SPOffset) 10210 .addReg(BufReg); 10211 } 10212 MIB.cloneMemRefs(MI); 10213 10214 // Reload BP 10215 if (PVT == MVT::i64) { 10216 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10217 .addImm(BPOffset) 10218 .addReg(BufReg); 10219 } else { 10220 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10221 .addImm(BPOffset) 10222 .addReg(BufReg); 10223 } 10224 MIB.cloneMemRefs(MI); 10225 10226 // Reload TOC 10227 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10228 setUsesTOCBasePtr(*MBB->getParent()); 10229 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10230 .addImm(TOCOffset) 10231 .addReg(BufReg) 10232 .cloneMemRefs(MI); 10233 } 10234 10235 // Jump 10236 BuildMI(*MBB, MI, DL, 10237 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10238 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10239 10240 MI.eraseFromParent(); 10241 return MBB; 10242 } 10243 10244 MachineBasicBlock * 10245 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10246 MachineBasicBlock *BB) const { 10247 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10248 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10249 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10250 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10251 // Call lowering should have added an r2 operand to indicate a dependence 10252 // on the TOC base pointer value. It can't however, because there is no 10253 // way to mark the dependence as implicit there, and so the stackmap code 10254 // will confuse it with a regular operand. Instead, add the dependence 10255 // here. 10256 setUsesTOCBasePtr(*BB->getParent()); 10257 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10258 } 10259 10260 return emitPatchPoint(MI, BB); 10261 } 10262 10263 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10264 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10265 return emitEHSjLjSetJmp(MI, BB); 10266 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10267 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10268 return emitEHSjLjLongJmp(MI, BB); 10269 } 10270 10271 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10272 10273 // To "insert" these instructions we actually have to insert their 10274 // control-flow patterns. 10275 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10276 MachineFunction::iterator It = ++BB->getIterator(); 10277 10278 MachineFunction *F = BB->getParent(); 10279 10280 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10281 MI.getOpcode() == PPC::SELECT_CC_I8 || 10282 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 10283 SmallVector<MachineOperand, 2> Cond; 10284 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10285 MI.getOpcode() == PPC::SELECT_CC_I8) 10286 Cond.push_back(MI.getOperand(4)); 10287 else 10288 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10289 Cond.push_back(MI.getOperand(1)); 10290 10291 DebugLoc dl = MI.getDebugLoc(); 10292 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10293 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10294 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10295 MI.getOpcode() == PPC::SELECT_CC_I8 || 10296 MI.getOpcode() == PPC::SELECT_CC_F4 || 10297 MI.getOpcode() == PPC::SELECT_CC_F8 || 10298 MI.getOpcode() == PPC::SELECT_CC_F16 || 10299 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10300 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10301 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10302 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10303 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10304 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10305 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10306 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10307 MI.getOpcode() == PPC::SELECT_CC_SPE || 10308 MI.getOpcode() == PPC::SELECT_I4 || 10309 MI.getOpcode() == PPC::SELECT_I8 || 10310 MI.getOpcode() == PPC::SELECT_F4 || 10311 MI.getOpcode() == PPC::SELECT_F8 || 10312 MI.getOpcode() == PPC::SELECT_F16 || 10313 MI.getOpcode() == PPC::SELECT_QFRC || 10314 MI.getOpcode() == PPC::SELECT_QSRC || 10315 MI.getOpcode() == PPC::SELECT_QBRC || 10316 MI.getOpcode() == PPC::SELECT_SPE || 10317 MI.getOpcode() == PPC::SELECT_SPE4 || 10318 MI.getOpcode() == PPC::SELECT_VRRC || 10319 MI.getOpcode() == PPC::SELECT_VSFRC || 10320 MI.getOpcode() == PPC::SELECT_VSSRC || 10321 MI.getOpcode() == PPC::SELECT_VSRC) { 10322 // The incoming instruction knows the destination vreg to set, the 10323 // condition code register to branch on, the true/false values to 10324 // select between, and a branch opcode to use. 10325 10326 // thisMBB: 10327 // ... 10328 // TrueVal = ... 10329 // cmpTY ccX, r1, r2 10330 // bCC copy1MBB 10331 // fallthrough --> copy0MBB 10332 MachineBasicBlock *thisMBB = BB; 10333 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10334 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10335 DebugLoc dl = MI.getDebugLoc(); 10336 F->insert(It, copy0MBB); 10337 F->insert(It, sinkMBB); 10338 10339 // Transfer the remainder of BB and its successor edges to sinkMBB. 10340 sinkMBB->splice(sinkMBB->begin(), BB, 10341 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10342 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10343 10344 // Next, add the true and fallthrough blocks as its successors. 10345 BB->addSuccessor(copy0MBB); 10346 BB->addSuccessor(sinkMBB); 10347 10348 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10349 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10350 MI.getOpcode() == PPC::SELECT_F16 || 10351 MI.getOpcode() == PPC::SELECT_SPE4 || 10352 MI.getOpcode() == PPC::SELECT_SPE || 10353 MI.getOpcode() == PPC::SELECT_QFRC || 10354 MI.getOpcode() == PPC::SELECT_QSRC || 10355 MI.getOpcode() == PPC::SELECT_QBRC || 10356 MI.getOpcode() == PPC::SELECT_VRRC || 10357 MI.getOpcode() == PPC::SELECT_VSFRC || 10358 MI.getOpcode() == PPC::SELECT_VSSRC || 10359 MI.getOpcode() == PPC::SELECT_VSRC) { 10360 BuildMI(BB, dl, TII->get(PPC::BC)) 10361 .addReg(MI.getOperand(1).getReg()) 10362 .addMBB(sinkMBB); 10363 } else { 10364 unsigned SelectPred = MI.getOperand(4).getImm(); 10365 BuildMI(BB, dl, TII->get(PPC::BCC)) 10366 .addImm(SelectPred) 10367 .addReg(MI.getOperand(1).getReg()) 10368 .addMBB(sinkMBB); 10369 } 10370 10371 // copy0MBB: 10372 // %FalseValue = ... 10373 // # fallthrough to sinkMBB 10374 BB = copy0MBB; 10375 10376 // Update machine-CFG edges 10377 BB->addSuccessor(sinkMBB); 10378 10379 // sinkMBB: 10380 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10381 // ... 10382 BB = sinkMBB; 10383 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10384 .addReg(MI.getOperand(3).getReg()) 10385 .addMBB(copy0MBB) 10386 .addReg(MI.getOperand(2).getReg()) 10387 .addMBB(thisMBB); 10388 } else if (MI.getOpcode() == PPC::ReadTB) { 10389 // To read the 64-bit time-base register on a 32-bit target, we read the 10390 // two halves. Should the counter have wrapped while it was being read, we 10391 // need to try again. 10392 // ... 10393 // readLoop: 10394 // mfspr Rx,TBU # load from TBU 10395 // mfspr Ry,TB # load from TB 10396 // mfspr Rz,TBU # load from TBU 10397 // cmpw crX,Rx,Rz # check if 'old'='new' 10398 // bne readLoop # branch if they're not equal 10399 // ... 10400 10401 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10402 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10403 DebugLoc dl = MI.getDebugLoc(); 10404 F->insert(It, readMBB); 10405 F->insert(It, sinkMBB); 10406 10407 // Transfer the remainder of BB and its successor edges to sinkMBB. 10408 sinkMBB->splice(sinkMBB->begin(), BB, 10409 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10410 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10411 10412 BB->addSuccessor(readMBB); 10413 BB = readMBB; 10414 10415 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10416 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10417 unsigned LoReg = MI.getOperand(0).getReg(); 10418 unsigned HiReg = MI.getOperand(1).getReg(); 10419 10420 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10421 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10422 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10423 10424 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10425 10426 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10427 .addReg(HiReg).addReg(ReadAgainReg); 10428 BuildMI(BB, dl, TII->get(PPC::BCC)) 10429 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 10430 10431 BB->addSuccessor(readMBB); 10432 BB->addSuccessor(sinkMBB); 10433 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10434 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10435 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10436 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10437 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10438 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10439 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10440 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10441 10442 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10443 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10444 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10445 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10446 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10447 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10448 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10449 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10450 10451 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10452 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10453 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10454 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10455 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10456 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10457 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10458 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10459 10460 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10461 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10462 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10463 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10464 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10465 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10466 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10467 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10468 10469 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10470 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10471 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10472 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10473 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10474 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10475 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10476 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10477 10478 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10479 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10480 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10481 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10482 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10483 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10484 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10485 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10486 10487 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10488 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10489 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10490 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10491 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10492 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10493 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10494 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10495 10496 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10497 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10498 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10499 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10500 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10501 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10502 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10503 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10504 10505 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10506 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10507 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10508 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10509 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10510 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10511 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10512 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10513 10514 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10515 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10516 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10517 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10518 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10519 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10520 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10521 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10522 10523 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10524 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10525 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10526 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10527 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10528 BB = EmitAtomicBinary(MI, BB, 4, 0); 10529 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10530 BB = EmitAtomicBinary(MI, BB, 8, 0); 10531 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10532 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10533 (Subtarget.hasPartwordAtomics() && 10534 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10535 (Subtarget.hasPartwordAtomics() && 10536 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10537 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10538 10539 auto LoadMnemonic = PPC::LDARX; 10540 auto StoreMnemonic = PPC::STDCX; 10541 switch (MI.getOpcode()) { 10542 default: 10543 llvm_unreachable("Compare and swap of unknown size"); 10544 case PPC::ATOMIC_CMP_SWAP_I8: 10545 LoadMnemonic = PPC::LBARX; 10546 StoreMnemonic = PPC::STBCX; 10547 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10548 break; 10549 case PPC::ATOMIC_CMP_SWAP_I16: 10550 LoadMnemonic = PPC::LHARX; 10551 StoreMnemonic = PPC::STHCX; 10552 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10553 break; 10554 case PPC::ATOMIC_CMP_SWAP_I32: 10555 LoadMnemonic = PPC::LWARX; 10556 StoreMnemonic = PPC::STWCX; 10557 break; 10558 case PPC::ATOMIC_CMP_SWAP_I64: 10559 LoadMnemonic = PPC::LDARX; 10560 StoreMnemonic = PPC::STDCX; 10561 break; 10562 } 10563 unsigned dest = MI.getOperand(0).getReg(); 10564 unsigned ptrA = MI.getOperand(1).getReg(); 10565 unsigned ptrB = MI.getOperand(2).getReg(); 10566 unsigned oldval = MI.getOperand(3).getReg(); 10567 unsigned newval = MI.getOperand(4).getReg(); 10568 DebugLoc dl = MI.getDebugLoc(); 10569 10570 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10571 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10572 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10573 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10574 F->insert(It, loop1MBB); 10575 F->insert(It, loop2MBB); 10576 F->insert(It, midMBB); 10577 F->insert(It, exitMBB); 10578 exitMBB->splice(exitMBB->begin(), BB, 10579 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10580 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10581 10582 // thisMBB: 10583 // ... 10584 // fallthrough --> loopMBB 10585 BB->addSuccessor(loop1MBB); 10586 10587 // loop1MBB: 10588 // l[bhwd]arx dest, ptr 10589 // cmp[wd] dest, oldval 10590 // bne- midMBB 10591 // loop2MBB: 10592 // st[bhwd]cx. newval, ptr 10593 // bne- loopMBB 10594 // b exitBB 10595 // midMBB: 10596 // st[bhwd]cx. dest, ptr 10597 // exitBB: 10598 BB = loop1MBB; 10599 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10600 .addReg(ptrA).addReg(ptrB); 10601 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10602 .addReg(oldval).addReg(dest); 10603 BuildMI(BB, dl, TII->get(PPC::BCC)) 10604 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10605 BB->addSuccessor(loop2MBB); 10606 BB->addSuccessor(midMBB); 10607 10608 BB = loop2MBB; 10609 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10610 .addReg(newval).addReg(ptrA).addReg(ptrB); 10611 BuildMI(BB, dl, TII->get(PPC::BCC)) 10612 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10613 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10614 BB->addSuccessor(loop1MBB); 10615 BB->addSuccessor(exitMBB); 10616 10617 BB = midMBB; 10618 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10619 .addReg(dest).addReg(ptrA).addReg(ptrB); 10620 BB->addSuccessor(exitMBB); 10621 10622 // exitMBB: 10623 // ... 10624 BB = exitMBB; 10625 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10626 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10627 // We must use 64-bit registers for addresses when targeting 64-bit, 10628 // since we're actually doing arithmetic on them. Other registers 10629 // can be 32-bit. 10630 bool is64bit = Subtarget.isPPC64(); 10631 bool isLittleEndian = Subtarget.isLittleEndian(); 10632 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10633 10634 unsigned dest = MI.getOperand(0).getReg(); 10635 unsigned ptrA = MI.getOperand(1).getReg(); 10636 unsigned ptrB = MI.getOperand(2).getReg(); 10637 unsigned oldval = MI.getOperand(3).getReg(); 10638 unsigned newval = MI.getOperand(4).getReg(); 10639 DebugLoc dl = MI.getDebugLoc(); 10640 10641 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10642 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10643 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10644 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10645 F->insert(It, loop1MBB); 10646 F->insert(It, loop2MBB); 10647 F->insert(It, midMBB); 10648 F->insert(It, exitMBB); 10649 exitMBB->splice(exitMBB->begin(), BB, 10650 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10651 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10652 10653 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10654 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 10655 : &PPC::GPRCRegClass; 10656 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10657 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 10658 unsigned ShiftReg = 10659 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 10660 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 10661 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 10662 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 10663 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 10664 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 10665 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 10666 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 10667 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 10668 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 10669 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 10670 unsigned Ptr1Reg; 10671 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 10672 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10673 // thisMBB: 10674 // ... 10675 // fallthrough --> loopMBB 10676 BB->addSuccessor(loop1MBB); 10677 10678 // The 4-byte load must be aligned, while a char or short may be 10679 // anywhere in the word. Hence all this nasty bookkeeping code. 10680 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10681 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10682 // xori shift, shift1, 24 [16] 10683 // rlwinm ptr, ptr1, 0, 0, 29 10684 // slw newval2, newval, shift 10685 // slw oldval2, oldval,shift 10686 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10687 // slw mask, mask2, shift 10688 // and newval3, newval2, mask 10689 // and oldval3, oldval2, mask 10690 // loop1MBB: 10691 // lwarx tmpDest, ptr 10692 // and tmp, tmpDest, mask 10693 // cmpw tmp, oldval3 10694 // bne- midMBB 10695 // loop2MBB: 10696 // andc tmp2, tmpDest, mask 10697 // or tmp4, tmp2, newval3 10698 // stwcx. tmp4, ptr 10699 // bne- loop1MBB 10700 // b exitBB 10701 // midMBB: 10702 // stwcx. tmpDest, ptr 10703 // exitBB: 10704 // srw dest, tmpDest, shift 10705 if (ptrA != ZeroReg) { 10706 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10707 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10708 .addReg(ptrA).addReg(ptrB); 10709 } else { 10710 Ptr1Reg = ptrB; 10711 } 10712 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 10713 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 10714 if (!isLittleEndian) 10715 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 10716 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 10717 if (is64bit) 10718 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10719 .addReg(Ptr1Reg).addImm(0).addImm(61); 10720 else 10721 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10722 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 10723 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10724 .addReg(newval).addReg(ShiftReg); 10725 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10726 .addReg(oldval).addReg(ShiftReg); 10727 if (is8bit) 10728 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10729 else { 10730 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10731 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10732 .addReg(Mask3Reg).addImm(65535); 10733 } 10734 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10735 .addReg(Mask2Reg).addReg(ShiftReg); 10736 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10737 .addReg(NewVal2Reg).addReg(MaskReg); 10738 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10739 .addReg(OldVal2Reg).addReg(MaskReg); 10740 10741 BB = loop1MBB; 10742 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10743 .addReg(ZeroReg).addReg(PtrReg); 10744 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 10745 .addReg(TmpDestReg).addReg(MaskReg); 10746 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10747 .addReg(TmpReg).addReg(OldVal3Reg); 10748 BuildMI(BB, dl, TII->get(PPC::BCC)) 10749 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10750 BB->addSuccessor(loop2MBB); 10751 BB->addSuccessor(midMBB); 10752 10753 BB = loop2MBB; 10754 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 10755 .addReg(TmpDestReg).addReg(MaskReg); 10756 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 10757 .addReg(Tmp2Reg).addReg(NewVal3Reg); 10758 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 10759 .addReg(ZeroReg).addReg(PtrReg); 10760 BuildMI(BB, dl, TII->get(PPC::BCC)) 10761 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10762 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10763 BB->addSuccessor(loop1MBB); 10764 BB->addSuccessor(exitMBB); 10765 10766 BB = midMBB; 10767 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 10768 .addReg(ZeroReg).addReg(PtrReg); 10769 BB->addSuccessor(exitMBB); 10770 10771 // exitMBB: 10772 // ... 10773 BB = exitMBB; 10774 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 10775 .addReg(ShiftReg); 10776 } else if (MI.getOpcode() == PPC::FADDrtz) { 10777 // This pseudo performs an FADD with rounding mode temporarily forced 10778 // to round-to-zero. We emit this via custom inserter since the FPSCR 10779 // is not modeled at the SelectionDAG level. 10780 unsigned Dest = MI.getOperand(0).getReg(); 10781 unsigned Src1 = MI.getOperand(1).getReg(); 10782 unsigned Src2 = MI.getOperand(2).getReg(); 10783 DebugLoc dl = MI.getDebugLoc(); 10784 10785 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10786 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10787 10788 // Save FPSCR value. 10789 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10790 10791 // Set rounding mode to round-to-zero. 10792 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 10793 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 10794 10795 // Perform addition. 10796 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 10797 10798 // Restore FPSCR value. 10799 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 10800 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10801 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 10802 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10803 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 10804 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10805 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 10806 ? PPC::ANDIo8 10807 : PPC::ANDIo; 10808 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10809 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 10810 10811 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10812 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 10813 &PPC::GPRCRegClass : 10814 &PPC::G8RCRegClass); 10815 10816 DebugLoc dl = MI.getDebugLoc(); 10817 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 10818 .addReg(MI.getOperand(1).getReg()) 10819 .addImm(1); 10820 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 10821 MI.getOperand(0).getReg()) 10822 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 10823 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 10824 DebugLoc Dl = MI.getDebugLoc(); 10825 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10826 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10827 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 10828 return BB; 10829 } else { 10830 llvm_unreachable("Unexpected instr type to insert"); 10831 } 10832 10833 MI.eraseFromParent(); // The pseudo instruction is gone now. 10834 return BB; 10835 } 10836 10837 //===----------------------------------------------------------------------===// 10838 // Target Optimization Hooks 10839 //===----------------------------------------------------------------------===// 10840 10841 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 10842 // For the estimates, convergence is quadratic, so we essentially double the 10843 // number of digits correct after every iteration. For both FRE and FRSQRTE, 10844 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 10845 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 10846 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 10847 if (VT.getScalarType() == MVT::f64) 10848 RefinementSteps++; 10849 return RefinementSteps; 10850 } 10851 10852 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 10853 int Enabled, int &RefinementSteps, 10854 bool &UseOneConstNR, 10855 bool Reciprocal) const { 10856 EVT VT = Operand.getValueType(); 10857 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 10858 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 10859 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10860 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10861 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10862 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10863 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10864 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10865 10866 UseOneConstNR = true; 10867 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 10868 } 10869 return SDValue(); 10870 } 10871 10872 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 10873 int Enabled, 10874 int &RefinementSteps) const { 10875 EVT VT = Operand.getValueType(); 10876 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 10877 (VT == MVT::f64 && Subtarget.hasFRE()) || 10878 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10879 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10880 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10881 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10882 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10883 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10884 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 10885 } 10886 return SDValue(); 10887 } 10888 10889 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 10890 // Note: This functionality is used only when unsafe-fp-math is enabled, and 10891 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 10892 // enabled for division), this functionality is redundant with the default 10893 // combiner logic (once the division -> reciprocal/multiply transformation 10894 // has taken place). As a result, this matters more for older cores than for 10895 // newer ones. 10896 10897 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 10898 // reciprocal if there are two or more FDIVs (for embedded cores with only 10899 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 10900 switch (Subtarget.getDarwinDirective()) { 10901 default: 10902 return 3; 10903 case PPC::DIR_440: 10904 case PPC::DIR_A2: 10905 case PPC::DIR_E500: 10906 case PPC::DIR_E500mc: 10907 case PPC::DIR_E5500: 10908 return 2; 10909 } 10910 } 10911 10912 // isConsecutiveLSLoc needs to work even if all adds have not yet been 10913 // collapsed, and so we need to look through chains of them. 10914 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 10915 int64_t& Offset, SelectionDAG &DAG) { 10916 if (DAG.isBaseWithConstantOffset(Loc)) { 10917 Base = Loc.getOperand(0); 10918 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 10919 10920 // The base might itself be a base plus an offset, and if so, accumulate 10921 // that as well. 10922 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 10923 } 10924 } 10925 10926 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 10927 unsigned Bytes, int Dist, 10928 SelectionDAG &DAG) { 10929 if (VT.getSizeInBits() / 8 != Bytes) 10930 return false; 10931 10932 SDValue BaseLoc = Base->getBasePtr(); 10933 if (Loc.getOpcode() == ISD::FrameIndex) { 10934 if (BaseLoc.getOpcode() != ISD::FrameIndex) 10935 return false; 10936 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10937 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 10938 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 10939 int FS = MFI.getObjectSize(FI); 10940 int BFS = MFI.getObjectSize(BFI); 10941 if (FS != BFS || FS != (int)Bytes) return false; 10942 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 10943 } 10944 10945 SDValue Base1 = Loc, Base2 = BaseLoc; 10946 int64_t Offset1 = 0, Offset2 = 0; 10947 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10948 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10949 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10950 return true; 10951 10952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10953 const GlobalValue *GV1 = nullptr; 10954 const GlobalValue *GV2 = nullptr; 10955 Offset1 = 0; 10956 Offset2 = 0; 10957 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10958 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10959 if (isGA1 && isGA2 && GV1 == GV2) 10960 return Offset1 == (Offset2 + Dist*Bytes); 10961 return false; 10962 } 10963 10964 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10965 // not enforce equality of the chain operands. 10966 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10967 unsigned Bytes, int Dist, 10968 SelectionDAG &DAG) { 10969 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10970 EVT VT = LS->getMemoryVT(); 10971 SDValue Loc = LS->getBasePtr(); 10972 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10973 } 10974 10975 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10976 EVT VT; 10977 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10978 default: return false; 10979 case Intrinsic::ppc_qpx_qvlfd: 10980 case Intrinsic::ppc_qpx_qvlfda: 10981 VT = MVT::v4f64; 10982 break; 10983 case Intrinsic::ppc_qpx_qvlfs: 10984 case Intrinsic::ppc_qpx_qvlfsa: 10985 VT = MVT::v4f32; 10986 break; 10987 case Intrinsic::ppc_qpx_qvlfcd: 10988 case Intrinsic::ppc_qpx_qvlfcda: 10989 VT = MVT::v2f64; 10990 break; 10991 case Intrinsic::ppc_qpx_qvlfcs: 10992 case Intrinsic::ppc_qpx_qvlfcsa: 10993 VT = MVT::v2f32; 10994 break; 10995 case Intrinsic::ppc_qpx_qvlfiwa: 10996 case Intrinsic::ppc_qpx_qvlfiwz: 10997 case Intrinsic::ppc_altivec_lvx: 10998 case Intrinsic::ppc_altivec_lvxl: 10999 case Intrinsic::ppc_vsx_lxvw4x: 11000 case Intrinsic::ppc_vsx_lxvw4x_be: 11001 VT = MVT::v4i32; 11002 break; 11003 case Intrinsic::ppc_vsx_lxvd2x: 11004 case Intrinsic::ppc_vsx_lxvd2x_be: 11005 VT = MVT::v2f64; 11006 break; 11007 case Intrinsic::ppc_altivec_lvebx: 11008 VT = MVT::i8; 11009 break; 11010 case Intrinsic::ppc_altivec_lvehx: 11011 VT = MVT::i16; 11012 break; 11013 case Intrinsic::ppc_altivec_lvewx: 11014 VT = MVT::i32; 11015 break; 11016 } 11017 11018 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11019 } 11020 11021 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11022 EVT VT; 11023 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11024 default: return false; 11025 case Intrinsic::ppc_qpx_qvstfd: 11026 case Intrinsic::ppc_qpx_qvstfda: 11027 VT = MVT::v4f64; 11028 break; 11029 case Intrinsic::ppc_qpx_qvstfs: 11030 case Intrinsic::ppc_qpx_qvstfsa: 11031 VT = MVT::v4f32; 11032 break; 11033 case Intrinsic::ppc_qpx_qvstfcd: 11034 case Intrinsic::ppc_qpx_qvstfcda: 11035 VT = MVT::v2f64; 11036 break; 11037 case Intrinsic::ppc_qpx_qvstfcs: 11038 case Intrinsic::ppc_qpx_qvstfcsa: 11039 VT = MVT::v2f32; 11040 break; 11041 case Intrinsic::ppc_qpx_qvstfiw: 11042 case Intrinsic::ppc_qpx_qvstfiwa: 11043 case Intrinsic::ppc_altivec_stvx: 11044 case Intrinsic::ppc_altivec_stvxl: 11045 case Intrinsic::ppc_vsx_stxvw4x: 11046 VT = MVT::v4i32; 11047 break; 11048 case Intrinsic::ppc_vsx_stxvd2x: 11049 VT = MVT::v2f64; 11050 break; 11051 case Intrinsic::ppc_vsx_stxvw4x_be: 11052 VT = MVT::v4i32; 11053 break; 11054 case Intrinsic::ppc_vsx_stxvd2x_be: 11055 VT = MVT::v2f64; 11056 break; 11057 case Intrinsic::ppc_altivec_stvebx: 11058 VT = MVT::i8; 11059 break; 11060 case Intrinsic::ppc_altivec_stvehx: 11061 VT = MVT::i16; 11062 break; 11063 case Intrinsic::ppc_altivec_stvewx: 11064 VT = MVT::i32; 11065 break; 11066 } 11067 11068 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11069 } 11070 11071 return false; 11072 } 11073 11074 // Return true is there is a nearyby consecutive load to the one provided 11075 // (regardless of alignment). We search up and down the chain, looking though 11076 // token factors and other loads (but nothing else). As a result, a true result 11077 // indicates that it is safe to create a new consecutive load adjacent to the 11078 // load provided. 11079 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11080 SDValue Chain = LD->getChain(); 11081 EVT VT = LD->getMemoryVT(); 11082 11083 SmallSet<SDNode *, 16> LoadRoots; 11084 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11085 SmallSet<SDNode *, 16> Visited; 11086 11087 // First, search up the chain, branching to follow all token-factor operands. 11088 // If we find a consecutive load, then we're done, otherwise, record all 11089 // nodes just above the top-level loads and token factors. 11090 while (!Queue.empty()) { 11091 SDNode *ChainNext = Queue.pop_back_val(); 11092 if (!Visited.insert(ChainNext).second) 11093 continue; 11094 11095 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11096 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11097 return true; 11098 11099 if (!Visited.count(ChainLD->getChain().getNode())) 11100 Queue.push_back(ChainLD->getChain().getNode()); 11101 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11102 for (const SDUse &O : ChainNext->ops()) 11103 if (!Visited.count(O.getNode())) 11104 Queue.push_back(O.getNode()); 11105 } else 11106 LoadRoots.insert(ChainNext); 11107 } 11108 11109 // Second, search down the chain, starting from the top-level nodes recorded 11110 // in the first phase. These top-level nodes are the nodes just above all 11111 // loads and token factors. Starting with their uses, recursively look though 11112 // all loads (just the chain uses) and token factors to find a consecutive 11113 // load. 11114 Visited.clear(); 11115 Queue.clear(); 11116 11117 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11118 IE = LoadRoots.end(); I != IE; ++I) { 11119 Queue.push_back(*I); 11120 11121 while (!Queue.empty()) { 11122 SDNode *LoadRoot = Queue.pop_back_val(); 11123 if (!Visited.insert(LoadRoot).second) 11124 continue; 11125 11126 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11127 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11128 return true; 11129 11130 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11131 UE = LoadRoot->use_end(); UI != UE; ++UI) 11132 if (((isa<MemSDNode>(*UI) && 11133 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11134 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11135 Queue.push_back(*UI); 11136 } 11137 } 11138 11139 return false; 11140 } 11141 11142 /// This function is called when we have proved that a SETCC node can be replaced 11143 /// by subtraction (and other supporting instructions) so that the result of 11144 /// comparison is kept in a GPR instead of CR. This function is purely for 11145 /// codegen purposes and has some flags to guide the codegen process. 11146 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11147 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11148 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11149 11150 // Zero extend the operands to the largest legal integer. Originally, they 11151 // must be of a strictly smaller size. 11152 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11153 DAG.getConstant(Size, DL, MVT::i32)); 11154 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11155 DAG.getConstant(Size, DL, MVT::i32)); 11156 11157 // Swap if needed. Depends on the condition code. 11158 if (Swap) 11159 std::swap(Op0, Op1); 11160 11161 // Subtract extended integers. 11162 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11163 11164 // Move the sign bit to the least significant position and zero out the rest. 11165 // Now the least significant bit carries the result of original comparison. 11166 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11167 DAG.getConstant(Size - 1, DL, MVT::i32)); 11168 auto Final = Shifted; 11169 11170 // Complement the result if needed. Based on the condition code. 11171 if (Complement) 11172 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11173 DAG.getConstant(1, DL, MVT::i64)); 11174 11175 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11176 } 11177 11178 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11179 DAGCombinerInfo &DCI) const { 11180 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11181 11182 SelectionDAG &DAG = DCI.DAG; 11183 SDLoc DL(N); 11184 11185 // Size of integers being compared has a critical role in the following 11186 // analysis, so we prefer to do this when all types are legal. 11187 if (!DCI.isAfterLegalizeDAG()) 11188 return SDValue(); 11189 11190 // If all users of SETCC extend its value to a legal integer type 11191 // then we replace SETCC with a subtraction 11192 for (SDNode::use_iterator UI = N->use_begin(), 11193 UE = N->use_end(); UI != UE; ++UI) { 11194 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11195 return SDValue(); 11196 } 11197 11198 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11199 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11200 11201 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11202 11203 if (OpSize < Size) { 11204 switch (CC) { 11205 default: break; 11206 case ISD::SETULT: 11207 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11208 case ISD::SETULE: 11209 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11210 case ISD::SETUGT: 11211 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11212 case ISD::SETUGE: 11213 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11214 } 11215 } 11216 11217 return SDValue(); 11218 } 11219 11220 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11221 DAGCombinerInfo &DCI) const { 11222 SelectionDAG &DAG = DCI.DAG; 11223 SDLoc dl(N); 11224 11225 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11226 // If we're tracking CR bits, we need to be careful that we don't have: 11227 // trunc(binary-ops(zext(x), zext(y))) 11228 // or 11229 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11230 // such that we're unnecessarily moving things into GPRs when it would be 11231 // better to keep them in CR bits. 11232 11233 // Note that trunc here can be an actual i1 trunc, or can be the effective 11234 // truncation that comes from a setcc or select_cc. 11235 if (N->getOpcode() == ISD::TRUNCATE && 11236 N->getValueType(0) != MVT::i1) 11237 return SDValue(); 11238 11239 if (N->getOperand(0).getValueType() != MVT::i32 && 11240 N->getOperand(0).getValueType() != MVT::i64) 11241 return SDValue(); 11242 11243 if (N->getOpcode() == ISD::SETCC || 11244 N->getOpcode() == ISD::SELECT_CC) { 11245 // If we're looking at a comparison, then we need to make sure that the 11246 // high bits (all except for the first) don't matter the result. 11247 ISD::CondCode CC = 11248 cast<CondCodeSDNode>(N->getOperand( 11249 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11250 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11251 11252 if (ISD::isSignedIntSetCC(CC)) { 11253 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11254 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11255 return SDValue(); 11256 } else if (ISD::isUnsignedIntSetCC(CC)) { 11257 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11258 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11259 !DAG.MaskedValueIsZero(N->getOperand(1), 11260 APInt::getHighBitsSet(OpBits, OpBits-1))) 11261 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11262 : SDValue()); 11263 } else { 11264 // This is neither a signed nor an unsigned comparison, just make sure 11265 // that the high bits are equal. 11266 KnownBits Op1Known, Op2Known; 11267 DAG.computeKnownBits(N->getOperand(0), Op1Known); 11268 DAG.computeKnownBits(N->getOperand(1), Op2Known); 11269 11270 // We don't really care about what is known about the first bit (if 11271 // anything), so clear it in all masks prior to comparing them. 11272 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11273 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11274 11275 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11276 return SDValue(); 11277 } 11278 } 11279 11280 // We now know that the higher-order bits are irrelevant, we just need to 11281 // make sure that all of the intermediate operations are bit operations, and 11282 // all inputs are extensions. 11283 if (N->getOperand(0).getOpcode() != ISD::AND && 11284 N->getOperand(0).getOpcode() != ISD::OR && 11285 N->getOperand(0).getOpcode() != ISD::XOR && 11286 N->getOperand(0).getOpcode() != ISD::SELECT && 11287 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11288 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11289 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11290 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11291 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11292 return SDValue(); 11293 11294 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11295 N->getOperand(1).getOpcode() != ISD::AND && 11296 N->getOperand(1).getOpcode() != ISD::OR && 11297 N->getOperand(1).getOpcode() != ISD::XOR && 11298 N->getOperand(1).getOpcode() != ISD::SELECT && 11299 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11300 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11301 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11302 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11303 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11304 return SDValue(); 11305 11306 SmallVector<SDValue, 4> Inputs; 11307 SmallVector<SDValue, 8> BinOps, PromOps; 11308 SmallPtrSet<SDNode *, 16> Visited; 11309 11310 for (unsigned i = 0; i < 2; ++i) { 11311 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11312 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11313 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11314 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11315 isa<ConstantSDNode>(N->getOperand(i))) 11316 Inputs.push_back(N->getOperand(i)); 11317 else 11318 BinOps.push_back(N->getOperand(i)); 11319 11320 if (N->getOpcode() == ISD::TRUNCATE) 11321 break; 11322 } 11323 11324 // Visit all inputs, collect all binary operations (and, or, xor and 11325 // select) that are all fed by extensions. 11326 while (!BinOps.empty()) { 11327 SDValue BinOp = BinOps.back(); 11328 BinOps.pop_back(); 11329 11330 if (!Visited.insert(BinOp.getNode()).second) 11331 continue; 11332 11333 PromOps.push_back(BinOp); 11334 11335 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11336 // The condition of the select is not promoted. 11337 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11338 continue; 11339 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11340 continue; 11341 11342 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11343 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11344 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11345 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11346 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11347 Inputs.push_back(BinOp.getOperand(i)); 11348 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11349 BinOp.getOperand(i).getOpcode() == ISD::OR || 11350 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11351 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11352 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11353 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11354 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11355 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11356 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11357 BinOps.push_back(BinOp.getOperand(i)); 11358 } else { 11359 // We have an input that is not an extension or another binary 11360 // operation; we'll abort this transformation. 11361 return SDValue(); 11362 } 11363 } 11364 } 11365 11366 // Make sure that this is a self-contained cluster of operations (which 11367 // is not quite the same thing as saying that everything has only one 11368 // use). 11369 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11370 if (isa<ConstantSDNode>(Inputs[i])) 11371 continue; 11372 11373 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11374 UE = Inputs[i].getNode()->use_end(); 11375 UI != UE; ++UI) { 11376 SDNode *User = *UI; 11377 if (User != N && !Visited.count(User)) 11378 return SDValue(); 11379 11380 // Make sure that we're not going to promote the non-output-value 11381 // operand(s) or SELECT or SELECT_CC. 11382 // FIXME: Although we could sometimes handle this, and it does occur in 11383 // practice that one of the condition inputs to the select is also one of 11384 // the outputs, we currently can't deal with this. 11385 if (User->getOpcode() == ISD::SELECT) { 11386 if (User->getOperand(0) == Inputs[i]) 11387 return SDValue(); 11388 } else if (User->getOpcode() == ISD::SELECT_CC) { 11389 if (User->getOperand(0) == Inputs[i] || 11390 User->getOperand(1) == Inputs[i]) 11391 return SDValue(); 11392 } 11393 } 11394 } 11395 11396 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11397 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11398 UE = PromOps[i].getNode()->use_end(); 11399 UI != UE; ++UI) { 11400 SDNode *User = *UI; 11401 if (User != N && !Visited.count(User)) 11402 return SDValue(); 11403 11404 // Make sure that we're not going to promote the non-output-value 11405 // operand(s) or SELECT or SELECT_CC. 11406 // FIXME: Although we could sometimes handle this, and it does occur in 11407 // practice that one of the condition inputs to the select is also one of 11408 // the outputs, we currently can't deal with this. 11409 if (User->getOpcode() == ISD::SELECT) { 11410 if (User->getOperand(0) == PromOps[i]) 11411 return SDValue(); 11412 } else if (User->getOpcode() == ISD::SELECT_CC) { 11413 if (User->getOperand(0) == PromOps[i] || 11414 User->getOperand(1) == PromOps[i]) 11415 return SDValue(); 11416 } 11417 } 11418 } 11419 11420 // Replace all inputs with the extension operand. 11421 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11422 // Constants may have users outside the cluster of to-be-promoted nodes, 11423 // and so we need to replace those as we do the promotions. 11424 if (isa<ConstantSDNode>(Inputs[i])) 11425 continue; 11426 else 11427 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11428 } 11429 11430 std::list<HandleSDNode> PromOpHandles; 11431 for (auto &PromOp : PromOps) 11432 PromOpHandles.emplace_back(PromOp); 11433 11434 // Replace all operations (these are all the same, but have a different 11435 // (i1) return type). DAG.getNode will validate that the types of 11436 // a binary operator match, so go through the list in reverse so that 11437 // we've likely promoted both operands first. Any intermediate truncations or 11438 // extensions disappear. 11439 while (!PromOpHandles.empty()) { 11440 SDValue PromOp = PromOpHandles.back().getValue(); 11441 PromOpHandles.pop_back(); 11442 11443 if (PromOp.getOpcode() == ISD::TRUNCATE || 11444 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11445 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11446 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11447 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11448 PromOp.getOperand(0).getValueType() != MVT::i1) { 11449 // The operand is not yet ready (see comment below). 11450 PromOpHandles.emplace_front(PromOp); 11451 continue; 11452 } 11453 11454 SDValue RepValue = PromOp.getOperand(0); 11455 if (isa<ConstantSDNode>(RepValue)) 11456 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11457 11458 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11459 continue; 11460 } 11461 11462 unsigned C; 11463 switch (PromOp.getOpcode()) { 11464 default: C = 0; break; 11465 case ISD::SELECT: C = 1; break; 11466 case ISD::SELECT_CC: C = 2; break; 11467 } 11468 11469 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11470 PromOp.getOperand(C).getValueType() != MVT::i1) || 11471 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11472 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11473 // The to-be-promoted operands of this node have not yet been 11474 // promoted (this should be rare because we're going through the 11475 // list backward, but if one of the operands has several users in 11476 // this cluster of to-be-promoted nodes, it is possible). 11477 PromOpHandles.emplace_front(PromOp); 11478 continue; 11479 } 11480 11481 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11482 PromOp.getNode()->op_end()); 11483 11484 // If there are any constant inputs, make sure they're replaced now. 11485 for (unsigned i = 0; i < 2; ++i) 11486 if (isa<ConstantSDNode>(Ops[C+i])) 11487 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11488 11489 DAG.ReplaceAllUsesOfValueWith(PromOp, 11490 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11491 } 11492 11493 // Now we're left with the initial truncation itself. 11494 if (N->getOpcode() == ISD::TRUNCATE) 11495 return N->getOperand(0); 11496 11497 // Otherwise, this is a comparison. The operands to be compared have just 11498 // changed type (to i1), but everything else is the same. 11499 return SDValue(N, 0); 11500 } 11501 11502 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11503 DAGCombinerInfo &DCI) const { 11504 SelectionDAG &DAG = DCI.DAG; 11505 SDLoc dl(N); 11506 11507 // If we're tracking CR bits, we need to be careful that we don't have: 11508 // zext(binary-ops(trunc(x), trunc(y))) 11509 // or 11510 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11511 // such that we're unnecessarily moving things into CR bits that can more 11512 // efficiently stay in GPRs. Note that if we're not certain that the high 11513 // bits are set as required by the final extension, we still may need to do 11514 // some masking to get the proper behavior. 11515 11516 // This same functionality is important on PPC64 when dealing with 11517 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11518 // the return values of functions. Because it is so similar, it is handled 11519 // here as well. 11520 11521 if (N->getValueType(0) != MVT::i32 && 11522 N->getValueType(0) != MVT::i64) 11523 return SDValue(); 11524 11525 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11526 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11527 return SDValue(); 11528 11529 if (N->getOperand(0).getOpcode() != ISD::AND && 11530 N->getOperand(0).getOpcode() != ISD::OR && 11531 N->getOperand(0).getOpcode() != ISD::XOR && 11532 N->getOperand(0).getOpcode() != ISD::SELECT && 11533 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11534 return SDValue(); 11535 11536 SmallVector<SDValue, 4> Inputs; 11537 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11538 SmallPtrSet<SDNode *, 16> Visited; 11539 11540 // Visit all inputs, collect all binary operations (and, or, xor and 11541 // select) that are all fed by truncations. 11542 while (!BinOps.empty()) { 11543 SDValue BinOp = BinOps.back(); 11544 BinOps.pop_back(); 11545 11546 if (!Visited.insert(BinOp.getNode()).second) 11547 continue; 11548 11549 PromOps.push_back(BinOp); 11550 11551 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11552 // The condition of the select is not promoted. 11553 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11554 continue; 11555 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11556 continue; 11557 11558 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11559 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11560 Inputs.push_back(BinOp.getOperand(i)); 11561 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11562 BinOp.getOperand(i).getOpcode() == ISD::OR || 11563 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11564 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11565 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11566 BinOps.push_back(BinOp.getOperand(i)); 11567 } else { 11568 // We have an input that is not a truncation or another binary 11569 // operation; we'll abort this transformation. 11570 return SDValue(); 11571 } 11572 } 11573 } 11574 11575 // The operands of a select that must be truncated when the select is 11576 // promoted because the operand is actually part of the to-be-promoted set. 11577 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11578 11579 // Make sure that this is a self-contained cluster of operations (which 11580 // is not quite the same thing as saying that everything has only one 11581 // use). 11582 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11583 if (isa<ConstantSDNode>(Inputs[i])) 11584 continue; 11585 11586 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11587 UE = Inputs[i].getNode()->use_end(); 11588 UI != UE; ++UI) { 11589 SDNode *User = *UI; 11590 if (User != N && !Visited.count(User)) 11591 return SDValue(); 11592 11593 // If we're going to promote the non-output-value operand(s) or SELECT or 11594 // SELECT_CC, record them for truncation. 11595 if (User->getOpcode() == ISD::SELECT) { 11596 if (User->getOperand(0) == Inputs[i]) 11597 SelectTruncOp[0].insert(std::make_pair(User, 11598 User->getOperand(0).getValueType())); 11599 } else if (User->getOpcode() == ISD::SELECT_CC) { 11600 if (User->getOperand(0) == Inputs[i]) 11601 SelectTruncOp[0].insert(std::make_pair(User, 11602 User->getOperand(0).getValueType())); 11603 if (User->getOperand(1) == Inputs[i]) 11604 SelectTruncOp[1].insert(std::make_pair(User, 11605 User->getOperand(1).getValueType())); 11606 } 11607 } 11608 } 11609 11610 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11611 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11612 UE = PromOps[i].getNode()->use_end(); 11613 UI != UE; ++UI) { 11614 SDNode *User = *UI; 11615 if (User != N && !Visited.count(User)) 11616 return SDValue(); 11617 11618 // If we're going to promote the non-output-value operand(s) or SELECT or 11619 // SELECT_CC, record them for truncation. 11620 if (User->getOpcode() == ISD::SELECT) { 11621 if (User->getOperand(0) == PromOps[i]) 11622 SelectTruncOp[0].insert(std::make_pair(User, 11623 User->getOperand(0).getValueType())); 11624 } else if (User->getOpcode() == ISD::SELECT_CC) { 11625 if (User->getOperand(0) == PromOps[i]) 11626 SelectTruncOp[0].insert(std::make_pair(User, 11627 User->getOperand(0).getValueType())); 11628 if (User->getOperand(1) == PromOps[i]) 11629 SelectTruncOp[1].insert(std::make_pair(User, 11630 User->getOperand(1).getValueType())); 11631 } 11632 } 11633 } 11634 11635 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11636 bool ReallyNeedsExt = false; 11637 if (N->getOpcode() != ISD::ANY_EXTEND) { 11638 // If all of the inputs are not already sign/zero extended, then 11639 // we'll still need to do that at the end. 11640 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11641 if (isa<ConstantSDNode>(Inputs[i])) 11642 continue; 11643 11644 unsigned OpBits = 11645 Inputs[i].getOperand(0).getValueSizeInBits(); 11646 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11647 11648 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11649 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11650 APInt::getHighBitsSet(OpBits, 11651 OpBits-PromBits))) || 11652 (N->getOpcode() == ISD::SIGN_EXTEND && 11653 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11654 (OpBits-(PromBits-1)))) { 11655 ReallyNeedsExt = true; 11656 break; 11657 } 11658 } 11659 } 11660 11661 // Replace all inputs, either with the truncation operand, or a 11662 // truncation or extension to the final output type. 11663 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11664 // Constant inputs need to be replaced with the to-be-promoted nodes that 11665 // use them because they might have users outside of the cluster of 11666 // promoted nodes. 11667 if (isa<ConstantSDNode>(Inputs[i])) 11668 continue; 11669 11670 SDValue InSrc = Inputs[i].getOperand(0); 11671 if (Inputs[i].getValueType() == N->getValueType(0)) 11672 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 11673 else if (N->getOpcode() == ISD::SIGN_EXTEND) 11674 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11675 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 11676 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11677 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11678 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 11679 else 11680 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11681 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 11682 } 11683 11684 std::list<HandleSDNode> PromOpHandles; 11685 for (auto &PromOp : PromOps) 11686 PromOpHandles.emplace_back(PromOp); 11687 11688 // Replace all operations (these are all the same, but have a different 11689 // (promoted) return type). DAG.getNode will validate that the types of 11690 // a binary operator match, so go through the list in reverse so that 11691 // we've likely promoted both operands first. 11692 while (!PromOpHandles.empty()) { 11693 SDValue PromOp = PromOpHandles.back().getValue(); 11694 PromOpHandles.pop_back(); 11695 11696 unsigned C; 11697 switch (PromOp.getOpcode()) { 11698 default: C = 0; break; 11699 case ISD::SELECT: C = 1; break; 11700 case ISD::SELECT_CC: C = 2; break; 11701 } 11702 11703 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11704 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 11705 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11706 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 11707 // The to-be-promoted operands of this node have not yet been 11708 // promoted (this should be rare because we're going through the 11709 // list backward, but if one of the operands has several users in 11710 // this cluster of to-be-promoted nodes, it is possible). 11711 PromOpHandles.emplace_front(PromOp); 11712 continue; 11713 } 11714 11715 // For SELECT and SELECT_CC nodes, we do a similar check for any 11716 // to-be-promoted comparison inputs. 11717 if (PromOp.getOpcode() == ISD::SELECT || 11718 PromOp.getOpcode() == ISD::SELECT_CC) { 11719 if ((SelectTruncOp[0].count(PromOp.getNode()) && 11720 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 11721 (SelectTruncOp[1].count(PromOp.getNode()) && 11722 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 11723 PromOpHandles.emplace_front(PromOp); 11724 continue; 11725 } 11726 } 11727 11728 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11729 PromOp.getNode()->op_end()); 11730 11731 // If this node has constant inputs, then they'll need to be promoted here. 11732 for (unsigned i = 0; i < 2; ++i) { 11733 if (!isa<ConstantSDNode>(Ops[C+i])) 11734 continue; 11735 if (Ops[C+i].getValueType() == N->getValueType(0)) 11736 continue; 11737 11738 if (N->getOpcode() == ISD::SIGN_EXTEND) 11739 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11740 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11741 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11742 else 11743 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11744 } 11745 11746 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 11747 // truncate them again to the original value type. 11748 if (PromOp.getOpcode() == ISD::SELECT || 11749 PromOp.getOpcode() == ISD::SELECT_CC) { 11750 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 11751 if (SI0 != SelectTruncOp[0].end()) 11752 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 11753 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 11754 if (SI1 != SelectTruncOp[1].end()) 11755 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 11756 } 11757 11758 DAG.ReplaceAllUsesOfValueWith(PromOp, 11759 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 11760 } 11761 11762 // Now we're left with the initial extension itself. 11763 if (!ReallyNeedsExt) 11764 return N->getOperand(0); 11765 11766 // To zero extend, just mask off everything except for the first bit (in the 11767 // i1 case). 11768 if (N->getOpcode() == ISD::ZERO_EXTEND) 11769 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 11770 DAG.getConstant(APInt::getLowBitsSet( 11771 N->getValueSizeInBits(0), PromBits), 11772 dl, N->getValueType(0))); 11773 11774 assert(N->getOpcode() == ISD::SIGN_EXTEND && 11775 "Invalid extension type"); 11776 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 11777 SDValue ShiftCst = 11778 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 11779 return DAG.getNode( 11780 ISD::SRA, dl, N->getValueType(0), 11781 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 11782 ShiftCst); 11783 } 11784 11785 // Is this an extending load from an f32 to an f64? 11786 static bool isFPExtLoad(SDValue Op) { 11787 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 11788 return LD->getExtensionType() == ISD::EXTLOAD && 11789 Op.getValueType() == MVT::f64; 11790 return false; 11791 } 11792 11793 /// Reduces the number of fp-to-int conversion when building a vector. 11794 /// 11795 /// If this vector is built out of floating to integer conversions, 11796 /// transform it to a vector built out of floating point values followed by a 11797 /// single floating to integer conversion of the vector. 11798 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 11799 /// becomes (fptosi (build_vector ($A, $B, ...))) 11800 SDValue PPCTargetLowering:: 11801 combineElementTruncationToVectorTruncation(SDNode *N, 11802 DAGCombinerInfo &DCI) const { 11803 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11804 "Should be called with a BUILD_VECTOR node"); 11805 11806 SelectionDAG &DAG = DCI.DAG; 11807 SDLoc dl(N); 11808 11809 SDValue FirstInput = N->getOperand(0); 11810 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 11811 "The input operand must be an fp-to-int conversion."); 11812 11813 // This combine happens after legalization so the fp_to_[su]i nodes are 11814 // already converted to PPCSISD nodes. 11815 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 11816 if (FirstConversion == PPCISD::FCTIDZ || 11817 FirstConversion == PPCISD::FCTIDUZ || 11818 FirstConversion == PPCISD::FCTIWZ || 11819 FirstConversion == PPCISD::FCTIWUZ) { 11820 bool IsSplat = true; 11821 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 11822 FirstConversion == PPCISD::FCTIWUZ; 11823 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 11824 SmallVector<SDValue, 4> Ops; 11825 EVT TargetVT = N->getValueType(0); 11826 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11827 SDValue NextOp = N->getOperand(i); 11828 if (NextOp.getOpcode() != PPCISD::MFVSR) 11829 return SDValue(); 11830 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 11831 if (NextConversion != FirstConversion) 11832 return SDValue(); 11833 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 11834 // This is not valid if the input was originally double precision. It is 11835 // also not profitable to do unless this is an extending load in which 11836 // case doing this combine will allow us to combine consecutive loads. 11837 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 11838 return SDValue(); 11839 if (N->getOperand(i) != FirstInput) 11840 IsSplat = false; 11841 } 11842 11843 // If this is a splat, we leave it as-is since there will be only a single 11844 // fp-to-int conversion followed by a splat of the integer. This is better 11845 // for 32-bit and smaller ints and neutral for 64-bit ints. 11846 if (IsSplat) 11847 return SDValue(); 11848 11849 // Now that we know we have the right type of node, get its operands 11850 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11851 SDValue In = N->getOperand(i).getOperand(0); 11852 if (Is32Bit) { 11853 // For 32-bit values, we need to add an FP_ROUND node (if we made it 11854 // here, we know that all inputs are extending loads so this is safe). 11855 if (In.isUndef()) 11856 Ops.push_back(DAG.getUNDEF(SrcVT)); 11857 else { 11858 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 11859 MVT::f32, In.getOperand(0), 11860 DAG.getIntPtrConstant(1, dl)); 11861 Ops.push_back(Trunc); 11862 } 11863 } else 11864 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 11865 } 11866 11867 unsigned Opcode; 11868 if (FirstConversion == PPCISD::FCTIDZ || 11869 FirstConversion == PPCISD::FCTIWZ) 11870 Opcode = ISD::FP_TO_SINT; 11871 else 11872 Opcode = ISD::FP_TO_UINT; 11873 11874 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 11875 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 11876 return DAG.getNode(Opcode, dl, TargetVT, BV); 11877 } 11878 return SDValue(); 11879 } 11880 11881 /// Reduce the number of loads when building a vector. 11882 /// 11883 /// Building a vector out of multiple loads can be converted to a load 11884 /// of the vector type if the loads are consecutive. If the loads are 11885 /// consecutive but in descending order, a shuffle is added at the end 11886 /// to reorder the vector. 11887 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 11888 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11889 "Should be called with a BUILD_VECTOR node"); 11890 11891 SDLoc dl(N); 11892 bool InputsAreConsecutiveLoads = true; 11893 bool InputsAreReverseConsecutive = true; 11894 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 11895 SDValue FirstInput = N->getOperand(0); 11896 bool IsRoundOfExtLoad = false; 11897 11898 if (FirstInput.getOpcode() == ISD::FP_ROUND && 11899 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 11900 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 11901 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 11902 } 11903 // Not a build vector of (possibly fp_rounded) loads. 11904 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 11905 N->getNumOperands() == 1) 11906 return SDValue(); 11907 11908 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 11909 // If any inputs are fp_round(extload), they all must be. 11910 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 11911 return SDValue(); 11912 11913 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 11914 N->getOperand(i); 11915 if (NextInput.getOpcode() != ISD::LOAD) 11916 return SDValue(); 11917 11918 SDValue PreviousInput = 11919 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 11920 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 11921 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 11922 11923 // If any inputs are fp_round(extload), they all must be. 11924 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 11925 return SDValue(); 11926 11927 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 11928 InputsAreConsecutiveLoads = false; 11929 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 11930 InputsAreReverseConsecutive = false; 11931 11932 // Exit early if the loads are neither consecutive nor reverse consecutive. 11933 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 11934 return SDValue(); 11935 } 11936 11937 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 11938 "The loads cannot be both consecutive and reverse consecutive."); 11939 11940 SDValue FirstLoadOp = 11941 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 11942 SDValue LastLoadOp = 11943 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 11944 N->getOperand(N->getNumOperands()-1); 11945 11946 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 11947 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 11948 if (InputsAreConsecutiveLoads) { 11949 assert(LD1 && "Input needs to be a LoadSDNode."); 11950 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 11951 LD1->getBasePtr(), LD1->getPointerInfo(), 11952 LD1->getAlignment()); 11953 } 11954 if (InputsAreReverseConsecutive) { 11955 assert(LDL && "Input needs to be a LoadSDNode."); 11956 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 11957 LDL->getBasePtr(), LDL->getPointerInfo(), 11958 LDL->getAlignment()); 11959 SmallVector<int, 16> Ops; 11960 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11961 Ops.push_back(i); 11962 11963 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11964 DAG.getUNDEF(N->getValueType(0)), Ops); 11965 } 11966 return SDValue(); 11967 } 11968 11969 // This function adds the required vector_shuffle needed to get 11970 // the elements of the vector extract in the correct position 11971 // as specified by the CorrectElems encoding. 11972 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 11973 SDValue Input, uint64_t Elems, 11974 uint64_t CorrectElems) { 11975 SDLoc dl(N); 11976 11977 unsigned NumElems = Input.getValueType().getVectorNumElements(); 11978 SmallVector<int, 16> ShuffleMask(NumElems, -1); 11979 11980 // Knowing the element indices being extracted from the original 11981 // vector and the order in which they're being inserted, just put 11982 // them at element indices required for the instruction. 11983 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11984 if (DAG.getDataLayout().isLittleEndian()) 11985 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 11986 else 11987 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 11988 CorrectElems = CorrectElems >> 8; 11989 Elems = Elems >> 8; 11990 } 11991 11992 SDValue Shuffle = 11993 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 11994 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 11995 11996 EVT Ty = N->getValueType(0); 11997 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 11998 return BV; 11999 } 12000 12001 // Look for build vector patterns where input operands come from sign 12002 // extended vector_extract elements of specific indices. If the correct indices 12003 // aren't used, add a vector shuffle to fix up the indices and create a new 12004 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12005 // during instruction selection. 12006 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12007 // This array encodes the indices that the vector sign extend instructions 12008 // extract from when extending from one type to another for both BE and LE. 12009 // The right nibble of each byte corresponds to the LE incides. 12010 // and the left nibble of each byte corresponds to the BE incides. 12011 // For example: 0x3074B8FC byte->word 12012 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12013 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12014 // For example: 0x000070F8 byte->double word 12015 // For LE: the allowed indices are: 0x0,0x8 12016 // For BE: the allowed indices are: 0x7,0xF 12017 uint64_t TargetElems[] = { 12018 0x3074B8FC, // b->w 12019 0x000070F8, // b->d 12020 0x10325476, // h->w 12021 0x00003074, // h->d 12022 0x00001032, // w->d 12023 }; 12024 12025 uint64_t Elems = 0; 12026 int Index; 12027 SDValue Input; 12028 12029 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12030 if (!Op) 12031 return false; 12032 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12033 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12034 return false; 12035 12036 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12037 // of the right width. 12038 SDValue Extract = Op.getOperand(0); 12039 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12040 Extract = Extract.getOperand(0); 12041 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12042 return false; 12043 12044 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12045 if (!ExtOp) 12046 return false; 12047 12048 Index = ExtOp->getZExtValue(); 12049 if (Input && Input != Extract.getOperand(0)) 12050 return false; 12051 12052 if (!Input) 12053 Input = Extract.getOperand(0); 12054 12055 Elems = Elems << 8; 12056 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12057 Elems |= Index; 12058 12059 return true; 12060 }; 12061 12062 // If the build vector operands aren't sign extended vector extracts, 12063 // of the same input vector, then return. 12064 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12065 if (!isSExtOfVecExtract(N->getOperand(i))) { 12066 return SDValue(); 12067 } 12068 } 12069 12070 // If the vector extract indicies are not correct, add the appropriate 12071 // vector_shuffle. 12072 int TgtElemArrayIdx; 12073 int InputSize = Input.getValueType().getScalarSizeInBits(); 12074 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12075 if (InputSize + OutputSize == 40) 12076 TgtElemArrayIdx = 0; 12077 else if (InputSize + OutputSize == 72) 12078 TgtElemArrayIdx = 1; 12079 else if (InputSize + OutputSize == 48) 12080 TgtElemArrayIdx = 2; 12081 else if (InputSize + OutputSize == 80) 12082 TgtElemArrayIdx = 3; 12083 else if (InputSize + OutputSize == 96) 12084 TgtElemArrayIdx = 4; 12085 else 12086 return SDValue(); 12087 12088 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12089 CorrectElems = DAG.getDataLayout().isLittleEndian() 12090 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12091 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12092 if (Elems != CorrectElems) { 12093 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12094 } 12095 12096 // Regular lowering will catch cases where a shuffle is not needed. 12097 return SDValue(); 12098 } 12099 12100 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12101 DAGCombinerInfo &DCI) const { 12102 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12103 "Should be called with a BUILD_VECTOR node"); 12104 12105 SelectionDAG &DAG = DCI.DAG; 12106 SDLoc dl(N); 12107 12108 if (!Subtarget.hasVSX()) 12109 return SDValue(); 12110 12111 // The target independent DAG combiner will leave a build_vector of 12112 // float-to-int conversions intact. We can generate MUCH better code for 12113 // a float-to-int conversion of a vector of floats. 12114 SDValue FirstInput = N->getOperand(0); 12115 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12116 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12117 if (Reduced) 12118 return Reduced; 12119 } 12120 12121 // If we're building a vector out of consecutive loads, just load that 12122 // vector type. 12123 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12124 if (Reduced) 12125 return Reduced; 12126 12127 // If we're building a vector out of extended elements from another vector 12128 // we have P9 vector integer extend instructions. The code assumes legal 12129 // input types (i.e. it can't handle things like v4i16) so do not run before 12130 // legalization. 12131 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12132 Reduced = combineBVOfVecSExt(N, DAG); 12133 if (Reduced) 12134 return Reduced; 12135 } 12136 12137 12138 if (N->getValueType(0) != MVT::v2f64) 12139 return SDValue(); 12140 12141 // Looking for: 12142 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12143 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12144 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12145 return SDValue(); 12146 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12147 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12148 return SDValue(); 12149 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12150 return SDValue(); 12151 12152 SDValue Ext1 = FirstInput.getOperand(0); 12153 SDValue Ext2 = N->getOperand(1).getOperand(0); 12154 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12155 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12156 return SDValue(); 12157 12158 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12159 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12160 if (!Ext1Op || !Ext2Op) 12161 return SDValue(); 12162 if (Ext1.getValueType() != MVT::i32 || 12163 Ext2.getValueType() != MVT::i32) 12164 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 12165 return SDValue(); 12166 12167 int FirstElem = Ext1Op->getZExtValue(); 12168 int SecondElem = Ext2Op->getZExtValue(); 12169 int SubvecIdx; 12170 if (FirstElem == 0 && SecondElem == 1) 12171 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12172 else if (FirstElem == 2 && SecondElem == 3) 12173 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12174 else 12175 return SDValue(); 12176 12177 SDValue SrcVec = Ext1.getOperand(0); 12178 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12179 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12180 return DAG.getNode(NodeType, dl, MVT::v2f64, 12181 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12182 } 12183 12184 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12185 DAGCombinerInfo &DCI) const { 12186 assert((N->getOpcode() == ISD::SINT_TO_FP || 12187 N->getOpcode() == ISD::UINT_TO_FP) && 12188 "Need an int -> FP conversion node here"); 12189 12190 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12191 return SDValue(); 12192 12193 SelectionDAG &DAG = DCI.DAG; 12194 SDLoc dl(N); 12195 SDValue Op(N, 0); 12196 12197 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12198 // from the hardware. 12199 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12200 return SDValue(); 12201 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12202 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12203 return SDValue(); 12204 12205 SDValue FirstOperand(Op.getOperand(0)); 12206 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12207 (FirstOperand.getValueType() == MVT::i8 || 12208 FirstOperand.getValueType() == MVT::i16); 12209 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12210 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12211 bool DstDouble = Op.getValueType() == MVT::f64; 12212 unsigned ConvOp = Signed ? 12213 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12214 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12215 SDValue WidthConst = 12216 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12217 dl, false); 12218 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12219 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12220 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12221 DAG.getVTList(MVT::f64, MVT::Other), 12222 Ops, MVT::i8, LDN->getMemOperand()); 12223 12224 // For signed conversion, we need to sign-extend the value in the VSR 12225 if (Signed) { 12226 SDValue ExtOps[] = { Ld, WidthConst }; 12227 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12228 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12229 } else 12230 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12231 } 12232 12233 12234 // For i32 intermediate values, unfortunately, the conversion functions 12235 // leave the upper 32 bits of the value are undefined. Within the set of 12236 // scalar instructions, we have no method for zero- or sign-extending the 12237 // value. Thus, we cannot handle i32 intermediate values here. 12238 if (Op.getOperand(0).getValueType() == MVT::i32) 12239 return SDValue(); 12240 12241 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12242 "UINT_TO_FP is supported only with FPCVT"); 12243 12244 // If we have FCFIDS, then use it when converting to single-precision. 12245 // Otherwise, convert to double-precision and then round. 12246 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12247 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12248 : PPCISD::FCFIDS) 12249 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12250 : PPCISD::FCFID); 12251 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12252 ? MVT::f32 12253 : MVT::f64; 12254 12255 // If we're converting from a float, to an int, and back to a float again, 12256 // then we don't need the store/load pair at all. 12257 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12258 Subtarget.hasFPCVT()) || 12259 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12260 SDValue Src = Op.getOperand(0).getOperand(0); 12261 if (Src.getValueType() == MVT::f32) { 12262 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12263 DCI.AddToWorklist(Src.getNode()); 12264 } else if (Src.getValueType() != MVT::f64) { 12265 // Make sure that we don't pick up a ppc_fp128 source value. 12266 return SDValue(); 12267 } 12268 12269 unsigned FCTOp = 12270 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12271 PPCISD::FCTIDUZ; 12272 12273 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12274 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12275 12276 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12277 FP = DAG.getNode(ISD::FP_ROUND, dl, 12278 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12279 DCI.AddToWorklist(FP.getNode()); 12280 } 12281 12282 return FP; 12283 } 12284 12285 return SDValue(); 12286 } 12287 12288 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12289 // builtins) into loads with swaps. 12290 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12291 DAGCombinerInfo &DCI) const { 12292 SelectionDAG &DAG = DCI.DAG; 12293 SDLoc dl(N); 12294 SDValue Chain; 12295 SDValue Base; 12296 MachineMemOperand *MMO; 12297 12298 switch (N->getOpcode()) { 12299 default: 12300 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12301 case ISD::LOAD: { 12302 LoadSDNode *LD = cast<LoadSDNode>(N); 12303 Chain = LD->getChain(); 12304 Base = LD->getBasePtr(); 12305 MMO = LD->getMemOperand(); 12306 // If the MMO suggests this isn't a load of a full vector, leave 12307 // things alone. For a built-in, we have to make the change for 12308 // correctness, so if there is a size problem that will be a bug. 12309 if (MMO->getSize() < 16) 12310 return SDValue(); 12311 break; 12312 } 12313 case ISD::INTRINSIC_W_CHAIN: { 12314 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12315 Chain = Intrin->getChain(); 12316 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12317 // us what we want. Get operand 2 instead. 12318 Base = Intrin->getOperand(2); 12319 MMO = Intrin->getMemOperand(); 12320 break; 12321 } 12322 } 12323 12324 MVT VecTy = N->getValueType(0).getSimpleVT(); 12325 12326 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12327 // aligned and the type is a vector with elements up to 4 bytes 12328 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12329 && VecTy.getScalarSizeInBits() <= 32 ) { 12330 return SDValue(); 12331 } 12332 12333 SDValue LoadOps[] = { Chain, Base }; 12334 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12335 DAG.getVTList(MVT::v2f64, MVT::Other), 12336 LoadOps, MVT::v2f64, MMO); 12337 12338 DCI.AddToWorklist(Load.getNode()); 12339 Chain = Load.getValue(1); 12340 SDValue Swap = DAG.getNode( 12341 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12342 DCI.AddToWorklist(Swap.getNode()); 12343 12344 // Add a bitcast if the resulting load type doesn't match v2f64. 12345 if (VecTy != MVT::v2f64) { 12346 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12347 DCI.AddToWorklist(N.getNode()); 12348 // Package {bitcast value, swap's chain} to match Load's shape. 12349 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12350 N, Swap.getValue(1)); 12351 } 12352 12353 return Swap; 12354 } 12355 12356 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12357 // builtins) into stores with swaps. 12358 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12359 DAGCombinerInfo &DCI) const { 12360 SelectionDAG &DAG = DCI.DAG; 12361 SDLoc dl(N); 12362 SDValue Chain; 12363 SDValue Base; 12364 unsigned SrcOpnd; 12365 MachineMemOperand *MMO; 12366 12367 switch (N->getOpcode()) { 12368 default: 12369 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12370 case ISD::STORE: { 12371 StoreSDNode *ST = cast<StoreSDNode>(N); 12372 Chain = ST->getChain(); 12373 Base = ST->getBasePtr(); 12374 MMO = ST->getMemOperand(); 12375 SrcOpnd = 1; 12376 // If the MMO suggests this isn't a store of a full vector, leave 12377 // things alone. For a built-in, we have to make the change for 12378 // correctness, so if there is a size problem that will be a bug. 12379 if (MMO->getSize() < 16) 12380 return SDValue(); 12381 break; 12382 } 12383 case ISD::INTRINSIC_VOID: { 12384 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12385 Chain = Intrin->getChain(); 12386 // Intrin->getBasePtr() oddly does not get what we want. 12387 Base = Intrin->getOperand(3); 12388 MMO = Intrin->getMemOperand(); 12389 SrcOpnd = 2; 12390 break; 12391 } 12392 } 12393 12394 SDValue Src = N->getOperand(SrcOpnd); 12395 MVT VecTy = Src.getValueType().getSimpleVT(); 12396 12397 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12398 // aligned and the type is a vector with elements up to 4 bytes 12399 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12400 && VecTy.getScalarSizeInBits() <= 32 ) { 12401 return SDValue(); 12402 } 12403 12404 // All stores are done as v2f64 and possible bit cast. 12405 if (VecTy != MVT::v2f64) { 12406 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12407 DCI.AddToWorklist(Src.getNode()); 12408 } 12409 12410 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12411 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12412 DCI.AddToWorklist(Swap.getNode()); 12413 Chain = Swap.getValue(1); 12414 SDValue StoreOps[] = { Chain, Swap, Base }; 12415 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12416 DAG.getVTList(MVT::Other), 12417 StoreOps, VecTy, MMO); 12418 DCI.AddToWorklist(Store.getNode()); 12419 return Store; 12420 } 12421 12422 // Handle DAG combine for STORE (FP_TO_INT F). 12423 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12424 DAGCombinerInfo &DCI) const { 12425 12426 SelectionDAG &DAG = DCI.DAG; 12427 SDLoc dl(N); 12428 unsigned Opcode = N->getOperand(1).getOpcode(); 12429 12430 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12431 && "Not a FP_TO_INT Instruction!"); 12432 12433 SDValue Val = N->getOperand(1).getOperand(0); 12434 EVT Op1VT = N->getOperand(1).getValueType(); 12435 EVT ResVT = Val.getValueType(); 12436 12437 // Floating point types smaller than 32 bits are not legal on Power. 12438 if (ResVT.getScalarSizeInBits() < 32) 12439 return SDValue(); 12440 12441 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12442 bool ValidTypeForStoreFltAsInt = 12443 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12444 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12445 12446 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12447 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12448 return SDValue(); 12449 12450 // Extend f32 values to f64 12451 if (ResVT.getScalarSizeInBits() == 32) { 12452 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12453 DCI.AddToWorklist(Val.getNode()); 12454 } 12455 12456 // Set signed or unsigned conversion opcode. 12457 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12458 PPCISD::FP_TO_SINT_IN_VSR : 12459 PPCISD::FP_TO_UINT_IN_VSR; 12460 12461 Val = DAG.getNode(ConvOpcode, 12462 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12463 DCI.AddToWorklist(Val.getNode()); 12464 12465 // Set number of bytes being converted. 12466 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12467 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12468 DAG.getIntPtrConstant(ByteSize, dl, false), 12469 DAG.getValueType(Op1VT) }; 12470 12471 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12472 DAG.getVTList(MVT::Other), Ops, 12473 cast<StoreSDNode>(N)->getMemoryVT(), 12474 cast<StoreSDNode>(N)->getMemOperand()); 12475 12476 DCI.AddToWorklist(Val.getNode()); 12477 return Val; 12478 } 12479 12480 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12481 DAGCombinerInfo &DCI) const { 12482 SelectionDAG &DAG = DCI.DAG; 12483 SDLoc dl(N); 12484 switch (N->getOpcode()) { 12485 default: break; 12486 case ISD::ADD: 12487 return combineADD(N, DCI); 12488 case ISD::SHL: 12489 return combineSHL(N, DCI); 12490 case ISD::SRA: 12491 return combineSRA(N, DCI); 12492 case ISD::SRL: 12493 return combineSRL(N, DCI); 12494 case PPCISD::SHL: 12495 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12496 return N->getOperand(0); 12497 break; 12498 case PPCISD::SRL: 12499 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12500 return N->getOperand(0); 12501 break; 12502 case PPCISD::SRA: 12503 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12504 if (C->isNullValue() || // 0 >>s V -> 0. 12505 C->isAllOnesValue()) // -1 >>s V -> -1. 12506 return N->getOperand(0); 12507 } 12508 break; 12509 case ISD::SIGN_EXTEND: 12510 case ISD::ZERO_EXTEND: 12511 case ISD::ANY_EXTEND: 12512 return DAGCombineExtBoolTrunc(N, DCI); 12513 case ISD::TRUNCATE: 12514 case ISD::SETCC: 12515 case ISD::SELECT_CC: 12516 return DAGCombineTruncBoolExt(N, DCI); 12517 case ISD::SINT_TO_FP: 12518 case ISD::UINT_TO_FP: 12519 return combineFPToIntToFP(N, DCI); 12520 case ISD::STORE: { 12521 12522 EVT Op1VT = N->getOperand(1).getValueType(); 12523 unsigned Opcode = N->getOperand(1).getOpcode(); 12524 12525 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12526 SDValue Val= combineStoreFPToInt(N, DCI); 12527 if (Val) 12528 return Val; 12529 } 12530 12531 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12532 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12533 N->getOperand(1).getNode()->hasOneUse() && 12534 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12535 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12536 12537 // STBRX can only handle simple types. 12538 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12539 if (mVT.isExtended()) 12540 break; 12541 12542 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12543 // Do an any-extend to 32-bits if this is a half-word input. 12544 if (BSwapOp.getValueType() == MVT::i16) 12545 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12546 12547 // If the type of BSWAP operand is wider than stored memory width 12548 // it need to be shifted to the right side before STBRX. 12549 if (Op1VT.bitsGT(mVT)) { 12550 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12551 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12552 DAG.getConstant(Shift, dl, MVT::i32)); 12553 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12554 if (Op1VT == MVT::i64) 12555 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12556 } 12557 12558 SDValue Ops[] = { 12559 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12560 }; 12561 return 12562 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12563 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12564 cast<StoreSDNode>(N)->getMemOperand()); 12565 } 12566 12567 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12568 // So it can increase the chance of CSE constant construction. 12569 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12570 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12571 // Need to sign-extended to 64-bits to handle negative values. 12572 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12573 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12574 MemVT.getSizeInBits()); 12575 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12576 12577 // DAG.getTruncStore() can't be used here because it doesn't accept 12578 // the general (base + offset) addressing mode. 12579 // So we use UpdateNodeOperands and setTruncatingStore instead. 12580 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12581 N->getOperand(3)); 12582 cast<StoreSDNode>(N)->setTruncatingStore(true); 12583 return SDValue(N, 0); 12584 } 12585 12586 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12587 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12588 if (Op1VT.isSimple()) { 12589 MVT StoreVT = Op1VT.getSimpleVT(); 12590 if (Subtarget.needsSwapsForVSXMemOps() && 12591 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12592 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12593 return expandVSXStoreForLE(N, DCI); 12594 } 12595 break; 12596 } 12597 case ISD::LOAD: { 12598 LoadSDNode *LD = cast<LoadSDNode>(N); 12599 EVT VT = LD->getValueType(0); 12600 12601 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12602 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12603 if (VT.isSimple()) { 12604 MVT LoadVT = VT.getSimpleVT(); 12605 if (Subtarget.needsSwapsForVSXMemOps() && 12606 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12607 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12608 return expandVSXLoadForLE(N, DCI); 12609 } 12610 12611 // We sometimes end up with a 64-bit integer load, from which we extract 12612 // two single-precision floating-point numbers. This happens with 12613 // std::complex<float>, and other similar structures, because of the way we 12614 // canonicalize structure copies. However, if we lack direct moves, 12615 // then the final bitcasts from the extracted integer values to the 12616 // floating-point numbers turn into store/load pairs. Even with direct moves, 12617 // just loading the two floating-point numbers is likely better. 12618 auto ReplaceTwoFloatLoad = [&]() { 12619 if (VT != MVT::i64) 12620 return false; 12621 12622 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 12623 LD->isVolatile()) 12624 return false; 12625 12626 // We're looking for a sequence like this: 12627 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 12628 // t16: i64 = srl t13, Constant:i32<32> 12629 // t17: i32 = truncate t16 12630 // t18: f32 = bitcast t17 12631 // t19: i32 = truncate t13 12632 // t20: f32 = bitcast t19 12633 12634 if (!LD->hasNUsesOfValue(2, 0)) 12635 return false; 12636 12637 auto UI = LD->use_begin(); 12638 while (UI.getUse().getResNo() != 0) ++UI; 12639 SDNode *Trunc = *UI++; 12640 while (UI.getUse().getResNo() != 0) ++UI; 12641 SDNode *RightShift = *UI; 12642 if (Trunc->getOpcode() != ISD::TRUNCATE) 12643 std::swap(Trunc, RightShift); 12644 12645 if (Trunc->getOpcode() != ISD::TRUNCATE || 12646 Trunc->getValueType(0) != MVT::i32 || 12647 !Trunc->hasOneUse()) 12648 return false; 12649 if (RightShift->getOpcode() != ISD::SRL || 12650 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 12651 RightShift->getConstantOperandVal(1) != 32 || 12652 !RightShift->hasOneUse()) 12653 return false; 12654 12655 SDNode *Trunc2 = *RightShift->use_begin(); 12656 if (Trunc2->getOpcode() != ISD::TRUNCATE || 12657 Trunc2->getValueType(0) != MVT::i32 || 12658 !Trunc2->hasOneUse()) 12659 return false; 12660 12661 SDNode *Bitcast = *Trunc->use_begin(); 12662 SDNode *Bitcast2 = *Trunc2->use_begin(); 12663 12664 if (Bitcast->getOpcode() != ISD::BITCAST || 12665 Bitcast->getValueType(0) != MVT::f32) 12666 return false; 12667 if (Bitcast2->getOpcode() != ISD::BITCAST || 12668 Bitcast2->getValueType(0) != MVT::f32) 12669 return false; 12670 12671 if (Subtarget.isLittleEndian()) 12672 std::swap(Bitcast, Bitcast2); 12673 12674 // Bitcast has the second float (in memory-layout order) and Bitcast2 12675 // has the first one. 12676 12677 SDValue BasePtr = LD->getBasePtr(); 12678 if (LD->isIndexed()) { 12679 assert(LD->getAddressingMode() == ISD::PRE_INC && 12680 "Non-pre-inc AM on PPC?"); 12681 BasePtr = 12682 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 12683 LD->getOffset()); 12684 } 12685 12686 auto MMOFlags = 12687 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 12688 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 12689 LD->getPointerInfo(), LD->getAlignment(), 12690 MMOFlags, LD->getAAInfo()); 12691 SDValue AddPtr = 12692 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 12693 BasePtr, DAG.getIntPtrConstant(4, dl)); 12694 SDValue FloatLoad2 = DAG.getLoad( 12695 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 12696 LD->getPointerInfo().getWithOffset(4), 12697 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 12698 12699 if (LD->isIndexed()) { 12700 // Note that DAGCombine should re-form any pre-increment load(s) from 12701 // what is produced here if that makes sense. 12702 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 12703 } 12704 12705 DCI.CombineTo(Bitcast2, FloatLoad); 12706 DCI.CombineTo(Bitcast, FloatLoad2); 12707 12708 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 12709 SDValue(FloatLoad2.getNode(), 1)); 12710 return true; 12711 }; 12712 12713 if (ReplaceTwoFloatLoad()) 12714 return SDValue(N, 0); 12715 12716 EVT MemVT = LD->getMemoryVT(); 12717 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 12718 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 12719 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 12720 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 12721 if (LD->isUnindexed() && VT.isVector() && 12722 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 12723 // P8 and later hardware should just use LOAD. 12724 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 12725 VT == MVT::v4i32 || VT == MVT::v4f32)) || 12726 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 12727 LD->getAlignment() >= ScalarABIAlignment)) && 12728 LD->getAlignment() < ABIAlignment) { 12729 // This is a type-legal unaligned Altivec or QPX load. 12730 SDValue Chain = LD->getChain(); 12731 SDValue Ptr = LD->getBasePtr(); 12732 bool isLittleEndian = Subtarget.isLittleEndian(); 12733 12734 // This implements the loading of unaligned vectors as described in 12735 // the venerable Apple Velocity Engine overview. Specifically: 12736 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 12737 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 12738 // 12739 // The general idea is to expand a sequence of one or more unaligned 12740 // loads into an alignment-based permutation-control instruction (lvsl 12741 // or lvsr), a series of regular vector loads (which always truncate 12742 // their input address to an aligned address), and a series of 12743 // permutations. The results of these permutations are the requested 12744 // loaded values. The trick is that the last "extra" load is not taken 12745 // from the address you might suspect (sizeof(vector) bytes after the 12746 // last requested load), but rather sizeof(vector) - 1 bytes after the 12747 // last requested vector. The point of this is to avoid a page fault if 12748 // the base address happened to be aligned. This works because if the 12749 // base address is aligned, then adding less than a full vector length 12750 // will cause the last vector in the sequence to be (re)loaded. 12751 // Otherwise, the next vector will be fetched as you might suspect was 12752 // necessary. 12753 12754 // We might be able to reuse the permutation generation from 12755 // a different base address offset from this one by an aligned amount. 12756 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 12757 // optimization later. 12758 Intrinsic::ID Intr, IntrLD, IntrPerm; 12759 MVT PermCntlTy, PermTy, LDTy; 12760 if (Subtarget.hasAltivec()) { 12761 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 12762 Intrinsic::ppc_altivec_lvsl; 12763 IntrLD = Intrinsic::ppc_altivec_lvx; 12764 IntrPerm = Intrinsic::ppc_altivec_vperm; 12765 PermCntlTy = MVT::v16i8; 12766 PermTy = MVT::v4i32; 12767 LDTy = MVT::v4i32; 12768 } else { 12769 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 12770 Intrinsic::ppc_qpx_qvlpcls; 12771 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 12772 Intrinsic::ppc_qpx_qvlfs; 12773 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 12774 PermCntlTy = MVT::v4f64; 12775 PermTy = MVT::v4f64; 12776 LDTy = MemVT.getSimpleVT(); 12777 } 12778 12779 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 12780 12781 // Create the new MMO for the new base load. It is like the original MMO, 12782 // but represents an area in memory almost twice the vector size centered 12783 // on the original address. If the address is unaligned, we might start 12784 // reading up to (sizeof(vector)-1) bytes below the address of the 12785 // original unaligned load. 12786 MachineFunction &MF = DAG.getMachineFunction(); 12787 MachineMemOperand *BaseMMO = 12788 MF.getMachineMemOperand(LD->getMemOperand(), 12789 -(long)MemVT.getStoreSize()+1, 12790 2*MemVT.getStoreSize()-1); 12791 12792 // Create the new base load. 12793 SDValue LDXIntID = 12794 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 12795 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 12796 SDValue BaseLoad = 12797 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12798 DAG.getVTList(PermTy, MVT::Other), 12799 BaseLoadOps, LDTy, BaseMMO); 12800 12801 // Note that the value of IncOffset (which is provided to the next 12802 // load's pointer info offset value, and thus used to calculate the 12803 // alignment), and the value of IncValue (which is actually used to 12804 // increment the pointer value) are different! This is because we 12805 // require the next load to appear to be aligned, even though it 12806 // is actually offset from the base pointer by a lesser amount. 12807 int IncOffset = VT.getSizeInBits() / 8; 12808 int IncValue = IncOffset; 12809 12810 // Walk (both up and down) the chain looking for another load at the real 12811 // (aligned) offset (the alignment of the other load does not matter in 12812 // this case). If found, then do not use the offset reduction trick, as 12813 // that will prevent the loads from being later combined (as they would 12814 // otherwise be duplicates). 12815 if (!findConsecutiveLoad(LD, DAG)) 12816 --IncValue; 12817 12818 SDValue Increment = 12819 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 12820 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 12821 12822 MachineMemOperand *ExtraMMO = 12823 MF.getMachineMemOperand(LD->getMemOperand(), 12824 1, 2*MemVT.getStoreSize()-1); 12825 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 12826 SDValue ExtraLoad = 12827 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12828 DAG.getVTList(PermTy, MVT::Other), 12829 ExtraLoadOps, LDTy, ExtraMMO); 12830 12831 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 12832 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 12833 12834 // Because vperm has a big-endian bias, we must reverse the order 12835 // of the input vectors and complement the permute control vector 12836 // when generating little endian code. We have already handled the 12837 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 12838 // and ExtraLoad here. 12839 SDValue Perm; 12840 if (isLittleEndian) 12841 Perm = BuildIntrinsicOp(IntrPerm, 12842 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 12843 else 12844 Perm = BuildIntrinsicOp(IntrPerm, 12845 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 12846 12847 if (VT != PermTy) 12848 Perm = Subtarget.hasAltivec() ? 12849 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 12850 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 12851 DAG.getTargetConstant(1, dl, MVT::i64)); 12852 // second argument is 1 because this rounding 12853 // is always exact. 12854 12855 // The output of the permutation is our loaded result, the TokenFactor is 12856 // our new chain. 12857 DCI.CombineTo(N, Perm, TF); 12858 return SDValue(N, 0); 12859 } 12860 } 12861 break; 12862 case ISD::INTRINSIC_WO_CHAIN: { 12863 bool isLittleEndian = Subtarget.isLittleEndian(); 12864 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 12865 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 12866 : Intrinsic::ppc_altivec_lvsl); 12867 if ((IID == Intr || 12868 IID == Intrinsic::ppc_qpx_qvlpcld || 12869 IID == Intrinsic::ppc_qpx_qvlpcls) && 12870 N->getOperand(1)->getOpcode() == ISD::ADD) { 12871 SDValue Add = N->getOperand(1); 12872 12873 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 12874 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 12875 12876 if (DAG.MaskedValueIsZero(Add->getOperand(1), 12877 APInt::getAllOnesValue(Bits /* alignment */) 12878 .zext(Add.getScalarValueSizeInBits()))) { 12879 SDNode *BasePtr = Add->getOperand(0).getNode(); 12880 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12881 UE = BasePtr->use_end(); 12882 UI != UE; ++UI) { 12883 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12884 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 12885 // We've found another LVSL/LVSR, and this address is an aligned 12886 // multiple of that one. The results will be the same, so use the 12887 // one we've just found instead. 12888 12889 return SDValue(*UI, 0); 12890 } 12891 } 12892 } 12893 12894 if (isa<ConstantSDNode>(Add->getOperand(1))) { 12895 SDNode *BasePtr = Add->getOperand(0).getNode(); 12896 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12897 UE = BasePtr->use_end(); UI != UE; ++UI) { 12898 if (UI->getOpcode() == ISD::ADD && 12899 isa<ConstantSDNode>(UI->getOperand(1)) && 12900 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 12901 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 12902 (1ULL << Bits) == 0) { 12903 SDNode *OtherAdd = *UI; 12904 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 12905 VE = OtherAdd->use_end(); VI != VE; ++VI) { 12906 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12907 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 12908 return SDValue(*VI, 0); 12909 } 12910 } 12911 } 12912 } 12913 } 12914 } 12915 } 12916 12917 break; 12918 case ISD::INTRINSIC_W_CHAIN: 12919 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12920 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12921 if (Subtarget.needsSwapsForVSXMemOps()) { 12922 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12923 default: 12924 break; 12925 case Intrinsic::ppc_vsx_lxvw4x: 12926 case Intrinsic::ppc_vsx_lxvd2x: 12927 return expandVSXLoadForLE(N, DCI); 12928 } 12929 } 12930 break; 12931 case ISD::INTRINSIC_VOID: 12932 // For little endian, VSX stores require generating xxswapd/stxvd2x. 12933 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12934 if (Subtarget.needsSwapsForVSXMemOps()) { 12935 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12936 default: 12937 break; 12938 case Intrinsic::ppc_vsx_stxvw4x: 12939 case Intrinsic::ppc_vsx_stxvd2x: 12940 return expandVSXStoreForLE(N, DCI); 12941 } 12942 } 12943 break; 12944 case ISD::BSWAP: 12945 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 12946 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 12947 N->getOperand(0).hasOneUse() && 12948 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 12949 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 12950 N->getValueType(0) == MVT::i64))) { 12951 SDValue Load = N->getOperand(0); 12952 LoadSDNode *LD = cast<LoadSDNode>(Load); 12953 // Create the byte-swapping load. 12954 SDValue Ops[] = { 12955 LD->getChain(), // Chain 12956 LD->getBasePtr(), // Ptr 12957 DAG.getValueType(N->getValueType(0)) // VT 12958 }; 12959 SDValue BSLoad = 12960 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 12961 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 12962 MVT::i64 : MVT::i32, MVT::Other), 12963 Ops, LD->getMemoryVT(), LD->getMemOperand()); 12964 12965 // If this is an i16 load, insert the truncate. 12966 SDValue ResVal = BSLoad; 12967 if (N->getValueType(0) == MVT::i16) 12968 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 12969 12970 // First, combine the bswap away. This makes the value produced by the 12971 // load dead. 12972 DCI.CombineTo(N, ResVal); 12973 12974 // Next, combine the load away, we give it a bogus result value but a real 12975 // chain result. The result value is dead because the bswap is dead. 12976 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 12977 12978 // Return N so it doesn't get rechecked! 12979 return SDValue(N, 0); 12980 } 12981 break; 12982 case PPCISD::VCMP: 12983 // If a VCMPo node already exists with exactly the same operands as this 12984 // node, use its result instead of this node (VCMPo computes both a CR6 and 12985 // a normal output). 12986 // 12987 if (!N->getOperand(0).hasOneUse() && 12988 !N->getOperand(1).hasOneUse() && 12989 !N->getOperand(2).hasOneUse()) { 12990 12991 // Scan all of the users of the LHS, looking for VCMPo's that match. 12992 SDNode *VCMPoNode = nullptr; 12993 12994 SDNode *LHSN = N->getOperand(0).getNode(); 12995 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 12996 UI != E; ++UI) 12997 if (UI->getOpcode() == PPCISD::VCMPo && 12998 UI->getOperand(1) == N->getOperand(1) && 12999 UI->getOperand(2) == N->getOperand(2) && 13000 UI->getOperand(0) == N->getOperand(0)) { 13001 VCMPoNode = *UI; 13002 break; 13003 } 13004 13005 // If there is no VCMPo node, or if the flag value has a single use, don't 13006 // transform this. 13007 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13008 break; 13009 13010 // Look at the (necessarily single) use of the flag value. If it has a 13011 // chain, this transformation is more complex. Note that multiple things 13012 // could use the value result, which we should ignore. 13013 SDNode *FlagUser = nullptr; 13014 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13015 FlagUser == nullptr; ++UI) { 13016 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13017 SDNode *User = *UI; 13018 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13019 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13020 FlagUser = User; 13021 break; 13022 } 13023 } 13024 } 13025 13026 // If the user is a MFOCRF instruction, we know this is safe. 13027 // Otherwise we give up for right now. 13028 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13029 return SDValue(VCMPoNode, 0); 13030 } 13031 break; 13032 case ISD::BRCOND: { 13033 SDValue Cond = N->getOperand(1); 13034 SDValue Target = N->getOperand(2); 13035 13036 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13037 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13038 Intrinsic::ppc_is_decremented_ctr_nonzero) { 13039 13040 // We now need to make the intrinsic dead (it cannot be instruction 13041 // selected). 13042 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13043 assert(Cond.getNode()->hasOneUse() && 13044 "Counter decrement has more than one use"); 13045 13046 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13047 N->getOperand(0), Target); 13048 } 13049 } 13050 break; 13051 case ISD::BR_CC: { 13052 // If this is a branch on an altivec predicate comparison, lower this so 13053 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13054 // lowering is done pre-legalize, because the legalizer lowers the predicate 13055 // compare down to code that is difficult to reassemble. 13056 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13057 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13058 13059 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13060 // value. If so, pass-through the AND to get to the intrinsic. 13061 if (LHS.getOpcode() == ISD::AND && 13062 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13063 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13064 Intrinsic::ppc_is_decremented_ctr_nonzero && 13065 isa<ConstantSDNode>(LHS.getOperand(1)) && 13066 !isNullConstant(LHS.getOperand(1))) 13067 LHS = LHS.getOperand(0); 13068 13069 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13070 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13071 Intrinsic::ppc_is_decremented_ctr_nonzero && 13072 isa<ConstantSDNode>(RHS)) { 13073 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13074 "Counter decrement comparison is not EQ or NE"); 13075 13076 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13077 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13078 (CC == ISD::SETNE && !Val); 13079 13080 // We now need to make the intrinsic dead (it cannot be instruction 13081 // selected). 13082 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13083 assert(LHS.getNode()->hasOneUse() && 13084 "Counter decrement has more than one use"); 13085 13086 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13087 N->getOperand(0), N->getOperand(4)); 13088 } 13089 13090 int CompareOpc; 13091 bool isDot; 13092 13093 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13094 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13095 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13096 assert(isDot && "Can't compare against a vector result!"); 13097 13098 // If this is a comparison against something other than 0/1, then we know 13099 // that the condition is never/always true. 13100 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13101 if (Val != 0 && Val != 1) { 13102 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13103 return N->getOperand(0); 13104 // Always !=, turn it into an unconditional branch. 13105 return DAG.getNode(ISD::BR, dl, MVT::Other, 13106 N->getOperand(0), N->getOperand(4)); 13107 } 13108 13109 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13110 13111 // Create the PPCISD altivec 'dot' comparison node. 13112 SDValue Ops[] = { 13113 LHS.getOperand(2), // LHS of compare 13114 LHS.getOperand(3), // RHS of compare 13115 DAG.getConstant(CompareOpc, dl, MVT::i32) 13116 }; 13117 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13118 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13119 13120 // Unpack the result based on how the target uses it. 13121 PPC::Predicate CompOpc; 13122 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13123 default: // Can't happen, don't crash on invalid number though. 13124 case 0: // Branch on the value of the EQ bit of CR6. 13125 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13126 break; 13127 case 1: // Branch on the inverted value of the EQ bit of CR6. 13128 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13129 break; 13130 case 2: // Branch on the value of the LT bit of CR6. 13131 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13132 break; 13133 case 3: // Branch on the inverted value of the LT bit of CR6. 13134 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13135 break; 13136 } 13137 13138 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13139 DAG.getConstant(CompOpc, dl, MVT::i32), 13140 DAG.getRegister(PPC::CR6, MVT::i32), 13141 N->getOperand(4), CompNode.getValue(1)); 13142 } 13143 break; 13144 } 13145 case ISD::BUILD_VECTOR: 13146 return DAGCombineBuildVector(N, DCI); 13147 } 13148 13149 return SDValue(); 13150 } 13151 13152 SDValue 13153 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13154 SelectionDAG &DAG, 13155 SmallVectorImpl<SDNode *> &Created) const { 13156 // fold (sdiv X, pow2) 13157 EVT VT = N->getValueType(0); 13158 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13159 return SDValue(); 13160 if ((VT != MVT::i32 && VT != MVT::i64) || 13161 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13162 return SDValue(); 13163 13164 SDLoc DL(N); 13165 SDValue N0 = N->getOperand(0); 13166 13167 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13168 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13169 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13170 13171 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13172 Created.push_back(Op.getNode()); 13173 13174 if (IsNegPow2) { 13175 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13176 Created.push_back(Op.getNode()); 13177 } 13178 13179 return Op; 13180 } 13181 13182 //===----------------------------------------------------------------------===// 13183 // Inline Assembly Support 13184 //===----------------------------------------------------------------------===// 13185 13186 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13187 KnownBits &Known, 13188 const APInt &DemandedElts, 13189 const SelectionDAG &DAG, 13190 unsigned Depth) const { 13191 Known.resetAll(); 13192 switch (Op.getOpcode()) { 13193 default: break; 13194 case PPCISD::LBRX: { 13195 // lhbrx is known to have the top bits cleared out. 13196 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13197 Known.Zero = 0xFFFF0000; 13198 break; 13199 } 13200 case ISD::INTRINSIC_WO_CHAIN: { 13201 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13202 default: break; 13203 case Intrinsic::ppc_altivec_vcmpbfp_p: 13204 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13205 case Intrinsic::ppc_altivec_vcmpequb_p: 13206 case Intrinsic::ppc_altivec_vcmpequh_p: 13207 case Intrinsic::ppc_altivec_vcmpequw_p: 13208 case Intrinsic::ppc_altivec_vcmpequd_p: 13209 case Intrinsic::ppc_altivec_vcmpgefp_p: 13210 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13211 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13212 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13213 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13214 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13215 case Intrinsic::ppc_altivec_vcmpgtub_p: 13216 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13217 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13218 case Intrinsic::ppc_altivec_vcmpgtud_p: 13219 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13220 break; 13221 } 13222 } 13223 } 13224 } 13225 13226 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13227 switch (Subtarget.getDarwinDirective()) { 13228 default: break; 13229 case PPC::DIR_970: 13230 case PPC::DIR_PWR4: 13231 case PPC::DIR_PWR5: 13232 case PPC::DIR_PWR5X: 13233 case PPC::DIR_PWR6: 13234 case PPC::DIR_PWR6X: 13235 case PPC::DIR_PWR7: 13236 case PPC::DIR_PWR8: 13237 case PPC::DIR_PWR9: { 13238 if (!ML) 13239 break; 13240 13241 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13242 13243 // For small loops (between 5 and 8 instructions), align to a 32-byte 13244 // boundary so that the entire loop fits in one instruction-cache line. 13245 uint64_t LoopSize = 0; 13246 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13247 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13248 LoopSize += TII->getInstSizeInBytes(*J); 13249 if (LoopSize > 32) 13250 break; 13251 } 13252 13253 if (LoopSize > 16 && LoopSize <= 32) 13254 return 5; 13255 13256 break; 13257 } 13258 } 13259 13260 return TargetLowering::getPrefLoopAlignment(ML); 13261 } 13262 13263 /// getConstraintType - Given a constraint, return the type of 13264 /// constraint it is for this target. 13265 PPCTargetLowering::ConstraintType 13266 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13267 if (Constraint.size() == 1) { 13268 switch (Constraint[0]) { 13269 default: break; 13270 case 'b': 13271 case 'r': 13272 case 'f': 13273 case 'd': 13274 case 'v': 13275 case 'y': 13276 return C_RegisterClass; 13277 case 'Z': 13278 // FIXME: While Z does indicate a memory constraint, it specifically 13279 // indicates an r+r address (used in conjunction with the 'y' modifier 13280 // in the replacement string). Currently, we're forcing the base 13281 // register to be r0 in the asm printer (which is interpreted as zero) 13282 // and forming the complete address in the second register. This is 13283 // suboptimal. 13284 return C_Memory; 13285 } 13286 } else if (Constraint == "wc") { // individual CR bits. 13287 return C_RegisterClass; 13288 } else if (Constraint == "wa" || Constraint == "wd" || 13289 Constraint == "wf" || Constraint == "ws") { 13290 return C_RegisterClass; // VSX registers. 13291 } 13292 return TargetLowering::getConstraintType(Constraint); 13293 } 13294 13295 /// Examine constraint type and operand type and determine a weight value. 13296 /// This object must already have been set up with the operand type 13297 /// and the current alternative constraint selected. 13298 TargetLowering::ConstraintWeight 13299 PPCTargetLowering::getSingleConstraintMatchWeight( 13300 AsmOperandInfo &info, const char *constraint) const { 13301 ConstraintWeight weight = CW_Invalid; 13302 Value *CallOperandVal = info.CallOperandVal; 13303 // If we don't have a value, we can't do a match, 13304 // but allow it at the lowest weight. 13305 if (!CallOperandVal) 13306 return CW_Default; 13307 Type *type = CallOperandVal->getType(); 13308 13309 // Look at the constraint type. 13310 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13311 return CW_Register; // an individual CR bit. 13312 else if ((StringRef(constraint) == "wa" || 13313 StringRef(constraint) == "wd" || 13314 StringRef(constraint) == "wf") && 13315 type->isVectorTy()) 13316 return CW_Register; 13317 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13318 return CW_Register; 13319 13320 switch (*constraint) { 13321 default: 13322 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13323 break; 13324 case 'b': 13325 if (type->isIntegerTy()) 13326 weight = CW_Register; 13327 break; 13328 case 'f': 13329 if (type->isFloatTy()) 13330 weight = CW_Register; 13331 break; 13332 case 'd': 13333 if (type->isDoubleTy()) 13334 weight = CW_Register; 13335 break; 13336 case 'v': 13337 if (type->isVectorTy()) 13338 weight = CW_Register; 13339 break; 13340 case 'y': 13341 weight = CW_Register; 13342 break; 13343 case 'Z': 13344 weight = CW_Memory; 13345 break; 13346 } 13347 return weight; 13348 } 13349 13350 std::pair<unsigned, const TargetRegisterClass *> 13351 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13352 StringRef Constraint, 13353 MVT VT) const { 13354 if (Constraint.size() == 1) { 13355 // GCC RS6000 Constraint Letters 13356 switch (Constraint[0]) { 13357 case 'b': // R1-R31 13358 if (VT == MVT::i64 && Subtarget.isPPC64()) 13359 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13360 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13361 case 'r': // R0-R31 13362 if (VT == MVT::i64 && Subtarget.isPPC64()) 13363 return std::make_pair(0U, &PPC::G8RCRegClass); 13364 return std::make_pair(0U, &PPC::GPRCRegClass); 13365 // 'd' and 'f' constraints are both defined to be "the floating point 13366 // registers", where one is for 32-bit and the other for 64-bit. We don't 13367 // really care overly much here so just give them all the same reg classes. 13368 case 'd': 13369 case 'f': 13370 if (Subtarget.hasSPE()) { 13371 if (VT == MVT::f32 || VT == MVT::i32) 13372 return std::make_pair(0U, &PPC::SPE4RCRegClass); 13373 if (VT == MVT::f64 || VT == MVT::i64) 13374 return std::make_pair(0U, &PPC::SPERCRegClass); 13375 } else { 13376 if (VT == MVT::f32 || VT == MVT::i32) 13377 return std::make_pair(0U, &PPC::F4RCRegClass); 13378 if (VT == MVT::f64 || VT == MVT::i64) 13379 return std::make_pair(0U, &PPC::F8RCRegClass); 13380 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13381 return std::make_pair(0U, &PPC::QFRCRegClass); 13382 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13383 return std::make_pair(0U, &PPC::QSRCRegClass); 13384 } 13385 break; 13386 case 'v': 13387 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13388 return std::make_pair(0U, &PPC::QFRCRegClass); 13389 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13390 return std::make_pair(0U, &PPC::QSRCRegClass); 13391 if (Subtarget.hasAltivec()) 13392 return std::make_pair(0U, &PPC::VRRCRegClass); 13393 break; 13394 case 'y': // crrc 13395 return std::make_pair(0U, &PPC::CRRCRegClass); 13396 } 13397 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13398 // An individual CR bit. 13399 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13400 } else if ((Constraint == "wa" || Constraint == "wd" || 13401 Constraint == "wf") && Subtarget.hasVSX()) { 13402 return std::make_pair(0U, &PPC::VSRCRegClass); 13403 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13404 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13405 return std::make_pair(0U, &PPC::VSSRCRegClass); 13406 else 13407 return std::make_pair(0U, &PPC::VSFRCRegClass); 13408 } 13409 13410 std::pair<unsigned, const TargetRegisterClass *> R = 13411 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13412 13413 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13414 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13415 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13416 // register. 13417 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13418 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13419 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13420 PPC::GPRCRegClass.contains(R.first)) 13421 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13422 PPC::sub_32, &PPC::G8RCRegClass), 13423 &PPC::G8RCRegClass); 13424 13425 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13426 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13427 R.first = PPC::CR0; 13428 R.second = &PPC::CRRCRegClass; 13429 } 13430 13431 return R; 13432 } 13433 13434 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13435 /// vector. If it is invalid, don't add anything to Ops. 13436 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13437 std::string &Constraint, 13438 std::vector<SDValue>&Ops, 13439 SelectionDAG &DAG) const { 13440 SDValue Result; 13441 13442 // Only support length 1 constraints. 13443 if (Constraint.length() > 1) return; 13444 13445 char Letter = Constraint[0]; 13446 switch (Letter) { 13447 default: break; 13448 case 'I': 13449 case 'J': 13450 case 'K': 13451 case 'L': 13452 case 'M': 13453 case 'N': 13454 case 'O': 13455 case 'P': { 13456 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13457 if (!CST) return; // Must be an immediate to match. 13458 SDLoc dl(Op); 13459 int64_t Value = CST->getSExtValue(); 13460 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13461 // numbers are printed as such. 13462 switch (Letter) { 13463 default: llvm_unreachable("Unknown constraint letter!"); 13464 case 'I': // "I" is a signed 16-bit constant. 13465 if (isInt<16>(Value)) 13466 Result = DAG.getTargetConstant(Value, dl, TCVT); 13467 break; 13468 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13469 if (isShiftedUInt<16, 16>(Value)) 13470 Result = DAG.getTargetConstant(Value, dl, TCVT); 13471 break; 13472 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13473 if (isShiftedInt<16, 16>(Value)) 13474 Result = DAG.getTargetConstant(Value, dl, TCVT); 13475 break; 13476 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13477 if (isUInt<16>(Value)) 13478 Result = DAG.getTargetConstant(Value, dl, TCVT); 13479 break; 13480 case 'M': // "M" is a constant that is greater than 31. 13481 if (Value > 31) 13482 Result = DAG.getTargetConstant(Value, dl, TCVT); 13483 break; 13484 case 'N': // "N" is a positive constant that is an exact power of two. 13485 if (Value > 0 && isPowerOf2_64(Value)) 13486 Result = DAG.getTargetConstant(Value, dl, TCVT); 13487 break; 13488 case 'O': // "O" is the constant zero. 13489 if (Value == 0) 13490 Result = DAG.getTargetConstant(Value, dl, TCVT); 13491 break; 13492 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13493 if (isInt<16>(-Value)) 13494 Result = DAG.getTargetConstant(Value, dl, TCVT); 13495 break; 13496 } 13497 break; 13498 } 13499 } 13500 13501 if (Result.getNode()) { 13502 Ops.push_back(Result); 13503 return; 13504 } 13505 13506 // Handle standard constraint letters. 13507 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13508 } 13509 13510 // isLegalAddressingMode - Return true if the addressing mode represented 13511 // by AM is legal for this target, for a load/store of the specified type. 13512 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13513 const AddrMode &AM, Type *Ty, 13514 unsigned AS, Instruction *I) const { 13515 // PPC does not allow r+i addressing modes for vectors! 13516 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13517 return false; 13518 13519 // PPC allows a sign-extended 16-bit immediate field. 13520 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13521 return false; 13522 13523 // No global is ever allowed as a base. 13524 if (AM.BaseGV) 13525 return false; 13526 13527 // PPC only support r+r, 13528 switch (AM.Scale) { 13529 case 0: // "r+i" or just "i", depending on HasBaseReg. 13530 break; 13531 case 1: 13532 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13533 return false; 13534 // Otherwise we have r+r or r+i. 13535 break; 13536 case 2: 13537 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13538 return false; 13539 // Allow 2*r as r+r. 13540 break; 13541 default: 13542 // No other scales are supported. 13543 return false; 13544 } 13545 13546 return true; 13547 } 13548 13549 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13550 SelectionDAG &DAG) const { 13551 MachineFunction &MF = DAG.getMachineFunction(); 13552 MachineFrameInfo &MFI = MF.getFrameInfo(); 13553 MFI.setReturnAddressIsTaken(true); 13554 13555 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13556 return SDValue(); 13557 13558 SDLoc dl(Op); 13559 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13560 13561 // Make sure the function does not optimize away the store of the RA to 13562 // the stack. 13563 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13564 FuncInfo->setLRStoreRequired(); 13565 bool isPPC64 = Subtarget.isPPC64(); 13566 auto PtrVT = getPointerTy(MF.getDataLayout()); 13567 13568 if (Depth > 0) { 13569 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13570 SDValue Offset = 13571 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13572 isPPC64 ? MVT::i64 : MVT::i32); 13573 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13574 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13575 MachinePointerInfo()); 13576 } 13577 13578 // Just load the return address off the stack. 13579 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 13580 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 13581 MachinePointerInfo()); 13582 } 13583 13584 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 13585 SelectionDAG &DAG) const { 13586 SDLoc dl(Op); 13587 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13588 13589 MachineFunction &MF = DAG.getMachineFunction(); 13590 MachineFrameInfo &MFI = MF.getFrameInfo(); 13591 MFI.setFrameAddressIsTaken(true); 13592 13593 EVT PtrVT = getPointerTy(MF.getDataLayout()); 13594 bool isPPC64 = PtrVT == MVT::i64; 13595 13596 // Naked functions never have a frame pointer, and so we use r1. For all 13597 // other functions, this decision must be delayed until during PEI. 13598 unsigned FrameReg; 13599 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 13600 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 13601 else 13602 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 13603 13604 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 13605 PtrVT); 13606 while (Depth--) 13607 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 13608 FrameAddr, MachinePointerInfo()); 13609 return FrameAddr; 13610 } 13611 13612 // FIXME? Maybe this could be a TableGen attribute on some registers and 13613 // this table could be generated automatically from RegInfo. 13614 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 13615 SelectionDAG &DAG) const { 13616 bool isPPC64 = Subtarget.isPPC64(); 13617 bool isDarwinABI = Subtarget.isDarwinABI(); 13618 13619 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 13620 (!isPPC64 && VT != MVT::i32)) 13621 report_fatal_error("Invalid register global variable type"); 13622 13623 bool is64Bit = isPPC64 && VT == MVT::i64; 13624 unsigned Reg = StringSwitch<unsigned>(RegName) 13625 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 13626 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 13627 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 13628 (is64Bit ? PPC::X13 : PPC::R13)) 13629 .Default(0); 13630 13631 if (Reg) 13632 return Reg; 13633 report_fatal_error("Invalid register name global variable"); 13634 } 13635 13636 bool 13637 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 13638 // The PowerPC target isn't yet aware of offsets. 13639 return false; 13640 } 13641 13642 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 13643 const CallInst &I, 13644 MachineFunction &MF, 13645 unsigned Intrinsic) const { 13646 switch (Intrinsic) { 13647 case Intrinsic::ppc_qpx_qvlfd: 13648 case Intrinsic::ppc_qpx_qvlfs: 13649 case Intrinsic::ppc_qpx_qvlfcd: 13650 case Intrinsic::ppc_qpx_qvlfcs: 13651 case Intrinsic::ppc_qpx_qvlfiwa: 13652 case Intrinsic::ppc_qpx_qvlfiwz: 13653 case Intrinsic::ppc_altivec_lvx: 13654 case Intrinsic::ppc_altivec_lvxl: 13655 case Intrinsic::ppc_altivec_lvebx: 13656 case Intrinsic::ppc_altivec_lvehx: 13657 case Intrinsic::ppc_altivec_lvewx: 13658 case Intrinsic::ppc_vsx_lxvd2x: 13659 case Intrinsic::ppc_vsx_lxvw4x: { 13660 EVT VT; 13661 switch (Intrinsic) { 13662 case Intrinsic::ppc_altivec_lvebx: 13663 VT = MVT::i8; 13664 break; 13665 case Intrinsic::ppc_altivec_lvehx: 13666 VT = MVT::i16; 13667 break; 13668 case Intrinsic::ppc_altivec_lvewx: 13669 VT = MVT::i32; 13670 break; 13671 case Intrinsic::ppc_vsx_lxvd2x: 13672 VT = MVT::v2f64; 13673 break; 13674 case Intrinsic::ppc_qpx_qvlfd: 13675 VT = MVT::v4f64; 13676 break; 13677 case Intrinsic::ppc_qpx_qvlfs: 13678 VT = MVT::v4f32; 13679 break; 13680 case Intrinsic::ppc_qpx_qvlfcd: 13681 VT = MVT::v2f64; 13682 break; 13683 case Intrinsic::ppc_qpx_qvlfcs: 13684 VT = MVT::v2f32; 13685 break; 13686 default: 13687 VT = MVT::v4i32; 13688 break; 13689 } 13690 13691 Info.opc = ISD::INTRINSIC_W_CHAIN; 13692 Info.memVT = VT; 13693 Info.ptrVal = I.getArgOperand(0); 13694 Info.offset = -VT.getStoreSize()+1; 13695 Info.size = 2*VT.getStoreSize()-1; 13696 Info.align = 1; 13697 Info.flags = MachineMemOperand::MOLoad; 13698 return true; 13699 } 13700 case Intrinsic::ppc_qpx_qvlfda: 13701 case Intrinsic::ppc_qpx_qvlfsa: 13702 case Intrinsic::ppc_qpx_qvlfcda: 13703 case Intrinsic::ppc_qpx_qvlfcsa: 13704 case Intrinsic::ppc_qpx_qvlfiwaa: 13705 case Intrinsic::ppc_qpx_qvlfiwza: { 13706 EVT VT; 13707 switch (Intrinsic) { 13708 case Intrinsic::ppc_qpx_qvlfda: 13709 VT = MVT::v4f64; 13710 break; 13711 case Intrinsic::ppc_qpx_qvlfsa: 13712 VT = MVT::v4f32; 13713 break; 13714 case Intrinsic::ppc_qpx_qvlfcda: 13715 VT = MVT::v2f64; 13716 break; 13717 case Intrinsic::ppc_qpx_qvlfcsa: 13718 VT = MVT::v2f32; 13719 break; 13720 default: 13721 VT = MVT::v4i32; 13722 break; 13723 } 13724 13725 Info.opc = ISD::INTRINSIC_W_CHAIN; 13726 Info.memVT = VT; 13727 Info.ptrVal = I.getArgOperand(0); 13728 Info.offset = 0; 13729 Info.size = VT.getStoreSize(); 13730 Info.align = 1; 13731 Info.flags = MachineMemOperand::MOLoad; 13732 return true; 13733 } 13734 case Intrinsic::ppc_qpx_qvstfd: 13735 case Intrinsic::ppc_qpx_qvstfs: 13736 case Intrinsic::ppc_qpx_qvstfcd: 13737 case Intrinsic::ppc_qpx_qvstfcs: 13738 case Intrinsic::ppc_qpx_qvstfiw: 13739 case Intrinsic::ppc_altivec_stvx: 13740 case Intrinsic::ppc_altivec_stvxl: 13741 case Intrinsic::ppc_altivec_stvebx: 13742 case Intrinsic::ppc_altivec_stvehx: 13743 case Intrinsic::ppc_altivec_stvewx: 13744 case Intrinsic::ppc_vsx_stxvd2x: 13745 case Intrinsic::ppc_vsx_stxvw4x: { 13746 EVT VT; 13747 switch (Intrinsic) { 13748 case Intrinsic::ppc_altivec_stvebx: 13749 VT = MVT::i8; 13750 break; 13751 case Intrinsic::ppc_altivec_stvehx: 13752 VT = MVT::i16; 13753 break; 13754 case Intrinsic::ppc_altivec_stvewx: 13755 VT = MVT::i32; 13756 break; 13757 case Intrinsic::ppc_vsx_stxvd2x: 13758 VT = MVT::v2f64; 13759 break; 13760 case Intrinsic::ppc_qpx_qvstfd: 13761 VT = MVT::v4f64; 13762 break; 13763 case Intrinsic::ppc_qpx_qvstfs: 13764 VT = MVT::v4f32; 13765 break; 13766 case Intrinsic::ppc_qpx_qvstfcd: 13767 VT = MVT::v2f64; 13768 break; 13769 case Intrinsic::ppc_qpx_qvstfcs: 13770 VT = MVT::v2f32; 13771 break; 13772 default: 13773 VT = MVT::v4i32; 13774 break; 13775 } 13776 13777 Info.opc = ISD::INTRINSIC_VOID; 13778 Info.memVT = VT; 13779 Info.ptrVal = I.getArgOperand(1); 13780 Info.offset = -VT.getStoreSize()+1; 13781 Info.size = 2*VT.getStoreSize()-1; 13782 Info.align = 1; 13783 Info.flags = MachineMemOperand::MOStore; 13784 return true; 13785 } 13786 case Intrinsic::ppc_qpx_qvstfda: 13787 case Intrinsic::ppc_qpx_qvstfsa: 13788 case Intrinsic::ppc_qpx_qvstfcda: 13789 case Intrinsic::ppc_qpx_qvstfcsa: 13790 case Intrinsic::ppc_qpx_qvstfiwa: { 13791 EVT VT; 13792 switch (Intrinsic) { 13793 case Intrinsic::ppc_qpx_qvstfda: 13794 VT = MVT::v4f64; 13795 break; 13796 case Intrinsic::ppc_qpx_qvstfsa: 13797 VT = MVT::v4f32; 13798 break; 13799 case Intrinsic::ppc_qpx_qvstfcda: 13800 VT = MVT::v2f64; 13801 break; 13802 case Intrinsic::ppc_qpx_qvstfcsa: 13803 VT = MVT::v2f32; 13804 break; 13805 default: 13806 VT = MVT::v4i32; 13807 break; 13808 } 13809 13810 Info.opc = ISD::INTRINSIC_VOID; 13811 Info.memVT = VT; 13812 Info.ptrVal = I.getArgOperand(1); 13813 Info.offset = 0; 13814 Info.size = VT.getStoreSize(); 13815 Info.align = 1; 13816 Info.flags = MachineMemOperand::MOStore; 13817 return true; 13818 } 13819 default: 13820 break; 13821 } 13822 13823 return false; 13824 } 13825 13826 /// getOptimalMemOpType - Returns the target specific optimal type for load 13827 /// and store operations as a result of memset, memcpy, and memmove 13828 /// lowering. If DstAlign is zero that means it's safe to destination 13829 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 13830 /// means there isn't a need to check it against alignment requirement, 13831 /// probably because the source does not need to be loaded. If 'IsMemset' is 13832 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 13833 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 13834 /// source is constant so it does not need to be loaded. 13835 /// It returns EVT::Other if the type should be determined using generic 13836 /// target-independent logic. 13837 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 13838 unsigned DstAlign, unsigned SrcAlign, 13839 bool IsMemset, bool ZeroMemset, 13840 bool MemcpyStrSrc, 13841 MachineFunction &MF) const { 13842 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 13843 const Function &F = MF.getFunction(); 13844 // When expanding a memset, require at least two QPX instructions to cover 13845 // the cost of loading the value to be stored from the constant pool. 13846 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 13847 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 13848 !F.hasFnAttribute(Attribute::NoImplicitFloat)) { 13849 return MVT::v4f64; 13850 } 13851 13852 // We should use Altivec/VSX loads and stores when available. For unaligned 13853 // addresses, unaligned VSX loads are only fast starting with the P8. 13854 if (Subtarget.hasAltivec() && Size >= 16 && 13855 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 13856 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 13857 return MVT::v4i32; 13858 } 13859 13860 if (Subtarget.isPPC64()) { 13861 return MVT::i64; 13862 } 13863 13864 return MVT::i32; 13865 } 13866 13867 /// Returns true if it is beneficial to convert a load of a constant 13868 /// to just the constant itself. 13869 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 13870 Type *Ty) const { 13871 assert(Ty->isIntegerTy()); 13872 13873 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 13874 return !(BitSize == 0 || BitSize > 64); 13875 } 13876 13877 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 13878 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 13879 return false; 13880 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 13881 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 13882 return NumBits1 == 64 && NumBits2 == 32; 13883 } 13884 13885 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 13886 if (!VT1.isInteger() || !VT2.isInteger()) 13887 return false; 13888 unsigned NumBits1 = VT1.getSizeInBits(); 13889 unsigned NumBits2 = VT2.getSizeInBits(); 13890 return NumBits1 == 64 && NumBits2 == 32; 13891 } 13892 13893 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 13894 // Generally speaking, zexts are not free, but they are free when they can be 13895 // folded with other operations. 13896 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 13897 EVT MemVT = LD->getMemoryVT(); 13898 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 13899 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 13900 (LD->getExtensionType() == ISD::NON_EXTLOAD || 13901 LD->getExtensionType() == ISD::ZEXTLOAD)) 13902 return true; 13903 } 13904 13905 // FIXME: Add other cases... 13906 // - 32-bit shifts with a zext to i64 13907 // - zext after ctlz, bswap, etc. 13908 // - zext after and by a constant mask 13909 13910 return TargetLowering::isZExtFree(Val, VT2); 13911 } 13912 13913 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 13914 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 13915 "invalid fpext types"); 13916 // Extending to float128 is not free. 13917 if (DestVT == MVT::f128) 13918 return false; 13919 return true; 13920 } 13921 13922 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 13923 return isInt<16>(Imm) || isUInt<16>(Imm); 13924 } 13925 13926 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 13927 return isInt<16>(Imm) || isUInt<16>(Imm); 13928 } 13929 13930 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 13931 unsigned, 13932 unsigned, 13933 bool *Fast) const { 13934 if (DisablePPCUnaligned) 13935 return false; 13936 13937 // PowerPC supports unaligned memory access for simple non-vector types. 13938 // Although accessing unaligned addresses is not as efficient as accessing 13939 // aligned addresses, it is generally more efficient than manual expansion, 13940 // and generally only traps for software emulation when crossing page 13941 // boundaries. 13942 13943 if (!VT.isSimple()) 13944 return false; 13945 13946 if (VT.getSimpleVT().isVector()) { 13947 if (Subtarget.hasVSX()) { 13948 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 13949 VT != MVT::v4f32 && VT != MVT::v4i32) 13950 return false; 13951 } else { 13952 return false; 13953 } 13954 } 13955 13956 if (VT == MVT::ppcf128) 13957 return false; 13958 13959 if (Fast) 13960 *Fast = true; 13961 13962 return true; 13963 } 13964 13965 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 13966 VT = VT.getScalarType(); 13967 13968 if (!VT.isSimple()) 13969 return false; 13970 13971 switch (VT.getSimpleVT().SimpleTy) { 13972 case MVT::f32: 13973 case MVT::f64: 13974 return true; 13975 case MVT::f128: 13976 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 13977 default: 13978 break; 13979 } 13980 13981 return false; 13982 } 13983 13984 const MCPhysReg * 13985 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 13986 // LR is a callee-save register, but we must treat it as clobbered by any call 13987 // site. Hence we include LR in the scratch registers, which are in turn added 13988 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 13989 // to CTR, which is used by any indirect call. 13990 static const MCPhysReg ScratchRegs[] = { 13991 PPC::X12, PPC::LR8, PPC::CTR8, 0 13992 }; 13993 13994 return ScratchRegs; 13995 } 13996 13997 unsigned PPCTargetLowering::getExceptionPointerRegister( 13998 const Constant *PersonalityFn) const { 13999 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14000 } 14001 14002 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14003 const Constant *PersonalityFn) const { 14004 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14005 } 14006 14007 bool 14008 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14009 EVT VT , unsigned DefinedValues) const { 14010 if (VT == MVT::v2i64) 14011 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14012 14013 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14014 return true; 14015 14016 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14017 } 14018 14019 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14020 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14021 return TargetLowering::getSchedulingPreference(N); 14022 14023 return Sched::ILP; 14024 } 14025 14026 // Create a fast isel object. 14027 FastISel * 14028 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14029 const TargetLibraryInfo *LibInfo) const { 14030 return PPC::createFastISel(FuncInfo, LibInfo); 14031 } 14032 14033 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14034 if (Subtarget.isDarwinABI()) return; 14035 if (!Subtarget.isPPC64()) return; 14036 14037 // Update IsSplitCSR in PPCFunctionInfo 14038 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14039 PFI->setIsSplitCSR(true); 14040 } 14041 14042 void PPCTargetLowering::insertCopiesSplitCSR( 14043 MachineBasicBlock *Entry, 14044 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14045 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14046 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14047 if (!IStart) 14048 return; 14049 14050 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14051 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14052 MachineBasicBlock::iterator MBBI = Entry->begin(); 14053 for (const MCPhysReg *I = IStart; *I; ++I) { 14054 const TargetRegisterClass *RC = nullptr; 14055 if (PPC::G8RCRegClass.contains(*I)) 14056 RC = &PPC::G8RCRegClass; 14057 else if (PPC::F8RCRegClass.contains(*I)) 14058 RC = &PPC::F8RCRegClass; 14059 else if (PPC::CRRCRegClass.contains(*I)) 14060 RC = &PPC::CRRCRegClass; 14061 else if (PPC::VRRCRegClass.contains(*I)) 14062 RC = &PPC::VRRCRegClass; 14063 else 14064 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14065 14066 unsigned NewVR = MRI->createVirtualRegister(RC); 14067 // Create copy from CSR to a virtual register. 14068 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14069 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14070 // nounwind. If we want to generalize this later, we may need to emit 14071 // CFI pseudo-instructions. 14072 assert(Entry->getParent()->getFunction().hasFnAttribute( 14073 Attribute::NoUnwind) && 14074 "Function should be nounwind in insertCopiesSplitCSR!"); 14075 Entry->addLiveIn(*I); 14076 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14077 .addReg(*I); 14078 14079 // Insert the copy-back instructions right before the terminator 14080 for (auto *Exit : Exits) 14081 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14082 TII->get(TargetOpcode::COPY), *I) 14083 .addReg(NewVR); 14084 } 14085 } 14086 14087 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14088 bool PPCTargetLowering::useLoadStackGuardNode() const { 14089 if (!Subtarget.isTargetLinux()) 14090 return TargetLowering::useLoadStackGuardNode(); 14091 return true; 14092 } 14093 14094 // Override to disable global variable loading on Linux. 14095 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14096 if (!Subtarget.isTargetLinux()) 14097 return TargetLowering::insertSSPDeclarations(M); 14098 } 14099 14100 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 14101 if (!VT.isSimple() || !Subtarget.hasVSX()) 14102 return false; 14103 14104 switch(VT.getSimpleVT().SimpleTy) { 14105 default: 14106 // For FP types that are currently not supported by PPC backend, return 14107 // false. Examples: f16, f80. 14108 return false; 14109 case MVT::f32: 14110 case MVT::f64: 14111 case MVT::ppcf128: 14112 return Imm.isPosZero(); 14113 } 14114 } 14115 14116 // For vector shift operation op, fold 14117 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14118 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14119 SelectionDAG &DAG) { 14120 SDValue N0 = N->getOperand(0); 14121 SDValue N1 = N->getOperand(1); 14122 EVT VT = N0.getValueType(); 14123 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14124 unsigned Opcode = N->getOpcode(); 14125 unsigned TargetOpcode; 14126 14127 switch (Opcode) { 14128 default: 14129 llvm_unreachable("Unexpected shift operation"); 14130 case ISD::SHL: 14131 TargetOpcode = PPCISD::SHL; 14132 break; 14133 case ISD::SRL: 14134 TargetOpcode = PPCISD::SRL; 14135 break; 14136 case ISD::SRA: 14137 TargetOpcode = PPCISD::SRA; 14138 break; 14139 } 14140 14141 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14142 N1->getOpcode() == ISD::AND) 14143 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14144 if (Mask->getZExtValue() == OpSizeInBits - 1) 14145 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14146 14147 return SDValue(); 14148 } 14149 14150 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14151 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14152 return Value; 14153 14154 SDValue N0 = N->getOperand(0); 14155 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14156 if (!Subtarget.isISA3_0() || 14157 N0.getOpcode() != ISD::SIGN_EXTEND || 14158 N0.getOperand(0).getValueType() != MVT::i32 || 14159 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14160 return SDValue(); 14161 14162 // We can't save an operation here if the value is already extended, and 14163 // the existing shift is easier to combine. 14164 SDValue ExtsSrc = N0.getOperand(0); 14165 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14166 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14167 return SDValue(); 14168 14169 SDLoc DL(N0); 14170 SDValue ShiftBy = SDValue(CN1, 0); 14171 // We want the shift amount to be i32 on the extswli, but the shift could 14172 // have an i64. 14173 if (ShiftBy.getValueType() == MVT::i64) 14174 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14175 14176 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14177 ShiftBy); 14178 } 14179 14180 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14181 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14182 return Value; 14183 14184 return SDValue(); 14185 } 14186 14187 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14188 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14189 return Value; 14190 14191 return SDValue(); 14192 } 14193 14194 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14195 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14196 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14197 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14198 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14199 const PPCSubtarget &Subtarget) { 14200 if (!Subtarget.isPPC64()) 14201 return SDValue(); 14202 14203 SDValue LHS = N->getOperand(0); 14204 SDValue RHS = N->getOperand(1); 14205 14206 auto isZextOfCompareWithConstant = [](SDValue Op) { 14207 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14208 Op.getValueType() != MVT::i64) 14209 return false; 14210 14211 SDValue Cmp = Op.getOperand(0); 14212 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14213 Cmp.getOperand(0).getValueType() != MVT::i64) 14214 return false; 14215 14216 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14217 int64_t NegConstant = 0 - Constant->getSExtValue(); 14218 // Due to the limitations of the addi instruction, 14219 // -C is required to be [-32768, 32767]. 14220 return isInt<16>(NegConstant); 14221 } 14222 14223 return false; 14224 }; 14225 14226 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14227 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14228 14229 // If there is a pattern, canonicalize a zext operand to the RHS. 14230 if (LHSHasPattern && !RHSHasPattern) 14231 std::swap(LHS, RHS); 14232 else if (!LHSHasPattern && !RHSHasPattern) 14233 return SDValue(); 14234 14235 SDLoc DL(N); 14236 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64); 14237 SDValue Cmp = RHS.getOperand(0); 14238 SDValue Z = Cmp.getOperand(0); 14239 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14240 14241 assert(Constant && "Constant Should not be a null pointer."); 14242 int64_t NegConstant = 0 - Constant->getSExtValue(); 14243 14244 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14245 default: break; 14246 case ISD::SETNE: { 14247 // when C == 0 14248 // --> addze X, (addic Z, -1).carry 14249 // / 14250 // add X, (zext(setne Z, C))-- 14251 // \ when -32768 <= -C <= 32767 && C != 0 14252 // --> addze X, (addic (addi Z, -C), -1).carry 14253 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14254 DAG.getConstant(NegConstant, DL, MVT::i64)); 14255 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14256 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14257 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14258 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14259 SDValue(Addc.getNode(), 1)); 14260 } 14261 case ISD::SETEQ: { 14262 // when C == 0 14263 // --> addze X, (subfic Z, 0).carry 14264 // / 14265 // add X, (zext(sete Z, C))-- 14266 // \ when -32768 <= -C <= 32767 && C != 0 14267 // --> addze X, (subfic (addi Z, -C), 0).carry 14268 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14269 DAG.getConstant(NegConstant, DL, MVT::i64)); 14270 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14271 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14272 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14273 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14274 SDValue(Subc.getNode(), 1)); 14275 } 14276 } 14277 14278 return SDValue(); 14279 } 14280 14281 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 14282 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 14283 return Value; 14284 14285 return SDValue(); 14286 } 14287 14288 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14289 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 14290 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 14291 return false; 14292 14293 // If not a tail call then no need to proceed. 14294 if (!CI->isTailCall()) 14295 return false; 14296 14297 // If tail calls are disabled for the caller then we are done. 14298 const Function *Caller = CI->getParent()->getParent(); 14299 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 14300 if (Attr.getValueAsString() == "true") 14301 return false; 14302 14303 // If sibling calls have been disabled and tail-calls aren't guaranteed 14304 // there is no reason to duplicate. 14305 auto &TM = getTargetMachine(); 14306 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14307 return false; 14308 14309 // Can't tail call a function called indirectly, or if it has variadic args. 14310 const Function *Callee = CI->getCalledFunction(); 14311 if (!Callee || Callee->isVarArg()) 14312 return false; 14313 14314 // Make sure the callee and caller calling conventions are eligible for tco. 14315 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14316 CI->getCallingConv())) 14317 return false; 14318 14319 // If the function is local then we have a good chance at tail-calling it 14320 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14321 } 14322 14323 bool PPCTargetLowering:: 14324 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14325 const Value *Mask = AndI.getOperand(1); 14326 // If the mask is suitable for andi. or andis. we should sink the and. 14327 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14328 // Can't handle constants wider than 64-bits. 14329 if (CI->getBitWidth() > 64) 14330 return false; 14331 int64_t ConstVal = CI->getZExtValue(); 14332 return isUInt<16>(ConstVal) || 14333 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14334 } 14335 14336 // For non-constant masks, we can always use the record-form and. 14337 return true; 14338 } 14339