1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 STATISTIC(NumTailCalls, "Number of tail calls"); 125 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 // FIXME: Remove this once the bug has been fixed! 134 extern cl::opt<bool> ANDIGlueBug; 135 136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 137 const PPCSubtarget &STI) 138 : TargetLowering(TM), Subtarget(STI) { 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 if (Subtarget.isISA3_0()) { 170 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 172 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 174 } else { 175 // No extending loads from f16 or HW conversions back and forth. 176 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 177 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 178 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 180 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 181 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 182 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 183 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 184 } 185 186 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 187 188 // PowerPC has pre-inc load and store's. 189 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 194 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 199 if (!Subtarget.hasSPE()) { 200 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 204 } 205 206 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 207 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 208 for (MVT VT : ScalarIntVTs) { 209 setOperationAction(ISD::ADDC, VT, Legal); 210 setOperationAction(ISD::ADDE, VT, Legal); 211 setOperationAction(ISD::SUBC, VT, Legal); 212 setOperationAction(ISD::SUBE, VT, Legal); 213 } 214 215 if (Subtarget.useCRBits()) { 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 217 218 if (isPPC64 || Subtarget.hasFPCVT()) { 219 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 220 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 221 isPPC64 ? MVT::i64 : MVT::i32); 222 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 223 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 224 isPPC64 ? MVT::i64 : MVT::i32); 225 } else { 226 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 227 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 228 } 229 230 // PowerPC does not support direct load/store of condition registers. 231 setOperationAction(ISD::LOAD, MVT::i1, Custom); 232 setOperationAction(ISD::STORE, MVT::i1, Custom); 233 234 // FIXME: Remove this once the ANDI glue bug is fixed: 235 if (ANDIGlueBug) 236 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 237 238 for (MVT VT : MVT::integer_valuetypes()) { 239 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 240 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 241 setTruncStoreAction(VT, MVT::i1, Expand); 242 } 243 244 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 245 } 246 247 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 248 // PPC (the libcall is not available). 249 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 250 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 251 252 // We do not currently implement these libm ops for PowerPC. 253 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 254 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 259 260 // PowerPC has no SREM/UREM instructions unless we are on P9 261 // On P9 we may use a hardware instruction to compute the remainder. 262 // When the result of both the remainder and the division is required it is 263 // more efficient to compute the remainder from the result of the division 264 // rather than use the remainder instruction. The instructions are legalized 265 // directly because the DivRemPairsPass performs the transformation at the IR 266 // level. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Legal); 269 setOperationAction(ISD::UREM, MVT::i32, Legal); 270 setOperationAction(ISD::SREM, MVT::i64, Legal); 271 setOperationAction(ISD::UREM, MVT::i64, Legal); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // Handle constrained floating-point operations of scalar. 290 // TODO: Handle SPE specific operation. 291 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 296 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 297 298 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 302 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 303 if (Subtarget.hasVSX()) 304 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 305 306 if (Subtarget.hasFSQRT()) { 307 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 315 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 316 317 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 319 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 320 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 321 } 322 323 // We don't support sin/cos/sqrt/fmod/pow 324 setOperationAction(ISD::FSIN , MVT::f64, Expand); 325 setOperationAction(ISD::FCOS , MVT::f64, Expand); 326 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 327 setOperationAction(ISD::FREM , MVT::f64, Expand); 328 setOperationAction(ISD::FPOW , MVT::f64, Expand); 329 setOperationAction(ISD::FSIN , MVT::f32, Expand); 330 setOperationAction(ISD::FCOS , MVT::f32, Expand); 331 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 332 setOperationAction(ISD::FREM , MVT::f32, Expand); 333 setOperationAction(ISD::FPOW , MVT::f32, Expand); 334 if (Subtarget.hasSPE()) { 335 setOperationAction(ISD::FMA , MVT::f64, Expand); 336 setOperationAction(ISD::FMA , MVT::f32, Expand); 337 } else { 338 setOperationAction(ISD::FMA , MVT::f64, Legal); 339 setOperationAction(ISD::FMA , MVT::f32, Legal); 340 } 341 342 if (Subtarget.hasSPE()) 343 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 344 345 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 346 347 // If we're enabling GP optimizations, use hardware square root 348 if (!Subtarget.hasFSQRT() && 349 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 350 Subtarget.hasFRE())) 351 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 352 353 if (!Subtarget.hasFSQRT() && 354 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 355 Subtarget.hasFRES())) 356 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 357 358 if (Subtarget.hasFCPSGN()) { 359 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 361 } else { 362 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 363 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 364 } 365 366 if (Subtarget.hasFPRND()) { 367 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 368 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 369 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 370 setOperationAction(ISD::FROUND, MVT::f64, Legal); 371 372 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 373 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 374 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 375 setOperationAction(ISD::FROUND, MVT::f32, Legal); 376 } 377 378 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 379 // to speed up scalar BSWAP64. 380 // CTPOP or CTTZ were introduced in P8/P9 respectively 381 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 382 if (Subtarget.hasP9Vector()) 383 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 384 else 385 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 386 if (Subtarget.isISA3_0()) { 387 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 388 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 389 } else { 390 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 391 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 392 } 393 394 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 395 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 396 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 397 } else { 398 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 399 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 400 } 401 402 // PowerPC does not have ROTR 403 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 404 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 405 406 if (!Subtarget.useCRBits()) { 407 // PowerPC does not have Select 408 setOperationAction(ISD::SELECT, MVT::i32, Expand); 409 setOperationAction(ISD::SELECT, MVT::i64, Expand); 410 setOperationAction(ISD::SELECT, MVT::f32, Expand); 411 setOperationAction(ISD::SELECT, MVT::f64, Expand); 412 } 413 414 // PowerPC wants to turn select_cc of FP into fsel when possible. 415 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 416 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 417 418 // PowerPC wants to optimize integer setcc a bit 419 if (!Subtarget.useCRBits()) 420 setOperationAction(ISD::SETCC, MVT::i32, Custom); 421 422 // PowerPC does not have BRCOND which requires SetCC 423 if (!Subtarget.useCRBits()) 424 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 425 426 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 427 428 if (Subtarget.hasSPE()) { 429 // SPE has built-in conversions 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 432 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 433 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 434 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 435 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 436 } else { 437 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 438 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 439 440 // PowerPC does not have [U|S]INT_TO_FP 441 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 442 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 443 } 444 445 if (Subtarget.hasDirectMove() && isPPC64) { 446 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 447 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 448 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 449 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 450 if (TM.Options.UnsafeFPMath) { 451 setOperationAction(ISD::LRINT, MVT::f64, Legal); 452 setOperationAction(ISD::LRINT, MVT::f32, Legal); 453 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 454 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 455 setOperationAction(ISD::LROUND, MVT::f64, Legal); 456 setOperationAction(ISD::LROUND, MVT::f32, Legal); 457 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 458 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 459 } 460 } else { 461 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 462 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 463 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 464 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 465 } 466 467 // We cannot sextinreg(i1). Expand to shifts. 468 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 469 470 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 471 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 472 // support continuation, user-level threading, and etc.. As a result, no 473 // other SjLj exception interfaces are implemented and please don't build 474 // your own exception handling based on them. 475 // LLVM/Clang supports zero-cost DWARF exception handling. 476 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 477 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 478 479 // We want to legalize GlobalAddress and ConstantPool nodes into the 480 // appropriate instructions to materialize the address. 481 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 482 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 483 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 484 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 485 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 486 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 487 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 488 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 489 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 490 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 491 492 // TRAP is legal. 493 setOperationAction(ISD::TRAP, MVT::Other, Legal); 494 495 // TRAMPOLINE is custom lowered. 496 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 497 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 498 499 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 500 setOperationAction(ISD::VASTART , MVT::Other, Custom); 501 502 if (Subtarget.is64BitELFABI()) { 503 // VAARG always uses double-word chunks, so promote anything smaller. 504 setOperationAction(ISD::VAARG, MVT::i1, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::i8, Promote); 507 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 508 setOperationAction(ISD::VAARG, MVT::i16, Promote); 509 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 510 setOperationAction(ISD::VAARG, MVT::i32, Promote); 511 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 512 setOperationAction(ISD::VAARG, MVT::Other, Expand); 513 } else if (Subtarget.is32BitELFABI()) { 514 // VAARG is custom lowered with the 32-bit SVR4 ABI. 515 setOperationAction(ISD::VAARG, MVT::Other, Custom); 516 setOperationAction(ISD::VAARG, MVT::i64, Custom); 517 } else 518 setOperationAction(ISD::VAARG, MVT::Other, Expand); 519 520 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 521 if (Subtarget.is32BitELFABI()) 522 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 523 else 524 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 525 526 // Use the default implementation. 527 setOperationAction(ISD::VAEND , MVT::Other, Expand); 528 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 529 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 530 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 531 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 532 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 533 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 534 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 535 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 536 537 // We want to custom lower some of our intrinsics. 538 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 539 540 // To handle counter-based loop conditions. 541 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 542 543 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 544 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 545 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 546 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 547 548 // Comparisons that require checking two conditions. 549 if (Subtarget.hasSPE()) { 550 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 551 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 552 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 553 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 554 } 555 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 561 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 562 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 563 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 564 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 565 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 566 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 567 568 if (Subtarget.has64BitSupport()) { 569 // They also have instructions for converting between i64 and fp. 570 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 571 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 572 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 573 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 574 // This is just the low 32 bits of a (signed) fp->i64 conversion. 575 // We cannot do this with Promote because i64 is not a legal type. 576 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 577 578 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 579 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 580 } else { 581 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 582 if (Subtarget.hasSPE()) { 583 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 584 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 585 } else 586 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 587 } 588 589 // With the instructions enabled under FPCVT, we can do everything. 590 if (Subtarget.hasFPCVT()) { 591 if (Subtarget.has64BitSupport()) { 592 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 593 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 594 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 595 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 596 } 597 598 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 599 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 600 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 601 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 602 } 603 604 if (Subtarget.use64BitRegs()) { 605 // 64-bit PowerPC implementations can support i64 types directly 606 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 607 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 608 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 609 // 64-bit PowerPC wants to expand i128 shifts itself. 610 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 611 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 612 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 613 } else { 614 // 32-bit PowerPC wants to expand i64 shifts itself. 615 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 616 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 617 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 618 } 619 620 // PowerPC has better expansions for funnel shifts than the generic 621 // TargetLowering::expandFunnelShift. 622 if (Subtarget.has64BitSupport()) { 623 setOperationAction(ISD::FSHL, MVT::i64, Custom); 624 setOperationAction(ISD::FSHR, MVT::i64, Custom); 625 } 626 setOperationAction(ISD::FSHL, MVT::i32, Custom); 627 setOperationAction(ISD::FSHR, MVT::i32, Custom); 628 629 if (Subtarget.hasVSX()) { 630 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 631 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 632 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 633 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 634 } 635 636 if (Subtarget.hasAltivec()) { 637 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 638 setOperationAction(ISD::SADDSAT, VT, Legal); 639 setOperationAction(ISD::SSUBSAT, VT, Legal); 640 setOperationAction(ISD::UADDSAT, VT, Legal); 641 setOperationAction(ISD::USUBSAT, VT, Legal); 642 } 643 // First set operation action for all vector types to expand. Then we 644 // will selectively turn on ones that can be effectively codegen'd. 645 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 646 // add/sub are legal for all supported vector VT's. 647 setOperationAction(ISD::ADD, VT, Legal); 648 setOperationAction(ISD::SUB, VT, Legal); 649 650 // For v2i64, these are only valid with P8Vector. This is corrected after 651 // the loop. 652 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 653 setOperationAction(ISD::SMAX, VT, Legal); 654 setOperationAction(ISD::SMIN, VT, Legal); 655 setOperationAction(ISD::UMAX, VT, Legal); 656 setOperationAction(ISD::UMIN, VT, Legal); 657 } 658 else { 659 setOperationAction(ISD::SMAX, VT, Expand); 660 setOperationAction(ISD::SMIN, VT, Expand); 661 setOperationAction(ISD::UMAX, VT, Expand); 662 setOperationAction(ISD::UMIN, VT, Expand); 663 } 664 665 if (Subtarget.hasVSX()) { 666 setOperationAction(ISD::FMAXNUM, VT, Legal); 667 setOperationAction(ISD::FMINNUM, VT, Legal); 668 } 669 670 // Vector instructions introduced in P8 671 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 672 setOperationAction(ISD::CTPOP, VT, Legal); 673 setOperationAction(ISD::CTLZ, VT, Legal); 674 } 675 else { 676 setOperationAction(ISD::CTPOP, VT, Expand); 677 setOperationAction(ISD::CTLZ, VT, Expand); 678 } 679 680 // Vector instructions introduced in P9 681 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 682 setOperationAction(ISD::CTTZ, VT, Legal); 683 else 684 setOperationAction(ISD::CTTZ, VT, Expand); 685 686 // We promote all shuffles to v16i8. 687 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 688 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 689 690 // We promote all non-typed operations to v4i32. 691 setOperationAction(ISD::AND , VT, Promote); 692 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 693 setOperationAction(ISD::OR , VT, Promote); 694 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 695 setOperationAction(ISD::XOR , VT, Promote); 696 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 697 setOperationAction(ISD::LOAD , VT, Promote); 698 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 699 setOperationAction(ISD::SELECT, VT, Promote); 700 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 701 setOperationAction(ISD::VSELECT, VT, Legal); 702 setOperationAction(ISD::SELECT_CC, VT, Promote); 703 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 704 setOperationAction(ISD::STORE, VT, Promote); 705 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 706 707 // No other operations are legal. 708 setOperationAction(ISD::MUL , VT, Expand); 709 setOperationAction(ISD::SDIV, VT, Expand); 710 setOperationAction(ISD::SREM, VT, Expand); 711 setOperationAction(ISD::UDIV, VT, Expand); 712 setOperationAction(ISD::UREM, VT, Expand); 713 setOperationAction(ISD::FDIV, VT, Expand); 714 setOperationAction(ISD::FREM, VT, Expand); 715 setOperationAction(ISD::FNEG, VT, Expand); 716 setOperationAction(ISD::FSQRT, VT, Expand); 717 setOperationAction(ISD::FLOG, VT, Expand); 718 setOperationAction(ISD::FLOG10, VT, Expand); 719 setOperationAction(ISD::FLOG2, VT, Expand); 720 setOperationAction(ISD::FEXP, VT, Expand); 721 setOperationAction(ISD::FEXP2, VT, Expand); 722 setOperationAction(ISD::FSIN, VT, Expand); 723 setOperationAction(ISD::FCOS, VT, Expand); 724 setOperationAction(ISD::FABS, VT, Expand); 725 setOperationAction(ISD::FFLOOR, VT, Expand); 726 setOperationAction(ISD::FCEIL, VT, Expand); 727 setOperationAction(ISD::FTRUNC, VT, Expand); 728 setOperationAction(ISD::FRINT, VT, Expand); 729 setOperationAction(ISD::FNEARBYINT, VT, Expand); 730 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 731 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 732 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 733 setOperationAction(ISD::MULHU, VT, Expand); 734 setOperationAction(ISD::MULHS, VT, Expand); 735 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 736 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 737 setOperationAction(ISD::UDIVREM, VT, Expand); 738 setOperationAction(ISD::SDIVREM, VT, Expand); 739 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 740 setOperationAction(ISD::FPOW, VT, Expand); 741 setOperationAction(ISD::BSWAP, VT, Expand); 742 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 743 setOperationAction(ISD::ROTL, VT, Expand); 744 setOperationAction(ISD::ROTR, VT, Expand); 745 746 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 747 setTruncStoreAction(VT, InnerVT, Expand); 748 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 749 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 750 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 751 } 752 } 753 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 754 if (!Subtarget.hasP8Vector()) { 755 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 756 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 757 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 758 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 759 } 760 761 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 762 setOperationAction(ISD::ABS, VT, Custom); 763 764 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 765 // with merges, splats, etc. 766 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 767 768 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 769 // are cheap, so handle them before they get expanded to scalar. 770 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 771 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 772 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 773 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 774 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 775 776 setOperationAction(ISD::AND , MVT::v4i32, Legal); 777 setOperationAction(ISD::OR , MVT::v4i32, Legal); 778 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 779 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 780 setOperationAction(ISD::SELECT, MVT::v4i32, 781 Subtarget.useCRBits() ? Legal : Expand); 782 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 783 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 784 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 785 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 786 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 787 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 788 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 789 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 790 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 791 792 // Without hasP8Altivec set, v2i64 SMAX isn't available. 793 // But ABS custom lowering requires SMAX support. 794 if (!Subtarget.hasP8Altivec()) 795 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 796 797 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 798 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 799 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 800 if (Subtarget.hasAltivec()) 801 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 802 setOperationAction(ISD::ROTL, VT, Legal); 803 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 804 if (Subtarget.hasP8Altivec()) 805 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 806 807 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 808 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 809 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 810 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 811 812 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 813 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 814 815 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 816 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 817 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 818 } 819 820 if (Subtarget.hasP8Altivec()) 821 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 822 else 823 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 824 825 if (Subtarget.isISA3_1()) { 826 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 827 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 828 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 829 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 830 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 831 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 832 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 833 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 834 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 835 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 836 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 837 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 838 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 839 } 840 841 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 842 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 843 844 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 845 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 846 847 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 848 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 849 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 850 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 851 852 // Altivec does not contain unordered floating-point compare instructions 853 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 854 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 855 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 856 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 857 858 if (Subtarget.hasVSX()) { 859 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 860 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 861 if (Subtarget.hasP8Vector()) { 862 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 863 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 864 } 865 if (Subtarget.hasDirectMove() && isPPC64) { 866 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 867 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 868 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 869 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 870 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 871 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 872 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 873 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 874 } 875 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 876 877 // The nearbyint variants are not allowed to raise the inexact exception 878 // so we can only code-gen them with unsafe math. 879 if (TM.Options.UnsafeFPMath) { 880 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 881 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 882 } 883 884 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 885 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 886 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 887 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 888 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 889 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 890 setOperationAction(ISD::FROUND, MVT::f64, Legal); 891 setOperationAction(ISD::FRINT, MVT::f64, Legal); 892 893 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 894 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 895 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 896 setOperationAction(ISD::FROUND, MVT::f32, Legal); 897 setOperationAction(ISD::FRINT, MVT::f32, Legal); 898 899 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 900 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 901 902 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 903 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 904 905 // Share the Altivec comparison restrictions. 906 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 907 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 908 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 909 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 910 911 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 912 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 913 914 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 915 916 if (Subtarget.hasP8Vector()) 917 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 918 919 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 920 921 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 922 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 923 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 924 925 if (Subtarget.hasP8Altivec()) { 926 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 927 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 928 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 929 930 // 128 bit shifts can be accomplished via 3 instructions for SHL and 931 // SRL, but not for SRA because of the instructions available: 932 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 933 // doing 934 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 935 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 936 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 937 938 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 939 } 940 else { 941 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 942 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 943 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 944 945 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 946 947 // VSX v2i64 only supports non-arithmetic operations. 948 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 949 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 950 } 951 952 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 953 954 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 955 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 956 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 957 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 958 959 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 960 961 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 962 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 963 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 964 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 965 966 // Custom handling for partial vectors of integers converted to 967 // floating point. We already have optimal handling for v2i32 through 968 // the DAG combine, so those aren't necessary. 969 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 970 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 971 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 972 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 973 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 974 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 975 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 976 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 977 978 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 979 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 980 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 981 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 982 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 983 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 984 985 if (Subtarget.hasDirectMove()) 986 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 987 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 988 989 // Handle constrained floating-point operations of vector. 990 // The predictor is `hasVSX` because altivec instruction has 991 // no exception but VSX vector instruction has. 992 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 993 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 994 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 995 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 996 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 997 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 998 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 999 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1000 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 1001 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1002 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1003 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1004 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1005 1006 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1007 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1008 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1009 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1010 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1011 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1012 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1013 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1014 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 1015 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1016 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1017 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1018 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1019 1020 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1021 } 1022 1023 if (Subtarget.hasP8Altivec()) { 1024 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1025 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1026 } 1027 1028 if (Subtarget.hasP9Vector()) { 1029 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1030 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1031 1032 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1033 // SRL, but not for SRA because of the instructions available: 1034 // VS{RL} and VS{RL}O. 1035 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1036 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1037 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1038 1039 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1040 setOperationAction(ISD::FADD, MVT::f128, Legal); 1041 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1042 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1043 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1044 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1045 // No extending loads to f128 on PPC. 1046 for (MVT FPT : MVT::fp_valuetypes()) 1047 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1048 setOperationAction(ISD::FMA, MVT::f128, Legal); 1049 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1050 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1051 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1052 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1053 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1054 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1055 1056 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1057 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1058 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1059 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1060 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1061 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1062 1063 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1064 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1065 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1066 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1067 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1068 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1069 // No implementation for these ops for PowerPC. 1070 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1071 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1072 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1073 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1074 setOperationAction(ISD::FREM, MVT::f128, Expand); 1075 1076 // Handle constrained floating-point operations of fp128 1077 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1078 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1079 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1080 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1081 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1082 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1083 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1084 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1085 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1086 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1087 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1088 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1089 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1090 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1091 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1092 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1093 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1094 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1095 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1096 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1097 } 1098 1099 if (Subtarget.hasP9Altivec()) { 1100 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1101 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1102 1103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1104 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1105 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1106 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1107 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1108 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1109 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1110 } 1111 } 1112 1113 if (Subtarget.has64BitSupport()) 1114 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1115 1116 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1117 1118 if (!isPPC64) { 1119 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1120 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1121 } 1122 1123 setBooleanContents(ZeroOrOneBooleanContent); 1124 1125 if (Subtarget.hasAltivec()) { 1126 // Altivec instructions set fields to all zeros or all ones. 1127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1128 } 1129 1130 if (!isPPC64) { 1131 // These libcalls are not available in 32-bit. 1132 setLibcallName(RTLIB::SHL_I128, nullptr); 1133 setLibcallName(RTLIB::SRL_I128, nullptr); 1134 setLibcallName(RTLIB::SRA_I128, nullptr); 1135 } 1136 1137 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1138 1139 // We have target-specific dag combine patterns for the following nodes: 1140 setTargetDAGCombine(ISD::ADD); 1141 setTargetDAGCombine(ISD::SHL); 1142 setTargetDAGCombine(ISD::SRA); 1143 setTargetDAGCombine(ISD::SRL); 1144 setTargetDAGCombine(ISD::MUL); 1145 setTargetDAGCombine(ISD::FMA); 1146 setTargetDAGCombine(ISD::SINT_TO_FP); 1147 setTargetDAGCombine(ISD::BUILD_VECTOR); 1148 if (Subtarget.hasFPCVT()) 1149 setTargetDAGCombine(ISD::UINT_TO_FP); 1150 setTargetDAGCombine(ISD::LOAD); 1151 setTargetDAGCombine(ISD::STORE); 1152 setTargetDAGCombine(ISD::BR_CC); 1153 if (Subtarget.useCRBits()) 1154 setTargetDAGCombine(ISD::BRCOND); 1155 setTargetDAGCombine(ISD::BSWAP); 1156 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1157 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1158 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1159 1160 setTargetDAGCombine(ISD::SIGN_EXTEND); 1161 setTargetDAGCombine(ISD::ZERO_EXTEND); 1162 setTargetDAGCombine(ISD::ANY_EXTEND); 1163 1164 setTargetDAGCombine(ISD::TRUNCATE); 1165 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1166 1167 1168 if (Subtarget.useCRBits()) { 1169 setTargetDAGCombine(ISD::TRUNCATE); 1170 setTargetDAGCombine(ISD::SETCC); 1171 setTargetDAGCombine(ISD::SELECT_CC); 1172 } 1173 1174 // Use reciprocal estimates. 1175 if (TM.Options.UnsafeFPMath) { 1176 setTargetDAGCombine(ISD::FDIV); 1177 setTargetDAGCombine(ISD::FSQRT); 1178 } 1179 1180 if (Subtarget.hasP9Altivec()) { 1181 setTargetDAGCombine(ISD::ABS); 1182 setTargetDAGCombine(ISD::VSELECT); 1183 } 1184 1185 setLibcallName(RTLIB::LOG_F128, "logf128"); 1186 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1187 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1188 setLibcallName(RTLIB::EXP_F128, "expf128"); 1189 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1190 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1191 setLibcallName(RTLIB::COS_F128, "cosf128"); 1192 setLibcallName(RTLIB::POW_F128, "powf128"); 1193 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1194 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1195 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1196 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1197 1198 // With 32 condition bits, we don't need to sink (and duplicate) compares 1199 // aggressively in CodeGenPrep. 1200 if (Subtarget.useCRBits()) { 1201 setHasMultipleConditionRegisters(); 1202 setJumpIsExpensive(); 1203 } 1204 1205 setMinFunctionAlignment(Align(4)); 1206 1207 switch (Subtarget.getCPUDirective()) { 1208 default: break; 1209 case PPC::DIR_970: 1210 case PPC::DIR_A2: 1211 case PPC::DIR_E500: 1212 case PPC::DIR_E500mc: 1213 case PPC::DIR_E5500: 1214 case PPC::DIR_PWR4: 1215 case PPC::DIR_PWR5: 1216 case PPC::DIR_PWR5X: 1217 case PPC::DIR_PWR6: 1218 case PPC::DIR_PWR6X: 1219 case PPC::DIR_PWR7: 1220 case PPC::DIR_PWR8: 1221 case PPC::DIR_PWR9: 1222 case PPC::DIR_PWR10: 1223 case PPC::DIR_PWR_FUTURE: 1224 setPrefLoopAlignment(Align(16)); 1225 setPrefFunctionAlignment(Align(16)); 1226 break; 1227 } 1228 1229 if (Subtarget.enableMachineScheduler()) 1230 setSchedulingPreference(Sched::Source); 1231 else 1232 setSchedulingPreference(Sched::Hybrid); 1233 1234 computeRegisterProperties(STI.getRegisterInfo()); 1235 1236 // The Freescale cores do better with aggressive inlining of memcpy and 1237 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1238 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1239 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1240 MaxStoresPerMemset = 32; 1241 MaxStoresPerMemsetOptSize = 16; 1242 MaxStoresPerMemcpy = 32; 1243 MaxStoresPerMemcpyOptSize = 8; 1244 MaxStoresPerMemmove = 32; 1245 MaxStoresPerMemmoveOptSize = 8; 1246 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1247 // The A2 also benefits from (very) aggressive inlining of memcpy and 1248 // friends. The overhead of a the function call, even when warm, can be 1249 // over one hundred cycles. 1250 MaxStoresPerMemset = 128; 1251 MaxStoresPerMemcpy = 128; 1252 MaxStoresPerMemmove = 128; 1253 MaxLoadsPerMemcmp = 128; 1254 } else { 1255 MaxLoadsPerMemcmp = 8; 1256 MaxLoadsPerMemcmpOptSize = 4; 1257 } 1258 1259 // Let the subtarget (CPU) decide if a predictable select is more expensive 1260 // than the corresponding branch. This information is used in CGP to decide 1261 // when to convert selects into branches. 1262 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1263 } 1264 1265 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1266 /// the desired ByVal argument alignment. 1267 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1268 if (MaxAlign == MaxMaxAlign) 1269 return; 1270 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1271 if (MaxMaxAlign >= 32 && 1272 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1273 MaxAlign = Align(32); 1274 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1275 MaxAlign < 16) 1276 MaxAlign = Align(16); 1277 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1278 Align EltAlign; 1279 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1280 if (EltAlign > MaxAlign) 1281 MaxAlign = EltAlign; 1282 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1283 for (auto *EltTy : STy->elements()) { 1284 Align EltAlign; 1285 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1286 if (EltAlign > MaxAlign) 1287 MaxAlign = EltAlign; 1288 if (MaxAlign == MaxMaxAlign) 1289 break; 1290 } 1291 } 1292 } 1293 1294 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1295 /// function arguments in the caller parameter area. 1296 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1297 const DataLayout &DL) const { 1298 // 16byte and wider vectors are passed on 16byte boundary. 1299 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1300 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1301 if (Subtarget.hasAltivec()) 1302 getMaxByValAlign(Ty, Alignment, Align(16)); 1303 return Alignment.value(); 1304 } 1305 1306 bool PPCTargetLowering::useSoftFloat() const { 1307 return Subtarget.useSoftFloat(); 1308 } 1309 1310 bool PPCTargetLowering::hasSPE() const { 1311 return Subtarget.hasSPE(); 1312 } 1313 1314 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1315 return VT.isScalarInteger(); 1316 } 1317 1318 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1319 /// type is cheaper than a multiply followed by a shift. 1320 /// This is true for words and doublewords on 64-bit PowerPC. 1321 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1322 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1323 isOperationLegal(ISD::MULHU, Type))) 1324 return true; 1325 return TargetLowering::isMulhCheaperThanMulShift(Type); 1326 } 1327 1328 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1329 switch ((PPCISD::NodeType)Opcode) { 1330 case PPCISD::FIRST_NUMBER: break; 1331 case PPCISD::FSEL: return "PPCISD::FSEL"; 1332 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1333 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1334 case PPCISD::FCFID: return "PPCISD::FCFID"; 1335 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1336 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1337 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1338 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1339 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1340 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1341 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1342 case PPCISD::FP_TO_UINT_IN_VSR: 1343 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1344 case PPCISD::FP_TO_SINT_IN_VSR: 1345 return "PPCISD::FP_TO_SINT_IN_VSR"; 1346 case PPCISD::FRE: return "PPCISD::FRE"; 1347 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1348 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1349 case PPCISD::VPERM: return "PPCISD::VPERM"; 1350 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1351 case PPCISD::XXSPLTI_SP_TO_DP: 1352 return "PPCISD::XXSPLTI_SP_TO_DP"; 1353 case PPCISD::XXSPLTI32DX: 1354 return "PPCISD::XXSPLTI32DX"; 1355 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1356 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1357 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1358 case PPCISD::CMPB: return "PPCISD::CMPB"; 1359 case PPCISD::Hi: return "PPCISD::Hi"; 1360 case PPCISD::Lo: return "PPCISD::Lo"; 1361 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1362 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1363 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1364 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1365 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1366 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1367 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1368 case PPCISD::SRL: return "PPCISD::SRL"; 1369 case PPCISD::SRA: return "PPCISD::SRA"; 1370 case PPCISD::SHL: return "PPCISD::SHL"; 1371 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1372 case PPCISD::CALL: return "PPCISD::CALL"; 1373 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1374 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1375 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1376 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1377 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1378 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1379 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1380 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1381 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1382 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1383 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1384 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1385 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1386 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1387 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1388 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1389 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1390 case PPCISD::ANDI_rec_1_EQ_BIT: 1391 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1392 case PPCISD::ANDI_rec_1_GT_BIT: 1393 return "PPCISD::ANDI_rec_1_GT_BIT"; 1394 case PPCISD::VCMP: return "PPCISD::VCMP"; 1395 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1396 case PPCISD::LBRX: return "PPCISD::LBRX"; 1397 case PPCISD::STBRX: return "PPCISD::STBRX"; 1398 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1399 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1400 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1401 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1402 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1403 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1404 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1405 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1406 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1407 case PPCISD::ST_VSR_SCAL_INT: 1408 return "PPCISD::ST_VSR_SCAL_INT"; 1409 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1410 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1411 case PPCISD::BDZ: return "PPCISD::BDZ"; 1412 case PPCISD::MFFS: return "PPCISD::MFFS"; 1413 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1414 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1415 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1416 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1417 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1418 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1419 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1420 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1421 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1422 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1423 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1424 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1425 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1426 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1427 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1428 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1429 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1430 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1431 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1432 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1433 case PPCISD::SC: return "PPCISD::SC"; 1434 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1435 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1436 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1437 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1438 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1439 case PPCISD::VABSD: return "PPCISD::VABSD"; 1440 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1441 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1442 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1443 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1444 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1445 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1446 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1447 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1448 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1449 } 1450 return nullptr; 1451 } 1452 1453 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1454 EVT VT) const { 1455 if (!VT.isVector()) 1456 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1457 1458 return VT.changeVectorElementTypeToInteger(); 1459 } 1460 1461 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1462 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1463 return true; 1464 } 1465 1466 //===----------------------------------------------------------------------===// 1467 // Node matching predicates, for use by the tblgen matching code. 1468 //===----------------------------------------------------------------------===// 1469 1470 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1471 static bool isFloatingPointZero(SDValue Op) { 1472 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1473 return CFP->getValueAPF().isZero(); 1474 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1475 // Maybe this has already been legalized into the constant pool? 1476 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1478 return CFP->getValueAPF().isZero(); 1479 } 1480 return false; 1481 } 1482 1483 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1484 /// true if Op is undef or if it matches the specified value. 1485 static bool isConstantOrUndef(int Op, int Val) { 1486 return Op < 0 || Op == Val; 1487 } 1488 1489 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1490 /// VPKUHUM instruction. 1491 /// The ShuffleKind distinguishes between big-endian operations with 1492 /// two different inputs (0), either-endian operations with two identical 1493 /// inputs (1), and little-endian operations with two different inputs (2). 1494 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1495 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1496 SelectionDAG &DAG) { 1497 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1498 if (ShuffleKind == 0) { 1499 if (IsLE) 1500 return false; 1501 for (unsigned i = 0; i != 16; ++i) 1502 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1503 return false; 1504 } else if (ShuffleKind == 2) { 1505 if (!IsLE) 1506 return false; 1507 for (unsigned i = 0; i != 16; ++i) 1508 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1509 return false; 1510 } else if (ShuffleKind == 1) { 1511 unsigned j = IsLE ? 0 : 1; 1512 for (unsigned i = 0; i != 8; ++i) 1513 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1514 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1521 /// VPKUWUM instruction. 1522 /// The ShuffleKind distinguishes between big-endian operations with 1523 /// two different inputs (0), either-endian operations with two identical 1524 /// inputs (1), and little-endian operations with two different inputs (2). 1525 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1526 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1527 SelectionDAG &DAG) { 1528 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1529 if (ShuffleKind == 0) { 1530 if (IsLE) 1531 return false; 1532 for (unsigned i = 0; i != 16; i += 2) 1533 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1534 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1535 return false; 1536 } else if (ShuffleKind == 2) { 1537 if (!IsLE) 1538 return false; 1539 for (unsigned i = 0; i != 16; i += 2) 1540 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1541 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1542 return false; 1543 } else if (ShuffleKind == 1) { 1544 unsigned j = IsLE ? 0 : 2; 1545 for (unsigned i = 0; i != 8; i += 2) 1546 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1547 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1548 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1549 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1550 return false; 1551 } 1552 return true; 1553 } 1554 1555 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1556 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1557 /// current subtarget. 1558 /// 1559 /// The ShuffleKind distinguishes between big-endian operations with 1560 /// two different inputs (0), either-endian operations with two identical 1561 /// inputs (1), and little-endian operations with two different inputs (2). 1562 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1563 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1564 SelectionDAG &DAG) { 1565 const PPCSubtarget& Subtarget = 1566 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1567 if (!Subtarget.hasP8Vector()) 1568 return false; 1569 1570 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1571 if (ShuffleKind == 0) { 1572 if (IsLE) 1573 return false; 1574 for (unsigned i = 0; i != 16; i += 4) 1575 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1576 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1577 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1578 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1579 return false; 1580 } else if (ShuffleKind == 2) { 1581 if (!IsLE) 1582 return false; 1583 for (unsigned i = 0; i != 16; i += 4) 1584 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1585 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1586 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1587 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1588 return false; 1589 } else if (ShuffleKind == 1) { 1590 unsigned j = IsLE ? 0 : 4; 1591 for (unsigned i = 0; i != 8; i += 4) 1592 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1593 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1594 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1595 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1596 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1597 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1598 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1599 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1600 return false; 1601 } 1602 return true; 1603 } 1604 1605 /// isVMerge - Common function, used to match vmrg* shuffles. 1606 /// 1607 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1608 unsigned LHSStart, unsigned RHSStart) { 1609 if (N->getValueType(0) != MVT::v16i8) 1610 return false; 1611 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1612 "Unsupported merge size!"); 1613 1614 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1615 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1616 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1617 LHSStart+j+i*UnitSize) || 1618 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1619 RHSStart+j+i*UnitSize)) 1620 return false; 1621 } 1622 return true; 1623 } 1624 1625 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1626 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1627 /// The ShuffleKind distinguishes between big-endian merges with two 1628 /// different inputs (0), either-endian merges with two identical inputs (1), 1629 /// and little-endian merges with two different inputs (2). For the latter, 1630 /// the input operands are swapped (see PPCInstrAltivec.td). 1631 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1632 unsigned ShuffleKind, SelectionDAG &DAG) { 1633 if (DAG.getDataLayout().isLittleEndian()) { 1634 if (ShuffleKind == 1) // unary 1635 return isVMerge(N, UnitSize, 0, 0); 1636 else if (ShuffleKind == 2) // swapped 1637 return isVMerge(N, UnitSize, 0, 16); 1638 else 1639 return false; 1640 } else { 1641 if (ShuffleKind == 1) // unary 1642 return isVMerge(N, UnitSize, 8, 8); 1643 else if (ShuffleKind == 0) // normal 1644 return isVMerge(N, UnitSize, 8, 24); 1645 else 1646 return false; 1647 } 1648 } 1649 1650 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1651 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1652 /// The ShuffleKind distinguishes between big-endian merges with two 1653 /// different inputs (0), either-endian merges with two identical inputs (1), 1654 /// and little-endian merges with two different inputs (2). For the latter, 1655 /// the input operands are swapped (see PPCInstrAltivec.td). 1656 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1657 unsigned ShuffleKind, SelectionDAG &DAG) { 1658 if (DAG.getDataLayout().isLittleEndian()) { 1659 if (ShuffleKind == 1) // unary 1660 return isVMerge(N, UnitSize, 8, 8); 1661 else if (ShuffleKind == 2) // swapped 1662 return isVMerge(N, UnitSize, 8, 24); 1663 else 1664 return false; 1665 } else { 1666 if (ShuffleKind == 1) // unary 1667 return isVMerge(N, UnitSize, 0, 0); 1668 else if (ShuffleKind == 0) // normal 1669 return isVMerge(N, UnitSize, 0, 16); 1670 else 1671 return false; 1672 } 1673 } 1674 1675 /** 1676 * Common function used to match vmrgew and vmrgow shuffles 1677 * 1678 * The indexOffset determines whether to look for even or odd words in 1679 * the shuffle mask. This is based on the of the endianness of the target 1680 * machine. 1681 * - Little Endian: 1682 * - Use offset of 0 to check for odd elements 1683 * - Use offset of 4 to check for even elements 1684 * - Big Endian: 1685 * - Use offset of 0 to check for even elements 1686 * - Use offset of 4 to check for odd elements 1687 * A detailed description of the vector element ordering for little endian and 1688 * big endian can be found at 1689 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1690 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1691 * compiler differences mean to you 1692 * 1693 * The mask to the shuffle vector instruction specifies the indices of the 1694 * elements from the two input vectors to place in the result. The elements are 1695 * numbered in array-access order, starting with the first vector. These vectors 1696 * are always of type v16i8, thus each vector will contain 16 elements of size 1697 * 8. More info on the shuffle vector can be found in the 1698 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1699 * Language Reference. 1700 * 1701 * The RHSStartValue indicates whether the same input vectors are used (unary) 1702 * or two different input vectors are used, based on the following: 1703 * - If the instruction uses the same vector for both inputs, the range of the 1704 * indices will be 0 to 15. In this case, the RHSStart value passed should 1705 * be 0. 1706 * - If the instruction has two different vectors then the range of the 1707 * indices will be 0 to 31. In this case, the RHSStart value passed should 1708 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1709 * to 31 specify elements in the second vector). 1710 * 1711 * \param[in] N The shuffle vector SD Node to analyze 1712 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1713 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1714 * vector to the shuffle_vector instruction 1715 * \return true iff this shuffle vector represents an even or odd word merge 1716 */ 1717 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1718 unsigned RHSStartValue) { 1719 if (N->getValueType(0) != MVT::v16i8) 1720 return false; 1721 1722 for (unsigned i = 0; i < 2; ++i) 1723 for (unsigned j = 0; j < 4; ++j) 1724 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1725 i*RHSStartValue+j+IndexOffset) || 1726 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1727 i*RHSStartValue+j+IndexOffset+8)) 1728 return false; 1729 return true; 1730 } 1731 1732 /** 1733 * Determine if the specified shuffle mask is suitable for the vmrgew or 1734 * vmrgow instructions. 1735 * 1736 * \param[in] N The shuffle vector SD Node to analyze 1737 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1738 * \param[in] ShuffleKind Identify the type of merge: 1739 * - 0 = big-endian merge with two different inputs; 1740 * - 1 = either-endian merge with two identical inputs; 1741 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1742 * little-endian merges). 1743 * \param[in] DAG The current SelectionDAG 1744 * \return true iff this shuffle mask 1745 */ 1746 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1747 unsigned ShuffleKind, SelectionDAG &DAG) { 1748 if (DAG.getDataLayout().isLittleEndian()) { 1749 unsigned indexOffset = CheckEven ? 4 : 0; 1750 if (ShuffleKind == 1) // Unary 1751 return isVMerge(N, indexOffset, 0); 1752 else if (ShuffleKind == 2) // swapped 1753 return isVMerge(N, indexOffset, 16); 1754 else 1755 return false; 1756 } 1757 else { 1758 unsigned indexOffset = CheckEven ? 0 : 4; 1759 if (ShuffleKind == 1) // Unary 1760 return isVMerge(N, indexOffset, 0); 1761 else if (ShuffleKind == 0) // Normal 1762 return isVMerge(N, indexOffset, 16); 1763 else 1764 return false; 1765 } 1766 return false; 1767 } 1768 1769 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1770 /// amount, otherwise return -1. 1771 /// The ShuffleKind distinguishes between big-endian operations with two 1772 /// different inputs (0), either-endian operations with two identical inputs 1773 /// (1), and little-endian operations with two different inputs (2). For the 1774 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1775 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1776 SelectionDAG &DAG) { 1777 if (N->getValueType(0) != MVT::v16i8) 1778 return -1; 1779 1780 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1781 1782 // Find the first non-undef value in the shuffle mask. 1783 unsigned i; 1784 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1785 /*search*/; 1786 1787 if (i == 16) return -1; // all undef. 1788 1789 // Otherwise, check to see if the rest of the elements are consecutively 1790 // numbered from this value. 1791 unsigned ShiftAmt = SVOp->getMaskElt(i); 1792 if (ShiftAmt < i) return -1; 1793 1794 ShiftAmt -= i; 1795 bool isLE = DAG.getDataLayout().isLittleEndian(); 1796 1797 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1798 // Check the rest of the elements to see if they are consecutive. 1799 for (++i; i != 16; ++i) 1800 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1801 return -1; 1802 } else if (ShuffleKind == 1) { 1803 // Check the rest of the elements to see if they are consecutive. 1804 for (++i; i != 16; ++i) 1805 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1806 return -1; 1807 } else 1808 return -1; 1809 1810 if (isLE) 1811 ShiftAmt = 16 - ShiftAmt; 1812 1813 return ShiftAmt; 1814 } 1815 1816 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1817 /// specifies a splat of a single element that is suitable for input to 1818 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1819 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1820 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1821 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1822 1823 // The consecutive indices need to specify an element, not part of two 1824 // different elements. So abandon ship early if this isn't the case. 1825 if (N->getMaskElt(0) % EltSize != 0) 1826 return false; 1827 1828 // This is a splat operation if each element of the permute is the same, and 1829 // if the value doesn't reference the second vector. 1830 unsigned ElementBase = N->getMaskElt(0); 1831 1832 // FIXME: Handle UNDEF elements too! 1833 if (ElementBase >= 16) 1834 return false; 1835 1836 // Check that the indices are consecutive, in the case of a multi-byte element 1837 // splatted with a v16i8 mask. 1838 for (unsigned i = 1; i != EltSize; ++i) 1839 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1840 return false; 1841 1842 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1843 if (N->getMaskElt(i) < 0) continue; 1844 for (unsigned j = 0; j != EltSize; ++j) 1845 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1846 return false; 1847 } 1848 return true; 1849 } 1850 1851 /// Check that the mask is shuffling N byte elements. Within each N byte 1852 /// element of the mask, the indices could be either in increasing or 1853 /// decreasing order as long as they are consecutive. 1854 /// \param[in] N the shuffle vector SD Node to analyze 1855 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1856 /// Word/DoubleWord/QuadWord). 1857 /// \param[in] StepLen the delta indices number among the N byte element, if 1858 /// the mask is in increasing/decreasing order then it is 1/-1. 1859 /// \return true iff the mask is shuffling N byte elements. 1860 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1861 int StepLen) { 1862 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1863 "Unexpected element width."); 1864 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1865 1866 unsigned NumOfElem = 16 / Width; 1867 unsigned MaskVal[16]; // Width is never greater than 16 1868 for (unsigned i = 0; i < NumOfElem; ++i) { 1869 MaskVal[0] = N->getMaskElt(i * Width); 1870 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1871 return false; 1872 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1873 return false; 1874 } 1875 1876 for (unsigned int j = 1; j < Width; ++j) { 1877 MaskVal[j] = N->getMaskElt(i * Width + j); 1878 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1879 return false; 1880 } 1881 } 1882 } 1883 1884 return true; 1885 } 1886 1887 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1888 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1889 if (!isNByteElemShuffleMask(N, 4, 1)) 1890 return false; 1891 1892 // Now we look at mask elements 0,4,8,12 1893 unsigned M0 = N->getMaskElt(0) / 4; 1894 unsigned M1 = N->getMaskElt(4) / 4; 1895 unsigned M2 = N->getMaskElt(8) / 4; 1896 unsigned M3 = N->getMaskElt(12) / 4; 1897 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1898 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1899 1900 // Below, let H and L be arbitrary elements of the shuffle mask 1901 // where H is in the range [4,7] and L is in the range [0,3]. 1902 // H, 1, 2, 3 or L, 5, 6, 7 1903 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1904 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1905 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1906 InsertAtByte = IsLE ? 12 : 0; 1907 Swap = M0 < 4; 1908 return true; 1909 } 1910 // 0, H, 2, 3 or 4, L, 6, 7 1911 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1912 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1913 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1914 InsertAtByte = IsLE ? 8 : 4; 1915 Swap = M1 < 4; 1916 return true; 1917 } 1918 // 0, 1, H, 3 or 4, 5, L, 7 1919 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1920 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1921 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1922 InsertAtByte = IsLE ? 4 : 8; 1923 Swap = M2 < 4; 1924 return true; 1925 } 1926 // 0, 1, 2, H or 4, 5, 6, L 1927 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1928 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1929 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1930 InsertAtByte = IsLE ? 0 : 12; 1931 Swap = M3 < 4; 1932 return true; 1933 } 1934 1935 // If both vector operands for the shuffle are the same vector, the mask will 1936 // contain only elements from the first one and the second one will be undef. 1937 if (N->getOperand(1).isUndef()) { 1938 ShiftElts = 0; 1939 Swap = true; 1940 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1941 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1942 InsertAtByte = IsLE ? 12 : 0; 1943 return true; 1944 } 1945 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1946 InsertAtByte = IsLE ? 8 : 4; 1947 return true; 1948 } 1949 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1950 InsertAtByte = IsLE ? 4 : 8; 1951 return true; 1952 } 1953 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1954 InsertAtByte = IsLE ? 0 : 12; 1955 return true; 1956 } 1957 } 1958 1959 return false; 1960 } 1961 1962 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1963 bool &Swap, bool IsLE) { 1964 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1965 // Ensure each byte index of the word is consecutive. 1966 if (!isNByteElemShuffleMask(N, 4, 1)) 1967 return false; 1968 1969 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1970 unsigned M0 = N->getMaskElt(0) / 4; 1971 unsigned M1 = N->getMaskElt(4) / 4; 1972 unsigned M2 = N->getMaskElt(8) / 4; 1973 unsigned M3 = N->getMaskElt(12) / 4; 1974 1975 // If both vector operands for the shuffle are the same vector, the mask will 1976 // contain only elements from the first one and the second one will be undef. 1977 if (N->getOperand(1).isUndef()) { 1978 assert(M0 < 4 && "Indexing into an undef vector?"); 1979 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1980 return false; 1981 1982 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1983 Swap = false; 1984 return true; 1985 } 1986 1987 // Ensure each word index of the ShuffleVector Mask is consecutive. 1988 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1989 return false; 1990 1991 if (IsLE) { 1992 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1993 // Input vectors don't need to be swapped if the leading element 1994 // of the result is one of the 3 left elements of the second vector 1995 // (or if there is no shift to be done at all). 1996 Swap = false; 1997 ShiftElts = (8 - M0) % 8; 1998 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1999 // Input vectors need to be swapped if the leading element 2000 // of the result is one of the 3 left elements of the first vector 2001 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2002 Swap = true; 2003 ShiftElts = (4 - M0) % 4; 2004 } 2005 2006 return true; 2007 } else { // BE 2008 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2009 // Input vectors don't need to be swapped if the leading element 2010 // of the result is one of the 4 elements of the first vector. 2011 Swap = false; 2012 ShiftElts = M0; 2013 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2014 // Input vectors need to be swapped if the leading element 2015 // of the result is one of the 4 elements of the right vector. 2016 Swap = true; 2017 ShiftElts = M0 - 4; 2018 } 2019 2020 return true; 2021 } 2022 } 2023 2024 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2025 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2026 2027 if (!isNByteElemShuffleMask(N, Width, -1)) 2028 return false; 2029 2030 for (int i = 0; i < 16; i += Width) 2031 if (N->getMaskElt(i) != i + Width - 1) 2032 return false; 2033 2034 return true; 2035 } 2036 2037 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2038 return isXXBRShuffleMaskHelper(N, 2); 2039 } 2040 2041 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2042 return isXXBRShuffleMaskHelper(N, 4); 2043 } 2044 2045 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2046 return isXXBRShuffleMaskHelper(N, 8); 2047 } 2048 2049 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2050 return isXXBRShuffleMaskHelper(N, 16); 2051 } 2052 2053 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2054 /// if the inputs to the instruction should be swapped and set \p DM to the 2055 /// value for the immediate. 2056 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2057 /// AND element 0 of the result comes from the first input (LE) or second input 2058 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2059 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2060 /// mask. 2061 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2062 bool &Swap, bool IsLE) { 2063 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2064 2065 // Ensure each byte index of the double word is consecutive. 2066 if (!isNByteElemShuffleMask(N, 8, 1)) 2067 return false; 2068 2069 unsigned M0 = N->getMaskElt(0) / 8; 2070 unsigned M1 = N->getMaskElt(8) / 8; 2071 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2072 2073 // If both vector operands for the shuffle are the same vector, the mask will 2074 // contain only elements from the first one and the second one will be undef. 2075 if (N->getOperand(1).isUndef()) { 2076 if ((M0 | M1) < 2) { 2077 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2078 Swap = false; 2079 return true; 2080 } else 2081 return false; 2082 } 2083 2084 if (IsLE) { 2085 if (M0 > 1 && M1 < 2) { 2086 Swap = false; 2087 } else if (M0 < 2 && M1 > 1) { 2088 M0 = (M0 + 2) % 4; 2089 M1 = (M1 + 2) % 4; 2090 Swap = true; 2091 } else 2092 return false; 2093 2094 // Note: if control flow comes here that means Swap is already set above 2095 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2096 return true; 2097 } else { // BE 2098 if (M0 < 2 && M1 > 1) { 2099 Swap = false; 2100 } else if (M0 > 1 && M1 < 2) { 2101 M0 = (M0 + 2) % 4; 2102 M1 = (M1 + 2) % 4; 2103 Swap = true; 2104 } else 2105 return false; 2106 2107 // Note: if control flow comes here that means Swap is already set above 2108 DM = (M0 << 1) + (M1 & 1); 2109 return true; 2110 } 2111 } 2112 2113 2114 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2115 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2116 /// elements are counted from the left of the vector register). 2117 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2118 SelectionDAG &DAG) { 2119 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2120 assert(isSplatShuffleMask(SVOp, EltSize)); 2121 if (DAG.getDataLayout().isLittleEndian()) 2122 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2123 else 2124 return SVOp->getMaskElt(0) / EltSize; 2125 } 2126 2127 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2128 /// by using a vspltis[bhw] instruction of the specified element size, return 2129 /// the constant being splatted. The ByteSize field indicates the number of 2130 /// bytes of each element [124] -> [bhw]. 2131 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2132 SDValue OpVal(nullptr, 0); 2133 2134 // If ByteSize of the splat is bigger than the element size of the 2135 // build_vector, then we have a case where we are checking for a splat where 2136 // multiple elements of the buildvector are folded together into a single 2137 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2138 unsigned EltSize = 16/N->getNumOperands(); 2139 if (EltSize < ByteSize) { 2140 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2141 SDValue UniquedVals[4]; 2142 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2143 2144 // See if all of the elements in the buildvector agree across. 2145 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2146 if (N->getOperand(i).isUndef()) continue; 2147 // If the element isn't a constant, bail fully out. 2148 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2149 2150 if (!UniquedVals[i&(Multiple-1)].getNode()) 2151 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2152 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2153 return SDValue(); // no match. 2154 } 2155 2156 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2157 // either constant or undef values that are identical for each chunk. See 2158 // if these chunks can form into a larger vspltis*. 2159 2160 // Check to see if all of the leading entries are either 0 or -1. If 2161 // neither, then this won't fit into the immediate field. 2162 bool LeadingZero = true; 2163 bool LeadingOnes = true; 2164 for (unsigned i = 0; i != Multiple-1; ++i) { 2165 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2166 2167 LeadingZero &= isNullConstant(UniquedVals[i]); 2168 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2169 } 2170 // Finally, check the least significant entry. 2171 if (LeadingZero) { 2172 if (!UniquedVals[Multiple-1].getNode()) 2173 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2174 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2175 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2176 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2177 } 2178 if (LeadingOnes) { 2179 if (!UniquedVals[Multiple-1].getNode()) 2180 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2181 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2182 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2183 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2184 } 2185 2186 return SDValue(); 2187 } 2188 2189 // Check to see if this buildvec has a single non-undef value in its elements. 2190 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2191 if (N->getOperand(i).isUndef()) continue; 2192 if (!OpVal.getNode()) 2193 OpVal = N->getOperand(i); 2194 else if (OpVal != N->getOperand(i)) 2195 return SDValue(); 2196 } 2197 2198 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2199 2200 unsigned ValSizeInBytes = EltSize; 2201 uint64_t Value = 0; 2202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2203 Value = CN->getZExtValue(); 2204 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2205 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2206 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2207 } 2208 2209 // If the splat value is larger than the element value, then we can never do 2210 // this splat. The only case that we could fit the replicated bits into our 2211 // immediate field for would be zero, and we prefer to use vxor for it. 2212 if (ValSizeInBytes < ByteSize) return SDValue(); 2213 2214 // If the element value is larger than the splat value, check if it consists 2215 // of a repeated bit pattern of size ByteSize. 2216 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2217 return SDValue(); 2218 2219 // Properly sign extend the value. 2220 int MaskVal = SignExtend32(Value, ByteSize * 8); 2221 2222 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2223 if (MaskVal == 0) return SDValue(); 2224 2225 // Finally, if this value fits in a 5 bit sext field, return it 2226 if (SignExtend32<5>(MaskVal) == MaskVal) 2227 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2228 return SDValue(); 2229 } 2230 2231 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2232 /// amount, otherwise return -1. 2233 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2234 EVT VT = N->getValueType(0); 2235 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2236 return -1; 2237 2238 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2239 2240 // Find the first non-undef value in the shuffle mask. 2241 unsigned i; 2242 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2243 /*search*/; 2244 2245 if (i == 4) return -1; // all undef. 2246 2247 // Otherwise, check to see if the rest of the elements are consecutively 2248 // numbered from this value. 2249 unsigned ShiftAmt = SVOp->getMaskElt(i); 2250 if (ShiftAmt < i) return -1; 2251 ShiftAmt -= i; 2252 2253 // Check the rest of the elements to see if they are consecutive. 2254 for (++i; i != 4; ++i) 2255 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2256 return -1; 2257 2258 return ShiftAmt; 2259 } 2260 2261 //===----------------------------------------------------------------------===// 2262 // Addressing Mode Selection 2263 //===----------------------------------------------------------------------===// 2264 2265 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2266 /// or 64-bit immediate, and if the value can be accurately represented as a 2267 /// sign extension from a 16-bit value. If so, this returns true and the 2268 /// immediate. 2269 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2270 if (!isa<ConstantSDNode>(N)) 2271 return false; 2272 2273 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2274 if (N->getValueType(0) == MVT::i32) 2275 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2276 else 2277 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2278 } 2279 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2280 return isIntS16Immediate(Op.getNode(), Imm); 2281 } 2282 2283 2284 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2285 /// be represented as an indexed [r+r] operation. 2286 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2287 SDValue &Index, 2288 SelectionDAG &DAG) const { 2289 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2290 UI != E; ++UI) { 2291 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2292 if (Memop->getMemoryVT() == MVT::f64) { 2293 Base = N.getOperand(0); 2294 Index = N.getOperand(1); 2295 return true; 2296 } 2297 } 2298 } 2299 return false; 2300 } 2301 2302 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2303 /// can be represented as an indexed [r+r] operation. Returns false if it 2304 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2305 /// non-zero and N can be represented by a base register plus a signed 16-bit 2306 /// displacement, make a more precise judgement by checking (displacement % \p 2307 /// EncodingAlignment). 2308 bool PPCTargetLowering::SelectAddressRegReg( 2309 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2310 MaybeAlign EncodingAlignment) const { 2311 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2312 // a [pc+imm]. 2313 if (SelectAddressPCRel(N, Base)) 2314 return false; 2315 2316 int16_t Imm = 0; 2317 if (N.getOpcode() == ISD::ADD) { 2318 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2319 // SPE load/store can only handle 8-bit offsets. 2320 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2321 return true; 2322 if (isIntS16Immediate(N.getOperand(1), Imm) && 2323 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2324 return false; // r+i 2325 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2326 return false; // r+i 2327 2328 Base = N.getOperand(0); 2329 Index = N.getOperand(1); 2330 return true; 2331 } else if (N.getOpcode() == ISD::OR) { 2332 if (isIntS16Immediate(N.getOperand(1), Imm) && 2333 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2334 return false; // r+i can fold it if we can. 2335 2336 // If this is an or of disjoint bitfields, we can codegen this as an add 2337 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2338 // disjoint. 2339 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2340 2341 if (LHSKnown.Zero.getBoolValue()) { 2342 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2343 // If all of the bits are known zero on the LHS or RHS, the add won't 2344 // carry. 2345 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2346 Base = N.getOperand(0); 2347 Index = N.getOperand(1); 2348 return true; 2349 } 2350 } 2351 } 2352 2353 return false; 2354 } 2355 2356 // If we happen to be doing an i64 load or store into a stack slot that has 2357 // less than a 4-byte alignment, then the frame-index elimination may need to 2358 // use an indexed load or store instruction (because the offset may not be a 2359 // multiple of 4). The extra register needed to hold the offset comes from the 2360 // register scavenger, and it is possible that the scavenger will need to use 2361 // an emergency spill slot. As a result, we need to make sure that a spill slot 2362 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2363 // stack slot. 2364 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2365 // FIXME: This does not handle the LWA case. 2366 if (VT != MVT::i64) 2367 return; 2368 2369 // NOTE: We'll exclude negative FIs here, which come from argument 2370 // lowering, because there are no known test cases triggering this problem 2371 // using packed structures (or similar). We can remove this exclusion if 2372 // we find such a test case. The reason why this is so test-case driven is 2373 // because this entire 'fixup' is only to prevent crashes (from the 2374 // register scavenger) on not-really-valid inputs. For example, if we have: 2375 // %a = alloca i1 2376 // %b = bitcast i1* %a to i64* 2377 // store i64* a, i64 b 2378 // then the store should really be marked as 'align 1', but is not. If it 2379 // were marked as 'align 1' then the indexed form would have been 2380 // instruction-selected initially, and the problem this 'fixup' is preventing 2381 // won't happen regardless. 2382 if (FrameIdx < 0) 2383 return; 2384 2385 MachineFunction &MF = DAG.getMachineFunction(); 2386 MachineFrameInfo &MFI = MF.getFrameInfo(); 2387 2388 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2389 return; 2390 2391 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2392 FuncInfo->setHasNonRISpills(); 2393 } 2394 2395 /// Returns true if the address N can be represented by a base register plus 2396 /// a signed 16-bit displacement [r+imm], and if it is not better 2397 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2398 /// displacements that are multiples of that value. 2399 bool PPCTargetLowering::SelectAddressRegImm( 2400 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2401 MaybeAlign EncodingAlignment) const { 2402 // FIXME dl should come from parent load or store, not from address 2403 SDLoc dl(N); 2404 2405 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2406 // a [pc+imm]. 2407 if (SelectAddressPCRel(N, Base)) 2408 return false; 2409 2410 // If this can be more profitably realized as r+r, fail. 2411 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2412 return false; 2413 2414 if (N.getOpcode() == ISD::ADD) { 2415 int16_t imm = 0; 2416 if (isIntS16Immediate(N.getOperand(1), imm) && 2417 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2418 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2419 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2420 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2421 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2422 } else { 2423 Base = N.getOperand(0); 2424 } 2425 return true; // [r+i] 2426 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2427 // Match LOAD (ADD (X, Lo(G))). 2428 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2429 && "Cannot handle constant offsets yet!"); 2430 Disp = N.getOperand(1).getOperand(0); // The global address. 2431 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2432 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2433 Disp.getOpcode() == ISD::TargetConstantPool || 2434 Disp.getOpcode() == ISD::TargetJumpTable); 2435 Base = N.getOperand(0); 2436 return true; // [&g+r] 2437 } 2438 } else if (N.getOpcode() == ISD::OR) { 2439 int16_t imm = 0; 2440 if (isIntS16Immediate(N.getOperand(1), imm) && 2441 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2442 // If this is an or of disjoint bitfields, we can codegen this as an add 2443 // (for better address arithmetic) if the LHS and RHS of the OR are 2444 // provably disjoint. 2445 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2446 2447 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2448 // If all of the bits are known zero on the LHS or RHS, the add won't 2449 // carry. 2450 if (FrameIndexSDNode *FI = 2451 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2452 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2453 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2454 } else { 2455 Base = N.getOperand(0); 2456 } 2457 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2458 return true; 2459 } 2460 } 2461 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2462 // Loading from a constant address. 2463 2464 // If this address fits entirely in a 16-bit sext immediate field, codegen 2465 // this as "d, 0" 2466 int16_t Imm; 2467 if (isIntS16Immediate(CN, Imm) && 2468 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2469 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2470 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2471 CN->getValueType(0)); 2472 return true; 2473 } 2474 2475 // Handle 32-bit sext immediates with LIS + addr mode. 2476 if ((CN->getValueType(0) == MVT::i32 || 2477 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2478 (!EncodingAlignment || 2479 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2480 int Addr = (int)CN->getZExtValue(); 2481 2482 // Otherwise, break this down into an LIS + disp. 2483 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2484 2485 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2486 MVT::i32); 2487 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2488 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2489 return true; 2490 } 2491 } 2492 2493 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2494 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2495 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2496 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2497 } else 2498 Base = N; 2499 return true; // [r+0] 2500 } 2501 2502 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2503 /// represented as an indexed [r+r] operation. 2504 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2505 SDValue &Index, 2506 SelectionDAG &DAG) const { 2507 // Check to see if we can easily represent this as an [r+r] address. This 2508 // will fail if it thinks that the address is more profitably represented as 2509 // reg+imm, e.g. where imm = 0. 2510 if (SelectAddressRegReg(N, Base, Index, DAG)) 2511 return true; 2512 2513 // If the address is the result of an add, we will utilize the fact that the 2514 // address calculation includes an implicit add. However, we can reduce 2515 // register pressure if we do not materialize a constant just for use as the 2516 // index register. We only get rid of the add if it is not an add of a 2517 // value and a 16-bit signed constant and both have a single use. 2518 int16_t imm = 0; 2519 if (N.getOpcode() == ISD::ADD && 2520 (!isIntS16Immediate(N.getOperand(1), imm) || 2521 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2522 Base = N.getOperand(0); 2523 Index = N.getOperand(1); 2524 return true; 2525 } 2526 2527 // Otherwise, do it the hard way, using R0 as the base register. 2528 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2529 N.getValueType()); 2530 Index = N; 2531 return true; 2532 } 2533 2534 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2535 Ty *PCRelCand = dyn_cast<Ty>(N); 2536 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2537 } 2538 2539 /// Returns true if this address is a PC Relative address. 2540 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2541 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2542 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2543 // This is a materialize PC Relative node. Always select this as PC Relative. 2544 Base = N; 2545 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2546 return true; 2547 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2548 isValidPCRelNode<GlobalAddressSDNode>(N) || 2549 isValidPCRelNode<JumpTableSDNode>(N) || 2550 isValidPCRelNode<BlockAddressSDNode>(N)) 2551 return true; 2552 return false; 2553 } 2554 2555 /// Returns true if we should use a direct load into vector instruction 2556 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2557 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2558 2559 // If there are any other uses other than scalar to vector, then we should 2560 // keep it as a scalar load -> direct move pattern to prevent multiple 2561 // loads. 2562 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2563 if (!LD) 2564 return false; 2565 2566 EVT MemVT = LD->getMemoryVT(); 2567 if (!MemVT.isSimple()) 2568 return false; 2569 switch(MemVT.getSimpleVT().SimpleTy) { 2570 case MVT::i64: 2571 break; 2572 case MVT::i32: 2573 if (!ST.hasP8Vector()) 2574 return false; 2575 break; 2576 case MVT::i16: 2577 case MVT::i8: 2578 if (!ST.hasP9Vector()) 2579 return false; 2580 break; 2581 default: 2582 return false; 2583 } 2584 2585 SDValue LoadedVal(N, 0); 2586 if (!LoadedVal.hasOneUse()) 2587 return false; 2588 2589 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2590 UI != UE; ++UI) 2591 if (UI.getUse().get().getResNo() == 0 && 2592 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2593 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2594 return false; 2595 2596 return true; 2597 } 2598 2599 /// getPreIndexedAddressParts - returns true by value, base pointer and 2600 /// offset pointer and addressing mode by reference if the node's address 2601 /// can be legally represented as pre-indexed load / store address. 2602 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2603 SDValue &Offset, 2604 ISD::MemIndexedMode &AM, 2605 SelectionDAG &DAG) const { 2606 if (DisablePPCPreinc) return false; 2607 2608 bool isLoad = true; 2609 SDValue Ptr; 2610 EVT VT; 2611 unsigned Alignment; 2612 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2613 Ptr = LD->getBasePtr(); 2614 VT = LD->getMemoryVT(); 2615 Alignment = LD->getAlignment(); 2616 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2617 Ptr = ST->getBasePtr(); 2618 VT = ST->getMemoryVT(); 2619 Alignment = ST->getAlignment(); 2620 isLoad = false; 2621 } else 2622 return false; 2623 2624 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2625 // instructions because we can fold these into a more efficient instruction 2626 // instead, (such as LXSD). 2627 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2628 return false; 2629 } 2630 2631 // PowerPC doesn't have preinc load/store instructions for vectors 2632 if (VT.isVector()) 2633 return false; 2634 2635 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2636 // Common code will reject creating a pre-inc form if the base pointer 2637 // is a frame index, or if N is a store and the base pointer is either 2638 // the same as or a predecessor of the value being stored. Check for 2639 // those situations here, and try with swapped Base/Offset instead. 2640 bool Swap = false; 2641 2642 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2643 Swap = true; 2644 else if (!isLoad) { 2645 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2646 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2647 Swap = true; 2648 } 2649 2650 if (Swap) 2651 std::swap(Base, Offset); 2652 2653 AM = ISD::PRE_INC; 2654 return true; 2655 } 2656 2657 // LDU/STU can only handle immediates that are a multiple of 4. 2658 if (VT != MVT::i64) { 2659 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2660 return false; 2661 } else { 2662 // LDU/STU need an address with at least 4-byte alignment. 2663 if (Alignment < 4) 2664 return false; 2665 2666 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2667 return false; 2668 } 2669 2670 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2671 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2672 // sext i32 to i64 when addr mode is r+i. 2673 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2674 LD->getExtensionType() == ISD::SEXTLOAD && 2675 isa<ConstantSDNode>(Offset)) 2676 return false; 2677 } 2678 2679 AM = ISD::PRE_INC; 2680 return true; 2681 } 2682 2683 //===----------------------------------------------------------------------===// 2684 // LowerOperation implementation 2685 //===----------------------------------------------------------------------===// 2686 2687 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2688 /// and LoOpFlags to the target MO flags. 2689 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2690 unsigned &HiOpFlags, unsigned &LoOpFlags, 2691 const GlobalValue *GV = nullptr) { 2692 HiOpFlags = PPCII::MO_HA; 2693 LoOpFlags = PPCII::MO_LO; 2694 2695 // Don't use the pic base if not in PIC relocation model. 2696 if (IsPIC) { 2697 HiOpFlags |= PPCII::MO_PIC_FLAG; 2698 LoOpFlags |= PPCII::MO_PIC_FLAG; 2699 } 2700 } 2701 2702 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2703 SelectionDAG &DAG) { 2704 SDLoc DL(HiPart); 2705 EVT PtrVT = HiPart.getValueType(); 2706 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2707 2708 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2709 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2710 2711 // With PIC, the first instruction is actually "GR+hi(&G)". 2712 if (isPIC) 2713 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2714 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2715 2716 // Generate non-pic code that has direct accesses to the constant pool. 2717 // The address of the global is just (hi(&g)+lo(&g)). 2718 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2719 } 2720 2721 static void setUsesTOCBasePtr(MachineFunction &MF) { 2722 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2723 FuncInfo->setUsesTOCBasePtr(); 2724 } 2725 2726 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2727 setUsesTOCBasePtr(DAG.getMachineFunction()); 2728 } 2729 2730 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2731 SDValue GA) const { 2732 const bool Is64Bit = Subtarget.isPPC64(); 2733 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2734 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2735 : Subtarget.isAIXABI() 2736 ? DAG.getRegister(PPC::R2, VT) 2737 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2738 SDValue Ops[] = { GA, Reg }; 2739 return DAG.getMemIntrinsicNode( 2740 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2741 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2742 MachineMemOperand::MOLoad); 2743 } 2744 2745 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2746 SelectionDAG &DAG) const { 2747 EVT PtrVT = Op.getValueType(); 2748 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2749 const Constant *C = CP->getConstVal(); 2750 2751 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2752 // The actual address of the GlobalValue is stored in the TOC. 2753 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2754 if (Subtarget.isUsingPCRelativeCalls()) { 2755 SDLoc DL(CP); 2756 EVT Ty = getPointerTy(DAG.getDataLayout()); 2757 SDValue ConstPool = DAG.getTargetConstantPool( 2758 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2759 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2760 } 2761 setUsesTOCBasePtr(DAG); 2762 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2763 return getTOCEntry(DAG, SDLoc(CP), GA); 2764 } 2765 2766 unsigned MOHiFlag, MOLoFlag; 2767 bool IsPIC = isPositionIndependent(); 2768 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2769 2770 if (IsPIC && Subtarget.isSVR4ABI()) { 2771 SDValue GA = 2772 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2773 return getTOCEntry(DAG, SDLoc(CP), GA); 2774 } 2775 2776 SDValue CPIHi = 2777 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2778 SDValue CPILo = 2779 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2780 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2781 } 2782 2783 // For 64-bit PowerPC, prefer the more compact relative encodings. 2784 // This trades 32 bits per jump table entry for one or two instructions 2785 // on the jump site. 2786 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2787 if (isJumpTableRelative()) 2788 return MachineJumpTableInfo::EK_LabelDifference32; 2789 2790 return TargetLowering::getJumpTableEncoding(); 2791 } 2792 2793 bool PPCTargetLowering::isJumpTableRelative() const { 2794 if (UseAbsoluteJumpTables) 2795 return false; 2796 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2797 return true; 2798 return TargetLowering::isJumpTableRelative(); 2799 } 2800 2801 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2802 SelectionDAG &DAG) const { 2803 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2804 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2805 2806 switch (getTargetMachine().getCodeModel()) { 2807 case CodeModel::Small: 2808 case CodeModel::Medium: 2809 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2810 default: 2811 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2812 getPointerTy(DAG.getDataLayout())); 2813 } 2814 } 2815 2816 const MCExpr * 2817 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2818 unsigned JTI, 2819 MCContext &Ctx) const { 2820 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2821 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2822 2823 switch (getTargetMachine().getCodeModel()) { 2824 case CodeModel::Small: 2825 case CodeModel::Medium: 2826 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2827 default: 2828 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2829 } 2830 } 2831 2832 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2833 EVT PtrVT = Op.getValueType(); 2834 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2835 2836 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2837 if (Subtarget.isUsingPCRelativeCalls()) { 2838 SDLoc DL(JT); 2839 EVT Ty = getPointerTy(DAG.getDataLayout()); 2840 SDValue GA = 2841 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2842 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2843 return MatAddr; 2844 } 2845 2846 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2847 // The actual address of the GlobalValue is stored in the TOC. 2848 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2849 setUsesTOCBasePtr(DAG); 2850 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2851 return getTOCEntry(DAG, SDLoc(JT), GA); 2852 } 2853 2854 unsigned MOHiFlag, MOLoFlag; 2855 bool IsPIC = isPositionIndependent(); 2856 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2857 2858 if (IsPIC && Subtarget.isSVR4ABI()) { 2859 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2860 PPCII::MO_PIC_FLAG); 2861 return getTOCEntry(DAG, SDLoc(GA), GA); 2862 } 2863 2864 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2865 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2866 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2867 } 2868 2869 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2870 SelectionDAG &DAG) const { 2871 EVT PtrVT = Op.getValueType(); 2872 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2873 const BlockAddress *BA = BASDN->getBlockAddress(); 2874 2875 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2876 if (Subtarget.isUsingPCRelativeCalls()) { 2877 SDLoc DL(BASDN); 2878 EVT Ty = getPointerTy(DAG.getDataLayout()); 2879 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2880 PPCII::MO_PCREL_FLAG); 2881 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2882 return MatAddr; 2883 } 2884 2885 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2886 // The actual BlockAddress is stored in the TOC. 2887 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2888 setUsesTOCBasePtr(DAG); 2889 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2890 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2891 } 2892 2893 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2894 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2895 return getTOCEntry( 2896 DAG, SDLoc(BASDN), 2897 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2898 2899 unsigned MOHiFlag, MOLoFlag; 2900 bool IsPIC = isPositionIndependent(); 2901 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2902 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2903 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2904 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2905 } 2906 2907 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2908 SelectionDAG &DAG) const { 2909 // FIXME: TLS addresses currently use medium model code sequences, 2910 // which is the most useful form. Eventually support for small and 2911 // large models could be added if users need it, at the cost of 2912 // additional complexity. 2913 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2914 if (DAG.getTarget().useEmulatedTLS()) 2915 return LowerToTLSEmulatedModel(GA, DAG); 2916 2917 SDLoc dl(GA); 2918 const GlobalValue *GV = GA->getGlobal(); 2919 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2920 bool is64bit = Subtarget.isPPC64(); 2921 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2922 PICLevel::Level picLevel = M->getPICLevel(); 2923 2924 const TargetMachine &TM = getTargetMachine(); 2925 TLSModel::Model Model = TM.getTLSModel(GV); 2926 2927 if (Model == TLSModel::LocalExec) { 2928 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2929 PPCII::MO_TPREL_HA); 2930 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2931 PPCII::MO_TPREL_LO); 2932 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2933 : DAG.getRegister(PPC::R2, MVT::i32); 2934 2935 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2936 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2937 } 2938 2939 if (Model == TLSModel::InitialExec) { 2940 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2941 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2942 PPCII::MO_TLS); 2943 SDValue GOTPtr; 2944 if (is64bit) { 2945 setUsesTOCBasePtr(DAG); 2946 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2947 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2948 PtrVT, GOTReg, TGA); 2949 } else { 2950 if (!TM.isPositionIndependent()) 2951 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2952 else if (picLevel == PICLevel::SmallPIC) 2953 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2954 else 2955 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2956 } 2957 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2958 PtrVT, TGA, GOTPtr); 2959 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2960 } 2961 2962 if (Model == TLSModel::GeneralDynamic) { 2963 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2964 SDValue GOTPtr; 2965 if (is64bit) { 2966 setUsesTOCBasePtr(DAG); 2967 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2968 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2969 GOTReg, TGA); 2970 } else { 2971 if (picLevel == PICLevel::SmallPIC) 2972 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2973 else 2974 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2975 } 2976 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2977 GOTPtr, TGA, TGA); 2978 } 2979 2980 if (Model == TLSModel::LocalDynamic) { 2981 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2982 SDValue GOTPtr; 2983 if (is64bit) { 2984 setUsesTOCBasePtr(DAG); 2985 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2986 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2987 GOTReg, TGA); 2988 } else { 2989 if (picLevel == PICLevel::SmallPIC) 2990 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2991 else 2992 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2993 } 2994 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2995 PtrVT, GOTPtr, TGA, TGA); 2996 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2997 PtrVT, TLSAddr, TGA); 2998 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2999 } 3000 3001 llvm_unreachable("Unknown TLS model!"); 3002 } 3003 3004 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3005 SelectionDAG &DAG) const { 3006 EVT PtrVT = Op.getValueType(); 3007 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3008 SDLoc DL(GSDN); 3009 const GlobalValue *GV = GSDN->getGlobal(); 3010 3011 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3012 // The actual address of the GlobalValue is stored in the TOC. 3013 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3014 if (Subtarget.isUsingPCRelativeCalls()) { 3015 EVT Ty = getPointerTy(DAG.getDataLayout()); 3016 if (isAccessedAsGotIndirect(Op)) { 3017 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3018 PPCII::MO_PCREL_FLAG | 3019 PPCII::MO_GOT_FLAG); 3020 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3021 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3022 MachinePointerInfo()); 3023 return Load; 3024 } else { 3025 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3026 PPCII::MO_PCREL_FLAG); 3027 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3028 } 3029 } 3030 setUsesTOCBasePtr(DAG); 3031 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3032 return getTOCEntry(DAG, DL, GA); 3033 } 3034 3035 unsigned MOHiFlag, MOLoFlag; 3036 bool IsPIC = isPositionIndependent(); 3037 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3038 3039 if (IsPIC && Subtarget.isSVR4ABI()) { 3040 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3041 GSDN->getOffset(), 3042 PPCII::MO_PIC_FLAG); 3043 return getTOCEntry(DAG, DL, GA); 3044 } 3045 3046 SDValue GAHi = 3047 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3048 SDValue GALo = 3049 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3050 3051 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3052 } 3053 3054 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3055 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3056 SDLoc dl(Op); 3057 3058 if (Op.getValueType() == MVT::v2i64) { 3059 // When the operands themselves are v2i64 values, we need to do something 3060 // special because VSX has no underlying comparison operations for these. 3061 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3062 // Equality can be handled by casting to the legal type for Altivec 3063 // comparisons, everything else needs to be expanded. 3064 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3065 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3066 DAG.getSetCC(dl, MVT::v4i32, 3067 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3068 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3069 CC)); 3070 } 3071 3072 return SDValue(); 3073 } 3074 3075 // We handle most of these in the usual way. 3076 return Op; 3077 } 3078 3079 // If we're comparing for equality to zero, expose the fact that this is 3080 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3081 // fold the new nodes. 3082 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3083 return V; 3084 3085 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3086 // Leave comparisons against 0 and -1 alone for now, since they're usually 3087 // optimized. FIXME: revisit this when we can custom lower all setcc 3088 // optimizations. 3089 if (C->isAllOnesValue() || C->isNullValue()) 3090 return SDValue(); 3091 } 3092 3093 // If we have an integer seteq/setne, turn it into a compare against zero 3094 // by xor'ing the rhs with the lhs, which is faster than setting a 3095 // condition register, reading it back out, and masking the correct bit. The 3096 // normal approach here uses sub to do this instead of xor. Using xor exposes 3097 // the result to other bit-twiddling opportunities. 3098 EVT LHSVT = Op.getOperand(0).getValueType(); 3099 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3100 EVT VT = Op.getValueType(); 3101 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3102 Op.getOperand(1)); 3103 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3104 } 3105 return SDValue(); 3106 } 3107 3108 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3109 SDNode *Node = Op.getNode(); 3110 EVT VT = Node->getValueType(0); 3111 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3112 SDValue InChain = Node->getOperand(0); 3113 SDValue VAListPtr = Node->getOperand(1); 3114 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3115 SDLoc dl(Node); 3116 3117 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3118 3119 // gpr_index 3120 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3121 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3122 InChain = GprIndex.getValue(1); 3123 3124 if (VT == MVT::i64) { 3125 // Check if GprIndex is even 3126 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3127 DAG.getConstant(1, dl, MVT::i32)); 3128 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3129 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3130 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3131 DAG.getConstant(1, dl, MVT::i32)); 3132 // Align GprIndex to be even if it isn't 3133 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3134 GprIndex); 3135 } 3136 3137 // fpr index is 1 byte after gpr 3138 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3139 DAG.getConstant(1, dl, MVT::i32)); 3140 3141 // fpr 3142 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3143 FprPtr, MachinePointerInfo(SV), MVT::i8); 3144 InChain = FprIndex.getValue(1); 3145 3146 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3147 DAG.getConstant(8, dl, MVT::i32)); 3148 3149 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3150 DAG.getConstant(4, dl, MVT::i32)); 3151 3152 // areas 3153 SDValue OverflowArea = 3154 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3155 InChain = OverflowArea.getValue(1); 3156 3157 SDValue RegSaveArea = 3158 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3159 InChain = RegSaveArea.getValue(1); 3160 3161 // select overflow_area if index > 8 3162 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3163 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3164 3165 // adjustment constant gpr_index * 4/8 3166 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3167 VT.isInteger() ? GprIndex : FprIndex, 3168 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3169 MVT::i32)); 3170 3171 // OurReg = RegSaveArea + RegConstant 3172 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3173 RegConstant); 3174 3175 // Floating types are 32 bytes into RegSaveArea 3176 if (VT.isFloatingPoint()) 3177 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3178 DAG.getConstant(32, dl, MVT::i32)); 3179 3180 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3181 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3182 VT.isInteger() ? GprIndex : FprIndex, 3183 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3184 MVT::i32)); 3185 3186 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3187 VT.isInteger() ? VAListPtr : FprPtr, 3188 MachinePointerInfo(SV), MVT::i8); 3189 3190 // determine if we should load from reg_save_area or overflow_area 3191 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3192 3193 // increase overflow_area by 4/8 if gpr/fpr > 8 3194 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3195 DAG.getConstant(VT.isInteger() ? 4 : 8, 3196 dl, MVT::i32)); 3197 3198 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3199 OverflowAreaPlusN); 3200 3201 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3202 MachinePointerInfo(), MVT::i32); 3203 3204 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3205 } 3206 3207 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3208 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3209 3210 // We have to copy the entire va_list struct: 3211 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3212 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3213 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3214 false, true, false, MachinePointerInfo(), 3215 MachinePointerInfo()); 3216 } 3217 3218 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3219 SelectionDAG &DAG) const { 3220 if (Subtarget.isAIXABI()) 3221 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3222 3223 return Op.getOperand(0); 3224 } 3225 3226 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3227 SelectionDAG &DAG) const { 3228 if (Subtarget.isAIXABI()) 3229 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3230 3231 SDValue Chain = Op.getOperand(0); 3232 SDValue Trmp = Op.getOperand(1); // trampoline 3233 SDValue FPtr = Op.getOperand(2); // nested function 3234 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3235 SDLoc dl(Op); 3236 3237 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3238 bool isPPC64 = (PtrVT == MVT::i64); 3239 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3240 3241 TargetLowering::ArgListTy Args; 3242 TargetLowering::ArgListEntry Entry; 3243 3244 Entry.Ty = IntPtrTy; 3245 Entry.Node = Trmp; Args.push_back(Entry); 3246 3247 // TrampSize == (isPPC64 ? 48 : 40); 3248 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3249 isPPC64 ? MVT::i64 : MVT::i32); 3250 Args.push_back(Entry); 3251 3252 Entry.Node = FPtr; Args.push_back(Entry); 3253 Entry.Node = Nest; Args.push_back(Entry); 3254 3255 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3256 TargetLowering::CallLoweringInfo CLI(DAG); 3257 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3258 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3259 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3260 3261 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3262 return CallResult.second; 3263 } 3264 3265 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3266 MachineFunction &MF = DAG.getMachineFunction(); 3267 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3268 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3269 3270 SDLoc dl(Op); 3271 3272 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3273 // vastart just stores the address of the VarArgsFrameIndex slot into the 3274 // memory location argument. 3275 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3276 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3277 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3278 MachinePointerInfo(SV)); 3279 } 3280 3281 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3282 // We suppose the given va_list is already allocated. 3283 // 3284 // typedef struct { 3285 // char gpr; /* index into the array of 8 GPRs 3286 // * stored in the register save area 3287 // * gpr=0 corresponds to r3, 3288 // * gpr=1 to r4, etc. 3289 // */ 3290 // char fpr; /* index into the array of 8 FPRs 3291 // * stored in the register save area 3292 // * fpr=0 corresponds to f1, 3293 // * fpr=1 to f2, etc. 3294 // */ 3295 // char *overflow_arg_area; 3296 // /* location on stack that holds 3297 // * the next overflow argument 3298 // */ 3299 // char *reg_save_area; 3300 // /* where r3:r10 and f1:f8 (if saved) 3301 // * are stored 3302 // */ 3303 // } va_list[1]; 3304 3305 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3306 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3307 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3308 PtrVT); 3309 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3310 PtrVT); 3311 3312 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3313 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3314 3315 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3316 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3317 3318 uint64_t FPROffset = 1; 3319 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3320 3321 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3322 3323 // Store first byte : number of int regs 3324 SDValue firstStore = 3325 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3326 MachinePointerInfo(SV), MVT::i8); 3327 uint64_t nextOffset = FPROffset; 3328 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3329 ConstFPROffset); 3330 3331 // Store second byte : number of float regs 3332 SDValue secondStore = 3333 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3334 MachinePointerInfo(SV, nextOffset), MVT::i8); 3335 nextOffset += StackOffset; 3336 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3337 3338 // Store second word : arguments given on stack 3339 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3340 MachinePointerInfo(SV, nextOffset)); 3341 nextOffset += FrameOffset; 3342 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3343 3344 // Store third word : arguments given in registers 3345 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3346 MachinePointerInfo(SV, nextOffset)); 3347 } 3348 3349 /// FPR - The set of FP registers that should be allocated for arguments 3350 /// on Darwin and AIX. 3351 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3352 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3353 PPC::F11, PPC::F12, PPC::F13}; 3354 3355 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3356 /// the stack. 3357 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3358 unsigned PtrByteSize) { 3359 unsigned ArgSize = ArgVT.getStoreSize(); 3360 if (Flags.isByVal()) 3361 ArgSize = Flags.getByValSize(); 3362 3363 // Round up to multiples of the pointer size, except for array members, 3364 // which are always packed. 3365 if (!Flags.isInConsecutiveRegs()) 3366 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3367 3368 return ArgSize; 3369 } 3370 3371 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3372 /// on the stack. 3373 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3374 ISD::ArgFlagsTy Flags, 3375 unsigned PtrByteSize) { 3376 Align Alignment(PtrByteSize); 3377 3378 // Altivec parameters are padded to a 16 byte boundary. 3379 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3380 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3381 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3382 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3383 Alignment = Align(16); 3384 3385 // ByVal parameters are aligned as requested. 3386 if (Flags.isByVal()) { 3387 auto BVAlign = Flags.getNonZeroByValAlign(); 3388 if (BVAlign > PtrByteSize) { 3389 if (BVAlign.value() % PtrByteSize != 0) 3390 llvm_unreachable( 3391 "ByVal alignment is not a multiple of the pointer size"); 3392 3393 Alignment = BVAlign; 3394 } 3395 } 3396 3397 // Array members are always packed to their original alignment. 3398 if (Flags.isInConsecutiveRegs()) { 3399 // If the array member was split into multiple registers, the first 3400 // needs to be aligned to the size of the full type. (Except for 3401 // ppcf128, which is only aligned as its f64 components.) 3402 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3403 Alignment = Align(OrigVT.getStoreSize()); 3404 else 3405 Alignment = Align(ArgVT.getStoreSize()); 3406 } 3407 3408 return Alignment; 3409 } 3410 3411 /// CalculateStackSlotUsed - Return whether this argument will use its 3412 /// stack slot (instead of being passed in registers). ArgOffset, 3413 /// AvailableFPRs, and AvailableVRs must hold the current argument 3414 /// position, and will be updated to account for this argument. 3415 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3416 unsigned PtrByteSize, unsigned LinkageSize, 3417 unsigned ParamAreaSize, unsigned &ArgOffset, 3418 unsigned &AvailableFPRs, 3419 unsigned &AvailableVRs) { 3420 bool UseMemory = false; 3421 3422 // Respect alignment of argument on the stack. 3423 Align Alignment = 3424 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3425 ArgOffset = alignTo(ArgOffset, Alignment); 3426 // If there's no space left in the argument save area, we must 3427 // use memory (this check also catches zero-sized arguments). 3428 if (ArgOffset >= LinkageSize + ParamAreaSize) 3429 UseMemory = true; 3430 3431 // Allocate argument on the stack. 3432 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3433 if (Flags.isInConsecutiveRegsLast()) 3434 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3435 // If we overran the argument save area, we must use memory 3436 // (this check catches arguments passed partially in memory) 3437 if (ArgOffset > LinkageSize + ParamAreaSize) 3438 UseMemory = true; 3439 3440 // However, if the argument is actually passed in an FPR or a VR, 3441 // we don't use memory after all. 3442 if (!Flags.isByVal()) { 3443 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3444 if (AvailableFPRs > 0) { 3445 --AvailableFPRs; 3446 return false; 3447 } 3448 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3449 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3450 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3451 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3452 if (AvailableVRs > 0) { 3453 --AvailableVRs; 3454 return false; 3455 } 3456 } 3457 3458 return UseMemory; 3459 } 3460 3461 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3462 /// ensure minimum alignment required for target. 3463 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3464 unsigned NumBytes) { 3465 return alignTo(NumBytes, Lowering->getStackAlign()); 3466 } 3467 3468 SDValue PPCTargetLowering::LowerFormalArguments( 3469 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3470 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3471 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3472 if (Subtarget.isAIXABI()) 3473 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3474 InVals); 3475 if (Subtarget.is64BitELFABI()) 3476 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3477 InVals); 3478 if (Subtarget.is32BitELFABI()) 3479 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3480 InVals); 3481 3482 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3483 InVals); 3484 } 3485 3486 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3487 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3488 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3489 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3490 3491 // 32-bit SVR4 ABI Stack Frame Layout: 3492 // +-----------------------------------+ 3493 // +--> | Back chain | 3494 // | +-----------------------------------+ 3495 // | | Floating-point register save area | 3496 // | +-----------------------------------+ 3497 // | | General register save area | 3498 // | +-----------------------------------+ 3499 // | | CR save word | 3500 // | +-----------------------------------+ 3501 // | | VRSAVE save word | 3502 // | +-----------------------------------+ 3503 // | | Alignment padding | 3504 // | +-----------------------------------+ 3505 // | | Vector register save area | 3506 // | +-----------------------------------+ 3507 // | | Local variable space | 3508 // | +-----------------------------------+ 3509 // | | Parameter list area | 3510 // | +-----------------------------------+ 3511 // | | LR save word | 3512 // | +-----------------------------------+ 3513 // SP--> +--- | Back chain | 3514 // +-----------------------------------+ 3515 // 3516 // Specifications: 3517 // System V Application Binary Interface PowerPC Processor Supplement 3518 // AltiVec Technology Programming Interface Manual 3519 3520 MachineFunction &MF = DAG.getMachineFunction(); 3521 MachineFrameInfo &MFI = MF.getFrameInfo(); 3522 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3523 3524 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3525 // Potential tail calls could cause overwriting of argument stack slots. 3526 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3527 (CallConv == CallingConv::Fast)); 3528 const Align PtrAlign(4); 3529 3530 // Assign locations to all of the incoming arguments. 3531 SmallVector<CCValAssign, 16> ArgLocs; 3532 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3533 *DAG.getContext()); 3534 3535 // Reserve space for the linkage area on the stack. 3536 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3537 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3538 if (useSoftFloat()) 3539 CCInfo.PreAnalyzeFormalArguments(Ins); 3540 3541 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3542 CCInfo.clearWasPPCF128(); 3543 3544 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3545 CCValAssign &VA = ArgLocs[i]; 3546 3547 // Arguments stored in registers. 3548 if (VA.isRegLoc()) { 3549 const TargetRegisterClass *RC; 3550 EVT ValVT = VA.getValVT(); 3551 3552 switch (ValVT.getSimpleVT().SimpleTy) { 3553 default: 3554 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3555 case MVT::i1: 3556 case MVT::i32: 3557 RC = &PPC::GPRCRegClass; 3558 break; 3559 case MVT::f32: 3560 if (Subtarget.hasP8Vector()) 3561 RC = &PPC::VSSRCRegClass; 3562 else if (Subtarget.hasSPE()) 3563 RC = &PPC::GPRCRegClass; 3564 else 3565 RC = &PPC::F4RCRegClass; 3566 break; 3567 case MVT::f64: 3568 if (Subtarget.hasVSX()) 3569 RC = &PPC::VSFRCRegClass; 3570 else if (Subtarget.hasSPE()) 3571 // SPE passes doubles in GPR pairs. 3572 RC = &PPC::GPRCRegClass; 3573 else 3574 RC = &PPC::F8RCRegClass; 3575 break; 3576 case MVT::v16i8: 3577 case MVT::v8i16: 3578 case MVT::v4i32: 3579 RC = &PPC::VRRCRegClass; 3580 break; 3581 case MVT::v4f32: 3582 RC = &PPC::VRRCRegClass; 3583 break; 3584 case MVT::v2f64: 3585 case MVT::v2i64: 3586 RC = &PPC::VRRCRegClass; 3587 break; 3588 } 3589 3590 SDValue ArgValue; 3591 // Transform the arguments stored in physical registers into 3592 // virtual ones. 3593 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3594 assert(i + 1 < e && "No second half of double precision argument"); 3595 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3596 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3597 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3598 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3599 if (!Subtarget.isLittleEndian()) 3600 std::swap (ArgValueLo, ArgValueHi); 3601 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3602 ArgValueHi); 3603 } else { 3604 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3605 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3606 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3607 if (ValVT == MVT::i1) 3608 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3609 } 3610 3611 InVals.push_back(ArgValue); 3612 } else { 3613 // Argument stored in memory. 3614 assert(VA.isMemLoc()); 3615 3616 // Get the extended size of the argument type in stack 3617 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3618 // Get the actual size of the argument type 3619 unsigned ObjSize = VA.getValVT().getStoreSize(); 3620 unsigned ArgOffset = VA.getLocMemOffset(); 3621 // Stack objects in PPC32 are right justified. 3622 ArgOffset += ArgSize - ObjSize; 3623 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3624 3625 // Create load nodes to retrieve arguments from the stack. 3626 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3627 InVals.push_back( 3628 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3629 } 3630 } 3631 3632 // Assign locations to all of the incoming aggregate by value arguments. 3633 // Aggregates passed by value are stored in the local variable space of the 3634 // caller's stack frame, right above the parameter list area. 3635 SmallVector<CCValAssign, 16> ByValArgLocs; 3636 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3637 ByValArgLocs, *DAG.getContext()); 3638 3639 // Reserve stack space for the allocations in CCInfo. 3640 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3641 3642 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3643 3644 // Area that is at least reserved in the caller of this function. 3645 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3646 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3647 3648 // Set the size that is at least reserved in caller of this function. Tail 3649 // call optimized function's reserved stack space needs to be aligned so that 3650 // taking the difference between two stack areas will result in an aligned 3651 // stack. 3652 MinReservedArea = 3653 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3654 FuncInfo->setMinReservedArea(MinReservedArea); 3655 3656 SmallVector<SDValue, 8> MemOps; 3657 3658 // If the function takes variable number of arguments, make a frame index for 3659 // the start of the first vararg value... for expansion of llvm.va_start. 3660 if (isVarArg) { 3661 static const MCPhysReg GPArgRegs[] = { 3662 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3663 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3664 }; 3665 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3666 3667 static const MCPhysReg FPArgRegs[] = { 3668 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3669 PPC::F8 3670 }; 3671 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3672 3673 if (useSoftFloat() || hasSPE()) 3674 NumFPArgRegs = 0; 3675 3676 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3677 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3678 3679 // Make room for NumGPArgRegs and NumFPArgRegs. 3680 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3681 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3682 3683 FuncInfo->setVarArgsStackOffset( 3684 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3685 CCInfo.getNextStackOffset(), true)); 3686 3687 FuncInfo->setVarArgsFrameIndex( 3688 MFI.CreateStackObject(Depth, Align(8), false)); 3689 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3690 3691 // The fixed integer arguments of a variadic function are stored to the 3692 // VarArgsFrameIndex on the stack so that they may be loaded by 3693 // dereferencing the result of va_next. 3694 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3695 // Get an existing live-in vreg, or add a new one. 3696 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3697 if (!VReg) 3698 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3699 3700 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3701 SDValue Store = 3702 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3703 MemOps.push_back(Store); 3704 // Increment the address by four for the next argument to store 3705 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3706 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3707 } 3708 3709 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3710 // is set. 3711 // The double arguments are stored to the VarArgsFrameIndex 3712 // on the stack. 3713 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3714 // Get an existing live-in vreg, or add a new one. 3715 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3716 if (!VReg) 3717 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3718 3719 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3720 SDValue Store = 3721 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3722 MemOps.push_back(Store); 3723 // Increment the address by eight for the next argument to store 3724 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3725 PtrVT); 3726 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3727 } 3728 } 3729 3730 if (!MemOps.empty()) 3731 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3732 3733 return Chain; 3734 } 3735 3736 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3737 // value to MVT::i64 and then truncate to the correct register size. 3738 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3739 EVT ObjectVT, SelectionDAG &DAG, 3740 SDValue ArgVal, 3741 const SDLoc &dl) const { 3742 if (Flags.isSExt()) 3743 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3744 DAG.getValueType(ObjectVT)); 3745 else if (Flags.isZExt()) 3746 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3747 DAG.getValueType(ObjectVT)); 3748 3749 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3750 } 3751 3752 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3753 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3754 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3755 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3756 // TODO: add description of PPC stack frame format, or at least some docs. 3757 // 3758 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3759 bool isLittleEndian = Subtarget.isLittleEndian(); 3760 MachineFunction &MF = DAG.getMachineFunction(); 3761 MachineFrameInfo &MFI = MF.getFrameInfo(); 3762 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3763 3764 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3765 "fastcc not supported on varargs functions"); 3766 3767 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3768 // Potential tail calls could cause overwriting of argument stack slots. 3769 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3770 (CallConv == CallingConv::Fast)); 3771 unsigned PtrByteSize = 8; 3772 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3773 3774 static const MCPhysReg GPR[] = { 3775 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3776 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3777 }; 3778 static const MCPhysReg VR[] = { 3779 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3780 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3781 }; 3782 3783 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3784 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3785 const unsigned Num_VR_Regs = array_lengthof(VR); 3786 3787 // Do a first pass over the arguments to determine whether the ABI 3788 // guarantees that our caller has allocated the parameter save area 3789 // on its stack frame. In the ELFv1 ABI, this is always the case; 3790 // in the ELFv2 ABI, it is true if this is a vararg function or if 3791 // any parameter is located in a stack slot. 3792 3793 bool HasParameterArea = !isELFv2ABI || isVarArg; 3794 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3795 unsigned NumBytes = LinkageSize; 3796 unsigned AvailableFPRs = Num_FPR_Regs; 3797 unsigned AvailableVRs = Num_VR_Regs; 3798 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3799 if (Ins[i].Flags.isNest()) 3800 continue; 3801 3802 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3803 PtrByteSize, LinkageSize, ParamAreaSize, 3804 NumBytes, AvailableFPRs, AvailableVRs)) 3805 HasParameterArea = true; 3806 } 3807 3808 // Add DAG nodes to load the arguments or copy them out of registers. On 3809 // entry to a function on PPC, the arguments start after the linkage area, 3810 // although the first ones are often in registers. 3811 3812 unsigned ArgOffset = LinkageSize; 3813 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3814 SmallVector<SDValue, 8> MemOps; 3815 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3816 unsigned CurArgIdx = 0; 3817 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3818 SDValue ArgVal; 3819 bool needsLoad = false; 3820 EVT ObjectVT = Ins[ArgNo].VT; 3821 EVT OrigVT = Ins[ArgNo].ArgVT; 3822 unsigned ObjSize = ObjectVT.getStoreSize(); 3823 unsigned ArgSize = ObjSize; 3824 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3825 if (Ins[ArgNo].isOrigArg()) { 3826 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3827 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3828 } 3829 // We re-align the argument offset for each argument, except when using the 3830 // fast calling convention, when we need to make sure we do that only when 3831 // we'll actually use a stack slot. 3832 unsigned CurArgOffset; 3833 Align Alignment; 3834 auto ComputeArgOffset = [&]() { 3835 /* Respect alignment of argument on the stack. */ 3836 Alignment = 3837 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3838 ArgOffset = alignTo(ArgOffset, Alignment); 3839 CurArgOffset = ArgOffset; 3840 }; 3841 3842 if (CallConv != CallingConv::Fast) { 3843 ComputeArgOffset(); 3844 3845 /* Compute GPR index associated with argument offset. */ 3846 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3847 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3848 } 3849 3850 // FIXME the codegen can be much improved in some cases. 3851 // We do not have to keep everything in memory. 3852 if (Flags.isByVal()) { 3853 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3854 3855 if (CallConv == CallingConv::Fast) 3856 ComputeArgOffset(); 3857 3858 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3859 ObjSize = Flags.getByValSize(); 3860 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3861 // Empty aggregate parameters do not take up registers. Examples: 3862 // struct { } a; 3863 // union { } b; 3864 // int c[0]; 3865 // etc. However, we have to provide a place-holder in InVals, so 3866 // pretend we have an 8-byte item at the current address for that 3867 // purpose. 3868 if (!ObjSize) { 3869 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3870 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3871 InVals.push_back(FIN); 3872 continue; 3873 } 3874 3875 // Create a stack object covering all stack doublewords occupied 3876 // by the argument. If the argument is (fully or partially) on 3877 // the stack, or if the argument is fully in registers but the 3878 // caller has allocated the parameter save anyway, we can refer 3879 // directly to the caller's stack frame. Otherwise, create a 3880 // local copy in our own frame. 3881 int FI; 3882 if (HasParameterArea || 3883 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3884 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3885 else 3886 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3887 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3888 3889 // Handle aggregates smaller than 8 bytes. 3890 if (ObjSize < PtrByteSize) { 3891 // The value of the object is its address, which differs from the 3892 // address of the enclosing doubleword on big-endian systems. 3893 SDValue Arg = FIN; 3894 if (!isLittleEndian) { 3895 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3896 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3897 } 3898 InVals.push_back(Arg); 3899 3900 if (GPR_idx != Num_GPR_Regs) { 3901 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3902 FuncInfo->addLiveInAttr(VReg, Flags); 3903 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3904 SDValue Store; 3905 3906 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3907 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3908 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3909 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3910 MachinePointerInfo(&*FuncArg), ObjType); 3911 } else { 3912 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3913 // store the whole register as-is to the parameter save area 3914 // slot. 3915 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3916 MachinePointerInfo(&*FuncArg)); 3917 } 3918 3919 MemOps.push_back(Store); 3920 } 3921 // Whether we copied from a register or not, advance the offset 3922 // into the parameter save area by a full doubleword. 3923 ArgOffset += PtrByteSize; 3924 continue; 3925 } 3926 3927 // The value of the object is its address, which is the address of 3928 // its first stack doubleword. 3929 InVals.push_back(FIN); 3930 3931 // Store whatever pieces of the object are in registers to memory. 3932 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3933 if (GPR_idx == Num_GPR_Regs) 3934 break; 3935 3936 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3937 FuncInfo->addLiveInAttr(VReg, Flags); 3938 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3939 SDValue Addr = FIN; 3940 if (j) { 3941 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3942 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3943 } 3944 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3945 MachinePointerInfo(&*FuncArg, j)); 3946 MemOps.push_back(Store); 3947 ++GPR_idx; 3948 } 3949 ArgOffset += ArgSize; 3950 continue; 3951 } 3952 3953 switch (ObjectVT.getSimpleVT().SimpleTy) { 3954 default: llvm_unreachable("Unhandled argument type!"); 3955 case MVT::i1: 3956 case MVT::i32: 3957 case MVT::i64: 3958 if (Flags.isNest()) { 3959 // The 'nest' parameter, if any, is passed in R11. 3960 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3961 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3962 3963 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3964 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3965 3966 break; 3967 } 3968 3969 // These can be scalar arguments or elements of an integer array type 3970 // passed directly. Clang may use those instead of "byval" aggregate 3971 // types to avoid forcing arguments to memory unnecessarily. 3972 if (GPR_idx != Num_GPR_Regs) { 3973 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3974 FuncInfo->addLiveInAttr(VReg, Flags); 3975 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3976 3977 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3978 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3979 // value to MVT::i64 and then truncate to the correct register size. 3980 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3981 } else { 3982 if (CallConv == CallingConv::Fast) 3983 ComputeArgOffset(); 3984 3985 needsLoad = true; 3986 ArgSize = PtrByteSize; 3987 } 3988 if (CallConv != CallingConv::Fast || needsLoad) 3989 ArgOffset += 8; 3990 break; 3991 3992 case MVT::f32: 3993 case MVT::f64: 3994 // These can be scalar arguments or elements of a float array type 3995 // passed directly. The latter are used to implement ELFv2 homogenous 3996 // float aggregates. 3997 if (FPR_idx != Num_FPR_Regs) { 3998 unsigned VReg; 3999 4000 if (ObjectVT == MVT::f32) 4001 VReg = MF.addLiveIn(FPR[FPR_idx], 4002 Subtarget.hasP8Vector() 4003 ? &PPC::VSSRCRegClass 4004 : &PPC::F4RCRegClass); 4005 else 4006 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4007 ? &PPC::VSFRCRegClass 4008 : &PPC::F8RCRegClass); 4009 4010 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4011 ++FPR_idx; 4012 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4013 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4014 // once we support fp <-> gpr moves. 4015 4016 // This can only ever happen in the presence of f32 array types, 4017 // since otherwise we never run out of FPRs before running out 4018 // of GPRs. 4019 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4020 FuncInfo->addLiveInAttr(VReg, Flags); 4021 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4022 4023 if (ObjectVT == MVT::f32) { 4024 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4025 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4026 DAG.getConstant(32, dl, MVT::i32)); 4027 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4028 } 4029 4030 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4031 } else { 4032 if (CallConv == CallingConv::Fast) 4033 ComputeArgOffset(); 4034 4035 needsLoad = true; 4036 } 4037 4038 // When passing an array of floats, the array occupies consecutive 4039 // space in the argument area; only round up to the next doubleword 4040 // at the end of the array. Otherwise, each float takes 8 bytes. 4041 if (CallConv != CallingConv::Fast || needsLoad) { 4042 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4043 ArgOffset += ArgSize; 4044 if (Flags.isInConsecutiveRegsLast()) 4045 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4046 } 4047 break; 4048 case MVT::v4f32: 4049 case MVT::v4i32: 4050 case MVT::v8i16: 4051 case MVT::v16i8: 4052 case MVT::v2f64: 4053 case MVT::v2i64: 4054 case MVT::v1i128: 4055 case MVT::f128: 4056 // These can be scalar arguments or elements of a vector array type 4057 // passed directly. The latter are used to implement ELFv2 homogenous 4058 // vector aggregates. 4059 if (VR_idx != Num_VR_Regs) { 4060 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4061 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4062 ++VR_idx; 4063 } else { 4064 if (CallConv == CallingConv::Fast) 4065 ComputeArgOffset(); 4066 needsLoad = true; 4067 } 4068 if (CallConv != CallingConv::Fast || needsLoad) 4069 ArgOffset += 16; 4070 break; 4071 } 4072 4073 // We need to load the argument to a virtual register if we determined 4074 // above that we ran out of physical registers of the appropriate type. 4075 if (needsLoad) { 4076 if (ObjSize < ArgSize && !isLittleEndian) 4077 CurArgOffset += ArgSize - ObjSize; 4078 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4079 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4080 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4081 } 4082 4083 InVals.push_back(ArgVal); 4084 } 4085 4086 // Area that is at least reserved in the caller of this function. 4087 unsigned MinReservedArea; 4088 if (HasParameterArea) 4089 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4090 else 4091 MinReservedArea = LinkageSize; 4092 4093 // Set the size that is at least reserved in caller of this function. Tail 4094 // call optimized functions' reserved stack space needs to be aligned so that 4095 // taking the difference between two stack areas will result in an aligned 4096 // stack. 4097 MinReservedArea = 4098 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4099 FuncInfo->setMinReservedArea(MinReservedArea); 4100 4101 // If the function takes variable number of arguments, make a frame index for 4102 // the start of the first vararg value... for expansion of llvm.va_start. 4103 // On ELFv2ABI spec, it writes: 4104 // C programs that are intended to be *portable* across different compilers 4105 // and architectures must use the header file <stdarg.h> to deal with variable 4106 // argument lists. 4107 if (isVarArg && MFI.hasVAStart()) { 4108 int Depth = ArgOffset; 4109 4110 FuncInfo->setVarArgsFrameIndex( 4111 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4112 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4113 4114 // If this function is vararg, store any remaining integer argument regs 4115 // to their spots on the stack so that they may be loaded by dereferencing 4116 // the result of va_next. 4117 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4118 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4119 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4120 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4121 SDValue Store = 4122 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4123 MemOps.push_back(Store); 4124 // Increment the address by four for the next argument to store 4125 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4126 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4127 } 4128 } 4129 4130 if (!MemOps.empty()) 4131 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4132 4133 return Chain; 4134 } 4135 4136 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4137 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4138 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4139 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4140 // TODO: add description of PPC stack frame format, or at least some docs. 4141 // 4142 MachineFunction &MF = DAG.getMachineFunction(); 4143 MachineFrameInfo &MFI = MF.getFrameInfo(); 4144 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4145 4146 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4147 bool isPPC64 = PtrVT == MVT::i64; 4148 // Potential tail calls could cause overwriting of argument stack slots. 4149 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4150 (CallConv == CallingConv::Fast)); 4151 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4152 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4153 unsigned ArgOffset = LinkageSize; 4154 // Area that is at least reserved in caller of this function. 4155 unsigned MinReservedArea = ArgOffset; 4156 4157 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4158 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4159 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4160 }; 4161 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4162 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4163 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4164 }; 4165 static const MCPhysReg VR[] = { 4166 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4167 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4168 }; 4169 4170 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4171 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4172 const unsigned Num_VR_Regs = array_lengthof( VR); 4173 4174 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4175 4176 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4177 4178 // In 32-bit non-varargs functions, the stack space for vectors is after the 4179 // stack space for non-vectors. We do not use this space unless we have 4180 // too many vectors to fit in registers, something that only occurs in 4181 // constructed examples:), but we have to walk the arglist to figure 4182 // that out...for the pathological case, compute VecArgOffset as the 4183 // start of the vector parameter area. Computing VecArgOffset is the 4184 // entire point of the following loop. 4185 unsigned VecArgOffset = ArgOffset; 4186 if (!isVarArg && !isPPC64) { 4187 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4188 ++ArgNo) { 4189 EVT ObjectVT = Ins[ArgNo].VT; 4190 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4191 4192 if (Flags.isByVal()) { 4193 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4194 unsigned ObjSize = Flags.getByValSize(); 4195 unsigned ArgSize = 4196 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4197 VecArgOffset += ArgSize; 4198 continue; 4199 } 4200 4201 switch(ObjectVT.getSimpleVT().SimpleTy) { 4202 default: llvm_unreachable("Unhandled argument type!"); 4203 case MVT::i1: 4204 case MVT::i32: 4205 case MVT::f32: 4206 VecArgOffset += 4; 4207 break; 4208 case MVT::i64: // PPC64 4209 case MVT::f64: 4210 // FIXME: We are guaranteed to be !isPPC64 at this point. 4211 // Does MVT::i64 apply? 4212 VecArgOffset += 8; 4213 break; 4214 case MVT::v4f32: 4215 case MVT::v4i32: 4216 case MVT::v8i16: 4217 case MVT::v16i8: 4218 // Nothing to do, we're only looking at Nonvector args here. 4219 break; 4220 } 4221 } 4222 } 4223 // We've found where the vector parameter area in memory is. Skip the 4224 // first 12 parameters; these don't use that memory. 4225 VecArgOffset = ((VecArgOffset+15)/16)*16; 4226 VecArgOffset += 12*16; 4227 4228 // Add DAG nodes to load the arguments or copy them out of registers. On 4229 // entry to a function on PPC, the arguments start after the linkage area, 4230 // although the first ones are often in registers. 4231 4232 SmallVector<SDValue, 8> MemOps; 4233 unsigned nAltivecParamsAtEnd = 0; 4234 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4235 unsigned CurArgIdx = 0; 4236 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4237 SDValue ArgVal; 4238 bool needsLoad = false; 4239 EVT ObjectVT = Ins[ArgNo].VT; 4240 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4241 unsigned ArgSize = ObjSize; 4242 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4243 if (Ins[ArgNo].isOrigArg()) { 4244 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4245 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4246 } 4247 unsigned CurArgOffset = ArgOffset; 4248 4249 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4250 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4251 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4252 if (isVarArg || isPPC64) { 4253 MinReservedArea = ((MinReservedArea+15)/16)*16; 4254 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4255 Flags, 4256 PtrByteSize); 4257 } else nAltivecParamsAtEnd++; 4258 } else 4259 // Calculate min reserved area. 4260 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4261 Flags, 4262 PtrByteSize); 4263 4264 // FIXME the codegen can be much improved in some cases. 4265 // We do not have to keep everything in memory. 4266 if (Flags.isByVal()) { 4267 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4268 4269 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4270 ObjSize = Flags.getByValSize(); 4271 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4272 // Objects of size 1 and 2 are right justified, everything else is 4273 // left justified. This means the memory address is adjusted forwards. 4274 if (ObjSize==1 || ObjSize==2) { 4275 CurArgOffset = CurArgOffset + (4 - ObjSize); 4276 } 4277 // The value of the object is its address. 4278 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4279 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4280 InVals.push_back(FIN); 4281 if (ObjSize==1 || ObjSize==2) { 4282 if (GPR_idx != Num_GPR_Regs) { 4283 unsigned VReg; 4284 if (isPPC64) 4285 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4286 else 4287 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4288 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4289 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4290 SDValue Store = 4291 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4292 MachinePointerInfo(&*FuncArg), ObjType); 4293 MemOps.push_back(Store); 4294 ++GPR_idx; 4295 } 4296 4297 ArgOffset += PtrByteSize; 4298 4299 continue; 4300 } 4301 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4302 // Store whatever pieces of the object are in registers 4303 // to memory. ArgOffset will be the address of the beginning 4304 // of the object. 4305 if (GPR_idx != Num_GPR_Regs) { 4306 unsigned VReg; 4307 if (isPPC64) 4308 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4309 else 4310 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4311 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4312 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4313 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4314 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4315 MachinePointerInfo(&*FuncArg, j)); 4316 MemOps.push_back(Store); 4317 ++GPR_idx; 4318 ArgOffset += PtrByteSize; 4319 } else { 4320 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4321 break; 4322 } 4323 } 4324 continue; 4325 } 4326 4327 switch (ObjectVT.getSimpleVT().SimpleTy) { 4328 default: llvm_unreachable("Unhandled argument type!"); 4329 case MVT::i1: 4330 case MVT::i32: 4331 if (!isPPC64) { 4332 if (GPR_idx != Num_GPR_Regs) { 4333 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4334 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4335 4336 if (ObjectVT == MVT::i1) 4337 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4338 4339 ++GPR_idx; 4340 } else { 4341 needsLoad = true; 4342 ArgSize = PtrByteSize; 4343 } 4344 // All int arguments reserve stack space in the Darwin ABI. 4345 ArgOffset += PtrByteSize; 4346 break; 4347 } 4348 LLVM_FALLTHROUGH; 4349 case MVT::i64: // PPC64 4350 if (GPR_idx != Num_GPR_Regs) { 4351 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4352 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4353 4354 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4355 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4356 // value to MVT::i64 and then truncate to the correct register size. 4357 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4358 4359 ++GPR_idx; 4360 } else { 4361 needsLoad = true; 4362 ArgSize = PtrByteSize; 4363 } 4364 // All int arguments reserve stack space in the Darwin ABI. 4365 ArgOffset += 8; 4366 break; 4367 4368 case MVT::f32: 4369 case MVT::f64: 4370 // Every 4 bytes of argument space consumes one of the GPRs available for 4371 // argument passing. 4372 if (GPR_idx != Num_GPR_Regs) { 4373 ++GPR_idx; 4374 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4375 ++GPR_idx; 4376 } 4377 if (FPR_idx != Num_FPR_Regs) { 4378 unsigned VReg; 4379 4380 if (ObjectVT == MVT::f32) 4381 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4382 else 4383 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4384 4385 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4386 ++FPR_idx; 4387 } else { 4388 needsLoad = true; 4389 } 4390 4391 // All FP arguments reserve stack space in the Darwin ABI. 4392 ArgOffset += isPPC64 ? 8 : ObjSize; 4393 break; 4394 case MVT::v4f32: 4395 case MVT::v4i32: 4396 case MVT::v8i16: 4397 case MVT::v16i8: 4398 // Note that vector arguments in registers don't reserve stack space, 4399 // except in varargs functions. 4400 if (VR_idx != Num_VR_Regs) { 4401 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4402 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4403 if (isVarArg) { 4404 while ((ArgOffset % 16) != 0) { 4405 ArgOffset += PtrByteSize; 4406 if (GPR_idx != Num_GPR_Regs) 4407 GPR_idx++; 4408 } 4409 ArgOffset += 16; 4410 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4411 } 4412 ++VR_idx; 4413 } else { 4414 if (!isVarArg && !isPPC64) { 4415 // Vectors go after all the nonvectors. 4416 CurArgOffset = VecArgOffset; 4417 VecArgOffset += 16; 4418 } else { 4419 // Vectors are aligned. 4420 ArgOffset = ((ArgOffset+15)/16)*16; 4421 CurArgOffset = ArgOffset; 4422 ArgOffset += 16; 4423 } 4424 needsLoad = true; 4425 } 4426 break; 4427 } 4428 4429 // We need to load the argument to a virtual register if we determined above 4430 // that we ran out of physical registers of the appropriate type. 4431 if (needsLoad) { 4432 int FI = MFI.CreateFixedObject(ObjSize, 4433 CurArgOffset + (ArgSize - ObjSize), 4434 isImmutable); 4435 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4436 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4437 } 4438 4439 InVals.push_back(ArgVal); 4440 } 4441 4442 // Allow for Altivec parameters at the end, if needed. 4443 if (nAltivecParamsAtEnd) { 4444 MinReservedArea = ((MinReservedArea+15)/16)*16; 4445 MinReservedArea += 16*nAltivecParamsAtEnd; 4446 } 4447 4448 // Area that is at least reserved in the caller of this function. 4449 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4450 4451 // Set the size that is at least reserved in caller of this function. Tail 4452 // call optimized functions' reserved stack space needs to be aligned so that 4453 // taking the difference between two stack areas will result in an aligned 4454 // stack. 4455 MinReservedArea = 4456 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4457 FuncInfo->setMinReservedArea(MinReservedArea); 4458 4459 // If the function takes variable number of arguments, make a frame index for 4460 // the start of the first vararg value... for expansion of llvm.va_start. 4461 if (isVarArg) { 4462 int Depth = ArgOffset; 4463 4464 FuncInfo->setVarArgsFrameIndex( 4465 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4466 Depth, true)); 4467 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4468 4469 // If this function is vararg, store any remaining integer argument regs 4470 // to their spots on the stack so that they may be loaded by dereferencing 4471 // the result of va_next. 4472 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4473 unsigned VReg; 4474 4475 if (isPPC64) 4476 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4477 else 4478 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4479 4480 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4481 SDValue Store = 4482 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4483 MemOps.push_back(Store); 4484 // Increment the address by four for the next argument to store 4485 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4486 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4487 } 4488 } 4489 4490 if (!MemOps.empty()) 4491 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4492 4493 return Chain; 4494 } 4495 4496 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4497 /// adjusted to accommodate the arguments for the tailcall. 4498 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4499 unsigned ParamSize) { 4500 4501 if (!isTailCall) return 0; 4502 4503 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4504 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4505 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4506 // Remember only if the new adjustment is bigger. 4507 if (SPDiff < FI->getTailCallSPDelta()) 4508 FI->setTailCallSPDelta(SPDiff); 4509 4510 return SPDiff; 4511 } 4512 4513 static bool isFunctionGlobalAddress(SDValue Callee); 4514 4515 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4516 const TargetMachine &TM) { 4517 // It does not make sense to call callsShareTOCBase() with a caller that 4518 // is PC Relative since PC Relative callers do not have a TOC. 4519 #ifndef NDEBUG 4520 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4521 assert(!STICaller->isUsingPCRelativeCalls() && 4522 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4523 #endif 4524 4525 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4526 // don't have enough information to determine if the caller and callee share 4527 // the same TOC base, so we have to pessimistically assume they don't for 4528 // correctness. 4529 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4530 if (!G) 4531 return false; 4532 4533 const GlobalValue *GV = G->getGlobal(); 4534 4535 // If the callee is preemptable, then the static linker will use a plt-stub 4536 // which saves the toc to the stack, and needs a nop after the call 4537 // instruction to convert to a toc-restore. 4538 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4539 return false; 4540 4541 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4542 // We may need a TOC restore in the situation where the caller requires a 4543 // valid TOC but the callee is PC Relative and does not. 4544 const Function *F = dyn_cast<Function>(GV); 4545 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4546 4547 // If we have an Alias we can try to get the function from there. 4548 if (Alias) { 4549 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4550 F = dyn_cast<Function>(GlobalObj); 4551 } 4552 4553 // If we still have no valid function pointer we do not have enough 4554 // information to determine if the callee uses PC Relative calls so we must 4555 // assume that it does. 4556 if (!F) 4557 return false; 4558 4559 // If the callee uses PC Relative we cannot guarantee that the callee won't 4560 // clobber the TOC of the caller and so we must assume that the two 4561 // functions do not share a TOC base. 4562 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4563 if (STICallee->isUsingPCRelativeCalls()) 4564 return false; 4565 4566 // The medium and large code models are expected to provide a sufficiently 4567 // large TOC to provide all data addressing needs of a module with a 4568 // single TOC. 4569 if (CodeModel::Medium == TM.getCodeModel() || 4570 CodeModel::Large == TM.getCodeModel()) 4571 return true; 4572 4573 // Otherwise we need to ensure callee and caller are in the same section, 4574 // since the linker may allocate multiple TOCs, and we don't know which 4575 // sections will belong to the same TOC base. 4576 if (!GV->isStrongDefinitionForLinker()) 4577 return false; 4578 4579 // Any explicitly-specified sections and section prefixes must also match. 4580 // Also, if we're using -ffunction-sections, then each function is always in 4581 // a different section (the same is true for COMDAT functions). 4582 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4583 GV->getSection() != Caller->getSection()) 4584 return false; 4585 if (const auto *F = dyn_cast<Function>(GV)) { 4586 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4587 return false; 4588 } 4589 4590 return true; 4591 } 4592 4593 static bool 4594 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4595 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4596 assert(Subtarget.is64BitELFABI()); 4597 4598 const unsigned PtrByteSize = 8; 4599 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4600 4601 static const MCPhysReg GPR[] = { 4602 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4603 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4604 }; 4605 static const MCPhysReg VR[] = { 4606 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4607 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4608 }; 4609 4610 const unsigned NumGPRs = array_lengthof(GPR); 4611 const unsigned NumFPRs = 13; 4612 const unsigned NumVRs = array_lengthof(VR); 4613 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4614 4615 unsigned NumBytes = LinkageSize; 4616 unsigned AvailableFPRs = NumFPRs; 4617 unsigned AvailableVRs = NumVRs; 4618 4619 for (const ISD::OutputArg& Param : Outs) { 4620 if (Param.Flags.isNest()) continue; 4621 4622 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4623 LinkageSize, ParamAreaSize, NumBytes, 4624 AvailableFPRs, AvailableVRs)) 4625 return true; 4626 } 4627 return false; 4628 } 4629 4630 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4631 if (CB.arg_size() != CallerFn->arg_size()) 4632 return false; 4633 4634 auto CalleeArgIter = CB.arg_begin(); 4635 auto CalleeArgEnd = CB.arg_end(); 4636 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4637 4638 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4639 const Value* CalleeArg = *CalleeArgIter; 4640 const Value* CallerArg = &(*CallerArgIter); 4641 if (CalleeArg == CallerArg) 4642 continue; 4643 4644 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4645 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4646 // } 4647 // 1st argument of callee is undef and has the same type as caller. 4648 if (CalleeArg->getType() == CallerArg->getType() && 4649 isa<UndefValue>(CalleeArg)) 4650 continue; 4651 4652 return false; 4653 } 4654 4655 return true; 4656 } 4657 4658 // Returns true if TCO is possible between the callers and callees 4659 // calling conventions. 4660 static bool 4661 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4662 CallingConv::ID CalleeCC) { 4663 // Tail calls are possible with fastcc and ccc. 4664 auto isTailCallableCC = [] (CallingConv::ID CC){ 4665 return CC == CallingConv::C || CC == CallingConv::Fast; 4666 }; 4667 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4668 return false; 4669 4670 // We can safely tail call both fastcc and ccc callees from a c calling 4671 // convention caller. If the caller is fastcc, we may have less stack space 4672 // than a non-fastcc caller with the same signature so disable tail-calls in 4673 // that case. 4674 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4675 } 4676 4677 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4678 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4679 const SmallVectorImpl<ISD::OutputArg> &Outs, 4680 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4681 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4682 4683 if (DisableSCO && !TailCallOpt) return false; 4684 4685 // Variadic argument functions are not supported. 4686 if (isVarArg) return false; 4687 4688 auto &Caller = DAG.getMachineFunction().getFunction(); 4689 // Check that the calling conventions are compatible for tco. 4690 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4691 return false; 4692 4693 // Caller contains any byval parameter is not supported. 4694 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4695 return false; 4696 4697 // Callee contains any byval parameter is not supported, too. 4698 // Note: This is a quick work around, because in some cases, e.g. 4699 // caller's stack size > callee's stack size, we are still able to apply 4700 // sibling call optimization. For example, gcc is able to do SCO for caller1 4701 // in the following example, but not for caller2. 4702 // struct test { 4703 // long int a; 4704 // char ary[56]; 4705 // } gTest; 4706 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4707 // b->a = v.a; 4708 // return 0; 4709 // } 4710 // void caller1(struct test a, struct test c, struct test *b) { 4711 // callee(gTest, b); } 4712 // void caller2(struct test *b) { callee(gTest, b); } 4713 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4714 return false; 4715 4716 // If callee and caller use different calling conventions, we cannot pass 4717 // parameters on stack since offsets for the parameter area may be different. 4718 if (Caller.getCallingConv() != CalleeCC && 4719 needStackSlotPassParameters(Subtarget, Outs)) 4720 return false; 4721 4722 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4723 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4724 // callee potentially have different TOC bases then we cannot tail call since 4725 // we need to restore the TOC pointer after the call. 4726 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4727 // We cannot guarantee this for indirect calls or calls to external functions. 4728 // When PC-Relative addressing is used, the concept of the TOC is no longer 4729 // applicable so this check is not required. 4730 // Check first for indirect calls. 4731 if (!Subtarget.isUsingPCRelativeCalls() && 4732 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4733 return false; 4734 4735 // Check if we share the TOC base. 4736 if (!Subtarget.isUsingPCRelativeCalls() && 4737 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4738 return false; 4739 4740 // TCO allows altering callee ABI, so we don't have to check further. 4741 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4742 return true; 4743 4744 if (DisableSCO) return false; 4745 4746 // If callee use the same argument list that caller is using, then we can 4747 // apply SCO on this case. If it is not, then we need to check if callee needs 4748 // stack for passing arguments. 4749 // PC Relative tail calls may not have a CallBase. 4750 // If there is no CallBase we cannot verify if we have the same argument 4751 // list so assume that we don't have the same argument list. 4752 if (CB && !hasSameArgumentList(&Caller, *CB) && 4753 needStackSlotPassParameters(Subtarget, Outs)) 4754 return false; 4755 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4756 return false; 4757 4758 return true; 4759 } 4760 4761 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4762 /// for tail call optimization. Targets which want to do tail call 4763 /// optimization should implement this function. 4764 bool 4765 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4766 CallingConv::ID CalleeCC, 4767 bool isVarArg, 4768 const SmallVectorImpl<ISD::InputArg> &Ins, 4769 SelectionDAG& DAG) const { 4770 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4771 return false; 4772 4773 // Variable argument functions are not supported. 4774 if (isVarArg) 4775 return false; 4776 4777 MachineFunction &MF = DAG.getMachineFunction(); 4778 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4779 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4780 // Functions containing by val parameters are not supported. 4781 for (unsigned i = 0; i != Ins.size(); i++) { 4782 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4783 if (Flags.isByVal()) return false; 4784 } 4785 4786 // Non-PIC/GOT tail calls are supported. 4787 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4788 return true; 4789 4790 // At the moment we can only do local tail calls (in same module, hidden 4791 // or protected) if we are generating PIC. 4792 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4793 return G->getGlobal()->hasHiddenVisibility() 4794 || G->getGlobal()->hasProtectedVisibility(); 4795 } 4796 4797 return false; 4798 } 4799 4800 /// isCallCompatibleAddress - Return the immediate to use if the specified 4801 /// 32-bit value is representable in the immediate field of a BxA instruction. 4802 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4803 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4804 if (!C) return nullptr; 4805 4806 int Addr = C->getZExtValue(); 4807 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4808 SignExtend32<26>(Addr) != Addr) 4809 return nullptr; // Top 6 bits have to be sext of immediate. 4810 4811 return DAG 4812 .getConstant( 4813 (int)C->getZExtValue() >> 2, SDLoc(Op), 4814 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4815 .getNode(); 4816 } 4817 4818 namespace { 4819 4820 struct TailCallArgumentInfo { 4821 SDValue Arg; 4822 SDValue FrameIdxOp; 4823 int FrameIdx = 0; 4824 4825 TailCallArgumentInfo() = default; 4826 }; 4827 4828 } // end anonymous namespace 4829 4830 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4831 static void StoreTailCallArgumentsToStackSlot( 4832 SelectionDAG &DAG, SDValue Chain, 4833 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4834 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4835 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4836 SDValue Arg = TailCallArgs[i].Arg; 4837 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4838 int FI = TailCallArgs[i].FrameIdx; 4839 // Store relative to framepointer. 4840 MemOpChains.push_back(DAG.getStore( 4841 Chain, dl, Arg, FIN, 4842 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4843 } 4844 } 4845 4846 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4847 /// the appropriate stack slot for the tail call optimized function call. 4848 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4849 SDValue OldRetAddr, SDValue OldFP, 4850 int SPDiff, const SDLoc &dl) { 4851 if (SPDiff) { 4852 // Calculate the new stack slot for the return address. 4853 MachineFunction &MF = DAG.getMachineFunction(); 4854 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4855 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4856 bool isPPC64 = Subtarget.isPPC64(); 4857 int SlotSize = isPPC64 ? 8 : 4; 4858 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4859 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4860 NewRetAddrLoc, true); 4861 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4862 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4863 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4864 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4865 } 4866 return Chain; 4867 } 4868 4869 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4870 /// the position of the argument. 4871 static void 4872 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4873 SDValue Arg, int SPDiff, unsigned ArgOffset, 4874 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4875 int Offset = ArgOffset + SPDiff; 4876 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4877 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4878 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4879 SDValue FIN = DAG.getFrameIndex(FI, VT); 4880 TailCallArgumentInfo Info; 4881 Info.Arg = Arg; 4882 Info.FrameIdxOp = FIN; 4883 Info.FrameIdx = FI; 4884 TailCallArguments.push_back(Info); 4885 } 4886 4887 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4888 /// stack slot. Returns the chain as result and the loaded frame pointers in 4889 /// LROpOut/FPOpout. Used when tail calling. 4890 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4891 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4892 SDValue &FPOpOut, const SDLoc &dl) const { 4893 if (SPDiff) { 4894 // Load the LR and FP stack slot for later adjusting. 4895 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4896 LROpOut = getReturnAddrFrameIndex(DAG); 4897 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4898 Chain = SDValue(LROpOut.getNode(), 1); 4899 } 4900 return Chain; 4901 } 4902 4903 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4904 /// by "Src" to address "Dst" of size "Size". Alignment information is 4905 /// specified by the specific parameter attribute. The copy will be passed as 4906 /// a byval function parameter. 4907 /// Sometimes what we are copying is the end of a larger object, the part that 4908 /// does not fit in registers. 4909 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4910 SDValue Chain, ISD::ArgFlagsTy Flags, 4911 SelectionDAG &DAG, const SDLoc &dl) { 4912 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4913 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4914 Flags.getNonZeroByValAlign(), false, false, false, 4915 MachinePointerInfo(), MachinePointerInfo()); 4916 } 4917 4918 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4919 /// tail calls. 4920 static void LowerMemOpCallTo( 4921 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4922 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4923 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4924 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4925 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4926 if (!isTailCall) { 4927 if (isVector) { 4928 SDValue StackPtr; 4929 if (isPPC64) 4930 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4931 else 4932 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4933 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4934 DAG.getConstant(ArgOffset, dl, PtrVT)); 4935 } 4936 MemOpChains.push_back( 4937 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4938 // Calculate and remember argument location. 4939 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4940 TailCallArguments); 4941 } 4942 4943 static void 4944 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4945 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4946 SDValue FPOp, 4947 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4948 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4949 // might overwrite each other in case of tail call optimization. 4950 SmallVector<SDValue, 8> MemOpChains2; 4951 // Do not flag preceding copytoreg stuff together with the following stuff. 4952 InFlag = SDValue(); 4953 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4954 MemOpChains2, dl); 4955 if (!MemOpChains2.empty()) 4956 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4957 4958 // Store the return address to the appropriate stack slot. 4959 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4960 4961 // Emit callseq_end just before tailcall node. 4962 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4963 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4964 InFlag = Chain.getValue(1); 4965 } 4966 4967 // Is this global address that of a function that can be called by name? (as 4968 // opposed to something that must hold a descriptor for an indirect call). 4969 static bool isFunctionGlobalAddress(SDValue Callee) { 4970 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4971 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4972 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4973 return false; 4974 4975 return G->getGlobal()->getValueType()->isFunctionTy(); 4976 } 4977 4978 return false; 4979 } 4980 4981 SDValue PPCTargetLowering::LowerCallResult( 4982 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4983 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4984 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4985 SmallVector<CCValAssign, 16> RVLocs; 4986 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4987 *DAG.getContext()); 4988 4989 CCRetInfo.AnalyzeCallResult( 4990 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4991 ? RetCC_PPC_Cold 4992 : RetCC_PPC); 4993 4994 // Copy all of the result registers out of their specified physreg. 4995 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4996 CCValAssign &VA = RVLocs[i]; 4997 assert(VA.isRegLoc() && "Can only return in registers!"); 4998 4999 SDValue Val; 5000 5001 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5002 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5003 InFlag); 5004 Chain = Lo.getValue(1); 5005 InFlag = Lo.getValue(2); 5006 VA = RVLocs[++i]; // skip ahead to next loc 5007 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5008 InFlag); 5009 Chain = Hi.getValue(1); 5010 InFlag = Hi.getValue(2); 5011 if (!Subtarget.isLittleEndian()) 5012 std::swap (Lo, Hi); 5013 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5014 } else { 5015 Val = DAG.getCopyFromReg(Chain, dl, 5016 VA.getLocReg(), VA.getLocVT(), InFlag); 5017 Chain = Val.getValue(1); 5018 InFlag = Val.getValue(2); 5019 } 5020 5021 switch (VA.getLocInfo()) { 5022 default: llvm_unreachable("Unknown loc info!"); 5023 case CCValAssign::Full: break; 5024 case CCValAssign::AExt: 5025 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5026 break; 5027 case CCValAssign::ZExt: 5028 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5029 DAG.getValueType(VA.getValVT())); 5030 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5031 break; 5032 case CCValAssign::SExt: 5033 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5034 DAG.getValueType(VA.getValVT())); 5035 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5036 break; 5037 } 5038 5039 InVals.push_back(Val); 5040 } 5041 5042 return Chain; 5043 } 5044 5045 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5046 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5047 // PatchPoint calls are not indirect. 5048 if (isPatchPoint) 5049 return false; 5050 5051 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5052 return false; 5053 5054 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5055 // becuase the immediate function pointer points to a descriptor instead of 5056 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5057 // pointer immediate points to the global entry point, while the BLA would 5058 // need to jump to the local entry point (see rL211174). 5059 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5060 isBLACompatibleAddress(Callee, DAG)) 5061 return false; 5062 5063 return true; 5064 } 5065 5066 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5067 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5068 return Subtarget.isAIXABI() || 5069 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5070 } 5071 5072 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5073 const Function &Caller, 5074 const SDValue &Callee, 5075 const PPCSubtarget &Subtarget, 5076 const TargetMachine &TM) { 5077 if (CFlags.IsTailCall) 5078 return PPCISD::TC_RETURN; 5079 5080 // This is a call through a function pointer. 5081 if (CFlags.IsIndirect) { 5082 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5083 // indirect calls. The save of the caller's TOC pointer to the stack will be 5084 // inserted into the DAG as part of call lowering. The restore of the TOC 5085 // pointer is modeled by using a pseudo instruction for the call opcode that 5086 // represents the 2 instruction sequence of an indirect branch and link, 5087 // immediately followed by a load of the TOC pointer from the the stack save 5088 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5089 // as it is not saved or used. 5090 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5091 : PPCISD::BCTRL; 5092 } 5093 5094 if (Subtarget.isUsingPCRelativeCalls()) { 5095 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5096 return PPCISD::CALL_NOTOC; 5097 } 5098 5099 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5100 // immediately following the call instruction if the caller and callee may 5101 // have different TOC bases. At link time if the linker determines the calls 5102 // may not share a TOC base, the call is redirected to a trampoline inserted 5103 // by the linker. The trampoline will (among other things) save the callers 5104 // TOC pointer at an ABI designated offset in the linkage area and the linker 5105 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5106 // into gpr2. 5107 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5108 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5109 : PPCISD::CALL_NOP; 5110 5111 return PPCISD::CALL; 5112 } 5113 5114 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5115 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5116 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5117 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5118 return SDValue(Dest, 0); 5119 5120 // Returns true if the callee is local, and false otherwise. 5121 auto isLocalCallee = [&]() { 5122 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5123 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5124 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5125 5126 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5127 !dyn_cast_or_null<GlobalIFunc>(GV); 5128 }; 5129 5130 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5131 // a static relocation model causes some versions of GNU LD (2.17.50, at 5132 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5133 // built with secure-PLT. 5134 bool UsePlt = 5135 Subtarget.is32BitELFABI() && !isLocalCallee() && 5136 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5137 5138 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5139 const TargetMachine &TM = Subtarget.getTargetMachine(); 5140 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5141 MCSymbolXCOFF *S = 5142 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5143 5144 if (GV->isDeclaration() && !S->hasRepresentedCsectSet()) { 5145 // On AIX, an undefined symbol needs to be associated with a 5146 // MCSectionXCOFF to get the correct storage mapping class. 5147 // In this case, XCOFF::XMC_PR. 5148 const XCOFF::StorageClass SC = 5149 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV); 5150 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5151 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5152 S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5153 SectionKind::getMetadata()); 5154 S->setRepresentedCsect(Sec); 5155 } 5156 5157 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5158 return DAG.getMCSymbol(S, PtrVT); 5159 }; 5160 5161 if (isFunctionGlobalAddress(Callee)) { 5162 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5163 5164 if (Subtarget.isAIXABI()) { 5165 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5166 return getAIXFuncEntryPointSymbolSDNode(GV); 5167 } 5168 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5169 UsePlt ? PPCII::MO_PLT : 0); 5170 } 5171 5172 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5173 const char *SymName = S->getSymbol(); 5174 if (Subtarget.isAIXABI()) { 5175 // If there exists a user-declared function whose name is the same as the 5176 // ExternalSymbol's, then we pick up the user-declared version. 5177 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5178 if (const Function *F = 5179 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5180 return getAIXFuncEntryPointSymbolSDNode(F); 5181 5182 // On AIX, direct function calls reference the symbol for the function's 5183 // entry point, which is named by prepending a "." before the function's 5184 // C-linkage name. 5185 const auto getFunctionEntryPointSymbol = [&](StringRef SymName) { 5186 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5187 return cast<MCSymbolXCOFF>( 5188 Context.getOrCreateSymbol(Twine(".") + Twine(SymName))); 5189 }; 5190 5191 SymName = getFunctionEntryPointSymbol(SymName)->getName().data(); 5192 } 5193 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5194 UsePlt ? PPCII::MO_PLT : 0); 5195 } 5196 5197 // No transformation needed. 5198 assert(Callee.getNode() && "What no callee?"); 5199 return Callee; 5200 } 5201 5202 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5203 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5204 "Expected a CALLSEQ_STARTSDNode."); 5205 5206 // The last operand is the chain, except when the node has glue. If the node 5207 // has glue, then the last operand is the glue, and the chain is the second 5208 // last operand. 5209 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5210 if (LastValue.getValueType() != MVT::Glue) 5211 return LastValue; 5212 5213 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5214 } 5215 5216 // Creates the node that moves a functions address into the count register 5217 // to prepare for an indirect call instruction. 5218 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5219 SDValue &Glue, SDValue &Chain, 5220 const SDLoc &dl) { 5221 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5222 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5223 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5224 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5225 // The glue is the second value produced. 5226 Glue = Chain.getValue(1); 5227 } 5228 5229 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5230 SDValue &Glue, SDValue &Chain, 5231 SDValue CallSeqStart, 5232 const CallBase *CB, const SDLoc &dl, 5233 bool hasNest, 5234 const PPCSubtarget &Subtarget) { 5235 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5236 // entry point, but to the function descriptor (the function entry point 5237 // address is part of the function descriptor though). 5238 // The function descriptor is a three doubleword structure with the 5239 // following fields: function entry point, TOC base address and 5240 // environment pointer. 5241 // Thus for a call through a function pointer, the following actions need 5242 // to be performed: 5243 // 1. Save the TOC of the caller in the TOC save area of its stack 5244 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5245 // 2. Load the address of the function entry point from the function 5246 // descriptor. 5247 // 3. Load the TOC of the callee from the function descriptor into r2. 5248 // 4. Load the environment pointer from the function descriptor into 5249 // r11. 5250 // 5. Branch to the function entry point address. 5251 // 6. On return of the callee, the TOC of the caller needs to be 5252 // restored (this is done in FinishCall()). 5253 // 5254 // The loads are scheduled at the beginning of the call sequence, and the 5255 // register copies are flagged together to ensure that no other 5256 // operations can be scheduled in between. E.g. without flagging the 5257 // copies together, a TOC access in the caller could be scheduled between 5258 // the assignment of the callee TOC and the branch to the callee, which leads 5259 // to incorrect code. 5260 5261 // Start by loading the function address from the descriptor. 5262 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5263 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5264 ? (MachineMemOperand::MODereferenceable | 5265 MachineMemOperand::MOInvariant) 5266 : MachineMemOperand::MONone; 5267 5268 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5269 5270 // Registers used in building the DAG. 5271 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5272 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5273 5274 // Offsets of descriptor members. 5275 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5276 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5277 5278 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5279 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5280 5281 // One load for the functions entry point address. 5282 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5283 Alignment, MMOFlags); 5284 5285 // One for loading the TOC anchor for the module that contains the called 5286 // function. 5287 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5288 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5289 SDValue TOCPtr = 5290 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5291 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5292 5293 // One for loading the environment pointer. 5294 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5295 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5296 SDValue LoadEnvPtr = 5297 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5298 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5299 5300 5301 // Then copy the newly loaded TOC anchor to the TOC pointer. 5302 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5303 Chain = TOCVal.getValue(0); 5304 Glue = TOCVal.getValue(1); 5305 5306 // If the function call has an explicit 'nest' parameter, it takes the 5307 // place of the environment pointer. 5308 assert((!hasNest || !Subtarget.isAIXABI()) && 5309 "Nest parameter is not supported on AIX."); 5310 if (!hasNest) { 5311 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5312 Chain = EnvVal.getValue(0); 5313 Glue = EnvVal.getValue(1); 5314 } 5315 5316 // The rest of the indirect call sequence is the same as the non-descriptor 5317 // DAG. 5318 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5319 } 5320 5321 static void 5322 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5323 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5324 SelectionDAG &DAG, 5325 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5326 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5327 const PPCSubtarget &Subtarget) { 5328 const bool IsPPC64 = Subtarget.isPPC64(); 5329 // MVT for a general purpose register. 5330 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5331 5332 // First operand is always the chain. 5333 Ops.push_back(Chain); 5334 5335 // If it's a direct call pass the callee as the second operand. 5336 if (!CFlags.IsIndirect) 5337 Ops.push_back(Callee); 5338 else { 5339 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5340 5341 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5342 // on the stack (this would have been done in `LowerCall_64SVR4` or 5343 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5344 // represents both the indirect branch and a load that restores the TOC 5345 // pointer from the linkage area. The operand for the TOC restore is an add 5346 // of the TOC save offset to the stack pointer. This must be the second 5347 // operand: after the chain input but before any other variadic arguments. 5348 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5349 // saved or used. 5350 if (isTOCSaveRestoreRequired(Subtarget)) { 5351 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5352 5353 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5354 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5355 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5356 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5357 Ops.push_back(AddTOC); 5358 } 5359 5360 // Add the register used for the environment pointer. 5361 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5362 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5363 RegVT)); 5364 5365 5366 // Add CTR register as callee so a bctr can be emitted later. 5367 if (CFlags.IsTailCall) 5368 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5369 } 5370 5371 // If this is a tail call add stack pointer delta. 5372 if (CFlags.IsTailCall) 5373 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5374 5375 // Add argument registers to the end of the list so that they are known live 5376 // into the call. 5377 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5378 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5379 RegsToPass[i].second.getValueType())); 5380 5381 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5382 // no way to mark dependencies as implicit here. 5383 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5384 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5385 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5386 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5387 5388 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5389 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5390 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5391 5392 // Add a register mask operand representing the call-preserved registers. 5393 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5394 const uint32_t *Mask = 5395 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5396 assert(Mask && "Missing call preserved mask for calling convention"); 5397 Ops.push_back(DAG.getRegisterMask(Mask)); 5398 5399 // If the glue is valid, it is the last operand. 5400 if (Glue.getNode()) 5401 Ops.push_back(Glue); 5402 } 5403 5404 SDValue PPCTargetLowering::FinishCall( 5405 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5406 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5407 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5408 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5409 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5410 5411 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5412 Subtarget.isAIXABI()) 5413 setUsesTOCBasePtr(DAG); 5414 5415 unsigned CallOpc = 5416 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5417 Subtarget, DAG.getTarget()); 5418 5419 if (!CFlags.IsIndirect) 5420 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5421 else if (Subtarget.usesFunctionDescriptors()) 5422 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5423 dl, CFlags.HasNest, Subtarget); 5424 else 5425 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5426 5427 // Build the operand list for the call instruction. 5428 SmallVector<SDValue, 8> Ops; 5429 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5430 SPDiff, Subtarget); 5431 5432 // Emit tail call. 5433 if (CFlags.IsTailCall) { 5434 // Indirect tail call when using PC Relative calls do not have the same 5435 // constraints. 5436 assert(((Callee.getOpcode() == ISD::Register && 5437 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5438 Callee.getOpcode() == ISD::TargetExternalSymbol || 5439 Callee.getOpcode() == ISD::TargetGlobalAddress || 5440 isa<ConstantSDNode>(Callee) || 5441 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5442 "Expecting a global address, external symbol, absolute value, " 5443 "register or an indirect tail call when PC Relative calls are " 5444 "used."); 5445 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5446 assert(CallOpc == PPCISD::TC_RETURN && 5447 "Unexpected call opcode for a tail call."); 5448 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5449 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5450 } 5451 5452 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5453 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5454 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5455 Glue = Chain.getValue(1); 5456 5457 // When performing tail call optimization the callee pops its arguments off 5458 // the stack. Account for this here so these bytes can be pushed back on in 5459 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5460 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5461 getTargetMachine().Options.GuaranteedTailCallOpt) 5462 ? NumBytes 5463 : 0; 5464 5465 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5466 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5467 Glue, dl); 5468 Glue = Chain.getValue(1); 5469 5470 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5471 DAG, InVals); 5472 } 5473 5474 SDValue 5475 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5476 SmallVectorImpl<SDValue> &InVals) const { 5477 SelectionDAG &DAG = CLI.DAG; 5478 SDLoc &dl = CLI.DL; 5479 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5480 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5481 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5482 SDValue Chain = CLI.Chain; 5483 SDValue Callee = CLI.Callee; 5484 bool &isTailCall = CLI.IsTailCall; 5485 CallingConv::ID CallConv = CLI.CallConv; 5486 bool isVarArg = CLI.IsVarArg; 5487 bool isPatchPoint = CLI.IsPatchPoint; 5488 const CallBase *CB = CLI.CB; 5489 5490 if (isTailCall) { 5491 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5492 isTailCall = false; 5493 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5494 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5495 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5496 else 5497 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5498 Ins, DAG); 5499 if (isTailCall) { 5500 ++NumTailCalls; 5501 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5502 ++NumSiblingCalls; 5503 5504 // PC Relative calls no longer guarantee that the callee is a Global 5505 // Address Node. The callee could be an indirect tail call in which 5506 // case the SDValue for the callee could be a load (to load the address 5507 // of a function pointer) or it may be a register copy (to move the 5508 // address of the callee from a function parameter into a virtual 5509 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5510 assert((Subtarget.isUsingPCRelativeCalls() || 5511 isa<GlobalAddressSDNode>(Callee)) && 5512 "Callee should be an llvm::Function object."); 5513 5514 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5515 << "\nTCO callee: "); 5516 LLVM_DEBUG(Callee.dump()); 5517 } 5518 } 5519 5520 if (!isTailCall && CB && CB->isMustTailCall()) 5521 report_fatal_error("failed to perform tail call elimination on a call " 5522 "site marked musttail"); 5523 5524 // When long calls (i.e. indirect calls) are always used, calls are always 5525 // made via function pointer. If we have a function name, first translate it 5526 // into a pointer. 5527 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5528 !isTailCall) 5529 Callee = LowerGlobalAddress(Callee, DAG); 5530 5531 CallFlags CFlags( 5532 CallConv, isTailCall, isVarArg, isPatchPoint, 5533 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5534 // hasNest 5535 Subtarget.is64BitELFABI() && 5536 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5537 CLI.NoMerge); 5538 5539 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5540 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5541 InVals, CB); 5542 5543 if (Subtarget.isSVR4ABI()) 5544 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5545 InVals, CB); 5546 5547 if (Subtarget.isAIXABI()) 5548 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5549 InVals, CB); 5550 5551 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5552 InVals, CB); 5553 } 5554 5555 SDValue PPCTargetLowering::LowerCall_32SVR4( 5556 SDValue Chain, SDValue Callee, CallFlags CFlags, 5557 const SmallVectorImpl<ISD::OutputArg> &Outs, 5558 const SmallVectorImpl<SDValue> &OutVals, 5559 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5560 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5561 const CallBase *CB) const { 5562 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5563 // of the 32-bit SVR4 ABI stack frame layout. 5564 5565 const CallingConv::ID CallConv = CFlags.CallConv; 5566 const bool IsVarArg = CFlags.IsVarArg; 5567 const bool IsTailCall = CFlags.IsTailCall; 5568 5569 assert((CallConv == CallingConv::C || 5570 CallConv == CallingConv::Cold || 5571 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5572 5573 const Align PtrAlign(4); 5574 5575 MachineFunction &MF = DAG.getMachineFunction(); 5576 5577 // Mark this function as potentially containing a function that contains a 5578 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5579 // and restoring the callers stack pointer in this functions epilog. This is 5580 // done because by tail calling the called function might overwrite the value 5581 // in this function's (MF) stack pointer stack slot 0(SP). 5582 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5583 CallConv == CallingConv::Fast) 5584 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5585 5586 // Count how many bytes are to be pushed on the stack, including the linkage 5587 // area, parameter list area and the part of the local variable space which 5588 // contains copies of aggregates which are passed by value. 5589 5590 // Assign locations to all of the outgoing arguments. 5591 SmallVector<CCValAssign, 16> ArgLocs; 5592 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5593 5594 // Reserve space for the linkage area on the stack. 5595 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5596 PtrAlign); 5597 if (useSoftFloat()) 5598 CCInfo.PreAnalyzeCallOperands(Outs); 5599 5600 if (IsVarArg) { 5601 // Handle fixed and variable vector arguments differently. 5602 // Fixed vector arguments go into registers as long as registers are 5603 // available. Variable vector arguments always go into memory. 5604 unsigned NumArgs = Outs.size(); 5605 5606 for (unsigned i = 0; i != NumArgs; ++i) { 5607 MVT ArgVT = Outs[i].VT; 5608 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5609 bool Result; 5610 5611 if (Outs[i].IsFixed) { 5612 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5613 CCInfo); 5614 } else { 5615 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5616 ArgFlags, CCInfo); 5617 } 5618 5619 if (Result) { 5620 #ifndef NDEBUG 5621 errs() << "Call operand #" << i << " has unhandled type " 5622 << EVT(ArgVT).getEVTString() << "\n"; 5623 #endif 5624 llvm_unreachable(nullptr); 5625 } 5626 } 5627 } else { 5628 // All arguments are treated the same. 5629 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5630 } 5631 CCInfo.clearWasPPCF128(); 5632 5633 // Assign locations to all of the outgoing aggregate by value arguments. 5634 SmallVector<CCValAssign, 16> ByValArgLocs; 5635 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5636 5637 // Reserve stack space for the allocations in CCInfo. 5638 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5639 5640 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5641 5642 // Size of the linkage area, parameter list area and the part of the local 5643 // space variable where copies of aggregates which are passed by value are 5644 // stored. 5645 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5646 5647 // Calculate by how many bytes the stack has to be adjusted in case of tail 5648 // call optimization. 5649 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5650 5651 // Adjust the stack pointer for the new arguments... 5652 // These operations are automatically eliminated by the prolog/epilog pass 5653 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5654 SDValue CallSeqStart = Chain; 5655 5656 // Load the return address and frame pointer so it can be moved somewhere else 5657 // later. 5658 SDValue LROp, FPOp; 5659 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5660 5661 // Set up a copy of the stack pointer for use loading and storing any 5662 // arguments that may not fit in the registers available for argument 5663 // passing. 5664 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5665 5666 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5667 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5668 SmallVector<SDValue, 8> MemOpChains; 5669 5670 bool seenFloatArg = false; 5671 // Walk the register/memloc assignments, inserting copies/loads. 5672 // i - Tracks the index into the list of registers allocated for the call 5673 // RealArgIdx - Tracks the index into the list of actual function arguments 5674 // j - Tracks the index into the list of byval arguments 5675 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5676 i != e; 5677 ++i, ++RealArgIdx) { 5678 CCValAssign &VA = ArgLocs[i]; 5679 SDValue Arg = OutVals[RealArgIdx]; 5680 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5681 5682 if (Flags.isByVal()) { 5683 // Argument is an aggregate which is passed by value, thus we need to 5684 // create a copy of it in the local variable space of the current stack 5685 // frame (which is the stack frame of the caller) and pass the address of 5686 // this copy to the callee. 5687 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5688 CCValAssign &ByValVA = ByValArgLocs[j++]; 5689 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5690 5691 // Memory reserved in the local variable space of the callers stack frame. 5692 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5693 5694 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5695 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5696 StackPtr, PtrOff); 5697 5698 // Create a copy of the argument in the local area of the current 5699 // stack frame. 5700 SDValue MemcpyCall = 5701 CreateCopyOfByValArgument(Arg, PtrOff, 5702 CallSeqStart.getNode()->getOperand(0), 5703 Flags, DAG, dl); 5704 5705 // This must go outside the CALLSEQ_START..END. 5706 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5707 SDLoc(MemcpyCall)); 5708 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5709 NewCallSeqStart.getNode()); 5710 Chain = CallSeqStart = NewCallSeqStart; 5711 5712 // Pass the address of the aggregate copy on the stack either in a 5713 // physical register or in the parameter list area of the current stack 5714 // frame to the callee. 5715 Arg = PtrOff; 5716 } 5717 5718 // When useCRBits() is true, there can be i1 arguments. 5719 // It is because getRegisterType(MVT::i1) => MVT::i1, 5720 // and for other integer types getRegisterType() => MVT::i32. 5721 // Extend i1 and ensure callee will get i32. 5722 if (Arg.getValueType() == MVT::i1) 5723 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5724 dl, MVT::i32, Arg); 5725 5726 if (VA.isRegLoc()) { 5727 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5728 // Put argument in a physical register. 5729 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5730 bool IsLE = Subtarget.isLittleEndian(); 5731 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5732 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5733 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5734 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5735 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5736 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5737 SVal.getValue(0))); 5738 } else 5739 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5740 } else { 5741 // Put argument in the parameter list area of the current stack frame. 5742 assert(VA.isMemLoc()); 5743 unsigned LocMemOffset = VA.getLocMemOffset(); 5744 5745 if (!IsTailCall) { 5746 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5747 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5748 StackPtr, PtrOff); 5749 5750 MemOpChains.push_back( 5751 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5752 } else { 5753 // Calculate and remember argument location. 5754 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5755 TailCallArguments); 5756 } 5757 } 5758 } 5759 5760 if (!MemOpChains.empty()) 5761 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5762 5763 // Build a sequence of copy-to-reg nodes chained together with token chain 5764 // and flag operands which copy the outgoing args into the appropriate regs. 5765 SDValue InFlag; 5766 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5767 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5768 RegsToPass[i].second, InFlag); 5769 InFlag = Chain.getValue(1); 5770 } 5771 5772 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5773 // registers. 5774 if (IsVarArg) { 5775 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5776 SDValue Ops[] = { Chain, InFlag }; 5777 5778 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5779 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5780 5781 InFlag = Chain.getValue(1); 5782 } 5783 5784 if (IsTailCall) 5785 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5786 TailCallArguments); 5787 5788 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5789 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5790 } 5791 5792 // Copy an argument into memory, being careful to do this outside the 5793 // call sequence for the call to which the argument belongs. 5794 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5795 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5796 SelectionDAG &DAG, const SDLoc &dl) const { 5797 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5798 CallSeqStart.getNode()->getOperand(0), 5799 Flags, DAG, dl); 5800 // The MEMCPY must go outside the CALLSEQ_START..END. 5801 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5802 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5803 SDLoc(MemcpyCall)); 5804 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5805 NewCallSeqStart.getNode()); 5806 return NewCallSeqStart; 5807 } 5808 5809 SDValue PPCTargetLowering::LowerCall_64SVR4( 5810 SDValue Chain, SDValue Callee, CallFlags CFlags, 5811 const SmallVectorImpl<ISD::OutputArg> &Outs, 5812 const SmallVectorImpl<SDValue> &OutVals, 5813 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5814 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5815 const CallBase *CB) const { 5816 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5817 bool isLittleEndian = Subtarget.isLittleEndian(); 5818 unsigned NumOps = Outs.size(); 5819 bool IsSibCall = false; 5820 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5821 5822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5823 unsigned PtrByteSize = 8; 5824 5825 MachineFunction &MF = DAG.getMachineFunction(); 5826 5827 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5828 IsSibCall = true; 5829 5830 // Mark this function as potentially containing a function that contains a 5831 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5832 // and restoring the callers stack pointer in this functions epilog. This is 5833 // done because by tail calling the called function might overwrite the value 5834 // in this function's (MF) stack pointer stack slot 0(SP). 5835 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5836 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5837 5838 assert(!(IsFastCall && CFlags.IsVarArg) && 5839 "fastcc not supported on varargs functions"); 5840 5841 // Count how many bytes are to be pushed on the stack, including the linkage 5842 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5843 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5844 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5845 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5846 unsigned NumBytes = LinkageSize; 5847 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5848 5849 static const MCPhysReg GPR[] = { 5850 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5851 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5852 }; 5853 static const MCPhysReg VR[] = { 5854 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5855 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5856 }; 5857 5858 const unsigned NumGPRs = array_lengthof(GPR); 5859 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5860 const unsigned NumVRs = array_lengthof(VR); 5861 5862 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5863 // can be passed to the callee in registers. 5864 // For the fast calling convention, there is another check below. 5865 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5866 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5867 if (!HasParameterArea) { 5868 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5869 unsigned AvailableFPRs = NumFPRs; 5870 unsigned AvailableVRs = NumVRs; 5871 unsigned NumBytesTmp = NumBytes; 5872 for (unsigned i = 0; i != NumOps; ++i) { 5873 if (Outs[i].Flags.isNest()) continue; 5874 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5875 PtrByteSize, LinkageSize, ParamAreaSize, 5876 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5877 HasParameterArea = true; 5878 } 5879 } 5880 5881 // When using the fast calling convention, we don't provide backing for 5882 // arguments that will be in registers. 5883 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5884 5885 // Avoid allocating parameter area for fastcc functions if all the arguments 5886 // can be passed in the registers. 5887 if (IsFastCall) 5888 HasParameterArea = false; 5889 5890 // Add up all the space actually used. 5891 for (unsigned i = 0; i != NumOps; ++i) { 5892 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5893 EVT ArgVT = Outs[i].VT; 5894 EVT OrigVT = Outs[i].ArgVT; 5895 5896 if (Flags.isNest()) 5897 continue; 5898 5899 if (IsFastCall) { 5900 if (Flags.isByVal()) { 5901 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5902 if (NumGPRsUsed > NumGPRs) 5903 HasParameterArea = true; 5904 } else { 5905 switch (ArgVT.getSimpleVT().SimpleTy) { 5906 default: llvm_unreachable("Unexpected ValueType for argument!"); 5907 case MVT::i1: 5908 case MVT::i32: 5909 case MVT::i64: 5910 if (++NumGPRsUsed <= NumGPRs) 5911 continue; 5912 break; 5913 case MVT::v4i32: 5914 case MVT::v8i16: 5915 case MVT::v16i8: 5916 case MVT::v2f64: 5917 case MVT::v2i64: 5918 case MVT::v1i128: 5919 case MVT::f128: 5920 if (++NumVRsUsed <= NumVRs) 5921 continue; 5922 break; 5923 case MVT::v4f32: 5924 if (++NumVRsUsed <= NumVRs) 5925 continue; 5926 break; 5927 case MVT::f32: 5928 case MVT::f64: 5929 if (++NumFPRsUsed <= NumFPRs) 5930 continue; 5931 break; 5932 } 5933 HasParameterArea = true; 5934 } 5935 } 5936 5937 /* Respect alignment of argument on the stack. */ 5938 auto Alignement = 5939 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5940 NumBytes = alignTo(NumBytes, Alignement); 5941 5942 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5943 if (Flags.isInConsecutiveRegsLast()) 5944 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5945 } 5946 5947 unsigned NumBytesActuallyUsed = NumBytes; 5948 5949 // In the old ELFv1 ABI, 5950 // the prolog code of the callee may store up to 8 GPR argument registers to 5951 // the stack, allowing va_start to index over them in memory if its varargs. 5952 // Because we cannot tell if this is needed on the caller side, we have to 5953 // conservatively assume that it is needed. As such, make sure we have at 5954 // least enough stack space for the caller to store the 8 GPRs. 5955 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5956 // really requires memory operands, e.g. a vararg function. 5957 if (HasParameterArea) 5958 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5959 else 5960 NumBytes = LinkageSize; 5961 5962 // Tail call needs the stack to be aligned. 5963 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5964 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5965 5966 int SPDiff = 0; 5967 5968 // Calculate by how many bytes the stack has to be adjusted in case of tail 5969 // call optimization. 5970 if (!IsSibCall) 5971 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5972 5973 // To protect arguments on the stack from being clobbered in a tail call, 5974 // force all the loads to happen before doing any other lowering. 5975 if (CFlags.IsTailCall) 5976 Chain = DAG.getStackArgumentTokenFactor(Chain); 5977 5978 // Adjust the stack pointer for the new arguments... 5979 // These operations are automatically eliminated by the prolog/epilog pass 5980 if (!IsSibCall) 5981 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5982 SDValue CallSeqStart = Chain; 5983 5984 // Load the return address and frame pointer so it can be move somewhere else 5985 // later. 5986 SDValue LROp, FPOp; 5987 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5988 5989 // Set up a copy of the stack pointer for use loading and storing any 5990 // arguments that may not fit in the registers available for argument 5991 // passing. 5992 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5993 5994 // Figure out which arguments are going to go in registers, and which in 5995 // memory. Also, if this is a vararg function, floating point operations 5996 // must be stored to our stack, and loaded into integer regs as well, if 5997 // any integer regs are available for argument passing. 5998 unsigned ArgOffset = LinkageSize; 5999 6000 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6001 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6002 6003 SmallVector<SDValue, 8> MemOpChains; 6004 for (unsigned i = 0; i != NumOps; ++i) { 6005 SDValue Arg = OutVals[i]; 6006 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6007 EVT ArgVT = Outs[i].VT; 6008 EVT OrigVT = Outs[i].ArgVT; 6009 6010 // PtrOff will be used to store the current argument to the stack if a 6011 // register cannot be found for it. 6012 SDValue PtrOff; 6013 6014 // We re-align the argument offset for each argument, except when using the 6015 // fast calling convention, when we need to make sure we do that only when 6016 // we'll actually use a stack slot. 6017 auto ComputePtrOff = [&]() { 6018 /* Respect alignment of argument on the stack. */ 6019 auto Alignment = 6020 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6021 ArgOffset = alignTo(ArgOffset, Alignment); 6022 6023 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6024 6025 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6026 }; 6027 6028 if (!IsFastCall) { 6029 ComputePtrOff(); 6030 6031 /* Compute GPR index associated with argument offset. */ 6032 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6033 GPR_idx = std::min(GPR_idx, NumGPRs); 6034 } 6035 6036 // Promote integers to 64-bit values. 6037 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6038 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6039 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6040 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6041 } 6042 6043 // FIXME memcpy is used way more than necessary. Correctness first. 6044 // Note: "by value" is code for passing a structure by value, not 6045 // basic types. 6046 if (Flags.isByVal()) { 6047 // Note: Size includes alignment padding, so 6048 // struct x { short a; char b; } 6049 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6050 // These are the proper values we need for right-justifying the 6051 // aggregate in a parameter register. 6052 unsigned Size = Flags.getByValSize(); 6053 6054 // An empty aggregate parameter takes up no storage and no 6055 // registers. 6056 if (Size == 0) 6057 continue; 6058 6059 if (IsFastCall) 6060 ComputePtrOff(); 6061 6062 // All aggregates smaller than 8 bytes must be passed right-justified. 6063 if (Size==1 || Size==2 || Size==4) { 6064 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6065 if (GPR_idx != NumGPRs) { 6066 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6067 MachinePointerInfo(), VT); 6068 MemOpChains.push_back(Load.getValue(1)); 6069 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6070 6071 ArgOffset += PtrByteSize; 6072 continue; 6073 } 6074 } 6075 6076 if (GPR_idx == NumGPRs && Size < 8) { 6077 SDValue AddPtr = PtrOff; 6078 if (!isLittleEndian) { 6079 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6080 PtrOff.getValueType()); 6081 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6082 } 6083 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6084 CallSeqStart, 6085 Flags, DAG, dl); 6086 ArgOffset += PtrByteSize; 6087 continue; 6088 } 6089 // Copy entire object into memory. There are cases where gcc-generated 6090 // code assumes it is there, even if it could be put entirely into 6091 // registers. (This is not what the doc says.) 6092 6093 // FIXME: The above statement is likely due to a misunderstanding of the 6094 // documents. All arguments must be copied into the parameter area BY 6095 // THE CALLEE in the event that the callee takes the address of any 6096 // formal argument. That has not yet been implemented. However, it is 6097 // reasonable to use the stack area as a staging area for the register 6098 // load. 6099 6100 // Skip this for small aggregates, as we will use the same slot for a 6101 // right-justified copy, below. 6102 if (Size >= 8) 6103 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6104 CallSeqStart, 6105 Flags, DAG, dl); 6106 6107 // When a register is available, pass a small aggregate right-justified. 6108 if (Size < 8 && GPR_idx != NumGPRs) { 6109 // The easiest way to get this right-justified in a register 6110 // is to copy the structure into the rightmost portion of a 6111 // local variable slot, then load the whole slot into the 6112 // register. 6113 // FIXME: The memcpy seems to produce pretty awful code for 6114 // small aggregates, particularly for packed ones. 6115 // FIXME: It would be preferable to use the slot in the 6116 // parameter save area instead of a new local variable. 6117 SDValue AddPtr = PtrOff; 6118 if (!isLittleEndian) { 6119 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6120 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6121 } 6122 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6123 CallSeqStart, 6124 Flags, DAG, dl); 6125 6126 // Load the slot into the register. 6127 SDValue Load = 6128 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6129 MemOpChains.push_back(Load.getValue(1)); 6130 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6131 6132 // Done with this argument. 6133 ArgOffset += PtrByteSize; 6134 continue; 6135 } 6136 6137 // For aggregates larger than PtrByteSize, copy the pieces of the 6138 // object that fit into registers from the parameter save area. 6139 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6140 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6141 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6142 if (GPR_idx != NumGPRs) { 6143 SDValue Load = 6144 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6145 MemOpChains.push_back(Load.getValue(1)); 6146 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6147 ArgOffset += PtrByteSize; 6148 } else { 6149 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6150 break; 6151 } 6152 } 6153 continue; 6154 } 6155 6156 switch (Arg.getSimpleValueType().SimpleTy) { 6157 default: llvm_unreachable("Unexpected ValueType for argument!"); 6158 case MVT::i1: 6159 case MVT::i32: 6160 case MVT::i64: 6161 if (Flags.isNest()) { 6162 // The 'nest' parameter, if any, is passed in R11. 6163 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6164 break; 6165 } 6166 6167 // These can be scalar arguments or elements of an integer array type 6168 // passed directly. Clang may use those instead of "byval" aggregate 6169 // types to avoid forcing arguments to memory unnecessarily. 6170 if (GPR_idx != NumGPRs) { 6171 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6172 } else { 6173 if (IsFastCall) 6174 ComputePtrOff(); 6175 6176 assert(HasParameterArea && 6177 "Parameter area must exist to pass an argument in memory."); 6178 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6179 true, CFlags.IsTailCall, false, MemOpChains, 6180 TailCallArguments, dl); 6181 if (IsFastCall) 6182 ArgOffset += PtrByteSize; 6183 } 6184 if (!IsFastCall) 6185 ArgOffset += PtrByteSize; 6186 break; 6187 case MVT::f32: 6188 case MVT::f64: { 6189 // These can be scalar arguments or elements of a float array type 6190 // passed directly. The latter are used to implement ELFv2 homogenous 6191 // float aggregates. 6192 6193 // Named arguments go into FPRs first, and once they overflow, the 6194 // remaining arguments go into GPRs and then the parameter save area. 6195 // Unnamed arguments for vararg functions always go to GPRs and 6196 // then the parameter save area. For now, put all arguments to vararg 6197 // routines always in both locations (FPR *and* GPR or stack slot). 6198 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6199 bool NeededLoad = false; 6200 6201 // First load the argument into the next available FPR. 6202 if (FPR_idx != NumFPRs) 6203 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6204 6205 // Next, load the argument into GPR or stack slot if needed. 6206 if (!NeedGPROrStack) 6207 ; 6208 else if (GPR_idx != NumGPRs && !IsFastCall) { 6209 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6210 // once we support fp <-> gpr moves. 6211 6212 // In the non-vararg case, this can only ever happen in the 6213 // presence of f32 array types, since otherwise we never run 6214 // out of FPRs before running out of GPRs. 6215 SDValue ArgVal; 6216 6217 // Double values are always passed in a single GPR. 6218 if (Arg.getValueType() != MVT::f32) { 6219 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6220 6221 // Non-array float values are extended and passed in a GPR. 6222 } else if (!Flags.isInConsecutiveRegs()) { 6223 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6224 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6225 6226 // If we have an array of floats, we collect every odd element 6227 // together with its predecessor into one GPR. 6228 } else if (ArgOffset % PtrByteSize != 0) { 6229 SDValue Lo, Hi; 6230 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6231 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6232 if (!isLittleEndian) 6233 std::swap(Lo, Hi); 6234 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6235 6236 // The final element, if even, goes into the first half of a GPR. 6237 } else if (Flags.isInConsecutiveRegsLast()) { 6238 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6239 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6240 if (!isLittleEndian) 6241 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6242 DAG.getConstant(32, dl, MVT::i32)); 6243 6244 // Non-final even elements are skipped; they will be handled 6245 // together the with subsequent argument on the next go-around. 6246 } else 6247 ArgVal = SDValue(); 6248 6249 if (ArgVal.getNode()) 6250 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6251 } else { 6252 if (IsFastCall) 6253 ComputePtrOff(); 6254 6255 // Single-precision floating-point values are mapped to the 6256 // second (rightmost) word of the stack doubleword. 6257 if (Arg.getValueType() == MVT::f32 && 6258 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6259 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6260 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6261 } 6262 6263 assert(HasParameterArea && 6264 "Parameter area must exist to pass an argument in memory."); 6265 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6266 true, CFlags.IsTailCall, false, MemOpChains, 6267 TailCallArguments, dl); 6268 6269 NeededLoad = true; 6270 } 6271 // When passing an array of floats, the array occupies consecutive 6272 // space in the argument area; only round up to the next doubleword 6273 // at the end of the array. Otherwise, each float takes 8 bytes. 6274 if (!IsFastCall || NeededLoad) { 6275 ArgOffset += (Arg.getValueType() == MVT::f32 && 6276 Flags.isInConsecutiveRegs()) ? 4 : 8; 6277 if (Flags.isInConsecutiveRegsLast()) 6278 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6279 } 6280 break; 6281 } 6282 case MVT::v4f32: 6283 case MVT::v4i32: 6284 case MVT::v8i16: 6285 case MVT::v16i8: 6286 case MVT::v2f64: 6287 case MVT::v2i64: 6288 case MVT::v1i128: 6289 case MVT::f128: 6290 // These can be scalar arguments or elements of a vector array type 6291 // passed directly. The latter are used to implement ELFv2 homogenous 6292 // vector aggregates. 6293 6294 // For a varargs call, named arguments go into VRs or on the stack as 6295 // usual; unnamed arguments always go to the stack or the corresponding 6296 // GPRs when within range. For now, we always put the value in both 6297 // locations (or even all three). 6298 if (CFlags.IsVarArg) { 6299 assert(HasParameterArea && 6300 "Parameter area must exist if we have a varargs call."); 6301 // We could elide this store in the case where the object fits 6302 // entirely in R registers. Maybe later. 6303 SDValue Store = 6304 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6305 MemOpChains.push_back(Store); 6306 if (VR_idx != NumVRs) { 6307 SDValue Load = 6308 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6309 MemOpChains.push_back(Load.getValue(1)); 6310 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6311 } 6312 ArgOffset += 16; 6313 for (unsigned i=0; i<16; i+=PtrByteSize) { 6314 if (GPR_idx == NumGPRs) 6315 break; 6316 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6317 DAG.getConstant(i, dl, PtrVT)); 6318 SDValue Load = 6319 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6320 MemOpChains.push_back(Load.getValue(1)); 6321 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6322 } 6323 break; 6324 } 6325 6326 // Non-varargs Altivec params go into VRs or on the stack. 6327 if (VR_idx != NumVRs) { 6328 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6329 } else { 6330 if (IsFastCall) 6331 ComputePtrOff(); 6332 6333 assert(HasParameterArea && 6334 "Parameter area must exist to pass an argument in memory."); 6335 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6336 true, CFlags.IsTailCall, true, MemOpChains, 6337 TailCallArguments, dl); 6338 if (IsFastCall) 6339 ArgOffset += 16; 6340 } 6341 6342 if (!IsFastCall) 6343 ArgOffset += 16; 6344 break; 6345 } 6346 } 6347 6348 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6349 "mismatch in size of parameter area"); 6350 (void)NumBytesActuallyUsed; 6351 6352 if (!MemOpChains.empty()) 6353 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6354 6355 // Check if this is an indirect call (MTCTR/BCTRL). 6356 // See prepareDescriptorIndirectCall and buildCallOperands for more 6357 // information about calls through function pointers in the 64-bit SVR4 ABI. 6358 if (CFlags.IsIndirect) { 6359 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6360 // caller in the TOC save area. 6361 if (isTOCSaveRestoreRequired(Subtarget)) { 6362 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6363 // Load r2 into a virtual register and store it to the TOC save area. 6364 setUsesTOCBasePtr(DAG); 6365 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6366 // TOC save area offset. 6367 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6368 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6369 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6370 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6371 MachinePointerInfo::getStack( 6372 DAG.getMachineFunction(), TOCSaveOffset)); 6373 } 6374 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6375 // This does not mean the MTCTR instruction must use R12; it's easier 6376 // to model this as an extra parameter, so do that. 6377 if (isELFv2ABI && !CFlags.IsPatchPoint) 6378 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6379 } 6380 6381 // Build a sequence of copy-to-reg nodes chained together with token chain 6382 // and flag operands which copy the outgoing args into the appropriate regs. 6383 SDValue InFlag; 6384 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6385 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6386 RegsToPass[i].second, InFlag); 6387 InFlag = Chain.getValue(1); 6388 } 6389 6390 if (CFlags.IsTailCall && !IsSibCall) 6391 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6392 TailCallArguments); 6393 6394 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6395 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6396 } 6397 6398 SDValue PPCTargetLowering::LowerCall_Darwin( 6399 SDValue Chain, SDValue Callee, CallFlags CFlags, 6400 const SmallVectorImpl<ISD::OutputArg> &Outs, 6401 const SmallVectorImpl<SDValue> &OutVals, 6402 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6403 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6404 const CallBase *CB) const { 6405 unsigned NumOps = Outs.size(); 6406 6407 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6408 bool isPPC64 = PtrVT == MVT::i64; 6409 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6410 6411 MachineFunction &MF = DAG.getMachineFunction(); 6412 6413 // Mark this function as potentially containing a function that contains a 6414 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6415 // and restoring the callers stack pointer in this functions epilog. This is 6416 // done because by tail calling the called function might overwrite the value 6417 // in this function's (MF) stack pointer stack slot 0(SP). 6418 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6419 CFlags.CallConv == CallingConv::Fast) 6420 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6421 6422 // Count how many bytes are to be pushed on the stack, including the linkage 6423 // area, and parameter passing area. We start with 24/48 bytes, which is 6424 // prereserved space for [SP][CR][LR][3 x unused]. 6425 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6426 unsigned NumBytes = LinkageSize; 6427 6428 // Add up all the space actually used. 6429 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6430 // they all go in registers, but we must reserve stack space for them for 6431 // possible use by the caller. In varargs or 64-bit calls, parameters are 6432 // assigned stack space in order, with padding so Altivec parameters are 6433 // 16-byte aligned. 6434 unsigned nAltivecParamsAtEnd = 0; 6435 for (unsigned i = 0; i != NumOps; ++i) { 6436 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6437 EVT ArgVT = Outs[i].VT; 6438 // Varargs Altivec parameters are padded to a 16 byte boundary. 6439 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6440 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6441 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6442 if (!CFlags.IsVarArg && !isPPC64) { 6443 // Non-varargs Altivec parameters go after all the non-Altivec 6444 // parameters; handle those later so we know how much padding we need. 6445 nAltivecParamsAtEnd++; 6446 continue; 6447 } 6448 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6449 NumBytes = ((NumBytes+15)/16)*16; 6450 } 6451 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6452 } 6453 6454 // Allow for Altivec parameters at the end, if needed. 6455 if (nAltivecParamsAtEnd) { 6456 NumBytes = ((NumBytes+15)/16)*16; 6457 NumBytes += 16*nAltivecParamsAtEnd; 6458 } 6459 6460 // The prolog code of the callee may store up to 8 GPR argument registers to 6461 // the stack, allowing va_start to index over them in memory if its varargs. 6462 // Because we cannot tell if this is needed on the caller side, we have to 6463 // conservatively assume that it is needed. As such, make sure we have at 6464 // least enough stack space for the caller to store the 8 GPRs. 6465 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6466 6467 // Tail call needs the stack to be aligned. 6468 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6469 CFlags.CallConv == CallingConv::Fast) 6470 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6471 6472 // Calculate by how many bytes the stack has to be adjusted in case of tail 6473 // call optimization. 6474 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6475 6476 // To protect arguments on the stack from being clobbered in a tail call, 6477 // force all the loads to happen before doing any other lowering. 6478 if (CFlags.IsTailCall) 6479 Chain = DAG.getStackArgumentTokenFactor(Chain); 6480 6481 // Adjust the stack pointer for the new arguments... 6482 // These operations are automatically eliminated by the prolog/epilog pass 6483 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6484 SDValue CallSeqStart = Chain; 6485 6486 // Load the return address and frame pointer so it can be move somewhere else 6487 // later. 6488 SDValue LROp, FPOp; 6489 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6490 6491 // Set up a copy of the stack pointer for use loading and storing any 6492 // arguments that may not fit in the registers available for argument 6493 // passing. 6494 SDValue StackPtr; 6495 if (isPPC64) 6496 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6497 else 6498 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6499 6500 // Figure out which arguments are going to go in registers, and which in 6501 // memory. Also, if this is a vararg function, floating point operations 6502 // must be stored to our stack, and loaded into integer regs as well, if 6503 // any integer regs are available for argument passing. 6504 unsigned ArgOffset = LinkageSize; 6505 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6506 6507 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6508 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6509 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6510 }; 6511 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6512 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6513 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6514 }; 6515 static const MCPhysReg VR[] = { 6516 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6517 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6518 }; 6519 const unsigned NumGPRs = array_lengthof(GPR_32); 6520 const unsigned NumFPRs = 13; 6521 const unsigned NumVRs = array_lengthof(VR); 6522 6523 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6524 6525 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6526 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6527 6528 SmallVector<SDValue, 8> MemOpChains; 6529 for (unsigned i = 0; i != NumOps; ++i) { 6530 SDValue Arg = OutVals[i]; 6531 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6532 6533 // PtrOff will be used to store the current argument to the stack if a 6534 // register cannot be found for it. 6535 SDValue PtrOff; 6536 6537 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6538 6539 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6540 6541 // On PPC64, promote integers to 64-bit values. 6542 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6543 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6544 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6545 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6546 } 6547 6548 // FIXME memcpy is used way more than necessary. Correctness first. 6549 // Note: "by value" is code for passing a structure by value, not 6550 // basic types. 6551 if (Flags.isByVal()) { 6552 unsigned Size = Flags.getByValSize(); 6553 // Very small objects are passed right-justified. Everything else is 6554 // passed left-justified. 6555 if (Size==1 || Size==2) { 6556 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6557 if (GPR_idx != NumGPRs) { 6558 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6559 MachinePointerInfo(), VT); 6560 MemOpChains.push_back(Load.getValue(1)); 6561 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6562 6563 ArgOffset += PtrByteSize; 6564 } else { 6565 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6566 PtrOff.getValueType()); 6567 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6568 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6569 CallSeqStart, 6570 Flags, DAG, dl); 6571 ArgOffset += PtrByteSize; 6572 } 6573 continue; 6574 } 6575 // Copy entire object into memory. There are cases where gcc-generated 6576 // code assumes it is there, even if it could be put entirely into 6577 // registers. (This is not what the doc says.) 6578 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6579 CallSeqStart, 6580 Flags, DAG, dl); 6581 6582 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6583 // copy the pieces of the object that fit into registers from the 6584 // parameter save area. 6585 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6586 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6587 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6588 if (GPR_idx != NumGPRs) { 6589 SDValue Load = 6590 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6591 MemOpChains.push_back(Load.getValue(1)); 6592 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6593 ArgOffset += PtrByteSize; 6594 } else { 6595 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6596 break; 6597 } 6598 } 6599 continue; 6600 } 6601 6602 switch (Arg.getSimpleValueType().SimpleTy) { 6603 default: llvm_unreachable("Unexpected ValueType for argument!"); 6604 case MVT::i1: 6605 case MVT::i32: 6606 case MVT::i64: 6607 if (GPR_idx != NumGPRs) { 6608 if (Arg.getValueType() == MVT::i1) 6609 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6610 6611 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6612 } else { 6613 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6614 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6615 TailCallArguments, dl); 6616 } 6617 ArgOffset += PtrByteSize; 6618 break; 6619 case MVT::f32: 6620 case MVT::f64: 6621 if (FPR_idx != NumFPRs) { 6622 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6623 6624 if (CFlags.IsVarArg) { 6625 SDValue Store = 6626 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6627 MemOpChains.push_back(Store); 6628 6629 // Float varargs are always shadowed in available integer registers 6630 if (GPR_idx != NumGPRs) { 6631 SDValue Load = 6632 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6633 MemOpChains.push_back(Load.getValue(1)); 6634 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6635 } 6636 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6637 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6638 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6639 SDValue Load = 6640 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6641 MemOpChains.push_back(Load.getValue(1)); 6642 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6643 } 6644 } else { 6645 // If we have any FPRs remaining, we may also have GPRs remaining. 6646 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6647 // GPRs. 6648 if (GPR_idx != NumGPRs) 6649 ++GPR_idx; 6650 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6651 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6652 ++GPR_idx; 6653 } 6654 } else 6655 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6656 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6657 TailCallArguments, dl); 6658 if (isPPC64) 6659 ArgOffset += 8; 6660 else 6661 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6662 break; 6663 case MVT::v4f32: 6664 case MVT::v4i32: 6665 case MVT::v8i16: 6666 case MVT::v16i8: 6667 if (CFlags.IsVarArg) { 6668 // These go aligned on the stack, or in the corresponding R registers 6669 // when within range. The Darwin PPC ABI doc claims they also go in 6670 // V registers; in fact gcc does this only for arguments that are 6671 // prototyped, not for those that match the ... We do it for all 6672 // arguments, seems to work. 6673 while (ArgOffset % 16 !=0) { 6674 ArgOffset += PtrByteSize; 6675 if (GPR_idx != NumGPRs) 6676 GPR_idx++; 6677 } 6678 // We could elide this store in the case where the object fits 6679 // entirely in R registers. Maybe later. 6680 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6681 DAG.getConstant(ArgOffset, dl, PtrVT)); 6682 SDValue Store = 6683 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6684 MemOpChains.push_back(Store); 6685 if (VR_idx != NumVRs) { 6686 SDValue Load = 6687 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6688 MemOpChains.push_back(Load.getValue(1)); 6689 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6690 } 6691 ArgOffset += 16; 6692 for (unsigned i=0; i<16; i+=PtrByteSize) { 6693 if (GPR_idx == NumGPRs) 6694 break; 6695 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6696 DAG.getConstant(i, dl, PtrVT)); 6697 SDValue Load = 6698 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6699 MemOpChains.push_back(Load.getValue(1)); 6700 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6701 } 6702 break; 6703 } 6704 6705 // Non-varargs Altivec params generally go in registers, but have 6706 // stack space allocated at the end. 6707 if (VR_idx != NumVRs) { 6708 // Doesn't have GPR space allocated. 6709 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6710 } else if (nAltivecParamsAtEnd==0) { 6711 // We are emitting Altivec params in order. 6712 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6713 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6714 TailCallArguments, dl); 6715 ArgOffset += 16; 6716 } 6717 break; 6718 } 6719 } 6720 // If all Altivec parameters fit in registers, as they usually do, 6721 // they get stack space following the non-Altivec parameters. We 6722 // don't track this here because nobody below needs it. 6723 // If there are more Altivec parameters than fit in registers emit 6724 // the stores here. 6725 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6726 unsigned j = 0; 6727 // Offset is aligned; skip 1st 12 params which go in V registers. 6728 ArgOffset = ((ArgOffset+15)/16)*16; 6729 ArgOffset += 12*16; 6730 for (unsigned i = 0; i != NumOps; ++i) { 6731 SDValue Arg = OutVals[i]; 6732 EVT ArgType = Outs[i].VT; 6733 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6734 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6735 if (++j > NumVRs) { 6736 SDValue PtrOff; 6737 // We are emitting Altivec params in order. 6738 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6739 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6740 TailCallArguments, dl); 6741 ArgOffset += 16; 6742 } 6743 } 6744 } 6745 } 6746 6747 if (!MemOpChains.empty()) 6748 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6749 6750 // On Darwin, R12 must contain the address of an indirect callee. This does 6751 // not mean the MTCTR instruction must use R12; it's easier to model this as 6752 // an extra parameter, so do that. 6753 if (CFlags.IsIndirect) { 6754 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6755 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6756 PPC::R12), Callee)); 6757 } 6758 6759 // Build a sequence of copy-to-reg nodes chained together with token chain 6760 // and flag operands which copy the outgoing args into the appropriate regs. 6761 SDValue InFlag; 6762 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6763 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6764 RegsToPass[i].second, InFlag); 6765 InFlag = Chain.getValue(1); 6766 } 6767 6768 if (CFlags.IsTailCall) 6769 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6770 TailCallArguments); 6771 6772 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6773 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6774 } 6775 6776 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6777 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6778 CCState &State) { 6779 6780 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6781 State.getMachineFunction().getSubtarget()); 6782 const bool IsPPC64 = Subtarget.isPPC64(); 6783 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6784 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6785 6786 assert((!ValVT.isInteger() || 6787 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6788 "Integer argument exceeds register size: should have been legalized"); 6789 6790 if (ValVT == MVT::f128) 6791 report_fatal_error("f128 is unimplemented on AIX."); 6792 6793 if (ArgFlags.isNest()) 6794 report_fatal_error("Nest arguments are unimplemented."); 6795 6796 if (ValVT.isVector() || LocVT.isVector()) 6797 report_fatal_error("Vector arguments are unimplemented on AIX."); 6798 6799 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6800 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6801 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6802 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6803 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6804 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6805 6806 if (ArgFlags.isByVal()) { 6807 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6808 report_fatal_error("Pass-by-value arguments with alignment greater than " 6809 "register width are not supported."); 6810 6811 const unsigned ByValSize = ArgFlags.getByValSize(); 6812 6813 // An empty aggregate parameter takes up no storage and no registers, 6814 // but needs a MemLoc for a stack slot for the formal arguments side. 6815 if (ByValSize == 0) { 6816 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6817 State.getNextStackOffset(), RegVT, 6818 LocInfo)); 6819 return false; 6820 } 6821 6822 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6823 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6824 for (const unsigned E = Offset + StackSize; Offset < E; 6825 Offset += PtrAlign.value()) { 6826 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6827 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6828 else { 6829 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6830 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6831 LocInfo)); 6832 break; 6833 } 6834 } 6835 return false; 6836 } 6837 6838 // Arguments always reserve parameter save area. 6839 switch (ValVT.SimpleTy) { 6840 default: 6841 report_fatal_error("Unhandled value type for argument."); 6842 case MVT::i64: 6843 // i64 arguments should have been split to i32 for PPC32. 6844 assert(IsPPC64 && "PPC32 should have split i64 values."); 6845 LLVM_FALLTHROUGH; 6846 case MVT::i1: 6847 case MVT::i32: { 6848 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6849 // AIX integer arguments are always passed in register width. 6850 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6851 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6852 : CCValAssign::LocInfo::ZExt; 6853 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6854 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6855 else 6856 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6857 6858 return false; 6859 } 6860 case MVT::f32: 6861 case MVT::f64: { 6862 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6863 const unsigned StoreSize = LocVT.getStoreSize(); 6864 // Floats are always 4-byte aligned in the PSA on AIX. 6865 // This includes f64 in 64-bit mode for ABI compatibility. 6866 const unsigned Offset = 6867 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6868 unsigned FReg = State.AllocateReg(FPR); 6869 if (FReg) 6870 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6871 6872 // Reserve and initialize GPRs or initialize the PSA as required. 6873 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6874 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6875 assert(FReg && "An FPR should be available when a GPR is reserved."); 6876 if (State.isVarArg()) { 6877 // Successfully reserved GPRs are only initialized for vararg calls. 6878 // Custom handling is required for: 6879 // f64 in PPC32 needs to be split into 2 GPRs. 6880 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6881 State.addLoc( 6882 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6883 } 6884 } else { 6885 // If there are insufficient GPRs, the PSA needs to be initialized. 6886 // Initialization occurs even if an FPR was initialized for 6887 // compatibility with the AIX XL compiler. The full memory for the 6888 // argument will be initialized even if a prior word is saved in GPR. 6889 // A custom memLoc is used when the argument also passes in FPR so 6890 // that the callee handling can skip over it easily. 6891 State.addLoc( 6892 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6893 LocInfo) 6894 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6895 break; 6896 } 6897 } 6898 6899 return false; 6900 } 6901 } 6902 return true; 6903 } 6904 6905 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6906 bool IsPPC64) { 6907 assert((IsPPC64 || SVT != MVT::i64) && 6908 "i64 should have been split for 32-bit codegen."); 6909 6910 switch (SVT) { 6911 default: 6912 report_fatal_error("Unexpected value type for formal argument"); 6913 case MVT::i1: 6914 case MVT::i32: 6915 case MVT::i64: 6916 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6917 case MVT::f32: 6918 return &PPC::F4RCRegClass; 6919 case MVT::f64: 6920 return &PPC::F8RCRegClass; 6921 } 6922 } 6923 6924 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6925 SelectionDAG &DAG, SDValue ArgValue, 6926 MVT LocVT, const SDLoc &dl) { 6927 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6928 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6929 6930 if (Flags.isSExt()) 6931 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6932 DAG.getValueType(ValVT)); 6933 else if (Flags.isZExt()) 6934 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6935 DAG.getValueType(ValVT)); 6936 6937 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6938 } 6939 6940 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6941 const unsigned LASize = FL->getLinkageSize(); 6942 6943 if (PPC::GPRCRegClass.contains(Reg)) { 6944 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6945 "Reg must be a valid argument register!"); 6946 return LASize + 4 * (Reg - PPC::R3); 6947 } 6948 6949 if (PPC::G8RCRegClass.contains(Reg)) { 6950 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6951 "Reg must be a valid argument register!"); 6952 return LASize + 8 * (Reg - PPC::X3); 6953 } 6954 6955 llvm_unreachable("Only general purpose registers expected."); 6956 } 6957 6958 // AIX ABI Stack Frame Layout: 6959 // 6960 // Low Memory +--------------------------------------------+ 6961 // SP +---> | Back chain | ---+ 6962 // | +--------------------------------------------+ | 6963 // | | Saved Condition Register | | 6964 // | +--------------------------------------------+ | 6965 // | | Saved Linkage Register | | 6966 // | +--------------------------------------------+ | Linkage Area 6967 // | | Reserved for compilers | | 6968 // | +--------------------------------------------+ | 6969 // | | Reserved for binders | | 6970 // | +--------------------------------------------+ | 6971 // | | Saved TOC pointer | ---+ 6972 // | +--------------------------------------------+ 6973 // | | Parameter save area | 6974 // | +--------------------------------------------+ 6975 // | | Alloca space | 6976 // | +--------------------------------------------+ 6977 // | | Local variable space | 6978 // | +--------------------------------------------+ 6979 // | | Float/int conversion temporary | 6980 // | +--------------------------------------------+ 6981 // | | Save area for AltiVec registers | 6982 // | +--------------------------------------------+ 6983 // | | AltiVec alignment padding | 6984 // | +--------------------------------------------+ 6985 // | | Save area for VRSAVE register | 6986 // | +--------------------------------------------+ 6987 // | | Save area for General Purpose registers | 6988 // | +--------------------------------------------+ 6989 // | | Save area for Floating Point registers | 6990 // | +--------------------------------------------+ 6991 // +---- | Back chain | 6992 // High Memory +--------------------------------------------+ 6993 // 6994 // Specifications: 6995 // AIX 7.2 Assembler Language Reference 6996 // Subroutine linkage convention 6997 6998 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6999 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7000 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7001 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7002 7003 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7004 CallConv == CallingConv::Fast) && 7005 "Unexpected calling convention!"); 7006 7007 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7008 report_fatal_error("Tail call support is unimplemented on AIX."); 7009 7010 if (useSoftFloat()) 7011 report_fatal_error("Soft float support is unimplemented on AIX."); 7012 7013 const PPCSubtarget &Subtarget = 7014 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7015 7016 const bool IsPPC64 = Subtarget.isPPC64(); 7017 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7018 7019 // Assign locations to all of the incoming arguments. 7020 SmallVector<CCValAssign, 16> ArgLocs; 7021 MachineFunction &MF = DAG.getMachineFunction(); 7022 MachineFrameInfo &MFI = MF.getFrameInfo(); 7023 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7024 7025 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7026 // Reserve space for the linkage area on the stack. 7027 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7028 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7029 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7030 7031 SmallVector<SDValue, 8> MemOps; 7032 7033 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7034 CCValAssign &VA = ArgLocs[I++]; 7035 MVT LocVT = VA.getLocVT(); 7036 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7037 7038 // For compatibility with the AIX XL compiler, the float args in the 7039 // parameter save area are initialized even if the argument is available 7040 // in register. The caller is required to initialize both the register 7041 // and memory, however, the callee can choose to expect it in either. 7042 // The memloc is dismissed here because the argument is retrieved from 7043 // the register. 7044 if (VA.isMemLoc() && VA.needsCustom()) 7045 continue; 7046 7047 if (Flags.isByVal() && VA.isMemLoc()) { 7048 const unsigned Size = 7049 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7050 PtrByteSize); 7051 const int FI = MF.getFrameInfo().CreateFixedObject( 7052 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7053 /* IsAliased */ true); 7054 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7055 InVals.push_back(FIN); 7056 7057 continue; 7058 } 7059 7060 if (Flags.isByVal()) { 7061 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7062 7063 const MCPhysReg ArgReg = VA.getLocReg(); 7064 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7065 7066 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7067 report_fatal_error("Over aligned byvals not supported yet."); 7068 7069 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7070 const int FI = MF.getFrameInfo().CreateFixedObject( 7071 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7072 /* IsAliased */ true); 7073 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7074 InVals.push_back(FIN); 7075 7076 // Add live ins for all the RegLocs for the same ByVal. 7077 const TargetRegisterClass *RegClass = 7078 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7079 7080 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7081 unsigned Offset) { 7082 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7083 // Since the callers side has left justified the aggregate in the 7084 // register, we can simply store the entire register into the stack 7085 // slot. 7086 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7087 // The store to the fixedstack object is needed becuase accessing a 7088 // field of the ByVal will use a gep and load. Ideally we will optimize 7089 // to extracting the value from the register directly, and elide the 7090 // stores when the arguments address is not taken, but that will need to 7091 // be future work. 7092 SDValue Store = 7093 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7094 DAG.getObjectPtrOffset(dl, FIN, Offset), 7095 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7096 7097 MemOps.push_back(Store); 7098 }; 7099 7100 unsigned Offset = 0; 7101 HandleRegLoc(VA.getLocReg(), Offset); 7102 Offset += PtrByteSize; 7103 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7104 Offset += PtrByteSize) { 7105 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7106 "RegLocs should be for ByVal argument."); 7107 7108 const CCValAssign RL = ArgLocs[I++]; 7109 HandleRegLoc(RL.getLocReg(), Offset); 7110 } 7111 7112 if (Offset != StackSize) { 7113 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7114 "Expected MemLoc for remaining bytes."); 7115 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7116 // Consume the MemLoc.The InVal has already been emitted, so nothing 7117 // more needs to be done. 7118 ++I; 7119 } 7120 7121 continue; 7122 } 7123 7124 EVT ValVT = VA.getValVT(); 7125 if (VA.isRegLoc() && !VA.needsCustom()) { 7126 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7127 unsigned VReg = 7128 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7129 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7130 if (ValVT.isScalarInteger() && 7131 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7132 ArgValue = 7133 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7134 } 7135 InVals.push_back(ArgValue); 7136 continue; 7137 } 7138 if (VA.isMemLoc()) { 7139 const unsigned LocSize = LocVT.getStoreSize(); 7140 const unsigned ValSize = ValVT.getStoreSize(); 7141 assert((ValSize <= LocSize) && 7142 "Object size is larger than size of MemLoc"); 7143 int CurArgOffset = VA.getLocMemOffset(); 7144 // Objects are right-justified because AIX is big-endian. 7145 if (LocSize > ValSize) 7146 CurArgOffset += LocSize - ValSize; 7147 // Potential tail calls could cause overwriting of argument stack slots. 7148 const bool IsImmutable = 7149 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7150 (CallConv == CallingConv::Fast)); 7151 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7152 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7153 SDValue ArgValue = 7154 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7155 InVals.push_back(ArgValue); 7156 continue; 7157 } 7158 } 7159 7160 // On AIX a minimum of 8 words is saved to the parameter save area. 7161 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7162 // Area that is at least reserved in the caller of this function. 7163 unsigned CallerReservedArea = 7164 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7165 7166 // Set the size that is at least reserved in caller of this function. Tail 7167 // call optimized function's reserved stack space needs to be aligned so 7168 // that taking the difference between two stack areas will result in an 7169 // aligned stack. 7170 CallerReservedArea = 7171 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7172 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7173 FuncInfo->setMinReservedArea(CallerReservedArea); 7174 7175 if (isVarArg) { 7176 FuncInfo->setVarArgsFrameIndex( 7177 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7178 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7179 7180 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7181 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7182 7183 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7184 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7185 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7186 7187 // The fixed integer arguments of a variadic function are stored to the 7188 // VarArgsFrameIndex on the stack so that they may be loaded by 7189 // dereferencing the result of va_next. 7190 for (unsigned GPRIndex = 7191 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7192 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7193 7194 const unsigned VReg = 7195 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7196 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7197 7198 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7199 SDValue Store = 7200 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7201 MemOps.push_back(Store); 7202 // Increment the address for the next argument to store. 7203 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7204 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7205 } 7206 } 7207 7208 if (!MemOps.empty()) 7209 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7210 7211 return Chain; 7212 } 7213 7214 SDValue PPCTargetLowering::LowerCall_AIX( 7215 SDValue Chain, SDValue Callee, CallFlags CFlags, 7216 const SmallVectorImpl<ISD::OutputArg> &Outs, 7217 const SmallVectorImpl<SDValue> &OutVals, 7218 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7219 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7220 const CallBase *CB) const { 7221 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7222 // AIX ABI stack frame layout. 7223 7224 assert((CFlags.CallConv == CallingConv::C || 7225 CFlags.CallConv == CallingConv::Cold || 7226 CFlags.CallConv == CallingConv::Fast) && 7227 "Unexpected calling convention!"); 7228 7229 if (CFlags.IsPatchPoint) 7230 report_fatal_error("This call type is unimplemented on AIX."); 7231 7232 const PPCSubtarget& Subtarget = 7233 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7234 if (Subtarget.hasAltivec()) 7235 report_fatal_error("Altivec support is unimplemented on AIX."); 7236 7237 MachineFunction &MF = DAG.getMachineFunction(); 7238 SmallVector<CCValAssign, 16> ArgLocs; 7239 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7240 *DAG.getContext()); 7241 7242 // Reserve space for the linkage save area (LSA) on the stack. 7243 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7244 // [SP][CR][LR][2 x reserved][TOC]. 7245 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7246 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7247 const bool IsPPC64 = Subtarget.isPPC64(); 7248 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7249 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7250 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7251 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7252 7253 // The prolog code of the callee may store up to 8 GPR argument registers to 7254 // the stack, allowing va_start to index over them in memory if the callee 7255 // is variadic. 7256 // Because we cannot tell if this is needed on the caller side, we have to 7257 // conservatively assume that it is needed. As such, make sure we have at 7258 // least enough stack space for the caller to store the 8 GPRs. 7259 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7260 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7261 CCInfo.getNextStackOffset()); 7262 7263 // Adjust the stack pointer for the new arguments... 7264 // These operations are automatically eliminated by the prolog/epilog pass. 7265 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7266 SDValue CallSeqStart = Chain; 7267 7268 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7269 SmallVector<SDValue, 8> MemOpChains; 7270 7271 // Set up a copy of the stack pointer for loading and storing any 7272 // arguments that may not fit in the registers available for argument 7273 // passing. 7274 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7275 : DAG.getRegister(PPC::R1, MVT::i32); 7276 7277 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7278 const unsigned ValNo = ArgLocs[I].getValNo(); 7279 SDValue Arg = OutVals[ValNo]; 7280 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7281 7282 if (Flags.isByVal()) { 7283 const unsigned ByValSize = Flags.getByValSize(); 7284 7285 // Nothing to do for zero-sized ByVals on the caller side. 7286 if (!ByValSize) { 7287 ++I; 7288 continue; 7289 } 7290 7291 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7292 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7293 (LoadOffset != 0) 7294 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7295 : Arg, 7296 MachinePointerInfo(), VT); 7297 }; 7298 7299 unsigned LoadOffset = 0; 7300 7301 // Initialize registers, which are fully occupied by the by-val argument. 7302 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7303 SDValue Load = GetLoad(PtrVT, LoadOffset); 7304 MemOpChains.push_back(Load.getValue(1)); 7305 LoadOffset += PtrByteSize; 7306 const CCValAssign &ByValVA = ArgLocs[I++]; 7307 assert(ByValVA.getValNo() == ValNo && 7308 "Unexpected location for pass-by-value argument."); 7309 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7310 } 7311 7312 if (LoadOffset == ByValSize) 7313 continue; 7314 7315 // There must be one more loc to handle the remainder. 7316 assert(ArgLocs[I].getValNo() == ValNo && 7317 "Expected additional location for by-value argument."); 7318 7319 if (ArgLocs[I].isMemLoc()) { 7320 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7321 const CCValAssign &ByValVA = ArgLocs[I++]; 7322 ISD::ArgFlagsTy MemcpyFlags = Flags; 7323 // Only memcpy the bytes that don't pass in register. 7324 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7325 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7326 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7327 : Arg, 7328 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7329 CallSeqStart, MemcpyFlags, DAG, dl); 7330 continue; 7331 } 7332 7333 // Initialize the final register residue. 7334 // Any residue that occupies the final by-val arg register must be 7335 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7336 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7337 // 2 and 1 byte loads. 7338 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7339 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7340 "Unexpected register residue for by-value argument."); 7341 SDValue ResidueVal; 7342 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7343 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7344 const MVT VT = 7345 N == 1 ? MVT::i8 7346 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7347 SDValue Load = GetLoad(VT, LoadOffset); 7348 MemOpChains.push_back(Load.getValue(1)); 7349 LoadOffset += N; 7350 Bytes += N; 7351 7352 // By-val arguments are passed left-justfied in register. 7353 // Every load here needs to be shifted, otherwise a full register load 7354 // should have been used. 7355 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7356 "Unexpected load emitted during handling of pass-by-value " 7357 "argument."); 7358 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7359 EVT ShiftAmountTy = 7360 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7361 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7362 SDValue ShiftedLoad = 7363 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7364 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7365 ShiftedLoad) 7366 : ShiftedLoad; 7367 } 7368 7369 const CCValAssign &ByValVA = ArgLocs[I++]; 7370 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7371 continue; 7372 } 7373 7374 CCValAssign &VA = ArgLocs[I++]; 7375 const MVT LocVT = VA.getLocVT(); 7376 const MVT ValVT = VA.getValVT(); 7377 7378 switch (VA.getLocInfo()) { 7379 default: 7380 report_fatal_error("Unexpected argument extension type."); 7381 case CCValAssign::Full: 7382 break; 7383 case CCValAssign::ZExt: 7384 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7385 break; 7386 case CCValAssign::SExt: 7387 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7388 break; 7389 } 7390 7391 if (VA.isRegLoc() && !VA.needsCustom()) { 7392 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7393 continue; 7394 } 7395 7396 if (VA.isMemLoc()) { 7397 SDValue PtrOff = 7398 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7399 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7400 MemOpChains.push_back( 7401 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7402 7403 continue; 7404 } 7405 7406 // Custom handling is used for GPR initializations for vararg float 7407 // arguments. 7408 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7409 ValVT.isFloatingPoint() && LocVT.isInteger() && 7410 "Unexpected register handling for calling convention."); 7411 7412 SDValue ArgAsInt = 7413 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7414 7415 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7416 // f32 in 32-bit GPR 7417 // f64 in 64-bit GPR 7418 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7419 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7420 // f32 in 64-bit GPR. 7421 RegsToPass.push_back(std::make_pair( 7422 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7423 else { 7424 // f64 in two 32-bit GPRs 7425 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7426 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7427 "Unexpected custom register for argument!"); 7428 CCValAssign &GPR1 = VA; 7429 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7430 DAG.getConstant(32, dl, MVT::i8)); 7431 RegsToPass.push_back(std::make_pair( 7432 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7433 7434 if (I != E) { 7435 // If only 1 GPR was available, there will only be one custom GPR and 7436 // the argument will also pass in memory. 7437 CCValAssign &PeekArg = ArgLocs[I]; 7438 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7439 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7440 CCValAssign &GPR2 = ArgLocs[I++]; 7441 RegsToPass.push_back(std::make_pair( 7442 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7443 } 7444 } 7445 } 7446 } 7447 7448 if (!MemOpChains.empty()) 7449 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7450 7451 // For indirect calls, we need to save the TOC base to the stack for 7452 // restoration after the call. 7453 if (CFlags.IsIndirect) { 7454 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7455 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7456 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7457 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7458 const unsigned TOCSaveOffset = 7459 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7460 7461 setUsesTOCBasePtr(DAG); 7462 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7463 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7464 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7465 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7466 Chain = DAG.getStore( 7467 Val.getValue(1), dl, Val, AddPtr, 7468 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7469 } 7470 7471 // Build a sequence of copy-to-reg nodes chained together with token chain 7472 // and flag operands which copy the outgoing args into the appropriate regs. 7473 SDValue InFlag; 7474 for (auto Reg : RegsToPass) { 7475 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7476 InFlag = Chain.getValue(1); 7477 } 7478 7479 const int SPDiff = 0; 7480 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7481 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7482 } 7483 7484 bool 7485 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7486 MachineFunction &MF, bool isVarArg, 7487 const SmallVectorImpl<ISD::OutputArg> &Outs, 7488 LLVMContext &Context) const { 7489 SmallVector<CCValAssign, 16> RVLocs; 7490 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7491 return CCInfo.CheckReturn( 7492 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7493 ? RetCC_PPC_Cold 7494 : RetCC_PPC); 7495 } 7496 7497 SDValue 7498 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7499 bool isVarArg, 7500 const SmallVectorImpl<ISD::OutputArg> &Outs, 7501 const SmallVectorImpl<SDValue> &OutVals, 7502 const SDLoc &dl, SelectionDAG &DAG) const { 7503 SmallVector<CCValAssign, 16> RVLocs; 7504 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7505 *DAG.getContext()); 7506 CCInfo.AnalyzeReturn(Outs, 7507 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7508 ? RetCC_PPC_Cold 7509 : RetCC_PPC); 7510 7511 SDValue Flag; 7512 SmallVector<SDValue, 4> RetOps(1, Chain); 7513 7514 // Copy the result values into the output registers. 7515 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7516 CCValAssign &VA = RVLocs[i]; 7517 assert(VA.isRegLoc() && "Can only return in registers!"); 7518 7519 SDValue Arg = OutVals[RealResIdx]; 7520 7521 switch (VA.getLocInfo()) { 7522 default: llvm_unreachable("Unknown loc info!"); 7523 case CCValAssign::Full: break; 7524 case CCValAssign::AExt: 7525 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7526 break; 7527 case CCValAssign::ZExt: 7528 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7529 break; 7530 case CCValAssign::SExt: 7531 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7532 break; 7533 } 7534 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7535 bool isLittleEndian = Subtarget.isLittleEndian(); 7536 // Legalize ret f64 -> ret 2 x i32. 7537 SDValue SVal = 7538 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7539 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7540 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7541 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7542 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7543 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7544 Flag = Chain.getValue(1); 7545 VA = RVLocs[++i]; // skip ahead to next loc 7546 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7547 } else 7548 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7549 Flag = Chain.getValue(1); 7550 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7551 } 7552 7553 RetOps[0] = Chain; // Update chain. 7554 7555 // Add the flag if we have it. 7556 if (Flag.getNode()) 7557 RetOps.push_back(Flag); 7558 7559 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7560 } 7561 7562 SDValue 7563 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7564 SelectionDAG &DAG) const { 7565 SDLoc dl(Op); 7566 7567 // Get the correct type for integers. 7568 EVT IntVT = Op.getValueType(); 7569 7570 // Get the inputs. 7571 SDValue Chain = Op.getOperand(0); 7572 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7573 // Build a DYNAREAOFFSET node. 7574 SDValue Ops[2] = {Chain, FPSIdx}; 7575 SDVTList VTs = DAG.getVTList(IntVT); 7576 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7577 } 7578 7579 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7580 SelectionDAG &DAG) const { 7581 // When we pop the dynamic allocation we need to restore the SP link. 7582 SDLoc dl(Op); 7583 7584 // Get the correct type for pointers. 7585 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7586 7587 // Construct the stack pointer operand. 7588 bool isPPC64 = Subtarget.isPPC64(); 7589 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7590 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7591 7592 // Get the operands for the STACKRESTORE. 7593 SDValue Chain = Op.getOperand(0); 7594 SDValue SaveSP = Op.getOperand(1); 7595 7596 // Load the old link SP. 7597 SDValue LoadLinkSP = 7598 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7599 7600 // Restore the stack pointer. 7601 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7602 7603 // Store the old link SP. 7604 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7605 } 7606 7607 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7608 MachineFunction &MF = DAG.getMachineFunction(); 7609 bool isPPC64 = Subtarget.isPPC64(); 7610 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7611 7612 // Get current frame pointer save index. The users of this index will be 7613 // primarily DYNALLOC instructions. 7614 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7615 int RASI = FI->getReturnAddrSaveIndex(); 7616 7617 // If the frame pointer save index hasn't been defined yet. 7618 if (!RASI) { 7619 // Find out what the fix offset of the frame pointer save area. 7620 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7621 // Allocate the frame index for frame pointer save area. 7622 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7623 // Save the result. 7624 FI->setReturnAddrSaveIndex(RASI); 7625 } 7626 return DAG.getFrameIndex(RASI, PtrVT); 7627 } 7628 7629 SDValue 7630 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7631 MachineFunction &MF = DAG.getMachineFunction(); 7632 bool isPPC64 = Subtarget.isPPC64(); 7633 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7634 7635 // Get current frame pointer save index. The users of this index will be 7636 // primarily DYNALLOC instructions. 7637 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7638 int FPSI = FI->getFramePointerSaveIndex(); 7639 7640 // If the frame pointer save index hasn't been defined yet. 7641 if (!FPSI) { 7642 // Find out what the fix offset of the frame pointer save area. 7643 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7644 // Allocate the frame index for frame pointer save area. 7645 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7646 // Save the result. 7647 FI->setFramePointerSaveIndex(FPSI); 7648 } 7649 return DAG.getFrameIndex(FPSI, PtrVT); 7650 } 7651 7652 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7653 SelectionDAG &DAG) const { 7654 MachineFunction &MF = DAG.getMachineFunction(); 7655 // Get the inputs. 7656 SDValue Chain = Op.getOperand(0); 7657 SDValue Size = Op.getOperand(1); 7658 SDLoc dl(Op); 7659 7660 // Get the correct type for pointers. 7661 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7662 // Negate the size. 7663 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7664 DAG.getConstant(0, dl, PtrVT), Size); 7665 // Construct a node for the frame pointer save index. 7666 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7667 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7668 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7669 if (hasInlineStackProbe(MF)) 7670 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7671 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7672 } 7673 7674 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7675 SelectionDAG &DAG) const { 7676 MachineFunction &MF = DAG.getMachineFunction(); 7677 7678 bool isPPC64 = Subtarget.isPPC64(); 7679 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7680 7681 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7682 return DAG.getFrameIndex(FI, PtrVT); 7683 } 7684 7685 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7686 SelectionDAG &DAG) const { 7687 SDLoc DL(Op); 7688 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7689 DAG.getVTList(MVT::i32, MVT::Other), 7690 Op.getOperand(0), Op.getOperand(1)); 7691 } 7692 7693 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7694 SelectionDAG &DAG) const { 7695 SDLoc DL(Op); 7696 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7697 Op.getOperand(0), Op.getOperand(1)); 7698 } 7699 7700 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7701 7702 assert(Op.getValueType() == MVT::i1 && 7703 "Custom lowering only for i1 loads"); 7704 7705 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7706 7707 SDLoc dl(Op); 7708 LoadSDNode *LD = cast<LoadSDNode>(Op); 7709 7710 SDValue Chain = LD->getChain(); 7711 SDValue BasePtr = LD->getBasePtr(); 7712 MachineMemOperand *MMO = LD->getMemOperand(); 7713 7714 SDValue NewLD = 7715 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7716 BasePtr, MVT::i8, MMO); 7717 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7718 7719 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7720 return DAG.getMergeValues(Ops, dl); 7721 } 7722 7723 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7724 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7725 "Custom lowering only for i1 stores"); 7726 7727 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7728 7729 SDLoc dl(Op); 7730 StoreSDNode *ST = cast<StoreSDNode>(Op); 7731 7732 SDValue Chain = ST->getChain(); 7733 SDValue BasePtr = ST->getBasePtr(); 7734 SDValue Value = ST->getValue(); 7735 MachineMemOperand *MMO = ST->getMemOperand(); 7736 7737 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7738 Value); 7739 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7740 } 7741 7742 // FIXME: Remove this once the ANDI glue bug is fixed: 7743 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7744 assert(Op.getValueType() == MVT::i1 && 7745 "Custom lowering only for i1 results"); 7746 7747 SDLoc DL(Op); 7748 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7749 } 7750 7751 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7752 SelectionDAG &DAG) const { 7753 7754 // Implements a vector truncate that fits in a vector register as a shuffle. 7755 // We want to legalize vector truncates down to where the source fits in 7756 // a vector register (and target is therefore smaller than vector register 7757 // size). At that point legalization will try to custom lower the sub-legal 7758 // result and get here - where we can contain the truncate as a single target 7759 // operation. 7760 7761 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7762 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7763 // 7764 // We will implement it for big-endian ordering as this (where x denotes 7765 // undefined): 7766 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7767 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7768 // 7769 // The same operation in little-endian ordering will be: 7770 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7771 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7772 7773 assert(Op.getValueType().isVector() && "Vector type expected."); 7774 7775 SDLoc DL(Op); 7776 SDValue N1 = Op.getOperand(0); 7777 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7778 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7779 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7780 7781 EVT TrgVT = Op.getValueType(); 7782 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7783 EVT EltVT = TrgVT.getVectorElementType(); 7784 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7785 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7786 7787 // First list the elements we want to keep. 7788 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7789 SmallVector<int, 16> ShuffV; 7790 if (Subtarget.isLittleEndian()) 7791 for (unsigned i = 0; i < TrgNumElts; ++i) 7792 ShuffV.push_back(i * SizeMult); 7793 else 7794 for (unsigned i = 1; i <= TrgNumElts; ++i) 7795 ShuffV.push_back(i * SizeMult - 1); 7796 7797 // Populate the remaining elements with undefs. 7798 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7799 // ShuffV.push_back(i + WideNumElts); 7800 ShuffV.push_back(WideNumElts + 1); 7801 7802 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7803 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7804 } 7805 7806 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7807 /// possible. 7808 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7809 // Not FP, or using SPE? Not a fsel. 7810 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7811 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7812 return Op; 7813 7814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7815 7816 EVT ResVT = Op.getValueType(); 7817 EVT CmpVT = Op.getOperand(0).getValueType(); 7818 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7819 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7820 SDLoc dl(Op); 7821 SDNodeFlags Flags = Op.getNode()->getFlags(); 7822 7823 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7824 // presence of infinities. 7825 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7826 switch (CC) { 7827 default: 7828 break; 7829 case ISD::SETOGT: 7830 case ISD::SETGT: 7831 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7832 case ISD::SETOLT: 7833 case ISD::SETLT: 7834 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7835 } 7836 } 7837 7838 // We might be able to do better than this under some circumstances, but in 7839 // general, fsel-based lowering of select is a finite-math-only optimization. 7840 // For more information, see section F.3 of the 2.06 ISA specification. 7841 // With ISA 3.0 7842 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7843 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7844 return Op; 7845 7846 // If the RHS of the comparison is a 0.0, we don't need to do the 7847 // subtraction at all. 7848 SDValue Sel1; 7849 if (isFloatingPointZero(RHS)) 7850 switch (CC) { 7851 default: break; // SETUO etc aren't handled by fsel. 7852 case ISD::SETNE: 7853 std::swap(TV, FV); 7854 LLVM_FALLTHROUGH; 7855 case ISD::SETEQ: 7856 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7857 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7858 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7859 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7860 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7861 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7862 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7863 case ISD::SETULT: 7864 case ISD::SETLT: 7865 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7866 LLVM_FALLTHROUGH; 7867 case ISD::SETOGE: 7868 case ISD::SETGE: 7869 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7870 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7871 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7872 case ISD::SETUGT: 7873 case ISD::SETGT: 7874 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7875 LLVM_FALLTHROUGH; 7876 case ISD::SETOLE: 7877 case ISD::SETLE: 7878 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7879 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7880 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7881 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7882 } 7883 7884 SDValue Cmp; 7885 switch (CC) { 7886 default: break; // SETUO etc aren't handled by fsel. 7887 case ISD::SETNE: 7888 std::swap(TV, FV); 7889 LLVM_FALLTHROUGH; 7890 case ISD::SETEQ: 7891 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7892 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7893 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7894 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7895 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7896 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7897 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7898 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7899 case ISD::SETULT: 7900 case ISD::SETLT: 7901 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7902 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7903 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7904 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7905 case ISD::SETOGE: 7906 case ISD::SETGE: 7907 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7908 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7909 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7910 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7911 case ISD::SETUGT: 7912 case ISD::SETGT: 7913 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7914 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7915 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7916 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7917 case ISD::SETOLE: 7918 case ISD::SETLE: 7919 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7920 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7921 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7922 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7923 } 7924 return Op; 7925 } 7926 7927 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7928 const PPCSubtarget &Subtarget) { 7929 SDLoc dl(Op); 7930 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; 7931 SDValue Src = Op.getOperand(0); 7932 assert(Src.getValueType().isFloatingPoint()); 7933 if (Src.getValueType() == MVT::f32) 7934 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7935 SDValue Conv; 7936 switch (Op.getSimpleValueType().SimpleTy) { 7937 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7938 case MVT::i32: 7939 Conv = DAG.getNode( 7940 IsSigned ? PPCISD::FCTIWZ 7941 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7942 dl, MVT::f64, Src); 7943 break; 7944 case MVT::i64: 7945 assert((IsSigned || Subtarget.hasFPCVT()) && 7946 "i64 FP_TO_UINT is supported only with FPCVT"); 7947 Conv = DAG.getNode(IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ, dl, 7948 MVT::f64, Src); 7949 } 7950 return Conv; 7951 } 7952 7953 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7954 SelectionDAG &DAG, 7955 const SDLoc &dl) const { 7956 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7957 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; 7958 7959 // Convert the FP value to an int value through memory. 7960 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7961 (IsSigned || Subtarget.hasFPCVT()); 7962 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7963 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7964 MachinePointerInfo MPI = 7965 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7966 7967 // Emit a store to the stack slot. 7968 SDValue Chain; 7969 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7970 if (i32Stack) { 7971 MachineFunction &MF = DAG.getMachineFunction(); 7972 Alignment = Align(4); 7973 MachineMemOperand *MMO = 7974 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7975 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7976 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7977 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7978 } else 7979 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 7980 7981 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7982 // add in a bias on big endian. 7983 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7984 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7985 DAG.getConstant(4, dl, FIPtr.getValueType())); 7986 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7987 } 7988 7989 RLI.Chain = Chain; 7990 RLI.Ptr = FIPtr; 7991 RLI.MPI = MPI; 7992 RLI.Alignment = Alignment; 7993 } 7994 7995 /// Custom lowers floating point to integer conversions to use 7996 /// the direct move instructions available in ISA 2.07 to avoid the 7997 /// need for load/store combinations. 7998 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7999 SelectionDAG &DAG, 8000 const SDLoc &dl) const { 8001 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8002 return DAG.getNode(PPCISD::MFVSR, dl, Op.getSimpleValueType().SimpleTy, 8003 convertFPToInt(Op, DAG, Subtarget)); 8004 } 8005 8006 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8007 const SDLoc &dl) const { 8008 SDValue Src = Op.getOperand(0); 8009 // FP to INT conversions are legal for f128. 8010 if (Src.getValueType() == MVT::f128) 8011 return Op; 8012 8013 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8014 // PPC (the libcall is not available). 8015 if (Src.getValueType() == MVT::ppcf128) { 8016 if (Op.getValueType() == MVT::i32) { 8017 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8018 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8019 DAG.getIntPtrConstant(0, dl)); 8020 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8021 DAG.getIntPtrConstant(1, dl)); 8022 8023 // Add the two halves of the long double in round-to-zero mode. 8024 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8025 8026 // Now use a smaller FP_TO_SINT. 8027 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8028 } 8029 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8030 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8031 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8032 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8033 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8034 // FIXME: generated code sucks. 8035 // TODO: Are there fast-math-flags to propagate to this FSUB? 8036 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Tmp); 8037 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8038 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8039 DAG.getConstant(0x80000000, dl, MVT::i32)); 8040 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8041 return DAG.getSelectCC(dl, Src, Tmp, True, False, ISD::SETGE); 8042 } 8043 } 8044 8045 return SDValue(); 8046 } 8047 8048 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8049 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8050 8051 ReuseLoadInfo RLI; 8052 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8053 8054 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8055 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8056 } 8057 8058 // We're trying to insert a regular store, S, and then a load, L. If the 8059 // incoming value, O, is a load, we might just be able to have our load use the 8060 // address used by O. However, we don't know if anything else will store to 8061 // that address before we can load from it. To prevent this situation, we need 8062 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8063 // the same chain operand as O, we create a token factor from the chain results 8064 // of O and L, and we replace all uses of O's chain result with that token 8065 // factor (see spliceIntoChain below for this last part). 8066 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8067 ReuseLoadInfo &RLI, 8068 SelectionDAG &DAG, 8069 ISD::LoadExtType ET) const { 8070 SDLoc dl(Op); 8071 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8072 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8073 if (ET == ISD::NON_EXTLOAD && 8074 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8075 isOperationLegalOrCustom(Op.getOpcode(), 8076 Op.getOperand(0).getValueType())) { 8077 8078 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8079 return true; 8080 } 8081 8082 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8083 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8084 LD->isNonTemporal()) 8085 return false; 8086 if (LD->getMemoryVT() != MemVT) 8087 return false; 8088 8089 RLI.Ptr = LD->getBasePtr(); 8090 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8091 assert(LD->getAddressingMode() == ISD::PRE_INC && 8092 "Non-pre-inc AM on PPC?"); 8093 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8094 LD->getOffset()); 8095 } 8096 8097 RLI.Chain = LD->getChain(); 8098 RLI.MPI = LD->getPointerInfo(); 8099 RLI.IsDereferenceable = LD->isDereferenceable(); 8100 RLI.IsInvariant = LD->isInvariant(); 8101 RLI.Alignment = LD->getAlign(); 8102 RLI.AAInfo = LD->getAAInfo(); 8103 RLI.Ranges = LD->getRanges(); 8104 8105 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8106 return true; 8107 } 8108 8109 // Given the head of the old chain, ResChain, insert a token factor containing 8110 // it and NewResChain, and make users of ResChain now be users of that token 8111 // factor. 8112 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8113 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8114 SDValue NewResChain, 8115 SelectionDAG &DAG) const { 8116 if (!ResChain) 8117 return; 8118 8119 SDLoc dl(NewResChain); 8120 8121 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8122 NewResChain, DAG.getUNDEF(MVT::Other)); 8123 assert(TF.getNode() != NewResChain.getNode() && 8124 "A new TF really is required here"); 8125 8126 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8127 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8128 } 8129 8130 /// Analyze profitability of direct move 8131 /// prefer float load to int load plus direct move 8132 /// when there is no integer use of int load 8133 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8134 SDNode *Origin = Op.getOperand(0).getNode(); 8135 if (Origin->getOpcode() != ISD::LOAD) 8136 return true; 8137 8138 // If there is no LXSIBZX/LXSIHZX, like Power8, 8139 // prefer direct move if the memory size is 1 or 2 bytes. 8140 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8141 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8142 return true; 8143 8144 for (SDNode::use_iterator UI = Origin->use_begin(), 8145 UE = Origin->use_end(); 8146 UI != UE; ++UI) { 8147 8148 // Only look at the users of the loaded value. 8149 if (UI.getUse().get().getResNo() != 0) 8150 continue; 8151 8152 if (UI->getOpcode() != ISD::SINT_TO_FP && 8153 UI->getOpcode() != ISD::UINT_TO_FP) 8154 return true; 8155 } 8156 8157 return false; 8158 } 8159 8160 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8161 const PPCSubtarget &Subtarget) { 8162 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; 8163 SDLoc dl(Op); 8164 // If we have FCFIDS, then use it when converting to single-precision. 8165 // Otherwise, convert to double-precision and then round. 8166 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8167 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8168 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8169 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8170 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8171 } 8172 8173 /// Custom lowers integer to floating point conversions to use 8174 /// the direct move instructions available in ISA 2.07 to avoid the 8175 /// need for load/store combinations. 8176 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8177 SelectionDAG &DAG, 8178 const SDLoc &dl) const { 8179 assert((Op.getValueType() == MVT::f32 || 8180 Op.getValueType() == MVT::f64) && 8181 "Invalid floating point type as target of conversion"); 8182 assert(Subtarget.hasFPCVT() && 8183 "Int to FP conversions with direct moves require FPCVT"); 8184 SDValue Src = Op.getOperand(0); 8185 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8186 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8187 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8188 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8189 return convertIntToFP(Op, Mov, DAG, Subtarget); 8190 } 8191 8192 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8193 8194 EVT VecVT = Vec.getValueType(); 8195 assert(VecVT.isVector() && "Expected a vector type."); 8196 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8197 8198 EVT EltVT = VecVT.getVectorElementType(); 8199 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8200 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8201 8202 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8203 SmallVector<SDValue, 16> Ops(NumConcat); 8204 Ops[0] = Vec; 8205 SDValue UndefVec = DAG.getUNDEF(VecVT); 8206 for (unsigned i = 1; i < NumConcat; ++i) 8207 Ops[i] = UndefVec; 8208 8209 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8210 } 8211 8212 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8213 const SDLoc &dl) const { 8214 8215 unsigned Opc = Op.getOpcode(); 8216 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8217 "Unexpected conversion type"); 8218 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8219 "Supports conversions to v2f64/v4f32 only."); 8220 8221 bool SignedConv = Opc == ISD::SINT_TO_FP; 8222 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8223 8224 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8225 EVT WideVT = Wide.getValueType(); 8226 unsigned WideNumElts = WideVT.getVectorNumElements(); 8227 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8228 8229 SmallVector<int, 16> ShuffV; 8230 for (unsigned i = 0; i < WideNumElts; ++i) 8231 ShuffV.push_back(i + WideNumElts); 8232 8233 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8234 int SaveElts = FourEltRes ? 4 : 2; 8235 if (Subtarget.isLittleEndian()) 8236 for (int i = 0; i < SaveElts; i++) 8237 ShuffV[i * Stride] = i; 8238 else 8239 for (int i = 1; i <= SaveElts; i++) 8240 ShuffV[i * Stride - 1] = i - 1; 8241 8242 SDValue ShuffleSrc2 = 8243 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8244 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8245 8246 SDValue Extend; 8247 if (SignedConv) { 8248 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8249 EVT ExtVT = Op.getOperand(0).getValueType(); 8250 if (Subtarget.hasP9Altivec()) 8251 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8252 IntermediateVT.getVectorNumElements()); 8253 8254 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8255 DAG.getValueType(ExtVT)); 8256 } else 8257 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8258 8259 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8260 } 8261 8262 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8263 SelectionDAG &DAG) const { 8264 SDLoc dl(Op); 8265 SDValue Src = Op.getOperand(0); 8266 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; 8267 8268 EVT InVT = Src.getValueType(); 8269 EVT OutVT = Op.getValueType(); 8270 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8271 isOperationCustom(Op.getOpcode(), InVT)) 8272 return LowerINT_TO_FPVector(Op, DAG, dl); 8273 8274 // Conversions to f128 are legal. 8275 if (Op.getValueType() == MVT::f128) 8276 return Op; 8277 8278 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8279 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8280 return SDValue(); 8281 8282 if (Src.getValueType() == MVT::i1) 8283 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8284 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8285 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8286 8287 // If we have direct moves, we can do all the conversion, skip the store/load 8288 // however, without FPCVT we can't do most conversions. 8289 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8290 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8291 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8292 8293 assert((IsSigned || Subtarget.hasFPCVT()) && 8294 "UINT_TO_FP is supported only with FPCVT"); 8295 8296 if (Src.getValueType() == MVT::i64) { 8297 SDValue SINT = Src; 8298 // When converting to single-precision, we actually need to convert 8299 // to double-precision first and then round to single-precision. 8300 // To avoid double-rounding effects during that operation, we have 8301 // to prepare the input operand. Bits that might be truncated when 8302 // converting to double-precision are replaced by a bit that won't 8303 // be lost at this stage, but is below the single-precision rounding 8304 // position. 8305 // 8306 // However, if -enable-unsafe-fp-math is in effect, accept double 8307 // rounding to avoid the extra overhead. 8308 if (Op.getValueType() == MVT::f32 && 8309 !Subtarget.hasFPCVT() && 8310 !DAG.getTarget().Options.UnsafeFPMath) { 8311 8312 // Twiddle input to make sure the low 11 bits are zero. (If this 8313 // is the case, we are guaranteed the value will fit into the 53 bit 8314 // mantissa of an IEEE double-precision value without rounding.) 8315 // If any of those low 11 bits were not zero originally, make sure 8316 // bit 12 (value 2048) is set instead, so that the final rounding 8317 // to single-precision gets the correct result. 8318 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8319 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8320 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8321 Round, DAG.getConstant(2047, dl, MVT::i64)); 8322 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8323 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8324 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8325 8326 // However, we cannot use that value unconditionally: if the magnitude 8327 // of the input value is small, the bit-twiddling we did above might 8328 // end up visibly changing the output. Fortunately, in that case, we 8329 // don't need to twiddle bits since the original input will convert 8330 // exactly to double-precision floating-point already. Therefore, 8331 // construct a conditional to use the original value if the top 11 8332 // bits are all sign-bit copies, and use the rounded value computed 8333 // above otherwise. 8334 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8335 SINT, DAG.getConstant(53, dl, MVT::i32)); 8336 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8337 Cond, DAG.getConstant(1, dl, MVT::i64)); 8338 Cond = DAG.getSetCC( 8339 dl, 8340 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8341 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8342 8343 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8344 } 8345 8346 ReuseLoadInfo RLI; 8347 SDValue Bits; 8348 8349 MachineFunction &MF = DAG.getMachineFunction(); 8350 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8351 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8352 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8353 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8354 } else if (Subtarget.hasLFIWAX() && 8355 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8356 MachineMemOperand *MMO = 8357 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8358 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8359 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8360 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8361 DAG.getVTList(MVT::f64, MVT::Other), 8362 Ops, MVT::i32, MMO); 8363 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8364 } else if (Subtarget.hasFPCVT() && 8365 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8366 MachineMemOperand *MMO = 8367 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8368 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8369 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8370 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8371 DAG.getVTList(MVT::f64, MVT::Other), 8372 Ops, MVT::i32, MMO); 8373 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8374 } else if (((Subtarget.hasLFIWAX() && 8375 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8376 (Subtarget.hasFPCVT() && 8377 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8378 SINT.getOperand(0).getValueType() == MVT::i32) { 8379 MachineFrameInfo &MFI = MF.getFrameInfo(); 8380 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8381 8382 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8383 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8384 8385 SDValue Store = 8386 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8387 MachinePointerInfo::getFixedStack( 8388 DAG.getMachineFunction(), FrameIdx)); 8389 8390 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8391 "Expected an i32 store"); 8392 8393 RLI.Ptr = FIdx; 8394 RLI.Chain = Store; 8395 RLI.MPI = 8396 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8397 RLI.Alignment = Align(4); 8398 8399 MachineMemOperand *MMO = 8400 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8401 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8402 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8403 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8404 PPCISD::LFIWZX : PPCISD::LFIWAX, 8405 dl, DAG.getVTList(MVT::f64, MVT::Other), 8406 Ops, MVT::i32, MMO); 8407 } else 8408 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8409 8410 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget); 8411 8412 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8413 FP = DAG.getNode(ISD::FP_ROUND, dl, 8414 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8415 return FP; 8416 } 8417 8418 assert(Src.getValueType() == MVT::i32 && 8419 "Unhandled INT_TO_FP type in custom expander!"); 8420 // Since we only generate this in 64-bit mode, we can take advantage of 8421 // 64-bit registers. In particular, sign extend the input value into the 8422 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8423 // then lfd it and fcfid it. 8424 MachineFunction &MF = DAG.getMachineFunction(); 8425 MachineFrameInfo &MFI = MF.getFrameInfo(); 8426 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8427 8428 SDValue Ld; 8429 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8430 ReuseLoadInfo RLI; 8431 bool ReusingLoad; 8432 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8433 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8434 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8435 8436 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Src, FIdx, 8437 MachinePointerInfo::getFixedStack( 8438 DAG.getMachineFunction(), FrameIdx)); 8439 8440 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8441 "Expected an i32 store"); 8442 8443 RLI.Ptr = FIdx; 8444 RLI.Chain = Store; 8445 RLI.MPI = 8446 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8447 RLI.Alignment = Align(4); 8448 } 8449 8450 MachineMemOperand *MMO = 8451 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8452 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8453 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8454 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8455 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8456 MVT::i32, MMO); 8457 if (ReusingLoad) 8458 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8459 } else { 8460 assert(Subtarget.isPPC64() && 8461 "i32->FP without LFIWAX supported only on PPC64"); 8462 8463 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8464 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8465 8466 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8467 8468 // STD the extended value into the stack slot. 8469 SDValue Store = DAG.getStore( 8470 DAG.getEntryNode(), dl, Ext64, FIdx, 8471 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8472 8473 // Load the value as a double. 8474 Ld = DAG.getLoad( 8475 MVT::f64, dl, Store, FIdx, 8476 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8477 } 8478 8479 // FCFID it and return it. 8480 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget); 8481 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8482 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8483 DAG.getIntPtrConstant(0, dl)); 8484 return FP; 8485 } 8486 8487 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8488 SelectionDAG &DAG) const { 8489 SDLoc dl(Op); 8490 /* 8491 The rounding mode is in bits 30:31 of FPSR, and has the following 8492 settings: 8493 00 Round to nearest 8494 01 Round to 0 8495 10 Round to +inf 8496 11 Round to -inf 8497 8498 FLT_ROUNDS, on the other hand, expects the following: 8499 -1 Undefined 8500 0 Round to 0 8501 1 Round to nearest 8502 2 Round to +inf 8503 3 Round to -inf 8504 8505 To perform the conversion, we do: 8506 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8507 */ 8508 8509 MachineFunction &MF = DAG.getMachineFunction(); 8510 EVT VT = Op.getValueType(); 8511 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8512 8513 // Save FP Control Word to register 8514 SDValue Chain = Op.getOperand(0); 8515 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8516 Chain = MFFS.getValue(1); 8517 8518 // Save FP register to stack slot 8519 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8520 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8521 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8522 8523 // Load FP Control Word from low 32 bits of stack slot. 8524 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8525 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8526 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8527 Chain = CWD.getValue(1); 8528 8529 // Transform as necessary 8530 SDValue CWD1 = 8531 DAG.getNode(ISD::AND, dl, MVT::i32, 8532 CWD, DAG.getConstant(3, dl, MVT::i32)); 8533 SDValue CWD2 = 8534 DAG.getNode(ISD::SRL, dl, MVT::i32, 8535 DAG.getNode(ISD::AND, dl, MVT::i32, 8536 DAG.getNode(ISD::XOR, dl, MVT::i32, 8537 CWD, DAG.getConstant(3, dl, MVT::i32)), 8538 DAG.getConstant(3, dl, MVT::i32)), 8539 DAG.getConstant(1, dl, MVT::i32)); 8540 8541 SDValue RetVal = 8542 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8543 8544 RetVal = 8545 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8546 dl, VT, RetVal); 8547 8548 return DAG.getMergeValues({RetVal, Chain}, dl); 8549 } 8550 8551 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8552 EVT VT = Op.getValueType(); 8553 unsigned BitWidth = VT.getSizeInBits(); 8554 SDLoc dl(Op); 8555 assert(Op.getNumOperands() == 3 && 8556 VT == Op.getOperand(1).getValueType() && 8557 "Unexpected SHL!"); 8558 8559 // Expand into a bunch of logical ops. Note that these ops 8560 // depend on the PPC behavior for oversized shift amounts. 8561 SDValue Lo = Op.getOperand(0); 8562 SDValue Hi = Op.getOperand(1); 8563 SDValue Amt = Op.getOperand(2); 8564 EVT AmtVT = Amt.getValueType(); 8565 8566 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8567 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8568 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8569 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8570 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8571 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8572 DAG.getConstant(-BitWidth, dl, AmtVT)); 8573 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8574 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8575 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8576 SDValue OutOps[] = { OutLo, OutHi }; 8577 return DAG.getMergeValues(OutOps, dl); 8578 } 8579 8580 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8581 EVT VT = Op.getValueType(); 8582 SDLoc dl(Op); 8583 unsigned BitWidth = VT.getSizeInBits(); 8584 assert(Op.getNumOperands() == 3 && 8585 VT == Op.getOperand(1).getValueType() && 8586 "Unexpected SRL!"); 8587 8588 // Expand into a bunch of logical ops. Note that these ops 8589 // depend on the PPC behavior for oversized shift amounts. 8590 SDValue Lo = Op.getOperand(0); 8591 SDValue Hi = Op.getOperand(1); 8592 SDValue Amt = Op.getOperand(2); 8593 EVT AmtVT = Amt.getValueType(); 8594 8595 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8596 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8597 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8598 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8599 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8600 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8601 DAG.getConstant(-BitWidth, dl, AmtVT)); 8602 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8603 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8604 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8605 SDValue OutOps[] = { OutLo, OutHi }; 8606 return DAG.getMergeValues(OutOps, dl); 8607 } 8608 8609 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8610 SDLoc dl(Op); 8611 EVT VT = Op.getValueType(); 8612 unsigned BitWidth = VT.getSizeInBits(); 8613 assert(Op.getNumOperands() == 3 && 8614 VT == Op.getOperand(1).getValueType() && 8615 "Unexpected SRA!"); 8616 8617 // Expand into a bunch of logical ops, followed by a select_cc. 8618 SDValue Lo = Op.getOperand(0); 8619 SDValue Hi = Op.getOperand(1); 8620 SDValue Amt = Op.getOperand(2); 8621 EVT AmtVT = Amt.getValueType(); 8622 8623 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8624 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8625 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8626 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8627 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8628 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8629 DAG.getConstant(-BitWidth, dl, AmtVT)); 8630 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8631 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8632 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8633 Tmp4, Tmp6, ISD::SETLE); 8634 SDValue OutOps[] = { OutLo, OutHi }; 8635 return DAG.getMergeValues(OutOps, dl); 8636 } 8637 8638 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8639 SelectionDAG &DAG) const { 8640 SDLoc dl(Op); 8641 EVT VT = Op.getValueType(); 8642 unsigned BitWidth = VT.getSizeInBits(); 8643 8644 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8645 SDValue X = Op.getOperand(0); 8646 SDValue Y = Op.getOperand(1); 8647 SDValue Z = Op.getOperand(2); 8648 EVT AmtVT = Z.getValueType(); 8649 8650 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8651 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8652 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8653 // on PowerPC shift by BW being well defined. 8654 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8655 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8656 SDValue SubZ = 8657 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8658 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8659 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8660 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8661 } 8662 8663 //===----------------------------------------------------------------------===// 8664 // Vector related lowering. 8665 // 8666 8667 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8668 /// element size of SplatSize. Cast the result to VT. 8669 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8670 SelectionDAG &DAG, const SDLoc &dl) { 8671 static const MVT VTys[] = { // canonical VT to use for each size. 8672 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8673 }; 8674 8675 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8676 8677 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8678 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8679 SplatSize = 1; 8680 Val = 0xFF; 8681 } 8682 8683 EVT CanonicalVT = VTys[SplatSize-1]; 8684 8685 // Build a canonical splat for this value. 8686 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8687 } 8688 8689 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8690 /// specified intrinsic ID. 8691 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8692 const SDLoc &dl, EVT DestVT = MVT::Other) { 8693 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8694 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8695 DAG.getConstant(IID, dl, MVT::i32), Op); 8696 } 8697 8698 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8699 /// specified intrinsic ID. 8700 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8701 SelectionDAG &DAG, const SDLoc &dl, 8702 EVT DestVT = MVT::Other) { 8703 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8704 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8705 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8706 } 8707 8708 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8709 /// specified intrinsic ID. 8710 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8711 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8712 EVT DestVT = MVT::Other) { 8713 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8714 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8715 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8716 } 8717 8718 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8719 /// amount. The result has the specified value type. 8720 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8721 SelectionDAG &DAG, const SDLoc &dl) { 8722 // Force LHS/RHS to be the right type. 8723 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8724 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8725 8726 int Ops[16]; 8727 for (unsigned i = 0; i != 16; ++i) 8728 Ops[i] = i + Amt; 8729 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8730 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8731 } 8732 8733 /// Do we have an efficient pattern in a .td file for this node? 8734 /// 8735 /// \param V - pointer to the BuildVectorSDNode being matched 8736 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8737 /// 8738 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8739 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8740 /// the opposite is true (expansion is beneficial) are: 8741 /// - The node builds a vector out of integers that are not 32 or 64-bits 8742 /// - The node builds a vector out of constants 8743 /// - The node is a "load-and-splat" 8744 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8745 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8746 bool HasDirectMove, 8747 bool HasP8Vector) { 8748 EVT VecVT = V->getValueType(0); 8749 bool RightType = VecVT == MVT::v2f64 || 8750 (HasP8Vector && VecVT == MVT::v4f32) || 8751 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8752 if (!RightType) 8753 return false; 8754 8755 bool IsSplat = true; 8756 bool IsLoad = false; 8757 SDValue Op0 = V->getOperand(0); 8758 8759 // This function is called in a block that confirms the node is not a constant 8760 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8761 // different constants. 8762 if (V->isConstant()) 8763 return false; 8764 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8765 if (V->getOperand(i).isUndef()) 8766 return false; 8767 // We want to expand nodes that represent load-and-splat even if the 8768 // loaded value is a floating point truncation or conversion to int. 8769 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8770 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8771 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8772 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8773 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8774 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8775 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8776 IsLoad = true; 8777 // If the operands are different or the input is not a load and has more 8778 // uses than just this BV node, then it isn't a splat. 8779 if (V->getOperand(i) != Op0 || 8780 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8781 IsSplat = false; 8782 } 8783 return !(IsSplat && IsLoad); 8784 } 8785 8786 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8787 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8788 8789 SDLoc dl(Op); 8790 SDValue Op0 = Op->getOperand(0); 8791 8792 if ((Op.getValueType() != MVT::f128) || 8793 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8794 (Op0.getOperand(0).getValueType() != MVT::i64) || 8795 (Op0.getOperand(1).getValueType() != MVT::i64)) 8796 return SDValue(); 8797 8798 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8799 Op0.getOperand(1)); 8800 } 8801 8802 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8803 const SDValue *InputLoad = &Op; 8804 if (InputLoad->getOpcode() == ISD::BITCAST) 8805 InputLoad = &InputLoad->getOperand(0); 8806 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8807 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8808 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8809 InputLoad = &InputLoad->getOperand(0); 8810 } 8811 if (InputLoad->getOpcode() != ISD::LOAD) 8812 return nullptr; 8813 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8814 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8815 } 8816 8817 // Convert the argument APFloat to a single precision APFloat if there is no 8818 // loss in information during the conversion to single precision APFloat and the 8819 // resulting number is not a denormal number. Return true if successful. 8820 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8821 APFloat APFloatToConvert = ArgAPFloat; 8822 bool LosesInfo = true; 8823 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8824 &LosesInfo); 8825 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8826 if (Success) 8827 ArgAPFloat = APFloatToConvert; 8828 return Success; 8829 } 8830 8831 // Bitcast the argument APInt to a double and convert it to a single precision 8832 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8833 // argument if there is no loss in information during the conversion from 8834 // double to single precision APFloat and the resulting number is not a denormal 8835 // number. Return true if successful. 8836 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8837 double DpValue = ArgAPInt.bitsToDouble(); 8838 APFloat APFloatDp(DpValue); 8839 bool Success = convertToNonDenormSingle(APFloatDp); 8840 if (Success) 8841 ArgAPInt = APFloatDp.bitcastToAPInt(); 8842 return Success; 8843 } 8844 8845 // If this is a case we can't handle, return null and let the default 8846 // expansion code take care of it. If we CAN select this case, and if it 8847 // selects to a single instruction, return Op. Otherwise, if we can codegen 8848 // this case more efficiently than a constant pool load, lower it to the 8849 // sequence of ops that should be used. 8850 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8851 SelectionDAG &DAG) const { 8852 SDLoc dl(Op); 8853 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8854 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8855 8856 // Check if this is a splat of a constant value. 8857 APInt APSplatBits, APSplatUndef; 8858 unsigned SplatBitSize; 8859 bool HasAnyUndefs; 8860 bool BVNIsConstantSplat = 8861 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8862 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8863 8864 // If it is a splat of a double, check if we can shrink it to a 32 bit 8865 // non-denormal float which when converted back to double gives us the same 8866 // double. This is to exploit the XXSPLTIDP instruction. 8867 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 8868 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 8869 convertToNonDenormSingle(APSplatBits)) { 8870 SDValue SplatNode = DAG.getNode( 8871 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8872 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8873 return DAG.getBitcast(Op.getValueType(), SplatNode); 8874 } 8875 8876 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8877 8878 bool IsPermutedLoad = false; 8879 const SDValue *InputLoad = 8880 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8881 // Handle load-and-splat patterns as we have instructions that will do this 8882 // in one go. 8883 if (InputLoad && DAG.isSplatValue(Op, true)) { 8884 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8885 8886 // We have handling for 4 and 8 byte elements. 8887 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8888 8889 // Checking for a single use of this load, we have to check for vector 8890 // width (128 bits) / ElementSize uses (since each operand of the 8891 // BUILD_VECTOR is a separate use of the value. 8892 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8893 ((Subtarget.hasVSX() && ElementSize == 64) || 8894 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8895 SDValue Ops[] = { 8896 LD->getChain(), // Chain 8897 LD->getBasePtr(), // Ptr 8898 DAG.getValueType(Op.getValueType()) // VT 8899 }; 8900 return 8901 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8902 DAG.getVTList(Op.getValueType(), MVT::Other), 8903 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8904 } 8905 } 8906 8907 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8908 // lowered to VSX instructions under certain conditions. 8909 // Without VSX, there is no pattern more efficient than expanding the node. 8910 if (Subtarget.hasVSX() && 8911 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8912 Subtarget.hasP8Vector())) 8913 return Op; 8914 return SDValue(); 8915 } 8916 8917 uint64_t SplatBits = APSplatBits.getZExtValue(); 8918 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8919 unsigned SplatSize = SplatBitSize / 8; 8920 8921 // First, handle single instruction cases. 8922 8923 // All zeros? 8924 if (SplatBits == 0) { 8925 // Canonicalize all zero vectors to be v4i32. 8926 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8927 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8928 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8929 } 8930 return Op; 8931 } 8932 8933 // We have XXSPLTIW for constant splats four bytes wide. 8934 // Given vector length is a multiple of 4, 2-byte splats can be replaced 8935 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 8936 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 8937 // turned into a 4-byte splat of 0xABABABAB. 8938 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 8939 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 8940 Op.getValueType(), DAG, dl); 8941 8942 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 8943 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8944 dl); 8945 8946 // We have XXSPLTIB for constant splats one byte wide. 8947 if (Subtarget.hasP9Vector() && SplatSize == 1) 8948 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8949 dl); 8950 8951 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8952 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8953 (32-SplatBitSize)); 8954 if (SextVal >= -16 && SextVal <= 15) 8955 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 8956 dl); 8957 8958 // Two instruction sequences. 8959 8960 // If this value is in the range [-32,30] and is even, use: 8961 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8962 // If this value is in the range [17,31] and is odd, use: 8963 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8964 // If this value is in the range [-31,-17] and is odd, use: 8965 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8966 // Note the last two are three-instruction sequences. 8967 if (SextVal >= -32 && SextVal <= 31) { 8968 // To avoid having these optimizations undone by constant folding, 8969 // we convert to a pseudo that will be expanded later into one of 8970 // the above forms. 8971 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8972 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8973 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8974 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8975 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8976 if (VT == Op.getValueType()) 8977 return RetVal; 8978 else 8979 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8980 } 8981 8982 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8983 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8984 // for fneg/fabs. 8985 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8986 // Make -1 and vspltisw -1: 8987 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 8988 8989 // Make the VSLW intrinsic, computing 0x8000_0000. 8990 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8991 OnesV, DAG, dl); 8992 8993 // xor by OnesV to invert it. 8994 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8995 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8996 } 8997 8998 // Check to see if this is a wide variety of vsplti*, binop self cases. 8999 static const signed char SplatCsts[] = { 9000 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9001 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9002 }; 9003 9004 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9005 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9006 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9007 int i = SplatCsts[idx]; 9008 9009 // Figure out what shift amount will be used by altivec if shifted by i in 9010 // this splat size. 9011 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9012 9013 // vsplti + shl self. 9014 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9015 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9016 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9017 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9018 Intrinsic::ppc_altivec_vslw 9019 }; 9020 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9021 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9022 } 9023 9024 // vsplti + srl self. 9025 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9026 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9027 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9028 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9029 Intrinsic::ppc_altivec_vsrw 9030 }; 9031 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9032 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9033 } 9034 9035 // vsplti + sra self. 9036 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9037 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9038 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9039 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9040 Intrinsic::ppc_altivec_vsraw 9041 }; 9042 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9043 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9044 } 9045 9046 // vsplti + rol self. 9047 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9048 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9049 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9050 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9051 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9052 Intrinsic::ppc_altivec_vrlw 9053 }; 9054 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9055 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9056 } 9057 9058 // t = vsplti c, result = vsldoi t, t, 1 9059 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9060 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9061 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9062 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9063 } 9064 // t = vsplti c, result = vsldoi t, t, 2 9065 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9066 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9067 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9068 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9069 } 9070 // t = vsplti c, result = vsldoi t, t, 3 9071 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9072 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9073 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9074 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9075 } 9076 } 9077 9078 return SDValue(); 9079 } 9080 9081 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9082 /// the specified operations to build the shuffle. 9083 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9084 SDValue RHS, SelectionDAG &DAG, 9085 const SDLoc &dl) { 9086 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9087 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9088 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9089 9090 enum { 9091 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9092 OP_VMRGHW, 9093 OP_VMRGLW, 9094 OP_VSPLTISW0, 9095 OP_VSPLTISW1, 9096 OP_VSPLTISW2, 9097 OP_VSPLTISW3, 9098 OP_VSLDOI4, 9099 OP_VSLDOI8, 9100 OP_VSLDOI12 9101 }; 9102 9103 if (OpNum == OP_COPY) { 9104 if (LHSID == (1*9+2)*9+3) return LHS; 9105 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9106 return RHS; 9107 } 9108 9109 SDValue OpLHS, OpRHS; 9110 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9111 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9112 9113 int ShufIdxs[16]; 9114 switch (OpNum) { 9115 default: llvm_unreachable("Unknown i32 permute!"); 9116 case OP_VMRGHW: 9117 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9118 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9119 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9120 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9121 break; 9122 case OP_VMRGLW: 9123 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9124 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9125 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9126 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9127 break; 9128 case OP_VSPLTISW0: 9129 for (unsigned i = 0; i != 16; ++i) 9130 ShufIdxs[i] = (i&3)+0; 9131 break; 9132 case OP_VSPLTISW1: 9133 for (unsigned i = 0; i != 16; ++i) 9134 ShufIdxs[i] = (i&3)+4; 9135 break; 9136 case OP_VSPLTISW2: 9137 for (unsigned i = 0; i != 16; ++i) 9138 ShufIdxs[i] = (i&3)+8; 9139 break; 9140 case OP_VSPLTISW3: 9141 for (unsigned i = 0; i != 16; ++i) 9142 ShufIdxs[i] = (i&3)+12; 9143 break; 9144 case OP_VSLDOI4: 9145 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9146 case OP_VSLDOI8: 9147 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9148 case OP_VSLDOI12: 9149 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9150 } 9151 EVT VT = OpLHS.getValueType(); 9152 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9153 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9154 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9155 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9156 } 9157 9158 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9159 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9160 /// SDValue. 9161 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9162 SelectionDAG &DAG) const { 9163 const unsigned BytesInVector = 16; 9164 bool IsLE = Subtarget.isLittleEndian(); 9165 SDLoc dl(N); 9166 SDValue V1 = N->getOperand(0); 9167 SDValue V2 = N->getOperand(1); 9168 unsigned ShiftElts = 0, InsertAtByte = 0; 9169 bool Swap = false; 9170 9171 // Shifts required to get the byte we want at element 7. 9172 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9173 0, 15, 14, 13, 12, 11, 10, 9}; 9174 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9175 1, 2, 3, 4, 5, 6, 7, 8}; 9176 9177 ArrayRef<int> Mask = N->getMask(); 9178 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9179 9180 // For each mask element, find out if we're just inserting something 9181 // from V2 into V1 or vice versa. 9182 // Possible permutations inserting an element from V2 into V1: 9183 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9184 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9185 // ... 9186 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9187 // Inserting from V1 into V2 will be similar, except mask range will be 9188 // [16,31]. 9189 9190 bool FoundCandidate = false; 9191 // If both vector operands for the shuffle are the same vector, the mask 9192 // will contain only elements from the first one and the second one will be 9193 // undef. 9194 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9195 // Go through the mask of half-words to find an element that's being moved 9196 // from one vector to the other. 9197 for (unsigned i = 0; i < BytesInVector; ++i) { 9198 unsigned CurrentElement = Mask[i]; 9199 // If 2nd operand is undefined, we should only look for element 7 in the 9200 // Mask. 9201 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9202 continue; 9203 9204 bool OtherElementsInOrder = true; 9205 // Examine the other elements in the Mask to see if they're in original 9206 // order. 9207 for (unsigned j = 0; j < BytesInVector; ++j) { 9208 if (j == i) 9209 continue; 9210 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9211 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9212 // in which we always assume we're always picking from the 1st operand. 9213 int MaskOffset = 9214 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9215 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9216 OtherElementsInOrder = false; 9217 break; 9218 } 9219 } 9220 // If other elements are in original order, we record the number of shifts 9221 // we need to get the element we want into element 7. Also record which byte 9222 // in the vector we should insert into. 9223 if (OtherElementsInOrder) { 9224 // If 2nd operand is undefined, we assume no shifts and no swapping. 9225 if (V2.isUndef()) { 9226 ShiftElts = 0; 9227 Swap = false; 9228 } else { 9229 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9230 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9231 : BigEndianShifts[CurrentElement & 0xF]; 9232 Swap = CurrentElement < BytesInVector; 9233 } 9234 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9235 FoundCandidate = true; 9236 break; 9237 } 9238 } 9239 9240 if (!FoundCandidate) 9241 return SDValue(); 9242 9243 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9244 // optionally with VECSHL if shift is required. 9245 if (Swap) 9246 std::swap(V1, V2); 9247 if (V2.isUndef()) 9248 V2 = V1; 9249 if (ShiftElts) { 9250 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9251 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9252 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9253 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9254 } 9255 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9256 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9257 } 9258 9259 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9260 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9261 /// SDValue. 9262 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9263 SelectionDAG &DAG) const { 9264 const unsigned NumHalfWords = 8; 9265 const unsigned BytesInVector = NumHalfWords * 2; 9266 // Check that the shuffle is on half-words. 9267 if (!isNByteElemShuffleMask(N, 2, 1)) 9268 return SDValue(); 9269 9270 bool IsLE = Subtarget.isLittleEndian(); 9271 SDLoc dl(N); 9272 SDValue V1 = N->getOperand(0); 9273 SDValue V2 = N->getOperand(1); 9274 unsigned ShiftElts = 0, InsertAtByte = 0; 9275 bool Swap = false; 9276 9277 // Shifts required to get the half-word we want at element 3. 9278 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9279 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9280 9281 uint32_t Mask = 0; 9282 uint32_t OriginalOrderLow = 0x1234567; 9283 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9284 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9285 // 32-bit space, only need 4-bit nibbles per element. 9286 for (unsigned i = 0; i < NumHalfWords; ++i) { 9287 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9288 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9289 } 9290 9291 // For each mask element, find out if we're just inserting something 9292 // from V2 into V1 or vice versa. Possible permutations inserting an element 9293 // from V2 into V1: 9294 // X, 1, 2, 3, 4, 5, 6, 7 9295 // 0, X, 2, 3, 4, 5, 6, 7 9296 // 0, 1, X, 3, 4, 5, 6, 7 9297 // 0, 1, 2, X, 4, 5, 6, 7 9298 // 0, 1, 2, 3, X, 5, 6, 7 9299 // 0, 1, 2, 3, 4, X, 6, 7 9300 // 0, 1, 2, 3, 4, 5, X, 7 9301 // 0, 1, 2, 3, 4, 5, 6, X 9302 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9303 9304 bool FoundCandidate = false; 9305 // Go through the mask of half-words to find an element that's being moved 9306 // from one vector to the other. 9307 for (unsigned i = 0; i < NumHalfWords; ++i) { 9308 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9309 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9310 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9311 uint32_t TargetOrder = 0x0; 9312 9313 // If both vector operands for the shuffle are the same vector, the mask 9314 // will contain only elements from the first one and the second one will be 9315 // undef. 9316 if (V2.isUndef()) { 9317 ShiftElts = 0; 9318 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9319 TargetOrder = OriginalOrderLow; 9320 Swap = false; 9321 // Skip if not the correct element or mask of other elements don't equal 9322 // to our expected order. 9323 if (MaskOneElt == VINSERTHSrcElem && 9324 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9325 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9326 FoundCandidate = true; 9327 break; 9328 } 9329 } else { // If both operands are defined. 9330 // Target order is [8,15] if the current mask is between [0,7]. 9331 TargetOrder = 9332 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9333 // Skip if mask of other elements don't equal our expected order. 9334 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9335 // We only need the last 3 bits for the number of shifts. 9336 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9337 : BigEndianShifts[MaskOneElt & 0x7]; 9338 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9339 Swap = MaskOneElt < NumHalfWords; 9340 FoundCandidate = true; 9341 break; 9342 } 9343 } 9344 } 9345 9346 if (!FoundCandidate) 9347 return SDValue(); 9348 9349 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9350 // optionally with VECSHL if shift is required. 9351 if (Swap) 9352 std::swap(V1, V2); 9353 if (V2.isUndef()) 9354 V2 = V1; 9355 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9356 if (ShiftElts) { 9357 // Double ShiftElts because we're left shifting on v16i8 type. 9358 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9359 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9360 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9361 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9362 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9363 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9364 } 9365 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9366 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9367 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9368 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9369 } 9370 9371 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9372 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9373 /// return the default SDValue. 9374 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9375 SelectionDAG &DAG) const { 9376 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9377 // to v16i8. Peek through the bitcasts to get the actual operands. 9378 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9379 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9380 9381 auto ShuffleMask = SVN->getMask(); 9382 SDValue VecShuffle(SVN, 0); 9383 SDLoc DL(SVN); 9384 9385 // Check that we have a four byte shuffle. 9386 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9387 return SDValue(); 9388 9389 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9390 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9391 std::swap(LHS, RHS); 9392 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9393 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9394 } 9395 9396 // Ensure that the RHS is a vector of constants. 9397 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9398 if (!BVN) 9399 return SDValue(); 9400 9401 // Check if RHS is a splat of 4-bytes (or smaller). 9402 APInt APSplatValue, APSplatUndef; 9403 unsigned SplatBitSize; 9404 bool HasAnyUndefs; 9405 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9406 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9407 SplatBitSize > 32) 9408 return SDValue(); 9409 9410 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9411 // The instruction splats a constant C into two words of the source vector 9412 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9413 // Thus we check that the shuffle mask is the equivalent of 9414 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9415 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9416 // within each word are consecutive, so we only need to check the first byte. 9417 SDValue Index; 9418 bool IsLE = Subtarget.isLittleEndian(); 9419 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9420 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9421 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9422 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9423 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9424 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9425 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9426 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9427 else 9428 return SDValue(); 9429 9430 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9431 // for XXSPLTI32DX. 9432 unsigned SplatVal = APSplatValue.getZExtValue(); 9433 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9434 SplatVal |= (SplatVal << SplatBitSize); 9435 9436 SDValue SplatNode = DAG.getNode( 9437 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9438 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9439 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9440 } 9441 9442 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9443 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9444 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9445 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9446 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9447 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9448 assert(Op.getValueType() == MVT::v1i128 && 9449 "Only set v1i128 as custom, other type shouldn't reach here!"); 9450 SDLoc dl(Op); 9451 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9452 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9453 unsigned SHLAmt = N1.getConstantOperandVal(0); 9454 if (SHLAmt % 8 == 0) { 9455 SmallVector<int, 16> Mask(16, 0); 9456 std::iota(Mask.begin(), Mask.end(), 0); 9457 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9458 if (SDValue Shuffle = 9459 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9460 DAG.getUNDEF(MVT::v16i8), Mask)) 9461 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9462 } 9463 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9464 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9465 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9466 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9467 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9468 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9469 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9470 } 9471 9472 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9473 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9474 /// return the code it can be lowered into. Worst case, it can always be 9475 /// lowered into a vperm. 9476 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9477 SelectionDAG &DAG) const { 9478 SDLoc dl(Op); 9479 SDValue V1 = Op.getOperand(0); 9480 SDValue V2 = Op.getOperand(1); 9481 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9482 9483 // Any nodes that were combined in the target-independent combiner prior 9484 // to vector legalization will not be sent to the target combine. Try to 9485 // combine it here. 9486 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9487 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9488 return NewShuffle; 9489 Op = NewShuffle; 9490 SVOp = cast<ShuffleVectorSDNode>(Op); 9491 V1 = Op.getOperand(0); 9492 V2 = Op.getOperand(1); 9493 } 9494 EVT VT = Op.getValueType(); 9495 bool isLittleEndian = Subtarget.isLittleEndian(); 9496 9497 unsigned ShiftElts, InsertAtByte; 9498 bool Swap = false; 9499 9500 // If this is a load-and-splat, we can do that with a single instruction 9501 // in some cases. However if the load has multiple uses, we don't want to 9502 // combine it because that will just produce multiple loads. 9503 bool IsPermutedLoad = false; 9504 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9505 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9506 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9507 InputLoad->hasOneUse()) { 9508 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9509 int SplatIdx = 9510 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9511 9512 // The splat index for permuted loads will be in the left half of the vector 9513 // which is strictly wider than the loaded value by 8 bytes. So we need to 9514 // adjust the splat index to point to the correct address in memory. 9515 if (IsPermutedLoad) { 9516 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9517 SplatIdx += IsFourByte ? 2 : 1; 9518 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9519 "Splat of a value outside of the loaded memory"); 9520 } 9521 9522 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9523 // For 4-byte load-and-splat, we need Power9. 9524 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9525 uint64_t Offset = 0; 9526 if (IsFourByte) 9527 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9528 else 9529 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9530 9531 SDValue BasePtr = LD->getBasePtr(); 9532 if (Offset != 0) 9533 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9534 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9535 SDValue Ops[] = { 9536 LD->getChain(), // Chain 9537 BasePtr, // BasePtr 9538 DAG.getValueType(Op.getValueType()) // VT 9539 }; 9540 SDVTList VTL = 9541 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9542 SDValue LdSplt = 9543 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9544 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9545 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9546 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9547 return LdSplt; 9548 } 9549 } 9550 if (Subtarget.hasP9Vector() && 9551 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9552 isLittleEndian)) { 9553 if (Swap) 9554 std::swap(V1, V2); 9555 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9556 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9557 if (ShiftElts) { 9558 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9559 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9560 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9561 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9562 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9563 } 9564 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9565 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9566 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9567 } 9568 9569 if (Subtarget.hasPrefixInstrs()) { 9570 SDValue SplatInsertNode; 9571 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9572 return SplatInsertNode; 9573 } 9574 9575 if (Subtarget.hasP9Altivec()) { 9576 SDValue NewISDNode; 9577 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9578 return NewISDNode; 9579 9580 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9581 return NewISDNode; 9582 } 9583 9584 if (Subtarget.hasVSX() && 9585 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9586 if (Swap) 9587 std::swap(V1, V2); 9588 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9589 SDValue Conv2 = 9590 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9591 9592 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9593 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9594 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9595 } 9596 9597 if (Subtarget.hasVSX() && 9598 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9599 if (Swap) 9600 std::swap(V1, V2); 9601 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9602 SDValue Conv2 = 9603 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9604 9605 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9606 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9607 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9608 } 9609 9610 if (Subtarget.hasP9Vector()) { 9611 if (PPC::isXXBRHShuffleMask(SVOp)) { 9612 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9613 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9614 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9615 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9616 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9617 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9618 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9619 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9620 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9621 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9622 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9623 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9624 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9625 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9626 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9627 } 9628 } 9629 9630 if (Subtarget.hasVSX()) { 9631 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9632 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9633 9634 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9635 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9636 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9637 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9638 } 9639 9640 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9641 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9642 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9643 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9644 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9645 } 9646 } 9647 9648 // Cases that are handled by instructions that take permute immediates 9649 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9650 // selected by the instruction selector. 9651 if (V2.isUndef()) { 9652 if (PPC::isSplatShuffleMask(SVOp, 1) || 9653 PPC::isSplatShuffleMask(SVOp, 2) || 9654 PPC::isSplatShuffleMask(SVOp, 4) || 9655 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9656 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9657 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9658 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9659 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9660 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9661 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9662 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9663 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9664 (Subtarget.hasP8Altivec() && ( 9665 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9666 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9667 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9668 return Op; 9669 } 9670 } 9671 9672 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9673 // and produce a fixed permutation. If any of these match, do not lower to 9674 // VPERM. 9675 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9676 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9677 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9678 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9679 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9680 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9681 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9682 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9683 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9684 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9685 (Subtarget.hasP8Altivec() && ( 9686 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9687 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9688 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9689 return Op; 9690 9691 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9692 // perfect shuffle table to emit an optimal matching sequence. 9693 ArrayRef<int> PermMask = SVOp->getMask(); 9694 9695 unsigned PFIndexes[4]; 9696 bool isFourElementShuffle = true; 9697 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9698 unsigned EltNo = 8; // Start out undef. 9699 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9700 if (PermMask[i*4+j] < 0) 9701 continue; // Undef, ignore it. 9702 9703 unsigned ByteSource = PermMask[i*4+j]; 9704 if ((ByteSource & 3) != j) { 9705 isFourElementShuffle = false; 9706 break; 9707 } 9708 9709 if (EltNo == 8) { 9710 EltNo = ByteSource/4; 9711 } else if (EltNo != ByteSource/4) { 9712 isFourElementShuffle = false; 9713 break; 9714 } 9715 } 9716 PFIndexes[i] = EltNo; 9717 } 9718 9719 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9720 // perfect shuffle vector to determine if it is cost effective to do this as 9721 // discrete instructions, or whether we should use a vperm. 9722 // For now, we skip this for little endian until such time as we have a 9723 // little-endian perfect shuffle table. 9724 if (isFourElementShuffle && !isLittleEndian) { 9725 // Compute the index in the perfect shuffle table. 9726 unsigned PFTableIndex = 9727 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9728 9729 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9730 unsigned Cost = (PFEntry >> 30); 9731 9732 // Determining when to avoid vperm is tricky. Many things affect the cost 9733 // of vperm, particularly how many times the perm mask needs to be computed. 9734 // For example, if the perm mask can be hoisted out of a loop or is already 9735 // used (perhaps because there are multiple permutes with the same shuffle 9736 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9737 // the loop requires an extra register. 9738 // 9739 // As a compromise, we only emit discrete instructions if the shuffle can be 9740 // generated in 3 or fewer operations. When we have loop information 9741 // available, if this block is within a loop, we should avoid using vperm 9742 // for 3-operation perms and use a constant pool load instead. 9743 if (Cost < 3) 9744 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9745 } 9746 9747 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9748 // vector that will get spilled to the constant pool. 9749 if (V2.isUndef()) V2 = V1; 9750 9751 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9752 // that it is in input element units, not in bytes. Convert now. 9753 9754 // For little endian, the order of the input vectors is reversed, and 9755 // the permutation mask is complemented with respect to 31. This is 9756 // necessary to produce proper semantics with the big-endian-biased vperm 9757 // instruction. 9758 EVT EltVT = V1.getValueType().getVectorElementType(); 9759 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9760 9761 SmallVector<SDValue, 16> ResultMask; 9762 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9763 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9764 9765 for (unsigned j = 0; j != BytesPerElement; ++j) 9766 if (isLittleEndian) 9767 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9768 dl, MVT::i32)); 9769 else 9770 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9771 MVT::i32)); 9772 } 9773 9774 ShufflesHandledWithVPERM++; 9775 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9776 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9777 LLVM_DEBUG(SVOp->dump()); 9778 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9779 LLVM_DEBUG(VPermMask.dump()); 9780 9781 if (isLittleEndian) 9782 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9783 V2, V1, VPermMask); 9784 else 9785 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9786 V1, V2, VPermMask); 9787 } 9788 9789 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9790 /// vector comparison. If it is, return true and fill in Opc/isDot with 9791 /// information about the intrinsic. 9792 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9793 bool &isDot, const PPCSubtarget &Subtarget) { 9794 unsigned IntrinsicID = 9795 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9796 CompareOpc = -1; 9797 isDot = false; 9798 switch (IntrinsicID) { 9799 default: 9800 return false; 9801 // Comparison predicates. 9802 case Intrinsic::ppc_altivec_vcmpbfp_p: 9803 CompareOpc = 966; 9804 isDot = true; 9805 break; 9806 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9807 CompareOpc = 198; 9808 isDot = true; 9809 break; 9810 case Intrinsic::ppc_altivec_vcmpequb_p: 9811 CompareOpc = 6; 9812 isDot = true; 9813 break; 9814 case Intrinsic::ppc_altivec_vcmpequh_p: 9815 CompareOpc = 70; 9816 isDot = true; 9817 break; 9818 case Intrinsic::ppc_altivec_vcmpequw_p: 9819 CompareOpc = 134; 9820 isDot = true; 9821 break; 9822 case Intrinsic::ppc_altivec_vcmpequd_p: 9823 if (Subtarget.hasP8Altivec()) { 9824 CompareOpc = 199; 9825 isDot = true; 9826 } else 9827 return false; 9828 break; 9829 case Intrinsic::ppc_altivec_vcmpneb_p: 9830 case Intrinsic::ppc_altivec_vcmpneh_p: 9831 case Intrinsic::ppc_altivec_vcmpnew_p: 9832 case Intrinsic::ppc_altivec_vcmpnezb_p: 9833 case Intrinsic::ppc_altivec_vcmpnezh_p: 9834 case Intrinsic::ppc_altivec_vcmpnezw_p: 9835 if (Subtarget.hasP9Altivec()) { 9836 switch (IntrinsicID) { 9837 default: 9838 llvm_unreachable("Unknown comparison intrinsic."); 9839 case Intrinsic::ppc_altivec_vcmpneb_p: 9840 CompareOpc = 7; 9841 break; 9842 case Intrinsic::ppc_altivec_vcmpneh_p: 9843 CompareOpc = 71; 9844 break; 9845 case Intrinsic::ppc_altivec_vcmpnew_p: 9846 CompareOpc = 135; 9847 break; 9848 case Intrinsic::ppc_altivec_vcmpnezb_p: 9849 CompareOpc = 263; 9850 break; 9851 case Intrinsic::ppc_altivec_vcmpnezh_p: 9852 CompareOpc = 327; 9853 break; 9854 case Intrinsic::ppc_altivec_vcmpnezw_p: 9855 CompareOpc = 391; 9856 break; 9857 } 9858 isDot = true; 9859 } else 9860 return false; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpgefp_p: 9863 CompareOpc = 454; 9864 isDot = true; 9865 break; 9866 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9867 CompareOpc = 710; 9868 isDot = true; 9869 break; 9870 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9871 CompareOpc = 774; 9872 isDot = true; 9873 break; 9874 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9875 CompareOpc = 838; 9876 isDot = true; 9877 break; 9878 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9879 CompareOpc = 902; 9880 isDot = true; 9881 break; 9882 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9883 if (Subtarget.hasP8Altivec()) { 9884 CompareOpc = 967; 9885 isDot = true; 9886 } else 9887 return false; 9888 break; 9889 case Intrinsic::ppc_altivec_vcmpgtub_p: 9890 CompareOpc = 518; 9891 isDot = true; 9892 break; 9893 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9894 CompareOpc = 582; 9895 isDot = true; 9896 break; 9897 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9898 CompareOpc = 646; 9899 isDot = true; 9900 break; 9901 case Intrinsic::ppc_altivec_vcmpgtud_p: 9902 if (Subtarget.hasP8Altivec()) { 9903 CompareOpc = 711; 9904 isDot = true; 9905 } else 9906 return false; 9907 break; 9908 9909 // VSX predicate comparisons use the same infrastructure 9910 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9911 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9912 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9913 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9914 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9915 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9916 if (Subtarget.hasVSX()) { 9917 switch (IntrinsicID) { 9918 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9919 CompareOpc = 99; 9920 break; 9921 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9922 CompareOpc = 115; 9923 break; 9924 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9925 CompareOpc = 107; 9926 break; 9927 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9928 CompareOpc = 67; 9929 break; 9930 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9931 CompareOpc = 83; 9932 break; 9933 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9934 CompareOpc = 75; 9935 break; 9936 } 9937 isDot = true; 9938 } else 9939 return false; 9940 break; 9941 9942 // Normal Comparisons. 9943 case Intrinsic::ppc_altivec_vcmpbfp: 9944 CompareOpc = 966; 9945 break; 9946 case Intrinsic::ppc_altivec_vcmpeqfp: 9947 CompareOpc = 198; 9948 break; 9949 case Intrinsic::ppc_altivec_vcmpequb: 9950 CompareOpc = 6; 9951 break; 9952 case Intrinsic::ppc_altivec_vcmpequh: 9953 CompareOpc = 70; 9954 break; 9955 case Intrinsic::ppc_altivec_vcmpequw: 9956 CompareOpc = 134; 9957 break; 9958 case Intrinsic::ppc_altivec_vcmpequd: 9959 if (Subtarget.hasP8Altivec()) 9960 CompareOpc = 199; 9961 else 9962 return false; 9963 break; 9964 case Intrinsic::ppc_altivec_vcmpneb: 9965 case Intrinsic::ppc_altivec_vcmpneh: 9966 case Intrinsic::ppc_altivec_vcmpnew: 9967 case Intrinsic::ppc_altivec_vcmpnezb: 9968 case Intrinsic::ppc_altivec_vcmpnezh: 9969 case Intrinsic::ppc_altivec_vcmpnezw: 9970 if (Subtarget.hasP9Altivec()) 9971 switch (IntrinsicID) { 9972 default: 9973 llvm_unreachable("Unknown comparison intrinsic."); 9974 case Intrinsic::ppc_altivec_vcmpneb: 9975 CompareOpc = 7; 9976 break; 9977 case Intrinsic::ppc_altivec_vcmpneh: 9978 CompareOpc = 71; 9979 break; 9980 case Intrinsic::ppc_altivec_vcmpnew: 9981 CompareOpc = 135; 9982 break; 9983 case Intrinsic::ppc_altivec_vcmpnezb: 9984 CompareOpc = 263; 9985 break; 9986 case Intrinsic::ppc_altivec_vcmpnezh: 9987 CompareOpc = 327; 9988 break; 9989 case Intrinsic::ppc_altivec_vcmpnezw: 9990 CompareOpc = 391; 9991 break; 9992 } 9993 else 9994 return false; 9995 break; 9996 case Intrinsic::ppc_altivec_vcmpgefp: 9997 CompareOpc = 454; 9998 break; 9999 case Intrinsic::ppc_altivec_vcmpgtfp: 10000 CompareOpc = 710; 10001 break; 10002 case Intrinsic::ppc_altivec_vcmpgtsb: 10003 CompareOpc = 774; 10004 break; 10005 case Intrinsic::ppc_altivec_vcmpgtsh: 10006 CompareOpc = 838; 10007 break; 10008 case Intrinsic::ppc_altivec_vcmpgtsw: 10009 CompareOpc = 902; 10010 break; 10011 case Intrinsic::ppc_altivec_vcmpgtsd: 10012 if (Subtarget.hasP8Altivec()) 10013 CompareOpc = 967; 10014 else 10015 return false; 10016 break; 10017 case Intrinsic::ppc_altivec_vcmpgtub: 10018 CompareOpc = 518; 10019 break; 10020 case Intrinsic::ppc_altivec_vcmpgtuh: 10021 CompareOpc = 582; 10022 break; 10023 case Intrinsic::ppc_altivec_vcmpgtuw: 10024 CompareOpc = 646; 10025 break; 10026 case Intrinsic::ppc_altivec_vcmpgtud: 10027 if (Subtarget.hasP8Altivec()) 10028 CompareOpc = 711; 10029 else 10030 return false; 10031 break; 10032 } 10033 return true; 10034 } 10035 10036 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10037 /// lower, do it, otherwise return null. 10038 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10039 SelectionDAG &DAG) const { 10040 unsigned IntrinsicID = 10041 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10042 10043 SDLoc dl(Op); 10044 10045 if (IntrinsicID == Intrinsic::thread_pointer) { 10046 // Reads the thread pointer register, used for __builtin_thread_pointer. 10047 if (Subtarget.isPPC64()) 10048 return DAG.getRegister(PPC::X13, MVT::i64); 10049 return DAG.getRegister(PPC::R2, MVT::i32); 10050 } 10051 10052 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10053 // opcode number of the comparison. 10054 int CompareOpc; 10055 bool isDot; 10056 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10057 return SDValue(); // Don't custom lower most intrinsics. 10058 10059 // If this is a non-dot comparison, make the VCMP node and we are done. 10060 if (!isDot) { 10061 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10062 Op.getOperand(1), Op.getOperand(2), 10063 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10064 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10065 } 10066 10067 // Create the PPCISD altivec 'dot' comparison node. 10068 SDValue Ops[] = { 10069 Op.getOperand(2), // LHS 10070 Op.getOperand(3), // RHS 10071 DAG.getConstant(CompareOpc, dl, MVT::i32) 10072 }; 10073 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10074 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10075 10076 // Now that we have the comparison, emit a copy from the CR to a GPR. 10077 // This is flagged to the above dot comparison. 10078 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10079 DAG.getRegister(PPC::CR6, MVT::i32), 10080 CompNode.getValue(1)); 10081 10082 // Unpack the result based on how the target uses it. 10083 unsigned BitNo; // Bit # of CR6. 10084 bool InvertBit; // Invert result? 10085 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10086 default: // Can't happen, don't crash on invalid number though. 10087 case 0: // Return the value of the EQ bit of CR6. 10088 BitNo = 0; InvertBit = false; 10089 break; 10090 case 1: // Return the inverted value of the EQ bit of CR6. 10091 BitNo = 0; InvertBit = true; 10092 break; 10093 case 2: // Return the value of the LT bit of CR6. 10094 BitNo = 2; InvertBit = false; 10095 break; 10096 case 3: // Return the inverted value of the LT bit of CR6. 10097 BitNo = 2; InvertBit = true; 10098 break; 10099 } 10100 10101 // Shift the bit into the low position. 10102 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10103 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10104 // Isolate the bit. 10105 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10106 DAG.getConstant(1, dl, MVT::i32)); 10107 10108 // If we are supposed to, toggle the bit. 10109 if (InvertBit) 10110 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10111 DAG.getConstant(1, dl, MVT::i32)); 10112 return Flags; 10113 } 10114 10115 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10116 SelectionDAG &DAG) const { 10117 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10118 // the beginning of the argument list. 10119 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10120 SDLoc DL(Op); 10121 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10122 case Intrinsic::ppc_cfence: { 10123 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10124 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10125 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10126 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10127 Op.getOperand(ArgStart + 1)), 10128 Op.getOperand(0)), 10129 0); 10130 } 10131 default: 10132 break; 10133 } 10134 return SDValue(); 10135 } 10136 10137 // Lower scalar BSWAP64 to xxbrd. 10138 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10139 SDLoc dl(Op); 10140 // MTVSRDD 10141 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10142 Op.getOperand(0)); 10143 // XXBRD 10144 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10145 // MFVSRD 10146 int VectorIndex = 0; 10147 if (Subtarget.isLittleEndian()) 10148 VectorIndex = 1; 10149 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10150 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10151 return Op; 10152 } 10153 10154 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10155 // compared to a value that is atomically loaded (atomic loads zero-extend). 10156 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10157 SelectionDAG &DAG) const { 10158 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10159 "Expecting an atomic compare-and-swap here."); 10160 SDLoc dl(Op); 10161 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10162 EVT MemVT = AtomicNode->getMemoryVT(); 10163 if (MemVT.getSizeInBits() >= 32) 10164 return Op; 10165 10166 SDValue CmpOp = Op.getOperand(2); 10167 // If this is already correctly zero-extended, leave it alone. 10168 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10169 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10170 return Op; 10171 10172 // Clear the high bits of the compare operand. 10173 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10174 SDValue NewCmpOp = 10175 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10176 DAG.getConstant(MaskVal, dl, MVT::i32)); 10177 10178 // Replace the existing compare operand with the properly zero-extended one. 10179 SmallVector<SDValue, 4> Ops; 10180 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10181 Ops.push_back(AtomicNode->getOperand(i)); 10182 Ops[2] = NewCmpOp; 10183 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10184 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10185 auto NodeTy = 10186 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10187 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10188 } 10189 10190 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10191 SelectionDAG &DAG) const { 10192 SDLoc dl(Op); 10193 // Create a stack slot that is 16-byte aligned. 10194 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10195 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10196 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10197 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10198 10199 // Store the input value into Value#0 of the stack slot. 10200 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10201 MachinePointerInfo()); 10202 // Load it out. 10203 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10204 } 10205 10206 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10207 SelectionDAG &DAG) const { 10208 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10209 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10210 10211 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10212 // We have legal lowering for constant indices but not for variable ones. 10213 if (!C) 10214 return SDValue(); 10215 10216 EVT VT = Op.getValueType(); 10217 SDLoc dl(Op); 10218 SDValue V1 = Op.getOperand(0); 10219 SDValue V2 = Op.getOperand(1); 10220 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10221 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10222 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10223 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10224 unsigned InsertAtElement = C->getZExtValue(); 10225 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10226 if (Subtarget.isLittleEndian()) { 10227 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10228 } 10229 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10230 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10231 } 10232 return Op; 10233 } 10234 10235 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10236 SDLoc dl(Op); 10237 if (Op.getValueType() == MVT::v4i32) { 10238 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10239 10240 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10241 // +16 as shift amt. 10242 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10243 SDValue RHSSwap = // = vrlw RHS, 16 10244 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10245 10246 // Shrinkify inputs to v8i16. 10247 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10248 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10249 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10250 10251 // Low parts multiplied together, generating 32-bit results (we ignore the 10252 // top parts). 10253 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10254 LHS, RHS, DAG, dl, MVT::v4i32); 10255 10256 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10257 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10258 // Shift the high parts up 16 bits. 10259 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10260 Neg16, DAG, dl); 10261 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10262 } else if (Op.getValueType() == MVT::v16i8) { 10263 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10264 bool isLittleEndian = Subtarget.isLittleEndian(); 10265 10266 // Multiply the even 8-bit parts, producing 16-bit sums. 10267 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10268 LHS, RHS, DAG, dl, MVT::v8i16); 10269 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10270 10271 // Multiply the odd 8-bit parts, producing 16-bit sums. 10272 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10273 LHS, RHS, DAG, dl, MVT::v8i16); 10274 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10275 10276 // Merge the results together. Because vmuleub and vmuloub are 10277 // instructions with a big-endian bias, we must reverse the 10278 // element numbering and reverse the meaning of "odd" and "even" 10279 // when generating little endian code. 10280 int Ops[16]; 10281 for (unsigned i = 0; i != 8; ++i) { 10282 if (isLittleEndian) { 10283 Ops[i*2 ] = 2*i; 10284 Ops[i*2+1] = 2*i+16; 10285 } else { 10286 Ops[i*2 ] = 2*i+1; 10287 Ops[i*2+1] = 2*i+1+16; 10288 } 10289 } 10290 if (isLittleEndian) 10291 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10292 else 10293 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10294 } else { 10295 llvm_unreachable("Unknown mul to lower!"); 10296 } 10297 } 10298 10299 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10300 10301 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10302 10303 EVT VT = Op.getValueType(); 10304 assert(VT.isVector() && 10305 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10306 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10307 VT == MVT::v16i8) && 10308 "Unexpected vector element type!"); 10309 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10310 "Current subtarget doesn't support smax v2i64!"); 10311 10312 // For vector abs, it can be lowered to: 10313 // abs x 10314 // ==> 10315 // y = -x 10316 // smax(x, y) 10317 10318 SDLoc dl(Op); 10319 SDValue X = Op.getOperand(0); 10320 SDValue Zero = DAG.getConstant(0, dl, VT); 10321 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10322 10323 // SMAX patch https://reviews.llvm.org/D47332 10324 // hasn't landed yet, so use intrinsic first here. 10325 // TODO: Should use SMAX directly once SMAX patch landed 10326 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10327 if (VT == MVT::v2i64) 10328 BifID = Intrinsic::ppc_altivec_vmaxsd; 10329 else if (VT == MVT::v8i16) 10330 BifID = Intrinsic::ppc_altivec_vmaxsh; 10331 else if (VT == MVT::v16i8) 10332 BifID = Intrinsic::ppc_altivec_vmaxsb; 10333 10334 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10335 } 10336 10337 // Custom lowering for fpext vf32 to v2f64 10338 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10339 10340 assert(Op.getOpcode() == ISD::FP_EXTEND && 10341 "Should only be called for ISD::FP_EXTEND"); 10342 10343 // FIXME: handle extends from half precision float vectors on P9. 10344 // We only want to custom lower an extend from v2f32 to v2f64. 10345 if (Op.getValueType() != MVT::v2f64 || 10346 Op.getOperand(0).getValueType() != MVT::v2f32) 10347 return SDValue(); 10348 10349 SDLoc dl(Op); 10350 SDValue Op0 = Op.getOperand(0); 10351 10352 switch (Op0.getOpcode()) { 10353 default: 10354 return SDValue(); 10355 case ISD::EXTRACT_SUBVECTOR: { 10356 assert(Op0.getNumOperands() == 2 && 10357 isa<ConstantSDNode>(Op0->getOperand(1)) && 10358 "Node should have 2 operands with second one being a constant!"); 10359 10360 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10361 return SDValue(); 10362 10363 // Custom lower is only done for high or low doubleword. 10364 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10365 if (Idx % 2 != 0) 10366 return SDValue(); 10367 10368 // Since input is v4f32, at this point Idx is either 0 or 2. 10369 // Shift to get the doubleword position we want. 10370 int DWord = Idx >> 1; 10371 10372 // High and low word positions are different on little endian. 10373 if (Subtarget.isLittleEndian()) 10374 DWord ^= 0x1; 10375 10376 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10377 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10378 } 10379 case ISD::FADD: 10380 case ISD::FMUL: 10381 case ISD::FSUB: { 10382 SDValue NewLoad[2]; 10383 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10384 // Ensure both input are loads. 10385 SDValue LdOp = Op0.getOperand(i); 10386 if (LdOp.getOpcode() != ISD::LOAD) 10387 return SDValue(); 10388 // Generate new load node. 10389 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10390 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10391 NewLoad[i] = DAG.getMemIntrinsicNode( 10392 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10393 LD->getMemoryVT(), LD->getMemOperand()); 10394 } 10395 SDValue NewOp = 10396 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10397 NewLoad[1], Op0.getNode()->getFlags()); 10398 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10399 DAG.getConstant(0, dl, MVT::i32)); 10400 } 10401 case ISD::LOAD: { 10402 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10403 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10404 SDValue NewLd = DAG.getMemIntrinsicNode( 10405 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10406 LD->getMemoryVT(), LD->getMemOperand()); 10407 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10408 DAG.getConstant(0, dl, MVT::i32)); 10409 } 10410 } 10411 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10412 } 10413 10414 /// LowerOperation - Provide custom lowering hooks for some operations. 10415 /// 10416 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10417 switch (Op.getOpcode()) { 10418 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10419 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10420 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10421 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10422 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10423 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10424 case ISD::SETCC: return LowerSETCC(Op, DAG); 10425 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10426 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10427 10428 // Variable argument lowering. 10429 case ISD::VASTART: return LowerVASTART(Op, DAG); 10430 case ISD::VAARG: return LowerVAARG(Op, DAG); 10431 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10432 10433 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10434 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10435 case ISD::GET_DYNAMIC_AREA_OFFSET: 10436 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10437 10438 // Exception handling lowering. 10439 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10440 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10441 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10442 10443 case ISD::LOAD: return LowerLOAD(Op, DAG); 10444 case ISD::STORE: return LowerSTORE(Op, DAG); 10445 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10446 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10447 case ISD::FP_TO_UINT: 10448 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10449 case ISD::UINT_TO_FP: 10450 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10451 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10452 10453 // Lower 64-bit shifts. 10454 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10455 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10456 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10457 10458 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10459 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10460 10461 // Vector-related lowering. 10462 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10463 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10464 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10465 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10466 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10467 case ISD::MUL: return LowerMUL(Op, DAG); 10468 case ISD::ABS: return LowerABS(Op, DAG); 10469 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10470 case ISD::ROTL: return LowerROTL(Op, DAG); 10471 10472 // For counter-based loop handling. 10473 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10474 10475 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10476 10477 // Frame & Return address. 10478 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10479 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10480 10481 case ISD::INTRINSIC_VOID: 10482 return LowerINTRINSIC_VOID(Op, DAG); 10483 case ISD::BSWAP: 10484 return LowerBSWAP(Op, DAG); 10485 case ISD::ATOMIC_CMP_SWAP: 10486 return LowerATOMIC_CMP_SWAP(Op, DAG); 10487 } 10488 } 10489 10490 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10491 SmallVectorImpl<SDValue>&Results, 10492 SelectionDAG &DAG) const { 10493 SDLoc dl(N); 10494 switch (N->getOpcode()) { 10495 default: 10496 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10497 case ISD::READCYCLECOUNTER: { 10498 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10499 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10500 10501 Results.push_back( 10502 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10503 Results.push_back(RTB.getValue(2)); 10504 break; 10505 } 10506 case ISD::INTRINSIC_W_CHAIN: { 10507 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10508 Intrinsic::loop_decrement) 10509 break; 10510 10511 assert(N->getValueType(0) == MVT::i1 && 10512 "Unexpected result type for CTR decrement intrinsic"); 10513 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10514 N->getValueType(0)); 10515 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10516 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10517 N->getOperand(1)); 10518 10519 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10520 Results.push_back(NewInt.getValue(1)); 10521 break; 10522 } 10523 case ISD::VAARG: { 10524 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10525 return; 10526 10527 EVT VT = N->getValueType(0); 10528 10529 if (VT == MVT::i64) { 10530 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10531 10532 Results.push_back(NewNode); 10533 Results.push_back(NewNode.getValue(1)); 10534 } 10535 return; 10536 } 10537 case ISD::FP_TO_SINT: 10538 case ISD::FP_TO_UINT: 10539 // LowerFP_TO_INT() can only handle f32 and f64. 10540 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10541 return; 10542 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10543 return; 10544 case ISD::TRUNCATE: { 10545 EVT TrgVT = N->getValueType(0); 10546 EVT OpVT = N->getOperand(0).getValueType(); 10547 if (TrgVT.isVector() && 10548 isOperationCustom(N->getOpcode(), TrgVT) && 10549 OpVT.getSizeInBits() <= 128 && 10550 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10551 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10552 return; 10553 } 10554 case ISD::BITCAST: 10555 // Don't handle bitcast here. 10556 return; 10557 case ISD::FP_EXTEND: 10558 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10559 if (Lowered) 10560 Results.push_back(Lowered); 10561 return; 10562 } 10563 } 10564 10565 //===----------------------------------------------------------------------===// 10566 // Other Lowering Code 10567 //===----------------------------------------------------------------------===// 10568 10569 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10570 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10571 Function *Func = Intrinsic::getDeclaration(M, Id); 10572 return Builder.CreateCall(Func, {}); 10573 } 10574 10575 // The mappings for emitLeading/TrailingFence is taken from 10576 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10577 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10578 Instruction *Inst, 10579 AtomicOrdering Ord) const { 10580 if (Ord == AtomicOrdering::SequentiallyConsistent) 10581 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10582 if (isReleaseOrStronger(Ord)) 10583 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10584 return nullptr; 10585 } 10586 10587 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10588 Instruction *Inst, 10589 AtomicOrdering Ord) const { 10590 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10591 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10592 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10593 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10594 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10595 return Builder.CreateCall( 10596 Intrinsic::getDeclaration( 10597 Builder.GetInsertBlock()->getParent()->getParent(), 10598 Intrinsic::ppc_cfence, {Inst->getType()}), 10599 {Inst}); 10600 // FIXME: Can use isync for rmw operation. 10601 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10602 } 10603 return nullptr; 10604 } 10605 10606 MachineBasicBlock * 10607 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10608 unsigned AtomicSize, 10609 unsigned BinOpcode, 10610 unsigned CmpOpcode, 10611 unsigned CmpPred) const { 10612 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10613 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10614 10615 auto LoadMnemonic = PPC::LDARX; 10616 auto StoreMnemonic = PPC::STDCX; 10617 switch (AtomicSize) { 10618 default: 10619 llvm_unreachable("Unexpected size of atomic entity"); 10620 case 1: 10621 LoadMnemonic = PPC::LBARX; 10622 StoreMnemonic = PPC::STBCX; 10623 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10624 break; 10625 case 2: 10626 LoadMnemonic = PPC::LHARX; 10627 StoreMnemonic = PPC::STHCX; 10628 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10629 break; 10630 case 4: 10631 LoadMnemonic = PPC::LWARX; 10632 StoreMnemonic = PPC::STWCX; 10633 break; 10634 case 8: 10635 LoadMnemonic = PPC::LDARX; 10636 StoreMnemonic = PPC::STDCX; 10637 break; 10638 } 10639 10640 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10641 MachineFunction *F = BB->getParent(); 10642 MachineFunction::iterator It = ++BB->getIterator(); 10643 10644 Register dest = MI.getOperand(0).getReg(); 10645 Register ptrA = MI.getOperand(1).getReg(); 10646 Register ptrB = MI.getOperand(2).getReg(); 10647 Register incr = MI.getOperand(3).getReg(); 10648 DebugLoc dl = MI.getDebugLoc(); 10649 10650 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10651 MachineBasicBlock *loop2MBB = 10652 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10653 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10654 F->insert(It, loopMBB); 10655 if (CmpOpcode) 10656 F->insert(It, loop2MBB); 10657 F->insert(It, exitMBB); 10658 exitMBB->splice(exitMBB->begin(), BB, 10659 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10660 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10661 10662 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10663 Register TmpReg = (!BinOpcode) ? incr : 10664 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10665 : &PPC::GPRCRegClass); 10666 10667 // thisMBB: 10668 // ... 10669 // fallthrough --> loopMBB 10670 BB->addSuccessor(loopMBB); 10671 10672 // loopMBB: 10673 // l[wd]arx dest, ptr 10674 // add r0, dest, incr 10675 // st[wd]cx. r0, ptr 10676 // bne- loopMBB 10677 // fallthrough --> exitMBB 10678 10679 // For max/min... 10680 // loopMBB: 10681 // l[wd]arx dest, ptr 10682 // cmpl?[wd] incr, dest 10683 // bgt exitMBB 10684 // loop2MBB: 10685 // st[wd]cx. dest, ptr 10686 // bne- loopMBB 10687 // fallthrough --> exitMBB 10688 10689 BB = loopMBB; 10690 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10691 .addReg(ptrA).addReg(ptrB); 10692 if (BinOpcode) 10693 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10694 if (CmpOpcode) { 10695 // Signed comparisons of byte or halfword values must be sign-extended. 10696 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10697 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10698 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10699 ExtReg).addReg(dest); 10700 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10701 .addReg(incr).addReg(ExtReg); 10702 } else 10703 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10704 .addReg(incr).addReg(dest); 10705 10706 BuildMI(BB, dl, TII->get(PPC::BCC)) 10707 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10708 BB->addSuccessor(loop2MBB); 10709 BB->addSuccessor(exitMBB); 10710 BB = loop2MBB; 10711 } 10712 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10713 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10714 BuildMI(BB, dl, TII->get(PPC::BCC)) 10715 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10716 BB->addSuccessor(loopMBB); 10717 BB->addSuccessor(exitMBB); 10718 10719 // exitMBB: 10720 // ... 10721 BB = exitMBB; 10722 return BB; 10723 } 10724 10725 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10726 MachineInstr &MI, MachineBasicBlock *BB, 10727 bool is8bit, // operation 10728 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10729 // If we support part-word atomic mnemonics, just use them 10730 if (Subtarget.hasPartwordAtomics()) 10731 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10732 CmpPred); 10733 10734 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10735 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10736 // In 64 bit mode we have to use 64 bits for addresses, even though the 10737 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10738 // registers without caring whether they're 32 or 64, but here we're 10739 // doing actual arithmetic on the addresses. 10740 bool is64bit = Subtarget.isPPC64(); 10741 bool isLittleEndian = Subtarget.isLittleEndian(); 10742 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10743 10744 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10745 MachineFunction *F = BB->getParent(); 10746 MachineFunction::iterator It = ++BB->getIterator(); 10747 10748 Register dest = MI.getOperand(0).getReg(); 10749 Register ptrA = MI.getOperand(1).getReg(); 10750 Register ptrB = MI.getOperand(2).getReg(); 10751 Register incr = MI.getOperand(3).getReg(); 10752 DebugLoc dl = MI.getDebugLoc(); 10753 10754 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10755 MachineBasicBlock *loop2MBB = 10756 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10757 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10758 F->insert(It, loopMBB); 10759 if (CmpOpcode) 10760 F->insert(It, loop2MBB); 10761 F->insert(It, exitMBB); 10762 exitMBB->splice(exitMBB->begin(), BB, 10763 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10764 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10765 10766 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10767 const TargetRegisterClass *RC = 10768 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10769 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10770 10771 Register PtrReg = RegInfo.createVirtualRegister(RC); 10772 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10773 Register ShiftReg = 10774 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10775 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10776 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10777 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10778 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10779 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10780 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10781 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10782 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10783 Register Ptr1Reg; 10784 Register TmpReg = 10785 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10786 10787 // thisMBB: 10788 // ... 10789 // fallthrough --> loopMBB 10790 BB->addSuccessor(loopMBB); 10791 10792 // The 4-byte load must be aligned, while a char or short may be 10793 // anywhere in the word. Hence all this nasty bookkeeping code. 10794 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10795 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10796 // xori shift, shift1, 24 [16] 10797 // rlwinm ptr, ptr1, 0, 0, 29 10798 // slw incr2, incr, shift 10799 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10800 // slw mask, mask2, shift 10801 // loopMBB: 10802 // lwarx tmpDest, ptr 10803 // add tmp, tmpDest, incr2 10804 // andc tmp2, tmpDest, mask 10805 // and tmp3, tmp, mask 10806 // or tmp4, tmp3, tmp2 10807 // stwcx. tmp4, ptr 10808 // bne- loopMBB 10809 // fallthrough --> exitMBB 10810 // srw dest, tmpDest, shift 10811 if (ptrA != ZeroReg) { 10812 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10813 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10814 .addReg(ptrA) 10815 .addReg(ptrB); 10816 } else { 10817 Ptr1Reg = ptrB; 10818 } 10819 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10820 // mode. 10821 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10822 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10823 .addImm(3) 10824 .addImm(27) 10825 .addImm(is8bit ? 28 : 27); 10826 if (!isLittleEndian) 10827 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10828 .addReg(Shift1Reg) 10829 .addImm(is8bit ? 24 : 16); 10830 if (is64bit) 10831 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10832 .addReg(Ptr1Reg) 10833 .addImm(0) 10834 .addImm(61); 10835 else 10836 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10837 .addReg(Ptr1Reg) 10838 .addImm(0) 10839 .addImm(0) 10840 .addImm(29); 10841 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10842 if (is8bit) 10843 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10844 else { 10845 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10846 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10847 .addReg(Mask3Reg) 10848 .addImm(65535); 10849 } 10850 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10851 .addReg(Mask2Reg) 10852 .addReg(ShiftReg); 10853 10854 BB = loopMBB; 10855 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10856 .addReg(ZeroReg) 10857 .addReg(PtrReg); 10858 if (BinOpcode) 10859 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10860 .addReg(Incr2Reg) 10861 .addReg(TmpDestReg); 10862 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10863 .addReg(TmpDestReg) 10864 .addReg(MaskReg); 10865 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10866 if (CmpOpcode) { 10867 // For unsigned comparisons, we can directly compare the shifted values. 10868 // For signed comparisons we shift and sign extend. 10869 Register SReg = RegInfo.createVirtualRegister(GPRC); 10870 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10871 .addReg(TmpDestReg) 10872 .addReg(MaskReg); 10873 unsigned ValueReg = SReg; 10874 unsigned CmpReg = Incr2Reg; 10875 if (CmpOpcode == PPC::CMPW) { 10876 ValueReg = RegInfo.createVirtualRegister(GPRC); 10877 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10878 .addReg(SReg) 10879 .addReg(ShiftReg); 10880 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10881 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10882 .addReg(ValueReg); 10883 ValueReg = ValueSReg; 10884 CmpReg = incr; 10885 } 10886 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10887 .addReg(CmpReg) 10888 .addReg(ValueReg); 10889 BuildMI(BB, dl, TII->get(PPC::BCC)) 10890 .addImm(CmpPred) 10891 .addReg(PPC::CR0) 10892 .addMBB(exitMBB); 10893 BB->addSuccessor(loop2MBB); 10894 BB->addSuccessor(exitMBB); 10895 BB = loop2MBB; 10896 } 10897 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10898 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10899 .addReg(Tmp4Reg) 10900 .addReg(ZeroReg) 10901 .addReg(PtrReg); 10902 BuildMI(BB, dl, TII->get(PPC::BCC)) 10903 .addImm(PPC::PRED_NE) 10904 .addReg(PPC::CR0) 10905 .addMBB(loopMBB); 10906 BB->addSuccessor(loopMBB); 10907 BB->addSuccessor(exitMBB); 10908 10909 // exitMBB: 10910 // ... 10911 BB = exitMBB; 10912 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10913 .addReg(TmpDestReg) 10914 .addReg(ShiftReg); 10915 return BB; 10916 } 10917 10918 llvm::MachineBasicBlock * 10919 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10920 MachineBasicBlock *MBB) const { 10921 DebugLoc DL = MI.getDebugLoc(); 10922 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10923 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10924 10925 MachineFunction *MF = MBB->getParent(); 10926 MachineRegisterInfo &MRI = MF->getRegInfo(); 10927 10928 const BasicBlock *BB = MBB->getBasicBlock(); 10929 MachineFunction::iterator I = ++MBB->getIterator(); 10930 10931 Register DstReg = MI.getOperand(0).getReg(); 10932 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10933 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10934 Register mainDstReg = MRI.createVirtualRegister(RC); 10935 Register restoreDstReg = MRI.createVirtualRegister(RC); 10936 10937 MVT PVT = getPointerTy(MF->getDataLayout()); 10938 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10939 "Invalid Pointer Size!"); 10940 // For v = setjmp(buf), we generate 10941 // 10942 // thisMBB: 10943 // SjLjSetup mainMBB 10944 // bl mainMBB 10945 // v_restore = 1 10946 // b sinkMBB 10947 // 10948 // mainMBB: 10949 // buf[LabelOffset] = LR 10950 // v_main = 0 10951 // 10952 // sinkMBB: 10953 // v = phi(main, restore) 10954 // 10955 10956 MachineBasicBlock *thisMBB = MBB; 10957 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10958 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10959 MF->insert(I, mainMBB); 10960 MF->insert(I, sinkMBB); 10961 10962 MachineInstrBuilder MIB; 10963 10964 // Transfer the remainder of BB and its successor edges to sinkMBB. 10965 sinkMBB->splice(sinkMBB->begin(), MBB, 10966 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10967 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10968 10969 // Note that the structure of the jmp_buf used here is not compatible 10970 // with that used by libc, and is not designed to be. Specifically, it 10971 // stores only those 'reserved' registers that LLVM does not otherwise 10972 // understand how to spill. Also, by convention, by the time this 10973 // intrinsic is called, Clang has already stored the frame address in the 10974 // first slot of the buffer and stack address in the third. Following the 10975 // X86 target code, we'll store the jump address in the second slot. We also 10976 // need to save the TOC pointer (R2) to handle jumps between shared 10977 // libraries, and that will be stored in the fourth slot. The thread 10978 // identifier (R13) is not affected. 10979 10980 // thisMBB: 10981 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10982 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10983 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10984 10985 // Prepare IP either in reg. 10986 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10987 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10988 Register BufReg = MI.getOperand(1).getReg(); 10989 10990 if (Subtarget.is64BitELFABI()) { 10991 setUsesTOCBasePtr(*MBB->getParent()); 10992 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10993 .addReg(PPC::X2) 10994 .addImm(TOCOffset) 10995 .addReg(BufReg) 10996 .cloneMemRefs(MI); 10997 } 10998 10999 // Naked functions never have a base pointer, and so we use r1. For all 11000 // other functions, this decision must be delayed until during PEI. 11001 unsigned BaseReg; 11002 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11003 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11004 else 11005 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11006 11007 MIB = BuildMI(*thisMBB, MI, DL, 11008 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11009 .addReg(BaseReg) 11010 .addImm(BPOffset) 11011 .addReg(BufReg) 11012 .cloneMemRefs(MI); 11013 11014 // Setup 11015 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11016 MIB.addRegMask(TRI->getNoPreservedMask()); 11017 11018 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11019 11020 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11021 .addMBB(mainMBB); 11022 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11023 11024 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11025 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11026 11027 // mainMBB: 11028 // mainDstReg = 0 11029 MIB = 11030 BuildMI(mainMBB, DL, 11031 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11032 11033 // Store IP 11034 if (Subtarget.isPPC64()) { 11035 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11036 .addReg(LabelReg) 11037 .addImm(LabelOffset) 11038 .addReg(BufReg); 11039 } else { 11040 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11041 .addReg(LabelReg) 11042 .addImm(LabelOffset) 11043 .addReg(BufReg); 11044 } 11045 MIB.cloneMemRefs(MI); 11046 11047 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11048 mainMBB->addSuccessor(sinkMBB); 11049 11050 // sinkMBB: 11051 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11052 TII->get(PPC::PHI), DstReg) 11053 .addReg(mainDstReg).addMBB(mainMBB) 11054 .addReg(restoreDstReg).addMBB(thisMBB); 11055 11056 MI.eraseFromParent(); 11057 return sinkMBB; 11058 } 11059 11060 MachineBasicBlock * 11061 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11062 MachineBasicBlock *MBB) const { 11063 DebugLoc DL = MI.getDebugLoc(); 11064 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11065 11066 MachineFunction *MF = MBB->getParent(); 11067 MachineRegisterInfo &MRI = MF->getRegInfo(); 11068 11069 MVT PVT = getPointerTy(MF->getDataLayout()); 11070 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11071 "Invalid Pointer Size!"); 11072 11073 const TargetRegisterClass *RC = 11074 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11075 Register Tmp = MRI.createVirtualRegister(RC); 11076 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11077 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11078 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11079 unsigned BP = 11080 (PVT == MVT::i64) 11081 ? PPC::X30 11082 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11083 : PPC::R30); 11084 11085 MachineInstrBuilder MIB; 11086 11087 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11088 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11089 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11090 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11091 11092 Register BufReg = MI.getOperand(0).getReg(); 11093 11094 // Reload FP (the jumped-to function may not have had a 11095 // frame pointer, and if so, then its r31 will be restored 11096 // as necessary). 11097 if (PVT == MVT::i64) { 11098 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11099 .addImm(0) 11100 .addReg(BufReg); 11101 } else { 11102 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11103 .addImm(0) 11104 .addReg(BufReg); 11105 } 11106 MIB.cloneMemRefs(MI); 11107 11108 // Reload IP 11109 if (PVT == MVT::i64) { 11110 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11111 .addImm(LabelOffset) 11112 .addReg(BufReg); 11113 } else { 11114 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11115 .addImm(LabelOffset) 11116 .addReg(BufReg); 11117 } 11118 MIB.cloneMemRefs(MI); 11119 11120 // Reload SP 11121 if (PVT == MVT::i64) { 11122 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11123 .addImm(SPOffset) 11124 .addReg(BufReg); 11125 } else { 11126 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11127 .addImm(SPOffset) 11128 .addReg(BufReg); 11129 } 11130 MIB.cloneMemRefs(MI); 11131 11132 // Reload BP 11133 if (PVT == MVT::i64) { 11134 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11135 .addImm(BPOffset) 11136 .addReg(BufReg); 11137 } else { 11138 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11139 .addImm(BPOffset) 11140 .addReg(BufReg); 11141 } 11142 MIB.cloneMemRefs(MI); 11143 11144 // Reload TOC 11145 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11146 setUsesTOCBasePtr(*MBB->getParent()); 11147 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11148 .addImm(TOCOffset) 11149 .addReg(BufReg) 11150 .cloneMemRefs(MI); 11151 } 11152 11153 // Jump 11154 BuildMI(*MBB, MI, DL, 11155 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11156 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11157 11158 MI.eraseFromParent(); 11159 return MBB; 11160 } 11161 11162 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11163 // If the function specifically requests inline stack probes, emit them. 11164 if (MF.getFunction().hasFnAttribute("probe-stack")) 11165 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11166 "inline-asm"; 11167 return false; 11168 } 11169 11170 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11171 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11172 unsigned StackAlign = TFI->getStackAlignment(); 11173 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11174 "Unexpected stack alignment"); 11175 // The default stack probe size is 4096 if the function has no 11176 // stack-probe-size attribute. 11177 unsigned StackProbeSize = 4096; 11178 const Function &Fn = MF.getFunction(); 11179 if (Fn.hasFnAttribute("stack-probe-size")) 11180 Fn.getFnAttribute("stack-probe-size") 11181 .getValueAsString() 11182 .getAsInteger(0, StackProbeSize); 11183 // Round down to the stack alignment. 11184 StackProbeSize &= ~(StackAlign - 1); 11185 return StackProbeSize ? StackProbeSize : StackAlign; 11186 } 11187 11188 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11189 // into three phases. In the first phase, it uses pseudo instruction 11190 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11191 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11192 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11193 // MaxCallFrameSize so that it can calculate correct data area pointer. 11194 MachineBasicBlock * 11195 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11196 MachineBasicBlock *MBB) const { 11197 const bool isPPC64 = Subtarget.isPPC64(); 11198 MachineFunction *MF = MBB->getParent(); 11199 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11200 DebugLoc DL = MI.getDebugLoc(); 11201 const unsigned ProbeSize = getStackProbeSize(*MF); 11202 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11203 MachineRegisterInfo &MRI = MF->getRegInfo(); 11204 // The CFG of probing stack looks as 11205 // +-----+ 11206 // | MBB | 11207 // +--+--+ 11208 // | 11209 // +----v----+ 11210 // +--->+ TestMBB +---+ 11211 // | +----+----+ | 11212 // | | | 11213 // | +-----v----+ | 11214 // +---+ BlockMBB | | 11215 // +----------+ | 11216 // | 11217 // +---------+ | 11218 // | TailMBB +<--+ 11219 // +---------+ 11220 // In MBB, calculate previous frame pointer and final stack pointer. 11221 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11222 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11223 // TailMBB is spliced via \p MI. 11224 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11225 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11226 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11227 11228 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11229 MF->insert(MBBIter, TestMBB); 11230 MF->insert(MBBIter, BlockMBB); 11231 MF->insert(MBBIter, TailMBB); 11232 11233 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11234 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11235 11236 Register DstReg = MI.getOperand(0).getReg(); 11237 Register NegSizeReg = MI.getOperand(1).getReg(); 11238 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11239 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11240 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11241 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11242 11243 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11244 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11245 // NegSize. 11246 unsigned ProbeOpc; 11247 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11248 ProbeOpc = 11249 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11250 else 11251 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11252 // and NegSizeReg will be allocated in the same phyreg to avoid 11253 // redundant copy when NegSizeReg has only one use which is current MI and 11254 // will be replaced by PREPARE_PROBED_ALLOCA then. 11255 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11256 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11257 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11258 .addDef(ActualNegSizeReg) 11259 .addReg(NegSizeReg) 11260 .add(MI.getOperand(2)) 11261 .add(MI.getOperand(3)); 11262 11263 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11264 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11265 FinalStackPtr) 11266 .addReg(SPReg) 11267 .addReg(ActualNegSizeReg); 11268 11269 // Materialize a scratch register for update. 11270 int64_t NegProbeSize = -(int64_t)ProbeSize; 11271 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11272 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11273 if (!isInt<16>(NegProbeSize)) { 11274 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11275 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11276 .addImm(NegProbeSize >> 16); 11277 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11278 ScratchReg) 11279 .addReg(TempReg) 11280 .addImm(NegProbeSize & 0xFFFF); 11281 } else 11282 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11283 .addImm(NegProbeSize); 11284 11285 { 11286 // Probing leading residual part. 11287 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11288 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11289 .addReg(ActualNegSizeReg) 11290 .addReg(ScratchReg); 11291 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11292 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11293 .addReg(Div) 11294 .addReg(ScratchReg); 11295 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11296 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11297 .addReg(Mul) 11298 .addReg(ActualNegSizeReg); 11299 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11300 .addReg(FramePointer) 11301 .addReg(SPReg) 11302 .addReg(NegMod); 11303 } 11304 11305 { 11306 // Remaining part should be multiple of ProbeSize. 11307 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11308 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11309 .addReg(SPReg) 11310 .addReg(FinalStackPtr); 11311 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11312 .addImm(PPC::PRED_EQ) 11313 .addReg(CmpResult) 11314 .addMBB(TailMBB); 11315 TestMBB->addSuccessor(BlockMBB); 11316 TestMBB->addSuccessor(TailMBB); 11317 } 11318 11319 { 11320 // Touch the block. 11321 // |P...|P...|P... 11322 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11323 .addReg(FramePointer) 11324 .addReg(SPReg) 11325 .addReg(ScratchReg); 11326 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11327 BlockMBB->addSuccessor(TestMBB); 11328 } 11329 11330 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11331 // DYNAREAOFFSET pseudo instruction to get the future result. 11332 Register MaxCallFrameSizeReg = 11333 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11334 BuildMI(TailMBB, DL, 11335 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11336 MaxCallFrameSizeReg) 11337 .add(MI.getOperand(2)) 11338 .add(MI.getOperand(3)); 11339 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11340 .addReg(SPReg) 11341 .addReg(MaxCallFrameSizeReg); 11342 11343 // Splice instructions after MI to TailMBB. 11344 TailMBB->splice(TailMBB->end(), MBB, 11345 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11346 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11347 MBB->addSuccessor(TestMBB); 11348 11349 // Delete the pseudo instruction. 11350 MI.eraseFromParent(); 11351 11352 ++NumDynamicAllocaProbed; 11353 return TailMBB; 11354 } 11355 11356 MachineBasicBlock * 11357 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11358 MachineBasicBlock *BB) const { 11359 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11360 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11361 if (Subtarget.is64BitELFABI() && 11362 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11363 !Subtarget.isUsingPCRelativeCalls()) { 11364 // Call lowering should have added an r2 operand to indicate a dependence 11365 // on the TOC base pointer value. It can't however, because there is no 11366 // way to mark the dependence as implicit there, and so the stackmap code 11367 // will confuse it with a regular operand. Instead, add the dependence 11368 // here. 11369 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11370 } 11371 11372 return emitPatchPoint(MI, BB); 11373 } 11374 11375 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11376 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11377 return emitEHSjLjSetJmp(MI, BB); 11378 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11379 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11380 return emitEHSjLjLongJmp(MI, BB); 11381 } 11382 11383 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11384 11385 // To "insert" these instructions we actually have to insert their 11386 // control-flow patterns. 11387 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11388 MachineFunction::iterator It = ++BB->getIterator(); 11389 11390 MachineFunction *F = BB->getParent(); 11391 11392 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11393 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11394 MI.getOpcode() == PPC::SELECT_I8) { 11395 SmallVector<MachineOperand, 2> Cond; 11396 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11397 MI.getOpcode() == PPC::SELECT_CC_I8) 11398 Cond.push_back(MI.getOperand(4)); 11399 else 11400 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11401 Cond.push_back(MI.getOperand(1)); 11402 11403 DebugLoc dl = MI.getDebugLoc(); 11404 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11405 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11406 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11407 MI.getOpcode() == PPC::SELECT_CC_F8 || 11408 MI.getOpcode() == PPC::SELECT_CC_F16 || 11409 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11410 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11411 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11412 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11413 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11414 MI.getOpcode() == PPC::SELECT_CC_SPE || 11415 MI.getOpcode() == PPC::SELECT_F4 || 11416 MI.getOpcode() == PPC::SELECT_F8 || 11417 MI.getOpcode() == PPC::SELECT_F16 || 11418 MI.getOpcode() == PPC::SELECT_SPE || 11419 MI.getOpcode() == PPC::SELECT_SPE4 || 11420 MI.getOpcode() == PPC::SELECT_VRRC || 11421 MI.getOpcode() == PPC::SELECT_VSFRC || 11422 MI.getOpcode() == PPC::SELECT_VSSRC || 11423 MI.getOpcode() == PPC::SELECT_VSRC) { 11424 // The incoming instruction knows the destination vreg to set, the 11425 // condition code register to branch on, the true/false values to 11426 // select between, and a branch opcode to use. 11427 11428 // thisMBB: 11429 // ... 11430 // TrueVal = ... 11431 // cmpTY ccX, r1, r2 11432 // bCC copy1MBB 11433 // fallthrough --> copy0MBB 11434 MachineBasicBlock *thisMBB = BB; 11435 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11436 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11437 DebugLoc dl = MI.getDebugLoc(); 11438 F->insert(It, copy0MBB); 11439 F->insert(It, sinkMBB); 11440 11441 // Transfer the remainder of BB and its successor edges to sinkMBB. 11442 sinkMBB->splice(sinkMBB->begin(), BB, 11443 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11444 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11445 11446 // Next, add the true and fallthrough blocks as its successors. 11447 BB->addSuccessor(copy0MBB); 11448 BB->addSuccessor(sinkMBB); 11449 11450 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11451 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11452 MI.getOpcode() == PPC::SELECT_F16 || 11453 MI.getOpcode() == PPC::SELECT_SPE4 || 11454 MI.getOpcode() == PPC::SELECT_SPE || 11455 MI.getOpcode() == PPC::SELECT_VRRC || 11456 MI.getOpcode() == PPC::SELECT_VSFRC || 11457 MI.getOpcode() == PPC::SELECT_VSSRC || 11458 MI.getOpcode() == PPC::SELECT_VSRC) { 11459 BuildMI(BB, dl, TII->get(PPC::BC)) 11460 .addReg(MI.getOperand(1).getReg()) 11461 .addMBB(sinkMBB); 11462 } else { 11463 unsigned SelectPred = MI.getOperand(4).getImm(); 11464 BuildMI(BB, dl, TII->get(PPC::BCC)) 11465 .addImm(SelectPred) 11466 .addReg(MI.getOperand(1).getReg()) 11467 .addMBB(sinkMBB); 11468 } 11469 11470 // copy0MBB: 11471 // %FalseValue = ... 11472 // # fallthrough to sinkMBB 11473 BB = copy0MBB; 11474 11475 // Update machine-CFG edges 11476 BB->addSuccessor(sinkMBB); 11477 11478 // sinkMBB: 11479 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11480 // ... 11481 BB = sinkMBB; 11482 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11483 .addReg(MI.getOperand(3).getReg()) 11484 .addMBB(copy0MBB) 11485 .addReg(MI.getOperand(2).getReg()) 11486 .addMBB(thisMBB); 11487 } else if (MI.getOpcode() == PPC::ReadTB) { 11488 // To read the 64-bit time-base register on a 32-bit target, we read the 11489 // two halves. Should the counter have wrapped while it was being read, we 11490 // need to try again. 11491 // ... 11492 // readLoop: 11493 // mfspr Rx,TBU # load from TBU 11494 // mfspr Ry,TB # load from TB 11495 // mfspr Rz,TBU # load from TBU 11496 // cmpw crX,Rx,Rz # check if 'old'='new' 11497 // bne readLoop # branch if they're not equal 11498 // ... 11499 11500 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11501 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11502 DebugLoc dl = MI.getDebugLoc(); 11503 F->insert(It, readMBB); 11504 F->insert(It, sinkMBB); 11505 11506 // Transfer the remainder of BB and its successor edges to sinkMBB. 11507 sinkMBB->splice(sinkMBB->begin(), BB, 11508 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11509 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11510 11511 BB->addSuccessor(readMBB); 11512 BB = readMBB; 11513 11514 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11515 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11516 Register LoReg = MI.getOperand(0).getReg(); 11517 Register HiReg = MI.getOperand(1).getReg(); 11518 11519 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11520 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11521 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11522 11523 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11524 11525 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11526 .addReg(HiReg) 11527 .addReg(ReadAgainReg); 11528 BuildMI(BB, dl, TII->get(PPC::BCC)) 11529 .addImm(PPC::PRED_NE) 11530 .addReg(CmpReg) 11531 .addMBB(readMBB); 11532 11533 BB->addSuccessor(readMBB); 11534 BB->addSuccessor(sinkMBB); 11535 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11536 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11537 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11538 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11539 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11540 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11541 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11542 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11543 11544 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11545 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11546 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11547 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11548 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11549 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11550 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11551 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11552 11553 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11554 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11555 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11556 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11557 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11558 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11559 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11560 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11561 11562 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11563 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11564 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11565 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11566 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11567 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11568 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11569 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11570 11571 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11572 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11573 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11574 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11575 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11576 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11577 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11578 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11579 11580 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11581 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11582 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11583 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11584 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11585 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11586 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11587 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11588 11589 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11590 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11591 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11592 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11593 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11594 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11595 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11596 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11597 11598 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11599 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11600 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11601 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11602 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11603 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11604 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11605 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11606 11607 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11608 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11609 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11610 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11611 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11612 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11613 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11614 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11615 11616 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11617 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11618 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11619 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11620 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11621 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11622 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11623 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11624 11625 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11626 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11627 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11628 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11629 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11630 BB = EmitAtomicBinary(MI, BB, 4, 0); 11631 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11632 BB = EmitAtomicBinary(MI, BB, 8, 0); 11633 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11634 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11635 (Subtarget.hasPartwordAtomics() && 11636 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11637 (Subtarget.hasPartwordAtomics() && 11638 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11639 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11640 11641 auto LoadMnemonic = PPC::LDARX; 11642 auto StoreMnemonic = PPC::STDCX; 11643 switch (MI.getOpcode()) { 11644 default: 11645 llvm_unreachable("Compare and swap of unknown size"); 11646 case PPC::ATOMIC_CMP_SWAP_I8: 11647 LoadMnemonic = PPC::LBARX; 11648 StoreMnemonic = PPC::STBCX; 11649 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11650 break; 11651 case PPC::ATOMIC_CMP_SWAP_I16: 11652 LoadMnemonic = PPC::LHARX; 11653 StoreMnemonic = PPC::STHCX; 11654 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11655 break; 11656 case PPC::ATOMIC_CMP_SWAP_I32: 11657 LoadMnemonic = PPC::LWARX; 11658 StoreMnemonic = PPC::STWCX; 11659 break; 11660 case PPC::ATOMIC_CMP_SWAP_I64: 11661 LoadMnemonic = PPC::LDARX; 11662 StoreMnemonic = PPC::STDCX; 11663 break; 11664 } 11665 Register dest = MI.getOperand(0).getReg(); 11666 Register ptrA = MI.getOperand(1).getReg(); 11667 Register ptrB = MI.getOperand(2).getReg(); 11668 Register oldval = MI.getOperand(3).getReg(); 11669 Register newval = MI.getOperand(4).getReg(); 11670 DebugLoc dl = MI.getDebugLoc(); 11671 11672 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11673 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11674 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11675 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11676 F->insert(It, loop1MBB); 11677 F->insert(It, loop2MBB); 11678 F->insert(It, midMBB); 11679 F->insert(It, exitMBB); 11680 exitMBB->splice(exitMBB->begin(), BB, 11681 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11682 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11683 11684 // thisMBB: 11685 // ... 11686 // fallthrough --> loopMBB 11687 BB->addSuccessor(loop1MBB); 11688 11689 // loop1MBB: 11690 // l[bhwd]arx dest, ptr 11691 // cmp[wd] dest, oldval 11692 // bne- midMBB 11693 // loop2MBB: 11694 // st[bhwd]cx. newval, ptr 11695 // bne- loopMBB 11696 // b exitBB 11697 // midMBB: 11698 // st[bhwd]cx. dest, ptr 11699 // exitBB: 11700 BB = loop1MBB; 11701 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11702 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11703 .addReg(oldval) 11704 .addReg(dest); 11705 BuildMI(BB, dl, TII->get(PPC::BCC)) 11706 .addImm(PPC::PRED_NE) 11707 .addReg(PPC::CR0) 11708 .addMBB(midMBB); 11709 BB->addSuccessor(loop2MBB); 11710 BB->addSuccessor(midMBB); 11711 11712 BB = loop2MBB; 11713 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11714 .addReg(newval) 11715 .addReg(ptrA) 11716 .addReg(ptrB); 11717 BuildMI(BB, dl, TII->get(PPC::BCC)) 11718 .addImm(PPC::PRED_NE) 11719 .addReg(PPC::CR0) 11720 .addMBB(loop1MBB); 11721 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11722 BB->addSuccessor(loop1MBB); 11723 BB->addSuccessor(exitMBB); 11724 11725 BB = midMBB; 11726 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11727 .addReg(dest) 11728 .addReg(ptrA) 11729 .addReg(ptrB); 11730 BB->addSuccessor(exitMBB); 11731 11732 // exitMBB: 11733 // ... 11734 BB = exitMBB; 11735 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11736 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11737 // We must use 64-bit registers for addresses when targeting 64-bit, 11738 // since we're actually doing arithmetic on them. Other registers 11739 // can be 32-bit. 11740 bool is64bit = Subtarget.isPPC64(); 11741 bool isLittleEndian = Subtarget.isLittleEndian(); 11742 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11743 11744 Register dest = MI.getOperand(0).getReg(); 11745 Register ptrA = MI.getOperand(1).getReg(); 11746 Register ptrB = MI.getOperand(2).getReg(); 11747 Register oldval = MI.getOperand(3).getReg(); 11748 Register newval = MI.getOperand(4).getReg(); 11749 DebugLoc dl = MI.getDebugLoc(); 11750 11751 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11752 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11753 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11754 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11755 F->insert(It, loop1MBB); 11756 F->insert(It, loop2MBB); 11757 F->insert(It, midMBB); 11758 F->insert(It, exitMBB); 11759 exitMBB->splice(exitMBB->begin(), BB, 11760 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11761 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11762 11763 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11764 const TargetRegisterClass *RC = 11765 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11766 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11767 11768 Register PtrReg = RegInfo.createVirtualRegister(RC); 11769 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11770 Register ShiftReg = 11771 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11772 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11773 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11774 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11775 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11776 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11777 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11778 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11779 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11780 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11781 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11782 Register Ptr1Reg; 11783 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11784 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11785 // thisMBB: 11786 // ... 11787 // fallthrough --> loopMBB 11788 BB->addSuccessor(loop1MBB); 11789 11790 // The 4-byte load must be aligned, while a char or short may be 11791 // anywhere in the word. Hence all this nasty bookkeeping code. 11792 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11793 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11794 // xori shift, shift1, 24 [16] 11795 // rlwinm ptr, ptr1, 0, 0, 29 11796 // slw newval2, newval, shift 11797 // slw oldval2, oldval,shift 11798 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11799 // slw mask, mask2, shift 11800 // and newval3, newval2, mask 11801 // and oldval3, oldval2, mask 11802 // loop1MBB: 11803 // lwarx tmpDest, ptr 11804 // and tmp, tmpDest, mask 11805 // cmpw tmp, oldval3 11806 // bne- midMBB 11807 // loop2MBB: 11808 // andc tmp2, tmpDest, mask 11809 // or tmp4, tmp2, newval3 11810 // stwcx. tmp4, ptr 11811 // bne- loop1MBB 11812 // b exitBB 11813 // midMBB: 11814 // stwcx. tmpDest, ptr 11815 // exitBB: 11816 // srw dest, tmpDest, shift 11817 if (ptrA != ZeroReg) { 11818 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11819 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11820 .addReg(ptrA) 11821 .addReg(ptrB); 11822 } else { 11823 Ptr1Reg = ptrB; 11824 } 11825 11826 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11827 // mode. 11828 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11829 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11830 .addImm(3) 11831 .addImm(27) 11832 .addImm(is8bit ? 28 : 27); 11833 if (!isLittleEndian) 11834 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11835 .addReg(Shift1Reg) 11836 .addImm(is8bit ? 24 : 16); 11837 if (is64bit) 11838 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11839 .addReg(Ptr1Reg) 11840 .addImm(0) 11841 .addImm(61); 11842 else 11843 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11844 .addReg(Ptr1Reg) 11845 .addImm(0) 11846 .addImm(0) 11847 .addImm(29); 11848 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11849 .addReg(newval) 11850 .addReg(ShiftReg); 11851 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11852 .addReg(oldval) 11853 .addReg(ShiftReg); 11854 if (is8bit) 11855 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11856 else { 11857 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11858 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11859 .addReg(Mask3Reg) 11860 .addImm(65535); 11861 } 11862 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11863 .addReg(Mask2Reg) 11864 .addReg(ShiftReg); 11865 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11866 .addReg(NewVal2Reg) 11867 .addReg(MaskReg); 11868 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11869 .addReg(OldVal2Reg) 11870 .addReg(MaskReg); 11871 11872 BB = loop1MBB; 11873 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11874 .addReg(ZeroReg) 11875 .addReg(PtrReg); 11876 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11877 .addReg(TmpDestReg) 11878 .addReg(MaskReg); 11879 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11880 .addReg(TmpReg) 11881 .addReg(OldVal3Reg); 11882 BuildMI(BB, dl, TII->get(PPC::BCC)) 11883 .addImm(PPC::PRED_NE) 11884 .addReg(PPC::CR0) 11885 .addMBB(midMBB); 11886 BB->addSuccessor(loop2MBB); 11887 BB->addSuccessor(midMBB); 11888 11889 BB = loop2MBB; 11890 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11891 .addReg(TmpDestReg) 11892 .addReg(MaskReg); 11893 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11894 .addReg(Tmp2Reg) 11895 .addReg(NewVal3Reg); 11896 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11897 .addReg(Tmp4Reg) 11898 .addReg(ZeroReg) 11899 .addReg(PtrReg); 11900 BuildMI(BB, dl, TII->get(PPC::BCC)) 11901 .addImm(PPC::PRED_NE) 11902 .addReg(PPC::CR0) 11903 .addMBB(loop1MBB); 11904 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11905 BB->addSuccessor(loop1MBB); 11906 BB->addSuccessor(exitMBB); 11907 11908 BB = midMBB; 11909 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11910 .addReg(TmpDestReg) 11911 .addReg(ZeroReg) 11912 .addReg(PtrReg); 11913 BB->addSuccessor(exitMBB); 11914 11915 // exitMBB: 11916 // ... 11917 BB = exitMBB; 11918 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11919 .addReg(TmpReg) 11920 .addReg(ShiftReg); 11921 } else if (MI.getOpcode() == PPC::FADDrtz) { 11922 // This pseudo performs an FADD with rounding mode temporarily forced 11923 // to round-to-zero. We emit this via custom inserter since the FPSCR 11924 // is not modeled at the SelectionDAG level. 11925 Register Dest = MI.getOperand(0).getReg(); 11926 Register Src1 = MI.getOperand(1).getReg(); 11927 Register Src2 = MI.getOperand(2).getReg(); 11928 DebugLoc dl = MI.getDebugLoc(); 11929 11930 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11931 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11932 11933 // Save FPSCR value. 11934 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11935 11936 // Set rounding mode to round-to-zero. 11937 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 11938 .addImm(31) 11939 .addReg(PPC::RM, RegState::ImplicitDefine); 11940 11941 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 11942 .addImm(30) 11943 .addReg(PPC::RM, RegState::ImplicitDefine); 11944 11945 // Perform addition. 11946 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11947 11948 // Restore FPSCR value. 11949 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11950 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11951 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11952 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11953 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11954 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11955 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11956 ? PPC::ANDI8_rec 11957 : PPC::ANDI_rec; 11958 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11959 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11960 11961 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11962 Register Dest = RegInfo.createVirtualRegister( 11963 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11964 11965 DebugLoc Dl = MI.getDebugLoc(); 11966 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11967 .addReg(MI.getOperand(1).getReg()) 11968 .addImm(1); 11969 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11970 MI.getOperand(0).getReg()) 11971 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11972 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11973 DebugLoc Dl = MI.getDebugLoc(); 11974 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11975 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11976 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11977 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11978 MI.getOperand(0).getReg()) 11979 .addReg(CRReg); 11980 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11981 DebugLoc Dl = MI.getDebugLoc(); 11982 unsigned Imm = MI.getOperand(1).getImm(); 11983 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11984 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11985 MI.getOperand(0).getReg()) 11986 .addReg(PPC::CR0EQ); 11987 } else if (MI.getOpcode() == PPC::SETRNDi) { 11988 DebugLoc dl = MI.getDebugLoc(); 11989 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11990 11991 // Save FPSCR value. 11992 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11993 11994 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11995 // the following settings: 11996 // 00 Round to nearest 11997 // 01 Round to 0 11998 // 10 Round to +inf 11999 // 11 Round to -inf 12000 12001 // When the operand is immediate, using the two least significant bits of 12002 // the immediate to set the bits 62:63 of FPSCR. 12003 unsigned Mode = MI.getOperand(1).getImm(); 12004 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12005 .addImm(31) 12006 .addReg(PPC::RM, RegState::ImplicitDefine); 12007 12008 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12009 .addImm(30) 12010 .addReg(PPC::RM, RegState::ImplicitDefine); 12011 } else if (MI.getOpcode() == PPC::SETRND) { 12012 DebugLoc dl = MI.getDebugLoc(); 12013 12014 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12015 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12016 // If the target doesn't have DirectMove, we should use stack to do the 12017 // conversion, because the target doesn't have the instructions like mtvsrd 12018 // or mfvsrd to do this conversion directly. 12019 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12020 if (Subtarget.hasDirectMove()) { 12021 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12022 .addReg(SrcReg); 12023 } else { 12024 // Use stack to do the register copy. 12025 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12026 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12027 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12028 if (RC == &PPC::F8RCRegClass) { 12029 // Copy register from F8RCRegClass to G8RCRegclass. 12030 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12031 "Unsupported RegClass."); 12032 12033 StoreOp = PPC::STFD; 12034 LoadOp = PPC::LD; 12035 } else { 12036 // Copy register from G8RCRegClass to F8RCRegclass. 12037 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12038 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12039 "Unsupported RegClass."); 12040 } 12041 12042 MachineFrameInfo &MFI = F->getFrameInfo(); 12043 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12044 12045 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12046 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12047 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12048 MFI.getObjectAlign(FrameIdx)); 12049 12050 // Store the SrcReg into the stack. 12051 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12052 .addReg(SrcReg) 12053 .addImm(0) 12054 .addFrameIndex(FrameIdx) 12055 .addMemOperand(MMOStore); 12056 12057 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12058 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12059 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12060 MFI.getObjectAlign(FrameIdx)); 12061 12062 // Load from the stack where SrcReg is stored, and save to DestReg, 12063 // so we have done the RegClass conversion from RegClass::SrcReg to 12064 // RegClass::DestReg. 12065 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12066 .addImm(0) 12067 .addFrameIndex(FrameIdx) 12068 .addMemOperand(MMOLoad); 12069 } 12070 }; 12071 12072 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12073 12074 // Save FPSCR value. 12075 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12076 12077 // When the operand is gprc register, use two least significant bits of the 12078 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12079 // 12080 // copy OldFPSCRTmpReg, OldFPSCRReg 12081 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12082 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12083 // copy NewFPSCRReg, NewFPSCRTmpReg 12084 // mtfsf 255, NewFPSCRReg 12085 MachineOperand SrcOp = MI.getOperand(1); 12086 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12087 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12088 12089 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12090 12091 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12092 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12093 12094 // The first operand of INSERT_SUBREG should be a register which has 12095 // subregisters, we only care about its RegClass, so we should use an 12096 // IMPLICIT_DEF register. 12097 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12098 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12099 .addReg(ImDefReg) 12100 .add(SrcOp) 12101 .addImm(1); 12102 12103 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12104 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12105 .addReg(OldFPSCRTmpReg) 12106 .addReg(ExtSrcReg) 12107 .addImm(0) 12108 .addImm(62); 12109 12110 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12111 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12112 12113 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12114 // bits of FPSCR. 12115 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12116 .addImm(255) 12117 .addReg(NewFPSCRReg) 12118 .addImm(0) 12119 .addImm(0); 12120 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12121 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12122 return emitProbedAlloca(MI, BB); 12123 } else { 12124 llvm_unreachable("Unexpected instr type to insert"); 12125 } 12126 12127 MI.eraseFromParent(); // The pseudo instruction is gone now. 12128 return BB; 12129 } 12130 12131 //===----------------------------------------------------------------------===// 12132 // Target Optimization Hooks 12133 //===----------------------------------------------------------------------===// 12134 12135 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12136 // For the estimates, convergence is quadratic, so we essentially double the 12137 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12138 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12139 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12140 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12141 if (VT.getScalarType() == MVT::f64) 12142 RefinementSteps++; 12143 return RefinementSteps; 12144 } 12145 12146 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12147 int Enabled, int &RefinementSteps, 12148 bool &UseOneConstNR, 12149 bool Reciprocal) const { 12150 EVT VT = Operand.getValueType(); 12151 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12152 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12153 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12154 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12155 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12156 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12157 12158 // The Newton-Raphson computation with a single constant does not provide 12159 // enough accuracy on some CPUs. 12160 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12161 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12162 } 12163 return SDValue(); 12164 } 12165 12166 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12167 int Enabled, 12168 int &RefinementSteps) const { 12169 EVT VT = Operand.getValueType(); 12170 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12171 (VT == MVT::f64 && Subtarget.hasFRE()) || 12172 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12173 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12174 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12175 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12176 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12177 } 12178 return SDValue(); 12179 } 12180 12181 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12182 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12183 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12184 // enabled for division), this functionality is redundant with the default 12185 // combiner logic (once the division -> reciprocal/multiply transformation 12186 // has taken place). As a result, this matters more for older cores than for 12187 // newer ones. 12188 12189 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12190 // reciprocal if there are two or more FDIVs (for embedded cores with only 12191 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12192 switch (Subtarget.getCPUDirective()) { 12193 default: 12194 return 3; 12195 case PPC::DIR_440: 12196 case PPC::DIR_A2: 12197 case PPC::DIR_E500: 12198 case PPC::DIR_E500mc: 12199 case PPC::DIR_E5500: 12200 return 2; 12201 } 12202 } 12203 12204 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12205 // collapsed, and so we need to look through chains of them. 12206 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12207 int64_t& Offset, SelectionDAG &DAG) { 12208 if (DAG.isBaseWithConstantOffset(Loc)) { 12209 Base = Loc.getOperand(0); 12210 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12211 12212 // The base might itself be a base plus an offset, and if so, accumulate 12213 // that as well. 12214 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12215 } 12216 } 12217 12218 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12219 unsigned Bytes, int Dist, 12220 SelectionDAG &DAG) { 12221 if (VT.getSizeInBits() / 8 != Bytes) 12222 return false; 12223 12224 SDValue BaseLoc = Base->getBasePtr(); 12225 if (Loc.getOpcode() == ISD::FrameIndex) { 12226 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12227 return false; 12228 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12229 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12230 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12231 int FS = MFI.getObjectSize(FI); 12232 int BFS = MFI.getObjectSize(BFI); 12233 if (FS != BFS || FS != (int)Bytes) return false; 12234 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12235 } 12236 12237 SDValue Base1 = Loc, Base2 = BaseLoc; 12238 int64_t Offset1 = 0, Offset2 = 0; 12239 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12240 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12241 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12242 return true; 12243 12244 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12245 const GlobalValue *GV1 = nullptr; 12246 const GlobalValue *GV2 = nullptr; 12247 Offset1 = 0; 12248 Offset2 = 0; 12249 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12250 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12251 if (isGA1 && isGA2 && GV1 == GV2) 12252 return Offset1 == (Offset2 + Dist*Bytes); 12253 return false; 12254 } 12255 12256 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12257 // not enforce equality of the chain operands. 12258 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12259 unsigned Bytes, int Dist, 12260 SelectionDAG &DAG) { 12261 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12262 EVT VT = LS->getMemoryVT(); 12263 SDValue Loc = LS->getBasePtr(); 12264 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12265 } 12266 12267 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12268 EVT VT; 12269 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12270 default: return false; 12271 case Intrinsic::ppc_altivec_lvx: 12272 case Intrinsic::ppc_altivec_lvxl: 12273 case Intrinsic::ppc_vsx_lxvw4x: 12274 case Intrinsic::ppc_vsx_lxvw4x_be: 12275 VT = MVT::v4i32; 12276 break; 12277 case Intrinsic::ppc_vsx_lxvd2x: 12278 case Intrinsic::ppc_vsx_lxvd2x_be: 12279 VT = MVT::v2f64; 12280 break; 12281 case Intrinsic::ppc_altivec_lvebx: 12282 VT = MVT::i8; 12283 break; 12284 case Intrinsic::ppc_altivec_lvehx: 12285 VT = MVT::i16; 12286 break; 12287 case Intrinsic::ppc_altivec_lvewx: 12288 VT = MVT::i32; 12289 break; 12290 } 12291 12292 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12293 } 12294 12295 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12296 EVT VT; 12297 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12298 default: return false; 12299 case Intrinsic::ppc_altivec_stvx: 12300 case Intrinsic::ppc_altivec_stvxl: 12301 case Intrinsic::ppc_vsx_stxvw4x: 12302 VT = MVT::v4i32; 12303 break; 12304 case Intrinsic::ppc_vsx_stxvd2x: 12305 VT = MVT::v2f64; 12306 break; 12307 case Intrinsic::ppc_vsx_stxvw4x_be: 12308 VT = MVT::v4i32; 12309 break; 12310 case Intrinsic::ppc_vsx_stxvd2x_be: 12311 VT = MVT::v2f64; 12312 break; 12313 case Intrinsic::ppc_altivec_stvebx: 12314 VT = MVT::i8; 12315 break; 12316 case Intrinsic::ppc_altivec_stvehx: 12317 VT = MVT::i16; 12318 break; 12319 case Intrinsic::ppc_altivec_stvewx: 12320 VT = MVT::i32; 12321 break; 12322 } 12323 12324 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12325 } 12326 12327 return false; 12328 } 12329 12330 // Return true is there is a nearyby consecutive load to the one provided 12331 // (regardless of alignment). We search up and down the chain, looking though 12332 // token factors and other loads (but nothing else). As a result, a true result 12333 // indicates that it is safe to create a new consecutive load adjacent to the 12334 // load provided. 12335 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12336 SDValue Chain = LD->getChain(); 12337 EVT VT = LD->getMemoryVT(); 12338 12339 SmallSet<SDNode *, 16> LoadRoots; 12340 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12341 SmallSet<SDNode *, 16> Visited; 12342 12343 // First, search up the chain, branching to follow all token-factor operands. 12344 // If we find a consecutive load, then we're done, otherwise, record all 12345 // nodes just above the top-level loads and token factors. 12346 while (!Queue.empty()) { 12347 SDNode *ChainNext = Queue.pop_back_val(); 12348 if (!Visited.insert(ChainNext).second) 12349 continue; 12350 12351 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12352 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12353 return true; 12354 12355 if (!Visited.count(ChainLD->getChain().getNode())) 12356 Queue.push_back(ChainLD->getChain().getNode()); 12357 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12358 for (const SDUse &O : ChainNext->ops()) 12359 if (!Visited.count(O.getNode())) 12360 Queue.push_back(O.getNode()); 12361 } else 12362 LoadRoots.insert(ChainNext); 12363 } 12364 12365 // Second, search down the chain, starting from the top-level nodes recorded 12366 // in the first phase. These top-level nodes are the nodes just above all 12367 // loads and token factors. Starting with their uses, recursively look though 12368 // all loads (just the chain uses) and token factors to find a consecutive 12369 // load. 12370 Visited.clear(); 12371 Queue.clear(); 12372 12373 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12374 IE = LoadRoots.end(); I != IE; ++I) { 12375 Queue.push_back(*I); 12376 12377 while (!Queue.empty()) { 12378 SDNode *LoadRoot = Queue.pop_back_val(); 12379 if (!Visited.insert(LoadRoot).second) 12380 continue; 12381 12382 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12383 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12384 return true; 12385 12386 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12387 UE = LoadRoot->use_end(); UI != UE; ++UI) 12388 if (((isa<MemSDNode>(*UI) && 12389 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12390 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12391 Queue.push_back(*UI); 12392 } 12393 } 12394 12395 return false; 12396 } 12397 12398 /// This function is called when we have proved that a SETCC node can be replaced 12399 /// by subtraction (and other supporting instructions) so that the result of 12400 /// comparison is kept in a GPR instead of CR. This function is purely for 12401 /// codegen purposes and has some flags to guide the codegen process. 12402 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12403 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12404 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12405 12406 // Zero extend the operands to the largest legal integer. Originally, they 12407 // must be of a strictly smaller size. 12408 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12409 DAG.getConstant(Size, DL, MVT::i32)); 12410 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12411 DAG.getConstant(Size, DL, MVT::i32)); 12412 12413 // Swap if needed. Depends on the condition code. 12414 if (Swap) 12415 std::swap(Op0, Op1); 12416 12417 // Subtract extended integers. 12418 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12419 12420 // Move the sign bit to the least significant position and zero out the rest. 12421 // Now the least significant bit carries the result of original comparison. 12422 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12423 DAG.getConstant(Size - 1, DL, MVT::i32)); 12424 auto Final = Shifted; 12425 12426 // Complement the result if needed. Based on the condition code. 12427 if (Complement) 12428 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12429 DAG.getConstant(1, DL, MVT::i64)); 12430 12431 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12432 } 12433 12434 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12435 DAGCombinerInfo &DCI) const { 12436 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12437 12438 SelectionDAG &DAG = DCI.DAG; 12439 SDLoc DL(N); 12440 12441 // Size of integers being compared has a critical role in the following 12442 // analysis, so we prefer to do this when all types are legal. 12443 if (!DCI.isAfterLegalizeDAG()) 12444 return SDValue(); 12445 12446 // If all users of SETCC extend its value to a legal integer type 12447 // then we replace SETCC with a subtraction 12448 for (SDNode::use_iterator UI = N->use_begin(), 12449 UE = N->use_end(); UI != UE; ++UI) { 12450 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12451 return SDValue(); 12452 } 12453 12454 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12455 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12456 12457 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12458 12459 if (OpSize < Size) { 12460 switch (CC) { 12461 default: break; 12462 case ISD::SETULT: 12463 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12464 case ISD::SETULE: 12465 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12466 case ISD::SETUGT: 12467 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12468 case ISD::SETUGE: 12469 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12470 } 12471 } 12472 12473 return SDValue(); 12474 } 12475 12476 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12477 DAGCombinerInfo &DCI) const { 12478 SelectionDAG &DAG = DCI.DAG; 12479 SDLoc dl(N); 12480 12481 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12482 // If we're tracking CR bits, we need to be careful that we don't have: 12483 // trunc(binary-ops(zext(x), zext(y))) 12484 // or 12485 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12486 // such that we're unnecessarily moving things into GPRs when it would be 12487 // better to keep them in CR bits. 12488 12489 // Note that trunc here can be an actual i1 trunc, or can be the effective 12490 // truncation that comes from a setcc or select_cc. 12491 if (N->getOpcode() == ISD::TRUNCATE && 12492 N->getValueType(0) != MVT::i1) 12493 return SDValue(); 12494 12495 if (N->getOperand(0).getValueType() != MVT::i32 && 12496 N->getOperand(0).getValueType() != MVT::i64) 12497 return SDValue(); 12498 12499 if (N->getOpcode() == ISD::SETCC || 12500 N->getOpcode() == ISD::SELECT_CC) { 12501 // If we're looking at a comparison, then we need to make sure that the 12502 // high bits (all except for the first) don't matter the result. 12503 ISD::CondCode CC = 12504 cast<CondCodeSDNode>(N->getOperand( 12505 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12506 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12507 12508 if (ISD::isSignedIntSetCC(CC)) { 12509 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12510 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12511 return SDValue(); 12512 } else if (ISD::isUnsignedIntSetCC(CC)) { 12513 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12514 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12515 !DAG.MaskedValueIsZero(N->getOperand(1), 12516 APInt::getHighBitsSet(OpBits, OpBits-1))) 12517 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12518 : SDValue()); 12519 } else { 12520 // This is neither a signed nor an unsigned comparison, just make sure 12521 // that the high bits are equal. 12522 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12523 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12524 12525 // We don't really care about what is known about the first bit (if 12526 // anything), so clear it in all masks prior to comparing them. 12527 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12528 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12529 12530 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12531 return SDValue(); 12532 } 12533 } 12534 12535 // We now know that the higher-order bits are irrelevant, we just need to 12536 // make sure that all of the intermediate operations are bit operations, and 12537 // all inputs are extensions. 12538 if (N->getOperand(0).getOpcode() != ISD::AND && 12539 N->getOperand(0).getOpcode() != ISD::OR && 12540 N->getOperand(0).getOpcode() != ISD::XOR && 12541 N->getOperand(0).getOpcode() != ISD::SELECT && 12542 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12543 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12544 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12545 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12546 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12547 return SDValue(); 12548 12549 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12550 N->getOperand(1).getOpcode() != ISD::AND && 12551 N->getOperand(1).getOpcode() != ISD::OR && 12552 N->getOperand(1).getOpcode() != ISD::XOR && 12553 N->getOperand(1).getOpcode() != ISD::SELECT && 12554 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12555 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12556 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12557 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12558 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12559 return SDValue(); 12560 12561 SmallVector<SDValue, 4> Inputs; 12562 SmallVector<SDValue, 8> BinOps, PromOps; 12563 SmallPtrSet<SDNode *, 16> Visited; 12564 12565 for (unsigned i = 0; i < 2; ++i) { 12566 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12567 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12568 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12569 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12570 isa<ConstantSDNode>(N->getOperand(i))) 12571 Inputs.push_back(N->getOperand(i)); 12572 else 12573 BinOps.push_back(N->getOperand(i)); 12574 12575 if (N->getOpcode() == ISD::TRUNCATE) 12576 break; 12577 } 12578 12579 // Visit all inputs, collect all binary operations (and, or, xor and 12580 // select) that are all fed by extensions. 12581 while (!BinOps.empty()) { 12582 SDValue BinOp = BinOps.back(); 12583 BinOps.pop_back(); 12584 12585 if (!Visited.insert(BinOp.getNode()).second) 12586 continue; 12587 12588 PromOps.push_back(BinOp); 12589 12590 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12591 // The condition of the select is not promoted. 12592 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12593 continue; 12594 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12595 continue; 12596 12597 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12598 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12599 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12600 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12601 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12602 Inputs.push_back(BinOp.getOperand(i)); 12603 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12604 BinOp.getOperand(i).getOpcode() == ISD::OR || 12605 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12606 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12607 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12608 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12609 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12610 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12611 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12612 BinOps.push_back(BinOp.getOperand(i)); 12613 } else { 12614 // We have an input that is not an extension or another binary 12615 // operation; we'll abort this transformation. 12616 return SDValue(); 12617 } 12618 } 12619 } 12620 12621 // Make sure that this is a self-contained cluster of operations (which 12622 // is not quite the same thing as saying that everything has only one 12623 // use). 12624 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12625 if (isa<ConstantSDNode>(Inputs[i])) 12626 continue; 12627 12628 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12629 UE = Inputs[i].getNode()->use_end(); 12630 UI != UE; ++UI) { 12631 SDNode *User = *UI; 12632 if (User != N && !Visited.count(User)) 12633 return SDValue(); 12634 12635 // Make sure that we're not going to promote the non-output-value 12636 // operand(s) or SELECT or SELECT_CC. 12637 // FIXME: Although we could sometimes handle this, and it does occur in 12638 // practice that one of the condition inputs to the select is also one of 12639 // the outputs, we currently can't deal with this. 12640 if (User->getOpcode() == ISD::SELECT) { 12641 if (User->getOperand(0) == Inputs[i]) 12642 return SDValue(); 12643 } else if (User->getOpcode() == ISD::SELECT_CC) { 12644 if (User->getOperand(0) == Inputs[i] || 12645 User->getOperand(1) == Inputs[i]) 12646 return SDValue(); 12647 } 12648 } 12649 } 12650 12651 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12652 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12653 UE = PromOps[i].getNode()->use_end(); 12654 UI != UE; ++UI) { 12655 SDNode *User = *UI; 12656 if (User != N && !Visited.count(User)) 12657 return SDValue(); 12658 12659 // Make sure that we're not going to promote the non-output-value 12660 // operand(s) or SELECT or SELECT_CC. 12661 // FIXME: Although we could sometimes handle this, and it does occur in 12662 // practice that one of the condition inputs to the select is also one of 12663 // the outputs, we currently can't deal with this. 12664 if (User->getOpcode() == ISD::SELECT) { 12665 if (User->getOperand(0) == PromOps[i]) 12666 return SDValue(); 12667 } else if (User->getOpcode() == ISD::SELECT_CC) { 12668 if (User->getOperand(0) == PromOps[i] || 12669 User->getOperand(1) == PromOps[i]) 12670 return SDValue(); 12671 } 12672 } 12673 } 12674 12675 // Replace all inputs with the extension operand. 12676 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12677 // Constants may have users outside the cluster of to-be-promoted nodes, 12678 // and so we need to replace those as we do the promotions. 12679 if (isa<ConstantSDNode>(Inputs[i])) 12680 continue; 12681 else 12682 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12683 } 12684 12685 std::list<HandleSDNode> PromOpHandles; 12686 for (auto &PromOp : PromOps) 12687 PromOpHandles.emplace_back(PromOp); 12688 12689 // Replace all operations (these are all the same, but have a different 12690 // (i1) return type). DAG.getNode will validate that the types of 12691 // a binary operator match, so go through the list in reverse so that 12692 // we've likely promoted both operands first. Any intermediate truncations or 12693 // extensions disappear. 12694 while (!PromOpHandles.empty()) { 12695 SDValue PromOp = PromOpHandles.back().getValue(); 12696 PromOpHandles.pop_back(); 12697 12698 if (PromOp.getOpcode() == ISD::TRUNCATE || 12699 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12700 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12701 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12702 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12703 PromOp.getOperand(0).getValueType() != MVT::i1) { 12704 // The operand is not yet ready (see comment below). 12705 PromOpHandles.emplace_front(PromOp); 12706 continue; 12707 } 12708 12709 SDValue RepValue = PromOp.getOperand(0); 12710 if (isa<ConstantSDNode>(RepValue)) 12711 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12712 12713 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12714 continue; 12715 } 12716 12717 unsigned C; 12718 switch (PromOp.getOpcode()) { 12719 default: C = 0; break; 12720 case ISD::SELECT: C = 1; break; 12721 case ISD::SELECT_CC: C = 2; break; 12722 } 12723 12724 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12725 PromOp.getOperand(C).getValueType() != MVT::i1) || 12726 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12727 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12728 // The to-be-promoted operands of this node have not yet been 12729 // promoted (this should be rare because we're going through the 12730 // list backward, but if one of the operands has several users in 12731 // this cluster of to-be-promoted nodes, it is possible). 12732 PromOpHandles.emplace_front(PromOp); 12733 continue; 12734 } 12735 12736 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12737 PromOp.getNode()->op_end()); 12738 12739 // If there are any constant inputs, make sure they're replaced now. 12740 for (unsigned i = 0; i < 2; ++i) 12741 if (isa<ConstantSDNode>(Ops[C+i])) 12742 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12743 12744 DAG.ReplaceAllUsesOfValueWith(PromOp, 12745 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12746 } 12747 12748 // Now we're left with the initial truncation itself. 12749 if (N->getOpcode() == ISD::TRUNCATE) 12750 return N->getOperand(0); 12751 12752 // Otherwise, this is a comparison. The operands to be compared have just 12753 // changed type (to i1), but everything else is the same. 12754 return SDValue(N, 0); 12755 } 12756 12757 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12758 DAGCombinerInfo &DCI) const { 12759 SelectionDAG &DAG = DCI.DAG; 12760 SDLoc dl(N); 12761 12762 // If we're tracking CR bits, we need to be careful that we don't have: 12763 // zext(binary-ops(trunc(x), trunc(y))) 12764 // or 12765 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12766 // such that we're unnecessarily moving things into CR bits that can more 12767 // efficiently stay in GPRs. Note that if we're not certain that the high 12768 // bits are set as required by the final extension, we still may need to do 12769 // some masking to get the proper behavior. 12770 12771 // This same functionality is important on PPC64 when dealing with 12772 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12773 // the return values of functions. Because it is so similar, it is handled 12774 // here as well. 12775 12776 if (N->getValueType(0) != MVT::i32 && 12777 N->getValueType(0) != MVT::i64) 12778 return SDValue(); 12779 12780 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12781 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12782 return SDValue(); 12783 12784 if (N->getOperand(0).getOpcode() != ISD::AND && 12785 N->getOperand(0).getOpcode() != ISD::OR && 12786 N->getOperand(0).getOpcode() != ISD::XOR && 12787 N->getOperand(0).getOpcode() != ISD::SELECT && 12788 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12789 return SDValue(); 12790 12791 SmallVector<SDValue, 4> Inputs; 12792 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12793 SmallPtrSet<SDNode *, 16> Visited; 12794 12795 // Visit all inputs, collect all binary operations (and, or, xor and 12796 // select) that are all fed by truncations. 12797 while (!BinOps.empty()) { 12798 SDValue BinOp = BinOps.back(); 12799 BinOps.pop_back(); 12800 12801 if (!Visited.insert(BinOp.getNode()).second) 12802 continue; 12803 12804 PromOps.push_back(BinOp); 12805 12806 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12807 // The condition of the select is not promoted. 12808 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12809 continue; 12810 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12811 continue; 12812 12813 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12814 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12815 Inputs.push_back(BinOp.getOperand(i)); 12816 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12817 BinOp.getOperand(i).getOpcode() == ISD::OR || 12818 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12819 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12820 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12821 BinOps.push_back(BinOp.getOperand(i)); 12822 } else { 12823 // We have an input that is not a truncation or another binary 12824 // operation; we'll abort this transformation. 12825 return SDValue(); 12826 } 12827 } 12828 } 12829 12830 // The operands of a select that must be truncated when the select is 12831 // promoted because the operand is actually part of the to-be-promoted set. 12832 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12833 12834 // Make sure that this is a self-contained cluster of operations (which 12835 // is not quite the same thing as saying that everything has only one 12836 // use). 12837 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12838 if (isa<ConstantSDNode>(Inputs[i])) 12839 continue; 12840 12841 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12842 UE = Inputs[i].getNode()->use_end(); 12843 UI != UE; ++UI) { 12844 SDNode *User = *UI; 12845 if (User != N && !Visited.count(User)) 12846 return SDValue(); 12847 12848 // If we're going to promote the non-output-value operand(s) or SELECT or 12849 // SELECT_CC, record them for truncation. 12850 if (User->getOpcode() == ISD::SELECT) { 12851 if (User->getOperand(0) == Inputs[i]) 12852 SelectTruncOp[0].insert(std::make_pair(User, 12853 User->getOperand(0).getValueType())); 12854 } else if (User->getOpcode() == ISD::SELECT_CC) { 12855 if (User->getOperand(0) == Inputs[i]) 12856 SelectTruncOp[0].insert(std::make_pair(User, 12857 User->getOperand(0).getValueType())); 12858 if (User->getOperand(1) == Inputs[i]) 12859 SelectTruncOp[1].insert(std::make_pair(User, 12860 User->getOperand(1).getValueType())); 12861 } 12862 } 12863 } 12864 12865 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12866 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12867 UE = PromOps[i].getNode()->use_end(); 12868 UI != UE; ++UI) { 12869 SDNode *User = *UI; 12870 if (User != N && !Visited.count(User)) 12871 return SDValue(); 12872 12873 // If we're going to promote the non-output-value operand(s) or SELECT or 12874 // SELECT_CC, record them for truncation. 12875 if (User->getOpcode() == ISD::SELECT) { 12876 if (User->getOperand(0) == PromOps[i]) 12877 SelectTruncOp[0].insert(std::make_pair(User, 12878 User->getOperand(0).getValueType())); 12879 } else if (User->getOpcode() == ISD::SELECT_CC) { 12880 if (User->getOperand(0) == PromOps[i]) 12881 SelectTruncOp[0].insert(std::make_pair(User, 12882 User->getOperand(0).getValueType())); 12883 if (User->getOperand(1) == PromOps[i]) 12884 SelectTruncOp[1].insert(std::make_pair(User, 12885 User->getOperand(1).getValueType())); 12886 } 12887 } 12888 } 12889 12890 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12891 bool ReallyNeedsExt = false; 12892 if (N->getOpcode() != ISD::ANY_EXTEND) { 12893 // If all of the inputs are not already sign/zero extended, then 12894 // we'll still need to do that at the end. 12895 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12896 if (isa<ConstantSDNode>(Inputs[i])) 12897 continue; 12898 12899 unsigned OpBits = 12900 Inputs[i].getOperand(0).getValueSizeInBits(); 12901 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12902 12903 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12904 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12905 APInt::getHighBitsSet(OpBits, 12906 OpBits-PromBits))) || 12907 (N->getOpcode() == ISD::SIGN_EXTEND && 12908 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12909 (OpBits-(PromBits-1)))) { 12910 ReallyNeedsExt = true; 12911 break; 12912 } 12913 } 12914 } 12915 12916 // Replace all inputs, either with the truncation operand, or a 12917 // truncation or extension to the final output type. 12918 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12919 // Constant inputs need to be replaced with the to-be-promoted nodes that 12920 // use them because they might have users outside of the cluster of 12921 // promoted nodes. 12922 if (isa<ConstantSDNode>(Inputs[i])) 12923 continue; 12924 12925 SDValue InSrc = Inputs[i].getOperand(0); 12926 if (Inputs[i].getValueType() == N->getValueType(0)) 12927 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12928 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12929 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12930 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12931 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12932 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12933 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12934 else 12935 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12936 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12937 } 12938 12939 std::list<HandleSDNode> PromOpHandles; 12940 for (auto &PromOp : PromOps) 12941 PromOpHandles.emplace_back(PromOp); 12942 12943 // Replace all operations (these are all the same, but have a different 12944 // (promoted) return type). DAG.getNode will validate that the types of 12945 // a binary operator match, so go through the list in reverse so that 12946 // we've likely promoted both operands first. 12947 while (!PromOpHandles.empty()) { 12948 SDValue PromOp = PromOpHandles.back().getValue(); 12949 PromOpHandles.pop_back(); 12950 12951 unsigned C; 12952 switch (PromOp.getOpcode()) { 12953 default: C = 0; break; 12954 case ISD::SELECT: C = 1; break; 12955 case ISD::SELECT_CC: C = 2; break; 12956 } 12957 12958 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12959 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12960 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12961 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12962 // The to-be-promoted operands of this node have not yet been 12963 // promoted (this should be rare because we're going through the 12964 // list backward, but if one of the operands has several users in 12965 // this cluster of to-be-promoted nodes, it is possible). 12966 PromOpHandles.emplace_front(PromOp); 12967 continue; 12968 } 12969 12970 // For SELECT and SELECT_CC nodes, we do a similar check for any 12971 // to-be-promoted comparison inputs. 12972 if (PromOp.getOpcode() == ISD::SELECT || 12973 PromOp.getOpcode() == ISD::SELECT_CC) { 12974 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12975 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12976 (SelectTruncOp[1].count(PromOp.getNode()) && 12977 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12978 PromOpHandles.emplace_front(PromOp); 12979 continue; 12980 } 12981 } 12982 12983 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12984 PromOp.getNode()->op_end()); 12985 12986 // If this node has constant inputs, then they'll need to be promoted here. 12987 for (unsigned i = 0; i < 2; ++i) { 12988 if (!isa<ConstantSDNode>(Ops[C+i])) 12989 continue; 12990 if (Ops[C+i].getValueType() == N->getValueType(0)) 12991 continue; 12992 12993 if (N->getOpcode() == ISD::SIGN_EXTEND) 12994 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12995 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12996 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12997 else 12998 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12999 } 13000 13001 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13002 // truncate them again to the original value type. 13003 if (PromOp.getOpcode() == ISD::SELECT || 13004 PromOp.getOpcode() == ISD::SELECT_CC) { 13005 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13006 if (SI0 != SelectTruncOp[0].end()) 13007 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13008 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13009 if (SI1 != SelectTruncOp[1].end()) 13010 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13011 } 13012 13013 DAG.ReplaceAllUsesOfValueWith(PromOp, 13014 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13015 } 13016 13017 // Now we're left with the initial extension itself. 13018 if (!ReallyNeedsExt) 13019 return N->getOperand(0); 13020 13021 // To zero extend, just mask off everything except for the first bit (in the 13022 // i1 case). 13023 if (N->getOpcode() == ISD::ZERO_EXTEND) 13024 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13025 DAG.getConstant(APInt::getLowBitsSet( 13026 N->getValueSizeInBits(0), PromBits), 13027 dl, N->getValueType(0))); 13028 13029 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13030 "Invalid extension type"); 13031 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13032 SDValue ShiftCst = 13033 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13034 return DAG.getNode( 13035 ISD::SRA, dl, N->getValueType(0), 13036 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13037 ShiftCst); 13038 } 13039 13040 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13041 DAGCombinerInfo &DCI) const { 13042 assert(N->getOpcode() == ISD::SETCC && 13043 "Should be called with a SETCC node"); 13044 13045 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13046 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13047 SDValue LHS = N->getOperand(0); 13048 SDValue RHS = N->getOperand(1); 13049 13050 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13051 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13052 LHS.hasOneUse()) 13053 std::swap(LHS, RHS); 13054 13055 // x == 0-y --> x+y == 0 13056 // x != 0-y --> x+y != 0 13057 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13058 RHS.hasOneUse()) { 13059 SDLoc DL(N); 13060 SelectionDAG &DAG = DCI.DAG; 13061 EVT VT = N->getValueType(0); 13062 EVT OpVT = LHS.getValueType(); 13063 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13064 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13065 } 13066 } 13067 13068 return DAGCombineTruncBoolExt(N, DCI); 13069 } 13070 13071 // Is this an extending load from an f32 to an f64? 13072 static bool isFPExtLoad(SDValue Op) { 13073 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13074 return LD->getExtensionType() == ISD::EXTLOAD && 13075 Op.getValueType() == MVT::f64; 13076 return false; 13077 } 13078 13079 /// Reduces the number of fp-to-int conversion when building a vector. 13080 /// 13081 /// If this vector is built out of floating to integer conversions, 13082 /// transform it to a vector built out of floating point values followed by a 13083 /// single floating to integer conversion of the vector. 13084 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13085 /// becomes (fptosi (build_vector ($A, $B, ...))) 13086 SDValue PPCTargetLowering:: 13087 combineElementTruncationToVectorTruncation(SDNode *N, 13088 DAGCombinerInfo &DCI) const { 13089 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13090 "Should be called with a BUILD_VECTOR node"); 13091 13092 SelectionDAG &DAG = DCI.DAG; 13093 SDLoc dl(N); 13094 13095 SDValue FirstInput = N->getOperand(0); 13096 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13097 "The input operand must be an fp-to-int conversion."); 13098 13099 // This combine happens after legalization so the fp_to_[su]i nodes are 13100 // already converted to PPCSISD nodes. 13101 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13102 if (FirstConversion == PPCISD::FCTIDZ || 13103 FirstConversion == PPCISD::FCTIDUZ || 13104 FirstConversion == PPCISD::FCTIWZ || 13105 FirstConversion == PPCISD::FCTIWUZ) { 13106 bool IsSplat = true; 13107 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13108 FirstConversion == PPCISD::FCTIWUZ; 13109 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13110 SmallVector<SDValue, 4> Ops; 13111 EVT TargetVT = N->getValueType(0); 13112 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13113 SDValue NextOp = N->getOperand(i); 13114 if (NextOp.getOpcode() != PPCISD::MFVSR) 13115 return SDValue(); 13116 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13117 if (NextConversion != FirstConversion) 13118 return SDValue(); 13119 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13120 // This is not valid if the input was originally double precision. It is 13121 // also not profitable to do unless this is an extending load in which 13122 // case doing this combine will allow us to combine consecutive loads. 13123 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13124 return SDValue(); 13125 if (N->getOperand(i) != FirstInput) 13126 IsSplat = false; 13127 } 13128 13129 // If this is a splat, we leave it as-is since there will be only a single 13130 // fp-to-int conversion followed by a splat of the integer. This is better 13131 // for 32-bit and smaller ints and neutral for 64-bit ints. 13132 if (IsSplat) 13133 return SDValue(); 13134 13135 // Now that we know we have the right type of node, get its operands 13136 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13137 SDValue In = N->getOperand(i).getOperand(0); 13138 if (Is32Bit) { 13139 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13140 // here, we know that all inputs are extending loads so this is safe). 13141 if (In.isUndef()) 13142 Ops.push_back(DAG.getUNDEF(SrcVT)); 13143 else { 13144 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13145 MVT::f32, In.getOperand(0), 13146 DAG.getIntPtrConstant(1, dl)); 13147 Ops.push_back(Trunc); 13148 } 13149 } else 13150 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13151 } 13152 13153 unsigned Opcode; 13154 if (FirstConversion == PPCISD::FCTIDZ || 13155 FirstConversion == PPCISD::FCTIWZ) 13156 Opcode = ISD::FP_TO_SINT; 13157 else 13158 Opcode = ISD::FP_TO_UINT; 13159 13160 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13161 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13162 return DAG.getNode(Opcode, dl, TargetVT, BV); 13163 } 13164 return SDValue(); 13165 } 13166 13167 /// Reduce the number of loads when building a vector. 13168 /// 13169 /// Building a vector out of multiple loads can be converted to a load 13170 /// of the vector type if the loads are consecutive. If the loads are 13171 /// consecutive but in descending order, a shuffle is added at the end 13172 /// to reorder the vector. 13173 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13174 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13175 "Should be called with a BUILD_VECTOR node"); 13176 13177 SDLoc dl(N); 13178 13179 // Return early for non byte-sized type, as they can't be consecutive. 13180 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13181 return SDValue(); 13182 13183 bool InputsAreConsecutiveLoads = true; 13184 bool InputsAreReverseConsecutive = true; 13185 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13186 SDValue FirstInput = N->getOperand(0); 13187 bool IsRoundOfExtLoad = false; 13188 13189 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13190 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13191 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13192 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13193 } 13194 // Not a build vector of (possibly fp_rounded) loads. 13195 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13196 N->getNumOperands() == 1) 13197 return SDValue(); 13198 13199 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13200 // If any inputs are fp_round(extload), they all must be. 13201 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13202 return SDValue(); 13203 13204 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13205 N->getOperand(i); 13206 if (NextInput.getOpcode() != ISD::LOAD) 13207 return SDValue(); 13208 13209 SDValue PreviousInput = 13210 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13211 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13212 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13213 13214 // If any inputs are fp_round(extload), they all must be. 13215 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13216 return SDValue(); 13217 13218 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13219 InputsAreConsecutiveLoads = false; 13220 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13221 InputsAreReverseConsecutive = false; 13222 13223 // Exit early if the loads are neither consecutive nor reverse consecutive. 13224 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13225 return SDValue(); 13226 } 13227 13228 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13229 "The loads cannot be both consecutive and reverse consecutive."); 13230 13231 SDValue FirstLoadOp = 13232 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13233 SDValue LastLoadOp = 13234 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13235 N->getOperand(N->getNumOperands()-1); 13236 13237 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13238 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13239 if (InputsAreConsecutiveLoads) { 13240 assert(LD1 && "Input needs to be a LoadSDNode."); 13241 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13242 LD1->getBasePtr(), LD1->getPointerInfo(), 13243 LD1->getAlignment()); 13244 } 13245 if (InputsAreReverseConsecutive) { 13246 assert(LDL && "Input needs to be a LoadSDNode."); 13247 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13248 LDL->getBasePtr(), LDL->getPointerInfo(), 13249 LDL->getAlignment()); 13250 SmallVector<int, 16> Ops; 13251 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13252 Ops.push_back(i); 13253 13254 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13255 DAG.getUNDEF(N->getValueType(0)), Ops); 13256 } 13257 return SDValue(); 13258 } 13259 13260 // This function adds the required vector_shuffle needed to get 13261 // the elements of the vector extract in the correct position 13262 // as specified by the CorrectElems encoding. 13263 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13264 SDValue Input, uint64_t Elems, 13265 uint64_t CorrectElems) { 13266 SDLoc dl(N); 13267 13268 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13269 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13270 13271 // Knowing the element indices being extracted from the original 13272 // vector and the order in which they're being inserted, just put 13273 // them at element indices required for the instruction. 13274 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13275 if (DAG.getDataLayout().isLittleEndian()) 13276 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13277 else 13278 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13279 CorrectElems = CorrectElems >> 8; 13280 Elems = Elems >> 8; 13281 } 13282 13283 SDValue Shuffle = 13284 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13285 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13286 13287 EVT VT = N->getValueType(0); 13288 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13289 13290 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13291 Input.getValueType().getVectorElementType(), 13292 VT.getVectorNumElements()); 13293 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13294 DAG.getValueType(ExtVT)); 13295 } 13296 13297 // Look for build vector patterns where input operands come from sign 13298 // extended vector_extract elements of specific indices. If the correct indices 13299 // aren't used, add a vector shuffle to fix up the indices and create 13300 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13301 // during instruction selection. 13302 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13303 // This array encodes the indices that the vector sign extend instructions 13304 // extract from when extending from one type to another for both BE and LE. 13305 // The right nibble of each byte corresponds to the LE incides. 13306 // and the left nibble of each byte corresponds to the BE incides. 13307 // For example: 0x3074B8FC byte->word 13308 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13309 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13310 // For example: 0x000070F8 byte->double word 13311 // For LE: the allowed indices are: 0x0,0x8 13312 // For BE: the allowed indices are: 0x7,0xF 13313 uint64_t TargetElems[] = { 13314 0x3074B8FC, // b->w 13315 0x000070F8, // b->d 13316 0x10325476, // h->w 13317 0x00003074, // h->d 13318 0x00001032, // w->d 13319 }; 13320 13321 uint64_t Elems = 0; 13322 int Index; 13323 SDValue Input; 13324 13325 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13326 if (!Op) 13327 return false; 13328 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13329 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13330 return false; 13331 13332 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13333 // of the right width. 13334 SDValue Extract = Op.getOperand(0); 13335 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13336 Extract = Extract.getOperand(0); 13337 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13338 return false; 13339 13340 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13341 if (!ExtOp) 13342 return false; 13343 13344 Index = ExtOp->getZExtValue(); 13345 if (Input && Input != Extract.getOperand(0)) 13346 return false; 13347 13348 if (!Input) 13349 Input = Extract.getOperand(0); 13350 13351 Elems = Elems << 8; 13352 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13353 Elems |= Index; 13354 13355 return true; 13356 }; 13357 13358 // If the build vector operands aren't sign extended vector extracts, 13359 // of the same input vector, then return. 13360 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13361 if (!isSExtOfVecExtract(N->getOperand(i))) { 13362 return SDValue(); 13363 } 13364 } 13365 13366 // If the vector extract indicies are not correct, add the appropriate 13367 // vector_shuffle. 13368 int TgtElemArrayIdx; 13369 int InputSize = Input.getValueType().getScalarSizeInBits(); 13370 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13371 if (InputSize + OutputSize == 40) 13372 TgtElemArrayIdx = 0; 13373 else if (InputSize + OutputSize == 72) 13374 TgtElemArrayIdx = 1; 13375 else if (InputSize + OutputSize == 48) 13376 TgtElemArrayIdx = 2; 13377 else if (InputSize + OutputSize == 80) 13378 TgtElemArrayIdx = 3; 13379 else if (InputSize + OutputSize == 96) 13380 TgtElemArrayIdx = 4; 13381 else 13382 return SDValue(); 13383 13384 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13385 CorrectElems = DAG.getDataLayout().isLittleEndian() 13386 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13387 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13388 if (Elems != CorrectElems) { 13389 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13390 } 13391 13392 // Regular lowering will catch cases where a shuffle is not needed. 13393 return SDValue(); 13394 } 13395 13396 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13397 DAGCombinerInfo &DCI) const { 13398 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13399 "Should be called with a BUILD_VECTOR node"); 13400 13401 SelectionDAG &DAG = DCI.DAG; 13402 SDLoc dl(N); 13403 13404 if (!Subtarget.hasVSX()) 13405 return SDValue(); 13406 13407 // The target independent DAG combiner will leave a build_vector of 13408 // float-to-int conversions intact. We can generate MUCH better code for 13409 // a float-to-int conversion of a vector of floats. 13410 SDValue FirstInput = N->getOperand(0); 13411 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13412 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13413 if (Reduced) 13414 return Reduced; 13415 } 13416 13417 // If we're building a vector out of consecutive loads, just load that 13418 // vector type. 13419 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13420 if (Reduced) 13421 return Reduced; 13422 13423 // If we're building a vector out of extended elements from another vector 13424 // we have P9 vector integer extend instructions. The code assumes legal 13425 // input types (i.e. it can't handle things like v4i16) so do not run before 13426 // legalization. 13427 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13428 Reduced = combineBVOfVecSExt(N, DAG); 13429 if (Reduced) 13430 return Reduced; 13431 } 13432 13433 13434 if (N->getValueType(0) != MVT::v2f64) 13435 return SDValue(); 13436 13437 // Looking for: 13438 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13439 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13440 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13441 return SDValue(); 13442 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13443 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13444 return SDValue(); 13445 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13446 return SDValue(); 13447 13448 SDValue Ext1 = FirstInput.getOperand(0); 13449 SDValue Ext2 = N->getOperand(1).getOperand(0); 13450 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13451 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13452 return SDValue(); 13453 13454 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13455 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13456 if (!Ext1Op || !Ext2Op) 13457 return SDValue(); 13458 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13459 Ext1.getOperand(0) != Ext2.getOperand(0)) 13460 return SDValue(); 13461 13462 int FirstElem = Ext1Op->getZExtValue(); 13463 int SecondElem = Ext2Op->getZExtValue(); 13464 int SubvecIdx; 13465 if (FirstElem == 0 && SecondElem == 1) 13466 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13467 else if (FirstElem == 2 && SecondElem == 3) 13468 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13469 else 13470 return SDValue(); 13471 13472 SDValue SrcVec = Ext1.getOperand(0); 13473 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13474 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13475 return DAG.getNode(NodeType, dl, MVT::v2f64, 13476 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13477 } 13478 13479 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13480 DAGCombinerInfo &DCI) const { 13481 assert((N->getOpcode() == ISD::SINT_TO_FP || 13482 N->getOpcode() == ISD::UINT_TO_FP) && 13483 "Need an int -> FP conversion node here"); 13484 13485 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13486 return SDValue(); 13487 13488 SelectionDAG &DAG = DCI.DAG; 13489 SDLoc dl(N); 13490 SDValue Op(N, 0); 13491 13492 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13493 // from the hardware. 13494 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13495 return SDValue(); 13496 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13497 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13498 return SDValue(); 13499 13500 SDValue FirstOperand(Op.getOperand(0)); 13501 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13502 (FirstOperand.getValueType() == MVT::i8 || 13503 FirstOperand.getValueType() == MVT::i16); 13504 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13505 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13506 bool DstDouble = Op.getValueType() == MVT::f64; 13507 unsigned ConvOp = Signed ? 13508 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13509 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13510 SDValue WidthConst = 13511 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13512 dl, false); 13513 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13514 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13515 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13516 DAG.getVTList(MVT::f64, MVT::Other), 13517 Ops, MVT::i8, LDN->getMemOperand()); 13518 13519 // For signed conversion, we need to sign-extend the value in the VSR 13520 if (Signed) { 13521 SDValue ExtOps[] = { Ld, WidthConst }; 13522 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13523 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13524 } else 13525 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13526 } 13527 13528 13529 // For i32 intermediate values, unfortunately, the conversion functions 13530 // leave the upper 32 bits of the value are undefined. Within the set of 13531 // scalar instructions, we have no method for zero- or sign-extending the 13532 // value. Thus, we cannot handle i32 intermediate values here. 13533 if (Op.getOperand(0).getValueType() == MVT::i32) 13534 return SDValue(); 13535 13536 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13537 "UINT_TO_FP is supported only with FPCVT"); 13538 13539 // If we have FCFIDS, then use it when converting to single-precision. 13540 // Otherwise, convert to double-precision and then round. 13541 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13542 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13543 : PPCISD::FCFIDS) 13544 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13545 : PPCISD::FCFID); 13546 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13547 ? MVT::f32 13548 : MVT::f64; 13549 13550 // If we're converting from a float, to an int, and back to a float again, 13551 // then we don't need the store/load pair at all. 13552 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13553 Subtarget.hasFPCVT()) || 13554 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13555 SDValue Src = Op.getOperand(0).getOperand(0); 13556 if (Src.getValueType() == MVT::f32) { 13557 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13558 DCI.AddToWorklist(Src.getNode()); 13559 } else if (Src.getValueType() != MVT::f64) { 13560 // Make sure that we don't pick up a ppc_fp128 source value. 13561 return SDValue(); 13562 } 13563 13564 unsigned FCTOp = 13565 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13566 PPCISD::FCTIDUZ; 13567 13568 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13569 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13570 13571 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13572 FP = DAG.getNode(ISD::FP_ROUND, dl, 13573 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13574 DCI.AddToWorklist(FP.getNode()); 13575 } 13576 13577 return FP; 13578 } 13579 13580 return SDValue(); 13581 } 13582 13583 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13584 // builtins) into loads with swaps. 13585 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13586 DAGCombinerInfo &DCI) const { 13587 SelectionDAG &DAG = DCI.DAG; 13588 SDLoc dl(N); 13589 SDValue Chain; 13590 SDValue Base; 13591 MachineMemOperand *MMO; 13592 13593 switch (N->getOpcode()) { 13594 default: 13595 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13596 case ISD::LOAD: { 13597 LoadSDNode *LD = cast<LoadSDNode>(N); 13598 Chain = LD->getChain(); 13599 Base = LD->getBasePtr(); 13600 MMO = LD->getMemOperand(); 13601 // If the MMO suggests this isn't a load of a full vector, leave 13602 // things alone. For a built-in, we have to make the change for 13603 // correctness, so if there is a size problem that will be a bug. 13604 if (MMO->getSize() < 16) 13605 return SDValue(); 13606 break; 13607 } 13608 case ISD::INTRINSIC_W_CHAIN: { 13609 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13610 Chain = Intrin->getChain(); 13611 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13612 // us what we want. Get operand 2 instead. 13613 Base = Intrin->getOperand(2); 13614 MMO = Intrin->getMemOperand(); 13615 break; 13616 } 13617 } 13618 13619 MVT VecTy = N->getValueType(0).getSimpleVT(); 13620 13621 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13622 // aligned and the type is a vector with elements up to 4 bytes 13623 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13624 VecTy.getScalarSizeInBits() <= 32) { 13625 return SDValue(); 13626 } 13627 13628 SDValue LoadOps[] = { Chain, Base }; 13629 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13630 DAG.getVTList(MVT::v2f64, MVT::Other), 13631 LoadOps, MVT::v2f64, MMO); 13632 13633 DCI.AddToWorklist(Load.getNode()); 13634 Chain = Load.getValue(1); 13635 SDValue Swap = DAG.getNode( 13636 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13637 DCI.AddToWorklist(Swap.getNode()); 13638 13639 // Add a bitcast if the resulting load type doesn't match v2f64. 13640 if (VecTy != MVT::v2f64) { 13641 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13642 DCI.AddToWorklist(N.getNode()); 13643 // Package {bitcast value, swap's chain} to match Load's shape. 13644 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13645 N, Swap.getValue(1)); 13646 } 13647 13648 return Swap; 13649 } 13650 13651 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13652 // builtins) into stores with swaps. 13653 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13654 DAGCombinerInfo &DCI) const { 13655 SelectionDAG &DAG = DCI.DAG; 13656 SDLoc dl(N); 13657 SDValue Chain; 13658 SDValue Base; 13659 unsigned SrcOpnd; 13660 MachineMemOperand *MMO; 13661 13662 switch (N->getOpcode()) { 13663 default: 13664 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13665 case ISD::STORE: { 13666 StoreSDNode *ST = cast<StoreSDNode>(N); 13667 Chain = ST->getChain(); 13668 Base = ST->getBasePtr(); 13669 MMO = ST->getMemOperand(); 13670 SrcOpnd = 1; 13671 // If the MMO suggests this isn't a store of a full vector, leave 13672 // things alone. For a built-in, we have to make the change for 13673 // correctness, so if there is a size problem that will be a bug. 13674 if (MMO->getSize() < 16) 13675 return SDValue(); 13676 break; 13677 } 13678 case ISD::INTRINSIC_VOID: { 13679 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13680 Chain = Intrin->getChain(); 13681 // Intrin->getBasePtr() oddly does not get what we want. 13682 Base = Intrin->getOperand(3); 13683 MMO = Intrin->getMemOperand(); 13684 SrcOpnd = 2; 13685 break; 13686 } 13687 } 13688 13689 SDValue Src = N->getOperand(SrcOpnd); 13690 MVT VecTy = Src.getValueType().getSimpleVT(); 13691 13692 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13693 // aligned and the type is a vector with elements up to 4 bytes 13694 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13695 VecTy.getScalarSizeInBits() <= 32) { 13696 return SDValue(); 13697 } 13698 13699 // All stores are done as v2f64 and possible bit cast. 13700 if (VecTy != MVT::v2f64) { 13701 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13702 DCI.AddToWorklist(Src.getNode()); 13703 } 13704 13705 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13706 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13707 DCI.AddToWorklist(Swap.getNode()); 13708 Chain = Swap.getValue(1); 13709 SDValue StoreOps[] = { Chain, Swap, Base }; 13710 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13711 DAG.getVTList(MVT::Other), 13712 StoreOps, VecTy, MMO); 13713 DCI.AddToWorklist(Store.getNode()); 13714 return Store; 13715 } 13716 13717 // Handle DAG combine for STORE (FP_TO_INT F). 13718 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13719 DAGCombinerInfo &DCI) const { 13720 13721 SelectionDAG &DAG = DCI.DAG; 13722 SDLoc dl(N); 13723 unsigned Opcode = N->getOperand(1).getOpcode(); 13724 13725 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13726 && "Not a FP_TO_INT Instruction!"); 13727 13728 SDValue Val = N->getOperand(1).getOperand(0); 13729 EVT Op1VT = N->getOperand(1).getValueType(); 13730 EVT ResVT = Val.getValueType(); 13731 13732 // Floating point types smaller than 32 bits are not legal on Power. 13733 if (ResVT.getScalarSizeInBits() < 32) 13734 return SDValue(); 13735 13736 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13737 bool ValidTypeForStoreFltAsInt = 13738 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13739 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13740 13741 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13742 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13743 return SDValue(); 13744 13745 // Extend f32 values to f64 13746 if (ResVT.getScalarSizeInBits() == 32) { 13747 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13748 DCI.AddToWorklist(Val.getNode()); 13749 } 13750 13751 // Set signed or unsigned conversion opcode. 13752 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13753 PPCISD::FP_TO_SINT_IN_VSR : 13754 PPCISD::FP_TO_UINT_IN_VSR; 13755 13756 Val = DAG.getNode(ConvOpcode, 13757 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13758 DCI.AddToWorklist(Val.getNode()); 13759 13760 // Set number of bytes being converted. 13761 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13762 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13763 DAG.getIntPtrConstant(ByteSize, dl, false), 13764 DAG.getValueType(Op1VT) }; 13765 13766 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13767 DAG.getVTList(MVT::Other), Ops, 13768 cast<StoreSDNode>(N)->getMemoryVT(), 13769 cast<StoreSDNode>(N)->getMemOperand()); 13770 13771 DCI.AddToWorklist(Val.getNode()); 13772 return Val; 13773 } 13774 13775 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 13776 // Check that the source of the element keeps flipping 13777 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 13778 bool PrevElemFromFirstVec = Mask[0] < NumElts; 13779 for (int i = 1, e = Mask.size(); i < e; i++) { 13780 if (PrevElemFromFirstVec && Mask[i] < NumElts) 13781 return false; 13782 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 13783 return false; 13784 PrevElemFromFirstVec = !PrevElemFromFirstVec; 13785 } 13786 return true; 13787 } 13788 13789 static bool isSplatBV(SDValue Op) { 13790 if (Op.getOpcode() != ISD::BUILD_VECTOR) 13791 return false; 13792 SDValue FirstOp; 13793 13794 // Find first non-undef input. 13795 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 13796 FirstOp = Op.getOperand(i); 13797 if (!FirstOp.isUndef()) 13798 break; 13799 } 13800 13801 // All inputs are undef or the same as the first non-undef input. 13802 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 13803 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 13804 return false; 13805 return true; 13806 } 13807 13808 static SDValue isScalarToVec(SDValue Op) { 13809 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13810 return Op; 13811 if (Op.getOpcode() != ISD::BITCAST) 13812 return SDValue(); 13813 Op = Op.getOperand(0); 13814 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13815 return Op; 13816 return SDValue(); 13817 } 13818 13819 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 13820 int LHSMaxIdx, int RHSMinIdx, 13821 int RHSMaxIdx, int HalfVec) { 13822 for (int i = 0, e = ShuffV.size(); i < e; i++) { 13823 int Idx = ShuffV[i]; 13824 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 13825 ShuffV[i] += HalfVec; 13826 } 13827 return; 13828 } 13829 13830 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 13831 // the original is: 13832 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 13833 // In such a case, just change the shuffle mask to extract the element 13834 // from the permuted index. 13835 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 13836 SDLoc dl(OrigSToV); 13837 EVT VT = OrigSToV.getValueType(); 13838 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 13839 "Expecting a SCALAR_TO_VECTOR here"); 13840 SDValue Input = OrigSToV.getOperand(0); 13841 13842 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13843 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 13844 SDValue OrigVector = Input.getOperand(0); 13845 13846 // Can't handle non-const element indices or different vector types 13847 // for the input to the extract and the output of the scalar_to_vector. 13848 if (Idx && VT == OrigVector.getValueType()) { 13849 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 13850 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 13851 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 13852 } 13853 } 13854 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 13855 OrigSToV.getOperand(0)); 13856 } 13857 13858 // On little endian subtargets, combine shuffles such as: 13859 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 13860 // into: 13861 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 13862 // because the latter can be matched to a single instruction merge. 13863 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 13864 // to put the value into element zero. Adjust the shuffle mask so that the 13865 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 13866 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 13867 SelectionDAG &DAG) const { 13868 SDValue LHS = SVN->getOperand(0); 13869 SDValue RHS = SVN->getOperand(1); 13870 auto Mask = SVN->getMask(); 13871 int NumElts = LHS.getValueType().getVectorNumElements(); 13872 SDValue Res(SVN, 0); 13873 SDLoc dl(SVN); 13874 13875 // None of these combines are useful on big endian systems since the ISA 13876 // already has a big endian bias. 13877 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13878 return Res; 13879 13880 // If this is not a shuffle of a shuffle and the first element comes from 13881 // the second vector, canonicalize to the commuted form. This will make it 13882 // more likely to match one of the single instruction patterns. 13883 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 13884 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 13885 std::swap(LHS, RHS); 13886 Res = DAG.getCommutedVectorShuffle(*SVN); 13887 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13888 } 13889 13890 // Adjust the shuffle mask if either input vector comes from a 13891 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 13892 // form (to prevent the need for a swap). 13893 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 13894 SDValue SToVLHS = isScalarToVec(LHS); 13895 SDValue SToVRHS = isScalarToVec(RHS); 13896 if (SToVLHS || SToVRHS) { 13897 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 13898 : SToVRHS.getValueType().getVectorNumElements(); 13899 int NumEltsOut = ShuffV.size(); 13900 13901 // Initially assume that neither input is permuted. These will be adjusted 13902 // accordingly if either input is. 13903 int LHSMaxIdx = -1; 13904 int RHSMinIdx = -1; 13905 int RHSMaxIdx = -1; 13906 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 13907 13908 // Get the permuted scalar to vector nodes for the source(s) that come from 13909 // ISD::SCALAR_TO_VECTOR. 13910 if (SToVLHS) { 13911 // Set up the values for the shuffle vector fixup. 13912 LHSMaxIdx = NumEltsOut / NumEltsIn; 13913 SToVLHS = getSToVPermuted(SToVLHS, DAG); 13914 if (SToVLHS.getValueType() != LHS.getValueType()) 13915 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 13916 LHS = SToVLHS; 13917 } 13918 if (SToVRHS) { 13919 RHSMinIdx = NumEltsOut; 13920 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 13921 SToVRHS = getSToVPermuted(SToVRHS, DAG); 13922 if (SToVRHS.getValueType() != RHS.getValueType()) 13923 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 13924 RHS = SToVRHS; 13925 } 13926 13927 // Fix up the shuffle mask to reflect where the desired element actually is. 13928 // The minimum and maximum indices that correspond to element zero for both 13929 // the LHS and RHS are computed and will control which shuffle mask entries 13930 // are to be changed. For example, if the RHS is permuted, any shuffle mask 13931 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 13932 // HalfVec to refer to the corresponding element in the permuted vector. 13933 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 13934 HalfVec); 13935 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 13936 13937 // We may have simplified away the shuffle. We won't be able to do anything 13938 // further with it here. 13939 if (!isa<ShuffleVectorSDNode>(Res)) 13940 return Res; 13941 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13942 } 13943 13944 // The common case after we commuted the shuffle is that the RHS is a splat 13945 // and we have elements coming in from the splat at indices that are not 13946 // conducive to using a merge. 13947 // Example: 13948 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 13949 if (!isSplatBV(RHS)) 13950 return Res; 13951 13952 // We are looking for a mask such that all even elements are from 13953 // one vector and all odd elements from the other. 13954 if (!isAlternatingShuffMask(Mask, NumElts)) 13955 return Res; 13956 13957 // Adjust the mask so we are pulling in the same index from the splat 13958 // as the index from the interesting vector in consecutive elements. 13959 // Example (even elements from first vector): 13960 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 13961 if (Mask[0] < NumElts) 13962 for (int i = 1, e = Mask.size(); i < e; i += 2) 13963 ShuffV[i] = (ShuffV[i - 1] + NumElts); 13964 // Example (odd elements from first vector): 13965 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 13966 else 13967 for (int i = 0, e = Mask.size(); i < e; i += 2) 13968 ShuffV[i] = (ShuffV[i + 1] + NumElts); 13969 13970 // If the RHS has undefs, we need to remove them since we may have created 13971 // a shuffle that adds those instead of the splat value. 13972 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 13973 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 13974 13975 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 13976 return Res; 13977 } 13978 13979 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13980 LSBaseSDNode *LSBase, 13981 DAGCombinerInfo &DCI) const { 13982 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13983 "Not a reverse memop pattern!"); 13984 13985 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13986 auto Mask = SVN->getMask(); 13987 int i = 0; 13988 auto I = Mask.rbegin(); 13989 auto E = Mask.rend(); 13990 13991 for (; I != E; ++I) { 13992 if (*I != i) 13993 return false; 13994 i++; 13995 } 13996 return true; 13997 }; 13998 13999 SelectionDAG &DAG = DCI.DAG; 14000 EVT VT = SVN->getValueType(0); 14001 14002 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14003 return SDValue(); 14004 14005 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14006 // See comment in PPCVSXSwapRemoval.cpp. 14007 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14008 if (!Subtarget.hasP9Vector()) 14009 return SDValue(); 14010 14011 if(!IsElementReverse(SVN)) 14012 return SDValue(); 14013 14014 if (LSBase->getOpcode() == ISD::LOAD) { 14015 SDLoc dl(SVN); 14016 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14017 return DAG.getMemIntrinsicNode( 14018 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14019 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14020 } 14021 14022 if (LSBase->getOpcode() == ISD::STORE) { 14023 SDLoc dl(LSBase); 14024 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14025 LSBase->getBasePtr()}; 14026 return DAG.getMemIntrinsicNode( 14027 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14028 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14029 } 14030 14031 llvm_unreachable("Expected a load or store node here"); 14032 } 14033 14034 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14035 DAGCombinerInfo &DCI) const { 14036 SelectionDAG &DAG = DCI.DAG; 14037 SDLoc dl(N); 14038 switch (N->getOpcode()) { 14039 default: break; 14040 case ISD::ADD: 14041 return combineADD(N, DCI); 14042 case ISD::SHL: 14043 return combineSHL(N, DCI); 14044 case ISD::SRA: 14045 return combineSRA(N, DCI); 14046 case ISD::SRL: 14047 return combineSRL(N, DCI); 14048 case ISD::MUL: 14049 return combineMUL(N, DCI); 14050 case ISD::FMA: 14051 case PPCISD::FNMSUB: 14052 return combineFMALike(N, DCI); 14053 case PPCISD::SHL: 14054 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14055 return N->getOperand(0); 14056 break; 14057 case PPCISD::SRL: 14058 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14059 return N->getOperand(0); 14060 break; 14061 case PPCISD::SRA: 14062 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14063 if (C->isNullValue() || // 0 >>s V -> 0. 14064 C->isAllOnesValue()) // -1 >>s V -> -1. 14065 return N->getOperand(0); 14066 } 14067 break; 14068 case ISD::SIGN_EXTEND: 14069 case ISD::ZERO_EXTEND: 14070 case ISD::ANY_EXTEND: 14071 return DAGCombineExtBoolTrunc(N, DCI); 14072 case ISD::TRUNCATE: 14073 return combineTRUNCATE(N, DCI); 14074 case ISD::SETCC: 14075 if (SDValue CSCC = combineSetCC(N, DCI)) 14076 return CSCC; 14077 LLVM_FALLTHROUGH; 14078 case ISD::SELECT_CC: 14079 return DAGCombineTruncBoolExt(N, DCI); 14080 case ISD::SINT_TO_FP: 14081 case ISD::UINT_TO_FP: 14082 return combineFPToIntToFP(N, DCI); 14083 case ISD::VECTOR_SHUFFLE: 14084 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14085 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14086 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14087 } 14088 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14089 case ISD::STORE: { 14090 14091 EVT Op1VT = N->getOperand(1).getValueType(); 14092 unsigned Opcode = N->getOperand(1).getOpcode(); 14093 14094 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14095 SDValue Val= combineStoreFPToInt(N, DCI); 14096 if (Val) 14097 return Val; 14098 } 14099 14100 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14101 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14102 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14103 if (Val) 14104 return Val; 14105 } 14106 14107 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14108 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14109 N->getOperand(1).getNode()->hasOneUse() && 14110 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14111 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14112 14113 // STBRX can only handle simple types and it makes no sense to store less 14114 // two bytes in byte-reversed order. 14115 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14116 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14117 break; 14118 14119 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14120 // Do an any-extend to 32-bits if this is a half-word input. 14121 if (BSwapOp.getValueType() == MVT::i16) 14122 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14123 14124 // If the type of BSWAP operand is wider than stored memory width 14125 // it need to be shifted to the right side before STBRX. 14126 if (Op1VT.bitsGT(mVT)) { 14127 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14128 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14129 DAG.getConstant(Shift, dl, MVT::i32)); 14130 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14131 if (Op1VT == MVT::i64) 14132 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14133 } 14134 14135 SDValue Ops[] = { 14136 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14137 }; 14138 return 14139 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14140 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14141 cast<StoreSDNode>(N)->getMemOperand()); 14142 } 14143 14144 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14145 // So it can increase the chance of CSE constant construction. 14146 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14147 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14148 // Need to sign-extended to 64-bits to handle negative values. 14149 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14150 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14151 MemVT.getSizeInBits()); 14152 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14153 14154 // DAG.getTruncStore() can't be used here because it doesn't accept 14155 // the general (base + offset) addressing mode. 14156 // So we use UpdateNodeOperands and setTruncatingStore instead. 14157 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14158 N->getOperand(3)); 14159 cast<StoreSDNode>(N)->setTruncatingStore(true); 14160 return SDValue(N, 0); 14161 } 14162 14163 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14164 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14165 if (Op1VT.isSimple()) { 14166 MVT StoreVT = Op1VT.getSimpleVT(); 14167 if (Subtarget.needsSwapsForVSXMemOps() && 14168 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14169 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14170 return expandVSXStoreForLE(N, DCI); 14171 } 14172 break; 14173 } 14174 case ISD::LOAD: { 14175 LoadSDNode *LD = cast<LoadSDNode>(N); 14176 EVT VT = LD->getValueType(0); 14177 14178 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14179 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14180 if (VT.isSimple()) { 14181 MVT LoadVT = VT.getSimpleVT(); 14182 if (Subtarget.needsSwapsForVSXMemOps() && 14183 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14184 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14185 return expandVSXLoadForLE(N, DCI); 14186 } 14187 14188 // We sometimes end up with a 64-bit integer load, from which we extract 14189 // two single-precision floating-point numbers. This happens with 14190 // std::complex<float>, and other similar structures, because of the way we 14191 // canonicalize structure copies. However, if we lack direct moves, 14192 // then the final bitcasts from the extracted integer values to the 14193 // floating-point numbers turn into store/load pairs. Even with direct moves, 14194 // just loading the two floating-point numbers is likely better. 14195 auto ReplaceTwoFloatLoad = [&]() { 14196 if (VT != MVT::i64) 14197 return false; 14198 14199 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14200 LD->isVolatile()) 14201 return false; 14202 14203 // We're looking for a sequence like this: 14204 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14205 // t16: i64 = srl t13, Constant:i32<32> 14206 // t17: i32 = truncate t16 14207 // t18: f32 = bitcast t17 14208 // t19: i32 = truncate t13 14209 // t20: f32 = bitcast t19 14210 14211 if (!LD->hasNUsesOfValue(2, 0)) 14212 return false; 14213 14214 auto UI = LD->use_begin(); 14215 while (UI.getUse().getResNo() != 0) ++UI; 14216 SDNode *Trunc = *UI++; 14217 while (UI.getUse().getResNo() != 0) ++UI; 14218 SDNode *RightShift = *UI; 14219 if (Trunc->getOpcode() != ISD::TRUNCATE) 14220 std::swap(Trunc, RightShift); 14221 14222 if (Trunc->getOpcode() != ISD::TRUNCATE || 14223 Trunc->getValueType(0) != MVT::i32 || 14224 !Trunc->hasOneUse()) 14225 return false; 14226 if (RightShift->getOpcode() != ISD::SRL || 14227 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14228 RightShift->getConstantOperandVal(1) != 32 || 14229 !RightShift->hasOneUse()) 14230 return false; 14231 14232 SDNode *Trunc2 = *RightShift->use_begin(); 14233 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14234 Trunc2->getValueType(0) != MVT::i32 || 14235 !Trunc2->hasOneUse()) 14236 return false; 14237 14238 SDNode *Bitcast = *Trunc->use_begin(); 14239 SDNode *Bitcast2 = *Trunc2->use_begin(); 14240 14241 if (Bitcast->getOpcode() != ISD::BITCAST || 14242 Bitcast->getValueType(0) != MVT::f32) 14243 return false; 14244 if (Bitcast2->getOpcode() != ISD::BITCAST || 14245 Bitcast2->getValueType(0) != MVT::f32) 14246 return false; 14247 14248 if (Subtarget.isLittleEndian()) 14249 std::swap(Bitcast, Bitcast2); 14250 14251 // Bitcast has the second float (in memory-layout order) and Bitcast2 14252 // has the first one. 14253 14254 SDValue BasePtr = LD->getBasePtr(); 14255 if (LD->isIndexed()) { 14256 assert(LD->getAddressingMode() == ISD::PRE_INC && 14257 "Non-pre-inc AM on PPC?"); 14258 BasePtr = 14259 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14260 LD->getOffset()); 14261 } 14262 14263 auto MMOFlags = 14264 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14265 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14266 LD->getPointerInfo(), LD->getAlignment(), 14267 MMOFlags, LD->getAAInfo()); 14268 SDValue AddPtr = 14269 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14270 BasePtr, DAG.getIntPtrConstant(4, dl)); 14271 SDValue FloatLoad2 = DAG.getLoad( 14272 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14273 LD->getPointerInfo().getWithOffset(4), 14274 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14275 14276 if (LD->isIndexed()) { 14277 // Note that DAGCombine should re-form any pre-increment load(s) from 14278 // what is produced here if that makes sense. 14279 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14280 } 14281 14282 DCI.CombineTo(Bitcast2, FloatLoad); 14283 DCI.CombineTo(Bitcast, FloatLoad2); 14284 14285 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14286 SDValue(FloatLoad2.getNode(), 1)); 14287 return true; 14288 }; 14289 14290 if (ReplaceTwoFloatLoad()) 14291 return SDValue(N, 0); 14292 14293 EVT MemVT = LD->getMemoryVT(); 14294 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14295 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14296 if (LD->isUnindexed() && VT.isVector() && 14297 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14298 // P8 and later hardware should just use LOAD. 14299 !Subtarget.hasP8Vector() && 14300 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14301 VT == MVT::v4f32))) && 14302 LD->getAlign() < ABIAlignment) { 14303 // This is a type-legal unaligned Altivec load. 14304 SDValue Chain = LD->getChain(); 14305 SDValue Ptr = LD->getBasePtr(); 14306 bool isLittleEndian = Subtarget.isLittleEndian(); 14307 14308 // This implements the loading of unaligned vectors as described in 14309 // the venerable Apple Velocity Engine overview. Specifically: 14310 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14311 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14312 // 14313 // The general idea is to expand a sequence of one or more unaligned 14314 // loads into an alignment-based permutation-control instruction (lvsl 14315 // or lvsr), a series of regular vector loads (which always truncate 14316 // their input address to an aligned address), and a series of 14317 // permutations. The results of these permutations are the requested 14318 // loaded values. The trick is that the last "extra" load is not taken 14319 // from the address you might suspect (sizeof(vector) bytes after the 14320 // last requested load), but rather sizeof(vector) - 1 bytes after the 14321 // last requested vector. The point of this is to avoid a page fault if 14322 // the base address happened to be aligned. This works because if the 14323 // base address is aligned, then adding less than a full vector length 14324 // will cause the last vector in the sequence to be (re)loaded. 14325 // Otherwise, the next vector will be fetched as you might suspect was 14326 // necessary. 14327 14328 // We might be able to reuse the permutation generation from 14329 // a different base address offset from this one by an aligned amount. 14330 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14331 // optimization later. 14332 Intrinsic::ID Intr, IntrLD, IntrPerm; 14333 MVT PermCntlTy, PermTy, LDTy; 14334 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14335 : Intrinsic::ppc_altivec_lvsl; 14336 IntrLD = Intrinsic::ppc_altivec_lvx; 14337 IntrPerm = Intrinsic::ppc_altivec_vperm; 14338 PermCntlTy = MVT::v16i8; 14339 PermTy = MVT::v4i32; 14340 LDTy = MVT::v4i32; 14341 14342 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14343 14344 // Create the new MMO for the new base load. It is like the original MMO, 14345 // but represents an area in memory almost twice the vector size centered 14346 // on the original address. If the address is unaligned, we might start 14347 // reading up to (sizeof(vector)-1) bytes below the address of the 14348 // original unaligned load. 14349 MachineFunction &MF = DAG.getMachineFunction(); 14350 MachineMemOperand *BaseMMO = 14351 MF.getMachineMemOperand(LD->getMemOperand(), 14352 -(long)MemVT.getStoreSize()+1, 14353 2*MemVT.getStoreSize()-1); 14354 14355 // Create the new base load. 14356 SDValue LDXIntID = 14357 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14358 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14359 SDValue BaseLoad = 14360 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14361 DAG.getVTList(PermTy, MVT::Other), 14362 BaseLoadOps, LDTy, BaseMMO); 14363 14364 // Note that the value of IncOffset (which is provided to the next 14365 // load's pointer info offset value, and thus used to calculate the 14366 // alignment), and the value of IncValue (which is actually used to 14367 // increment the pointer value) are different! This is because we 14368 // require the next load to appear to be aligned, even though it 14369 // is actually offset from the base pointer by a lesser amount. 14370 int IncOffset = VT.getSizeInBits() / 8; 14371 int IncValue = IncOffset; 14372 14373 // Walk (both up and down) the chain looking for another load at the real 14374 // (aligned) offset (the alignment of the other load does not matter in 14375 // this case). If found, then do not use the offset reduction trick, as 14376 // that will prevent the loads from being later combined (as they would 14377 // otherwise be duplicates). 14378 if (!findConsecutiveLoad(LD, DAG)) 14379 --IncValue; 14380 14381 SDValue Increment = 14382 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14383 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14384 14385 MachineMemOperand *ExtraMMO = 14386 MF.getMachineMemOperand(LD->getMemOperand(), 14387 1, 2*MemVT.getStoreSize()-1); 14388 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14389 SDValue ExtraLoad = 14390 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14391 DAG.getVTList(PermTy, MVT::Other), 14392 ExtraLoadOps, LDTy, ExtraMMO); 14393 14394 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14395 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14396 14397 // Because vperm has a big-endian bias, we must reverse the order 14398 // of the input vectors and complement the permute control vector 14399 // when generating little endian code. We have already handled the 14400 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14401 // and ExtraLoad here. 14402 SDValue Perm; 14403 if (isLittleEndian) 14404 Perm = BuildIntrinsicOp(IntrPerm, 14405 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14406 else 14407 Perm = BuildIntrinsicOp(IntrPerm, 14408 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14409 14410 if (VT != PermTy) 14411 Perm = Subtarget.hasAltivec() 14412 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14413 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14414 DAG.getTargetConstant(1, dl, MVT::i64)); 14415 // second argument is 1 because this rounding 14416 // is always exact. 14417 14418 // The output of the permutation is our loaded result, the TokenFactor is 14419 // our new chain. 14420 DCI.CombineTo(N, Perm, TF); 14421 return SDValue(N, 0); 14422 } 14423 } 14424 break; 14425 case ISD::INTRINSIC_WO_CHAIN: { 14426 bool isLittleEndian = Subtarget.isLittleEndian(); 14427 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14428 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14429 : Intrinsic::ppc_altivec_lvsl); 14430 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14431 SDValue Add = N->getOperand(1); 14432 14433 int Bits = 4 /* 16 byte alignment */; 14434 14435 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14436 APInt::getAllOnesValue(Bits /* alignment */) 14437 .zext(Add.getScalarValueSizeInBits()))) { 14438 SDNode *BasePtr = Add->getOperand(0).getNode(); 14439 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14440 UE = BasePtr->use_end(); 14441 UI != UE; ++UI) { 14442 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14443 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14444 IID) { 14445 // We've found another LVSL/LVSR, and this address is an aligned 14446 // multiple of that one. The results will be the same, so use the 14447 // one we've just found instead. 14448 14449 return SDValue(*UI, 0); 14450 } 14451 } 14452 } 14453 14454 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14455 SDNode *BasePtr = Add->getOperand(0).getNode(); 14456 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14457 UE = BasePtr->use_end(); UI != UE; ++UI) { 14458 if (UI->getOpcode() == ISD::ADD && 14459 isa<ConstantSDNode>(UI->getOperand(1)) && 14460 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14461 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14462 (1ULL << Bits) == 0) { 14463 SDNode *OtherAdd = *UI; 14464 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14465 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14466 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14467 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14468 return SDValue(*VI, 0); 14469 } 14470 } 14471 } 14472 } 14473 } 14474 } 14475 14476 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14477 // Expose the vabsduw/h/b opportunity for down stream 14478 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14479 (IID == Intrinsic::ppc_altivec_vmaxsw || 14480 IID == Intrinsic::ppc_altivec_vmaxsh || 14481 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14482 SDValue V1 = N->getOperand(1); 14483 SDValue V2 = N->getOperand(2); 14484 if ((V1.getSimpleValueType() == MVT::v4i32 || 14485 V1.getSimpleValueType() == MVT::v8i16 || 14486 V1.getSimpleValueType() == MVT::v16i8) && 14487 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14488 // (0-a, a) 14489 if (V1.getOpcode() == ISD::SUB && 14490 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14491 V1.getOperand(1) == V2) { 14492 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14493 } 14494 // (a, 0-a) 14495 if (V2.getOpcode() == ISD::SUB && 14496 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14497 V2.getOperand(1) == V1) { 14498 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14499 } 14500 // (x-y, y-x) 14501 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14502 V1.getOperand(0) == V2.getOperand(1) && 14503 V1.getOperand(1) == V2.getOperand(0)) { 14504 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14505 } 14506 } 14507 } 14508 } 14509 14510 break; 14511 case ISD::INTRINSIC_W_CHAIN: 14512 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14513 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14514 if (Subtarget.needsSwapsForVSXMemOps()) { 14515 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14516 default: 14517 break; 14518 case Intrinsic::ppc_vsx_lxvw4x: 14519 case Intrinsic::ppc_vsx_lxvd2x: 14520 return expandVSXLoadForLE(N, DCI); 14521 } 14522 } 14523 break; 14524 case ISD::INTRINSIC_VOID: 14525 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14526 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14527 if (Subtarget.needsSwapsForVSXMemOps()) { 14528 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14529 default: 14530 break; 14531 case Intrinsic::ppc_vsx_stxvw4x: 14532 case Intrinsic::ppc_vsx_stxvd2x: 14533 return expandVSXStoreForLE(N, DCI); 14534 } 14535 } 14536 break; 14537 case ISD::BSWAP: 14538 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14539 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14540 N->getOperand(0).hasOneUse() && 14541 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14542 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14543 N->getValueType(0) == MVT::i64))) { 14544 SDValue Load = N->getOperand(0); 14545 LoadSDNode *LD = cast<LoadSDNode>(Load); 14546 // Create the byte-swapping load. 14547 SDValue Ops[] = { 14548 LD->getChain(), // Chain 14549 LD->getBasePtr(), // Ptr 14550 DAG.getValueType(N->getValueType(0)) // VT 14551 }; 14552 SDValue BSLoad = 14553 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14554 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14555 MVT::i64 : MVT::i32, MVT::Other), 14556 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14557 14558 // If this is an i16 load, insert the truncate. 14559 SDValue ResVal = BSLoad; 14560 if (N->getValueType(0) == MVT::i16) 14561 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14562 14563 // First, combine the bswap away. This makes the value produced by the 14564 // load dead. 14565 DCI.CombineTo(N, ResVal); 14566 14567 // Next, combine the load away, we give it a bogus result value but a real 14568 // chain result. The result value is dead because the bswap is dead. 14569 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14570 14571 // Return N so it doesn't get rechecked! 14572 return SDValue(N, 0); 14573 } 14574 break; 14575 case PPCISD::VCMP: 14576 // If a VCMPo node already exists with exactly the same operands as this 14577 // node, use its result instead of this node (VCMPo computes both a CR6 and 14578 // a normal output). 14579 // 14580 if (!N->getOperand(0).hasOneUse() && 14581 !N->getOperand(1).hasOneUse() && 14582 !N->getOperand(2).hasOneUse()) { 14583 14584 // Scan all of the users of the LHS, looking for VCMPo's that match. 14585 SDNode *VCMPoNode = nullptr; 14586 14587 SDNode *LHSN = N->getOperand(0).getNode(); 14588 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14589 UI != E; ++UI) 14590 if (UI->getOpcode() == PPCISD::VCMPo && 14591 UI->getOperand(1) == N->getOperand(1) && 14592 UI->getOperand(2) == N->getOperand(2) && 14593 UI->getOperand(0) == N->getOperand(0)) { 14594 VCMPoNode = *UI; 14595 break; 14596 } 14597 14598 // If there is no VCMPo node, or if the flag value has a single use, don't 14599 // transform this. 14600 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14601 break; 14602 14603 // Look at the (necessarily single) use of the flag value. If it has a 14604 // chain, this transformation is more complex. Note that multiple things 14605 // could use the value result, which we should ignore. 14606 SDNode *FlagUser = nullptr; 14607 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14608 FlagUser == nullptr; ++UI) { 14609 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14610 SDNode *User = *UI; 14611 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14612 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14613 FlagUser = User; 14614 break; 14615 } 14616 } 14617 } 14618 14619 // If the user is a MFOCRF instruction, we know this is safe. 14620 // Otherwise we give up for right now. 14621 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14622 return SDValue(VCMPoNode, 0); 14623 } 14624 break; 14625 case ISD::BRCOND: { 14626 SDValue Cond = N->getOperand(1); 14627 SDValue Target = N->getOperand(2); 14628 14629 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14630 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14631 Intrinsic::loop_decrement) { 14632 14633 // We now need to make the intrinsic dead (it cannot be instruction 14634 // selected). 14635 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14636 assert(Cond.getNode()->hasOneUse() && 14637 "Counter decrement has more than one use"); 14638 14639 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14640 N->getOperand(0), Target); 14641 } 14642 } 14643 break; 14644 case ISD::BR_CC: { 14645 // If this is a branch on an altivec predicate comparison, lower this so 14646 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14647 // lowering is done pre-legalize, because the legalizer lowers the predicate 14648 // compare down to code that is difficult to reassemble. 14649 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14650 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14651 14652 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14653 // value. If so, pass-through the AND to get to the intrinsic. 14654 if (LHS.getOpcode() == ISD::AND && 14655 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14656 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14657 Intrinsic::loop_decrement && 14658 isa<ConstantSDNode>(LHS.getOperand(1)) && 14659 !isNullConstant(LHS.getOperand(1))) 14660 LHS = LHS.getOperand(0); 14661 14662 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14663 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14664 Intrinsic::loop_decrement && 14665 isa<ConstantSDNode>(RHS)) { 14666 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14667 "Counter decrement comparison is not EQ or NE"); 14668 14669 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14670 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14671 (CC == ISD::SETNE && !Val); 14672 14673 // We now need to make the intrinsic dead (it cannot be instruction 14674 // selected). 14675 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14676 assert(LHS.getNode()->hasOneUse() && 14677 "Counter decrement has more than one use"); 14678 14679 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14680 N->getOperand(0), N->getOperand(4)); 14681 } 14682 14683 int CompareOpc; 14684 bool isDot; 14685 14686 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14687 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14688 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14689 assert(isDot && "Can't compare against a vector result!"); 14690 14691 // If this is a comparison against something other than 0/1, then we know 14692 // that the condition is never/always true. 14693 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14694 if (Val != 0 && Val != 1) { 14695 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14696 return N->getOperand(0); 14697 // Always !=, turn it into an unconditional branch. 14698 return DAG.getNode(ISD::BR, dl, MVT::Other, 14699 N->getOperand(0), N->getOperand(4)); 14700 } 14701 14702 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14703 14704 // Create the PPCISD altivec 'dot' comparison node. 14705 SDValue Ops[] = { 14706 LHS.getOperand(2), // LHS of compare 14707 LHS.getOperand(3), // RHS of compare 14708 DAG.getConstant(CompareOpc, dl, MVT::i32) 14709 }; 14710 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14711 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14712 14713 // Unpack the result based on how the target uses it. 14714 PPC::Predicate CompOpc; 14715 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14716 default: // Can't happen, don't crash on invalid number though. 14717 case 0: // Branch on the value of the EQ bit of CR6. 14718 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14719 break; 14720 case 1: // Branch on the inverted value of the EQ bit of CR6. 14721 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14722 break; 14723 case 2: // Branch on the value of the LT bit of CR6. 14724 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14725 break; 14726 case 3: // Branch on the inverted value of the LT bit of CR6. 14727 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14728 break; 14729 } 14730 14731 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14732 DAG.getConstant(CompOpc, dl, MVT::i32), 14733 DAG.getRegister(PPC::CR6, MVT::i32), 14734 N->getOperand(4), CompNode.getValue(1)); 14735 } 14736 break; 14737 } 14738 case ISD::BUILD_VECTOR: 14739 return DAGCombineBuildVector(N, DCI); 14740 case ISD::ABS: 14741 return combineABS(N, DCI); 14742 case ISD::VSELECT: 14743 return combineVSelect(N, DCI); 14744 } 14745 14746 return SDValue(); 14747 } 14748 14749 SDValue 14750 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14751 SelectionDAG &DAG, 14752 SmallVectorImpl<SDNode *> &Created) const { 14753 // fold (sdiv X, pow2) 14754 EVT VT = N->getValueType(0); 14755 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14756 return SDValue(); 14757 if ((VT != MVT::i32 && VT != MVT::i64) || 14758 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14759 return SDValue(); 14760 14761 SDLoc DL(N); 14762 SDValue N0 = N->getOperand(0); 14763 14764 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14765 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14766 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14767 14768 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14769 Created.push_back(Op.getNode()); 14770 14771 if (IsNegPow2) { 14772 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14773 Created.push_back(Op.getNode()); 14774 } 14775 14776 return Op; 14777 } 14778 14779 //===----------------------------------------------------------------------===// 14780 // Inline Assembly Support 14781 //===----------------------------------------------------------------------===// 14782 14783 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14784 KnownBits &Known, 14785 const APInt &DemandedElts, 14786 const SelectionDAG &DAG, 14787 unsigned Depth) const { 14788 Known.resetAll(); 14789 switch (Op.getOpcode()) { 14790 default: break; 14791 case PPCISD::LBRX: { 14792 // lhbrx is known to have the top bits cleared out. 14793 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14794 Known.Zero = 0xFFFF0000; 14795 break; 14796 } 14797 case ISD::INTRINSIC_WO_CHAIN: { 14798 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14799 default: break; 14800 case Intrinsic::ppc_altivec_vcmpbfp_p: 14801 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14802 case Intrinsic::ppc_altivec_vcmpequb_p: 14803 case Intrinsic::ppc_altivec_vcmpequh_p: 14804 case Intrinsic::ppc_altivec_vcmpequw_p: 14805 case Intrinsic::ppc_altivec_vcmpequd_p: 14806 case Intrinsic::ppc_altivec_vcmpgefp_p: 14807 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14808 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14809 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14810 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14811 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14812 case Intrinsic::ppc_altivec_vcmpgtub_p: 14813 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14814 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14815 case Intrinsic::ppc_altivec_vcmpgtud_p: 14816 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14817 break; 14818 } 14819 } 14820 } 14821 } 14822 14823 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14824 switch (Subtarget.getCPUDirective()) { 14825 default: break; 14826 case PPC::DIR_970: 14827 case PPC::DIR_PWR4: 14828 case PPC::DIR_PWR5: 14829 case PPC::DIR_PWR5X: 14830 case PPC::DIR_PWR6: 14831 case PPC::DIR_PWR6X: 14832 case PPC::DIR_PWR7: 14833 case PPC::DIR_PWR8: 14834 case PPC::DIR_PWR9: 14835 case PPC::DIR_PWR10: 14836 case PPC::DIR_PWR_FUTURE: { 14837 if (!ML) 14838 break; 14839 14840 if (!DisableInnermostLoopAlign32) { 14841 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14842 // so that we can decrease cache misses and branch-prediction misses. 14843 // Actual alignment of the loop will depend on the hotness check and other 14844 // logic in alignBlocks. 14845 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14846 return Align(32); 14847 } 14848 14849 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14850 14851 // For small loops (between 5 and 8 instructions), align to a 32-byte 14852 // boundary so that the entire loop fits in one instruction-cache line. 14853 uint64_t LoopSize = 0; 14854 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14855 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14856 LoopSize += TII->getInstSizeInBytes(*J); 14857 if (LoopSize > 32) 14858 break; 14859 } 14860 14861 if (LoopSize > 16 && LoopSize <= 32) 14862 return Align(32); 14863 14864 break; 14865 } 14866 } 14867 14868 return TargetLowering::getPrefLoopAlignment(ML); 14869 } 14870 14871 /// getConstraintType - Given a constraint, return the type of 14872 /// constraint it is for this target. 14873 PPCTargetLowering::ConstraintType 14874 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14875 if (Constraint.size() == 1) { 14876 switch (Constraint[0]) { 14877 default: break; 14878 case 'b': 14879 case 'r': 14880 case 'f': 14881 case 'd': 14882 case 'v': 14883 case 'y': 14884 return C_RegisterClass; 14885 case 'Z': 14886 // FIXME: While Z does indicate a memory constraint, it specifically 14887 // indicates an r+r address (used in conjunction with the 'y' modifier 14888 // in the replacement string). Currently, we're forcing the base 14889 // register to be r0 in the asm printer (which is interpreted as zero) 14890 // and forming the complete address in the second register. This is 14891 // suboptimal. 14892 return C_Memory; 14893 } 14894 } else if (Constraint == "wc") { // individual CR bits. 14895 return C_RegisterClass; 14896 } else if (Constraint == "wa" || Constraint == "wd" || 14897 Constraint == "wf" || Constraint == "ws" || 14898 Constraint == "wi" || Constraint == "ww") { 14899 return C_RegisterClass; // VSX registers. 14900 } 14901 return TargetLowering::getConstraintType(Constraint); 14902 } 14903 14904 /// Examine constraint type and operand type and determine a weight value. 14905 /// This object must already have been set up with the operand type 14906 /// and the current alternative constraint selected. 14907 TargetLowering::ConstraintWeight 14908 PPCTargetLowering::getSingleConstraintMatchWeight( 14909 AsmOperandInfo &info, const char *constraint) const { 14910 ConstraintWeight weight = CW_Invalid; 14911 Value *CallOperandVal = info.CallOperandVal; 14912 // If we don't have a value, we can't do a match, 14913 // but allow it at the lowest weight. 14914 if (!CallOperandVal) 14915 return CW_Default; 14916 Type *type = CallOperandVal->getType(); 14917 14918 // Look at the constraint type. 14919 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14920 return CW_Register; // an individual CR bit. 14921 else if ((StringRef(constraint) == "wa" || 14922 StringRef(constraint) == "wd" || 14923 StringRef(constraint) == "wf") && 14924 type->isVectorTy()) 14925 return CW_Register; 14926 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14927 return CW_Register; // just hold 64-bit integers data. 14928 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14929 return CW_Register; 14930 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14931 return CW_Register; 14932 14933 switch (*constraint) { 14934 default: 14935 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14936 break; 14937 case 'b': 14938 if (type->isIntegerTy()) 14939 weight = CW_Register; 14940 break; 14941 case 'f': 14942 if (type->isFloatTy()) 14943 weight = CW_Register; 14944 break; 14945 case 'd': 14946 if (type->isDoubleTy()) 14947 weight = CW_Register; 14948 break; 14949 case 'v': 14950 if (type->isVectorTy()) 14951 weight = CW_Register; 14952 break; 14953 case 'y': 14954 weight = CW_Register; 14955 break; 14956 case 'Z': 14957 weight = CW_Memory; 14958 break; 14959 } 14960 return weight; 14961 } 14962 14963 std::pair<unsigned, const TargetRegisterClass *> 14964 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14965 StringRef Constraint, 14966 MVT VT) const { 14967 if (Constraint.size() == 1) { 14968 // GCC RS6000 Constraint Letters 14969 switch (Constraint[0]) { 14970 case 'b': // R1-R31 14971 if (VT == MVT::i64 && Subtarget.isPPC64()) 14972 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14973 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14974 case 'r': // R0-R31 14975 if (VT == MVT::i64 && Subtarget.isPPC64()) 14976 return std::make_pair(0U, &PPC::G8RCRegClass); 14977 return std::make_pair(0U, &PPC::GPRCRegClass); 14978 // 'd' and 'f' constraints are both defined to be "the floating point 14979 // registers", where one is for 32-bit and the other for 64-bit. We don't 14980 // really care overly much here so just give them all the same reg classes. 14981 case 'd': 14982 case 'f': 14983 if (Subtarget.hasSPE()) { 14984 if (VT == MVT::f32 || VT == MVT::i32) 14985 return std::make_pair(0U, &PPC::GPRCRegClass); 14986 if (VT == MVT::f64 || VT == MVT::i64) 14987 return std::make_pair(0U, &PPC::SPERCRegClass); 14988 } else { 14989 if (VT == MVT::f32 || VT == MVT::i32) 14990 return std::make_pair(0U, &PPC::F4RCRegClass); 14991 if (VT == MVT::f64 || VT == MVT::i64) 14992 return std::make_pair(0U, &PPC::F8RCRegClass); 14993 } 14994 break; 14995 case 'v': 14996 if (Subtarget.hasAltivec()) 14997 return std::make_pair(0U, &PPC::VRRCRegClass); 14998 break; 14999 case 'y': // crrc 15000 return std::make_pair(0U, &PPC::CRRCRegClass); 15001 } 15002 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15003 // An individual CR bit. 15004 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15005 } else if ((Constraint == "wa" || Constraint == "wd" || 15006 Constraint == "wf" || Constraint == "wi") && 15007 Subtarget.hasVSX()) { 15008 return std::make_pair(0U, &PPC::VSRCRegClass); 15009 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15010 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15011 return std::make_pair(0U, &PPC::VSSRCRegClass); 15012 else 15013 return std::make_pair(0U, &PPC::VSFRCRegClass); 15014 } 15015 15016 // If we name a VSX register, we can't defer to the base class because it 15017 // will not recognize the correct register (their names will be VSL{0-31} 15018 // and V{0-31} so they won't match). So we match them here. 15019 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15020 int VSNum = atoi(Constraint.data() + 3); 15021 assert(VSNum >= 0 && VSNum <= 63 && 15022 "Attempted to access a vsr out of range"); 15023 if (VSNum < 32) 15024 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15025 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15026 } 15027 std::pair<unsigned, const TargetRegisterClass *> R = 15028 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15029 15030 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15031 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15032 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15033 // register. 15034 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15035 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15036 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15037 PPC::GPRCRegClass.contains(R.first)) 15038 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15039 PPC::sub_32, &PPC::G8RCRegClass), 15040 &PPC::G8RCRegClass); 15041 15042 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15043 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15044 R.first = PPC::CR0; 15045 R.second = &PPC::CRRCRegClass; 15046 } 15047 15048 return R; 15049 } 15050 15051 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15052 /// vector. If it is invalid, don't add anything to Ops. 15053 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15054 std::string &Constraint, 15055 std::vector<SDValue>&Ops, 15056 SelectionDAG &DAG) const { 15057 SDValue Result; 15058 15059 // Only support length 1 constraints. 15060 if (Constraint.length() > 1) return; 15061 15062 char Letter = Constraint[0]; 15063 switch (Letter) { 15064 default: break; 15065 case 'I': 15066 case 'J': 15067 case 'K': 15068 case 'L': 15069 case 'M': 15070 case 'N': 15071 case 'O': 15072 case 'P': { 15073 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15074 if (!CST) return; // Must be an immediate to match. 15075 SDLoc dl(Op); 15076 int64_t Value = CST->getSExtValue(); 15077 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15078 // numbers are printed as such. 15079 switch (Letter) { 15080 default: llvm_unreachable("Unknown constraint letter!"); 15081 case 'I': // "I" is a signed 16-bit constant. 15082 if (isInt<16>(Value)) 15083 Result = DAG.getTargetConstant(Value, dl, TCVT); 15084 break; 15085 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15086 if (isShiftedUInt<16, 16>(Value)) 15087 Result = DAG.getTargetConstant(Value, dl, TCVT); 15088 break; 15089 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15090 if (isShiftedInt<16, 16>(Value)) 15091 Result = DAG.getTargetConstant(Value, dl, TCVT); 15092 break; 15093 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15094 if (isUInt<16>(Value)) 15095 Result = DAG.getTargetConstant(Value, dl, TCVT); 15096 break; 15097 case 'M': // "M" is a constant that is greater than 31. 15098 if (Value > 31) 15099 Result = DAG.getTargetConstant(Value, dl, TCVT); 15100 break; 15101 case 'N': // "N" is a positive constant that is an exact power of two. 15102 if (Value > 0 && isPowerOf2_64(Value)) 15103 Result = DAG.getTargetConstant(Value, dl, TCVT); 15104 break; 15105 case 'O': // "O" is the constant zero. 15106 if (Value == 0) 15107 Result = DAG.getTargetConstant(Value, dl, TCVT); 15108 break; 15109 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15110 if (isInt<16>(-Value)) 15111 Result = DAG.getTargetConstant(Value, dl, TCVT); 15112 break; 15113 } 15114 break; 15115 } 15116 } 15117 15118 if (Result.getNode()) { 15119 Ops.push_back(Result); 15120 return; 15121 } 15122 15123 // Handle standard constraint letters. 15124 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15125 } 15126 15127 // isLegalAddressingMode - Return true if the addressing mode represented 15128 // by AM is legal for this target, for a load/store of the specified type. 15129 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15130 const AddrMode &AM, Type *Ty, 15131 unsigned AS, 15132 Instruction *I) const { 15133 // Vector type r+i form is supported since power9 as DQ form. We don't check 15134 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15135 // imm form is preferred and the offset can be adjusted to use imm form later 15136 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15137 // max offset to check legal addressing mode, we should be a little aggressive 15138 // to contain other offsets for that LSRUse. 15139 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15140 return false; 15141 15142 // PPC allows a sign-extended 16-bit immediate field. 15143 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15144 return false; 15145 15146 // No global is ever allowed as a base. 15147 if (AM.BaseGV) 15148 return false; 15149 15150 // PPC only support r+r, 15151 switch (AM.Scale) { 15152 case 0: // "r+i" or just "i", depending on HasBaseReg. 15153 break; 15154 case 1: 15155 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15156 return false; 15157 // Otherwise we have r+r or r+i. 15158 break; 15159 case 2: 15160 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15161 return false; 15162 // Allow 2*r as r+r. 15163 break; 15164 default: 15165 // No other scales are supported. 15166 return false; 15167 } 15168 15169 return true; 15170 } 15171 15172 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15173 SelectionDAG &DAG) const { 15174 MachineFunction &MF = DAG.getMachineFunction(); 15175 MachineFrameInfo &MFI = MF.getFrameInfo(); 15176 MFI.setReturnAddressIsTaken(true); 15177 15178 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15179 return SDValue(); 15180 15181 SDLoc dl(Op); 15182 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15183 15184 // Make sure the function does not optimize away the store of the RA to 15185 // the stack. 15186 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15187 FuncInfo->setLRStoreRequired(); 15188 bool isPPC64 = Subtarget.isPPC64(); 15189 auto PtrVT = getPointerTy(MF.getDataLayout()); 15190 15191 if (Depth > 0) { 15192 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15193 SDValue Offset = 15194 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15195 isPPC64 ? MVT::i64 : MVT::i32); 15196 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15197 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15198 MachinePointerInfo()); 15199 } 15200 15201 // Just load the return address off the stack. 15202 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15203 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15204 MachinePointerInfo()); 15205 } 15206 15207 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15208 SelectionDAG &DAG) const { 15209 SDLoc dl(Op); 15210 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15211 15212 MachineFunction &MF = DAG.getMachineFunction(); 15213 MachineFrameInfo &MFI = MF.getFrameInfo(); 15214 MFI.setFrameAddressIsTaken(true); 15215 15216 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15217 bool isPPC64 = PtrVT == MVT::i64; 15218 15219 // Naked functions never have a frame pointer, and so we use r1. For all 15220 // other functions, this decision must be delayed until during PEI. 15221 unsigned FrameReg; 15222 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15223 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15224 else 15225 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15226 15227 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15228 PtrVT); 15229 while (Depth--) 15230 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15231 FrameAddr, MachinePointerInfo()); 15232 return FrameAddr; 15233 } 15234 15235 // FIXME? Maybe this could be a TableGen attribute on some registers and 15236 // this table could be generated automatically from RegInfo. 15237 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15238 const MachineFunction &MF) const { 15239 bool isPPC64 = Subtarget.isPPC64(); 15240 15241 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15242 if (!is64Bit && VT != LLT::scalar(32)) 15243 report_fatal_error("Invalid register global variable type"); 15244 15245 Register Reg = StringSwitch<Register>(RegName) 15246 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15247 .Case("r2", isPPC64 ? Register() : PPC::R2) 15248 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15249 .Default(Register()); 15250 15251 if (Reg) 15252 return Reg; 15253 report_fatal_error("Invalid register name global variable"); 15254 } 15255 15256 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15257 // 32-bit SVR4 ABI access everything as got-indirect. 15258 if (Subtarget.is32BitELFABI()) 15259 return true; 15260 15261 // AIX accesses everything indirectly through the TOC, which is similar to 15262 // the GOT. 15263 if (Subtarget.isAIXABI()) 15264 return true; 15265 15266 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15267 // If it is small or large code model, module locals are accessed 15268 // indirectly by loading their address from .toc/.got. 15269 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15270 return true; 15271 15272 // JumpTable and BlockAddress are accessed as got-indirect. 15273 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15274 return true; 15275 15276 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15277 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15278 15279 return false; 15280 } 15281 15282 bool 15283 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15284 // The PowerPC target isn't yet aware of offsets. 15285 return false; 15286 } 15287 15288 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15289 const CallInst &I, 15290 MachineFunction &MF, 15291 unsigned Intrinsic) const { 15292 switch (Intrinsic) { 15293 case Intrinsic::ppc_altivec_lvx: 15294 case Intrinsic::ppc_altivec_lvxl: 15295 case Intrinsic::ppc_altivec_lvebx: 15296 case Intrinsic::ppc_altivec_lvehx: 15297 case Intrinsic::ppc_altivec_lvewx: 15298 case Intrinsic::ppc_vsx_lxvd2x: 15299 case Intrinsic::ppc_vsx_lxvw4x: { 15300 EVT VT; 15301 switch (Intrinsic) { 15302 case Intrinsic::ppc_altivec_lvebx: 15303 VT = MVT::i8; 15304 break; 15305 case Intrinsic::ppc_altivec_lvehx: 15306 VT = MVT::i16; 15307 break; 15308 case Intrinsic::ppc_altivec_lvewx: 15309 VT = MVT::i32; 15310 break; 15311 case Intrinsic::ppc_vsx_lxvd2x: 15312 VT = MVT::v2f64; 15313 break; 15314 default: 15315 VT = MVT::v4i32; 15316 break; 15317 } 15318 15319 Info.opc = ISD::INTRINSIC_W_CHAIN; 15320 Info.memVT = VT; 15321 Info.ptrVal = I.getArgOperand(0); 15322 Info.offset = -VT.getStoreSize()+1; 15323 Info.size = 2*VT.getStoreSize()-1; 15324 Info.align = Align(1); 15325 Info.flags = MachineMemOperand::MOLoad; 15326 return true; 15327 } 15328 case Intrinsic::ppc_altivec_stvx: 15329 case Intrinsic::ppc_altivec_stvxl: 15330 case Intrinsic::ppc_altivec_stvebx: 15331 case Intrinsic::ppc_altivec_stvehx: 15332 case Intrinsic::ppc_altivec_stvewx: 15333 case Intrinsic::ppc_vsx_stxvd2x: 15334 case Intrinsic::ppc_vsx_stxvw4x: { 15335 EVT VT; 15336 switch (Intrinsic) { 15337 case Intrinsic::ppc_altivec_stvebx: 15338 VT = MVT::i8; 15339 break; 15340 case Intrinsic::ppc_altivec_stvehx: 15341 VT = MVT::i16; 15342 break; 15343 case Intrinsic::ppc_altivec_stvewx: 15344 VT = MVT::i32; 15345 break; 15346 case Intrinsic::ppc_vsx_stxvd2x: 15347 VT = MVT::v2f64; 15348 break; 15349 default: 15350 VT = MVT::v4i32; 15351 break; 15352 } 15353 15354 Info.opc = ISD::INTRINSIC_VOID; 15355 Info.memVT = VT; 15356 Info.ptrVal = I.getArgOperand(1); 15357 Info.offset = -VT.getStoreSize()+1; 15358 Info.size = 2*VT.getStoreSize()-1; 15359 Info.align = Align(1); 15360 Info.flags = MachineMemOperand::MOStore; 15361 return true; 15362 } 15363 default: 15364 break; 15365 } 15366 15367 return false; 15368 } 15369 15370 /// It returns EVT::Other if the type should be determined using generic 15371 /// target-independent logic. 15372 EVT PPCTargetLowering::getOptimalMemOpType( 15373 const MemOp &Op, const AttributeList &FuncAttributes) const { 15374 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15375 // We should use Altivec/VSX loads and stores when available. For unaligned 15376 // addresses, unaligned VSX loads are only fast starting with the P8. 15377 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15378 (Op.isAligned(Align(16)) || 15379 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15380 return MVT::v4i32; 15381 } 15382 15383 if (Subtarget.isPPC64()) { 15384 return MVT::i64; 15385 } 15386 15387 return MVT::i32; 15388 } 15389 15390 /// Returns true if it is beneficial to convert a load of a constant 15391 /// to just the constant itself. 15392 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15393 Type *Ty) const { 15394 assert(Ty->isIntegerTy()); 15395 15396 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15397 return !(BitSize == 0 || BitSize > 64); 15398 } 15399 15400 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15401 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15402 return false; 15403 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15404 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15405 return NumBits1 == 64 && NumBits2 == 32; 15406 } 15407 15408 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15409 if (!VT1.isInteger() || !VT2.isInteger()) 15410 return false; 15411 unsigned NumBits1 = VT1.getSizeInBits(); 15412 unsigned NumBits2 = VT2.getSizeInBits(); 15413 return NumBits1 == 64 && NumBits2 == 32; 15414 } 15415 15416 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15417 // Generally speaking, zexts are not free, but they are free when they can be 15418 // folded with other operations. 15419 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15420 EVT MemVT = LD->getMemoryVT(); 15421 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15422 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15423 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15424 LD->getExtensionType() == ISD::ZEXTLOAD)) 15425 return true; 15426 } 15427 15428 // FIXME: Add other cases... 15429 // - 32-bit shifts with a zext to i64 15430 // - zext after ctlz, bswap, etc. 15431 // - zext after and by a constant mask 15432 15433 return TargetLowering::isZExtFree(Val, VT2); 15434 } 15435 15436 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15437 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15438 "invalid fpext types"); 15439 // Extending to float128 is not free. 15440 if (DestVT == MVT::f128) 15441 return false; 15442 return true; 15443 } 15444 15445 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15446 return isInt<16>(Imm) || isUInt<16>(Imm); 15447 } 15448 15449 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15450 return isInt<16>(Imm) || isUInt<16>(Imm); 15451 } 15452 15453 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15454 unsigned, 15455 unsigned, 15456 MachineMemOperand::Flags, 15457 bool *Fast) const { 15458 if (DisablePPCUnaligned) 15459 return false; 15460 15461 // PowerPC supports unaligned memory access for simple non-vector types. 15462 // Although accessing unaligned addresses is not as efficient as accessing 15463 // aligned addresses, it is generally more efficient than manual expansion, 15464 // and generally only traps for software emulation when crossing page 15465 // boundaries. 15466 15467 if (!VT.isSimple()) 15468 return false; 15469 15470 if (VT.isFloatingPoint() && !VT.isVector() && 15471 !Subtarget.allowsUnalignedFPAccess()) 15472 return false; 15473 15474 if (VT.getSimpleVT().isVector()) { 15475 if (Subtarget.hasVSX()) { 15476 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15477 VT != MVT::v4f32 && VT != MVT::v4i32) 15478 return false; 15479 } else { 15480 return false; 15481 } 15482 } 15483 15484 if (VT == MVT::ppcf128) 15485 return false; 15486 15487 if (Fast) 15488 *Fast = true; 15489 15490 return true; 15491 } 15492 15493 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15494 EVT VT) const { 15495 return isFMAFasterThanFMulAndFAdd( 15496 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15497 } 15498 15499 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15500 Type *Ty) const { 15501 switch (Ty->getScalarType()->getTypeID()) { 15502 case Type::FloatTyID: 15503 case Type::DoubleTyID: 15504 return true; 15505 case Type::FP128TyID: 15506 return Subtarget.hasP9Vector(); 15507 default: 15508 return false; 15509 } 15510 } 15511 15512 // FIXME: add more patterns which are not profitable to hoist. 15513 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15514 if (!I->hasOneUse()) 15515 return true; 15516 15517 Instruction *User = I->user_back(); 15518 assert(User && "A single use instruction with no uses."); 15519 15520 switch (I->getOpcode()) { 15521 case Instruction::FMul: { 15522 // Don't break FMA, PowerPC prefers FMA. 15523 if (User->getOpcode() != Instruction::FSub && 15524 User->getOpcode() != Instruction::FAdd) 15525 return true; 15526 15527 const TargetOptions &Options = getTargetMachine().Options; 15528 const Function *F = I->getFunction(); 15529 const DataLayout &DL = F->getParent()->getDataLayout(); 15530 Type *Ty = User->getOperand(0)->getType(); 15531 15532 return !( 15533 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15534 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15535 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15536 } 15537 case Instruction::Load: { 15538 // Don't break "store (load float*)" pattern, this pattern will be combined 15539 // to "store (load int32)" in later InstCombine pass. See function 15540 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15541 // cycles than loading a 32 bit integer. 15542 LoadInst *LI = cast<LoadInst>(I); 15543 // For the loads that combineLoadToOperationType does nothing, like 15544 // ordered load, it should be profitable to hoist them. 15545 // For swifterror load, it can only be used for pointer to pointer type, so 15546 // later type check should get rid of this case. 15547 if (!LI->isUnordered()) 15548 return true; 15549 15550 if (User->getOpcode() != Instruction::Store) 15551 return true; 15552 15553 if (I->getType()->getTypeID() != Type::FloatTyID) 15554 return true; 15555 15556 return false; 15557 } 15558 default: 15559 return true; 15560 } 15561 return true; 15562 } 15563 15564 const MCPhysReg * 15565 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15566 // LR is a callee-save register, but we must treat it as clobbered by any call 15567 // site. Hence we include LR in the scratch registers, which are in turn added 15568 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15569 // to CTR, which is used by any indirect call. 15570 static const MCPhysReg ScratchRegs[] = { 15571 PPC::X12, PPC::LR8, PPC::CTR8, 0 15572 }; 15573 15574 return ScratchRegs; 15575 } 15576 15577 Register PPCTargetLowering::getExceptionPointerRegister( 15578 const Constant *PersonalityFn) const { 15579 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15580 } 15581 15582 Register PPCTargetLowering::getExceptionSelectorRegister( 15583 const Constant *PersonalityFn) const { 15584 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15585 } 15586 15587 bool 15588 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15589 EVT VT , unsigned DefinedValues) const { 15590 if (VT == MVT::v2i64) 15591 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15592 15593 if (Subtarget.hasVSX()) 15594 return true; 15595 15596 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15597 } 15598 15599 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15600 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15601 return TargetLowering::getSchedulingPreference(N); 15602 15603 return Sched::ILP; 15604 } 15605 15606 // Create a fast isel object. 15607 FastISel * 15608 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15609 const TargetLibraryInfo *LibInfo) const { 15610 return PPC::createFastISel(FuncInfo, LibInfo); 15611 } 15612 15613 // 'Inverted' means the FMA opcode after negating one multiplicand. 15614 // For example, (fma -a b c) = (fnmsub a b c) 15615 static unsigned invertFMAOpcode(unsigned Opc) { 15616 switch (Opc) { 15617 default: 15618 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15619 case ISD::FMA: 15620 return PPCISD::FNMSUB; 15621 case PPCISD::FNMSUB: 15622 return ISD::FMA; 15623 } 15624 } 15625 15626 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15627 bool LegalOps, bool OptForSize, 15628 NegatibleCost &Cost, 15629 unsigned Depth) const { 15630 if (Depth > SelectionDAG::MaxRecursionDepth) 15631 return SDValue(); 15632 15633 unsigned Opc = Op.getOpcode(); 15634 EVT VT = Op.getValueType(); 15635 SDNodeFlags Flags = Op.getNode()->getFlags(); 15636 15637 switch (Opc) { 15638 case PPCISD::FNMSUB: 15639 if (!Op.hasOneUse() || !isTypeLegal(VT)) 15640 break; 15641 15642 const TargetOptions &Options = getTargetMachine().Options; 15643 SDValue N0 = Op.getOperand(0); 15644 SDValue N1 = Op.getOperand(1); 15645 SDValue N2 = Op.getOperand(2); 15646 SDLoc Loc(Op); 15647 15648 NegatibleCost N2Cost = NegatibleCost::Expensive; 15649 SDValue NegN2 = 15650 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15651 15652 if (!NegN2) 15653 return SDValue(); 15654 15655 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15656 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15657 // These transformations may change sign of zeroes. For example, 15658 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15659 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15660 // Try and choose the cheaper one to negate. 15661 NegatibleCost N0Cost = NegatibleCost::Expensive; 15662 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15663 N0Cost, Depth + 1); 15664 15665 NegatibleCost N1Cost = NegatibleCost::Expensive; 15666 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15667 N1Cost, Depth + 1); 15668 15669 if (NegN0 && N0Cost <= N1Cost) { 15670 Cost = std::min(N0Cost, N2Cost); 15671 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15672 } else if (NegN1) { 15673 Cost = std::min(N1Cost, N2Cost); 15674 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15675 } 15676 } 15677 15678 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15679 if (isOperationLegal(ISD::FMA, VT)) { 15680 Cost = N2Cost; 15681 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15682 } 15683 15684 break; 15685 } 15686 15687 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15688 Cost, Depth); 15689 } 15690 15691 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15692 bool PPCTargetLowering::useLoadStackGuardNode() const { 15693 if (!Subtarget.isTargetLinux()) 15694 return TargetLowering::useLoadStackGuardNode(); 15695 return true; 15696 } 15697 15698 // Override to disable global variable loading on Linux. 15699 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15700 if (!Subtarget.isTargetLinux()) 15701 return TargetLowering::insertSSPDeclarations(M); 15702 } 15703 15704 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15705 bool ForCodeSize) const { 15706 if (!VT.isSimple() || !Subtarget.hasVSX()) 15707 return false; 15708 15709 switch(VT.getSimpleVT().SimpleTy) { 15710 default: 15711 // For FP types that are currently not supported by PPC backend, return 15712 // false. Examples: f16, f80. 15713 return false; 15714 case MVT::f32: 15715 case MVT::f64: 15716 if (Subtarget.hasPrefixInstrs()) { 15717 // With prefixed instructions, we can materialize anything that can be 15718 // represented with a 32-bit immediate, not just positive zero. 15719 APFloat APFloatOfImm = Imm; 15720 return convertToNonDenormSingle(APFloatOfImm); 15721 } 15722 LLVM_FALLTHROUGH; 15723 case MVT::ppcf128: 15724 return Imm.isPosZero(); 15725 } 15726 } 15727 15728 // For vector shift operation op, fold 15729 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15730 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15731 SelectionDAG &DAG) { 15732 SDValue N0 = N->getOperand(0); 15733 SDValue N1 = N->getOperand(1); 15734 EVT VT = N0.getValueType(); 15735 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15736 unsigned Opcode = N->getOpcode(); 15737 unsigned TargetOpcode; 15738 15739 switch (Opcode) { 15740 default: 15741 llvm_unreachable("Unexpected shift operation"); 15742 case ISD::SHL: 15743 TargetOpcode = PPCISD::SHL; 15744 break; 15745 case ISD::SRL: 15746 TargetOpcode = PPCISD::SRL; 15747 break; 15748 case ISD::SRA: 15749 TargetOpcode = PPCISD::SRA; 15750 break; 15751 } 15752 15753 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15754 N1->getOpcode() == ISD::AND) 15755 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15756 if (Mask->getZExtValue() == OpSizeInBits - 1) 15757 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15758 15759 return SDValue(); 15760 } 15761 15762 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15763 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15764 return Value; 15765 15766 SDValue N0 = N->getOperand(0); 15767 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15768 if (!Subtarget.isISA3_0() || 15769 N0.getOpcode() != ISD::SIGN_EXTEND || 15770 N0.getOperand(0).getValueType() != MVT::i32 || 15771 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15772 return SDValue(); 15773 15774 // We can't save an operation here if the value is already extended, and 15775 // the existing shift is easier to combine. 15776 SDValue ExtsSrc = N0.getOperand(0); 15777 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15778 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15779 return SDValue(); 15780 15781 SDLoc DL(N0); 15782 SDValue ShiftBy = SDValue(CN1, 0); 15783 // We want the shift amount to be i32 on the extswli, but the shift could 15784 // have an i64. 15785 if (ShiftBy.getValueType() == MVT::i64) 15786 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15787 15788 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15789 ShiftBy); 15790 } 15791 15792 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15793 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15794 return Value; 15795 15796 return SDValue(); 15797 } 15798 15799 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15800 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15801 return Value; 15802 15803 return SDValue(); 15804 } 15805 15806 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15807 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15808 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15809 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15810 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15811 const PPCSubtarget &Subtarget) { 15812 if (!Subtarget.isPPC64()) 15813 return SDValue(); 15814 15815 SDValue LHS = N->getOperand(0); 15816 SDValue RHS = N->getOperand(1); 15817 15818 auto isZextOfCompareWithConstant = [](SDValue Op) { 15819 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15820 Op.getValueType() != MVT::i64) 15821 return false; 15822 15823 SDValue Cmp = Op.getOperand(0); 15824 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15825 Cmp.getOperand(0).getValueType() != MVT::i64) 15826 return false; 15827 15828 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15829 int64_t NegConstant = 0 - Constant->getSExtValue(); 15830 // Due to the limitations of the addi instruction, 15831 // -C is required to be [-32768, 32767]. 15832 return isInt<16>(NegConstant); 15833 } 15834 15835 return false; 15836 }; 15837 15838 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15839 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15840 15841 // If there is a pattern, canonicalize a zext operand to the RHS. 15842 if (LHSHasPattern && !RHSHasPattern) 15843 std::swap(LHS, RHS); 15844 else if (!LHSHasPattern && !RHSHasPattern) 15845 return SDValue(); 15846 15847 SDLoc DL(N); 15848 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15849 SDValue Cmp = RHS.getOperand(0); 15850 SDValue Z = Cmp.getOperand(0); 15851 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15852 15853 assert(Constant && "Constant Should not be a null pointer."); 15854 int64_t NegConstant = 0 - Constant->getSExtValue(); 15855 15856 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15857 default: break; 15858 case ISD::SETNE: { 15859 // when C == 0 15860 // --> addze X, (addic Z, -1).carry 15861 // / 15862 // add X, (zext(setne Z, C))-- 15863 // \ when -32768 <= -C <= 32767 && C != 0 15864 // --> addze X, (addic (addi Z, -C), -1).carry 15865 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15866 DAG.getConstant(NegConstant, DL, MVT::i64)); 15867 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15868 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15869 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15870 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15871 SDValue(Addc.getNode(), 1)); 15872 } 15873 case ISD::SETEQ: { 15874 // when C == 0 15875 // --> addze X, (subfic Z, 0).carry 15876 // / 15877 // add X, (zext(sete Z, C))-- 15878 // \ when -32768 <= -C <= 32767 && C != 0 15879 // --> addze X, (subfic (addi Z, -C), 0).carry 15880 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15881 DAG.getConstant(NegConstant, DL, MVT::i64)); 15882 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15883 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15884 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15885 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15886 SDValue(Subc.getNode(), 1)); 15887 } 15888 } 15889 15890 return SDValue(); 15891 } 15892 15893 // Transform 15894 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 15895 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 15896 // In this case both C1 and C2 must be known constants. 15897 // C1+C2 must fit into a 34 bit signed integer. 15898 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 15899 const PPCSubtarget &Subtarget) { 15900 if (!Subtarget.isUsingPCRelativeCalls()) 15901 return SDValue(); 15902 15903 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 15904 // If we find that node try to cast the Global Address and the Constant. 15905 SDValue LHS = N->getOperand(0); 15906 SDValue RHS = N->getOperand(1); 15907 15908 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 15909 std::swap(LHS, RHS); 15910 15911 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 15912 return SDValue(); 15913 15914 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 15915 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 15916 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 15917 15918 // Check that both casts succeeded. 15919 if (!GSDN || !ConstNode) 15920 return SDValue(); 15921 15922 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 15923 SDLoc DL(GSDN); 15924 15925 // The signed int offset needs to fit in 34 bits. 15926 if (!isInt<34>(NewOffset)) 15927 return SDValue(); 15928 15929 // The new global address is a copy of the old global address except 15930 // that it has the updated Offset. 15931 SDValue GA = 15932 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 15933 NewOffset, GSDN->getTargetFlags()); 15934 SDValue MatPCRel = 15935 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 15936 return MatPCRel; 15937 } 15938 15939 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15940 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15941 return Value; 15942 15943 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 15944 return Value; 15945 15946 return SDValue(); 15947 } 15948 15949 // Detect TRUNCATE operations on bitcasts of float128 values. 15950 // What we are looking for here is the situtation where we extract a subset 15951 // of bits from a 128 bit float. 15952 // This can be of two forms: 15953 // 1) BITCAST of f128 feeding TRUNCATE 15954 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15955 // The reason this is required is because we do not have a legal i128 type 15956 // and so we want to prevent having to store the f128 and then reload part 15957 // of it. 15958 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15959 DAGCombinerInfo &DCI) const { 15960 // If we are using CRBits then try that first. 15961 if (Subtarget.useCRBits()) { 15962 // Check if CRBits did anything and return that if it did. 15963 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15964 return CRTruncValue; 15965 } 15966 15967 SDLoc dl(N); 15968 SDValue Op0 = N->getOperand(0); 15969 15970 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 15971 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 15972 EVT VT = N->getValueType(0); 15973 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15974 return SDValue(); 15975 SDValue Sub = Op0.getOperand(0); 15976 if (Sub.getOpcode() == ISD::SUB) { 15977 SDValue SubOp0 = Sub.getOperand(0); 15978 SDValue SubOp1 = Sub.getOperand(1); 15979 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 15980 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 15981 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 15982 SubOp1.getOperand(0), 15983 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 15984 } 15985 } 15986 } 15987 15988 // Looking for a truncate of i128 to i64. 15989 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15990 return SDValue(); 15991 15992 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15993 15994 // SRL feeding TRUNCATE. 15995 if (Op0.getOpcode() == ISD::SRL) { 15996 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15997 // The right shift has to be by 64 bits. 15998 if (!ConstNode || ConstNode->getZExtValue() != 64) 15999 return SDValue(); 16000 16001 // Switch the element number to extract. 16002 EltToExtract = EltToExtract ? 0 : 1; 16003 // Update Op0 past the SRL. 16004 Op0 = Op0.getOperand(0); 16005 } 16006 16007 // BITCAST feeding a TRUNCATE possibly via SRL. 16008 if (Op0.getOpcode() == ISD::BITCAST && 16009 Op0.getValueType() == MVT::i128 && 16010 Op0.getOperand(0).getValueType() == MVT::f128) { 16011 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16012 return DCI.DAG.getNode( 16013 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16014 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16015 } 16016 return SDValue(); 16017 } 16018 16019 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16020 SelectionDAG &DAG = DCI.DAG; 16021 16022 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16023 if (!ConstOpOrElement) 16024 return SDValue(); 16025 16026 // An imul is usually smaller than the alternative sequence for legal type. 16027 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16028 isOperationLegal(ISD::MUL, N->getValueType(0))) 16029 return SDValue(); 16030 16031 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16032 switch (this->Subtarget.getCPUDirective()) { 16033 default: 16034 // TODO: enhance the condition for subtarget before pwr8 16035 return false; 16036 case PPC::DIR_PWR8: 16037 // type mul add shl 16038 // scalar 4 1 1 16039 // vector 7 2 2 16040 return true; 16041 case PPC::DIR_PWR9: 16042 case PPC::DIR_PWR10: 16043 case PPC::DIR_PWR_FUTURE: 16044 // type mul add shl 16045 // scalar 5 2 2 16046 // vector 7 2 2 16047 16048 // The cycle RATIO of related operations are showed as a table above. 16049 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16050 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16051 // are 4, it is always profitable; but for 3 instrs patterns 16052 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16053 // So we should only do it for vector type. 16054 return IsAddOne && IsNeg ? VT.isVector() : true; 16055 } 16056 }; 16057 16058 EVT VT = N->getValueType(0); 16059 SDLoc DL(N); 16060 16061 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16062 bool IsNeg = MulAmt.isNegative(); 16063 APInt MulAmtAbs = MulAmt.abs(); 16064 16065 if ((MulAmtAbs - 1).isPowerOf2()) { 16066 // (mul x, 2^N + 1) => (add (shl x, N), x) 16067 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16068 16069 if (!IsProfitable(IsNeg, true, VT)) 16070 return SDValue(); 16071 16072 SDValue Op0 = N->getOperand(0); 16073 SDValue Op1 = 16074 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16075 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16076 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16077 16078 if (!IsNeg) 16079 return Res; 16080 16081 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16082 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16083 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16084 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16085 16086 if (!IsProfitable(IsNeg, false, VT)) 16087 return SDValue(); 16088 16089 SDValue Op0 = N->getOperand(0); 16090 SDValue Op1 = 16091 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16092 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16093 16094 if (!IsNeg) 16095 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16096 else 16097 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16098 16099 } else { 16100 return SDValue(); 16101 } 16102 } 16103 16104 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16105 // in combiner since we need to check SD flags and other subtarget features. 16106 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16107 DAGCombinerInfo &DCI) const { 16108 SDValue N0 = N->getOperand(0); 16109 SDValue N1 = N->getOperand(1); 16110 SDValue N2 = N->getOperand(2); 16111 SDNodeFlags Flags = N->getFlags(); 16112 EVT VT = N->getValueType(0); 16113 SelectionDAG &DAG = DCI.DAG; 16114 const TargetOptions &Options = getTargetMachine().Options; 16115 unsigned Opc = N->getOpcode(); 16116 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16117 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16118 SDLoc Loc(N); 16119 16120 if (!isOperationLegal(ISD::FMA, VT)) 16121 return SDValue(); 16122 16123 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16124 // since (fnmsub a b c)=-0 while c-ab=+0. 16125 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16126 return SDValue(); 16127 16128 // (fma (fneg a) b c) => (fnmsub a b c) 16129 // (fnmsub (fneg a) b c) => (fma a b c) 16130 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16131 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16132 16133 // (fma a (fneg b) c) => (fnmsub a b c) 16134 // (fnmsub a (fneg b) c) => (fma a b c) 16135 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16136 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16137 16138 return SDValue(); 16139 } 16140 16141 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16142 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16143 if (!Subtarget.is64BitELFABI()) 16144 return false; 16145 16146 // If not a tail call then no need to proceed. 16147 if (!CI->isTailCall()) 16148 return false; 16149 16150 // If sibling calls have been disabled and tail-calls aren't guaranteed 16151 // there is no reason to duplicate. 16152 auto &TM = getTargetMachine(); 16153 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16154 return false; 16155 16156 // Can't tail call a function called indirectly, or if it has variadic args. 16157 const Function *Callee = CI->getCalledFunction(); 16158 if (!Callee || Callee->isVarArg()) 16159 return false; 16160 16161 // Make sure the callee and caller calling conventions are eligible for tco. 16162 const Function *Caller = CI->getParent()->getParent(); 16163 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16164 CI->getCallingConv())) 16165 return false; 16166 16167 // If the function is local then we have a good chance at tail-calling it 16168 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16169 } 16170 16171 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16172 if (!Subtarget.hasVSX()) 16173 return false; 16174 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16175 return true; 16176 return VT == MVT::f32 || VT == MVT::f64 || 16177 VT == MVT::v4f32 || VT == MVT::v2f64; 16178 } 16179 16180 bool PPCTargetLowering:: 16181 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16182 const Value *Mask = AndI.getOperand(1); 16183 // If the mask is suitable for andi. or andis. we should sink the and. 16184 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16185 // Can't handle constants wider than 64-bits. 16186 if (CI->getBitWidth() > 64) 16187 return false; 16188 int64_t ConstVal = CI->getZExtValue(); 16189 return isUInt<16>(ConstVal) || 16190 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16191 } 16192 16193 // For non-constant masks, we can always use the record-form and. 16194 return true; 16195 } 16196 16197 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16198 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16199 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16200 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16201 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16202 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16203 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16204 assert(Subtarget.hasP9Altivec() && 16205 "Only combine this when P9 altivec supported!"); 16206 EVT VT = N->getValueType(0); 16207 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16208 return SDValue(); 16209 16210 SelectionDAG &DAG = DCI.DAG; 16211 SDLoc dl(N); 16212 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16213 // Even for signed integers, if it's known to be positive (as signed 16214 // integer) due to zero-extended inputs. 16215 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16216 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16217 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16218 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16219 (SubOpcd1 == ISD::ZERO_EXTEND || 16220 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16221 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16222 N->getOperand(0)->getOperand(0), 16223 N->getOperand(0)->getOperand(1), 16224 DAG.getTargetConstant(0, dl, MVT::i32)); 16225 } 16226 16227 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16228 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16229 N->getOperand(0).hasOneUse()) { 16230 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16231 N->getOperand(0)->getOperand(0), 16232 N->getOperand(0)->getOperand(1), 16233 DAG.getTargetConstant(1, dl, MVT::i32)); 16234 } 16235 } 16236 16237 return SDValue(); 16238 } 16239 16240 // For type v4i32/v8ii16/v16i8, transform 16241 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16242 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16243 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16244 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16245 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16246 DAGCombinerInfo &DCI) const { 16247 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16248 assert(Subtarget.hasP9Altivec() && 16249 "Only combine this when P9 altivec supported!"); 16250 16251 SelectionDAG &DAG = DCI.DAG; 16252 SDLoc dl(N); 16253 SDValue Cond = N->getOperand(0); 16254 SDValue TrueOpnd = N->getOperand(1); 16255 SDValue FalseOpnd = N->getOperand(2); 16256 EVT VT = N->getOperand(1).getValueType(); 16257 16258 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16259 FalseOpnd.getOpcode() != ISD::SUB) 16260 return SDValue(); 16261 16262 // ABSD only available for type v4i32/v8i16/v16i8 16263 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16264 return SDValue(); 16265 16266 // At least to save one more dependent computation 16267 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16268 return SDValue(); 16269 16270 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16271 16272 // Can only handle unsigned comparison here 16273 switch (CC) { 16274 default: 16275 return SDValue(); 16276 case ISD::SETUGT: 16277 case ISD::SETUGE: 16278 break; 16279 case ISD::SETULT: 16280 case ISD::SETULE: 16281 std::swap(TrueOpnd, FalseOpnd); 16282 break; 16283 } 16284 16285 SDValue CmpOpnd1 = Cond.getOperand(0); 16286 SDValue CmpOpnd2 = Cond.getOperand(1); 16287 16288 // SETCC CmpOpnd1 CmpOpnd2 cond 16289 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16290 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16291 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16292 TrueOpnd.getOperand(1) == CmpOpnd2 && 16293 FalseOpnd.getOperand(0) == CmpOpnd2 && 16294 FalseOpnd.getOperand(1) == CmpOpnd1) { 16295 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16296 CmpOpnd1, CmpOpnd2, 16297 DAG.getTargetConstant(0, dl, MVT::i32)); 16298 } 16299 16300 return SDValue(); 16301 } 16302