1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD, VT, Legal); 407 setOperationAction(ISD::SUB, VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::SELECT_CC, VT, Promote); 435 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 436 setOperationAction(ISD::STORE, VT, Promote); 437 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 438 439 // No other operations are legal. 440 setOperationAction(ISD::MUL , VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UDIV, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::FDIV, VT, Expand); 446 setOperationAction(ISD::FREM, VT, Expand); 447 setOperationAction(ISD::FNEG, VT, Expand); 448 setOperationAction(ISD::FSQRT, VT, Expand); 449 setOperationAction(ISD::FLOG, VT, Expand); 450 setOperationAction(ISD::FLOG10, VT, Expand); 451 setOperationAction(ISD::FLOG2, VT, Expand); 452 setOperationAction(ISD::FEXP, VT, Expand); 453 setOperationAction(ISD::FEXP2, VT, Expand); 454 setOperationAction(ISD::FSIN, VT, Expand); 455 setOperationAction(ISD::FCOS, VT, Expand); 456 setOperationAction(ISD::FABS, VT, Expand); 457 setOperationAction(ISD::FPOWI, VT, Expand); 458 setOperationAction(ISD::FFLOOR, VT, Expand); 459 setOperationAction(ISD::FCEIL, VT, Expand); 460 setOperationAction(ISD::FTRUNC, VT, Expand); 461 setOperationAction(ISD::FRINT, VT, Expand); 462 setOperationAction(ISD::FNEARBYINT, VT, Expand); 463 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 464 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 465 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 469 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::UDIVREM, VT, Expand); 471 setOperationAction(ISD::SDIVREM, VT, Expand); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 473 setOperationAction(ISD::FPOW, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 480 481 for (MVT InnerVT : MVT::vector_valuetypes()) { 482 setTruncStoreAction(VT, InnerVT, Expand); 483 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 484 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 485 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 486 } 487 } 488 489 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 490 // with merges, splats, etc. 491 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 492 493 setOperationAction(ISD::AND , MVT::v4i32, Legal); 494 setOperationAction(ISD::OR , MVT::v4i32, Legal); 495 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 496 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 497 setOperationAction(ISD::SELECT, MVT::v4i32, 498 Subtarget.useCRBits() ? Legal : Expand); 499 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 500 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 501 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 502 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 503 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 504 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 505 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 506 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 507 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 508 509 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 511 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 512 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 513 514 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 515 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 516 517 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 518 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 519 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 520 } 521 522 if (Subtarget.hasP8Altivec()) 523 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 524 else 525 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 526 527 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 528 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 529 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 531 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 532 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 536 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 537 538 // Altivec does not contain unordered floating-point compare instructions 539 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 542 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 543 544 if (Subtarget.hasVSX()) { 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 546 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 547 if (Subtarget.hasP8Vector()) { 548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 549 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 550 } 551 if (Subtarget.hasDirectMove()) { 552 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 553 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 554 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 555 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 556 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 557 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 558 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 560 } 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 563 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 564 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 565 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 566 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 567 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 568 569 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 570 571 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 572 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 573 574 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 575 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 576 577 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 578 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 579 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 580 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 581 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 582 583 // Share the Altivec comparison restrictions. 584 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 585 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 586 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 587 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 588 589 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 590 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 593 594 if (Subtarget.hasP8Vector()) 595 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 596 597 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 598 599 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 600 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 601 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 602 603 if (Subtarget.hasP8Altivec()) { 604 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 605 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 606 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 607 608 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 609 } 610 else { 611 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 612 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 613 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 614 615 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 616 617 // VSX v2i64 only supports non-arithmetic operations. 618 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 619 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 620 } 621 622 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 623 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 624 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 625 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 626 627 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 628 629 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 630 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 631 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 632 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 633 634 // Vector operation legalization checks the result type of 635 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 636 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 637 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 638 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 639 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 640 641 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 642 } 643 644 if (Subtarget.hasP8Altivec()) { 645 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 646 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 647 } 648 } 649 650 if (Subtarget.hasQPX()) { 651 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 652 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 653 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 654 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 655 656 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 657 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 658 659 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 660 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 661 662 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 663 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 664 665 if (!Subtarget.useCRBits()) 666 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 667 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 668 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 670 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 671 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 672 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 673 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 674 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 675 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 676 677 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 678 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 679 680 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 681 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 682 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 683 684 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 685 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 686 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 687 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 688 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 689 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 690 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 691 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 692 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 693 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 694 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 695 696 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 697 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 698 699 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 700 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 701 702 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 703 704 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 705 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 706 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 707 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 708 709 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 710 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 711 712 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 713 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 714 715 if (!Subtarget.useCRBits()) 716 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 717 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 718 719 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 720 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 721 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 722 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 723 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 724 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 726 727 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 728 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 729 730 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 731 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 732 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 733 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 734 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 735 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 736 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 737 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 738 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 739 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 740 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 741 742 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 743 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 744 745 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 746 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 747 748 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 749 750 setOperationAction(ISD::AND , MVT::v4i1, Legal); 751 setOperationAction(ISD::OR , MVT::v4i1, Legal); 752 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 753 754 if (!Subtarget.useCRBits()) 755 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 756 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 757 758 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 759 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 760 761 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 762 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 763 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 764 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 765 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 766 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 767 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 768 769 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 770 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 771 772 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 773 774 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 775 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 776 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 777 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 778 779 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 780 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 781 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 782 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 783 784 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 785 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 786 787 // These need to set FE_INEXACT, and so cannot be vectorized here. 788 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 789 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 790 791 if (TM.Options.UnsafeFPMath) { 792 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 793 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 794 795 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 796 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 797 } else { 798 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 799 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 800 801 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 802 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 803 } 804 } 805 806 if (Subtarget.has64BitSupport()) 807 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 808 809 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 810 811 if (!isPPC64) { 812 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 813 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 814 } 815 816 setBooleanContents(ZeroOrOneBooleanContent); 817 818 if (Subtarget.hasAltivec()) { 819 // Altivec instructions set fields to all zeros or all ones. 820 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 821 } 822 823 if (!isPPC64) { 824 // These libcalls are not available in 32-bit. 825 setLibcallName(RTLIB::SHL_I128, nullptr); 826 setLibcallName(RTLIB::SRL_I128, nullptr); 827 setLibcallName(RTLIB::SRA_I128, nullptr); 828 } 829 830 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 831 832 // We have target-specific dag combine patterns for the following nodes: 833 setTargetDAGCombine(ISD::SINT_TO_FP); 834 if (Subtarget.hasFPCVT()) 835 setTargetDAGCombine(ISD::UINT_TO_FP); 836 setTargetDAGCombine(ISD::LOAD); 837 setTargetDAGCombine(ISD::STORE); 838 setTargetDAGCombine(ISD::BR_CC); 839 if (Subtarget.useCRBits()) 840 setTargetDAGCombine(ISD::BRCOND); 841 setTargetDAGCombine(ISD::BSWAP); 842 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 843 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 844 setTargetDAGCombine(ISD::INTRINSIC_VOID); 845 846 setTargetDAGCombine(ISD::SIGN_EXTEND); 847 setTargetDAGCombine(ISD::ZERO_EXTEND); 848 setTargetDAGCombine(ISD::ANY_EXTEND); 849 850 if (Subtarget.useCRBits()) { 851 setTargetDAGCombine(ISD::TRUNCATE); 852 setTargetDAGCombine(ISD::SETCC); 853 setTargetDAGCombine(ISD::SELECT_CC); 854 } 855 856 // Use reciprocal estimates. 857 if (TM.Options.UnsafeFPMath) { 858 setTargetDAGCombine(ISD::FDIV); 859 setTargetDAGCombine(ISD::FSQRT); 860 } 861 862 // Darwin long double math library functions have $LDBL128 appended. 863 if (Subtarget.isDarwin()) { 864 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 865 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 866 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 867 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 868 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 869 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 870 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 871 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 872 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 873 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 874 } 875 876 // With 32 condition bits, we don't need to sink (and duplicate) compares 877 // aggressively in CodeGenPrep. 878 if (Subtarget.useCRBits()) { 879 setHasMultipleConditionRegisters(); 880 setJumpIsExpensive(); 881 } 882 883 setMinFunctionAlignment(2); 884 if (Subtarget.isDarwin()) 885 setPrefFunctionAlignment(4); 886 887 switch (Subtarget.getDarwinDirective()) { 888 default: break; 889 case PPC::DIR_970: 890 case PPC::DIR_A2: 891 case PPC::DIR_E500mc: 892 case PPC::DIR_E5500: 893 case PPC::DIR_PWR4: 894 case PPC::DIR_PWR5: 895 case PPC::DIR_PWR5X: 896 case PPC::DIR_PWR6: 897 case PPC::DIR_PWR6X: 898 case PPC::DIR_PWR7: 899 case PPC::DIR_PWR8: 900 setPrefFunctionAlignment(4); 901 setPrefLoopAlignment(4); 902 break; 903 } 904 905 setInsertFencesForAtomic(true); 906 907 if (Subtarget.enableMachineScheduler()) 908 setSchedulingPreference(Sched::Source); 909 else 910 setSchedulingPreference(Sched::Hybrid); 911 912 computeRegisterProperties(STI.getRegisterInfo()); 913 914 // The Freescale cores do better with aggressive inlining of memcpy and 915 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 916 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 917 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 918 MaxStoresPerMemset = 32; 919 MaxStoresPerMemsetOptSize = 16; 920 MaxStoresPerMemcpy = 32; 921 MaxStoresPerMemcpyOptSize = 8; 922 MaxStoresPerMemmove = 32; 923 MaxStoresPerMemmoveOptSize = 8; 924 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 925 // The A2 also benefits from (very) aggressive inlining of memcpy and 926 // friends. The overhead of a the function call, even when warm, can be 927 // over one hundred cycles. 928 MaxStoresPerMemset = 128; 929 MaxStoresPerMemcpy = 128; 930 MaxStoresPerMemmove = 128; 931 } 932 } 933 934 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 935 /// the desired ByVal argument alignment. 936 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 937 unsigned MaxMaxAlign) { 938 if (MaxAlign == MaxMaxAlign) 939 return; 940 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 941 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 942 MaxAlign = 32; 943 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 944 MaxAlign = 16; 945 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 946 unsigned EltAlign = 0; 947 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 948 if (EltAlign > MaxAlign) 949 MaxAlign = EltAlign; 950 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 951 for (auto *EltTy : STy->elements()) { 952 unsigned EltAlign = 0; 953 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 954 if (EltAlign > MaxAlign) 955 MaxAlign = EltAlign; 956 if (MaxAlign == MaxMaxAlign) 957 break; 958 } 959 } 960 } 961 962 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 963 /// function arguments in the caller parameter area. 964 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 965 const DataLayout &DL) const { 966 // Darwin passes everything on 4 byte boundary. 967 if (Subtarget.isDarwin()) 968 return 4; 969 970 // 16byte and wider vectors are passed on 16byte boundary. 971 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 972 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 973 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 974 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 975 return Align; 976 } 977 978 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 979 switch ((PPCISD::NodeType)Opcode) { 980 case PPCISD::FIRST_NUMBER: break; 981 case PPCISD::FSEL: return "PPCISD::FSEL"; 982 case PPCISD::FCFID: return "PPCISD::FCFID"; 983 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 984 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 985 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 986 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 987 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 988 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 989 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 990 case PPCISD::FRE: return "PPCISD::FRE"; 991 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 992 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 993 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 994 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 995 case PPCISD::VPERM: return "PPCISD::VPERM"; 996 case PPCISD::CMPB: return "PPCISD::CMPB"; 997 case PPCISD::Hi: return "PPCISD::Hi"; 998 case PPCISD::Lo: return "PPCISD::Lo"; 999 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1000 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1001 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1002 case PPCISD::SRL: return "PPCISD::SRL"; 1003 case PPCISD::SRA: return "PPCISD::SRA"; 1004 case PPCISD::SHL: return "PPCISD::SHL"; 1005 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1006 case PPCISD::CALL: return "PPCISD::CALL"; 1007 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1008 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1009 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1010 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1011 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1012 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1013 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1014 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1015 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1016 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1017 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1018 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1019 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1020 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1021 case PPCISD::VCMP: return "PPCISD::VCMP"; 1022 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1023 case PPCISD::LBRX: return "PPCISD::LBRX"; 1024 case PPCISD::STBRX: return "PPCISD::STBRX"; 1025 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1026 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1027 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1028 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1029 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1030 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1031 case PPCISD::BDZ: return "PPCISD::BDZ"; 1032 case PPCISD::MFFS: return "PPCISD::MFFS"; 1033 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1034 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1035 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1036 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1037 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1038 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1039 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1040 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1041 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1042 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1043 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1044 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1045 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1046 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1047 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1048 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1049 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1050 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1051 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1052 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1053 case PPCISD::SC: return "PPCISD::SC"; 1054 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1055 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1056 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1057 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1058 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1059 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1060 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1061 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1062 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1063 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1064 } 1065 return nullptr; 1066 } 1067 1068 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1069 EVT VT) const { 1070 if (!VT.isVector()) 1071 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1072 1073 if (Subtarget.hasQPX()) 1074 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1075 1076 return VT.changeVectorElementTypeToInteger(); 1077 } 1078 1079 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1080 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1081 return true; 1082 } 1083 1084 //===----------------------------------------------------------------------===// 1085 // Node matching predicates, for use by the tblgen matching code. 1086 //===----------------------------------------------------------------------===// 1087 1088 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1089 static bool isFloatingPointZero(SDValue Op) { 1090 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1091 return CFP->getValueAPF().isZero(); 1092 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1093 // Maybe this has already been legalized into the constant pool? 1094 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1096 return CFP->getValueAPF().isZero(); 1097 } 1098 return false; 1099 } 1100 1101 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1102 /// true if Op is undef or if it matches the specified value. 1103 static bool isConstantOrUndef(int Op, int Val) { 1104 return Op < 0 || Op == Val; 1105 } 1106 1107 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1108 /// VPKUHUM instruction. 1109 /// The ShuffleKind distinguishes between big-endian operations with 1110 /// two different inputs (0), either-endian operations with two identical 1111 /// inputs (1), and little-endian operations with two different inputs (2). 1112 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1113 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1114 SelectionDAG &DAG) { 1115 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1116 if (ShuffleKind == 0) { 1117 if (IsLE) 1118 return false; 1119 for (unsigned i = 0; i != 16; ++i) 1120 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1121 return false; 1122 } else if (ShuffleKind == 2) { 1123 if (!IsLE) 1124 return false; 1125 for (unsigned i = 0; i != 16; ++i) 1126 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1127 return false; 1128 } else if (ShuffleKind == 1) { 1129 unsigned j = IsLE ? 0 : 1; 1130 for (unsigned i = 0; i != 8; ++i) 1131 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1132 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1133 return false; 1134 } 1135 return true; 1136 } 1137 1138 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1139 /// VPKUWUM instruction. 1140 /// The ShuffleKind distinguishes between big-endian operations with 1141 /// two different inputs (0), either-endian operations with two identical 1142 /// inputs (1), and little-endian operations with two different inputs (2). 1143 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1144 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1145 SelectionDAG &DAG) { 1146 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1147 if (ShuffleKind == 0) { 1148 if (IsLE) 1149 return false; 1150 for (unsigned i = 0; i != 16; i += 2) 1151 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1152 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1153 return false; 1154 } else if (ShuffleKind == 2) { 1155 if (!IsLE) 1156 return false; 1157 for (unsigned i = 0; i != 16; i += 2) 1158 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1159 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1160 return false; 1161 } else if (ShuffleKind == 1) { 1162 unsigned j = IsLE ? 0 : 2; 1163 for (unsigned i = 0; i != 8; i += 2) 1164 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1165 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1166 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1167 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1168 return false; 1169 } 1170 return true; 1171 } 1172 1173 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1174 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1175 /// current subtarget. 1176 /// 1177 /// The ShuffleKind distinguishes between big-endian operations with 1178 /// two different inputs (0), either-endian operations with two identical 1179 /// inputs (1), and little-endian operations with two different inputs (2). 1180 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1181 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1182 SelectionDAG &DAG) { 1183 const PPCSubtarget& Subtarget = 1184 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1185 if (!Subtarget.hasP8Vector()) 1186 return false; 1187 1188 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1189 if (ShuffleKind == 0) { 1190 if (IsLE) 1191 return false; 1192 for (unsigned i = 0; i != 16; i += 4) 1193 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1194 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1195 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1196 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1197 return false; 1198 } else if (ShuffleKind == 2) { 1199 if (!IsLE) 1200 return false; 1201 for (unsigned i = 0; i != 16; i += 4) 1202 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1203 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1204 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1205 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1206 return false; 1207 } else if (ShuffleKind == 1) { 1208 unsigned j = IsLE ? 0 : 4; 1209 for (unsigned i = 0; i != 8; i += 4) 1210 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1211 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1212 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1213 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1214 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1215 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1216 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1217 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1218 return false; 1219 } 1220 return true; 1221 } 1222 1223 /// isVMerge - Common function, used to match vmrg* shuffles. 1224 /// 1225 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1226 unsigned LHSStart, unsigned RHSStart) { 1227 if (N->getValueType(0) != MVT::v16i8) 1228 return false; 1229 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1230 "Unsupported merge size!"); 1231 1232 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1233 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1234 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1235 LHSStart+j+i*UnitSize) || 1236 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1237 RHSStart+j+i*UnitSize)) 1238 return false; 1239 } 1240 return true; 1241 } 1242 1243 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1244 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1245 /// The ShuffleKind distinguishes between big-endian merges with two 1246 /// different inputs (0), either-endian merges with two identical inputs (1), 1247 /// and little-endian merges with two different inputs (2). For the latter, 1248 /// the input operands are swapped (see PPCInstrAltivec.td). 1249 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1250 unsigned ShuffleKind, SelectionDAG &DAG) { 1251 if (DAG.getDataLayout().isLittleEndian()) { 1252 if (ShuffleKind == 1) // unary 1253 return isVMerge(N, UnitSize, 0, 0); 1254 else if (ShuffleKind == 2) // swapped 1255 return isVMerge(N, UnitSize, 0, 16); 1256 else 1257 return false; 1258 } else { 1259 if (ShuffleKind == 1) // unary 1260 return isVMerge(N, UnitSize, 8, 8); 1261 else if (ShuffleKind == 0) // normal 1262 return isVMerge(N, UnitSize, 8, 24); 1263 else 1264 return false; 1265 } 1266 } 1267 1268 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1269 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1270 /// The ShuffleKind distinguishes between big-endian merges with two 1271 /// different inputs (0), either-endian merges with two identical inputs (1), 1272 /// and little-endian merges with two different inputs (2). For the latter, 1273 /// the input operands are swapped (see PPCInstrAltivec.td). 1274 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1275 unsigned ShuffleKind, SelectionDAG &DAG) { 1276 if (DAG.getDataLayout().isLittleEndian()) { 1277 if (ShuffleKind == 1) // unary 1278 return isVMerge(N, UnitSize, 8, 8); 1279 else if (ShuffleKind == 2) // swapped 1280 return isVMerge(N, UnitSize, 8, 24); 1281 else 1282 return false; 1283 } else { 1284 if (ShuffleKind == 1) // unary 1285 return isVMerge(N, UnitSize, 0, 0); 1286 else if (ShuffleKind == 0) // normal 1287 return isVMerge(N, UnitSize, 0, 16); 1288 else 1289 return false; 1290 } 1291 } 1292 1293 /** 1294 * \brief Common function used to match vmrgew and vmrgow shuffles 1295 * 1296 * The indexOffset determines whether to look for even or odd words in 1297 * the shuffle mask. This is based on the of the endianness of the target 1298 * machine. 1299 * - Little Endian: 1300 * - Use offset of 0 to check for odd elements 1301 * - Use offset of 4 to check for even elements 1302 * - Big Endian: 1303 * - Use offset of 0 to check for even elements 1304 * - Use offset of 4 to check for odd elements 1305 * A detailed description of the vector element ordering for little endian and 1306 * big endian can be found at 1307 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1308 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1309 * compiler differences mean to you 1310 * 1311 * The mask to the shuffle vector instruction specifies the indices of the 1312 * elements from the two input vectors to place in the result. The elements are 1313 * numbered in array-access order, starting with the first vector. These vectors 1314 * are always of type v16i8, thus each vector will contain 16 elements of size 1315 * 8. More info on the shuffle vector can be found in the 1316 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1317 * Language Reference. 1318 * 1319 * The RHSStartValue indicates whether the same input vectors are used (unary) 1320 * or two different input vectors are used, based on the following: 1321 * - If the instruction uses the same vector for both inputs, the range of the 1322 * indices will be 0 to 15. In this case, the RHSStart value passed should 1323 * be 0. 1324 * - If the instruction has two different vectors then the range of the 1325 * indices will be 0 to 31. In this case, the RHSStart value passed should 1326 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1327 * to 31 specify elements in the second vector). 1328 * 1329 * \param[in] N The shuffle vector SD Node to analyze 1330 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1331 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1332 * vector to the shuffle_vector instruction 1333 * \return true iff this shuffle vector represents an even or odd word merge 1334 */ 1335 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1336 unsigned RHSStartValue) { 1337 if (N->getValueType(0) != MVT::v16i8) 1338 return false; 1339 1340 for (unsigned i = 0; i < 2; ++i) 1341 for (unsigned j = 0; j < 4; ++j) 1342 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1343 i*RHSStartValue+j+IndexOffset) || 1344 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1345 i*RHSStartValue+j+IndexOffset+8)) 1346 return false; 1347 return true; 1348 } 1349 1350 /** 1351 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1352 * vmrgow instructions. 1353 * 1354 * \param[in] N The shuffle vector SD Node to analyze 1355 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1356 * \param[in] ShuffleKind Identify the type of merge: 1357 * - 0 = big-endian merge with two different inputs; 1358 * - 1 = either-endian merge with two identical inputs; 1359 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1360 * little-endian merges). 1361 * \param[in] DAG The current SelectionDAG 1362 * \return true iff this shuffle mask 1363 */ 1364 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1365 unsigned ShuffleKind, SelectionDAG &DAG) { 1366 if (DAG.getDataLayout().isLittleEndian()) { 1367 unsigned indexOffset = CheckEven ? 4 : 0; 1368 if (ShuffleKind == 1) // Unary 1369 return isVMerge(N, indexOffset, 0); 1370 else if (ShuffleKind == 2) // swapped 1371 return isVMerge(N, indexOffset, 16); 1372 else 1373 return false; 1374 } 1375 else { 1376 unsigned indexOffset = CheckEven ? 0 : 4; 1377 if (ShuffleKind == 1) // Unary 1378 return isVMerge(N, indexOffset, 0); 1379 else if (ShuffleKind == 0) // Normal 1380 return isVMerge(N, indexOffset, 16); 1381 else 1382 return false; 1383 } 1384 return false; 1385 } 1386 1387 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1388 /// amount, otherwise return -1. 1389 /// The ShuffleKind distinguishes between big-endian operations with two 1390 /// different inputs (0), either-endian operations with two identical inputs 1391 /// (1), and little-endian operations with two different inputs (2). For the 1392 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1393 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1394 SelectionDAG &DAG) { 1395 if (N->getValueType(0) != MVT::v16i8) 1396 return -1; 1397 1398 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1399 1400 // Find the first non-undef value in the shuffle mask. 1401 unsigned i; 1402 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1403 /*search*/; 1404 1405 if (i == 16) return -1; // all undef. 1406 1407 // Otherwise, check to see if the rest of the elements are consecutively 1408 // numbered from this value. 1409 unsigned ShiftAmt = SVOp->getMaskElt(i); 1410 if (ShiftAmt < i) return -1; 1411 1412 ShiftAmt -= i; 1413 bool isLE = DAG.getDataLayout().isLittleEndian(); 1414 1415 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1416 // Check the rest of the elements to see if they are consecutive. 1417 for (++i; i != 16; ++i) 1418 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1419 return -1; 1420 } else if (ShuffleKind == 1) { 1421 // Check the rest of the elements to see if they are consecutive. 1422 for (++i; i != 16; ++i) 1423 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1424 return -1; 1425 } else 1426 return -1; 1427 1428 if (isLE) 1429 ShiftAmt = 16 - ShiftAmt; 1430 1431 return ShiftAmt; 1432 } 1433 1434 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1435 /// specifies a splat of a single element that is suitable for input to 1436 /// VSPLTB/VSPLTH/VSPLTW. 1437 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1438 assert(N->getValueType(0) == MVT::v16i8 && 1439 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1440 1441 // The consecutive indices need to specify an element, not part of two 1442 // different elements. So abandon ship early if this isn't the case. 1443 if (N->getMaskElt(0) % EltSize != 0) 1444 return false; 1445 1446 // This is a splat operation if each element of the permute is the same, and 1447 // if the value doesn't reference the second vector. 1448 unsigned ElementBase = N->getMaskElt(0); 1449 1450 // FIXME: Handle UNDEF elements too! 1451 if (ElementBase >= 16) 1452 return false; 1453 1454 // Check that the indices are consecutive, in the case of a multi-byte element 1455 // splatted with a v16i8 mask. 1456 for (unsigned i = 1; i != EltSize; ++i) 1457 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1458 return false; 1459 1460 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1461 if (N->getMaskElt(i) < 0) continue; 1462 for (unsigned j = 0; j != EltSize; ++j) 1463 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1464 return false; 1465 } 1466 return true; 1467 } 1468 1469 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1470 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1471 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1472 SelectionDAG &DAG) { 1473 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1474 assert(isSplatShuffleMask(SVOp, EltSize)); 1475 if (DAG.getDataLayout().isLittleEndian()) 1476 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1477 else 1478 return SVOp->getMaskElt(0) / EltSize; 1479 } 1480 1481 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1482 /// by using a vspltis[bhw] instruction of the specified element size, return 1483 /// the constant being splatted. The ByteSize field indicates the number of 1484 /// bytes of each element [124] -> [bhw]. 1485 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1486 SDValue OpVal(nullptr, 0); 1487 1488 // If ByteSize of the splat is bigger than the element size of the 1489 // build_vector, then we have a case where we are checking for a splat where 1490 // multiple elements of the buildvector are folded together into a single 1491 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1492 unsigned EltSize = 16/N->getNumOperands(); 1493 if (EltSize < ByteSize) { 1494 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1495 SDValue UniquedVals[4]; 1496 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1497 1498 // See if all of the elements in the buildvector agree across. 1499 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1500 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1501 // If the element isn't a constant, bail fully out. 1502 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1503 1504 1505 if (!UniquedVals[i&(Multiple-1)].getNode()) 1506 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1507 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1508 return SDValue(); // no match. 1509 } 1510 1511 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1512 // either constant or undef values that are identical for each chunk. See 1513 // if these chunks can form into a larger vspltis*. 1514 1515 // Check to see if all of the leading entries are either 0 or -1. If 1516 // neither, then this won't fit into the immediate field. 1517 bool LeadingZero = true; 1518 bool LeadingOnes = true; 1519 for (unsigned i = 0; i != Multiple-1; ++i) { 1520 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1521 1522 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1523 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1524 } 1525 // Finally, check the least significant entry. 1526 if (LeadingZero) { 1527 if (!UniquedVals[Multiple-1].getNode()) 1528 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1529 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1530 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1531 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1532 } 1533 if (LeadingOnes) { 1534 if (!UniquedVals[Multiple-1].getNode()) 1535 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1536 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1537 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1538 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1539 } 1540 1541 return SDValue(); 1542 } 1543 1544 // Check to see if this buildvec has a single non-undef value in its elements. 1545 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1546 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1547 if (!OpVal.getNode()) 1548 OpVal = N->getOperand(i); 1549 else if (OpVal != N->getOperand(i)) 1550 return SDValue(); 1551 } 1552 1553 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1554 1555 unsigned ValSizeInBytes = EltSize; 1556 uint64_t Value = 0; 1557 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1558 Value = CN->getZExtValue(); 1559 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1560 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1561 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1562 } 1563 1564 // If the splat value is larger than the element value, then we can never do 1565 // this splat. The only case that we could fit the replicated bits into our 1566 // immediate field for would be zero, and we prefer to use vxor for it. 1567 if (ValSizeInBytes < ByteSize) return SDValue(); 1568 1569 // If the element value is larger than the splat value, check if it consists 1570 // of a repeated bit pattern of size ByteSize. 1571 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1572 return SDValue(); 1573 1574 // Properly sign extend the value. 1575 int MaskVal = SignExtend32(Value, ByteSize * 8); 1576 1577 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1578 if (MaskVal == 0) return SDValue(); 1579 1580 // Finally, if this value fits in a 5 bit sext field, return it 1581 if (SignExtend32<5>(MaskVal) == MaskVal) 1582 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1583 return SDValue(); 1584 } 1585 1586 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1587 /// amount, otherwise return -1. 1588 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1589 EVT VT = N->getValueType(0); 1590 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1591 return -1; 1592 1593 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1594 1595 // Find the first non-undef value in the shuffle mask. 1596 unsigned i; 1597 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1598 /*search*/; 1599 1600 if (i == 4) return -1; // all undef. 1601 1602 // Otherwise, check to see if the rest of the elements are consecutively 1603 // numbered from this value. 1604 unsigned ShiftAmt = SVOp->getMaskElt(i); 1605 if (ShiftAmt < i) return -1; 1606 ShiftAmt -= i; 1607 1608 // Check the rest of the elements to see if they are consecutive. 1609 for (++i; i != 4; ++i) 1610 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1611 return -1; 1612 1613 return ShiftAmt; 1614 } 1615 1616 //===----------------------------------------------------------------------===// 1617 // Addressing Mode Selection 1618 //===----------------------------------------------------------------------===// 1619 1620 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1621 /// or 64-bit immediate, and if the value can be accurately represented as a 1622 /// sign extension from a 16-bit value. If so, this returns true and the 1623 /// immediate. 1624 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1625 if (!isa<ConstantSDNode>(N)) 1626 return false; 1627 1628 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1629 if (N->getValueType(0) == MVT::i32) 1630 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1631 else 1632 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1633 } 1634 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1635 return isIntS16Immediate(Op.getNode(), Imm); 1636 } 1637 1638 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1639 /// can be represented as an indexed [r+r] operation. Returns false if it 1640 /// can be more efficiently represented with [r+imm]. 1641 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1642 SDValue &Index, 1643 SelectionDAG &DAG) const { 1644 short imm = 0; 1645 if (N.getOpcode() == ISD::ADD) { 1646 if (isIntS16Immediate(N.getOperand(1), imm)) 1647 return false; // r+i 1648 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1649 return false; // r+i 1650 1651 Base = N.getOperand(0); 1652 Index = N.getOperand(1); 1653 return true; 1654 } else if (N.getOpcode() == ISD::OR) { 1655 if (isIntS16Immediate(N.getOperand(1), imm)) 1656 return false; // r+i can fold it if we can. 1657 1658 // If this is an or of disjoint bitfields, we can codegen this as an add 1659 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1660 // disjoint. 1661 APInt LHSKnownZero, LHSKnownOne; 1662 APInt RHSKnownZero, RHSKnownOne; 1663 DAG.computeKnownBits(N.getOperand(0), 1664 LHSKnownZero, LHSKnownOne); 1665 1666 if (LHSKnownZero.getBoolValue()) { 1667 DAG.computeKnownBits(N.getOperand(1), 1668 RHSKnownZero, RHSKnownOne); 1669 // If all of the bits are known zero on the LHS or RHS, the add won't 1670 // carry. 1671 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1672 Base = N.getOperand(0); 1673 Index = N.getOperand(1); 1674 return true; 1675 } 1676 } 1677 } 1678 1679 return false; 1680 } 1681 1682 // If we happen to be doing an i64 load or store into a stack slot that has 1683 // less than a 4-byte alignment, then the frame-index elimination may need to 1684 // use an indexed load or store instruction (because the offset may not be a 1685 // multiple of 4). The extra register needed to hold the offset comes from the 1686 // register scavenger, and it is possible that the scavenger will need to use 1687 // an emergency spill slot. As a result, we need to make sure that a spill slot 1688 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1689 // stack slot. 1690 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1691 // FIXME: This does not handle the LWA case. 1692 if (VT != MVT::i64) 1693 return; 1694 1695 // NOTE: We'll exclude negative FIs here, which come from argument 1696 // lowering, because there are no known test cases triggering this problem 1697 // using packed structures (or similar). We can remove this exclusion if 1698 // we find such a test case. The reason why this is so test-case driven is 1699 // because this entire 'fixup' is only to prevent crashes (from the 1700 // register scavenger) on not-really-valid inputs. For example, if we have: 1701 // %a = alloca i1 1702 // %b = bitcast i1* %a to i64* 1703 // store i64* a, i64 b 1704 // then the store should really be marked as 'align 1', but is not. If it 1705 // were marked as 'align 1' then the indexed form would have been 1706 // instruction-selected initially, and the problem this 'fixup' is preventing 1707 // won't happen regardless. 1708 if (FrameIdx < 0) 1709 return; 1710 1711 MachineFunction &MF = DAG.getMachineFunction(); 1712 MachineFrameInfo *MFI = MF.getFrameInfo(); 1713 1714 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1715 if (Align >= 4) 1716 return; 1717 1718 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1719 FuncInfo->setHasNonRISpills(); 1720 } 1721 1722 /// Returns true if the address N can be represented by a base register plus 1723 /// a signed 16-bit displacement [r+imm], and if it is not better 1724 /// represented as reg+reg. If Aligned is true, only accept displacements 1725 /// suitable for STD and friends, i.e. multiples of 4. 1726 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1727 SDValue &Base, 1728 SelectionDAG &DAG, 1729 bool Aligned) const { 1730 // FIXME dl should come from parent load or store, not from address 1731 SDLoc dl(N); 1732 // If this can be more profitably realized as r+r, fail. 1733 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1734 return false; 1735 1736 if (N.getOpcode() == ISD::ADD) { 1737 short imm = 0; 1738 if (isIntS16Immediate(N.getOperand(1), imm) && 1739 (!Aligned || (imm & 3) == 0)) { 1740 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1741 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1742 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1743 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1744 } else { 1745 Base = N.getOperand(0); 1746 } 1747 return true; // [r+i] 1748 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1749 // Match LOAD (ADD (X, Lo(G))). 1750 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1751 && "Cannot handle constant offsets yet!"); 1752 Disp = N.getOperand(1).getOperand(0); // The global address. 1753 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1754 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1755 Disp.getOpcode() == ISD::TargetConstantPool || 1756 Disp.getOpcode() == ISD::TargetJumpTable); 1757 Base = N.getOperand(0); 1758 return true; // [&g+r] 1759 } 1760 } else if (N.getOpcode() == ISD::OR) { 1761 short imm = 0; 1762 if (isIntS16Immediate(N.getOperand(1), imm) && 1763 (!Aligned || (imm & 3) == 0)) { 1764 // If this is an or of disjoint bitfields, we can codegen this as an add 1765 // (for better address arithmetic) if the LHS and RHS of the OR are 1766 // provably disjoint. 1767 APInt LHSKnownZero, LHSKnownOne; 1768 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1769 1770 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1771 // If all of the bits are known zero on the LHS or RHS, the add won't 1772 // carry. 1773 if (FrameIndexSDNode *FI = 1774 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1775 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1776 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1777 } else { 1778 Base = N.getOperand(0); 1779 } 1780 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1781 return true; 1782 } 1783 } 1784 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1785 // Loading from a constant address. 1786 1787 // If this address fits entirely in a 16-bit sext immediate field, codegen 1788 // this as "d, 0" 1789 short Imm; 1790 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1791 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1792 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1793 CN->getValueType(0)); 1794 return true; 1795 } 1796 1797 // Handle 32-bit sext immediates with LIS + addr mode. 1798 if ((CN->getValueType(0) == MVT::i32 || 1799 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1800 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1801 int Addr = (int)CN->getZExtValue(); 1802 1803 // Otherwise, break this down into an LIS + disp. 1804 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1805 1806 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1807 MVT::i32); 1808 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1809 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1810 return true; 1811 } 1812 } 1813 1814 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1815 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1816 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1817 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1818 } else 1819 Base = N; 1820 return true; // [r+0] 1821 } 1822 1823 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1824 /// represented as an indexed [r+r] operation. 1825 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1826 SDValue &Index, 1827 SelectionDAG &DAG) const { 1828 // Check to see if we can easily represent this as an [r+r] address. This 1829 // will fail if it thinks that the address is more profitably represented as 1830 // reg+imm, e.g. where imm = 0. 1831 if (SelectAddressRegReg(N, Base, Index, DAG)) 1832 return true; 1833 1834 // If the operand is an addition, always emit this as [r+r], since this is 1835 // better (for code size, and execution, as the memop does the add for free) 1836 // than emitting an explicit add. 1837 if (N.getOpcode() == ISD::ADD) { 1838 Base = N.getOperand(0); 1839 Index = N.getOperand(1); 1840 return true; 1841 } 1842 1843 // Otherwise, do it the hard way, using R0 as the base register. 1844 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1845 N.getValueType()); 1846 Index = N; 1847 return true; 1848 } 1849 1850 /// getPreIndexedAddressParts - returns true by value, base pointer and 1851 /// offset pointer and addressing mode by reference if the node's address 1852 /// can be legally represented as pre-indexed load / store address. 1853 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1854 SDValue &Offset, 1855 ISD::MemIndexedMode &AM, 1856 SelectionDAG &DAG) const { 1857 if (DisablePPCPreinc) return false; 1858 1859 bool isLoad = true; 1860 SDValue Ptr; 1861 EVT VT; 1862 unsigned Alignment; 1863 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1864 Ptr = LD->getBasePtr(); 1865 VT = LD->getMemoryVT(); 1866 Alignment = LD->getAlignment(); 1867 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1868 Ptr = ST->getBasePtr(); 1869 VT = ST->getMemoryVT(); 1870 Alignment = ST->getAlignment(); 1871 isLoad = false; 1872 } else 1873 return false; 1874 1875 // PowerPC doesn't have preinc load/store instructions for vectors (except 1876 // for QPX, which does have preinc r+r forms). 1877 if (VT.isVector()) { 1878 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1879 return false; 1880 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1881 AM = ISD::PRE_INC; 1882 return true; 1883 } 1884 } 1885 1886 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1887 1888 // Common code will reject creating a pre-inc form if the base pointer 1889 // is a frame index, or if N is a store and the base pointer is either 1890 // the same as or a predecessor of the value being stored. Check for 1891 // those situations here, and try with swapped Base/Offset instead. 1892 bool Swap = false; 1893 1894 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1895 Swap = true; 1896 else if (!isLoad) { 1897 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1898 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1899 Swap = true; 1900 } 1901 1902 if (Swap) 1903 std::swap(Base, Offset); 1904 1905 AM = ISD::PRE_INC; 1906 return true; 1907 } 1908 1909 // LDU/STU can only handle immediates that are a multiple of 4. 1910 if (VT != MVT::i64) { 1911 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1912 return false; 1913 } else { 1914 // LDU/STU need an address with at least 4-byte alignment. 1915 if (Alignment < 4) 1916 return false; 1917 1918 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1919 return false; 1920 } 1921 1922 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1923 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1924 // sext i32 to i64 when addr mode is r+i. 1925 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1926 LD->getExtensionType() == ISD::SEXTLOAD && 1927 isa<ConstantSDNode>(Offset)) 1928 return false; 1929 } 1930 1931 AM = ISD::PRE_INC; 1932 return true; 1933 } 1934 1935 //===----------------------------------------------------------------------===// 1936 // LowerOperation implementation 1937 //===----------------------------------------------------------------------===// 1938 1939 /// GetLabelAccessInfo - Return true if we should reference labels using a 1940 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1941 static bool GetLabelAccessInfo(const TargetMachine &TM, 1942 const PPCSubtarget &Subtarget, 1943 unsigned &HiOpFlags, unsigned &LoOpFlags, 1944 const GlobalValue *GV = nullptr) { 1945 HiOpFlags = PPCII::MO_HA; 1946 LoOpFlags = PPCII::MO_LO; 1947 1948 // Don't use the pic base if not in PIC relocation model. 1949 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1950 1951 if (isPIC) { 1952 HiOpFlags |= PPCII::MO_PIC_FLAG; 1953 LoOpFlags |= PPCII::MO_PIC_FLAG; 1954 } 1955 1956 // If this is a reference to a global value that requires a non-lazy-ptr, make 1957 // sure that instruction lowering adds it. 1958 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1959 HiOpFlags |= PPCII::MO_NLP_FLAG; 1960 LoOpFlags |= PPCII::MO_NLP_FLAG; 1961 1962 if (GV->hasHiddenVisibility()) { 1963 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1964 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1965 } 1966 } 1967 1968 return isPIC; 1969 } 1970 1971 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1972 SelectionDAG &DAG) { 1973 SDLoc DL(HiPart); 1974 EVT PtrVT = HiPart.getValueType(); 1975 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1976 1977 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1978 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1979 1980 // With PIC, the first instruction is actually "GR+hi(&G)". 1981 if (isPIC) 1982 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1983 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1984 1985 // Generate non-pic code that has direct accesses to the constant pool. 1986 // The address of the global is just (hi(&g)+lo(&g)). 1987 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1988 } 1989 1990 static void setUsesTOCBasePtr(MachineFunction &MF) { 1991 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1992 FuncInfo->setUsesTOCBasePtr(); 1993 } 1994 1995 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1996 setUsesTOCBasePtr(DAG.getMachineFunction()); 1997 } 1998 1999 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2000 SDValue GA) { 2001 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2002 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2003 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2004 2005 SDValue Ops[] = { GA, Reg }; 2006 return DAG.getMemIntrinsicNode( 2007 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2008 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2009 false, 0); 2010 } 2011 2012 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2013 SelectionDAG &DAG) const { 2014 EVT PtrVT = Op.getValueType(); 2015 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2016 const Constant *C = CP->getConstVal(); 2017 2018 // 64-bit SVR4 ABI code is always position-independent. 2019 // The actual address of the GlobalValue is stored in the TOC. 2020 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2021 setUsesTOCBasePtr(DAG); 2022 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2023 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2024 } 2025 2026 unsigned MOHiFlag, MOLoFlag; 2027 bool isPIC = 2028 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2029 2030 if (isPIC && Subtarget.isSVR4ABI()) { 2031 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2032 PPCII::MO_PIC_FLAG); 2033 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2034 } 2035 2036 SDValue CPIHi = 2037 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2038 SDValue CPILo = 2039 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2040 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2041 } 2042 2043 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2044 EVT PtrVT = Op.getValueType(); 2045 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2046 2047 // 64-bit SVR4 ABI code is always position-independent. 2048 // The actual address of the GlobalValue is stored in the TOC. 2049 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2050 setUsesTOCBasePtr(DAG); 2051 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2052 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2053 } 2054 2055 unsigned MOHiFlag, MOLoFlag; 2056 bool isPIC = 2057 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2058 2059 if (isPIC && Subtarget.isSVR4ABI()) { 2060 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2061 PPCII::MO_PIC_FLAG); 2062 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2063 } 2064 2065 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2066 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2067 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2068 } 2069 2070 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2071 SelectionDAG &DAG) const { 2072 EVT PtrVT = Op.getValueType(); 2073 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2074 const BlockAddress *BA = BASDN->getBlockAddress(); 2075 2076 // 64-bit SVR4 ABI code is always position-independent. 2077 // The actual BlockAddress is stored in the TOC. 2078 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2079 setUsesTOCBasePtr(DAG); 2080 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2081 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2082 } 2083 2084 unsigned MOHiFlag, MOLoFlag; 2085 bool isPIC = 2086 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2087 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2088 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2089 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2090 } 2091 2092 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2093 SelectionDAG &DAG) const { 2094 2095 // FIXME: TLS addresses currently use medium model code sequences, 2096 // which is the most useful form. Eventually support for small and 2097 // large models could be added if users need it, at the cost of 2098 // additional complexity. 2099 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2100 if (DAG.getTarget().Options.EmulatedTLS) 2101 return LowerToTLSEmulatedModel(GA, DAG); 2102 2103 SDLoc dl(GA); 2104 const GlobalValue *GV = GA->getGlobal(); 2105 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2106 bool is64bit = Subtarget.isPPC64(); 2107 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2108 PICLevel::Level picLevel = M->getPICLevel(); 2109 2110 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2111 2112 if (Model == TLSModel::LocalExec) { 2113 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2114 PPCII::MO_TPREL_HA); 2115 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2116 PPCII::MO_TPREL_LO); 2117 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2118 is64bit ? MVT::i64 : MVT::i32); 2119 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2120 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2121 } 2122 2123 if (Model == TLSModel::InitialExec) { 2124 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2125 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2126 PPCII::MO_TLS); 2127 SDValue GOTPtr; 2128 if (is64bit) { 2129 setUsesTOCBasePtr(DAG); 2130 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2131 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2132 PtrVT, GOTReg, TGA); 2133 } else 2134 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2135 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2136 PtrVT, TGA, GOTPtr); 2137 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2138 } 2139 2140 if (Model == TLSModel::GeneralDynamic) { 2141 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2142 SDValue GOTPtr; 2143 if (is64bit) { 2144 setUsesTOCBasePtr(DAG); 2145 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2146 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2147 GOTReg, TGA); 2148 } else { 2149 if (picLevel == PICLevel::Small) 2150 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2151 else 2152 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2153 } 2154 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2155 GOTPtr, TGA, TGA); 2156 } 2157 2158 if (Model == TLSModel::LocalDynamic) { 2159 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2160 SDValue GOTPtr; 2161 if (is64bit) { 2162 setUsesTOCBasePtr(DAG); 2163 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2164 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2165 GOTReg, TGA); 2166 } else { 2167 if (picLevel == PICLevel::Small) 2168 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2169 else 2170 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2171 } 2172 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2173 PtrVT, GOTPtr, TGA, TGA); 2174 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2175 PtrVT, TLSAddr, TGA); 2176 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2177 } 2178 2179 llvm_unreachable("Unknown TLS model!"); 2180 } 2181 2182 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2183 SelectionDAG &DAG) const { 2184 EVT PtrVT = Op.getValueType(); 2185 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2186 SDLoc DL(GSDN); 2187 const GlobalValue *GV = GSDN->getGlobal(); 2188 2189 // 64-bit SVR4 ABI code is always position-independent. 2190 // The actual address of the GlobalValue is stored in the TOC. 2191 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2192 setUsesTOCBasePtr(DAG); 2193 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2194 return getTOCEntry(DAG, DL, true, GA); 2195 } 2196 2197 unsigned MOHiFlag, MOLoFlag; 2198 bool isPIC = 2199 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2200 2201 if (isPIC && Subtarget.isSVR4ABI()) { 2202 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2203 GSDN->getOffset(), 2204 PPCII::MO_PIC_FLAG); 2205 return getTOCEntry(DAG, DL, false, GA); 2206 } 2207 2208 SDValue GAHi = 2209 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2210 SDValue GALo = 2211 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2212 2213 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2214 2215 // If the global reference is actually to a non-lazy-pointer, we have to do an 2216 // extra load to get the address of the global. 2217 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2218 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2219 false, false, false, 0); 2220 return Ptr; 2221 } 2222 2223 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2224 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2225 SDLoc dl(Op); 2226 2227 if (Op.getValueType() == MVT::v2i64) { 2228 // When the operands themselves are v2i64 values, we need to do something 2229 // special because VSX has no underlying comparison operations for these. 2230 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2231 // Equality can be handled by casting to the legal type for Altivec 2232 // comparisons, everything else needs to be expanded. 2233 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2234 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2235 DAG.getSetCC(dl, MVT::v4i32, 2236 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2237 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2238 CC)); 2239 } 2240 2241 return SDValue(); 2242 } 2243 2244 // We handle most of these in the usual way. 2245 return Op; 2246 } 2247 2248 // If we're comparing for equality to zero, expose the fact that this is 2249 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2250 // fold the new nodes. 2251 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2252 if (C->isNullValue() && CC == ISD::SETEQ) { 2253 EVT VT = Op.getOperand(0).getValueType(); 2254 SDValue Zext = Op.getOperand(0); 2255 if (VT.bitsLT(MVT::i32)) { 2256 VT = MVT::i32; 2257 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2258 } 2259 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2260 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2261 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2262 DAG.getConstant(Log2b, dl, MVT::i32)); 2263 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2264 } 2265 // Leave comparisons against 0 and -1 alone for now, since they're usually 2266 // optimized. FIXME: revisit this when we can custom lower all setcc 2267 // optimizations. 2268 if (C->isAllOnesValue() || C->isNullValue()) 2269 return SDValue(); 2270 } 2271 2272 // If we have an integer seteq/setne, turn it into a compare against zero 2273 // by xor'ing the rhs with the lhs, which is faster than setting a 2274 // condition register, reading it back out, and masking the correct bit. The 2275 // normal approach here uses sub to do this instead of xor. Using xor exposes 2276 // the result to other bit-twiddling opportunities. 2277 EVT LHSVT = Op.getOperand(0).getValueType(); 2278 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2279 EVT VT = Op.getValueType(); 2280 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2281 Op.getOperand(1)); 2282 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2283 } 2284 return SDValue(); 2285 } 2286 2287 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2288 const PPCSubtarget &Subtarget) const { 2289 SDNode *Node = Op.getNode(); 2290 EVT VT = Node->getValueType(0); 2291 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2292 SDValue InChain = Node->getOperand(0); 2293 SDValue VAListPtr = Node->getOperand(1); 2294 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2295 SDLoc dl(Node); 2296 2297 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2298 2299 // gpr_index 2300 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2301 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2302 false, false, false, 0); 2303 InChain = GprIndex.getValue(1); 2304 2305 if (VT == MVT::i64) { 2306 // Check if GprIndex is even 2307 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2308 DAG.getConstant(1, dl, MVT::i32)); 2309 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2310 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2311 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2312 DAG.getConstant(1, dl, MVT::i32)); 2313 // Align GprIndex to be even if it isn't 2314 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2315 GprIndex); 2316 } 2317 2318 // fpr index is 1 byte after gpr 2319 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2320 DAG.getConstant(1, dl, MVT::i32)); 2321 2322 // fpr 2323 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2324 FprPtr, MachinePointerInfo(SV), MVT::i8, 2325 false, false, false, 0); 2326 InChain = FprIndex.getValue(1); 2327 2328 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2329 DAG.getConstant(8, dl, MVT::i32)); 2330 2331 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2332 DAG.getConstant(4, dl, MVT::i32)); 2333 2334 // areas 2335 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2336 MachinePointerInfo(), false, false, 2337 false, 0); 2338 InChain = OverflowArea.getValue(1); 2339 2340 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2341 MachinePointerInfo(), false, false, 2342 false, 0); 2343 InChain = RegSaveArea.getValue(1); 2344 2345 // select overflow_area if index > 8 2346 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2347 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2348 2349 // adjustment constant gpr_index * 4/8 2350 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2351 VT.isInteger() ? GprIndex : FprIndex, 2352 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2353 MVT::i32)); 2354 2355 // OurReg = RegSaveArea + RegConstant 2356 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2357 RegConstant); 2358 2359 // Floating types are 32 bytes into RegSaveArea 2360 if (VT.isFloatingPoint()) 2361 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2362 DAG.getConstant(32, dl, MVT::i32)); 2363 2364 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2365 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2366 VT.isInteger() ? GprIndex : FprIndex, 2367 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2368 MVT::i32)); 2369 2370 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2371 VT.isInteger() ? VAListPtr : FprPtr, 2372 MachinePointerInfo(SV), 2373 MVT::i8, false, false, 0); 2374 2375 // determine if we should load from reg_save_area or overflow_area 2376 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2377 2378 // increase overflow_area by 4/8 if gpr/fpr > 8 2379 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2380 DAG.getConstant(VT.isInteger() ? 4 : 8, 2381 dl, MVT::i32)); 2382 2383 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2384 OverflowAreaPlusN); 2385 2386 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2387 OverflowAreaPtr, 2388 MachinePointerInfo(), 2389 MVT::i32, false, false, 0); 2390 2391 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2392 false, false, false, 0); 2393 } 2394 2395 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2396 const PPCSubtarget &Subtarget) const { 2397 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2398 2399 // We have to copy the entire va_list struct: 2400 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2401 return DAG.getMemcpy(Op.getOperand(0), Op, 2402 Op.getOperand(1), Op.getOperand(2), 2403 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2404 false, MachinePointerInfo(), MachinePointerInfo()); 2405 } 2406 2407 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2408 SelectionDAG &DAG) const { 2409 return Op.getOperand(0); 2410 } 2411 2412 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2413 SelectionDAG &DAG) const { 2414 SDValue Chain = Op.getOperand(0); 2415 SDValue Trmp = Op.getOperand(1); // trampoline 2416 SDValue FPtr = Op.getOperand(2); // nested function 2417 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2418 SDLoc dl(Op); 2419 2420 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2421 bool isPPC64 = (PtrVT == MVT::i64); 2422 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2423 2424 TargetLowering::ArgListTy Args; 2425 TargetLowering::ArgListEntry Entry; 2426 2427 Entry.Ty = IntPtrTy; 2428 Entry.Node = Trmp; Args.push_back(Entry); 2429 2430 // TrampSize == (isPPC64 ? 48 : 40); 2431 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2432 isPPC64 ? MVT::i64 : MVT::i32); 2433 Args.push_back(Entry); 2434 2435 Entry.Node = FPtr; Args.push_back(Entry); 2436 Entry.Node = Nest; Args.push_back(Entry); 2437 2438 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2439 TargetLowering::CallLoweringInfo CLI(DAG); 2440 CLI.setDebugLoc(dl).setChain(Chain) 2441 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2442 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2443 std::move(Args), 0); 2444 2445 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2446 return CallResult.second; 2447 } 2448 2449 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2450 const PPCSubtarget &Subtarget) const { 2451 MachineFunction &MF = DAG.getMachineFunction(); 2452 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2453 2454 SDLoc dl(Op); 2455 2456 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2457 // vastart just stores the address of the VarArgsFrameIndex slot into the 2458 // memory location argument. 2459 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2460 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2461 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2462 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2463 MachinePointerInfo(SV), 2464 false, false, 0); 2465 } 2466 2467 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2468 // We suppose the given va_list is already allocated. 2469 // 2470 // typedef struct { 2471 // char gpr; /* index into the array of 8 GPRs 2472 // * stored in the register save area 2473 // * gpr=0 corresponds to r3, 2474 // * gpr=1 to r4, etc. 2475 // */ 2476 // char fpr; /* index into the array of 8 FPRs 2477 // * stored in the register save area 2478 // * fpr=0 corresponds to f1, 2479 // * fpr=1 to f2, etc. 2480 // */ 2481 // char *overflow_arg_area; 2482 // /* location on stack that holds 2483 // * the next overflow argument 2484 // */ 2485 // char *reg_save_area; 2486 // /* where r3:r10 and f1:f8 (if saved) 2487 // * are stored 2488 // */ 2489 // } va_list[1]; 2490 2491 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2492 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2493 2494 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2495 2496 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2497 PtrVT); 2498 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2499 PtrVT); 2500 2501 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2502 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2503 2504 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2505 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2506 2507 uint64_t FPROffset = 1; 2508 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2509 2510 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2511 2512 // Store first byte : number of int regs 2513 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2514 Op.getOperand(1), 2515 MachinePointerInfo(SV), 2516 MVT::i8, false, false, 0); 2517 uint64_t nextOffset = FPROffset; 2518 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2519 ConstFPROffset); 2520 2521 // Store second byte : number of float regs 2522 SDValue secondStore = 2523 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2524 MachinePointerInfo(SV, nextOffset), MVT::i8, 2525 false, false, 0); 2526 nextOffset += StackOffset; 2527 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2528 2529 // Store second word : arguments given on stack 2530 SDValue thirdStore = 2531 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2532 MachinePointerInfo(SV, nextOffset), 2533 false, false, 0); 2534 nextOffset += FrameOffset; 2535 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2536 2537 // Store third word : arguments given in registers 2538 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2539 MachinePointerInfo(SV, nextOffset), 2540 false, false, 0); 2541 2542 } 2543 2544 #include "PPCGenCallingConv.inc" 2545 2546 // Function whose sole purpose is to kill compiler warnings 2547 // stemming from unused functions included from PPCGenCallingConv.inc. 2548 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2549 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2550 } 2551 2552 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2553 CCValAssign::LocInfo &LocInfo, 2554 ISD::ArgFlagsTy &ArgFlags, 2555 CCState &State) { 2556 return true; 2557 } 2558 2559 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2560 MVT &LocVT, 2561 CCValAssign::LocInfo &LocInfo, 2562 ISD::ArgFlagsTy &ArgFlags, 2563 CCState &State) { 2564 static const MCPhysReg ArgRegs[] = { 2565 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2566 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2567 }; 2568 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2569 2570 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2571 2572 // Skip one register if the first unallocated register has an even register 2573 // number and there are still argument registers available which have not been 2574 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2575 // need to skip a register if RegNum is odd. 2576 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2577 State.AllocateReg(ArgRegs[RegNum]); 2578 } 2579 2580 // Always return false here, as this function only makes sure that the first 2581 // unallocated register has an odd register number and does not actually 2582 // allocate a register for the current argument. 2583 return false; 2584 } 2585 2586 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2587 MVT &LocVT, 2588 CCValAssign::LocInfo &LocInfo, 2589 ISD::ArgFlagsTy &ArgFlags, 2590 CCState &State) { 2591 static const MCPhysReg ArgRegs[] = { 2592 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2593 PPC::F8 2594 }; 2595 2596 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2597 2598 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2599 2600 // If there is only one Floating-point register left we need to put both f64 2601 // values of a split ppc_fp128 value on the stack. 2602 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2603 State.AllocateReg(ArgRegs[RegNum]); 2604 } 2605 2606 // Always return false here, as this function only makes sure that the two f64 2607 // values a ppc_fp128 value is split into are both passed in registers or both 2608 // passed on the stack and does not actually allocate a register for the 2609 // current argument. 2610 return false; 2611 } 2612 2613 /// FPR - The set of FP registers that should be allocated for arguments, 2614 /// on Darwin. 2615 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2616 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2617 PPC::F11, PPC::F12, PPC::F13}; 2618 2619 /// QFPR - The set of QPX registers that should be allocated for arguments. 2620 static const MCPhysReg QFPR[] = { 2621 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2622 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2623 2624 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2625 /// the stack. 2626 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2627 unsigned PtrByteSize) { 2628 unsigned ArgSize = ArgVT.getStoreSize(); 2629 if (Flags.isByVal()) 2630 ArgSize = Flags.getByValSize(); 2631 2632 // Round up to multiples of the pointer size, except for array members, 2633 // which are always packed. 2634 if (!Flags.isInConsecutiveRegs()) 2635 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2636 2637 return ArgSize; 2638 } 2639 2640 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2641 /// on the stack. 2642 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2643 ISD::ArgFlagsTy Flags, 2644 unsigned PtrByteSize) { 2645 unsigned Align = PtrByteSize; 2646 2647 // Altivec parameters are padded to a 16 byte boundary. 2648 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2649 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2650 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2651 ArgVT == MVT::v1i128) 2652 Align = 16; 2653 // QPX vector types stored in double-precision are padded to a 32 byte 2654 // boundary. 2655 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2656 Align = 32; 2657 2658 // ByVal parameters are aligned as requested. 2659 if (Flags.isByVal()) { 2660 unsigned BVAlign = Flags.getByValAlign(); 2661 if (BVAlign > PtrByteSize) { 2662 if (BVAlign % PtrByteSize != 0) 2663 llvm_unreachable( 2664 "ByVal alignment is not a multiple of the pointer size"); 2665 2666 Align = BVAlign; 2667 } 2668 } 2669 2670 // Array members are always packed to their original alignment. 2671 if (Flags.isInConsecutiveRegs()) { 2672 // If the array member was split into multiple registers, the first 2673 // needs to be aligned to the size of the full type. (Except for 2674 // ppcf128, which is only aligned as its f64 components.) 2675 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2676 Align = OrigVT.getStoreSize(); 2677 else 2678 Align = ArgVT.getStoreSize(); 2679 } 2680 2681 return Align; 2682 } 2683 2684 /// CalculateStackSlotUsed - Return whether this argument will use its 2685 /// stack slot (instead of being passed in registers). ArgOffset, 2686 /// AvailableFPRs, and AvailableVRs must hold the current argument 2687 /// position, and will be updated to account for this argument. 2688 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2689 ISD::ArgFlagsTy Flags, 2690 unsigned PtrByteSize, 2691 unsigned LinkageSize, 2692 unsigned ParamAreaSize, 2693 unsigned &ArgOffset, 2694 unsigned &AvailableFPRs, 2695 unsigned &AvailableVRs, bool HasQPX) { 2696 bool UseMemory = false; 2697 2698 // Respect alignment of argument on the stack. 2699 unsigned Align = 2700 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2701 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2702 // If there's no space left in the argument save area, we must 2703 // use memory (this check also catches zero-sized arguments). 2704 if (ArgOffset >= LinkageSize + ParamAreaSize) 2705 UseMemory = true; 2706 2707 // Allocate argument on the stack. 2708 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2709 if (Flags.isInConsecutiveRegsLast()) 2710 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2711 // If we overran the argument save area, we must use memory 2712 // (this check catches arguments passed partially in memory) 2713 if (ArgOffset > LinkageSize + ParamAreaSize) 2714 UseMemory = true; 2715 2716 // However, if the argument is actually passed in an FPR or a VR, 2717 // we don't use memory after all. 2718 if (!Flags.isByVal()) { 2719 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2720 // QPX registers overlap with the scalar FP registers. 2721 (HasQPX && (ArgVT == MVT::v4f32 || 2722 ArgVT == MVT::v4f64 || 2723 ArgVT == MVT::v4i1))) 2724 if (AvailableFPRs > 0) { 2725 --AvailableFPRs; 2726 return false; 2727 } 2728 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2729 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2730 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2731 ArgVT == MVT::v1i128) 2732 if (AvailableVRs > 0) { 2733 --AvailableVRs; 2734 return false; 2735 } 2736 } 2737 2738 return UseMemory; 2739 } 2740 2741 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2742 /// ensure minimum alignment required for target. 2743 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2744 unsigned NumBytes) { 2745 unsigned TargetAlign = Lowering->getStackAlignment(); 2746 unsigned AlignMask = TargetAlign - 1; 2747 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2748 return NumBytes; 2749 } 2750 2751 SDValue 2752 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2753 CallingConv::ID CallConv, bool isVarArg, 2754 const SmallVectorImpl<ISD::InputArg> 2755 &Ins, 2756 SDLoc dl, SelectionDAG &DAG, 2757 SmallVectorImpl<SDValue> &InVals) 2758 const { 2759 if (Subtarget.isSVR4ABI()) { 2760 if (Subtarget.isPPC64()) 2761 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2762 dl, DAG, InVals); 2763 else 2764 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2765 dl, DAG, InVals); 2766 } else { 2767 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2768 dl, DAG, InVals); 2769 } 2770 } 2771 2772 SDValue 2773 PPCTargetLowering::LowerFormalArguments_32SVR4( 2774 SDValue Chain, 2775 CallingConv::ID CallConv, bool isVarArg, 2776 const SmallVectorImpl<ISD::InputArg> 2777 &Ins, 2778 SDLoc dl, SelectionDAG &DAG, 2779 SmallVectorImpl<SDValue> &InVals) const { 2780 2781 // 32-bit SVR4 ABI Stack Frame Layout: 2782 // +-----------------------------------+ 2783 // +--> | Back chain | 2784 // | +-----------------------------------+ 2785 // | | Floating-point register save area | 2786 // | +-----------------------------------+ 2787 // | | General register save area | 2788 // | +-----------------------------------+ 2789 // | | CR save word | 2790 // | +-----------------------------------+ 2791 // | | VRSAVE save word | 2792 // | +-----------------------------------+ 2793 // | | Alignment padding | 2794 // | +-----------------------------------+ 2795 // | | Vector register save area | 2796 // | +-----------------------------------+ 2797 // | | Local variable space | 2798 // | +-----------------------------------+ 2799 // | | Parameter list area | 2800 // | +-----------------------------------+ 2801 // | | LR save word | 2802 // | +-----------------------------------+ 2803 // SP--> +--- | Back chain | 2804 // +-----------------------------------+ 2805 // 2806 // Specifications: 2807 // System V Application Binary Interface PowerPC Processor Supplement 2808 // AltiVec Technology Programming Interface Manual 2809 2810 MachineFunction &MF = DAG.getMachineFunction(); 2811 MachineFrameInfo *MFI = MF.getFrameInfo(); 2812 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2813 2814 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2815 // Potential tail calls could cause overwriting of argument stack slots. 2816 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2817 (CallConv == CallingConv::Fast)); 2818 unsigned PtrByteSize = 4; 2819 2820 // Assign locations to all of the incoming arguments. 2821 SmallVector<CCValAssign, 16> ArgLocs; 2822 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2823 *DAG.getContext()); 2824 2825 // Reserve space for the linkage area on the stack. 2826 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2827 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2828 2829 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2830 2831 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2832 CCValAssign &VA = ArgLocs[i]; 2833 2834 // Arguments stored in registers. 2835 if (VA.isRegLoc()) { 2836 const TargetRegisterClass *RC; 2837 EVT ValVT = VA.getValVT(); 2838 2839 switch (ValVT.getSimpleVT().SimpleTy) { 2840 default: 2841 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2842 case MVT::i1: 2843 case MVT::i32: 2844 RC = &PPC::GPRCRegClass; 2845 break; 2846 case MVT::f32: 2847 if (Subtarget.hasP8Vector()) 2848 RC = &PPC::VSSRCRegClass; 2849 else 2850 RC = &PPC::F4RCRegClass; 2851 break; 2852 case MVT::f64: 2853 if (Subtarget.hasVSX()) 2854 RC = &PPC::VSFRCRegClass; 2855 else 2856 RC = &PPC::F8RCRegClass; 2857 break; 2858 case MVT::v16i8: 2859 case MVT::v8i16: 2860 case MVT::v4i32: 2861 RC = &PPC::VRRCRegClass; 2862 break; 2863 case MVT::v4f32: 2864 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2865 break; 2866 case MVT::v2f64: 2867 case MVT::v2i64: 2868 RC = &PPC::VSHRCRegClass; 2869 break; 2870 case MVT::v4f64: 2871 RC = &PPC::QFRCRegClass; 2872 break; 2873 case MVT::v4i1: 2874 RC = &PPC::QBRCRegClass; 2875 break; 2876 } 2877 2878 // Transform the arguments stored in physical registers into virtual ones. 2879 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2880 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2881 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2882 2883 if (ValVT == MVT::i1) 2884 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2885 2886 InVals.push_back(ArgValue); 2887 } else { 2888 // Argument stored in memory. 2889 assert(VA.isMemLoc()); 2890 2891 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2892 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2893 isImmutable); 2894 2895 // Create load nodes to retrieve arguments from the stack. 2896 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2897 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2898 MachinePointerInfo(), 2899 false, false, false, 0)); 2900 } 2901 } 2902 2903 // Assign locations to all of the incoming aggregate by value arguments. 2904 // Aggregates passed by value are stored in the local variable space of the 2905 // caller's stack frame, right above the parameter list area. 2906 SmallVector<CCValAssign, 16> ByValArgLocs; 2907 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2908 ByValArgLocs, *DAG.getContext()); 2909 2910 // Reserve stack space for the allocations in CCInfo. 2911 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2912 2913 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2914 2915 // Area that is at least reserved in the caller of this function. 2916 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2917 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2918 2919 // Set the size that is at least reserved in caller of this function. Tail 2920 // call optimized function's reserved stack space needs to be aligned so that 2921 // taking the difference between two stack areas will result in an aligned 2922 // stack. 2923 MinReservedArea = 2924 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2925 FuncInfo->setMinReservedArea(MinReservedArea); 2926 2927 SmallVector<SDValue, 8> MemOps; 2928 2929 // If the function takes variable number of arguments, make a frame index for 2930 // the start of the first vararg value... for expansion of llvm.va_start. 2931 if (isVarArg) { 2932 static const MCPhysReg GPArgRegs[] = { 2933 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2934 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2935 }; 2936 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2937 2938 static const MCPhysReg FPArgRegs[] = { 2939 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2940 PPC::F8 2941 }; 2942 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2943 if (DisablePPCFloatInVariadic) 2944 NumFPArgRegs = 0; 2945 2946 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2947 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2948 2949 // Make room for NumGPArgRegs and NumFPArgRegs. 2950 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2951 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2952 2953 FuncInfo->setVarArgsStackOffset( 2954 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2955 CCInfo.getNextStackOffset(), true)); 2956 2957 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2958 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2959 2960 // The fixed integer arguments of a variadic function are stored to the 2961 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2962 // the result of va_next. 2963 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2964 // Get an existing live-in vreg, or add a new one. 2965 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2966 if (!VReg) 2967 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2968 2969 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2970 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2971 MachinePointerInfo(), false, false, 0); 2972 MemOps.push_back(Store); 2973 // Increment the address by four for the next argument to store 2974 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2975 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2976 } 2977 2978 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2979 // is set. 2980 // The double arguments are stored to the VarArgsFrameIndex 2981 // on the stack. 2982 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2983 // Get an existing live-in vreg, or add a new one. 2984 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2985 if (!VReg) 2986 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2987 2988 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2989 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2990 MachinePointerInfo(), false, false, 0); 2991 MemOps.push_back(Store); 2992 // Increment the address by eight for the next argument to store 2993 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2994 PtrVT); 2995 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2996 } 2997 } 2998 2999 if (!MemOps.empty()) 3000 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3001 3002 return Chain; 3003 } 3004 3005 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3006 // value to MVT::i64 and then truncate to the correct register size. 3007 SDValue 3008 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3009 SelectionDAG &DAG, SDValue ArgVal, 3010 SDLoc dl) const { 3011 if (Flags.isSExt()) 3012 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3013 DAG.getValueType(ObjectVT)); 3014 else if (Flags.isZExt()) 3015 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3016 DAG.getValueType(ObjectVT)); 3017 3018 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3019 } 3020 3021 SDValue 3022 PPCTargetLowering::LowerFormalArguments_64SVR4( 3023 SDValue Chain, 3024 CallingConv::ID CallConv, bool isVarArg, 3025 const SmallVectorImpl<ISD::InputArg> 3026 &Ins, 3027 SDLoc dl, SelectionDAG &DAG, 3028 SmallVectorImpl<SDValue> &InVals) const { 3029 // TODO: add description of PPC stack frame format, or at least some docs. 3030 // 3031 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3032 bool isLittleEndian = Subtarget.isLittleEndian(); 3033 MachineFunction &MF = DAG.getMachineFunction(); 3034 MachineFrameInfo *MFI = MF.getFrameInfo(); 3035 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3036 3037 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3038 "fastcc not supported on varargs functions"); 3039 3040 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3041 // Potential tail calls could cause overwriting of argument stack slots. 3042 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3043 (CallConv == CallingConv::Fast)); 3044 unsigned PtrByteSize = 8; 3045 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3046 3047 static const MCPhysReg GPR[] = { 3048 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3049 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3050 }; 3051 static const MCPhysReg VR[] = { 3052 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3053 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3054 }; 3055 static const MCPhysReg VSRH[] = { 3056 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3057 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3058 }; 3059 3060 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3061 const unsigned Num_FPR_Regs = 13; 3062 const unsigned Num_VR_Regs = array_lengthof(VR); 3063 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3064 3065 // Do a first pass over the arguments to determine whether the ABI 3066 // guarantees that our caller has allocated the parameter save area 3067 // on its stack frame. In the ELFv1 ABI, this is always the case; 3068 // in the ELFv2 ABI, it is true if this is a vararg function or if 3069 // any parameter is located in a stack slot. 3070 3071 bool HasParameterArea = !isELFv2ABI || isVarArg; 3072 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3073 unsigned NumBytes = LinkageSize; 3074 unsigned AvailableFPRs = Num_FPR_Regs; 3075 unsigned AvailableVRs = Num_VR_Regs; 3076 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3077 if (Ins[i].Flags.isNest()) 3078 continue; 3079 3080 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3081 PtrByteSize, LinkageSize, ParamAreaSize, 3082 NumBytes, AvailableFPRs, AvailableVRs, 3083 Subtarget.hasQPX())) 3084 HasParameterArea = true; 3085 } 3086 3087 // Add DAG nodes to load the arguments or copy them out of registers. On 3088 // entry to a function on PPC, the arguments start after the linkage area, 3089 // although the first ones are often in registers. 3090 3091 unsigned ArgOffset = LinkageSize; 3092 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3093 unsigned &QFPR_idx = FPR_idx; 3094 SmallVector<SDValue, 8> MemOps; 3095 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3096 unsigned CurArgIdx = 0; 3097 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3098 SDValue ArgVal; 3099 bool needsLoad = false; 3100 EVT ObjectVT = Ins[ArgNo].VT; 3101 EVT OrigVT = Ins[ArgNo].ArgVT; 3102 unsigned ObjSize = ObjectVT.getStoreSize(); 3103 unsigned ArgSize = ObjSize; 3104 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3105 if (Ins[ArgNo].isOrigArg()) { 3106 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3107 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3108 } 3109 // We re-align the argument offset for each argument, except when using the 3110 // fast calling convention, when we need to make sure we do that only when 3111 // we'll actually use a stack slot. 3112 unsigned CurArgOffset, Align; 3113 auto ComputeArgOffset = [&]() { 3114 /* Respect alignment of argument on the stack. */ 3115 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3116 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3117 CurArgOffset = ArgOffset; 3118 }; 3119 3120 if (CallConv != CallingConv::Fast) { 3121 ComputeArgOffset(); 3122 3123 /* Compute GPR index associated with argument offset. */ 3124 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3125 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3126 } 3127 3128 // FIXME the codegen can be much improved in some cases. 3129 // We do not have to keep everything in memory. 3130 if (Flags.isByVal()) { 3131 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3132 3133 if (CallConv == CallingConv::Fast) 3134 ComputeArgOffset(); 3135 3136 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3137 ObjSize = Flags.getByValSize(); 3138 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3139 // Empty aggregate parameters do not take up registers. Examples: 3140 // struct { } a; 3141 // union { } b; 3142 // int c[0]; 3143 // etc. However, we have to provide a place-holder in InVals, so 3144 // pretend we have an 8-byte item at the current address for that 3145 // purpose. 3146 if (!ObjSize) { 3147 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3148 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3149 InVals.push_back(FIN); 3150 continue; 3151 } 3152 3153 // Create a stack object covering all stack doublewords occupied 3154 // by the argument. If the argument is (fully or partially) on 3155 // the stack, or if the argument is fully in registers but the 3156 // caller has allocated the parameter save anyway, we can refer 3157 // directly to the caller's stack frame. Otherwise, create a 3158 // local copy in our own frame. 3159 int FI; 3160 if (HasParameterArea || 3161 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3162 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3163 else 3164 FI = MFI->CreateStackObject(ArgSize, Align, false); 3165 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3166 3167 // Handle aggregates smaller than 8 bytes. 3168 if (ObjSize < PtrByteSize) { 3169 // The value of the object is its address, which differs from the 3170 // address of the enclosing doubleword on big-endian systems. 3171 SDValue Arg = FIN; 3172 if (!isLittleEndian) { 3173 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3174 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3175 } 3176 InVals.push_back(Arg); 3177 3178 if (GPR_idx != Num_GPR_Regs) { 3179 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3180 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3181 SDValue Store; 3182 3183 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3184 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3185 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3186 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3187 MachinePointerInfo(&*FuncArg), ObjType, 3188 false, false, 0); 3189 } else { 3190 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3191 // store the whole register as-is to the parameter save area 3192 // slot. 3193 Store = 3194 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3195 MachinePointerInfo(&*FuncArg), false, false, 0); 3196 } 3197 3198 MemOps.push_back(Store); 3199 } 3200 // Whether we copied from a register or not, advance the offset 3201 // into the parameter save area by a full doubleword. 3202 ArgOffset += PtrByteSize; 3203 continue; 3204 } 3205 3206 // The value of the object is its address, which is the address of 3207 // its first stack doubleword. 3208 InVals.push_back(FIN); 3209 3210 // Store whatever pieces of the object are in registers to memory. 3211 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3212 if (GPR_idx == Num_GPR_Regs) 3213 break; 3214 3215 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3216 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3217 SDValue Addr = FIN; 3218 if (j) { 3219 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3220 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3221 } 3222 SDValue Store = 3223 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3224 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3225 MemOps.push_back(Store); 3226 ++GPR_idx; 3227 } 3228 ArgOffset += ArgSize; 3229 continue; 3230 } 3231 3232 switch (ObjectVT.getSimpleVT().SimpleTy) { 3233 default: llvm_unreachable("Unhandled argument type!"); 3234 case MVT::i1: 3235 case MVT::i32: 3236 case MVT::i64: 3237 if (Flags.isNest()) { 3238 // The 'nest' parameter, if any, is passed in R11. 3239 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3240 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3241 3242 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3243 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3244 3245 break; 3246 } 3247 3248 // These can be scalar arguments or elements of an integer array type 3249 // passed directly. Clang may use those instead of "byval" aggregate 3250 // types to avoid forcing arguments to memory unnecessarily. 3251 if (GPR_idx != Num_GPR_Regs) { 3252 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3253 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3254 3255 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3256 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3257 // value to MVT::i64 and then truncate to the correct register size. 3258 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3259 } else { 3260 if (CallConv == CallingConv::Fast) 3261 ComputeArgOffset(); 3262 3263 needsLoad = true; 3264 ArgSize = PtrByteSize; 3265 } 3266 if (CallConv != CallingConv::Fast || needsLoad) 3267 ArgOffset += 8; 3268 break; 3269 3270 case MVT::f32: 3271 case MVT::f64: 3272 // These can be scalar arguments or elements of a float array type 3273 // passed directly. The latter are used to implement ELFv2 homogenous 3274 // float aggregates. 3275 if (FPR_idx != Num_FPR_Regs) { 3276 unsigned VReg; 3277 3278 if (ObjectVT == MVT::f32) 3279 VReg = MF.addLiveIn(FPR[FPR_idx], 3280 Subtarget.hasP8Vector() 3281 ? &PPC::VSSRCRegClass 3282 : &PPC::F4RCRegClass); 3283 else 3284 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3285 ? &PPC::VSFRCRegClass 3286 : &PPC::F8RCRegClass); 3287 3288 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3289 ++FPR_idx; 3290 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3291 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3292 // once we support fp <-> gpr moves. 3293 3294 // This can only ever happen in the presence of f32 array types, 3295 // since otherwise we never run out of FPRs before running out 3296 // of GPRs. 3297 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3298 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3299 3300 if (ObjectVT == MVT::f32) { 3301 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3302 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3303 DAG.getConstant(32, dl, MVT::i32)); 3304 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3305 } 3306 3307 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3308 } else { 3309 if (CallConv == CallingConv::Fast) 3310 ComputeArgOffset(); 3311 3312 needsLoad = true; 3313 } 3314 3315 // When passing an array of floats, the array occupies consecutive 3316 // space in the argument area; only round up to the next doubleword 3317 // at the end of the array. Otherwise, each float takes 8 bytes. 3318 if (CallConv != CallingConv::Fast || needsLoad) { 3319 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3320 ArgOffset += ArgSize; 3321 if (Flags.isInConsecutiveRegsLast()) 3322 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3323 } 3324 break; 3325 case MVT::v4f32: 3326 case MVT::v4i32: 3327 case MVT::v8i16: 3328 case MVT::v16i8: 3329 case MVT::v2f64: 3330 case MVT::v2i64: 3331 case MVT::v1i128: 3332 if (!Subtarget.hasQPX()) { 3333 // These can be scalar arguments or elements of a vector array type 3334 // passed directly. The latter are used to implement ELFv2 homogenous 3335 // vector aggregates. 3336 if (VR_idx != Num_VR_Regs) { 3337 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3338 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3339 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3340 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3341 ++VR_idx; 3342 } else { 3343 if (CallConv == CallingConv::Fast) 3344 ComputeArgOffset(); 3345 3346 needsLoad = true; 3347 } 3348 if (CallConv != CallingConv::Fast || needsLoad) 3349 ArgOffset += 16; 3350 break; 3351 } // not QPX 3352 3353 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3354 "Invalid QPX parameter type"); 3355 /* fall through */ 3356 3357 case MVT::v4f64: 3358 case MVT::v4i1: 3359 // QPX vectors are treated like their scalar floating-point subregisters 3360 // (except that they're larger). 3361 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3362 if (QFPR_idx != Num_QFPR_Regs) { 3363 const TargetRegisterClass *RC; 3364 switch (ObjectVT.getSimpleVT().SimpleTy) { 3365 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3366 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3367 default: RC = &PPC::QBRCRegClass; break; 3368 } 3369 3370 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3371 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3372 ++QFPR_idx; 3373 } else { 3374 if (CallConv == CallingConv::Fast) 3375 ComputeArgOffset(); 3376 needsLoad = true; 3377 } 3378 if (CallConv != CallingConv::Fast || needsLoad) 3379 ArgOffset += Sz; 3380 break; 3381 } 3382 3383 // We need to load the argument to a virtual register if we determined 3384 // above that we ran out of physical registers of the appropriate type. 3385 if (needsLoad) { 3386 if (ObjSize < ArgSize && !isLittleEndian) 3387 CurArgOffset += ArgSize - ObjSize; 3388 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3389 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3390 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3391 false, false, false, 0); 3392 } 3393 3394 InVals.push_back(ArgVal); 3395 } 3396 3397 // Area that is at least reserved in the caller of this function. 3398 unsigned MinReservedArea; 3399 if (HasParameterArea) 3400 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3401 else 3402 MinReservedArea = LinkageSize; 3403 3404 // Set the size that is at least reserved in caller of this function. Tail 3405 // call optimized functions' reserved stack space needs to be aligned so that 3406 // taking the difference between two stack areas will result in an aligned 3407 // stack. 3408 MinReservedArea = 3409 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3410 FuncInfo->setMinReservedArea(MinReservedArea); 3411 3412 // If the function takes variable number of arguments, make a frame index for 3413 // the start of the first vararg value... for expansion of llvm.va_start. 3414 if (isVarArg) { 3415 int Depth = ArgOffset; 3416 3417 FuncInfo->setVarArgsFrameIndex( 3418 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3419 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3420 3421 // If this function is vararg, store any remaining integer argument regs 3422 // to their spots on the stack so that they may be loaded by deferencing the 3423 // result of va_next. 3424 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3425 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3426 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3427 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3428 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3429 MachinePointerInfo(), false, false, 0); 3430 MemOps.push_back(Store); 3431 // Increment the address by four for the next argument to store 3432 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3433 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3434 } 3435 } 3436 3437 if (!MemOps.empty()) 3438 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3439 3440 return Chain; 3441 } 3442 3443 SDValue 3444 PPCTargetLowering::LowerFormalArguments_Darwin( 3445 SDValue Chain, 3446 CallingConv::ID CallConv, bool isVarArg, 3447 const SmallVectorImpl<ISD::InputArg> 3448 &Ins, 3449 SDLoc dl, SelectionDAG &DAG, 3450 SmallVectorImpl<SDValue> &InVals) const { 3451 // TODO: add description of PPC stack frame format, or at least some docs. 3452 // 3453 MachineFunction &MF = DAG.getMachineFunction(); 3454 MachineFrameInfo *MFI = MF.getFrameInfo(); 3455 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3456 3457 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3458 bool isPPC64 = PtrVT == MVT::i64; 3459 // Potential tail calls could cause overwriting of argument stack slots. 3460 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3461 (CallConv == CallingConv::Fast)); 3462 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3463 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3464 unsigned ArgOffset = LinkageSize; 3465 // Area that is at least reserved in caller of this function. 3466 unsigned MinReservedArea = ArgOffset; 3467 3468 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3469 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3470 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3471 }; 3472 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3473 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3474 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3475 }; 3476 static const MCPhysReg VR[] = { 3477 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3478 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3479 }; 3480 3481 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3482 const unsigned Num_FPR_Regs = 13; 3483 const unsigned Num_VR_Regs = array_lengthof( VR); 3484 3485 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3486 3487 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3488 3489 // In 32-bit non-varargs functions, the stack space for vectors is after the 3490 // stack space for non-vectors. We do not use this space unless we have 3491 // too many vectors to fit in registers, something that only occurs in 3492 // constructed examples:), but we have to walk the arglist to figure 3493 // that out...for the pathological case, compute VecArgOffset as the 3494 // start of the vector parameter area. Computing VecArgOffset is the 3495 // entire point of the following loop. 3496 unsigned VecArgOffset = ArgOffset; 3497 if (!isVarArg && !isPPC64) { 3498 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3499 ++ArgNo) { 3500 EVT ObjectVT = Ins[ArgNo].VT; 3501 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3502 3503 if (Flags.isByVal()) { 3504 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3505 unsigned ObjSize = Flags.getByValSize(); 3506 unsigned ArgSize = 3507 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3508 VecArgOffset += ArgSize; 3509 continue; 3510 } 3511 3512 switch(ObjectVT.getSimpleVT().SimpleTy) { 3513 default: llvm_unreachable("Unhandled argument type!"); 3514 case MVT::i1: 3515 case MVT::i32: 3516 case MVT::f32: 3517 VecArgOffset += 4; 3518 break; 3519 case MVT::i64: // PPC64 3520 case MVT::f64: 3521 // FIXME: We are guaranteed to be !isPPC64 at this point. 3522 // Does MVT::i64 apply? 3523 VecArgOffset += 8; 3524 break; 3525 case MVT::v4f32: 3526 case MVT::v4i32: 3527 case MVT::v8i16: 3528 case MVT::v16i8: 3529 // Nothing to do, we're only looking at Nonvector args here. 3530 break; 3531 } 3532 } 3533 } 3534 // We've found where the vector parameter area in memory is. Skip the 3535 // first 12 parameters; these don't use that memory. 3536 VecArgOffset = ((VecArgOffset+15)/16)*16; 3537 VecArgOffset += 12*16; 3538 3539 // Add DAG nodes to load the arguments or copy them out of registers. On 3540 // entry to a function on PPC, the arguments start after the linkage area, 3541 // although the first ones are often in registers. 3542 3543 SmallVector<SDValue, 8> MemOps; 3544 unsigned nAltivecParamsAtEnd = 0; 3545 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3546 unsigned CurArgIdx = 0; 3547 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3548 SDValue ArgVal; 3549 bool needsLoad = false; 3550 EVT ObjectVT = Ins[ArgNo].VT; 3551 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3552 unsigned ArgSize = ObjSize; 3553 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3554 if (Ins[ArgNo].isOrigArg()) { 3555 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3556 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3557 } 3558 unsigned CurArgOffset = ArgOffset; 3559 3560 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3561 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3562 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3563 if (isVarArg || isPPC64) { 3564 MinReservedArea = ((MinReservedArea+15)/16)*16; 3565 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3566 Flags, 3567 PtrByteSize); 3568 } else nAltivecParamsAtEnd++; 3569 } else 3570 // Calculate min reserved area. 3571 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3572 Flags, 3573 PtrByteSize); 3574 3575 // FIXME the codegen can be much improved in some cases. 3576 // We do not have to keep everything in memory. 3577 if (Flags.isByVal()) { 3578 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3579 3580 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3581 ObjSize = Flags.getByValSize(); 3582 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3583 // Objects of size 1 and 2 are right justified, everything else is 3584 // left justified. This means the memory address is adjusted forwards. 3585 if (ObjSize==1 || ObjSize==2) { 3586 CurArgOffset = CurArgOffset + (4 - ObjSize); 3587 } 3588 // The value of the object is its address. 3589 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3590 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3591 InVals.push_back(FIN); 3592 if (ObjSize==1 || ObjSize==2) { 3593 if (GPR_idx != Num_GPR_Regs) { 3594 unsigned VReg; 3595 if (isPPC64) 3596 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3597 else 3598 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3599 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3600 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3601 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3602 MachinePointerInfo(&*FuncArg), 3603 ObjType, false, false, 0); 3604 MemOps.push_back(Store); 3605 ++GPR_idx; 3606 } 3607 3608 ArgOffset += PtrByteSize; 3609 3610 continue; 3611 } 3612 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3613 // Store whatever pieces of the object are in registers 3614 // to memory. ArgOffset will be the address of the beginning 3615 // of the object. 3616 if (GPR_idx != Num_GPR_Regs) { 3617 unsigned VReg; 3618 if (isPPC64) 3619 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3620 else 3621 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3622 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3623 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3624 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3625 SDValue Store = 3626 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3627 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3628 MemOps.push_back(Store); 3629 ++GPR_idx; 3630 ArgOffset += PtrByteSize; 3631 } else { 3632 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3633 break; 3634 } 3635 } 3636 continue; 3637 } 3638 3639 switch (ObjectVT.getSimpleVT().SimpleTy) { 3640 default: llvm_unreachable("Unhandled argument type!"); 3641 case MVT::i1: 3642 case MVT::i32: 3643 if (!isPPC64) { 3644 if (GPR_idx != Num_GPR_Regs) { 3645 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3646 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3647 3648 if (ObjectVT == MVT::i1) 3649 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3650 3651 ++GPR_idx; 3652 } else { 3653 needsLoad = true; 3654 ArgSize = PtrByteSize; 3655 } 3656 // All int arguments reserve stack space in the Darwin ABI. 3657 ArgOffset += PtrByteSize; 3658 break; 3659 } 3660 // FALLTHROUGH 3661 case MVT::i64: // PPC64 3662 if (GPR_idx != Num_GPR_Regs) { 3663 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3664 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3665 3666 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3667 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3668 // value to MVT::i64 and then truncate to the correct register size. 3669 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3670 3671 ++GPR_idx; 3672 } else { 3673 needsLoad = true; 3674 ArgSize = PtrByteSize; 3675 } 3676 // All int arguments reserve stack space in the Darwin ABI. 3677 ArgOffset += 8; 3678 break; 3679 3680 case MVT::f32: 3681 case MVT::f64: 3682 // Every 4 bytes of argument space consumes one of the GPRs available for 3683 // argument passing. 3684 if (GPR_idx != Num_GPR_Regs) { 3685 ++GPR_idx; 3686 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3687 ++GPR_idx; 3688 } 3689 if (FPR_idx != Num_FPR_Regs) { 3690 unsigned VReg; 3691 3692 if (ObjectVT == MVT::f32) 3693 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3694 else 3695 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3696 3697 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3698 ++FPR_idx; 3699 } else { 3700 needsLoad = true; 3701 } 3702 3703 // All FP arguments reserve stack space in the Darwin ABI. 3704 ArgOffset += isPPC64 ? 8 : ObjSize; 3705 break; 3706 case MVT::v4f32: 3707 case MVT::v4i32: 3708 case MVT::v8i16: 3709 case MVT::v16i8: 3710 // Note that vector arguments in registers don't reserve stack space, 3711 // except in varargs functions. 3712 if (VR_idx != Num_VR_Regs) { 3713 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3714 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3715 if (isVarArg) { 3716 while ((ArgOffset % 16) != 0) { 3717 ArgOffset += PtrByteSize; 3718 if (GPR_idx != Num_GPR_Regs) 3719 GPR_idx++; 3720 } 3721 ArgOffset += 16; 3722 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3723 } 3724 ++VR_idx; 3725 } else { 3726 if (!isVarArg && !isPPC64) { 3727 // Vectors go after all the nonvectors. 3728 CurArgOffset = VecArgOffset; 3729 VecArgOffset += 16; 3730 } else { 3731 // Vectors are aligned. 3732 ArgOffset = ((ArgOffset+15)/16)*16; 3733 CurArgOffset = ArgOffset; 3734 ArgOffset += 16; 3735 } 3736 needsLoad = true; 3737 } 3738 break; 3739 } 3740 3741 // We need to load the argument to a virtual register if we determined above 3742 // that we ran out of physical registers of the appropriate type. 3743 if (needsLoad) { 3744 int FI = MFI->CreateFixedObject(ObjSize, 3745 CurArgOffset + (ArgSize - ObjSize), 3746 isImmutable); 3747 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3748 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3749 false, false, false, 0); 3750 } 3751 3752 InVals.push_back(ArgVal); 3753 } 3754 3755 // Allow for Altivec parameters at the end, if needed. 3756 if (nAltivecParamsAtEnd) { 3757 MinReservedArea = ((MinReservedArea+15)/16)*16; 3758 MinReservedArea += 16*nAltivecParamsAtEnd; 3759 } 3760 3761 // Area that is at least reserved in the caller of this function. 3762 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3763 3764 // Set the size that is at least reserved in caller of this function. Tail 3765 // call optimized functions' reserved stack space needs to be aligned so that 3766 // taking the difference between two stack areas will result in an aligned 3767 // stack. 3768 MinReservedArea = 3769 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3770 FuncInfo->setMinReservedArea(MinReservedArea); 3771 3772 // If the function takes variable number of arguments, make a frame index for 3773 // the start of the first vararg value... for expansion of llvm.va_start. 3774 if (isVarArg) { 3775 int Depth = ArgOffset; 3776 3777 FuncInfo->setVarArgsFrameIndex( 3778 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3779 Depth, true)); 3780 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3781 3782 // If this function is vararg, store any remaining integer argument regs 3783 // to their spots on the stack so that they may be loaded by deferencing the 3784 // result of va_next. 3785 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3786 unsigned VReg; 3787 3788 if (isPPC64) 3789 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3790 else 3791 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3792 3793 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3794 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3795 MachinePointerInfo(), false, false, 0); 3796 MemOps.push_back(Store); 3797 // Increment the address by four for the next argument to store 3798 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3799 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3800 } 3801 } 3802 3803 if (!MemOps.empty()) 3804 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3805 3806 return Chain; 3807 } 3808 3809 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3810 /// adjusted to accommodate the arguments for the tailcall. 3811 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3812 unsigned ParamSize) { 3813 3814 if (!isTailCall) return 0; 3815 3816 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3817 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3818 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3819 // Remember only if the new adjustement is bigger. 3820 if (SPDiff < FI->getTailCallSPDelta()) 3821 FI->setTailCallSPDelta(SPDiff); 3822 3823 return SPDiff; 3824 } 3825 3826 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3827 /// for tail call optimization. Targets which want to do tail call 3828 /// optimization should implement this function. 3829 bool 3830 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3831 CallingConv::ID CalleeCC, 3832 bool isVarArg, 3833 const SmallVectorImpl<ISD::InputArg> &Ins, 3834 SelectionDAG& DAG) const { 3835 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3836 return false; 3837 3838 // Variable argument functions are not supported. 3839 if (isVarArg) 3840 return false; 3841 3842 MachineFunction &MF = DAG.getMachineFunction(); 3843 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3844 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3845 // Functions containing by val parameters are not supported. 3846 for (unsigned i = 0; i != Ins.size(); i++) { 3847 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3848 if (Flags.isByVal()) return false; 3849 } 3850 3851 // Non-PIC/GOT tail calls are supported. 3852 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3853 return true; 3854 3855 // At the moment we can only do local tail calls (in same module, hidden 3856 // or protected) if we are generating PIC. 3857 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3858 return G->getGlobal()->hasHiddenVisibility() 3859 || G->getGlobal()->hasProtectedVisibility(); 3860 } 3861 3862 return false; 3863 } 3864 3865 /// isCallCompatibleAddress - Return the immediate to use if the specified 3866 /// 32-bit value is representable in the immediate field of a BxA instruction. 3867 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3868 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3869 if (!C) return nullptr; 3870 3871 int Addr = C->getZExtValue(); 3872 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3873 SignExtend32<26>(Addr) != Addr) 3874 return nullptr; // Top 6 bits have to be sext of immediate. 3875 3876 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3877 DAG.getTargetLoweringInfo().getPointerTy( 3878 DAG.getDataLayout())).getNode(); 3879 } 3880 3881 namespace { 3882 3883 struct TailCallArgumentInfo { 3884 SDValue Arg; 3885 SDValue FrameIdxOp; 3886 int FrameIdx; 3887 3888 TailCallArgumentInfo() : FrameIdx(0) {} 3889 }; 3890 } 3891 3892 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3893 static void 3894 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3895 SDValue Chain, 3896 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3897 SmallVectorImpl<SDValue> &MemOpChains, 3898 SDLoc dl) { 3899 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3900 SDValue Arg = TailCallArgs[i].Arg; 3901 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3902 int FI = TailCallArgs[i].FrameIdx; 3903 // Store relative to framepointer. 3904 MemOpChains.push_back(DAG.getStore( 3905 Chain, dl, Arg, FIN, 3906 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3907 false, 0)); 3908 } 3909 } 3910 3911 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3912 /// the appropriate stack slot for the tail call optimized function call. 3913 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3914 MachineFunction &MF, 3915 SDValue Chain, 3916 SDValue OldRetAddr, 3917 SDValue OldFP, 3918 int SPDiff, 3919 bool isPPC64, 3920 bool isDarwinABI, 3921 SDLoc dl) { 3922 if (SPDiff) { 3923 // Calculate the new stack slot for the return address. 3924 int SlotSize = isPPC64 ? 8 : 4; 3925 const PPCFrameLowering *FL = 3926 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3927 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3928 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3929 NewRetAddrLoc, true); 3930 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3931 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3932 Chain = DAG.getStore( 3933 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3934 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3935 false, false, 0); 3936 3937 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3938 // slot as the FP is never overwritten. 3939 if (isDarwinABI) { 3940 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3941 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3942 true); 3943 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3944 Chain = DAG.getStore( 3945 Chain, dl, OldFP, NewFramePtrIdx, 3946 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3947 false, false, 0); 3948 } 3949 } 3950 return Chain; 3951 } 3952 3953 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3954 /// the position of the argument. 3955 static void 3956 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3957 SDValue Arg, int SPDiff, unsigned ArgOffset, 3958 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3959 int Offset = ArgOffset + SPDiff; 3960 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3961 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3962 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3963 SDValue FIN = DAG.getFrameIndex(FI, VT); 3964 TailCallArgumentInfo Info; 3965 Info.Arg = Arg; 3966 Info.FrameIdxOp = FIN; 3967 Info.FrameIdx = FI; 3968 TailCallArguments.push_back(Info); 3969 } 3970 3971 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3972 /// stack slot. Returns the chain as result and the loaded frame pointers in 3973 /// LROpOut/FPOpout. Used when tail calling. 3974 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3975 int SPDiff, 3976 SDValue Chain, 3977 SDValue &LROpOut, 3978 SDValue &FPOpOut, 3979 bool isDarwinABI, 3980 SDLoc dl) const { 3981 if (SPDiff) { 3982 // Load the LR and FP stack slot for later adjusting. 3983 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3984 LROpOut = getReturnAddrFrameIndex(DAG); 3985 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3986 false, false, false, 0); 3987 Chain = SDValue(LROpOut.getNode(), 1); 3988 3989 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3990 // slot as the FP is never overwritten. 3991 if (isDarwinABI) { 3992 FPOpOut = getFramePointerFrameIndex(DAG); 3993 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3994 false, false, false, 0); 3995 Chain = SDValue(FPOpOut.getNode(), 1); 3996 } 3997 } 3998 return Chain; 3999 } 4000 4001 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4002 /// by "Src" to address "Dst" of size "Size". Alignment information is 4003 /// specified by the specific parameter attribute. The copy will be passed as 4004 /// a byval function parameter. 4005 /// Sometimes what we are copying is the end of a larger object, the part that 4006 /// does not fit in registers. 4007 static SDValue 4008 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4009 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4010 SDLoc dl) { 4011 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4012 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4013 false, false, false, MachinePointerInfo(), 4014 MachinePointerInfo()); 4015 } 4016 4017 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4018 /// tail calls. 4019 static void 4020 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4021 SDValue Arg, SDValue PtrOff, int SPDiff, 4022 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4023 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4024 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4025 SDLoc dl) { 4026 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4027 if (!isTailCall) { 4028 if (isVector) { 4029 SDValue StackPtr; 4030 if (isPPC64) 4031 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4032 else 4033 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4034 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4035 DAG.getConstant(ArgOffset, dl, PtrVT)); 4036 } 4037 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4038 MachinePointerInfo(), false, false, 0)); 4039 // Calculate and remember argument location. 4040 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4041 TailCallArguments); 4042 } 4043 4044 static 4045 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4046 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4047 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4048 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4049 MachineFunction &MF = DAG.getMachineFunction(); 4050 4051 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4052 // might overwrite each other in case of tail call optimization. 4053 SmallVector<SDValue, 8> MemOpChains2; 4054 // Do not flag preceding copytoreg stuff together with the following stuff. 4055 InFlag = SDValue(); 4056 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4057 MemOpChains2, dl); 4058 if (!MemOpChains2.empty()) 4059 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4060 4061 // Store the return address to the appropriate stack slot. 4062 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4063 isPPC64, isDarwinABI, dl); 4064 4065 // Emit callseq_end just before tailcall node. 4066 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4067 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4068 InFlag = Chain.getValue(1); 4069 } 4070 4071 // Is this global address that of a function that can be called by name? (as 4072 // opposed to something that must hold a descriptor for an indirect call). 4073 static bool isFunctionGlobalAddress(SDValue Callee) { 4074 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4075 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4076 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4077 return false; 4078 4079 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4080 } 4081 4082 return false; 4083 } 4084 4085 static 4086 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4087 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4088 bool isTailCall, bool IsPatchPoint, bool hasNest, 4089 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4090 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4091 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4092 4093 bool isPPC64 = Subtarget.isPPC64(); 4094 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4095 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4096 4097 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4098 NodeTys.push_back(MVT::Other); // Returns a chain 4099 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4100 4101 unsigned CallOpc = PPCISD::CALL; 4102 4103 bool needIndirectCall = true; 4104 if (!isSVR4ABI || !isPPC64) 4105 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4106 // If this is an absolute destination address, use the munged value. 4107 Callee = SDValue(Dest, 0); 4108 needIndirectCall = false; 4109 } 4110 4111 if (isFunctionGlobalAddress(Callee)) { 4112 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4113 // A call to a TLS address is actually an indirect call to a 4114 // thread-specific pointer. 4115 unsigned OpFlags = 0; 4116 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4117 (Subtarget.getTargetTriple().isMacOSX() && 4118 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4119 !G->getGlobal()->isStrongDefinitionForLinker()) || 4120 (Subtarget.isTargetELF() && !isPPC64 && 4121 !G->getGlobal()->hasLocalLinkage() && 4122 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4123 // PC-relative references to external symbols should go through $stub, 4124 // unless we're building with the leopard linker or later, which 4125 // automatically synthesizes these stubs. 4126 OpFlags = PPCII::MO_PLT_OR_STUB; 4127 } 4128 4129 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4130 // every direct call is) turn it into a TargetGlobalAddress / 4131 // TargetExternalSymbol node so that legalize doesn't hack it. 4132 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4133 Callee.getValueType(), 0, OpFlags); 4134 needIndirectCall = false; 4135 } 4136 4137 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4138 unsigned char OpFlags = 0; 4139 4140 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4141 (Subtarget.getTargetTriple().isMacOSX() && 4142 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4143 (Subtarget.isTargetELF() && !isPPC64 && 4144 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4145 // PC-relative references to external symbols should go through $stub, 4146 // unless we're building with the leopard linker or later, which 4147 // automatically synthesizes these stubs. 4148 OpFlags = PPCII::MO_PLT_OR_STUB; 4149 } 4150 4151 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4152 OpFlags); 4153 needIndirectCall = false; 4154 } 4155 4156 if (IsPatchPoint) { 4157 // We'll form an invalid direct call when lowering a patchpoint; the full 4158 // sequence for an indirect call is complicated, and many of the 4159 // instructions introduced might have side effects (and, thus, can't be 4160 // removed later). The call itself will be removed as soon as the 4161 // argument/return lowering is complete, so the fact that it has the wrong 4162 // kind of operands should not really matter. 4163 needIndirectCall = false; 4164 } 4165 4166 if (needIndirectCall) { 4167 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4168 // to do the call, we can't use PPCISD::CALL. 4169 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4170 4171 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4172 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4173 // entry point, but to the function descriptor (the function entry point 4174 // address is part of the function descriptor though). 4175 // The function descriptor is a three doubleword structure with the 4176 // following fields: function entry point, TOC base address and 4177 // environment pointer. 4178 // Thus for a call through a function pointer, the following actions need 4179 // to be performed: 4180 // 1. Save the TOC of the caller in the TOC save area of its stack 4181 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4182 // 2. Load the address of the function entry point from the function 4183 // descriptor. 4184 // 3. Load the TOC of the callee from the function descriptor into r2. 4185 // 4. Load the environment pointer from the function descriptor into 4186 // r11. 4187 // 5. Branch to the function entry point address. 4188 // 6. On return of the callee, the TOC of the caller needs to be 4189 // restored (this is done in FinishCall()). 4190 // 4191 // The loads are scheduled at the beginning of the call sequence, and the 4192 // register copies are flagged together to ensure that no other 4193 // operations can be scheduled in between. E.g. without flagging the 4194 // copies together, a TOC access in the caller could be scheduled between 4195 // the assignment of the callee TOC and the branch to the callee, which 4196 // results in the TOC access going through the TOC of the callee instead 4197 // of going through the TOC of the caller, which leads to incorrect code. 4198 4199 // Load the address of the function entry point from the function 4200 // descriptor. 4201 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4202 if (LDChain.getValueType() == MVT::Glue) 4203 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4204 4205 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4206 4207 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4208 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4209 false, false, LoadsInv, 8); 4210 4211 // Load environment pointer into r11. 4212 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4213 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4214 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4215 MPI.getWithOffset(16), false, false, 4216 LoadsInv, 8); 4217 4218 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4219 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4220 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4221 MPI.getWithOffset(8), false, false, 4222 LoadsInv, 8); 4223 4224 setUsesTOCBasePtr(DAG); 4225 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4226 InFlag); 4227 Chain = TOCVal.getValue(0); 4228 InFlag = TOCVal.getValue(1); 4229 4230 // If the function call has an explicit 'nest' parameter, it takes the 4231 // place of the environment pointer. 4232 if (!hasNest) { 4233 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4234 InFlag); 4235 4236 Chain = EnvVal.getValue(0); 4237 InFlag = EnvVal.getValue(1); 4238 } 4239 4240 MTCTROps[0] = Chain; 4241 MTCTROps[1] = LoadFuncPtr; 4242 MTCTROps[2] = InFlag; 4243 } 4244 4245 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4246 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4247 InFlag = Chain.getValue(1); 4248 4249 NodeTys.clear(); 4250 NodeTys.push_back(MVT::Other); 4251 NodeTys.push_back(MVT::Glue); 4252 Ops.push_back(Chain); 4253 CallOpc = PPCISD::BCTRL; 4254 Callee.setNode(nullptr); 4255 // Add use of X11 (holding environment pointer) 4256 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4257 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4258 // Add CTR register as callee so a bctr can be emitted later. 4259 if (isTailCall) 4260 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4261 } 4262 4263 // If this is a direct call, pass the chain and the callee. 4264 if (Callee.getNode()) { 4265 Ops.push_back(Chain); 4266 Ops.push_back(Callee); 4267 } 4268 // If this is a tail call add stack pointer delta. 4269 if (isTailCall) 4270 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4271 4272 // Add argument registers to the end of the list so that they are known live 4273 // into the call. 4274 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4275 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4276 RegsToPass[i].second.getValueType())); 4277 4278 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4279 // into the call. 4280 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4281 setUsesTOCBasePtr(DAG); 4282 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4283 } 4284 4285 return CallOpc; 4286 } 4287 4288 static 4289 bool isLocalCall(const SDValue &Callee) 4290 { 4291 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4292 return G->getGlobal()->isStrongDefinitionForLinker(); 4293 return false; 4294 } 4295 4296 SDValue 4297 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4298 CallingConv::ID CallConv, bool isVarArg, 4299 const SmallVectorImpl<ISD::InputArg> &Ins, 4300 SDLoc dl, SelectionDAG &DAG, 4301 SmallVectorImpl<SDValue> &InVals) const { 4302 4303 SmallVector<CCValAssign, 16> RVLocs; 4304 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4305 *DAG.getContext()); 4306 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4307 4308 // Copy all of the result registers out of their specified physreg. 4309 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4310 CCValAssign &VA = RVLocs[i]; 4311 assert(VA.isRegLoc() && "Can only return in registers!"); 4312 4313 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4314 VA.getLocReg(), VA.getLocVT(), InFlag); 4315 Chain = Val.getValue(1); 4316 InFlag = Val.getValue(2); 4317 4318 switch (VA.getLocInfo()) { 4319 default: llvm_unreachable("Unknown loc info!"); 4320 case CCValAssign::Full: break; 4321 case CCValAssign::AExt: 4322 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4323 break; 4324 case CCValAssign::ZExt: 4325 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4326 DAG.getValueType(VA.getValVT())); 4327 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4328 break; 4329 case CCValAssign::SExt: 4330 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4331 DAG.getValueType(VA.getValVT())); 4332 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4333 break; 4334 } 4335 4336 InVals.push_back(Val); 4337 } 4338 4339 return Chain; 4340 } 4341 4342 SDValue 4343 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4344 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4345 bool hasNest, SelectionDAG &DAG, 4346 SmallVector<std::pair<unsigned, SDValue>, 8> 4347 &RegsToPass, 4348 SDValue InFlag, SDValue Chain, 4349 SDValue CallSeqStart, SDValue &Callee, 4350 int SPDiff, unsigned NumBytes, 4351 const SmallVectorImpl<ISD::InputArg> &Ins, 4352 SmallVectorImpl<SDValue> &InVals, 4353 ImmutableCallSite *CS) const { 4354 4355 std::vector<EVT> NodeTys; 4356 SmallVector<SDValue, 8> Ops; 4357 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4358 SPDiff, isTailCall, IsPatchPoint, hasNest, 4359 RegsToPass, Ops, NodeTys, CS, Subtarget); 4360 4361 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4362 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4363 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4364 4365 // When performing tail call optimization the callee pops its arguments off 4366 // the stack. Account for this here so these bytes can be pushed back on in 4367 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4368 int BytesCalleePops = 4369 (CallConv == CallingConv::Fast && 4370 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4371 4372 // Add a register mask operand representing the call-preserved registers. 4373 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4374 const uint32_t *Mask = 4375 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4376 assert(Mask && "Missing call preserved mask for calling convention"); 4377 Ops.push_back(DAG.getRegisterMask(Mask)); 4378 4379 if (InFlag.getNode()) 4380 Ops.push_back(InFlag); 4381 4382 // Emit tail call. 4383 if (isTailCall) { 4384 assert(((Callee.getOpcode() == ISD::Register && 4385 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4386 Callee.getOpcode() == ISD::TargetExternalSymbol || 4387 Callee.getOpcode() == ISD::TargetGlobalAddress || 4388 isa<ConstantSDNode>(Callee)) && 4389 "Expecting an global address, external symbol, absolute value or register"); 4390 4391 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4392 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4393 } 4394 4395 // Add a NOP immediately after the branch instruction when using the 64-bit 4396 // SVR4 ABI. At link time, if caller and callee are in a different module and 4397 // thus have a different TOC, the call will be replaced with a call to a stub 4398 // function which saves the current TOC, loads the TOC of the callee and 4399 // branches to the callee. The NOP will be replaced with a load instruction 4400 // which restores the TOC of the caller from the TOC save slot of the current 4401 // stack frame. If caller and callee belong to the same module (and have the 4402 // same TOC), the NOP will remain unchanged. 4403 4404 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4405 !IsPatchPoint) { 4406 if (CallOpc == PPCISD::BCTRL) { 4407 // This is a call through a function pointer. 4408 // Restore the caller TOC from the save area into R2. 4409 // See PrepareCall() for more information about calls through function 4410 // pointers in the 64-bit SVR4 ABI. 4411 // We are using a target-specific load with r2 hard coded, because the 4412 // result of a target-independent load would never go directly into r2, 4413 // since r2 is a reserved register (which prevents the register allocator 4414 // from allocating it), resulting in an additional register being 4415 // allocated and an unnecessary move instruction being generated. 4416 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4417 4418 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4419 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4420 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4421 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4422 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4423 4424 // The address needs to go after the chain input but before the flag (or 4425 // any other variadic arguments). 4426 Ops.insert(std::next(Ops.begin()), AddTOC); 4427 } else if ((CallOpc == PPCISD::CALL) && 4428 (!isLocalCall(Callee) || 4429 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4430 // Otherwise insert NOP for non-local calls. 4431 CallOpc = PPCISD::CALL_NOP; 4432 } 4433 4434 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4435 InFlag = Chain.getValue(1); 4436 4437 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4438 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4439 InFlag, dl); 4440 if (!Ins.empty()) 4441 InFlag = Chain.getValue(1); 4442 4443 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4444 Ins, dl, DAG, InVals); 4445 } 4446 4447 SDValue 4448 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4449 SmallVectorImpl<SDValue> &InVals) const { 4450 SelectionDAG &DAG = CLI.DAG; 4451 SDLoc &dl = CLI.DL; 4452 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4453 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4454 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4455 SDValue Chain = CLI.Chain; 4456 SDValue Callee = CLI.Callee; 4457 bool &isTailCall = CLI.IsTailCall; 4458 CallingConv::ID CallConv = CLI.CallConv; 4459 bool isVarArg = CLI.IsVarArg; 4460 bool IsPatchPoint = CLI.IsPatchPoint; 4461 ImmutableCallSite *CS = CLI.CS; 4462 4463 if (isTailCall) 4464 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4465 Ins, DAG); 4466 4467 if (!isTailCall && CS && CS->isMustTailCall()) 4468 report_fatal_error("failed to perform tail call elimination on a call " 4469 "site marked musttail"); 4470 4471 if (Subtarget.isSVR4ABI()) { 4472 if (Subtarget.isPPC64()) 4473 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4474 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4475 dl, DAG, InVals, CS); 4476 else 4477 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4478 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4479 dl, DAG, InVals, CS); 4480 } 4481 4482 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4483 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4484 dl, DAG, InVals, CS); 4485 } 4486 4487 SDValue 4488 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4489 CallingConv::ID CallConv, bool isVarArg, 4490 bool isTailCall, bool IsPatchPoint, 4491 const SmallVectorImpl<ISD::OutputArg> &Outs, 4492 const SmallVectorImpl<SDValue> &OutVals, 4493 const SmallVectorImpl<ISD::InputArg> &Ins, 4494 SDLoc dl, SelectionDAG &DAG, 4495 SmallVectorImpl<SDValue> &InVals, 4496 ImmutableCallSite *CS) const { 4497 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4498 // of the 32-bit SVR4 ABI stack frame layout. 4499 4500 assert((CallConv == CallingConv::C || 4501 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4502 4503 unsigned PtrByteSize = 4; 4504 4505 MachineFunction &MF = DAG.getMachineFunction(); 4506 4507 // Mark this function as potentially containing a function that contains a 4508 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4509 // and restoring the callers stack pointer in this functions epilog. This is 4510 // done because by tail calling the called function might overwrite the value 4511 // in this function's (MF) stack pointer stack slot 0(SP). 4512 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4513 CallConv == CallingConv::Fast) 4514 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4515 4516 // Count how many bytes are to be pushed on the stack, including the linkage 4517 // area, parameter list area and the part of the local variable space which 4518 // contains copies of aggregates which are passed by value. 4519 4520 // Assign locations to all of the outgoing arguments. 4521 SmallVector<CCValAssign, 16> ArgLocs; 4522 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4523 *DAG.getContext()); 4524 4525 // Reserve space for the linkage area on the stack. 4526 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4527 PtrByteSize); 4528 4529 if (isVarArg) { 4530 // Handle fixed and variable vector arguments differently. 4531 // Fixed vector arguments go into registers as long as registers are 4532 // available. Variable vector arguments always go into memory. 4533 unsigned NumArgs = Outs.size(); 4534 4535 for (unsigned i = 0; i != NumArgs; ++i) { 4536 MVT ArgVT = Outs[i].VT; 4537 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4538 bool Result; 4539 4540 if (Outs[i].IsFixed) { 4541 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4542 CCInfo); 4543 } else { 4544 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4545 ArgFlags, CCInfo); 4546 } 4547 4548 if (Result) { 4549 #ifndef NDEBUG 4550 errs() << "Call operand #" << i << " has unhandled type " 4551 << EVT(ArgVT).getEVTString() << "\n"; 4552 #endif 4553 llvm_unreachable(nullptr); 4554 } 4555 } 4556 } else { 4557 // All arguments are treated the same. 4558 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4559 } 4560 4561 // Assign locations to all of the outgoing aggregate by value arguments. 4562 SmallVector<CCValAssign, 16> ByValArgLocs; 4563 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4564 ByValArgLocs, *DAG.getContext()); 4565 4566 // Reserve stack space for the allocations in CCInfo. 4567 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4568 4569 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4570 4571 // Size of the linkage area, parameter list area and the part of the local 4572 // space variable where copies of aggregates which are passed by value are 4573 // stored. 4574 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4575 4576 // Calculate by how many bytes the stack has to be adjusted in case of tail 4577 // call optimization. 4578 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4579 4580 // Adjust the stack pointer for the new arguments... 4581 // These operations are automatically eliminated by the prolog/epilog pass 4582 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4583 dl); 4584 SDValue CallSeqStart = Chain; 4585 4586 // Load the return address and frame pointer so it can be moved somewhere else 4587 // later. 4588 SDValue LROp, FPOp; 4589 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4590 dl); 4591 4592 // Set up a copy of the stack pointer for use loading and storing any 4593 // arguments that may not fit in the registers available for argument 4594 // passing. 4595 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4596 4597 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4598 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4599 SmallVector<SDValue, 8> MemOpChains; 4600 4601 bool seenFloatArg = false; 4602 // Walk the register/memloc assignments, inserting copies/loads. 4603 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4604 i != e; 4605 ++i) { 4606 CCValAssign &VA = ArgLocs[i]; 4607 SDValue Arg = OutVals[i]; 4608 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4609 4610 if (Flags.isByVal()) { 4611 // Argument is an aggregate which is passed by value, thus we need to 4612 // create a copy of it in the local variable space of the current stack 4613 // frame (which is the stack frame of the caller) and pass the address of 4614 // this copy to the callee. 4615 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4616 CCValAssign &ByValVA = ByValArgLocs[j++]; 4617 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4618 4619 // Memory reserved in the local variable space of the callers stack frame. 4620 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4621 4622 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4623 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4624 StackPtr, PtrOff); 4625 4626 // Create a copy of the argument in the local area of the current 4627 // stack frame. 4628 SDValue MemcpyCall = 4629 CreateCopyOfByValArgument(Arg, PtrOff, 4630 CallSeqStart.getNode()->getOperand(0), 4631 Flags, DAG, dl); 4632 4633 // This must go outside the CALLSEQ_START..END. 4634 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4635 CallSeqStart.getNode()->getOperand(1), 4636 SDLoc(MemcpyCall)); 4637 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4638 NewCallSeqStart.getNode()); 4639 Chain = CallSeqStart = NewCallSeqStart; 4640 4641 // Pass the address of the aggregate copy on the stack either in a 4642 // physical register or in the parameter list area of the current stack 4643 // frame to the callee. 4644 Arg = PtrOff; 4645 } 4646 4647 if (VA.isRegLoc()) { 4648 if (Arg.getValueType() == MVT::i1) 4649 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4650 4651 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4652 // Put argument in a physical register. 4653 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4654 } else { 4655 // Put argument in the parameter list area of the current stack frame. 4656 assert(VA.isMemLoc()); 4657 unsigned LocMemOffset = VA.getLocMemOffset(); 4658 4659 if (!isTailCall) { 4660 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4661 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4662 StackPtr, PtrOff); 4663 4664 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4665 MachinePointerInfo(), 4666 false, false, 0)); 4667 } else { 4668 // Calculate and remember argument location. 4669 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4670 TailCallArguments); 4671 } 4672 } 4673 } 4674 4675 if (!MemOpChains.empty()) 4676 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4677 4678 // Build a sequence of copy-to-reg nodes chained together with token chain 4679 // and flag operands which copy the outgoing args into the appropriate regs. 4680 SDValue InFlag; 4681 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4682 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4683 RegsToPass[i].second, InFlag); 4684 InFlag = Chain.getValue(1); 4685 } 4686 4687 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4688 // registers. 4689 if (isVarArg) { 4690 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4691 SDValue Ops[] = { Chain, InFlag }; 4692 4693 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4694 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4695 4696 InFlag = Chain.getValue(1); 4697 } 4698 4699 if (isTailCall) 4700 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4701 false, TailCallArguments); 4702 4703 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4704 /* unused except on PPC64 ELFv1 */ false, DAG, 4705 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4706 NumBytes, Ins, InVals, CS); 4707 } 4708 4709 // Copy an argument into memory, being careful to do this outside the 4710 // call sequence for the call to which the argument belongs. 4711 SDValue 4712 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4713 SDValue CallSeqStart, 4714 ISD::ArgFlagsTy Flags, 4715 SelectionDAG &DAG, 4716 SDLoc dl) const { 4717 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4718 CallSeqStart.getNode()->getOperand(0), 4719 Flags, DAG, dl); 4720 // The MEMCPY must go outside the CALLSEQ_START..END. 4721 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4722 CallSeqStart.getNode()->getOperand(1), 4723 SDLoc(MemcpyCall)); 4724 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4725 NewCallSeqStart.getNode()); 4726 return NewCallSeqStart; 4727 } 4728 4729 SDValue 4730 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4731 CallingConv::ID CallConv, bool isVarArg, 4732 bool isTailCall, bool IsPatchPoint, 4733 const SmallVectorImpl<ISD::OutputArg> &Outs, 4734 const SmallVectorImpl<SDValue> &OutVals, 4735 const SmallVectorImpl<ISD::InputArg> &Ins, 4736 SDLoc dl, SelectionDAG &DAG, 4737 SmallVectorImpl<SDValue> &InVals, 4738 ImmutableCallSite *CS) const { 4739 4740 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4741 bool isLittleEndian = Subtarget.isLittleEndian(); 4742 unsigned NumOps = Outs.size(); 4743 bool hasNest = false; 4744 4745 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4746 unsigned PtrByteSize = 8; 4747 4748 MachineFunction &MF = DAG.getMachineFunction(); 4749 4750 // Mark this function as potentially containing a function that contains a 4751 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4752 // and restoring the callers stack pointer in this functions epilog. This is 4753 // done because by tail calling the called function might overwrite the value 4754 // in this function's (MF) stack pointer stack slot 0(SP). 4755 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4756 CallConv == CallingConv::Fast) 4757 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4758 4759 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4760 "fastcc not supported on varargs functions"); 4761 4762 // Count how many bytes are to be pushed on the stack, including the linkage 4763 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4764 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4765 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4766 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4767 unsigned NumBytes = LinkageSize; 4768 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4769 unsigned &QFPR_idx = FPR_idx; 4770 4771 static const MCPhysReg GPR[] = { 4772 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4773 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4774 }; 4775 static const MCPhysReg VR[] = { 4776 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4777 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4778 }; 4779 static const MCPhysReg VSRH[] = { 4780 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4781 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4782 }; 4783 4784 const unsigned NumGPRs = array_lengthof(GPR); 4785 const unsigned NumFPRs = 13; 4786 const unsigned NumVRs = array_lengthof(VR); 4787 const unsigned NumQFPRs = NumFPRs; 4788 4789 // When using the fast calling convention, we don't provide backing for 4790 // arguments that will be in registers. 4791 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4792 4793 // Add up all the space actually used. 4794 for (unsigned i = 0; i != NumOps; ++i) { 4795 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4796 EVT ArgVT = Outs[i].VT; 4797 EVT OrigVT = Outs[i].ArgVT; 4798 4799 if (Flags.isNest()) 4800 continue; 4801 4802 if (CallConv == CallingConv::Fast) { 4803 if (Flags.isByVal()) 4804 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4805 else 4806 switch (ArgVT.getSimpleVT().SimpleTy) { 4807 default: llvm_unreachable("Unexpected ValueType for argument!"); 4808 case MVT::i1: 4809 case MVT::i32: 4810 case MVT::i64: 4811 if (++NumGPRsUsed <= NumGPRs) 4812 continue; 4813 break; 4814 case MVT::v4i32: 4815 case MVT::v8i16: 4816 case MVT::v16i8: 4817 case MVT::v2f64: 4818 case MVT::v2i64: 4819 case MVT::v1i128: 4820 if (++NumVRsUsed <= NumVRs) 4821 continue; 4822 break; 4823 case MVT::v4f32: 4824 // When using QPX, this is handled like a FP register, otherwise, it 4825 // is an Altivec register. 4826 if (Subtarget.hasQPX()) { 4827 if (++NumFPRsUsed <= NumFPRs) 4828 continue; 4829 } else { 4830 if (++NumVRsUsed <= NumVRs) 4831 continue; 4832 } 4833 break; 4834 case MVT::f32: 4835 case MVT::f64: 4836 case MVT::v4f64: // QPX 4837 case MVT::v4i1: // QPX 4838 if (++NumFPRsUsed <= NumFPRs) 4839 continue; 4840 break; 4841 } 4842 } 4843 4844 /* Respect alignment of argument on the stack. */ 4845 unsigned Align = 4846 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4847 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4848 4849 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4850 if (Flags.isInConsecutiveRegsLast()) 4851 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4852 } 4853 4854 unsigned NumBytesActuallyUsed = NumBytes; 4855 4856 // The prolog code of the callee may store up to 8 GPR argument registers to 4857 // the stack, allowing va_start to index over them in memory if its varargs. 4858 // Because we cannot tell if this is needed on the caller side, we have to 4859 // conservatively assume that it is needed. As such, make sure we have at 4860 // least enough stack space for the caller to store the 8 GPRs. 4861 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4862 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4863 4864 // Tail call needs the stack to be aligned. 4865 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4866 CallConv == CallingConv::Fast) 4867 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4868 4869 // Calculate by how many bytes the stack has to be adjusted in case of tail 4870 // call optimization. 4871 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4872 4873 // To protect arguments on the stack from being clobbered in a tail call, 4874 // force all the loads to happen before doing any other lowering. 4875 if (isTailCall) 4876 Chain = DAG.getStackArgumentTokenFactor(Chain); 4877 4878 // Adjust the stack pointer for the new arguments... 4879 // These operations are automatically eliminated by the prolog/epilog pass 4880 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4881 dl); 4882 SDValue CallSeqStart = Chain; 4883 4884 // Load the return address and frame pointer so it can be move somewhere else 4885 // later. 4886 SDValue LROp, FPOp; 4887 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4888 dl); 4889 4890 // Set up a copy of the stack pointer for use loading and storing any 4891 // arguments that may not fit in the registers available for argument 4892 // passing. 4893 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4894 4895 // Figure out which arguments are going to go in registers, and which in 4896 // memory. Also, if this is a vararg function, floating point operations 4897 // must be stored to our stack, and loaded into integer regs as well, if 4898 // any integer regs are available for argument passing. 4899 unsigned ArgOffset = LinkageSize; 4900 4901 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4902 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4903 4904 SmallVector<SDValue, 8> MemOpChains; 4905 for (unsigned i = 0; i != NumOps; ++i) { 4906 SDValue Arg = OutVals[i]; 4907 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4908 EVT ArgVT = Outs[i].VT; 4909 EVT OrigVT = Outs[i].ArgVT; 4910 4911 // PtrOff will be used to store the current argument to the stack if a 4912 // register cannot be found for it. 4913 SDValue PtrOff; 4914 4915 // We re-align the argument offset for each argument, except when using the 4916 // fast calling convention, when we need to make sure we do that only when 4917 // we'll actually use a stack slot. 4918 auto ComputePtrOff = [&]() { 4919 /* Respect alignment of argument on the stack. */ 4920 unsigned Align = 4921 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4922 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4923 4924 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4925 4926 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4927 }; 4928 4929 if (CallConv != CallingConv::Fast) { 4930 ComputePtrOff(); 4931 4932 /* Compute GPR index associated with argument offset. */ 4933 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4934 GPR_idx = std::min(GPR_idx, NumGPRs); 4935 } 4936 4937 // Promote integers to 64-bit values. 4938 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4939 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4940 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4941 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4942 } 4943 4944 // FIXME memcpy is used way more than necessary. Correctness first. 4945 // Note: "by value" is code for passing a structure by value, not 4946 // basic types. 4947 if (Flags.isByVal()) { 4948 // Note: Size includes alignment padding, so 4949 // struct x { short a; char b; } 4950 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4951 // These are the proper values we need for right-justifying the 4952 // aggregate in a parameter register. 4953 unsigned Size = Flags.getByValSize(); 4954 4955 // An empty aggregate parameter takes up no storage and no 4956 // registers. 4957 if (Size == 0) 4958 continue; 4959 4960 if (CallConv == CallingConv::Fast) 4961 ComputePtrOff(); 4962 4963 // All aggregates smaller than 8 bytes must be passed right-justified. 4964 if (Size==1 || Size==2 || Size==4) { 4965 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4966 if (GPR_idx != NumGPRs) { 4967 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4968 MachinePointerInfo(), VT, 4969 false, false, false, 0); 4970 MemOpChains.push_back(Load.getValue(1)); 4971 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4972 4973 ArgOffset += PtrByteSize; 4974 continue; 4975 } 4976 } 4977 4978 if (GPR_idx == NumGPRs && Size < 8) { 4979 SDValue AddPtr = PtrOff; 4980 if (!isLittleEndian) { 4981 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4982 PtrOff.getValueType()); 4983 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4984 } 4985 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4986 CallSeqStart, 4987 Flags, DAG, dl); 4988 ArgOffset += PtrByteSize; 4989 continue; 4990 } 4991 // Copy entire object into memory. There are cases where gcc-generated 4992 // code assumes it is there, even if it could be put entirely into 4993 // registers. (This is not what the doc says.) 4994 4995 // FIXME: The above statement is likely due to a misunderstanding of the 4996 // documents. All arguments must be copied into the parameter area BY 4997 // THE CALLEE in the event that the callee takes the address of any 4998 // formal argument. That has not yet been implemented. However, it is 4999 // reasonable to use the stack area as a staging area for the register 5000 // load. 5001 5002 // Skip this for small aggregates, as we will use the same slot for a 5003 // right-justified copy, below. 5004 if (Size >= 8) 5005 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5006 CallSeqStart, 5007 Flags, DAG, dl); 5008 5009 // When a register is available, pass a small aggregate right-justified. 5010 if (Size < 8 && GPR_idx != NumGPRs) { 5011 // The easiest way to get this right-justified in a register 5012 // is to copy the structure into the rightmost portion of a 5013 // local variable slot, then load the whole slot into the 5014 // register. 5015 // FIXME: The memcpy seems to produce pretty awful code for 5016 // small aggregates, particularly for packed ones. 5017 // FIXME: It would be preferable to use the slot in the 5018 // parameter save area instead of a new local variable. 5019 SDValue AddPtr = PtrOff; 5020 if (!isLittleEndian) { 5021 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5022 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5023 } 5024 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5025 CallSeqStart, 5026 Flags, DAG, dl); 5027 5028 // Load the slot into the register. 5029 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5030 MachinePointerInfo(), 5031 false, false, false, 0); 5032 MemOpChains.push_back(Load.getValue(1)); 5033 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5034 5035 // Done with this argument. 5036 ArgOffset += PtrByteSize; 5037 continue; 5038 } 5039 5040 // For aggregates larger than PtrByteSize, copy the pieces of the 5041 // object that fit into registers from the parameter save area. 5042 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5043 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5044 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5045 if (GPR_idx != NumGPRs) { 5046 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5047 MachinePointerInfo(), 5048 false, false, false, 0); 5049 MemOpChains.push_back(Load.getValue(1)); 5050 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5051 ArgOffset += PtrByteSize; 5052 } else { 5053 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5054 break; 5055 } 5056 } 5057 continue; 5058 } 5059 5060 switch (Arg.getSimpleValueType().SimpleTy) { 5061 default: llvm_unreachable("Unexpected ValueType for argument!"); 5062 case MVT::i1: 5063 case MVT::i32: 5064 case MVT::i64: 5065 if (Flags.isNest()) { 5066 // The 'nest' parameter, if any, is passed in R11. 5067 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5068 hasNest = true; 5069 break; 5070 } 5071 5072 // These can be scalar arguments or elements of an integer array type 5073 // passed directly. Clang may use those instead of "byval" aggregate 5074 // types to avoid forcing arguments to memory unnecessarily. 5075 if (GPR_idx != NumGPRs) { 5076 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5077 } else { 5078 if (CallConv == CallingConv::Fast) 5079 ComputePtrOff(); 5080 5081 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5082 true, isTailCall, false, MemOpChains, 5083 TailCallArguments, dl); 5084 if (CallConv == CallingConv::Fast) 5085 ArgOffset += PtrByteSize; 5086 } 5087 if (CallConv != CallingConv::Fast) 5088 ArgOffset += PtrByteSize; 5089 break; 5090 case MVT::f32: 5091 case MVT::f64: { 5092 // These can be scalar arguments or elements of a float array type 5093 // passed directly. The latter are used to implement ELFv2 homogenous 5094 // float aggregates. 5095 5096 // Named arguments go into FPRs first, and once they overflow, the 5097 // remaining arguments go into GPRs and then the parameter save area. 5098 // Unnamed arguments for vararg functions always go to GPRs and 5099 // then the parameter save area. For now, put all arguments to vararg 5100 // routines always in both locations (FPR *and* GPR or stack slot). 5101 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5102 bool NeededLoad = false; 5103 5104 // First load the argument into the next available FPR. 5105 if (FPR_idx != NumFPRs) 5106 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5107 5108 // Next, load the argument into GPR or stack slot if needed. 5109 if (!NeedGPROrStack) 5110 ; 5111 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5112 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5113 // once we support fp <-> gpr moves. 5114 5115 // In the non-vararg case, this can only ever happen in the 5116 // presence of f32 array types, since otherwise we never run 5117 // out of FPRs before running out of GPRs. 5118 SDValue ArgVal; 5119 5120 // Double values are always passed in a single GPR. 5121 if (Arg.getValueType() != MVT::f32) { 5122 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5123 5124 // Non-array float values are extended and passed in a GPR. 5125 } else if (!Flags.isInConsecutiveRegs()) { 5126 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5127 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5128 5129 // If we have an array of floats, we collect every odd element 5130 // together with its predecessor into one GPR. 5131 } else if (ArgOffset % PtrByteSize != 0) { 5132 SDValue Lo, Hi; 5133 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5134 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5135 if (!isLittleEndian) 5136 std::swap(Lo, Hi); 5137 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5138 5139 // The final element, if even, goes into the first half of a GPR. 5140 } else if (Flags.isInConsecutiveRegsLast()) { 5141 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5142 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5143 if (!isLittleEndian) 5144 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5145 DAG.getConstant(32, dl, MVT::i32)); 5146 5147 // Non-final even elements are skipped; they will be handled 5148 // together the with subsequent argument on the next go-around. 5149 } else 5150 ArgVal = SDValue(); 5151 5152 if (ArgVal.getNode()) 5153 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5154 } else { 5155 if (CallConv == CallingConv::Fast) 5156 ComputePtrOff(); 5157 5158 // Single-precision floating-point values are mapped to the 5159 // second (rightmost) word of the stack doubleword. 5160 if (Arg.getValueType() == MVT::f32 && 5161 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5162 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5163 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5164 } 5165 5166 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5167 true, isTailCall, false, MemOpChains, 5168 TailCallArguments, dl); 5169 5170 NeededLoad = true; 5171 } 5172 // When passing an array of floats, the array occupies consecutive 5173 // space in the argument area; only round up to the next doubleword 5174 // at the end of the array. Otherwise, each float takes 8 bytes. 5175 if (CallConv != CallingConv::Fast || NeededLoad) { 5176 ArgOffset += (Arg.getValueType() == MVT::f32 && 5177 Flags.isInConsecutiveRegs()) ? 4 : 8; 5178 if (Flags.isInConsecutiveRegsLast()) 5179 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5180 } 5181 break; 5182 } 5183 case MVT::v4f32: 5184 case MVT::v4i32: 5185 case MVT::v8i16: 5186 case MVT::v16i8: 5187 case MVT::v2f64: 5188 case MVT::v2i64: 5189 case MVT::v1i128: 5190 if (!Subtarget.hasQPX()) { 5191 // These can be scalar arguments or elements of a vector array type 5192 // passed directly. The latter are used to implement ELFv2 homogenous 5193 // vector aggregates. 5194 5195 // For a varargs call, named arguments go into VRs or on the stack as 5196 // usual; unnamed arguments always go to the stack or the corresponding 5197 // GPRs when within range. For now, we always put the value in both 5198 // locations (or even all three). 5199 if (isVarArg) { 5200 // We could elide this store in the case where the object fits 5201 // entirely in R registers. Maybe later. 5202 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5203 MachinePointerInfo(), false, false, 0); 5204 MemOpChains.push_back(Store); 5205 if (VR_idx != NumVRs) { 5206 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5207 MachinePointerInfo(), 5208 false, false, false, 0); 5209 MemOpChains.push_back(Load.getValue(1)); 5210 5211 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5212 Arg.getSimpleValueType() == MVT::v2i64) ? 5213 VSRH[VR_idx] : VR[VR_idx]; 5214 ++VR_idx; 5215 5216 RegsToPass.push_back(std::make_pair(VReg, Load)); 5217 } 5218 ArgOffset += 16; 5219 for (unsigned i=0; i<16; i+=PtrByteSize) { 5220 if (GPR_idx == NumGPRs) 5221 break; 5222 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5223 DAG.getConstant(i, dl, PtrVT)); 5224 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5225 false, false, false, 0); 5226 MemOpChains.push_back(Load.getValue(1)); 5227 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5228 } 5229 break; 5230 } 5231 5232 // Non-varargs Altivec params go into VRs or on the stack. 5233 if (VR_idx != NumVRs) { 5234 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5235 Arg.getSimpleValueType() == MVT::v2i64) ? 5236 VSRH[VR_idx] : VR[VR_idx]; 5237 ++VR_idx; 5238 5239 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5240 } else { 5241 if (CallConv == CallingConv::Fast) 5242 ComputePtrOff(); 5243 5244 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5245 true, isTailCall, true, MemOpChains, 5246 TailCallArguments, dl); 5247 if (CallConv == CallingConv::Fast) 5248 ArgOffset += 16; 5249 } 5250 5251 if (CallConv != CallingConv::Fast) 5252 ArgOffset += 16; 5253 break; 5254 } // not QPX 5255 5256 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5257 "Invalid QPX parameter type"); 5258 5259 /* fall through */ 5260 case MVT::v4f64: 5261 case MVT::v4i1: { 5262 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5263 if (isVarArg) { 5264 // We could elide this store in the case where the object fits 5265 // entirely in R registers. Maybe later. 5266 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5267 MachinePointerInfo(), false, false, 0); 5268 MemOpChains.push_back(Store); 5269 if (QFPR_idx != NumQFPRs) { 5270 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5271 Store, PtrOff, MachinePointerInfo(), 5272 false, false, false, 0); 5273 MemOpChains.push_back(Load.getValue(1)); 5274 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5275 } 5276 ArgOffset += (IsF32 ? 16 : 32); 5277 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5278 if (GPR_idx == NumGPRs) 5279 break; 5280 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5281 DAG.getConstant(i, dl, PtrVT)); 5282 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5283 false, false, false, 0); 5284 MemOpChains.push_back(Load.getValue(1)); 5285 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5286 } 5287 break; 5288 } 5289 5290 // Non-varargs QPX params go into registers or on the stack. 5291 if (QFPR_idx != NumQFPRs) { 5292 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5293 } else { 5294 if (CallConv == CallingConv::Fast) 5295 ComputePtrOff(); 5296 5297 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5298 true, isTailCall, true, MemOpChains, 5299 TailCallArguments, dl); 5300 if (CallConv == CallingConv::Fast) 5301 ArgOffset += (IsF32 ? 16 : 32); 5302 } 5303 5304 if (CallConv != CallingConv::Fast) 5305 ArgOffset += (IsF32 ? 16 : 32); 5306 break; 5307 } 5308 } 5309 } 5310 5311 assert(NumBytesActuallyUsed == ArgOffset); 5312 (void)NumBytesActuallyUsed; 5313 5314 if (!MemOpChains.empty()) 5315 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5316 5317 // Check if this is an indirect call (MTCTR/BCTRL). 5318 // See PrepareCall() for more information about calls through function 5319 // pointers in the 64-bit SVR4 ABI. 5320 if (!isTailCall && !IsPatchPoint && 5321 !isFunctionGlobalAddress(Callee) && 5322 !isa<ExternalSymbolSDNode>(Callee)) { 5323 // Load r2 into a virtual register and store it to the TOC save area. 5324 setUsesTOCBasePtr(DAG); 5325 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5326 // TOC save area offset. 5327 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5328 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5329 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5330 Chain = DAG.getStore( 5331 Val.getValue(1), dl, Val, AddPtr, 5332 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5333 false, false, 0); 5334 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5335 // This does not mean the MTCTR instruction must use R12; it's easier 5336 // to model this as an extra parameter, so do that. 5337 if (isELFv2ABI && !IsPatchPoint) 5338 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5339 } 5340 5341 // Build a sequence of copy-to-reg nodes chained together with token chain 5342 // and flag operands which copy the outgoing args into the appropriate regs. 5343 SDValue InFlag; 5344 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5345 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5346 RegsToPass[i].second, InFlag); 5347 InFlag = Chain.getValue(1); 5348 } 5349 5350 if (isTailCall) 5351 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5352 FPOp, true, TailCallArguments); 5353 5354 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5355 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5356 SPDiff, NumBytes, Ins, InVals, CS); 5357 } 5358 5359 SDValue 5360 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5361 CallingConv::ID CallConv, bool isVarArg, 5362 bool isTailCall, bool IsPatchPoint, 5363 const SmallVectorImpl<ISD::OutputArg> &Outs, 5364 const SmallVectorImpl<SDValue> &OutVals, 5365 const SmallVectorImpl<ISD::InputArg> &Ins, 5366 SDLoc dl, SelectionDAG &DAG, 5367 SmallVectorImpl<SDValue> &InVals, 5368 ImmutableCallSite *CS) const { 5369 5370 unsigned NumOps = Outs.size(); 5371 5372 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5373 bool isPPC64 = PtrVT == MVT::i64; 5374 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5375 5376 MachineFunction &MF = DAG.getMachineFunction(); 5377 5378 // Mark this function as potentially containing a function that contains a 5379 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5380 // and restoring the callers stack pointer in this functions epilog. This is 5381 // done because by tail calling the called function might overwrite the value 5382 // in this function's (MF) stack pointer stack slot 0(SP). 5383 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5384 CallConv == CallingConv::Fast) 5385 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5386 5387 // Count how many bytes are to be pushed on the stack, including the linkage 5388 // area, and parameter passing area. We start with 24/48 bytes, which is 5389 // prereserved space for [SP][CR][LR][3 x unused]. 5390 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5391 unsigned NumBytes = LinkageSize; 5392 5393 // Add up all the space actually used. 5394 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5395 // they all go in registers, but we must reserve stack space for them for 5396 // possible use by the caller. In varargs or 64-bit calls, parameters are 5397 // assigned stack space in order, with padding so Altivec parameters are 5398 // 16-byte aligned. 5399 unsigned nAltivecParamsAtEnd = 0; 5400 for (unsigned i = 0; i != NumOps; ++i) { 5401 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5402 EVT ArgVT = Outs[i].VT; 5403 // Varargs Altivec parameters are padded to a 16 byte boundary. 5404 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5405 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5406 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5407 if (!isVarArg && !isPPC64) { 5408 // Non-varargs Altivec parameters go after all the non-Altivec 5409 // parameters; handle those later so we know how much padding we need. 5410 nAltivecParamsAtEnd++; 5411 continue; 5412 } 5413 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5414 NumBytes = ((NumBytes+15)/16)*16; 5415 } 5416 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5417 } 5418 5419 // Allow for Altivec parameters at the end, if needed. 5420 if (nAltivecParamsAtEnd) { 5421 NumBytes = ((NumBytes+15)/16)*16; 5422 NumBytes += 16*nAltivecParamsAtEnd; 5423 } 5424 5425 // The prolog code of the callee may store up to 8 GPR argument registers to 5426 // the stack, allowing va_start to index over them in memory if its varargs. 5427 // Because we cannot tell if this is needed on the caller side, we have to 5428 // conservatively assume that it is needed. As such, make sure we have at 5429 // least enough stack space for the caller to store the 8 GPRs. 5430 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5431 5432 // Tail call needs the stack to be aligned. 5433 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5434 CallConv == CallingConv::Fast) 5435 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5436 5437 // Calculate by how many bytes the stack has to be adjusted in case of tail 5438 // call optimization. 5439 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5440 5441 // To protect arguments on the stack from being clobbered in a tail call, 5442 // force all the loads to happen before doing any other lowering. 5443 if (isTailCall) 5444 Chain = DAG.getStackArgumentTokenFactor(Chain); 5445 5446 // Adjust the stack pointer for the new arguments... 5447 // These operations are automatically eliminated by the prolog/epilog pass 5448 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5449 dl); 5450 SDValue CallSeqStart = Chain; 5451 5452 // Load the return address and frame pointer so it can be move somewhere else 5453 // later. 5454 SDValue LROp, FPOp; 5455 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5456 dl); 5457 5458 // Set up a copy of the stack pointer for use loading and storing any 5459 // arguments that may not fit in the registers available for argument 5460 // passing. 5461 SDValue StackPtr; 5462 if (isPPC64) 5463 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5464 else 5465 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5466 5467 // Figure out which arguments are going to go in registers, and which in 5468 // memory. Also, if this is a vararg function, floating point operations 5469 // must be stored to our stack, and loaded into integer regs as well, if 5470 // any integer regs are available for argument passing. 5471 unsigned ArgOffset = LinkageSize; 5472 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5473 5474 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5475 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5476 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5477 }; 5478 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5479 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5480 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5481 }; 5482 static const MCPhysReg VR[] = { 5483 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5484 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5485 }; 5486 const unsigned NumGPRs = array_lengthof(GPR_32); 5487 const unsigned NumFPRs = 13; 5488 const unsigned NumVRs = array_lengthof(VR); 5489 5490 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5491 5492 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5493 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5494 5495 SmallVector<SDValue, 8> MemOpChains; 5496 for (unsigned i = 0; i != NumOps; ++i) { 5497 SDValue Arg = OutVals[i]; 5498 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5499 5500 // PtrOff will be used to store the current argument to the stack if a 5501 // register cannot be found for it. 5502 SDValue PtrOff; 5503 5504 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5505 5506 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5507 5508 // On PPC64, promote integers to 64-bit values. 5509 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5510 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5511 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5512 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5513 } 5514 5515 // FIXME memcpy is used way more than necessary. Correctness first. 5516 // Note: "by value" is code for passing a structure by value, not 5517 // basic types. 5518 if (Flags.isByVal()) { 5519 unsigned Size = Flags.getByValSize(); 5520 // Very small objects are passed right-justified. Everything else is 5521 // passed left-justified. 5522 if (Size==1 || Size==2) { 5523 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5524 if (GPR_idx != NumGPRs) { 5525 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5526 MachinePointerInfo(), VT, 5527 false, false, false, 0); 5528 MemOpChains.push_back(Load.getValue(1)); 5529 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5530 5531 ArgOffset += PtrByteSize; 5532 } else { 5533 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5534 PtrOff.getValueType()); 5535 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5536 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5537 CallSeqStart, 5538 Flags, DAG, dl); 5539 ArgOffset += PtrByteSize; 5540 } 5541 continue; 5542 } 5543 // Copy entire object into memory. There are cases where gcc-generated 5544 // code assumes it is there, even if it could be put entirely into 5545 // registers. (This is not what the doc says.) 5546 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5547 CallSeqStart, 5548 Flags, DAG, dl); 5549 5550 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5551 // copy the pieces of the object that fit into registers from the 5552 // parameter save area. 5553 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5554 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5555 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5556 if (GPR_idx != NumGPRs) { 5557 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5558 MachinePointerInfo(), 5559 false, false, false, 0); 5560 MemOpChains.push_back(Load.getValue(1)); 5561 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5562 ArgOffset += PtrByteSize; 5563 } else { 5564 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5565 break; 5566 } 5567 } 5568 continue; 5569 } 5570 5571 switch (Arg.getSimpleValueType().SimpleTy) { 5572 default: llvm_unreachable("Unexpected ValueType for argument!"); 5573 case MVT::i1: 5574 case MVT::i32: 5575 case MVT::i64: 5576 if (GPR_idx != NumGPRs) { 5577 if (Arg.getValueType() == MVT::i1) 5578 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5579 5580 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5581 } else { 5582 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5583 isPPC64, isTailCall, false, MemOpChains, 5584 TailCallArguments, dl); 5585 } 5586 ArgOffset += PtrByteSize; 5587 break; 5588 case MVT::f32: 5589 case MVT::f64: 5590 if (FPR_idx != NumFPRs) { 5591 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5592 5593 if (isVarArg) { 5594 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5595 MachinePointerInfo(), false, false, 0); 5596 MemOpChains.push_back(Store); 5597 5598 // Float varargs are always shadowed in available integer registers 5599 if (GPR_idx != NumGPRs) { 5600 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5601 MachinePointerInfo(), false, false, 5602 false, 0); 5603 MemOpChains.push_back(Load.getValue(1)); 5604 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5605 } 5606 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5607 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5608 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5609 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5610 MachinePointerInfo(), 5611 false, false, false, 0); 5612 MemOpChains.push_back(Load.getValue(1)); 5613 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5614 } 5615 } else { 5616 // If we have any FPRs remaining, we may also have GPRs remaining. 5617 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5618 // GPRs. 5619 if (GPR_idx != NumGPRs) 5620 ++GPR_idx; 5621 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5622 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5623 ++GPR_idx; 5624 } 5625 } else 5626 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5627 isPPC64, isTailCall, false, MemOpChains, 5628 TailCallArguments, dl); 5629 if (isPPC64) 5630 ArgOffset += 8; 5631 else 5632 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5633 break; 5634 case MVT::v4f32: 5635 case MVT::v4i32: 5636 case MVT::v8i16: 5637 case MVT::v16i8: 5638 if (isVarArg) { 5639 // These go aligned on the stack, or in the corresponding R registers 5640 // when within range. The Darwin PPC ABI doc claims they also go in 5641 // V registers; in fact gcc does this only for arguments that are 5642 // prototyped, not for those that match the ... We do it for all 5643 // arguments, seems to work. 5644 while (ArgOffset % 16 !=0) { 5645 ArgOffset += PtrByteSize; 5646 if (GPR_idx != NumGPRs) 5647 GPR_idx++; 5648 } 5649 // We could elide this store in the case where the object fits 5650 // entirely in R registers. Maybe later. 5651 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5652 DAG.getConstant(ArgOffset, dl, PtrVT)); 5653 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5654 MachinePointerInfo(), false, false, 0); 5655 MemOpChains.push_back(Store); 5656 if (VR_idx != NumVRs) { 5657 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5658 MachinePointerInfo(), 5659 false, false, false, 0); 5660 MemOpChains.push_back(Load.getValue(1)); 5661 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5662 } 5663 ArgOffset += 16; 5664 for (unsigned i=0; i<16; i+=PtrByteSize) { 5665 if (GPR_idx == NumGPRs) 5666 break; 5667 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5668 DAG.getConstant(i, dl, PtrVT)); 5669 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5670 false, false, false, 0); 5671 MemOpChains.push_back(Load.getValue(1)); 5672 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5673 } 5674 break; 5675 } 5676 5677 // Non-varargs Altivec params generally go in registers, but have 5678 // stack space allocated at the end. 5679 if (VR_idx != NumVRs) { 5680 // Doesn't have GPR space allocated. 5681 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5682 } else if (nAltivecParamsAtEnd==0) { 5683 // We are emitting Altivec params in order. 5684 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5685 isPPC64, isTailCall, true, MemOpChains, 5686 TailCallArguments, dl); 5687 ArgOffset += 16; 5688 } 5689 break; 5690 } 5691 } 5692 // If all Altivec parameters fit in registers, as they usually do, 5693 // they get stack space following the non-Altivec parameters. We 5694 // don't track this here because nobody below needs it. 5695 // If there are more Altivec parameters than fit in registers emit 5696 // the stores here. 5697 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5698 unsigned j = 0; 5699 // Offset is aligned; skip 1st 12 params which go in V registers. 5700 ArgOffset = ((ArgOffset+15)/16)*16; 5701 ArgOffset += 12*16; 5702 for (unsigned i = 0; i != NumOps; ++i) { 5703 SDValue Arg = OutVals[i]; 5704 EVT ArgType = Outs[i].VT; 5705 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5706 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5707 if (++j > NumVRs) { 5708 SDValue PtrOff; 5709 // We are emitting Altivec params in order. 5710 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5711 isPPC64, isTailCall, true, MemOpChains, 5712 TailCallArguments, dl); 5713 ArgOffset += 16; 5714 } 5715 } 5716 } 5717 } 5718 5719 if (!MemOpChains.empty()) 5720 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5721 5722 // On Darwin, R12 must contain the address of an indirect callee. This does 5723 // not mean the MTCTR instruction must use R12; it's easier to model this as 5724 // an extra parameter, so do that. 5725 if (!isTailCall && 5726 !isFunctionGlobalAddress(Callee) && 5727 !isa<ExternalSymbolSDNode>(Callee) && 5728 !isBLACompatibleAddress(Callee, DAG)) 5729 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5730 PPC::R12), Callee)); 5731 5732 // Build a sequence of copy-to-reg nodes chained together with token chain 5733 // and flag operands which copy the outgoing args into the appropriate regs. 5734 SDValue InFlag; 5735 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5736 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5737 RegsToPass[i].second, InFlag); 5738 InFlag = Chain.getValue(1); 5739 } 5740 5741 if (isTailCall) 5742 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5743 FPOp, true, TailCallArguments); 5744 5745 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5746 /* unused except on PPC64 ELFv1 */ false, DAG, 5747 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5748 NumBytes, Ins, InVals, CS); 5749 } 5750 5751 bool 5752 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5753 MachineFunction &MF, bool isVarArg, 5754 const SmallVectorImpl<ISD::OutputArg> &Outs, 5755 LLVMContext &Context) const { 5756 SmallVector<CCValAssign, 16> RVLocs; 5757 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5758 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5759 } 5760 5761 SDValue 5762 PPCTargetLowering::LowerReturn(SDValue Chain, 5763 CallingConv::ID CallConv, bool isVarArg, 5764 const SmallVectorImpl<ISD::OutputArg> &Outs, 5765 const SmallVectorImpl<SDValue> &OutVals, 5766 SDLoc dl, SelectionDAG &DAG) const { 5767 5768 SmallVector<CCValAssign, 16> RVLocs; 5769 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5770 *DAG.getContext()); 5771 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5772 5773 SDValue Flag; 5774 SmallVector<SDValue, 4> RetOps(1, Chain); 5775 5776 // Copy the result values into the output registers. 5777 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5778 CCValAssign &VA = RVLocs[i]; 5779 assert(VA.isRegLoc() && "Can only return in registers!"); 5780 5781 SDValue Arg = OutVals[i]; 5782 5783 switch (VA.getLocInfo()) { 5784 default: llvm_unreachable("Unknown loc info!"); 5785 case CCValAssign::Full: break; 5786 case CCValAssign::AExt: 5787 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5788 break; 5789 case CCValAssign::ZExt: 5790 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5791 break; 5792 case CCValAssign::SExt: 5793 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5794 break; 5795 } 5796 5797 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5798 Flag = Chain.getValue(1); 5799 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5800 } 5801 5802 RetOps[0] = Chain; // Update chain. 5803 5804 // Add the flag if we have it. 5805 if (Flag.getNode()) 5806 RetOps.push_back(Flag); 5807 5808 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5809 } 5810 5811 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5812 const PPCSubtarget &Subtarget) const { 5813 // When we pop the dynamic allocation we need to restore the SP link. 5814 SDLoc dl(Op); 5815 5816 // Get the corect type for pointers. 5817 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5818 5819 // Construct the stack pointer operand. 5820 bool isPPC64 = Subtarget.isPPC64(); 5821 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5822 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5823 5824 // Get the operands for the STACKRESTORE. 5825 SDValue Chain = Op.getOperand(0); 5826 SDValue SaveSP = Op.getOperand(1); 5827 5828 // Load the old link SP. 5829 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5830 MachinePointerInfo(), 5831 false, false, false, 0); 5832 5833 // Restore the stack pointer. 5834 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5835 5836 // Store the old link SP. 5837 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5838 false, false, 0); 5839 } 5840 5841 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5842 MachineFunction &MF = DAG.getMachineFunction(); 5843 bool isPPC64 = Subtarget.isPPC64(); 5844 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5845 5846 // Get current frame pointer save index. The users of this index will be 5847 // primarily DYNALLOC instructions. 5848 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5849 int RASI = FI->getReturnAddrSaveIndex(); 5850 5851 // If the frame pointer save index hasn't been defined yet. 5852 if (!RASI) { 5853 // Find out what the fix offset of the frame pointer save area. 5854 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5855 // Allocate the frame index for frame pointer save area. 5856 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5857 // Save the result. 5858 FI->setReturnAddrSaveIndex(RASI); 5859 } 5860 return DAG.getFrameIndex(RASI, PtrVT); 5861 } 5862 5863 SDValue 5864 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5865 MachineFunction &MF = DAG.getMachineFunction(); 5866 bool isPPC64 = Subtarget.isPPC64(); 5867 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5868 5869 // Get current frame pointer save index. The users of this index will be 5870 // primarily DYNALLOC instructions. 5871 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5872 int FPSI = FI->getFramePointerSaveIndex(); 5873 5874 // If the frame pointer save index hasn't been defined yet. 5875 if (!FPSI) { 5876 // Find out what the fix offset of the frame pointer save area. 5877 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5878 // Allocate the frame index for frame pointer save area. 5879 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5880 // Save the result. 5881 FI->setFramePointerSaveIndex(FPSI); 5882 } 5883 return DAG.getFrameIndex(FPSI, PtrVT); 5884 } 5885 5886 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5887 SelectionDAG &DAG, 5888 const PPCSubtarget &Subtarget) const { 5889 // Get the inputs. 5890 SDValue Chain = Op.getOperand(0); 5891 SDValue Size = Op.getOperand(1); 5892 SDLoc dl(Op); 5893 5894 // Get the corect type for pointers. 5895 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5896 // Negate the size. 5897 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5898 DAG.getConstant(0, dl, PtrVT), Size); 5899 // Construct a node for the frame pointer save index. 5900 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5901 // Build a DYNALLOC node. 5902 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5903 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5904 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5905 } 5906 5907 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5908 SelectionDAG &DAG) const { 5909 SDLoc DL(Op); 5910 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5911 DAG.getVTList(MVT::i32, MVT::Other), 5912 Op.getOperand(0), Op.getOperand(1)); 5913 } 5914 5915 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5916 SelectionDAG &DAG) const { 5917 SDLoc DL(Op); 5918 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5919 Op.getOperand(0), Op.getOperand(1)); 5920 } 5921 5922 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5923 if (Op.getValueType().isVector()) 5924 return LowerVectorLoad(Op, DAG); 5925 5926 assert(Op.getValueType() == MVT::i1 && 5927 "Custom lowering only for i1 loads"); 5928 5929 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5930 5931 SDLoc dl(Op); 5932 LoadSDNode *LD = cast<LoadSDNode>(Op); 5933 5934 SDValue Chain = LD->getChain(); 5935 SDValue BasePtr = LD->getBasePtr(); 5936 MachineMemOperand *MMO = LD->getMemOperand(); 5937 5938 SDValue NewLD = 5939 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5940 BasePtr, MVT::i8, MMO); 5941 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5942 5943 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5944 return DAG.getMergeValues(Ops, dl); 5945 } 5946 5947 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5948 if (Op.getOperand(1).getValueType().isVector()) 5949 return LowerVectorStore(Op, DAG); 5950 5951 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5952 "Custom lowering only for i1 stores"); 5953 5954 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5955 5956 SDLoc dl(Op); 5957 StoreSDNode *ST = cast<StoreSDNode>(Op); 5958 5959 SDValue Chain = ST->getChain(); 5960 SDValue BasePtr = ST->getBasePtr(); 5961 SDValue Value = ST->getValue(); 5962 MachineMemOperand *MMO = ST->getMemOperand(); 5963 5964 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5965 Value); 5966 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5967 } 5968 5969 // FIXME: Remove this once the ANDI glue bug is fixed: 5970 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5971 assert(Op.getValueType() == MVT::i1 && 5972 "Custom lowering only for i1 results"); 5973 5974 SDLoc DL(Op); 5975 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5976 Op.getOperand(0)); 5977 } 5978 5979 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5980 /// possible. 5981 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5982 // Not FP? Not a fsel. 5983 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5984 !Op.getOperand(2).getValueType().isFloatingPoint()) 5985 return Op; 5986 5987 // We might be able to do better than this under some circumstances, but in 5988 // general, fsel-based lowering of select is a finite-math-only optimization. 5989 // For more information, see section F.3 of the 2.06 ISA specification. 5990 if (!DAG.getTarget().Options.NoInfsFPMath || 5991 !DAG.getTarget().Options.NoNaNsFPMath) 5992 return Op; 5993 // TODO: Propagate flags from the select rather than global settings. 5994 SDNodeFlags Flags; 5995 Flags.setNoInfs(true); 5996 Flags.setNoNaNs(true); 5997 5998 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5999 6000 EVT ResVT = Op.getValueType(); 6001 EVT CmpVT = Op.getOperand(0).getValueType(); 6002 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6003 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6004 SDLoc dl(Op); 6005 6006 // If the RHS of the comparison is a 0.0, we don't need to do the 6007 // subtraction at all. 6008 SDValue Sel1; 6009 if (isFloatingPointZero(RHS)) 6010 switch (CC) { 6011 default: break; // SETUO etc aren't handled by fsel. 6012 case ISD::SETNE: 6013 std::swap(TV, FV); 6014 case ISD::SETEQ: 6015 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6016 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6017 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6018 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6019 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6020 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6021 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6022 case ISD::SETULT: 6023 case ISD::SETLT: 6024 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6025 case ISD::SETOGE: 6026 case ISD::SETGE: 6027 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6028 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6029 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6030 case ISD::SETUGT: 6031 case ISD::SETGT: 6032 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6033 case ISD::SETOLE: 6034 case ISD::SETLE: 6035 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6036 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6037 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6038 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6039 } 6040 6041 SDValue Cmp; 6042 switch (CC) { 6043 default: break; // SETUO etc aren't handled by fsel. 6044 case ISD::SETNE: 6045 std::swap(TV, FV); 6046 case ISD::SETEQ: 6047 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6048 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6049 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6050 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6051 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6052 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6053 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6054 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6055 case ISD::SETULT: 6056 case ISD::SETLT: 6057 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6058 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6059 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6060 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6061 case ISD::SETOGE: 6062 case ISD::SETGE: 6063 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6064 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6065 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6066 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6067 case ISD::SETUGT: 6068 case ISD::SETGT: 6069 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6070 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6071 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6072 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6073 case ISD::SETOLE: 6074 case ISD::SETLE: 6075 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6076 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6077 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6078 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6079 } 6080 return Op; 6081 } 6082 6083 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6084 SelectionDAG &DAG, 6085 SDLoc dl) const { 6086 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6087 SDValue Src = Op.getOperand(0); 6088 if (Src.getValueType() == MVT::f32) 6089 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6090 6091 SDValue Tmp; 6092 switch (Op.getSimpleValueType().SimpleTy) { 6093 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6094 case MVT::i32: 6095 Tmp = DAG.getNode( 6096 Op.getOpcode() == ISD::FP_TO_SINT 6097 ? PPCISD::FCTIWZ 6098 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6099 dl, MVT::f64, Src); 6100 break; 6101 case MVT::i64: 6102 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6103 "i64 FP_TO_UINT is supported only with FPCVT"); 6104 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6105 PPCISD::FCTIDUZ, 6106 dl, MVT::f64, Src); 6107 break; 6108 } 6109 6110 // Convert the FP value to an int value through memory. 6111 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6112 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6113 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6114 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6115 MachinePointerInfo MPI = 6116 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6117 6118 // Emit a store to the stack slot. 6119 SDValue Chain; 6120 if (i32Stack) { 6121 MachineFunction &MF = DAG.getMachineFunction(); 6122 MachineMemOperand *MMO = 6123 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6124 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6125 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6126 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6127 } else 6128 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6129 MPI, false, false, 0); 6130 6131 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6132 // add in a bias. 6133 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6134 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6135 DAG.getConstant(4, dl, FIPtr.getValueType())); 6136 MPI = MPI.getWithOffset(4); 6137 } 6138 6139 RLI.Chain = Chain; 6140 RLI.Ptr = FIPtr; 6141 RLI.MPI = MPI; 6142 } 6143 6144 /// \brief Custom lowers floating point to integer conversions to use 6145 /// the direct move instructions available in ISA 2.07 to avoid the 6146 /// need for load/store combinations. 6147 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6148 SelectionDAG &DAG, 6149 SDLoc dl) const { 6150 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6151 SDValue Src = Op.getOperand(0); 6152 6153 if (Src.getValueType() == MVT::f32) 6154 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6155 6156 SDValue Tmp; 6157 switch (Op.getSimpleValueType().SimpleTy) { 6158 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6159 case MVT::i32: 6160 Tmp = DAG.getNode( 6161 Op.getOpcode() == ISD::FP_TO_SINT 6162 ? PPCISD::FCTIWZ 6163 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6164 dl, MVT::f64, Src); 6165 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6166 break; 6167 case MVT::i64: 6168 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6169 "i64 FP_TO_UINT is supported only with FPCVT"); 6170 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6171 PPCISD::FCTIDUZ, 6172 dl, MVT::f64, Src); 6173 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6174 break; 6175 } 6176 return Tmp; 6177 } 6178 6179 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6180 SDLoc dl) const { 6181 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6182 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6183 6184 ReuseLoadInfo RLI; 6185 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6186 6187 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6188 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6189 RLI.Ranges); 6190 } 6191 6192 // We're trying to insert a regular store, S, and then a load, L. If the 6193 // incoming value, O, is a load, we might just be able to have our load use the 6194 // address used by O. However, we don't know if anything else will store to 6195 // that address before we can load from it. To prevent this situation, we need 6196 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6197 // the same chain operand as O, we create a token factor from the chain results 6198 // of O and L, and we replace all uses of O's chain result with that token 6199 // factor (see spliceIntoChain below for this last part). 6200 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6201 ReuseLoadInfo &RLI, 6202 SelectionDAG &DAG, 6203 ISD::LoadExtType ET) const { 6204 SDLoc dl(Op); 6205 if (ET == ISD::NON_EXTLOAD && 6206 (Op.getOpcode() == ISD::FP_TO_UINT || 6207 Op.getOpcode() == ISD::FP_TO_SINT) && 6208 isOperationLegalOrCustom(Op.getOpcode(), 6209 Op.getOperand(0).getValueType())) { 6210 6211 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6212 return true; 6213 } 6214 6215 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6216 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6217 LD->isNonTemporal()) 6218 return false; 6219 if (LD->getMemoryVT() != MemVT) 6220 return false; 6221 6222 RLI.Ptr = LD->getBasePtr(); 6223 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6224 assert(LD->getAddressingMode() == ISD::PRE_INC && 6225 "Non-pre-inc AM on PPC?"); 6226 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6227 LD->getOffset()); 6228 } 6229 6230 RLI.Chain = LD->getChain(); 6231 RLI.MPI = LD->getPointerInfo(); 6232 RLI.IsInvariant = LD->isInvariant(); 6233 RLI.Alignment = LD->getAlignment(); 6234 RLI.AAInfo = LD->getAAInfo(); 6235 RLI.Ranges = LD->getRanges(); 6236 6237 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6238 return true; 6239 } 6240 6241 // Given the head of the old chain, ResChain, insert a token factor containing 6242 // it and NewResChain, and make users of ResChain now be users of that token 6243 // factor. 6244 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6245 SDValue NewResChain, 6246 SelectionDAG &DAG) const { 6247 if (!ResChain) 6248 return; 6249 6250 SDLoc dl(NewResChain); 6251 6252 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6253 NewResChain, DAG.getUNDEF(MVT::Other)); 6254 assert(TF.getNode() != NewResChain.getNode() && 6255 "A new TF really is required here"); 6256 6257 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6258 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6259 } 6260 6261 /// \brief Custom lowers integer to floating point conversions to use 6262 /// the direct move instructions available in ISA 2.07 to avoid the 6263 /// need for load/store combinations. 6264 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6265 SelectionDAG &DAG, 6266 SDLoc dl) const { 6267 assert((Op.getValueType() == MVT::f32 || 6268 Op.getValueType() == MVT::f64) && 6269 "Invalid floating point type as target of conversion"); 6270 assert(Subtarget.hasFPCVT() && 6271 "Int to FP conversions with direct moves require FPCVT"); 6272 SDValue FP; 6273 SDValue Src = Op.getOperand(0); 6274 bool SinglePrec = Op.getValueType() == MVT::f32; 6275 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6276 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6277 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6278 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6279 6280 if (WordInt) { 6281 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6282 dl, MVT::f64, Src); 6283 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6284 } 6285 else { 6286 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6287 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6288 } 6289 6290 return FP; 6291 } 6292 6293 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6294 SelectionDAG &DAG) const { 6295 SDLoc dl(Op); 6296 6297 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6298 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6299 return SDValue(); 6300 6301 SDValue Value = Op.getOperand(0); 6302 // The values are now known to be -1 (false) or 1 (true). To convert this 6303 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6304 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6305 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6306 6307 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6308 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs, 6309 FPHalfs, FPHalfs); 6310 6311 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6312 6313 if (Op.getValueType() != MVT::v4f64) 6314 Value = DAG.getNode(ISD::FP_ROUND, dl, 6315 Op.getValueType(), Value, 6316 DAG.getIntPtrConstant(1, dl)); 6317 return Value; 6318 } 6319 6320 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6321 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6322 return SDValue(); 6323 6324 if (Op.getOperand(0).getValueType() == MVT::i1) 6325 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6326 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6327 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6328 6329 // If we have direct moves, we can do all the conversion, skip the store/load 6330 // however, without FPCVT we can't do most conversions. 6331 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6332 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6333 6334 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6335 "UINT_TO_FP is supported only with FPCVT"); 6336 6337 // If we have FCFIDS, then use it when converting to single-precision. 6338 // Otherwise, convert to double-precision and then round. 6339 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6340 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6341 : PPCISD::FCFIDS) 6342 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6343 : PPCISD::FCFID); 6344 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6345 ? MVT::f32 6346 : MVT::f64; 6347 6348 if (Op.getOperand(0).getValueType() == MVT::i64) { 6349 SDValue SINT = Op.getOperand(0); 6350 // When converting to single-precision, we actually need to convert 6351 // to double-precision first and then round to single-precision. 6352 // To avoid double-rounding effects during that operation, we have 6353 // to prepare the input operand. Bits that might be truncated when 6354 // converting to double-precision are replaced by a bit that won't 6355 // be lost at this stage, but is below the single-precision rounding 6356 // position. 6357 // 6358 // However, if -enable-unsafe-fp-math is in effect, accept double 6359 // rounding to avoid the extra overhead. 6360 if (Op.getValueType() == MVT::f32 && 6361 !Subtarget.hasFPCVT() && 6362 !DAG.getTarget().Options.UnsafeFPMath) { 6363 6364 // Twiddle input to make sure the low 11 bits are zero. (If this 6365 // is the case, we are guaranteed the value will fit into the 53 bit 6366 // mantissa of an IEEE double-precision value without rounding.) 6367 // If any of those low 11 bits were not zero originally, make sure 6368 // bit 12 (value 2048) is set instead, so that the final rounding 6369 // to single-precision gets the correct result. 6370 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6371 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6372 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6373 Round, DAG.getConstant(2047, dl, MVT::i64)); 6374 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6375 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6376 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6377 6378 // However, we cannot use that value unconditionally: if the magnitude 6379 // of the input value is small, the bit-twiddling we did above might 6380 // end up visibly changing the output. Fortunately, in that case, we 6381 // don't need to twiddle bits since the original input will convert 6382 // exactly to double-precision floating-point already. Therefore, 6383 // construct a conditional to use the original value if the top 11 6384 // bits are all sign-bit copies, and use the rounded value computed 6385 // above otherwise. 6386 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6387 SINT, DAG.getConstant(53, dl, MVT::i32)); 6388 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6389 Cond, DAG.getConstant(1, dl, MVT::i64)); 6390 Cond = DAG.getSetCC(dl, MVT::i32, 6391 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6392 6393 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6394 } 6395 6396 ReuseLoadInfo RLI; 6397 SDValue Bits; 6398 6399 MachineFunction &MF = DAG.getMachineFunction(); 6400 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6401 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6402 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6403 RLI.Ranges); 6404 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6405 } else if (Subtarget.hasLFIWAX() && 6406 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6407 MachineMemOperand *MMO = 6408 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6409 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6410 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6411 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6412 DAG.getVTList(MVT::f64, MVT::Other), 6413 Ops, MVT::i32, MMO); 6414 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6415 } else if (Subtarget.hasFPCVT() && 6416 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6417 MachineMemOperand *MMO = 6418 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6419 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6420 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6421 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6422 DAG.getVTList(MVT::f64, MVT::Other), 6423 Ops, MVT::i32, MMO); 6424 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6425 } else if (((Subtarget.hasLFIWAX() && 6426 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6427 (Subtarget.hasFPCVT() && 6428 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6429 SINT.getOperand(0).getValueType() == MVT::i32) { 6430 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6431 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6432 6433 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6434 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6435 6436 SDValue Store = DAG.getStore( 6437 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6438 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6439 false, false, 0); 6440 6441 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6442 "Expected an i32 store"); 6443 6444 RLI.Ptr = FIdx; 6445 RLI.Chain = Store; 6446 RLI.MPI = 6447 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6448 RLI.Alignment = 4; 6449 6450 MachineMemOperand *MMO = 6451 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6452 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6453 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6454 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6455 PPCISD::LFIWZX : PPCISD::LFIWAX, 6456 dl, DAG.getVTList(MVT::f64, MVT::Other), 6457 Ops, MVT::i32, MMO); 6458 } else 6459 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6460 6461 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6462 6463 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6464 FP = DAG.getNode(ISD::FP_ROUND, dl, 6465 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6466 return FP; 6467 } 6468 6469 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6470 "Unhandled INT_TO_FP type in custom expander!"); 6471 // Since we only generate this in 64-bit mode, we can take advantage of 6472 // 64-bit registers. In particular, sign extend the input value into the 6473 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6474 // then lfd it and fcfid it. 6475 MachineFunction &MF = DAG.getMachineFunction(); 6476 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6477 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6478 6479 SDValue Ld; 6480 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6481 ReuseLoadInfo RLI; 6482 bool ReusingLoad; 6483 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6484 DAG))) { 6485 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6486 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6487 6488 SDValue Store = DAG.getStore( 6489 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6490 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6491 false, false, 0); 6492 6493 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6494 "Expected an i32 store"); 6495 6496 RLI.Ptr = FIdx; 6497 RLI.Chain = Store; 6498 RLI.MPI = 6499 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6500 RLI.Alignment = 4; 6501 } 6502 6503 MachineMemOperand *MMO = 6504 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6505 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6506 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6507 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6508 PPCISD::LFIWZX : PPCISD::LFIWAX, 6509 dl, DAG.getVTList(MVT::f64, MVT::Other), 6510 Ops, MVT::i32, MMO); 6511 if (ReusingLoad) 6512 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6513 } else { 6514 assert(Subtarget.isPPC64() && 6515 "i32->FP without LFIWAX supported only on PPC64"); 6516 6517 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6518 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6519 6520 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6521 Op.getOperand(0)); 6522 6523 // STD the extended value into the stack slot. 6524 SDValue Store = DAG.getStore( 6525 DAG.getEntryNode(), dl, Ext64, FIdx, 6526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6527 false, false, 0); 6528 6529 // Load the value as a double. 6530 Ld = DAG.getLoad( 6531 MVT::f64, dl, Store, FIdx, 6532 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6533 false, false, false, 0); 6534 } 6535 6536 // FCFID it and return it. 6537 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6538 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6539 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6540 DAG.getIntPtrConstant(0, dl)); 6541 return FP; 6542 } 6543 6544 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6545 SelectionDAG &DAG) const { 6546 SDLoc dl(Op); 6547 /* 6548 The rounding mode is in bits 30:31 of FPSR, and has the following 6549 settings: 6550 00 Round to nearest 6551 01 Round to 0 6552 10 Round to +inf 6553 11 Round to -inf 6554 6555 FLT_ROUNDS, on the other hand, expects the following: 6556 -1 Undefined 6557 0 Round to 0 6558 1 Round to nearest 6559 2 Round to +inf 6560 3 Round to -inf 6561 6562 To perform the conversion, we do: 6563 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6564 */ 6565 6566 MachineFunction &MF = DAG.getMachineFunction(); 6567 EVT VT = Op.getValueType(); 6568 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6569 6570 // Save FP Control Word to register 6571 EVT NodeTys[] = { 6572 MVT::f64, // return register 6573 MVT::Glue // unused in this context 6574 }; 6575 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6576 6577 // Save FP register to stack slot 6578 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6579 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6580 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6581 StackSlot, MachinePointerInfo(), false, false,0); 6582 6583 // Load FP Control Word from low 32 bits of stack slot. 6584 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6585 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6586 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6587 false, false, false, 0); 6588 6589 // Transform as necessary 6590 SDValue CWD1 = 6591 DAG.getNode(ISD::AND, dl, MVT::i32, 6592 CWD, DAG.getConstant(3, dl, MVT::i32)); 6593 SDValue CWD2 = 6594 DAG.getNode(ISD::SRL, dl, MVT::i32, 6595 DAG.getNode(ISD::AND, dl, MVT::i32, 6596 DAG.getNode(ISD::XOR, dl, MVT::i32, 6597 CWD, DAG.getConstant(3, dl, MVT::i32)), 6598 DAG.getConstant(3, dl, MVT::i32)), 6599 DAG.getConstant(1, dl, MVT::i32)); 6600 6601 SDValue RetVal = 6602 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6603 6604 return DAG.getNode((VT.getSizeInBits() < 16 ? 6605 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6606 } 6607 6608 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6609 EVT VT = Op.getValueType(); 6610 unsigned BitWidth = VT.getSizeInBits(); 6611 SDLoc dl(Op); 6612 assert(Op.getNumOperands() == 3 && 6613 VT == Op.getOperand(1).getValueType() && 6614 "Unexpected SHL!"); 6615 6616 // Expand into a bunch of logical ops. Note that these ops 6617 // depend on the PPC behavior for oversized shift amounts. 6618 SDValue Lo = Op.getOperand(0); 6619 SDValue Hi = Op.getOperand(1); 6620 SDValue Amt = Op.getOperand(2); 6621 EVT AmtVT = Amt.getValueType(); 6622 6623 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6624 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6625 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6626 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6627 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6628 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6629 DAG.getConstant(-BitWidth, dl, AmtVT)); 6630 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6631 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6632 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6633 SDValue OutOps[] = { OutLo, OutHi }; 6634 return DAG.getMergeValues(OutOps, dl); 6635 } 6636 6637 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6638 EVT VT = Op.getValueType(); 6639 SDLoc dl(Op); 6640 unsigned BitWidth = VT.getSizeInBits(); 6641 assert(Op.getNumOperands() == 3 && 6642 VT == Op.getOperand(1).getValueType() && 6643 "Unexpected SRL!"); 6644 6645 // Expand into a bunch of logical ops. Note that these ops 6646 // depend on the PPC behavior for oversized shift amounts. 6647 SDValue Lo = Op.getOperand(0); 6648 SDValue Hi = Op.getOperand(1); 6649 SDValue Amt = Op.getOperand(2); 6650 EVT AmtVT = Amt.getValueType(); 6651 6652 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6653 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6654 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6655 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6656 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6657 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6658 DAG.getConstant(-BitWidth, dl, AmtVT)); 6659 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6660 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6661 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6662 SDValue OutOps[] = { OutLo, OutHi }; 6663 return DAG.getMergeValues(OutOps, dl); 6664 } 6665 6666 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6667 SDLoc dl(Op); 6668 EVT VT = Op.getValueType(); 6669 unsigned BitWidth = VT.getSizeInBits(); 6670 assert(Op.getNumOperands() == 3 && 6671 VT == Op.getOperand(1).getValueType() && 6672 "Unexpected SRA!"); 6673 6674 // Expand into a bunch of logical ops, followed by a select_cc. 6675 SDValue Lo = Op.getOperand(0); 6676 SDValue Hi = Op.getOperand(1); 6677 SDValue Amt = Op.getOperand(2); 6678 EVT AmtVT = Amt.getValueType(); 6679 6680 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6681 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6682 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6683 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6684 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6685 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6686 DAG.getConstant(-BitWidth, dl, AmtVT)); 6687 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6688 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6689 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6690 Tmp4, Tmp6, ISD::SETLE); 6691 SDValue OutOps[] = { OutLo, OutHi }; 6692 return DAG.getMergeValues(OutOps, dl); 6693 } 6694 6695 //===----------------------------------------------------------------------===// 6696 // Vector related lowering. 6697 // 6698 6699 /// BuildSplatI - Build a canonical splati of Val with an element size of 6700 /// SplatSize. Cast the result to VT. 6701 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6702 SelectionDAG &DAG, SDLoc dl) { 6703 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6704 6705 static const MVT VTys[] = { // canonical VT to use for each size. 6706 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6707 }; 6708 6709 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6710 6711 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6712 if (Val == -1) 6713 SplatSize = 1; 6714 6715 EVT CanonicalVT = VTys[SplatSize-1]; 6716 6717 // Build a canonical splat for this value. 6718 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6719 SmallVector<SDValue, 8> Ops; 6720 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6721 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6722 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6723 } 6724 6725 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6726 /// specified intrinsic ID. 6727 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6728 SelectionDAG &DAG, SDLoc dl, 6729 EVT DestVT = MVT::Other) { 6730 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6731 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6732 DAG.getConstant(IID, dl, MVT::i32), Op); 6733 } 6734 6735 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6736 /// specified intrinsic ID. 6737 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6738 SelectionDAG &DAG, SDLoc dl, 6739 EVT DestVT = MVT::Other) { 6740 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6741 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6742 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6743 } 6744 6745 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6746 /// specified intrinsic ID. 6747 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6748 SDValue Op2, SelectionDAG &DAG, 6749 SDLoc dl, EVT DestVT = MVT::Other) { 6750 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6751 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6752 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6753 } 6754 6755 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6756 /// amount. The result has the specified value type. 6757 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6758 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6759 // Force LHS/RHS to be the right type. 6760 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6761 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6762 6763 int Ops[16]; 6764 for (unsigned i = 0; i != 16; ++i) 6765 Ops[i] = i + Amt; 6766 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6767 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6768 } 6769 6770 // If this is a case we can't handle, return null and let the default 6771 // expansion code take care of it. If we CAN select this case, and if it 6772 // selects to a single instruction, return Op. Otherwise, if we can codegen 6773 // this case more efficiently than a constant pool load, lower it to the 6774 // sequence of ops that should be used. 6775 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6776 SelectionDAG &DAG) const { 6777 SDLoc dl(Op); 6778 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6779 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6780 6781 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6782 // We first build an i32 vector, load it into a QPX register, 6783 // then convert it to a floating-point vector and compare it 6784 // to a zero vector to get the boolean result. 6785 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6786 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6787 MachinePointerInfo PtrInfo = 6788 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6789 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6790 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6791 6792 assert(BVN->getNumOperands() == 4 && 6793 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6794 6795 bool IsConst = true; 6796 for (unsigned i = 0; i < 4; ++i) { 6797 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6798 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6799 IsConst = false; 6800 break; 6801 } 6802 } 6803 6804 if (IsConst) { 6805 Constant *One = 6806 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6807 Constant *NegOne = 6808 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6809 6810 SmallVector<Constant*, 4> CV(4, NegOne); 6811 for (unsigned i = 0; i < 4; ++i) { 6812 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6813 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6814 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6815 getConstantIntValue()->isZero()) 6816 continue; 6817 else 6818 CV[i] = One; 6819 } 6820 6821 Constant *CP = ConstantVector::get(CV); 6822 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6823 16 /* alignment */); 6824 6825 SmallVector<SDValue, 2> Ops; 6826 Ops.push_back(DAG.getEntryNode()); 6827 Ops.push_back(CPIdx); 6828 6829 SmallVector<EVT, 2> ValueVTs; 6830 ValueVTs.push_back(MVT::v4i1); 6831 ValueVTs.push_back(MVT::Other); // chain 6832 SDVTList VTs = DAG.getVTList(ValueVTs); 6833 6834 return DAG.getMemIntrinsicNode( 6835 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6836 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6837 } 6838 6839 SmallVector<SDValue, 4> Stores; 6840 for (unsigned i = 0; i < 4; ++i) { 6841 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6842 6843 unsigned Offset = 4*i; 6844 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6845 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6846 6847 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6848 if (StoreSize > 4) { 6849 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6850 BVN->getOperand(i), Idx, 6851 PtrInfo.getWithOffset(Offset), 6852 MVT::i32, false, false, 0)); 6853 } else { 6854 SDValue StoreValue = BVN->getOperand(i); 6855 if (StoreSize < 4) 6856 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6857 6858 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6859 StoreValue, Idx, 6860 PtrInfo.getWithOffset(Offset), 6861 false, false, 0)); 6862 } 6863 } 6864 6865 SDValue StoreChain; 6866 if (!Stores.empty()) 6867 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6868 else 6869 StoreChain = DAG.getEntryNode(); 6870 6871 // Now load from v4i32 into the QPX register; this will extend it to 6872 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6873 // is typed as v4f64 because the QPX register integer states are not 6874 // explicitly represented. 6875 6876 SmallVector<SDValue, 2> Ops; 6877 Ops.push_back(StoreChain); 6878 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6879 Ops.push_back(FIdx); 6880 6881 SmallVector<EVT, 2> ValueVTs; 6882 ValueVTs.push_back(MVT::v4f64); 6883 ValueVTs.push_back(MVT::Other); // chain 6884 SDVTList VTs = DAG.getVTList(ValueVTs); 6885 6886 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6887 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6888 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6889 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6890 LoadedVect); 6891 6892 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6893 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6894 FPZeros, FPZeros, FPZeros, FPZeros); 6895 6896 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6897 } 6898 6899 // All other QPX vectors are handled by generic code. 6900 if (Subtarget.hasQPX()) 6901 return SDValue(); 6902 6903 // Check if this is a splat of a constant value. 6904 APInt APSplatBits, APSplatUndef; 6905 unsigned SplatBitSize; 6906 bool HasAnyUndefs; 6907 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6908 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6909 SplatBitSize > 32) 6910 return SDValue(); 6911 6912 unsigned SplatBits = APSplatBits.getZExtValue(); 6913 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6914 unsigned SplatSize = SplatBitSize / 8; 6915 6916 // First, handle single instruction cases. 6917 6918 // All zeros? 6919 if (SplatBits == 0) { 6920 // Canonicalize all zero vectors to be v4i32. 6921 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6922 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6923 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6924 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6925 } 6926 return Op; 6927 } 6928 6929 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6930 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6931 (32-SplatBitSize)); 6932 if (SextVal >= -16 && SextVal <= 15) 6933 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6934 6935 // Two instruction sequences. 6936 6937 // If this value is in the range [-32,30] and is even, use: 6938 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6939 // If this value is in the range [17,31] and is odd, use: 6940 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6941 // If this value is in the range [-31,-17] and is odd, use: 6942 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6943 // Note the last two are three-instruction sequences. 6944 if (SextVal >= -32 && SextVal <= 31) { 6945 // To avoid having these optimizations undone by constant folding, 6946 // we convert to a pseudo that will be expanded later into one of 6947 // the above forms. 6948 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6949 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6950 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6951 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6952 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6953 if (VT == Op.getValueType()) 6954 return RetVal; 6955 else 6956 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6957 } 6958 6959 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6960 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6961 // for fneg/fabs. 6962 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6963 // Make -1 and vspltisw -1: 6964 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6965 6966 // Make the VSLW intrinsic, computing 0x8000_0000. 6967 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6968 OnesV, DAG, dl); 6969 6970 // xor by OnesV to invert it. 6971 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6972 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6973 } 6974 6975 // Check to see if this is a wide variety of vsplti*, binop self cases. 6976 static const signed char SplatCsts[] = { 6977 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6978 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6979 }; 6980 6981 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6982 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6983 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6984 int i = SplatCsts[idx]; 6985 6986 // Figure out what shift amount will be used by altivec if shifted by i in 6987 // this splat size. 6988 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6989 6990 // vsplti + shl self. 6991 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6992 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6993 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6994 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6995 Intrinsic::ppc_altivec_vslw 6996 }; 6997 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6998 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6999 } 7000 7001 // vsplti + srl self. 7002 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7003 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7004 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7005 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7006 Intrinsic::ppc_altivec_vsrw 7007 }; 7008 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7009 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7010 } 7011 7012 // vsplti + sra self. 7013 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7014 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7015 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7016 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7017 Intrinsic::ppc_altivec_vsraw 7018 }; 7019 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7020 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7021 } 7022 7023 // vsplti + rol self. 7024 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7025 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7026 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7027 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7028 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7029 Intrinsic::ppc_altivec_vrlw 7030 }; 7031 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7032 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7033 } 7034 7035 // t = vsplti c, result = vsldoi t, t, 1 7036 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7037 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7038 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7039 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7040 } 7041 // t = vsplti c, result = vsldoi t, t, 2 7042 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7043 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7044 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7045 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7046 } 7047 // t = vsplti c, result = vsldoi t, t, 3 7048 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7049 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7050 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7051 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7052 } 7053 } 7054 7055 return SDValue(); 7056 } 7057 7058 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7059 /// the specified operations to build the shuffle. 7060 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7061 SDValue RHS, SelectionDAG &DAG, 7062 SDLoc dl) { 7063 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7064 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7065 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7066 7067 enum { 7068 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7069 OP_VMRGHW, 7070 OP_VMRGLW, 7071 OP_VSPLTISW0, 7072 OP_VSPLTISW1, 7073 OP_VSPLTISW2, 7074 OP_VSPLTISW3, 7075 OP_VSLDOI4, 7076 OP_VSLDOI8, 7077 OP_VSLDOI12 7078 }; 7079 7080 if (OpNum == OP_COPY) { 7081 if (LHSID == (1*9+2)*9+3) return LHS; 7082 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7083 return RHS; 7084 } 7085 7086 SDValue OpLHS, OpRHS; 7087 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7088 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7089 7090 int ShufIdxs[16]; 7091 switch (OpNum) { 7092 default: llvm_unreachable("Unknown i32 permute!"); 7093 case OP_VMRGHW: 7094 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7095 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7096 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7097 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7098 break; 7099 case OP_VMRGLW: 7100 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7101 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7102 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7103 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7104 break; 7105 case OP_VSPLTISW0: 7106 for (unsigned i = 0; i != 16; ++i) 7107 ShufIdxs[i] = (i&3)+0; 7108 break; 7109 case OP_VSPLTISW1: 7110 for (unsigned i = 0; i != 16; ++i) 7111 ShufIdxs[i] = (i&3)+4; 7112 break; 7113 case OP_VSPLTISW2: 7114 for (unsigned i = 0; i != 16; ++i) 7115 ShufIdxs[i] = (i&3)+8; 7116 break; 7117 case OP_VSPLTISW3: 7118 for (unsigned i = 0; i != 16; ++i) 7119 ShufIdxs[i] = (i&3)+12; 7120 break; 7121 case OP_VSLDOI4: 7122 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7123 case OP_VSLDOI8: 7124 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7125 case OP_VSLDOI12: 7126 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7127 } 7128 EVT VT = OpLHS.getValueType(); 7129 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7130 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7131 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7132 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7133 } 7134 7135 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7136 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7137 /// return the code it can be lowered into. Worst case, it can always be 7138 /// lowered into a vperm. 7139 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7140 SelectionDAG &DAG) const { 7141 SDLoc dl(Op); 7142 SDValue V1 = Op.getOperand(0); 7143 SDValue V2 = Op.getOperand(1); 7144 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7145 EVT VT = Op.getValueType(); 7146 bool isLittleEndian = Subtarget.isLittleEndian(); 7147 7148 if (Subtarget.hasQPX()) { 7149 if (VT.getVectorNumElements() != 4) 7150 return SDValue(); 7151 7152 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7153 7154 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7155 if (AlignIdx != -1) { 7156 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7157 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7158 } else if (SVOp->isSplat()) { 7159 int SplatIdx = SVOp->getSplatIndex(); 7160 if (SplatIdx >= 4) { 7161 std::swap(V1, V2); 7162 SplatIdx -= 4; 7163 } 7164 7165 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7166 // nothing to do. 7167 7168 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7169 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7170 } 7171 7172 // Lower this into a qvgpci/qvfperm pair. 7173 7174 // Compute the qvgpci literal 7175 unsigned idx = 0; 7176 for (unsigned i = 0; i < 4; ++i) { 7177 int m = SVOp->getMaskElt(i); 7178 unsigned mm = m >= 0 ? (unsigned) m : i; 7179 idx |= mm << (3-i)*3; 7180 } 7181 7182 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7183 DAG.getConstant(idx, dl, MVT::i32)); 7184 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7185 } 7186 7187 // Cases that are handled by instructions that take permute immediates 7188 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7189 // selected by the instruction selector. 7190 if (V2.getOpcode() == ISD::UNDEF) { 7191 if (PPC::isSplatShuffleMask(SVOp, 1) || 7192 PPC::isSplatShuffleMask(SVOp, 2) || 7193 PPC::isSplatShuffleMask(SVOp, 4) || 7194 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7195 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7196 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7197 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7198 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7199 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7200 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7201 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7202 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7203 (Subtarget.hasP8Altivec() && ( 7204 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7205 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7206 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7207 return Op; 7208 } 7209 } 7210 7211 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7212 // and produce a fixed permutation. If any of these match, do not lower to 7213 // VPERM. 7214 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7215 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7216 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7217 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7218 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7219 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7220 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7221 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7222 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7223 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7224 (Subtarget.hasP8Altivec() && ( 7225 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7226 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7227 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7228 return Op; 7229 7230 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7231 // perfect shuffle table to emit an optimal matching sequence. 7232 ArrayRef<int> PermMask = SVOp->getMask(); 7233 7234 unsigned PFIndexes[4]; 7235 bool isFourElementShuffle = true; 7236 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7237 unsigned EltNo = 8; // Start out undef. 7238 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7239 if (PermMask[i*4+j] < 0) 7240 continue; // Undef, ignore it. 7241 7242 unsigned ByteSource = PermMask[i*4+j]; 7243 if ((ByteSource & 3) != j) { 7244 isFourElementShuffle = false; 7245 break; 7246 } 7247 7248 if (EltNo == 8) { 7249 EltNo = ByteSource/4; 7250 } else if (EltNo != ByteSource/4) { 7251 isFourElementShuffle = false; 7252 break; 7253 } 7254 } 7255 PFIndexes[i] = EltNo; 7256 } 7257 7258 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7259 // perfect shuffle vector to determine if it is cost effective to do this as 7260 // discrete instructions, or whether we should use a vperm. 7261 // For now, we skip this for little endian until such time as we have a 7262 // little-endian perfect shuffle table. 7263 if (isFourElementShuffle && !isLittleEndian) { 7264 // Compute the index in the perfect shuffle table. 7265 unsigned PFTableIndex = 7266 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7267 7268 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7269 unsigned Cost = (PFEntry >> 30); 7270 7271 // Determining when to avoid vperm is tricky. Many things affect the cost 7272 // of vperm, particularly how many times the perm mask needs to be computed. 7273 // For example, if the perm mask can be hoisted out of a loop or is already 7274 // used (perhaps because there are multiple permutes with the same shuffle 7275 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7276 // the loop requires an extra register. 7277 // 7278 // As a compromise, we only emit discrete instructions if the shuffle can be 7279 // generated in 3 or fewer operations. When we have loop information 7280 // available, if this block is within a loop, we should avoid using vperm 7281 // for 3-operation perms and use a constant pool load instead. 7282 if (Cost < 3) 7283 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7284 } 7285 7286 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7287 // vector that will get spilled to the constant pool. 7288 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7289 7290 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7291 // that it is in input element units, not in bytes. Convert now. 7292 7293 // For little endian, the order of the input vectors is reversed, and 7294 // the permutation mask is complemented with respect to 31. This is 7295 // necessary to produce proper semantics with the big-endian-biased vperm 7296 // instruction. 7297 EVT EltVT = V1.getValueType().getVectorElementType(); 7298 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7299 7300 SmallVector<SDValue, 16> ResultMask; 7301 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7302 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7303 7304 for (unsigned j = 0; j != BytesPerElement; ++j) 7305 if (isLittleEndian) 7306 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7307 dl, MVT::i32)); 7308 else 7309 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7310 MVT::i32)); 7311 } 7312 7313 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7314 ResultMask); 7315 if (isLittleEndian) 7316 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7317 V2, V1, VPermMask); 7318 else 7319 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7320 V1, V2, VPermMask); 7321 } 7322 7323 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7324 /// vector comparison. If it is, return true and fill in Opc/isDot with 7325 /// information about the intrinsic. 7326 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7327 bool &isDot, const PPCSubtarget &Subtarget) { 7328 unsigned IntrinsicID = 7329 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7330 CompareOpc = -1; 7331 isDot = false; 7332 switch (IntrinsicID) { 7333 default: return false; 7334 // Comparison predicates. 7335 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7336 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7337 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7338 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7339 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7340 case Intrinsic::ppc_altivec_vcmpequd_p: 7341 if (Subtarget.hasP8Altivec()) { 7342 CompareOpc = 199; 7343 isDot = 1; 7344 } else 7345 return false; 7346 7347 break; 7348 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7349 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7350 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7351 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7352 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7353 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7354 if (Subtarget.hasP8Altivec()) { 7355 CompareOpc = 967; 7356 isDot = 1; 7357 } else 7358 return false; 7359 7360 break; 7361 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7362 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7363 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7364 case Intrinsic::ppc_altivec_vcmpgtud_p: 7365 if (Subtarget.hasP8Altivec()) { 7366 CompareOpc = 711; 7367 isDot = 1; 7368 } else 7369 return false; 7370 7371 break; 7372 // VSX predicate comparisons use the same infrastructure 7373 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7374 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7375 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7376 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7377 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7378 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7379 if (Subtarget.hasVSX()) { 7380 switch (IntrinsicID) { 7381 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7382 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7383 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7384 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7385 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7386 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7387 } 7388 isDot = 1; 7389 } 7390 else 7391 return false; 7392 7393 break; 7394 7395 // Normal Comparisons. 7396 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7397 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7398 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7399 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7400 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7401 case Intrinsic::ppc_altivec_vcmpequd: 7402 if (Subtarget.hasP8Altivec()) { 7403 CompareOpc = 199; 7404 isDot = 0; 7405 } else 7406 return false; 7407 7408 break; 7409 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7410 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7411 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7412 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7413 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7414 case Intrinsic::ppc_altivec_vcmpgtsd: 7415 if (Subtarget.hasP8Altivec()) { 7416 CompareOpc = 967; 7417 isDot = 0; 7418 } else 7419 return false; 7420 7421 break; 7422 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7423 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7424 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7425 case Intrinsic::ppc_altivec_vcmpgtud: 7426 if (Subtarget.hasP8Altivec()) { 7427 CompareOpc = 711; 7428 isDot = 0; 7429 } else 7430 return false; 7431 7432 break; 7433 } 7434 return true; 7435 } 7436 7437 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7438 /// lower, do it, otherwise return null. 7439 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7440 SelectionDAG &DAG) const { 7441 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7442 // opcode number of the comparison. 7443 SDLoc dl(Op); 7444 int CompareOpc; 7445 bool isDot; 7446 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7447 return SDValue(); // Don't custom lower most intrinsics. 7448 7449 // If this is a non-dot comparison, make the VCMP node and we are done. 7450 if (!isDot) { 7451 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7452 Op.getOperand(1), Op.getOperand(2), 7453 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7454 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7455 } 7456 7457 // Create the PPCISD altivec 'dot' comparison node. 7458 SDValue Ops[] = { 7459 Op.getOperand(2), // LHS 7460 Op.getOperand(3), // RHS 7461 DAG.getConstant(CompareOpc, dl, MVT::i32) 7462 }; 7463 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7464 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7465 7466 // Now that we have the comparison, emit a copy from the CR to a GPR. 7467 // This is flagged to the above dot comparison. 7468 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7469 DAG.getRegister(PPC::CR6, MVT::i32), 7470 CompNode.getValue(1)); 7471 7472 // Unpack the result based on how the target uses it. 7473 unsigned BitNo; // Bit # of CR6. 7474 bool InvertBit; // Invert result? 7475 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7476 default: // Can't happen, don't crash on invalid number though. 7477 case 0: // Return the value of the EQ bit of CR6. 7478 BitNo = 0; InvertBit = false; 7479 break; 7480 case 1: // Return the inverted value of the EQ bit of CR6. 7481 BitNo = 0; InvertBit = true; 7482 break; 7483 case 2: // Return the value of the LT bit of CR6. 7484 BitNo = 2; InvertBit = false; 7485 break; 7486 case 3: // Return the inverted value of the LT bit of CR6. 7487 BitNo = 2; InvertBit = true; 7488 break; 7489 } 7490 7491 // Shift the bit into the low position. 7492 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7493 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7494 // Isolate the bit. 7495 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7496 DAG.getConstant(1, dl, MVT::i32)); 7497 7498 // If we are supposed to, toggle the bit. 7499 if (InvertBit) 7500 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7501 DAG.getConstant(1, dl, MVT::i32)); 7502 return Flags; 7503 } 7504 7505 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7506 SelectionDAG &DAG) const { 7507 SDLoc dl(Op); 7508 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7509 // instructions), but for smaller types, we need to first extend up to v2i32 7510 // before doing going farther. 7511 if (Op.getValueType() == MVT::v2i64) { 7512 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7513 if (ExtVT != MVT::v2i32) { 7514 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7515 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7516 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7517 ExtVT.getVectorElementType(), 4))); 7518 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7519 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7520 DAG.getValueType(MVT::v2i32)); 7521 } 7522 7523 return Op; 7524 } 7525 7526 return SDValue(); 7527 } 7528 7529 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7530 SelectionDAG &DAG) const { 7531 SDLoc dl(Op); 7532 // Create a stack slot that is 16-byte aligned. 7533 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7534 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7535 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7536 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7537 7538 // Store the input value into Value#0 of the stack slot. 7539 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7540 Op.getOperand(0), FIdx, MachinePointerInfo(), 7541 false, false, 0); 7542 // Load it out. 7543 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7544 false, false, false, 0); 7545 } 7546 7547 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7548 SelectionDAG &DAG) const { 7549 SDLoc dl(Op); 7550 SDNode *N = Op.getNode(); 7551 7552 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7553 "Unknown extract_vector_elt type"); 7554 7555 SDValue Value = N->getOperand(0); 7556 7557 // The first part of this is like the store lowering except that we don't 7558 // need to track the chain. 7559 7560 // The values are now known to be -1 (false) or 1 (true). To convert this 7561 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7562 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7563 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7564 7565 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7566 // understand how to form the extending load. 7567 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7568 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7569 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7570 7571 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7572 7573 // Now convert to an integer and store. 7574 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7575 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7576 Value); 7577 7578 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7579 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7580 MachinePointerInfo PtrInfo = 7581 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7582 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7583 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7584 7585 SDValue StoreChain = DAG.getEntryNode(); 7586 SmallVector<SDValue, 2> Ops; 7587 Ops.push_back(StoreChain); 7588 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7589 Ops.push_back(Value); 7590 Ops.push_back(FIdx); 7591 7592 SmallVector<EVT, 2> ValueVTs; 7593 ValueVTs.push_back(MVT::Other); // chain 7594 SDVTList VTs = DAG.getVTList(ValueVTs); 7595 7596 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7597 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7598 7599 // Extract the value requested. 7600 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7601 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7602 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7603 7604 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7605 PtrInfo.getWithOffset(Offset), 7606 false, false, false, 0); 7607 7608 if (!Subtarget.useCRBits()) 7609 return IntVal; 7610 7611 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7612 } 7613 7614 /// Lowering for QPX v4i1 loads 7615 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7616 SelectionDAG &DAG) const { 7617 SDLoc dl(Op); 7618 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7619 SDValue LoadChain = LN->getChain(); 7620 SDValue BasePtr = LN->getBasePtr(); 7621 7622 if (Op.getValueType() == MVT::v4f64 || 7623 Op.getValueType() == MVT::v4f32) { 7624 EVT MemVT = LN->getMemoryVT(); 7625 unsigned Alignment = LN->getAlignment(); 7626 7627 // If this load is properly aligned, then it is legal. 7628 if (Alignment >= MemVT.getStoreSize()) 7629 return Op; 7630 7631 EVT ScalarVT = Op.getValueType().getScalarType(), 7632 ScalarMemVT = MemVT.getScalarType(); 7633 unsigned Stride = ScalarMemVT.getStoreSize(); 7634 7635 SmallVector<SDValue, 8> Vals, LoadChains; 7636 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7637 SDValue Load; 7638 if (ScalarVT != ScalarMemVT) 7639 Load = 7640 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7641 BasePtr, 7642 LN->getPointerInfo().getWithOffset(Idx*Stride), 7643 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7644 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7645 LN->getAAInfo()); 7646 else 7647 Load = 7648 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7649 LN->getPointerInfo().getWithOffset(Idx*Stride), 7650 LN->isVolatile(), LN->isNonTemporal(), 7651 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7652 LN->getAAInfo()); 7653 7654 if (Idx == 0 && LN->isIndexed()) { 7655 assert(LN->getAddressingMode() == ISD::PRE_INC && 7656 "Unknown addressing mode on vector load"); 7657 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7658 LN->getAddressingMode()); 7659 } 7660 7661 Vals.push_back(Load); 7662 LoadChains.push_back(Load.getValue(1)); 7663 7664 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7665 DAG.getConstant(Stride, dl, 7666 BasePtr.getValueType())); 7667 } 7668 7669 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7670 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7671 Op.getValueType(), Vals); 7672 7673 if (LN->isIndexed()) { 7674 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7675 return DAG.getMergeValues(RetOps, dl); 7676 } 7677 7678 SDValue RetOps[] = { Value, TF }; 7679 return DAG.getMergeValues(RetOps, dl); 7680 } 7681 7682 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7683 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7684 7685 // To lower v4i1 from a byte array, we load the byte elements of the 7686 // vector and then reuse the BUILD_VECTOR logic. 7687 7688 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7689 for (unsigned i = 0; i < 4; ++i) { 7690 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7691 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7692 7693 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7694 dl, MVT::i32, LoadChain, Idx, 7695 LN->getPointerInfo().getWithOffset(i), 7696 MVT::i8 /* memory type */, 7697 LN->isVolatile(), LN->isNonTemporal(), 7698 LN->isInvariant(), 7699 1 /* alignment */, LN->getAAInfo())); 7700 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7701 } 7702 7703 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7704 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7705 7706 SDValue RVals[] = { Value, LoadChain }; 7707 return DAG.getMergeValues(RVals, dl); 7708 } 7709 7710 /// Lowering for QPX v4i1 stores 7711 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7712 SelectionDAG &DAG) const { 7713 SDLoc dl(Op); 7714 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7715 SDValue StoreChain = SN->getChain(); 7716 SDValue BasePtr = SN->getBasePtr(); 7717 SDValue Value = SN->getValue(); 7718 7719 if (Value.getValueType() == MVT::v4f64 || 7720 Value.getValueType() == MVT::v4f32) { 7721 EVT MemVT = SN->getMemoryVT(); 7722 unsigned Alignment = SN->getAlignment(); 7723 7724 // If this store is properly aligned, then it is legal. 7725 if (Alignment >= MemVT.getStoreSize()) 7726 return Op; 7727 7728 EVT ScalarVT = Value.getValueType().getScalarType(), 7729 ScalarMemVT = MemVT.getScalarType(); 7730 unsigned Stride = ScalarMemVT.getStoreSize(); 7731 7732 SmallVector<SDValue, 8> Stores; 7733 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7734 SDValue Ex = DAG.getNode( 7735 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7736 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7737 SDValue Store; 7738 if (ScalarVT != ScalarMemVT) 7739 Store = 7740 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7741 SN->getPointerInfo().getWithOffset(Idx*Stride), 7742 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7743 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7744 else 7745 Store = 7746 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7747 SN->getPointerInfo().getWithOffset(Idx*Stride), 7748 SN->isVolatile(), SN->isNonTemporal(), 7749 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7750 7751 if (Idx == 0 && SN->isIndexed()) { 7752 assert(SN->getAddressingMode() == ISD::PRE_INC && 7753 "Unknown addressing mode on vector store"); 7754 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7755 SN->getAddressingMode()); 7756 } 7757 7758 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7759 DAG.getConstant(Stride, dl, 7760 BasePtr.getValueType())); 7761 Stores.push_back(Store); 7762 } 7763 7764 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7765 7766 if (SN->isIndexed()) { 7767 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7768 return DAG.getMergeValues(RetOps, dl); 7769 } 7770 7771 return TF; 7772 } 7773 7774 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7775 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7776 7777 // The values are now known to be -1 (false) or 1 (true). To convert this 7778 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7779 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7780 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7781 7782 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7783 // understand how to form the extending load. 7784 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7785 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7786 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7787 7788 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7789 7790 // Now convert to an integer and store. 7791 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7792 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7793 Value); 7794 7795 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7796 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7797 MachinePointerInfo PtrInfo = 7798 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7799 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7800 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7801 7802 SmallVector<SDValue, 2> Ops; 7803 Ops.push_back(StoreChain); 7804 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7805 Ops.push_back(Value); 7806 Ops.push_back(FIdx); 7807 7808 SmallVector<EVT, 2> ValueVTs; 7809 ValueVTs.push_back(MVT::Other); // chain 7810 SDVTList VTs = DAG.getVTList(ValueVTs); 7811 7812 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7813 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7814 7815 // Move data into the byte array. 7816 SmallVector<SDValue, 4> Loads, LoadChains; 7817 for (unsigned i = 0; i < 4; ++i) { 7818 unsigned Offset = 4*i; 7819 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7820 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7821 7822 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7823 PtrInfo.getWithOffset(Offset), 7824 false, false, false, 0)); 7825 LoadChains.push_back(Loads[i].getValue(1)); 7826 } 7827 7828 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7829 7830 SmallVector<SDValue, 4> Stores; 7831 for (unsigned i = 0; i < 4; ++i) { 7832 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7833 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7834 7835 Stores.push_back(DAG.getTruncStore( 7836 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7837 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7838 1 /* alignment */, SN->getAAInfo())); 7839 } 7840 7841 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7842 7843 return StoreChain; 7844 } 7845 7846 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7847 SDLoc dl(Op); 7848 if (Op.getValueType() == MVT::v4i32) { 7849 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7850 7851 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7852 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7853 7854 SDValue RHSSwap = // = vrlw RHS, 16 7855 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7856 7857 // Shrinkify inputs to v8i16. 7858 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7859 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7860 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7861 7862 // Low parts multiplied together, generating 32-bit results (we ignore the 7863 // top parts). 7864 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7865 LHS, RHS, DAG, dl, MVT::v4i32); 7866 7867 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7868 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7869 // Shift the high parts up 16 bits. 7870 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7871 Neg16, DAG, dl); 7872 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7873 } else if (Op.getValueType() == MVT::v8i16) { 7874 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7875 7876 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7877 7878 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7879 LHS, RHS, Zero, DAG, dl); 7880 } else if (Op.getValueType() == MVT::v16i8) { 7881 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7882 bool isLittleEndian = Subtarget.isLittleEndian(); 7883 7884 // Multiply the even 8-bit parts, producing 16-bit sums. 7885 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7886 LHS, RHS, DAG, dl, MVT::v8i16); 7887 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7888 7889 // Multiply the odd 8-bit parts, producing 16-bit sums. 7890 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7891 LHS, RHS, DAG, dl, MVT::v8i16); 7892 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7893 7894 // Merge the results together. Because vmuleub and vmuloub are 7895 // instructions with a big-endian bias, we must reverse the 7896 // element numbering and reverse the meaning of "odd" and "even" 7897 // when generating little endian code. 7898 int Ops[16]; 7899 for (unsigned i = 0; i != 8; ++i) { 7900 if (isLittleEndian) { 7901 Ops[i*2 ] = 2*i; 7902 Ops[i*2+1] = 2*i+16; 7903 } else { 7904 Ops[i*2 ] = 2*i+1; 7905 Ops[i*2+1] = 2*i+1+16; 7906 } 7907 } 7908 if (isLittleEndian) 7909 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7910 else 7911 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7912 } else { 7913 llvm_unreachable("Unknown mul to lower!"); 7914 } 7915 } 7916 7917 /// LowerOperation - Provide custom lowering hooks for some operations. 7918 /// 7919 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7920 switch (Op.getOpcode()) { 7921 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7922 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7923 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7924 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7925 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7926 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7927 case ISD::SETCC: return LowerSETCC(Op, DAG); 7928 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7929 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7930 case ISD::VASTART: 7931 return LowerVASTART(Op, DAG, Subtarget); 7932 7933 case ISD::VAARG: 7934 return LowerVAARG(Op, DAG, Subtarget); 7935 7936 case ISD::VACOPY: 7937 return LowerVACOPY(Op, DAG, Subtarget); 7938 7939 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7940 case ISD::DYNAMIC_STACKALLOC: 7941 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7942 7943 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7944 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7945 7946 case ISD::LOAD: return LowerLOAD(Op, DAG); 7947 case ISD::STORE: return LowerSTORE(Op, DAG); 7948 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7949 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7950 case ISD::FP_TO_UINT: 7951 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7952 SDLoc(Op)); 7953 case ISD::UINT_TO_FP: 7954 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7955 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7956 7957 // Lower 64-bit shifts. 7958 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7959 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7960 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7961 7962 // Vector-related lowering. 7963 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7964 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7965 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7966 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7967 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7968 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7969 case ISD::MUL: return LowerMUL(Op, DAG); 7970 7971 // For counter-based loop handling. 7972 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7973 7974 // Frame & Return address. 7975 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7976 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7977 } 7978 } 7979 7980 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7981 SmallVectorImpl<SDValue>&Results, 7982 SelectionDAG &DAG) const { 7983 SDLoc dl(N); 7984 switch (N->getOpcode()) { 7985 default: 7986 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7987 case ISD::READCYCLECOUNTER: { 7988 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7989 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7990 7991 Results.push_back(RTB); 7992 Results.push_back(RTB.getValue(1)); 7993 Results.push_back(RTB.getValue(2)); 7994 break; 7995 } 7996 case ISD::INTRINSIC_W_CHAIN: { 7997 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 7998 Intrinsic::ppc_is_decremented_ctr_nonzero) 7999 break; 8000 8001 assert(N->getValueType(0) == MVT::i1 && 8002 "Unexpected result type for CTR decrement intrinsic"); 8003 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8004 N->getValueType(0)); 8005 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8006 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8007 N->getOperand(1)); 8008 8009 Results.push_back(NewInt); 8010 Results.push_back(NewInt.getValue(1)); 8011 break; 8012 } 8013 case ISD::VAARG: { 8014 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8015 return; 8016 8017 EVT VT = N->getValueType(0); 8018 8019 if (VT == MVT::i64) { 8020 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8021 8022 Results.push_back(NewNode); 8023 Results.push_back(NewNode.getValue(1)); 8024 } 8025 return; 8026 } 8027 case ISD::FP_ROUND_INREG: { 8028 assert(N->getValueType(0) == MVT::ppcf128); 8029 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8030 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8031 MVT::f64, N->getOperand(0), 8032 DAG.getIntPtrConstant(0, dl)); 8033 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8034 MVT::f64, N->getOperand(0), 8035 DAG.getIntPtrConstant(1, dl)); 8036 8037 // Add the two halves of the long double in round-to-zero mode. 8038 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8039 8040 // We know the low half is about to be thrown away, so just use something 8041 // convenient. 8042 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8043 FPreg, FPreg)); 8044 return; 8045 } 8046 case ISD::FP_TO_SINT: 8047 case ISD::FP_TO_UINT: 8048 // LowerFP_TO_INT() can only handle f32 and f64. 8049 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8050 return; 8051 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8052 return; 8053 } 8054 } 8055 8056 //===----------------------------------------------------------------------===// 8057 // Other Lowering Code 8058 //===----------------------------------------------------------------------===// 8059 8060 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8061 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8062 Function *Func = Intrinsic::getDeclaration(M, Id); 8063 return Builder.CreateCall(Func, {}); 8064 } 8065 8066 // The mappings for emitLeading/TrailingFence is taken from 8067 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8068 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8069 AtomicOrdering Ord, bool IsStore, 8070 bool IsLoad) const { 8071 if (Ord == SequentiallyConsistent) 8072 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8073 if (isAtLeastRelease(Ord)) 8074 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8075 return nullptr; 8076 } 8077 8078 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8079 AtomicOrdering Ord, bool IsStore, 8080 bool IsLoad) const { 8081 if (IsLoad && isAtLeastAcquire(Ord)) 8082 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8083 // FIXME: this is too conservative, a dependent branch + isync is enough. 8084 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8085 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8086 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8087 return nullptr; 8088 } 8089 8090 MachineBasicBlock * 8091 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8092 unsigned AtomicSize, 8093 unsigned BinOpcode) const { 8094 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8095 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8096 8097 auto LoadMnemonic = PPC::LDARX; 8098 auto StoreMnemonic = PPC::STDCX; 8099 switch (AtomicSize) { 8100 default: 8101 llvm_unreachable("Unexpected size of atomic entity"); 8102 case 1: 8103 LoadMnemonic = PPC::LBARX; 8104 StoreMnemonic = PPC::STBCX; 8105 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8106 break; 8107 case 2: 8108 LoadMnemonic = PPC::LHARX; 8109 StoreMnemonic = PPC::STHCX; 8110 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8111 break; 8112 case 4: 8113 LoadMnemonic = PPC::LWARX; 8114 StoreMnemonic = PPC::STWCX; 8115 break; 8116 case 8: 8117 LoadMnemonic = PPC::LDARX; 8118 StoreMnemonic = PPC::STDCX; 8119 break; 8120 } 8121 8122 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8123 MachineFunction *F = BB->getParent(); 8124 MachineFunction::iterator It = ++BB->getIterator(); 8125 8126 unsigned dest = MI->getOperand(0).getReg(); 8127 unsigned ptrA = MI->getOperand(1).getReg(); 8128 unsigned ptrB = MI->getOperand(2).getReg(); 8129 unsigned incr = MI->getOperand(3).getReg(); 8130 DebugLoc dl = MI->getDebugLoc(); 8131 8132 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8133 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8134 F->insert(It, loopMBB); 8135 F->insert(It, exitMBB); 8136 exitMBB->splice(exitMBB->begin(), BB, 8137 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8138 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8139 8140 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8141 unsigned TmpReg = (!BinOpcode) ? incr : 8142 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8143 : &PPC::GPRCRegClass); 8144 8145 // thisMBB: 8146 // ... 8147 // fallthrough --> loopMBB 8148 BB->addSuccessor(loopMBB); 8149 8150 // loopMBB: 8151 // l[wd]arx dest, ptr 8152 // add r0, dest, incr 8153 // st[wd]cx. r0, ptr 8154 // bne- loopMBB 8155 // fallthrough --> exitMBB 8156 BB = loopMBB; 8157 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8158 .addReg(ptrA).addReg(ptrB); 8159 if (BinOpcode) 8160 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8161 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8162 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8163 BuildMI(BB, dl, TII->get(PPC::BCC)) 8164 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8165 BB->addSuccessor(loopMBB); 8166 BB->addSuccessor(exitMBB); 8167 8168 // exitMBB: 8169 // ... 8170 BB = exitMBB; 8171 return BB; 8172 } 8173 8174 MachineBasicBlock * 8175 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8176 MachineBasicBlock *BB, 8177 bool is8bit, // operation 8178 unsigned BinOpcode) const { 8179 // If we support part-word atomic mnemonics, just use them 8180 if (Subtarget.hasPartwordAtomics()) 8181 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8182 8183 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8184 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8185 // In 64 bit mode we have to use 64 bits for addresses, even though the 8186 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8187 // registers without caring whether they're 32 or 64, but here we're 8188 // doing actual arithmetic on the addresses. 8189 bool is64bit = Subtarget.isPPC64(); 8190 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8191 8192 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8193 MachineFunction *F = BB->getParent(); 8194 MachineFunction::iterator It = ++BB->getIterator(); 8195 8196 unsigned dest = MI->getOperand(0).getReg(); 8197 unsigned ptrA = MI->getOperand(1).getReg(); 8198 unsigned ptrB = MI->getOperand(2).getReg(); 8199 unsigned incr = MI->getOperand(3).getReg(); 8200 DebugLoc dl = MI->getDebugLoc(); 8201 8202 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8203 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8204 F->insert(It, loopMBB); 8205 F->insert(It, exitMBB); 8206 exitMBB->splice(exitMBB->begin(), BB, 8207 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8208 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8209 8210 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8211 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8212 : &PPC::GPRCRegClass; 8213 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8214 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8215 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8216 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8217 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8218 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8219 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8220 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8221 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8222 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8223 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8224 unsigned Ptr1Reg; 8225 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8226 8227 // thisMBB: 8228 // ... 8229 // fallthrough --> loopMBB 8230 BB->addSuccessor(loopMBB); 8231 8232 // The 4-byte load must be aligned, while a char or short may be 8233 // anywhere in the word. Hence all this nasty bookkeeping code. 8234 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8235 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8236 // xori shift, shift1, 24 [16] 8237 // rlwinm ptr, ptr1, 0, 0, 29 8238 // slw incr2, incr, shift 8239 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8240 // slw mask, mask2, shift 8241 // loopMBB: 8242 // lwarx tmpDest, ptr 8243 // add tmp, tmpDest, incr2 8244 // andc tmp2, tmpDest, mask 8245 // and tmp3, tmp, mask 8246 // or tmp4, tmp3, tmp2 8247 // stwcx. tmp4, ptr 8248 // bne- loopMBB 8249 // fallthrough --> exitMBB 8250 // srw dest, tmpDest, shift 8251 if (ptrA != ZeroReg) { 8252 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8253 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8254 .addReg(ptrA).addReg(ptrB); 8255 } else { 8256 Ptr1Reg = ptrB; 8257 } 8258 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8259 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8260 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8261 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8262 if (is64bit) 8263 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8264 .addReg(Ptr1Reg).addImm(0).addImm(61); 8265 else 8266 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8267 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8268 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8269 .addReg(incr).addReg(ShiftReg); 8270 if (is8bit) 8271 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8272 else { 8273 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8274 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8275 } 8276 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8277 .addReg(Mask2Reg).addReg(ShiftReg); 8278 8279 BB = loopMBB; 8280 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8281 .addReg(ZeroReg).addReg(PtrReg); 8282 if (BinOpcode) 8283 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8284 .addReg(Incr2Reg).addReg(TmpDestReg); 8285 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8286 .addReg(TmpDestReg).addReg(MaskReg); 8287 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8288 .addReg(TmpReg).addReg(MaskReg); 8289 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8290 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8291 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8292 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8293 BuildMI(BB, dl, TII->get(PPC::BCC)) 8294 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8295 BB->addSuccessor(loopMBB); 8296 BB->addSuccessor(exitMBB); 8297 8298 // exitMBB: 8299 // ... 8300 BB = exitMBB; 8301 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8302 .addReg(ShiftReg); 8303 return BB; 8304 } 8305 8306 llvm::MachineBasicBlock* 8307 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8308 MachineBasicBlock *MBB) const { 8309 DebugLoc DL = MI->getDebugLoc(); 8310 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8311 8312 MachineFunction *MF = MBB->getParent(); 8313 MachineRegisterInfo &MRI = MF->getRegInfo(); 8314 8315 const BasicBlock *BB = MBB->getBasicBlock(); 8316 MachineFunction::iterator I = ++MBB->getIterator(); 8317 8318 // Memory Reference 8319 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8320 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8321 8322 unsigned DstReg = MI->getOperand(0).getReg(); 8323 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8324 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8325 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8326 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8327 8328 MVT PVT = getPointerTy(MF->getDataLayout()); 8329 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8330 "Invalid Pointer Size!"); 8331 // For v = setjmp(buf), we generate 8332 // 8333 // thisMBB: 8334 // SjLjSetup mainMBB 8335 // bl mainMBB 8336 // v_restore = 1 8337 // b sinkMBB 8338 // 8339 // mainMBB: 8340 // buf[LabelOffset] = LR 8341 // v_main = 0 8342 // 8343 // sinkMBB: 8344 // v = phi(main, restore) 8345 // 8346 8347 MachineBasicBlock *thisMBB = MBB; 8348 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8349 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8350 MF->insert(I, mainMBB); 8351 MF->insert(I, sinkMBB); 8352 8353 MachineInstrBuilder MIB; 8354 8355 // Transfer the remainder of BB and its successor edges to sinkMBB. 8356 sinkMBB->splice(sinkMBB->begin(), MBB, 8357 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8358 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8359 8360 // Note that the structure of the jmp_buf used here is not compatible 8361 // with that used by libc, and is not designed to be. Specifically, it 8362 // stores only those 'reserved' registers that LLVM does not otherwise 8363 // understand how to spill. Also, by convention, by the time this 8364 // intrinsic is called, Clang has already stored the frame address in the 8365 // first slot of the buffer and stack address in the third. Following the 8366 // X86 target code, we'll store the jump address in the second slot. We also 8367 // need to save the TOC pointer (R2) to handle jumps between shared 8368 // libraries, and that will be stored in the fourth slot. The thread 8369 // identifier (R13) is not affected. 8370 8371 // thisMBB: 8372 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8373 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8374 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8375 8376 // Prepare IP either in reg. 8377 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8378 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8379 unsigned BufReg = MI->getOperand(1).getReg(); 8380 8381 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8382 setUsesTOCBasePtr(*MBB->getParent()); 8383 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8384 .addReg(PPC::X2) 8385 .addImm(TOCOffset) 8386 .addReg(BufReg); 8387 MIB.setMemRefs(MMOBegin, MMOEnd); 8388 } 8389 8390 // Naked functions never have a base pointer, and so we use r1. For all 8391 // other functions, this decision must be delayed until during PEI. 8392 unsigned BaseReg; 8393 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8394 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8395 else 8396 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8397 8398 MIB = BuildMI(*thisMBB, MI, DL, 8399 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8400 .addReg(BaseReg) 8401 .addImm(BPOffset) 8402 .addReg(BufReg); 8403 MIB.setMemRefs(MMOBegin, MMOEnd); 8404 8405 // Setup 8406 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8407 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8408 MIB.addRegMask(TRI->getNoPreservedMask()); 8409 8410 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8411 8412 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8413 .addMBB(mainMBB); 8414 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8415 8416 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8417 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8418 8419 // mainMBB: 8420 // mainDstReg = 0 8421 MIB = 8422 BuildMI(mainMBB, DL, 8423 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8424 8425 // Store IP 8426 if (Subtarget.isPPC64()) { 8427 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8428 .addReg(LabelReg) 8429 .addImm(LabelOffset) 8430 .addReg(BufReg); 8431 } else { 8432 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8433 .addReg(LabelReg) 8434 .addImm(LabelOffset) 8435 .addReg(BufReg); 8436 } 8437 8438 MIB.setMemRefs(MMOBegin, MMOEnd); 8439 8440 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8441 mainMBB->addSuccessor(sinkMBB); 8442 8443 // sinkMBB: 8444 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8445 TII->get(PPC::PHI), DstReg) 8446 .addReg(mainDstReg).addMBB(mainMBB) 8447 .addReg(restoreDstReg).addMBB(thisMBB); 8448 8449 MI->eraseFromParent(); 8450 return sinkMBB; 8451 } 8452 8453 MachineBasicBlock * 8454 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8455 MachineBasicBlock *MBB) const { 8456 DebugLoc DL = MI->getDebugLoc(); 8457 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8458 8459 MachineFunction *MF = MBB->getParent(); 8460 MachineRegisterInfo &MRI = MF->getRegInfo(); 8461 8462 // Memory Reference 8463 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8464 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8465 8466 MVT PVT = getPointerTy(MF->getDataLayout()); 8467 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8468 "Invalid Pointer Size!"); 8469 8470 const TargetRegisterClass *RC = 8471 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8472 unsigned Tmp = MRI.createVirtualRegister(RC); 8473 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8474 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8475 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8476 unsigned BP = 8477 (PVT == MVT::i64) 8478 ? PPC::X30 8479 : (Subtarget.isSVR4ABI() && 8480 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8481 ? PPC::R29 8482 : PPC::R30); 8483 8484 MachineInstrBuilder MIB; 8485 8486 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8487 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8488 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8489 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8490 8491 unsigned BufReg = MI->getOperand(0).getReg(); 8492 8493 // Reload FP (the jumped-to function may not have had a 8494 // frame pointer, and if so, then its r31 will be restored 8495 // as necessary). 8496 if (PVT == MVT::i64) { 8497 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8498 .addImm(0) 8499 .addReg(BufReg); 8500 } else { 8501 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8502 .addImm(0) 8503 .addReg(BufReg); 8504 } 8505 MIB.setMemRefs(MMOBegin, MMOEnd); 8506 8507 // Reload IP 8508 if (PVT == MVT::i64) { 8509 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8510 .addImm(LabelOffset) 8511 .addReg(BufReg); 8512 } else { 8513 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8514 .addImm(LabelOffset) 8515 .addReg(BufReg); 8516 } 8517 MIB.setMemRefs(MMOBegin, MMOEnd); 8518 8519 // Reload SP 8520 if (PVT == MVT::i64) { 8521 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8522 .addImm(SPOffset) 8523 .addReg(BufReg); 8524 } else { 8525 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8526 .addImm(SPOffset) 8527 .addReg(BufReg); 8528 } 8529 MIB.setMemRefs(MMOBegin, MMOEnd); 8530 8531 // Reload BP 8532 if (PVT == MVT::i64) { 8533 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8534 .addImm(BPOffset) 8535 .addReg(BufReg); 8536 } else { 8537 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8538 .addImm(BPOffset) 8539 .addReg(BufReg); 8540 } 8541 MIB.setMemRefs(MMOBegin, MMOEnd); 8542 8543 // Reload TOC 8544 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8545 setUsesTOCBasePtr(*MBB->getParent()); 8546 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8547 .addImm(TOCOffset) 8548 .addReg(BufReg); 8549 8550 MIB.setMemRefs(MMOBegin, MMOEnd); 8551 } 8552 8553 // Jump 8554 BuildMI(*MBB, MI, DL, 8555 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8556 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8557 8558 MI->eraseFromParent(); 8559 return MBB; 8560 } 8561 8562 MachineBasicBlock * 8563 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8564 MachineBasicBlock *BB) const { 8565 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8566 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8567 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8568 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8569 // Call lowering should have added an r2 operand to indicate a dependence 8570 // on the TOC base pointer value. It can't however, because there is no 8571 // way to mark the dependence as implicit there, and so the stackmap code 8572 // will confuse it with a regular operand. Instead, add the dependence 8573 // here. 8574 setUsesTOCBasePtr(*BB->getParent()); 8575 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8576 } 8577 8578 return emitPatchPoint(MI, BB); 8579 } 8580 8581 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8582 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8583 return emitEHSjLjSetJmp(MI, BB); 8584 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8585 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8586 return emitEHSjLjLongJmp(MI, BB); 8587 } 8588 8589 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8590 8591 // To "insert" these instructions we actually have to insert their 8592 // control-flow patterns. 8593 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8594 MachineFunction::iterator It = ++BB->getIterator(); 8595 8596 MachineFunction *F = BB->getParent(); 8597 8598 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8599 MI->getOpcode() == PPC::SELECT_CC_I8 || 8600 MI->getOpcode() == PPC::SELECT_I4 || 8601 MI->getOpcode() == PPC::SELECT_I8)) { 8602 SmallVector<MachineOperand, 2> Cond; 8603 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8604 MI->getOpcode() == PPC::SELECT_CC_I8) 8605 Cond.push_back(MI->getOperand(4)); 8606 else 8607 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8608 Cond.push_back(MI->getOperand(1)); 8609 8610 DebugLoc dl = MI->getDebugLoc(); 8611 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8612 Cond, MI->getOperand(2).getReg(), 8613 MI->getOperand(3).getReg()); 8614 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8615 MI->getOpcode() == PPC::SELECT_CC_I8 || 8616 MI->getOpcode() == PPC::SELECT_CC_F4 || 8617 MI->getOpcode() == PPC::SELECT_CC_F8 || 8618 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8619 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8620 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8621 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8622 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8623 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8624 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8625 MI->getOpcode() == PPC::SELECT_I4 || 8626 MI->getOpcode() == PPC::SELECT_I8 || 8627 MI->getOpcode() == PPC::SELECT_F4 || 8628 MI->getOpcode() == PPC::SELECT_F8 || 8629 MI->getOpcode() == PPC::SELECT_QFRC || 8630 MI->getOpcode() == PPC::SELECT_QSRC || 8631 MI->getOpcode() == PPC::SELECT_QBRC || 8632 MI->getOpcode() == PPC::SELECT_VRRC || 8633 MI->getOpcode() == PPC::SELECT_VSFRC || 8634 MI->getOpcode() == PPC::SELECT_VSSRC || 8635 MI->getOpcode() == PPC::SELECT_VSRC) { 8636 // The incoming instruction knows the destination vreg to set, the 8637 // condition code register to branch on, the true/false values to 8638 // select between, and a branch opcode to use. 8639 8640 // thisMBB: 8641 // ... 8642 // TrueVal = ... 8643 // cmpTY ccX, r1, r2 8644 // bCC copy1MBB 8645 // fallthrough --> copy0MBB 8646 MachineBasicBlock *thisMBB = BB; 8647 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8648 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8649 DebugLoc dl = MI->getDebugLoc(); 8650 F->insert(It, copy0MBB); 8651 F->insert(It, sinkMBB); 8652 8653 // Transfer the remainder of BB and its successor edges to sinkMBB. 8654 sinkMBB->splice(sinkMBB->begin(), BB, 8655 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8656 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8657 8658 // Next, add the true and fallthrough blocks as its successors. 8659 BB->addSuccessor(copy0MBB); 8660 BB->addSuccessor(sinkMBB); 8661 8662 if (MI->getOpcode() == PPC::SELECT_I4 || 8663 MI->getOpcode() == PPC::SELECT_I8 || 8664 MI->getOpcode() == PPC::SELECT_F4 || 8665 MI->getOpcode() == PPC::SELECT_F8 || 8666 MI->getOpcode() == PPC::SELECT_QFRC || 8667 MI->getOpcode() == PPC::SELECT_QSRC || 8668 MI->getOpcode() == PPC::SELECT_QBRC || 8669 MI->getOpcode() == PPC::SELECT_VRRC || 8670 MI->getOpcode() == PPC::SELECT_VSFRC || 8671 MI->getOpcode() == PPC::SELECT_VSSRC || 8672 MI->getOpcode() == PPC::SELECT_VSRC) { 8673 BuildMI(BB, dl, TII->get(PPC::BC)) 8674 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8675 } else { 8676 unsigned SelectPred = MI->getOperand(4).getImm(); 8677 BuildMI(BB, dl, TII->get(PPC::BCC)) 8678 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8679 } 8680 8681 // copy0MBB: 8682 // %FalseValue = ... 8683 // # fallthrough to sinkMBB 8684 BB = copy0MBB; 8685 8686 // Update machine-CFG edges 8687 BB->addSuccessor(sinkMBB); 8688 8689 // sinkMBB: 8690 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8691 // ... 8692 BB = sinkMBB; 8693 BuildMI(*BB, BB->begin(), dl, 8694 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8695 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8696 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8697 } else if (MI->getOpcode() == PPC::ReadTB) { 8698 // To read the 64-bit time-base register on a 32-bit target, we read the 8699 // two halves. Should the counter have wrapped while it was being read, we 8700 // need to try again. 8701 // ... 8702 // readLoop: 8703 // mfspr Rx,TBU # load from TBU 8704 // mfspr Ry,TB # load from TB 8705 // mfspr Rz,TBU # load from TBU 8706 // cmpw crX,Rx,Rz # check if 'old'='new' 8707 // bne readLoop # branch if they're not equal 8708 // ... 8709 8710 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8711 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8712 DebugLoc dl = MI->getDebugLoc(); 8713 F->insert(It, readMBB); 8714 F->insert(It, sinkMBB); 8715 8716 // Transfer the remainder of BB and its successor edges to sinkMBB. 8717 sinkMBB->splice(sinkMBB->begin(), BB, 8718 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8719 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8720 8721 BB->addSuccessor(readMBB); 8722 BB = readMBB; 8723 8724 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8725 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8726 unsigned LoReg = MI->getOperand(0).getReg(); 8727 unsigned HiReg = MI->getOperand(1).getReg(); 8728 8729 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8730 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8731 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8732 8733 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8734 8735 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8736 .addReg(HiReg).addReg(ReadAgainReg); 8737 BuildMI(BB, dl, TII->get(PPC::BCC)) 8738 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8739 8740 BB->addSuccessor(readMBB); 8741 BB->addSuccessor(sinkMBB); 8742 } 8743 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8744 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8745 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8746 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8747 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8748 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8749 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8750 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8751 8752 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8753 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8754 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8755 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8756 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8757 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8758 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8759 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8760 8761 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8762 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8763 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8764 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8765 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8766 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8767 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8768 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8769 8770 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8771 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8772 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8773 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8774 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8775 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8776 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8777 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8778 8779 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8780 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8781 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8782 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8783 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8784 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8785 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8786 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8787 8788 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8789 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8790 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8791 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8792 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8793 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8794 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8795 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8796 8797 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8798 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8799 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8800 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8801 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8802 BB = EmitAtomicBinary(MI, BB, 4, 0); 8803 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8804 BB = EmitAtomicBinary(MI, BB, 8, 0); 8805 8806 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8807 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8808 (Subtarget.hasPartwordAtomics() && 8809 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8810 (Subtarget.hasPartwordAtomics() && 8811 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8812 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8813 8814 auto LoadMnemonic = PPC::LDARX; 8815 auto StoreMnemonic = PPC::STDCX; 8816 switch(MI->getOpcode()) { 8817 default: 8818 llvm_unreachable("Compare and swap of unknown size"); 8819 case PPC::ATOMIC_CMP_SWAP_I8: 8820 LoadMnemonic = PPC::LBARX; 8821 StoreMnemonic = PPC::STBCX; 8822 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8823 break; 8824 case PPC::ATOMIC_CMP_SWAP_I16: 8825 LoadMnemonic = PPC::LHARX; 8826 StoreMnemonic = PPC::STHCX; 8827 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8828 break; 8829 case PPC::ATOMIC_CMP_SWAP_I32: 8830 LoadMnemonic = PPC::LWARX; 8831 StoreMnemonic = PPC::STWCX; 8832 break; 8833 case PPC::ATOMIC_CMP_SWAP_I64: 8834 LoadMnemonic = PPC::LDARX; 8835 StoreMnemonic = PPC::STDCX; 8836 break; 8837 } 8838 unsigned dest = MI->getOperand(0).getReg(); 8839 unsigned ptrA = MI->getOperand(1).getReg(); 8840 unsigned ptrB = MI->getOperand(2).getReg(); 8841 unsigned oldval = MI->getOperand(3).getReg(); 8842 unsigned newval = MI->getOperand(4).getReg(); 8843 DebugLoc dl = MI->getDebugLoc(); 8844 8845 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8846 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8847 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8848 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8849 F->insert(It, loop1MBB); 8850 F->insert(It, loop2MBB); 8851 F->insert(It, midMBB); 8852 F->insert(It, exitMBB); 8853 exitMBB->splice(exitMBB->begin(), BB, 8854 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8855 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8856 8857 // thisMBB: 8858 // ... 8859 // fallthrough --> loopMBB 8860 BB->addSuccessor(loop1MBB); 8861 8862 // loop1MBB: 8863 // l[bhwd]arx dest, ptr 8864 // cmp[wd] dest, oldval 8865 // bne- midMBB 8866 // loop2MBB: 8867 // st[bhwd]cx. newval, ptr 8868 // bne- loopMBB 8869 // b exitBB 8870 // midMBB: 8871 // st[bhwd]cx. dest, ptr 8872 // exitBB: 8873 BB = loop1MBB; 8874 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8875 .addReg(ptrA).addReg(ptrB); 8876 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8877 .addReg(oldval).addReg(dest); 8878 BuildMI(BB, dl, TII->get(PPC::BCC)) 8879 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8880 BB->addSuccessor(loop2MBB); 8881 BB->addSuccessor(midMBB); 8882 8883 BB = loop2MBB; 8884 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8885 .addReg(newval).addReg(ptrA).addReg(ptrB); 8886 BuildMI(BB, dl, TII->get(PPC::BCC)) 8887 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8888 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8889 BB->addSuccessor(loop1MBB); 8890 BB->addSuccessor(exitMBB); 8891 8892 BB = midMBB; 8893 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8894 .addReg(dest).addReg(ptrA).addReg(ptrB); 8895 BB->addSuccessor(exitMBB); 8896 8897 // exitMBB: 8898 // ... 8899 BB = exitMBB; 8900 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8901 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8902 // We must use 64-bit registers for addresses when targeting 64-bit, 8903 // since we're actually doing arithmetic on them. Other registers 8904 // can be 32-bit. 8905 bool is64bit = Subtarget.isPPC64(); 8906 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8907 8908 unsigned dest = MI->getOperand(0).getReg(); 8909 unsigned ptrA = MI->getOperand(1).getReg(); 8910 unsigned ptrB = MI->getOperand(2).getReg(); 8911 unsigned oldval = MI->getOperand(3).getReg(); 8912 unsigned newval = MI->getOperand(4).getReg(); 8913 DebugLoc dl = MI->getDebugLoc(); 8914 8915 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8916 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8917 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8918 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8919 F->insert(It, loop1MBB); 8920 F->insert(It, loop2MBB); 8921 F->insert(It, midMBB); 8922 F->insert(It, exitMBB); 8923 exitMBB->splice(exitMBB->begin(), BB, 8924 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8925 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8926 8927 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8928 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8929 : &PPC::GPRCRegClass; 8930 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8931 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8932 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8933 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8934 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8935 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8936 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8937 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8938 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8939 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8940 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8941 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8942 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8943 unsigned Ptr1Reg; 8944 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8945 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8946 // thisMBB: 8947 // ... 8948 // fallthrough --> loopMBB 8949 BB->addSuccessor(loop1MBB); 8950 8951 // The 4-byte load must be aligned, while a char or short may be 8952 // anywhere in the word. Hence all this nasty bookkeeping code. 8953 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8954 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8955 // xori shift, shift1, 24 [16] 8956 // rlwinm ptr, ptr1, 0, 0, 29 8957 // slw newval2, newval, shift 8958 // slw oldval2, oldval,shift 8959 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8960 // slw mask, mask2, shift 8961 // and newval3, newval2, mask 8962 // and oldval3, oldval2, mask 8963 // loop1MBB: 8964 // lwarx tmpDest, ptr 8965 // and tmp, tmpDest, mask 8966 // cmpw tmp, oldval3 8967 // bne- midMBB 8968 // loop2MBB: 8969 // andc tmp2, tmpDest, mask 8970 // or tmp4, tmp2, newval3 8971 // stwcx. tmp4, ptr 8972 // bne- loop1MBB 8973 // b exitBB 8974 // midMBB: 8975 // stwcx. tmpDest, ptr 8976 // exitBB: 8977 // srw dest, tmpDest, shift 8978 if (ptrA != ZeroReg) { 8979 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8980 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8981 .addReg(ptrA).addReg(ptrB); 8982 } else { 8983 Ptr1Reg = ptrB; 8984 } 8985 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8986 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8987 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8988 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8989 if (is64bit) 8990 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8991 .addReg(Ptr1Reg).addImm(0).addImm(61); 8992 else 8993 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8994 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8995 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 8996 .addReg(newval).addReg(ShiftReg); 8997 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 8998 .addReg(oldval).addReg(ShiftReg); 8999 if (is8bit) 9000 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9001 else { 9002 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9003 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9004 .addReg(Mask3Reg).addImm(65535); 9005 } 9006 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9007 .addReg(Mask2Reg).addReg(ShiftReg); 9008 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9009 .addReg(NewVal2Reg).addReg(MaskReg); 9010 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9011 .addReg(OldVal2Reg).addReg(MaskReg); 9012 9013 BB = loop1MBB; 9014 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9015 .addReg(ZeroReg).addReg(PtrReg); 9016 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9017 .addReg(TmpDestReg).addReg(MaskReg); 9018 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9019 .addReg(TmpReg).addReg(OldVal3Reg); 9020 BuildMI(BB, dl, TII->get(PPC::BCC)) 9021 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9022 BB->addSuccessor(loop2MBB); 9023 BB->addSuccessor(midMBB); 9024 9025 BB = loop2MBB; 9026 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9027 .addReg(TmpDestReg).addReg(MaskReg); 9028 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9029 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9030 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9031 .addReg(ZeroReg).addReg(PtrReg); 9032 BuildMI(BB, dl, TII->get(PPC::BCC)) 9033 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9034 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9035 BB->addSuccessor(loop1MBB); 9036 BB->addSuccessor(exitMBB); 9037 9038 BB = midMBB; 9039 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9040 .addReg(ZeroReg).addReg(PtrReg); 9041 BB->addSuccessor(exitMBB); 9042 9043 // exitMBB: 9044 // ... 9045 BB = exitMBB; 9046 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9047 .addReg(ShiftReg); 9048 } else if (MI->getOpcode() == PPC::FADDrtz) { 9049 // This pseudo performs an FADD with rounding mode temporarily forced 9050 // to round-to-zero. We emit this via custom inserter since the FPSCR 9051 // is not modeled at the SelectionDAG level. 9052 unsigned Dest = MI->getOperand(0).getReg(); 9053 unsigned Src1 = MI->getOperand(1).getReg(); 9054 unsigned Src2 = MI->getOperand(2).getReg(); 9055 DebugLoc dl = MI->getDebugLoc(); 9056 9057 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9058 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9059 9060 // Save FPSCR value. 9061 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9062 9063 // Set rounding mode to round-to-zero. 9064 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9065 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9066 9067 // Perform addition. 9068 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9069 9070 // Restore FPSCR value. 9071 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9072 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9073 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9074 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9075 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9076 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9077 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9078 PPC::ANDIo8 : PPC::ANDIo; 9079 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9080 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9081 9082 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9083 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9084 &PPC::GPRCRegClass : 9085 &PPC::G8RCRegClass); 9086 9087 DebugLoc dl = MI->getDebugLoc(); 9088 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9089 .addReg(MI->getOperand(1).getReg()).addImm(1); 9090 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9091 MI->getOperand(0).getReg()) 9092 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9093 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9094 DebugLoc Dl = MI->getDebugLoc(); 9095 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9096 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9097 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9098 return BB; 9099 } else { 9100 llvm_unreachable("Unexpected instr type to insert"); 9101 } 9102 9103 MI->eraseFromParent(); // The pseudo instruction is gone now. 9104 return BB; 9105 } 9106 9107 //===----------------------------------------------------------------------===// 9108 // Target Optimization Hooks 9109 //===----------------------------------------------------------------------===// 9110 9111 static std::string getRecipOp(const char *Base, EVT VT) { 9112 std::string RecipOp(Base); 9113 if (VT.getScalarType() == MVT::f64) 9114 RecipOp += "d"; 9115 else 9116 RecipOp += "f"; 9117 9118 if (VT.isVector()) 9119 RecipOp = "vec-" + RecipOp; 9120 9121 return RecipOp; 9122 } 9123 9124 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9125 DAGCombinerInfo &DCI, 9126 unsigned &RefinementSteps, 9127 bool &UseOneConstNR) const { 9128 EVT VT = Operand.getValueType(); 9129 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9130 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9131 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9132 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9133 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9134 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9135 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9136 std::string RecipOp = getRecipOp("sqrt", VT); 9137 if (!Recips.isEnabled(RecipOp)) 9138 return SDValue(); 9139 9140 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9141 UseOneConstNR = true; 9142 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9143 } 9144 return SDValue(); 9145 } 9146 9147 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9148 DAGCombinerInfo &DCI, 9149 unsigned &RefinementSteps) const { 9150 EVT VT = Operand.getValueType(); 9151 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9152 (VT == MVT::f64 && Subtarget.hasFRE()) || 9153 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9154 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9155 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9156 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9157 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9158 std::string RecipOp = getRecipOp("div", VT); 9159 if (!Recips.isEnabled(RecipOp)) 9160 return SDValue(); 9161 9162 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9163 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9164 } 9165 return SDValue(); 9166 } 9167 9168 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9169 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9170 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9171 // enabled for division), this functionality is redundant with the default 9172 // combiner logic (once the division -> reciprocal/multiply transformation 9173 // has taken place). As a result, this matters more for older cores than for 9174 // newer ones. 9175 9176 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9177 // reciprocal if there are two or more FDIVs (for embedded cores with only 9178 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9179 switch (Subtarget.getDarwinDirective()) { 9180 default: 9181 return 3; 9182 case PPC::DIR_440: 9183 case PPC::DIR_A2: 9184 case PPC::DIR_E500mc: 9185 case PPC::DIR_E5500: 9186 return 2; 9187 } 9188 } 9189 9190 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9191 // collapsed, and so we need to look through chains of them. 9192 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9193 int64_t& Offset, SelectionDAG &DAG) { 9194 if (DAG.isBaseWithConstantOffset(Loc)) { 9195 Base = Loc.getOperand(0); 9196 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9197 9198 // The base might itself be a base plus an offset, and if so, accumulate 9199 // that as well. 9200 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9201 } 9202 } 9203 9204 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9205 unsigned Bytes, int Dist, 9206 SelectionDAG &DAG) { 9207 if (VT.getSizeInBits() / 8 != Bytes) 9208 return false; 9209 9210 SDValue BaseLoc = Base->getBasePtr(); 9211 if (Loc.getOpcode() == ISD::FrameIndex) { 9212 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9213 return false; 9214 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9215 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9216 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9217 int FS = MFI->getObjectSize(FI); 9218 int BFS = MFI->getObjectSize(BFI); 9219 if (FS != BFS || FS != (int)Bytes) return false; 9220 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9221 } 9222 9223 SDValue Base1 = Loc, Base2 = BaseLoc; 9224 int64_t Offset1 = 0, Offset2 = 0; 9225 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9226 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9227 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9228 return true; 9229 9230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9231 const GlobalValue *GV1 = nullptr; 9232 const GlobalValue *GV2 = nullptr; 9233 Offset1 = 0; 9234 Offset2 = 0; 9235 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9236 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9237 if (isGA1 && isGA2 && GV1 == GV2) 9238 return Offset1 == (Offset2 + Dist*Bytes); 9239 return false; 9240 } 9241 9242 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9243 // not enforce equality of the chain operands. 9244 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9245 unsigned Bytes, int Dist, 9246 SelectionDAG &DAG) { 9247 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9248 EVT VT = LS->getMemoryVT(); 9249 SDValue Loc = LS->getBasePtr(); 9250 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9251 } 9252 9253 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9254 EVT VT; 9255 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9256 default: return false; 9257 case Intrinsic::ppc_qpx_qvlfd: 9258 case Intrinsic::ppc_qpx_qvlfda: 9259 VT = MVT::v4f64; 9260 break; 9261 case Intrinsic::ppc_qpx_qvlfs: 9262 case Intrinsic::ppc_qpx_qvlfsa: 9263 VT = MVT::v4f32; 9264 break; 9265 case Intrinsic::ppc_qpx_qvlfcd: 9266 case Intrinsic::ppc_qpx_qvlfcda: 9267 VT = MVT::v2f64; 9268 break; 9269 case Intrinsic::ppc_qpx_qvlfcs: 9270 case Intrinsic::ppc_qpx_qvlfcsa: 9271 VT = MVT::v2f32; 9272 break; 9273 case Intrinsic::ppc_qpx_qvlfiwa: 9274 case Intrinsic::ppc_qpx_qvlfiwz: 9275 case Intrinsic::ppc_altivec_lvx: 9276 case Intrinsic::ppc_altivec_lvxl: 9277 case Intrinsic::ppc_vsx_lxvw4x: 9278 VT = MVT::v4i32; 9279 break; 9280 case Intrinsic::ppc_vsx_lxvd2x: 9281 VT = MVT::v2f64; 9282 break; 9283 case Intrinsic::ppc_altivec_lvebx: 9284 VT = MVT::i8; 9285 break; 9286 case Intrinsic::ppc_altivec_lvehx: 9287 VT = MVT::i16; 9288 break; 9289 case Intrinsic::ppc_altivec_lvewx: 9290 VT = MVT::i32; 9291 break; 9292 } 9293 9294 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9295 } 9296 9297 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9298 EVT VT; 9299 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9300 default: return false; 9301 case Intrinsic::ppc_qpx_qvstfd: 9302 case Intrinsic::ppc_qpx_qvstfda: 9303 VT = MVT::v4f64; 9304 break; 9305 case Intrinsic::ppc_qpx_qvstfs: 9306 case Intrinsic::ppc_qpx_qvstfsa: 9307 VT = MVT::v4f32; 9308 break; 9309 case Intrinsic::ppc_qpx_qvstfcd: 9310 case Intrinsic::ppc_qpx_qvstfcda: 9311 VT = MVT::v2f64; 9312 break; 9313 case Intrinsic::ppc_qpx_qvstfcs: 9314 case Intrinsic::ppc_qpx_qvstfcsa: 9315 VT = MVT::v2f32; 9316 break; 9317 case Intrinsic::ppc_qpx_qvstfiw: 9318 case Intrinsic::ppc_qpx_qvstfiwa: 9319 case Intrinsic::ppc_altivec_stvx: 9320 case Intrinsic::ppc_altivec_stvxl: 9321 case Intrinsic::ppc_vsx_stxvw4x: 9322 VT = MVT::v4i32; 9323 break; 9324 case Intrinsic::ppc_vsx_stxvd2x: 9325 VT = MVT::v2f64; 9326 break; 9327 case Intrinsic::ppc_altivec_stvebx: 9328 VT = MVT::i8; 9329 break; 9330 case Intrinsic::ppc_altivec_stvehx: 9331 VT = MVT::i16; 9332 break; 9333 case Intrinsic::ppc_altivec_stvewx: 9334 VT = MVT::i32; 9335 break; 9336 } 9337 9338 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9339 } 9340 9341 return false; 9342 } 9343 9344 // Return true is there is a nearyby consecutive load to the one provided 9345 // (regardless of alignment). We search up and down the chain, looking though 9346 // token factors and other loads (but nothing else). As a result, a true result 9347 // indicates that it is safe to create a new consecutive load adjacent to the 9348 // load provided. 9349 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9350 SDValue Chain = LD->getChain(); 9351 EVT VT = LD->getMemoryVT(); 9352 9353 SmallSet<SDNode *, 16> LoadRoots; 9354 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9355 SmallSet<SDNode *, 16> Visited; 9356 9357 // First, search up the chain, branching to follow all token-factor operands. 9358 // If we find a consecutive load, then we're done, otherwise, record all 9359 // nodes just above the top-level loads and token factors. 9360 while (!Queue.empty()) { 9361 SDNode *ChainNext = Queue.pop_back_val(); 9362 if (!Visited.insert(ChainNext).second) 9363 continue; 9364 9365 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9366 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9367 return true; 9368 9369 if (!Visited.count(ChainLD->getChain().getNode())) 9370 Queue.push_back(ChainLD->getChain().getNode()); 9371 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9372 for (const SDUse &O : ChainNext->ops()) 9373 if (!Visited.count(O.getNode())) 9374 Queue.push_back(O.getNode()); 9375 } else 9376 LoadRoots.insert(ChainNext); 9377 } 9378 9379 // Second, search down the chain, starting from the top-level nodes recorded 9380 // in the first phase. These top-level nodes are the nodes just above all 9381 // loads and token factors. Starting with their uses, recursively look though 9382 // all loads (just the chain uses) and token factors to find a consecutive 9383 // load. 9384 Visited.clear(); 9385 Queue.clear(); 9386 9387 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9388 IE = LoadRoots.end(); I != IE; ++I) { 9389 Queue.push_back(*I); 9390 9391 while (!Queue.empty()) { 9392 SDNode *LoadRoot = Queue.pop_back_val(); 9393 if (!Visited.insert(LoadRoot).second) 9394 continue; 9395 9396 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9397 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9398 return true; 9399 9400 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9401 UE = LoadRoot->use_end(); UI != UE; ++UI) 9402 if (((isa<MemSDNode>(*UI) && 9403 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9404 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9405 Queue.push_back(*UI); 9406 } 9407 } 9408 9409 return false; 9410 } 9411 9412 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9413 DAGCombinerInfo &DCI) const { 9414 SelectionDAG &DAG = DCI.DAG; 9415 SDLoc dl(N); 9416 9417 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9418 // If we're tracking CR bits, we need to be careful that we don't have: 9419 // trunc(binary-ops(zext(x), zext(y))) 9420 // or 9421 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9422 // such that we're unnecessarily moving things into GPRs when it would be 9423 // better to keep them in CR bits. 9424 9425 // Note that trunc here can be an actual i1 trunc, or can be the effective 9426 // truncation that comes from a setcc or select_cc. 9427 if (N->getOpcode() == ISD::TRUNCATE && 9428 N->getValueType(0) != MVT::i1) 9429 return SDValue(); 9430 9431 if (N->getOperand(0).getValueType() != MVT::i32 && 9432 N->getOperand(0).getValueType() != MVT::i64) 9433 return SDValue(); 9434 9435 if (N->getOpcode() == ISD::SETCC || 9436 N->getOpcode() == ISD::SELECT_CC) { 9437 // If we're looking at a comparison, then we need to make sure that the 9438 // high bits (all except for the first) don't matter the result. 9439 ISD::CondCode CC = 9440 cast<CondCodeSDNode>(N->getOperand( 9441 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9442 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9443 9444 if (ISD::isSignedIntSetCC(CC)) { 9445 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9446 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9447 return SDValue(); 9448 } else if (ISD::isUnsignedIntSetCC(CC)) { 9449 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9450 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9451 !DAG.MaskedValueIsZero(N->getOperand(1), 9452 APInt::getHighBitsSet(OpBits, OpBits-1))) 9453 return SDValue(); 9454 } else { 9455 // This is neither a signed nor an unsigned comparison, just make sure 9456 // that the high bits are equal. 9457 APInt Op1Zero, Op1One; 9458 APInt Op2Zero, Op2One; 9459 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9460 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9461 9462 // We don't really care about what is known about the first bit (if 9463 // anything), so clear it in all masks prior to comparing them. 9464 Op1Zero.clearBit(0); Op1One.clearBit(0); 9465 Op2Zero.clearBit(0); Op2One.clearBit(0); 9466 9467 if (Op1Zero != Op2Zero || Op1One != Op2One) 9468 return SDValue(); 9469 } 9470 } 9471 9472 // We now know that the higher-order bits are irrelevant, we just need to 9473 // make sure that all of the intermediate operations are bit operations, and 9474 // all inputs are extensions. 9475 if (N->getOperand(0).getOpcode() != ISD::AND && 9476 N->getOperand(0).getOpcode() != ISD::OR && 9477 N->getOperand(0).getOpcode() != ISD::XOR && 9478 N->getOperand(0).getOpcode() != ISD::SELECT && 9479 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9480 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9481 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9482 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9483 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9484 return SDValue(); 9485 9486 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9487 N->getOperand(1).getOpcode() != ISD::AND && 9488 N->getOperand(1).getOpcode() != ISD::OR && 9489 N->getOperand(1).getOpcode() != ISD::XOR && 9490 N->getOperand(1).getOpcode() != ISD::SELECT && 9491 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9492 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9493 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9494 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9495 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9496 return SDValue(); 9497 9498 SmallVector<SDValue, 4> Inputs; 9499 SmallVector<SDValue, 8> BinOps, PromOps; 9500 SmallPtrSet<SDNode *, 16> Visited; 9501 9502 for (unsigned i = 0; i < 2; ++i) { 9503 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9504 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9505 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9506 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9507 isa<ConstantSDNode>(N->getOperand(i))) 9508 Inputs.push_back(N->getOperand(i)); 9509 else 9510 BinOps.push_back(N->getOperand(i)); 9511 9512 if (N->getOpcode() == ISD::TRUNCATE) 9513 break; 9514 } 9515 9516 // Visit all inputs, collect all binary operations (and, or, xor and 9517 // select) that are all fed by extensions. 9518 while (!BinOps.empty()) { 9519 SDValue BinOp = BinOps.back(); 9520 BinOps.pop_back(); 9521 9522 if (!Visited.insert(BinOp.getNode()).second) 9523 continue; 9524 9525 PromOps.push_back(BinOp); 9526 9527 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9528 // The condition of the select is not promoted. 9529 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9530 continue; 9531 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9532 continue; 9533 9534 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9535 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9536 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9537 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9538 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9539 Inputs.push_back(BinOp.getOperand(i)); 9540 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9541 BinOp.getOperand(i).getOpcode() == ISD::OR || 9542 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9543 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9544 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9545 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9546 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9547 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9548 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9549 BinOps.push_back(BinOp.getOperand(i)); 9550 } else { 9551 // We have an input that is not an extension or another binary 9552 // operation; we'll abort this transformation. 9553 return SDValue(); 9554 } 9555 } 9556 } 9557 9558 // Make sure that this is a self-contained cluster of operations (which 9559 // is not quite the same thing as saying that everything has only one 9560 // use). 9561 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9562 if (isa<ConstantSDNode>(Inputs[i])) 9563 continue; 9564 9565 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9566 UE = Inputs[i].getNode()->use_end(); 9567 UI != UE; ++UI) { 9568 SDNode *User = *UI; 9569 if (User != N && !Visited.count(User)) 9570 return SDValue(); 9571 9572 // Make sure that we're not going to promote the non-output-value 9573 // operand(s) or SELECT or SELECT_CC. 9574 // FIXME: Although we could sometimes handle this, and it does occur in 9575 // practice that one of the condition inputs to the select is also one of 9576 // the outputs, we currently can't deal with this. 9577 if (User->getOpcode() == ISD::SELECT) { 9578 if (User->getOperand(0) == Inputs[i]) 9579 return SDValue(); 9580 } else if (User->getOpcode() == ISD::SELECT_CC) { 9581 if (User->getOperand(0) == Inputs[i] || 9582 User->getOperand(1) == Inputs[i]) 9583 return SDValue(); 9584 } 9585 } 9586 } 9587 9588 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9589 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9590 UE = PromOps[i].getNode()->use_end(); 9591 UI != UE; ++UI) { 9592 SDNode *User = *UI; 9593 if (User != N && !Visited.count(User)) 9594 return SDValue(); 9595 9596 // Make sure that we're not going to promote the non-output-value 9597 // operand(s) or SELECT or SELECT_CC. 9598 // FIXME: Although we could sometimes handle this, and it does occur in 9599 // practice that one of the condition inputs to the select is also one of 9600 // the outputs, we currently can't deal with this. 9601 if (User->getOpcode() == ISD::SELECT) { 9602 if (User->getOperand(0) == PromOps[i]) 9603 return SDValue(); 9604 } else if (User->getOpcode() == ISD::SELECT_CC) { 9605 if (User->getOperand(0) == PromOps[i] || 9606 User->getOperand(1) == PromOps[i]) 9607 return SDValue(); 9608 } 9609 } 9610 } 9611 9612 // Replace all inputs with the extension operand. 9613 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9614 // Constants may have users outside the cluster of to-be-promoted nodes, 9615 // and so we need to replace those as we do the promotions. 9616 if (isa<ConstantSDNode>(Inputs[i])) 9617 continue; 9618 else 9619 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9620 } 9621 9622 // Replace all operations (these are all the same, but have a different 9623 // (i1) return type). DAG.getNode will validate that the types of 9624 // a binary operator match, so go through the list in reverse so that 9625 // we've likely promoted both operands first. Any intermediate truncations or 9626 // extensions disappear. 9627 while (!PromOps.empty()) { 9628 SDValue PromOp = PromOps.back(); 9629 PromOps.pop_back(); 9630 9631 if (PromOp.getOpcode() == ISD::TRUNCATE || 9632 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9633 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9634 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9635 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9636 PromOp.getOperand(0).getValueType() != MVT::i1) { 9637 // The operand is not yet ready (see comment below). 9638 PromOps.insert(PromOps.begin(), PromOp); 9639 continue; 9640 } 9641 9642 SDValue RepValue = PromOp.getOperand(0); 9643 if (isa<ConstantSDNode>(RepValue)) 9644 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9645 9646 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9647 continue; 9648 } 9649 9650 unsigned C; 9651 switch (PromOp.getOpcode()) { 9652 default: C = 0; break; 9653 case ISD::SELECT: C = 1; break; 9654 case ISD::SELECT_CC: C = 2; break; 9655 } 9656 9657 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9658 PromOp.getOperand(C).getValueType() != MVT::i1) || 9659 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9660 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9661 // The to-be-promoted operands of this node have not yet been 9662 // promoted (this should be rare because we're going through the 9663 // list backward, but if one of the operands has several users in 9664 // this cluster of to-be-promoted nodes, it is possible). 9665 PromOps.insert(PromOps.begin(), PromOp); 9666 continue; 9667 } 9668 9669 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9670 PromOp.getNode()->op_end()); 9671 9672 // If there are any constant inputs, make sure they're replaced now. 9673 for (unsigned i = 0; i < 2; ++i) 9674 if (isa<ConstantSDNode>(Ops[C+i])) 9675 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9676 9677 DAG.ReplaceAllUsesOfValueWith(PromOp, 9678 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9679 } 9680 9681 // Now we're left with the initial truncation itself. 9682 if (N->getOpcode() == ISD::TRUNCATE) 9683 return N->getOperand(0); 9684 9685 // Otherwise, this is a comparison. The operands to be compared have just 9686 // changed type (to i1), but everything else is the same. 9687 return SDValue(N, 0); 9688 } 9689 9690 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9691 DAGCombinerInfo &DCI) const { 9692 SelectionDAG &DAG = DCI.DAG; 9693 SDLoc dl(N); 9694 9695 // If we're tracking CR bits, we need to be careful that we don't have: 9696 // zext(binary-ops(trunc(x), trunc(y))) 9697 // or 9698 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9699 // such that we're unnecessarily moving things into CR bits that can more 9700 // efficiently stay in GPRs. Note that if we're not certain that the high 9701 // bits are set as required by the final extension, we still may need to do 9702 // some masking to get the proper behavior. 9703 9704 // This same functionality is important on PPC64 when dealing with 9705 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9706 // the return values of functions. Because it is so similar, it is handled 9707 // here as well. 9708 9709 if (N->getValueType(0) != MVT::i32 && 9710 N->getValueType(0) != MVT::i64) 9711 return SDValue(); 9712 9713 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9714 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9715 return SDValue(); 9716 9717 if (N->getOperand(0).getOpcode() != ISD::AND && 9718 N->getOperand(0).getOpcode() != ISD::OR && 9719 N->getOperand(0).getOpcode() != ISD::XOR && 9720 N->getOperand(0).getOpcode() != ISD::SELECT && 9721 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9722 return SDValue(); 9723 9724 SmallVector<SDValue, 4> Inputs; 9725 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9726 SmallPtrSet<SDNode *, 16> Visited; 9727 9728 // Visit all inputs, collect all binary operations (and, or, xor and 9729 // select) that are all fed by truncations. 9730 while (!BinOps.empty()) { 9731 SDValue BinOp = BinOps.back(); 9732 BinOps.pop_back(); 9733 9734 if (!Visited.insert(BinOp.getNode()).second) 9735 continue; 9736 9737 PromOps.push_back(BinOp); 9738 9739 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9740 // The condition of the select is not promoted. 9741 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9742 continue; 9743 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9744 continue; 9745 9746 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9747 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9748 Inputs.push_back(BinOp.getOperand(i)); 9749 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9750 BinOp.getOperand(i).getOpcode() == ISD::OR || 9751 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9752 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9753 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9754 BinOps.push_back(BinOp.getOperand(i)); 9755 } else { 9756 // We have an input that is not a truncation or another binary 9757 // operation; we'll abort this transformation. 9758 return SDValue(); 9759 } 9760 } 9761 } 9762 9763 // The operands of a select that must be truncated when the select is 9764 // promoted because the operand is actually part of the to-be-promoted set. 9765 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9766 9767 // Make sure that this is a self-contained cluster of operations (which 9768 // is not quite the same thing as saying that everything has only one 9769 // use). 9770 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9771 if (isa<ConstantSDNode>(Inputs[i])) 9772 continue; 9773 9774 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9775 UE = Inputs[i].getNode()->use_end(); 9776 UI != UE; ++UI) { 9777 SDNode *User = *UI; 9778 if (User != N && !Visited.count(User)) 9779 return SDValue(); 9780 9781 // If we're going to promote the non-output-value operand(s) or SELECT or 9782 // SELECT_CC, record them for truncation. 9783 if (User->getOpcode() == ISD::SELECT) { 9784 if (User->getOperand(0) == Inputs[i]) 9785 SelectTruncOp[0].insert(std::make_pair(User, 9786 User->getOperand(0).getValueType())); 9787 } else if (User->getOpcode() == ISD::SELECT_CC) { 9788 if (User->getOperand(0) == Inputs[i]) 9789 SelectTruncOp[0].insert(std::make_pair(User, 9790 User->getOperand(0).getValueType())); 9791 if (User->getOperand(1) == Inputs[i]) 9792 SelectTruncOp[1].insert(std::make_pair(User, 9793 User->getOperand(1).getValueType())); 9794 } 9795 } 9796 } 9797 9798 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9799 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9800 UE = PromOps[i].getNode()->use_end(); 9801 UI != UE; ++UI) { 9802 SDNode *User = *UI; 9803 if (User != N && !Visited.count(User)) 9804 return SDValue(); 9805 9806 // If we're going to promote the non-output-value operand(s) or SELECT or 9807 // SELECT_CC, record them for truncation. 9808 if (User->getOpcode() == ISD::SELECT) { 9809 if (User->getOperand(0) == PromOps[i]) 9810 SelectTruncOp[0].insert(std::make_pair(User, 9811 User->getOperand(0).getValueType())); 9812 } else if (User->getOpcode() == ISD::SELECT_CC) { 9813 if (User->getOperand(0) == PromOps[i]) 9814 SelectTruncOp[0].insert(std::make_pair(User, 9815 User->getOperand(0).getValueType())); 9816 if (User->getOperand(1) == PromOps[i]) 9817 SelectTruncOp[1].insert(std::make_pair(User, 9818 User->getOperand(1).getValueType())); 9819 } 9820 } 9821 } 9822 9823 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9824 bool ReallyNeedsExt = false; 9825 if (N->getOpcode() != ISD::ANY_EXTEND) { 9826 // If all of the inputs are not already sign/zero extended, then 9827 // we'll still need to do that at the end. 9828 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9829 if (isa<ConstantSDNode>(Inputs[i])) 9830 continue; 9831 9832 unsigned OpBits = 9833 Inputs[i].getOperand(0).getValueSizeInBits(); 9834 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9835 9836 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9837 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9838 APInt::getHighBitsSet(OpBits, 9839 OpBits-PromBits))) || 9840 (N->getOpcode() == ISD::SIGN_EXTEND && 9841 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9842 (OpBits-(PromBits-1)))) { 9843 ReallyNeedsExt = true; 9844 break; 9845 } 9846 } 9847 } 9848 9849 // Replace all inputs, either with the truncation operand, or a 9850 // truncation or extension to the final output type. 9851 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9852 // Constant inputs need to be replaced with the to-be-promoted nodes that 9853 // use them because they might have users outside of the cluster of 9854 // promoted nodes. 9855 if (isa<ConstantSDNode>(Inputs[i])) 9856 continue; 9857 9858 SDValue InSrc = Inputs[i].getOperand(0); 9859 if (Inputs[i].getValueType() == N->getValueType(0)) 9860 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9861 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9862 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9863 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9864 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9865 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9866 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9867 else 9868 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9869 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9870 } 9871 9872 // Replace all operations (these are all the same, but have a different 9873 // (promoted) return type). DAG.getNode will validate that the types of 9874 // a binary operator match, so go through the list in reverse so that 9875 // we've likely promoted both operands first. 9876 while (!PromOps.empty()) { 9877 SDValue PromOp = PromOps.back(); 9878 PromOps.pop_back(); 9879 9880 unsigned C; 9881 switch (PromOp.getOpcode()) { 9882 default: C = 0; break; 9883 case ISD::SELECT: C = 1; break; 9884 case ISD::SELECT_CC: C = 2; break; 9885 } 9886 9887 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9888 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9889 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9890 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9891 // The to-be-promoted operands of this node have not yet been 9892 // promoted (this should be rare because we're going through the 9893 // list backward, but if one of the operands has several users in 9894 // this cluster of to-be-promoted nodes, it is possible). 9895 PromOps.insert(PromOps.begin(), PromOp); 9896 continue; 9897 } 9898 9899 // For SELECT and SELECT_CC nodes, we do a similar check for any 9900 // to-be-promoted comparison inputs. 9901 if (PromOp.getOpcode() == ISD::SELECT || 9902 PromOp.getOpcode() == ISD::SELECT_CC) { 9903 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9904 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9905 (SelectTruncOp[1].count(PromOp.getNode()) && 9906 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9907 PromOps.insert(PromOps.begin(), PromOp); 9908 continue; 9909 } 9910 } 9911 9912 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9913 PromOp.getNode()->op_end()); 9914 9915 // If this node has constant inputs, then they'll need to be promoted here. 9916 for (unsigned i = 0; i < 2; ++i) { 9917 if (!isa<ConstantSDNode>(Ops[C+i])) 9918 continue; 9919 if (Ops[C+i].getValueType() == N->getValueType(0)) 9920 continue; 9921 9922 if (N->getOpcode() == ISD::SIGN_EXTEND) 9923 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9924 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9925 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9926 else 9927 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9928 } 9929 9930 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9931 // truncate them again to the original value type. 9932 if (PromOp.getOpcode() == ISD::SELECT || 9933 PromOp.getOpcode() == ISD::SELECT_CC) { 9934 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9935 if (SI0 != SelectTruncOp[0].end()) 9936 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9937 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9938 if (SI1 != SelectTruncOp[1].end()) 9939 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9940 } 9941 9942 DAG.ReplaceAllUsesOfValueWith(PromOp, 9943 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9944 } 9945 9946 // Now we're left with the initial extension itself. 9947 if (!ReallyNeedsExt) 9948 return N->getOperand(0); 9949 9950 // To zero extend, just mask off everything except for the first bit (in the 9951 // i1 case). 9952 if (N->getOpcode() == ISD::ZERO_EXTEND) 9953 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9954 DAG.getConstant(APInt::getLowBitsSet( 9955 N->getValueSizeInBits(0), PromBits), 9956 dl, N->getValueType(0))); 9957 9958 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9959 "Invalid extension type"); 9960 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9961 SDValue ShiftCst = 9962 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9963 return DAG.getNode( 9964 ISD::SRA, dl, N->getValueType(0), 9965 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9966 ShiftCst); 9967 } 9968 9969 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9970 DAGCombinerInfo &DCI) const { 9971 assert((N->getOpcode() == ISD::SINT_TO_FP || 9972 N->getOpcode() == ISD::UINT_TO_FP) && 9973 "Need an int -> FP conversion node here"); 9974 9975 if (!Subtarget.has64BitSupport()) 9976 return SDValue(); 9977 9978 SelectionDAG &DAG = DCI.DAG; 9979 SDLoc dl(N); 9980 SDValue Op(N, 0); 9981 9982 // Don't handle ppc_fp128 here or i1 conversions. 9983 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9984 return SDValue(); 9985 if (Op.getOperand(0).getValueType() == MVT::i1) 9986 return SDValue(); 9987 9988 // For i32 intermediate values, unfortunately, the conversion functions 9989 // leave the upper 32 bits of the value are undefined. Within the set of 9990 // scalar instructions, we have no method for zero- or sign-extending the 9991 // value. Thus, we cannot handle i32 intermediate values here. 9992 if (Op.getOperand(0).getValueType() == MVT::i32) 9993 return SDValue(); 9994 9995 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 9996 "UINT_TO_FP is supported only with FPCVT"); 9997 9998 // If we have FCFIDS, then use it when converting to single-precision. 9999 // Otherwise, convert to double-precision and then round. 10000 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10001 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10002 : PPCISD::FCFIDS) 10003 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10004 : PPCISD::FCFID); 10005 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10006 ? MVT::f32 10007 : MVT::f64; 10008 10009 // If we're converting from a float, to an int, and back to a float again, 10010 // then we don't need the store/load pair at all. 10011 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10012 Subtarget.hasFPCVT()) || 10013 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10014 SDValue Src = Op.getOperand(0).getOperand(0); 10015 if (Src.getValueType() == MVT::f32) { 10016 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10017 DCI.AddToWorklist(Src.getNode()); 10018 } else if (Src.getValueType() != MVT::f64) { 10019 // Make sure that we don't pick up a ppc_fp128 source value. 10020 return SDValue(); 10021 } 10022 10023 unsigned FCTOp = 10024 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10025 PPCISD::FCTIDUZ; 10026 10027 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10028 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10029 10030 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10031 FP = DAG.getNode(ISD::FP_ROUND, dl, 10032 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10033 DCI.AddToWorklist(FP.getNode()); 10034 } 10035 10036 return FP; 10037 } 10038 10039 return SDValue(); 10040 } 10041 10042 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10043 // builtins) into loads with swaps. 10044 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10045 DAGCombinerInfo &DCI) const { 10046 SelectionDAG &DAG = DCI.DAG; 10047 SDLoc dl(N); 10048 SDValue Chain; 10049 SDValue Base; 10050 MachineMemOperand *MMO; 10051 10052 switch (N->getOpcode()) { 10053 default: 10054 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10055 case ISD::LOAD: { 10056 LoadSDNode *LD = cast<LoadSDNode>(N); 10057 Chain = LD->getChain(); 10058 Base = LD->getBasePtr(); 10059 MMO = LD->getMemOperand(); 10060 // If the MMO suggests this isn't a load of a full vector, leave 10061 // things alone. For a built-in, we have to make the change for 10062 // correctness, so if there is a size problem that will be a bug. 10063 if (MMO->getSize() < 16) 10064 return SDValue(); 10065 break; 10066 } 10067 case ISD::INTRINSIC_W_CHAIN: { 10068 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10069 Chain = Intrin->getChain(); 10070 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10071 // us what we want. Get operand 2 instead. 10072 Base = Intrin->getOperand(2); 10073 MMO = Intrin->getMemOperand(); 10074 break; 10075 } 10076 } 10077 10078 MVT VecTy = N->getValueType(0).getSimpleVT(); 10079 SDValue LoadOps[] = { Chain, Base }; 10080 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10081 DAG.getVTList(VecTy, MVT::Other), 10082 LoadOps, VecTy, MMO); 10083 DCI.AddToWorklist(Load.getNode()); 10084 Chain = Load.getValue(1); 10085 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10086 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10087 DCI.AddToWorklist(Swap.getNode()); 10088 return Swap; 10089 } 10090 10091 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10092 // builtins) into stores with swaps. 10093 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10094 DAGCombinerInfo &DCI) const { 10095 SelectionDAG &DAG = DCI.DAG; 10096 SDLoc dl(N); 10097 SDValue Chain; 10098 SDValue Base; 10099 unsigned SrcOpnd; 10100 MachineMemOperand *MMO; 10101 10102 switch (N->getOpcode()) { 10103 default: 10104 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10105 case ISD::STORE: { 10106 StoreSDNode *ST = cast<StoreSDNode>(N); 10107 Chain = ST->getChain(); 10108 Base = ST->getBasePtr(); 10109 MMO = ST->getMemOperand(); 10110 SrcOpnd = 1; 10111 // If the MMO suggests this isn't a store of a full vector, leave 10112 // things alone. For a built-in, we have to make the change for 10113 // correctness, so if there is a size problem that will be a bug. 10114 if (MMO->getSize() < 16) 10115 return SDValue(); 10116 break; 10117 } 10118 case ISD::INTRINSIC_VOID: { 10119 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10120 Chain = Intrin->getChain(); 10121 // Intrin->getBasePtr() oddly does not get what we want. 10122 Base = Intrin->getOperand(3); 10123 MMO = Intrin->getMemOperand(); 10124 SrcOpnd = 2; 10125 break; 10126 } 10127 } 10128 10129 SDValue Src = N->getOperand(SrcOpnd); 10130 MVT VecTy = Src.getValueType().getSimpleVT(); 10131 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10132 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10133 DCI.AddToWorklist(Swap.getNode()); 10134 Chain = Swap.getValue(1); 10135 SDValue StoreOps[] = { Chain, Swap, Base }; 10136 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10137 DAG.getVTList(MVT::Other), 10138 StoreOps, VecTy, MMO); 10139 DCI.AddToWorklist(Store.getNode()); 10140 return Store; 10141 } 10142 10143 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10144 DAGCombinerInfo &DCI) const { 10145 SelectionDAG &DAG = DCI.DAG; 10146 SDLoc dl(N); 10147 switch (N->getOpcode()) { 10148 default: break; 10149 case PPCISD::SHL: 10150 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10151 if (C->isNullValue()) // 0 << V -> 0. 10152 return N->getOperand(0); 10153 } 10154 break; 10155 case PPCISD::SRL: 10156 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10157 if (C->isNullValue()) // 0 >>u V -> 0. 10158 return N->getOperand(0); 10159 } 10160 break; 10161 case PPCISD::SRA: 10162 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10163 if (C->isNullValue() || // 0 >>s V -> 0. 10164 C->isAllOnesValue()) // -1 >>s V -> -1. 10165 return N->getOperand(0); 10166 } 10167 break; 10168 case ISD::SIGN_EXTEND: 10169 case ISD::ZERO_EXTEND: 10170 case ISD::ANY_EXTEND: 10171 return DAGCombineExtBoolTrunc(N, DCI); 10172 case ISD::TRUNCATE: 10173 case ISD::SETCC: 10174 case ISD::SELECT_CC: 10175 return DAGCombineTruncBoolExt(N, DCI); 10176 case ISD::SINT_TO_FP: 10177 case ISD::UINT_TO_FP: 10178 return combineFPToIntToFP(N, DCI); 10179 case ISD::STORE: { 10180 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10181 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10182 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10183 N->getOperand(1).getValueType() == MVT::i32 && 10184 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10185 SDValue Val = N->getOperand(1).getOperand(0); 10186 if (Val.getValueType() == MVT::f32) { 10187 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10188 DCI.AddToWorklist(Val.getNode()); 10189 } 10190 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10191 DCI.AddToWorklist(Val.getNode()); 10192 10193 SDValue Ops[] = { 10194 N->getOperand(0), Val, N->getOperand(2), 10195 DAG.getValueType(N->getOperand(1).getValueType()) 10196 }; 10197 10198 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10199 DAG.getVTList(MVT::Other), Ops, 10200 cast<StoreSDNode>(N)->getMemoryVT(), 10201 cast<StoreSDNode>(N)->getMemOperand()); 10202 DCI.AddToWorklist(Val.getNode()); 10203 return Val; 10204 } 10205 10206 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10207 if (cast<StoreSDNode>(N)->isUnindexed() && 10208 N->getOperand(1).getOpcode() == ISD::BSWAP && 10209 N->getOperand(1).getNode()->hasOneUse() && 10210 (N->getOperand(1).getValueType() == MVT::i32 || 10211 N->getOperand(1).getValueType() == MVT::i16 || 10212 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10213 N->getOperand(1).getValueType() == MVT::i64))) { 10214 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10215 // Do an any-extend to 32-bits if this is a half-word input. 10216 if (BSwapOp.getValueType() == MVT::i16) 10217 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10218 10219 SDValue Ops[] = { 10220 N->getOperand(0), BSwapOp, N->getOperand(2), 10221 DAG.getValueType(N->getOperand(1).getValueType()) 10222 }; 10223 return 10224 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10225 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10226 cast<StoreSDNode>(N)->getMemOperand()); 10227 } 10228 10229 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10230 EVT VT = N->getOperand(1).getValueType(); 10231 if (VT.isSimple()) { 10232 MVT StoreVT = VT.getSimpleVT(); 10233 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10234 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10235 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10236 return expandVSXStoreForLE(N, DCI); 10237 } 10238 break; 10239 } 10240 case ISD::LOAD: { 10241 LoadSDNode *LD = cast<LoadSDNode>(N); 10242 EVT VT = LD->getValueType(0); 10243 10244 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10245 if (VT.isSimple()) { 10246 MVT LoadVT = VT.getSimpleVT(); 10247 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10248 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10249 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10250 return expandVSXLoadForLE(N, DCI); 10251 } 10252 10253 EVT MemVT = LD->getMemoryVT(); 10254 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10255 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10256 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10257 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10258 if (LD->isUnindexed() && VT.isVector() && 10259 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10260 // P8 and later hardware should just use LOAD. 10261 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10262 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10263 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10264 LD->getAlignment() >= ScalarABIAlignment)) && 10265 LD->getAlignment() < ABIAlignment) { 10266 // This is a type-legal unaligned Altivec or QPX load. 10267 SDValue Chain = LD->getChain(); 10268 SDValue Ptr = LD->getBasePtr(); 10269 bool isLittleEndian = Subtarget.isLittleEndian(); 10270 10271 // This implements the loading of unaligned vectors as described in 10272 // the venerable Apple Velocity Engine overview. Specifically: 10273 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10274 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10275 // 10276 // The general idea is to expand a sequence of one or more unaligned 10277 // loads into an alignment-based permutation-control instruction (lvsl 10278 // or lvsr), a series of regular vector loads (which always truncate 10279 // their input address to an aligned address), and a series of 10280 // permutations. The results of these permutations are the requested 10281 // loaded values. The trick is that the last "extra" load is not taken 10282 // from the address you might suspect (sizeof(vector) bytes after the 10283 // last requested load), but rather sizeof(vector) - 1 bytes after the 10284 // last requested vector. The point of this is to avoid a page fault if 10285 // the base address happened to be aligned. This works because if the 10286 // base address is aligned, then adding less than a full vector length 10287 // will cause the last vector in the sequence to be (re)loaded. 10288 // Otherwise, the next vector will be fetched as you might suspect was 10289 // necessary. 10290 10291 // We might be able to reuse the permutation generation from 10292 // a different base address offset from this one by an aligned amount. 10293 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10294 // optimization later. 10295 Intrinsic::ID Intr, IntrLD, IntrPerm; 10296 MVT PermCntlTy, PermTy, LDTy; 10297 if (Subtarget.hasAltivec()) { 10298 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10299 Intrinsic::ppc_altivec_lvsl; 10300 IntrLD = Intrinsic::ppc_altivec_lvx; 10301 IntrPerm = Intrinsic::ppc_altivec_vperm; 10302 PermCntlTy = MVT::v16i8; 10303 PermTy = MVT::v4i32; 10304 LDTy = MVT::v4i32; 10305 } else { 10306 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10307 Intrinsic::ppc_qpx_qvlpcls; 10308 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10309 Intrinsic::ppc_qpx_qvlfs; 10310 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10311 PermCntlTy = MVT::v4f64; 10312 PermTy = MVT::v4f64; 10313 LDTy = MemVT.getSimpleVT(); 10314 } 10315 10316 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10317 10318 // Create the new MMO for the new base load. It is like the original MMO, 10319 // but represents an area in memory almost twice the vector size centered 10320 // on the original address. If the address is unaligned, we might start 10321 // reading up to (sizeof(vector)-1) bytes below the address of the 10322 // original unaligned load. 10323 MachineFunction &MF = DAG.getMachineFunction(); 10324 MachineMemOperand *BaseMMO = 10325 MF.getMachineMemOperand(LD->getMemOperand(), 10326 -(long)MemVT.getStoreSize()+1, 10327 2*MemVT.getStoreSize()-1); 10328 10329 // Create the new base load. 10330 SDValue LDXIntID = 10331 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10332 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10333 SDValue BaseLoad = 10334 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10335 DAG.getVTList(PermTy, MVT::Other), 10336 BaseLoadOps, LDTy, BaseMMO); 10337 10338 // Note that the value of IncOffset (which is provided to the next 10339 // load's pointer info offset value, and thus used to calculate the 10340 // alignment), and the value of IncValue (which is actually used to 10341 // increment the pointer value) are different! This is because we 10342 // require the next load to appear to be aligned, even though it 10343 // is actually offset from the base pointer by a lesser amount. 10344 int IncOffset = VT.getSizeInBits() / 8; 10345 int IncValue = IncOffset; 10346 10347 // Walk (both up and down) the chain looking for another load at the real 10348 // (aligned) offset (the alignment of the other load does not matter in 10349 // this case). If found, then do not use the offset reduction trick, as 10350 // that will prevent the loads from being later combined (as they would 10351 // otherwise be duplicates). 10352 if (!findConsecutiveLoad(LD, DAG)) 10353 --IncValue; 10354 10355 SDValue Increment = 10356 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10357 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10358 10359 MachineMemOperand *ExtraMMO = 10360 MF.getMachineMemOperand(LD->getMemOperand(), 10361 1, 2*MemVT.getStoreSize()-1); 10362 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10363 SDValue ExtraLoad = 10364 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10365 DAG.getVTList(PermTy, MVT::Other), 10366 ExtraLoadOps, LDTy, ExtraMMO); 10367 10368 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10369 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10370 10371 // Because vperm has a big-endian bias, we must reverse the order 10372 // of the input vectors and complement the permute control vector 10373 // when generating little endian code. We have already handled the 10374 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10375 // and ExtraLoad here. 10376 SDValue Perm; 10377 if (isLittleEndian) 10378 Perm = BuildIntrinsicOp(IntrPerm, 10379 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10380 else 10381 Perm = BuildIntrinsicOp(IntrPerm, 10382 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10383 10384 if (VT != PermTy) 10385 Perm = Subtarget.hasAltivec() ? 10386 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10387 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10388 DAG.getTargetConstant(1, dl, MVT::i64)); 10389 // second argument is 1 because this rounding 10390 // is always exact. 10391 10392 // The output of the permutation is our loaded result, the TokenFactor is 10393 // our new chain. 10394 DCI.CombineTo(N, Perm, TF); 10395 return SDValue(N, 0); 10396 } 10397 } 10398 break; 10399 case ISD::INTRINSIC_WO_CHAIN: { 10400 bool isLittleEndian = Subtarget.isLittleEndian(); 10401 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10402 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10403 : Intrinsic::ppc_altivec_lvsl); 10404 if ((IID == Intr || 10405 IID == Intrinsic::ppc_qpx_qvlpcld || 10406 IID == Intrinsic::ppc_qpx_qvlpcls) && 10407 N->getOperand(1)->getOpcode() == ISD::ADD) { 10408 SDValue Add = N->getOperand(1); 10409 10410 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10411 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10412 10413 if (DAG.MaskedValueIsZero( 10414 Add->getOperand(1), 10415 APInt::getAllOnesValue(Bits /* alignment */) 10416 .zext( 10417 Add.getValueType().getScalarType().getSizeInBits()))) { 10418 SDNode *BasePtr = Add->getOperand(0).getNode(); 10419 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10420 UE = BasePtr->use_end(); 10421 UI != UE; ++UI) { 10422 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10423 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10424 // We've found another LVSL/LVSR, and this address is an aligned 10425 // multiple of that one. The results will be the same, so use the 10426 // one we've just found instead. 10427 10428 return SDValue(*UI, 0); 10429 } 10430 } 10431 } 10432 10433 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10434 SDNode *BasePtr = Add->getOperand(0).getNode(); 10435 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10436 UE = BasePtr->use_end(); UI != UE; ++UI) { 10437 if (UI->getOpcode() == ISD::ADD && 10438 isa<ConstantSDNode>(UI->getOperand(1)) && 10439 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10440 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10441 (1ULL << Bits) == 0) { 10442 SDNode *OtherAdd = *UI; 10443 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10444 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10445 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10446 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10447 return SDValue(*VI, 0); 10448 } 10449 } 10450 } 10451 } 10452 } 10453 } 10454 } 10455 10456 break; 10457 case ISD::INTRINSIC_W_CHAIN: { 10458 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10459 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10460 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10461 default: 10462 break; 10463 case Intrinsic::ppc_vsx_lxvw4x: 10464 case Intrinsic::ppc_vsx_lxvd2x: 10465 return expandVSXLoadForLE(N, DCI); 10466 } 10467 } 10468 break; 10469 } 10470 case ISD::INTRINSIC_VOID: { 10471 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10472 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10473 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10474 default: 10475 break; 10476 case Intrinsic::ppc_vsx_stxvw4x: 10477 case Intrinsic::ppc_vsx_stxvd2x: 10478 return expandVSXStoreForLE(N, DCI); 10479 } 10480 } 10481 break; 10482 } 10483 case ISD::BSWAP: 10484 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10485 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10486 N->getOperand(0).hasOneUse() && 10487 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10488 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10489 N->getValueType(0) == MVT::i64))) { 10490 SDValue Load = N->getOperand(0); 10491 LoadSDNode *LD = cast<LoadSDNode>(Load); 10492 // Create the byte-swapping load. 10493 SDValue Ops[] = { 10494 LD->getChain(), // Chain 10495 LD->getBasePtr(), // Ptr 10496 DAG.getValueType(N->getValueType(0)) // VT 10497 }; 10498 SDValue BSLoad = 10499 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10500 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10501 MVT::i64 : MVT::i32, MVT::Other), 10502 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10503 10504 // If this is an i16 load, insert the truncate. 10505 SDValue ResVal = BSLoad; 10506 if (N->getValueType(0) == MVT::i16) 10507 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10508 10509 // First, combine the bswap away. This makes the value produced by the 10510 // load dead. 10511 DCI.CombineTo(N, ResVal); 10512 10513 // Next, combine the load away, we give it a bogus result value but a real 10514 // chain result. The result value is dead because the bswap is dead. 10515 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10516 10517 // Return N so it doesn't get rechecked! 10518 return SDValue(N, 0); 10519 } 10520 10521 break; 10522 case PPCISD::VCMP: { 10523 // If a VCMPo node already exists with exactly the same operands as this 10524 // node, use its result instead of this node (VCMPo computes both a CR6 and 10525 // a normal output). 10526 // 10527 if (!N->getOperand(0).hasOneUse() && 10528 !N->getOperand(1).hasOneUse() && 10529 !N->getOperand(2).hasOneUse()) { 10530 10531 // Scan all of the users of the LHS, looking for VCMPo's that match. 10532 SDNode *VCMPoNode = nullptr; 10533 10534 SDNode *LHSN = N->getOperand(0).getNode(); 10535 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10536 UI != E; ++UI) 10537 if (UI->getOpcode() == PPCISD::VCMPo && 10538 UI->getOperand(1) == N->getOperand(1) && 10539 UI->getOperand(2) == N->getOperand(2) && 10540 UI->getOperand(0) == N->getOperand(0)) { 10541 VCMPoNode = *UI; 10542 break; 10543 } 10544 10545 // If there is no VCMPo node, or if the flag value has a single use, don't 10546 // transform this. 10547 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10548 break; 10549 10550 // Look at the (necessarily single) use of the flag value. If it has a 10551 // chain, this transformation is more complex. Note that multiple things 10552 // could use the value result, which we should ignore. 10553 SDNode *FlagUser = nullptr; 10554 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10555 FlagUser == nullptr; ++UI) { 10556 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10557 SDNode *User = *UI; 10558 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10559 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10560 FlagUser = User; 10561 break; 10562 } 10563 } 10564 } 10565 10566 // If the user is a MFOCRF instruction, we know this is safe. 10567 // Otherwise we give up for right now. 10568 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10569 return SDValue(VCMPoNode, 0); 10570 } 10571 break; 10572 } 10573 case ISD::BRCOND: { 10574 SDValue Cond = N->getOperand(1); 10575 SDValue Target = N->getOperand(2); 10576 10577 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10578 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10579 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10580 10581 // We now need to make the intrinsic dead (it cannot be instruction 10582 // selected). 10583 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10584 assert(Cond.getNode()->hasOneUse() && 10585 "Counter decrement has more than one use"); 10586 10587 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10588 N->getOperand(0), Target); 10589 } 10590 } 10591 break; 10592 case ISD::BR_CC: { 10593 // If this is a branch on an altivec predicate comparison, lower this so 10594 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10595 // lowering is done pre-legalize, because the legalizer lowers the predicate 10596 // compare down to code that is difficult to reassemble. 10597 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10598 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10599 10600 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10601 // value. If so, pass-through the AND to get to the intrinsic. 10602 if (LHS.getOpcode() == ISD::AND && 10603 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10604 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10605 Intrinsic::ppc_is_decremented_ctr_nonzero && 10606 isa<ConstantSDNode>(LHS.getOperand(1)) && 10607 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10608 isZero()) 10609 LHS = LHS.getOperand(0); 10610 10611 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10612 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10613 Intrinsic::ppc_is_decremented_ctr_nonzero && 10614 isa<ConstantSDNode>(RHS)) { 10615 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10616 "Counter decrement comparison is not EQ or NE"); 10617 10618 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10619 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10620 (CC == ISD::SETNE && !Val); 10621 10622 // We now need to make the intrinsic dead (it cannot be instruction 10623 // selected). 10624 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10625 assert(LHS.getNode()->hasOneUse() && 10626 "Counter decrement has more than one use"); 10627 10628 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10629 N->getOperand(0), N->getOperand(4)); 10630 } 10631 10632 int CompareOpc; 10633 bool isDot; 10634 10635 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10636 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10637 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10638 assert(isDot && "Can't compare against a vector result!"); 10639 10640 // If this is a comparison against something other than 0/1, then we know 10641 // that the condition is never/always true. 10642 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10643 if (Val != 0 && Val != 1) { 10644 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10645 return N->getOperand(0); 10646 // Always !=, turn it into an unconditional branch. 10647 return DAG.getNode(ISD::BR, dl, MVT::Other, 10648 N->getOperand(0), N->getOperand(4)); 10649 } 10650 10651 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10652 10653 // Create the PPCISD altivec 'dot' comparison node. 10654 SDValue Ops[] = { 10655 LHS.getOperand(2), // LHS of compare 10656 LHS.getOperand(3), // RHS of compare 10657 DAG.getConstant(CompareOpc, dl, MVT::i32) 10658 }; 10659 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10660 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10661 10662 // Unpack the result based on how the target uses it. 10663 PPC::Predicate CompOpc; 10664 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10665 default: // Can't happen, don't crash on invalid number though. 10666 case 0: // Branch on the value of the EQ bit of CR6. 10667 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10668 break; 10669 case 1: // Branch on the inverted value of the EQ bit of CR6. 10670 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10671 break; 10672 case 2: // Branch on the value of the LT bit of CR6. 10673 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10674 break; 10675 case 3: // Branch on the inverted value of the LT bit of CR6. 10676 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10677 break; 10678 } 10679 10680 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10681 DAG.getConstant(CompOpc, dl, MVT::i32), 10682 DAG.getRegister(PPC::CR6, MVT::i32), 10683 N->getOperand(4), CompNode.getValue(1)); 10684 } 10685 break; 10686 } 10687 } 10688 10689 return SDValue(); 10690 } 10691 10692 SDValue 10693 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10694 SelectionDAG &DAG, 10695 std::vector<SDNode *> *Created) const { 10696 // fold (sdiv X, pow2) 10697 EVT VT = N->getValueType(0); 10698 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10699 return SDValue(); 10700 if ((VT != MVT::i32 && VT != MVT::i64) || 10701 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10702 return SDValue(); 10703 10704 SDLoc DL(N); 10705 SDValue N0 = N->getOperand(0); 10706 10707 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10708 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10709 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10710 10711 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10712 if (Created) 10713 Created->push_back(Op.getNode()); 10714 10715 if (IsNegPow2) { 10716 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10717 if (Created) 10718 Created->push_back(Op.getNode()); 10719 } 10720 10721 return Op; 10722 } 10723 10724 //===----------------------------------------------------------------------===// 10725 // Inline Assembly Support 10726 //===----------------------------------------------------------------------===// 10727 10728 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10729 APInt &KnownZero, 10730 APInt &KnownOne, 10731 const SelectionDAG &DAG, 10732 unsigned Depth) const { 10733 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10734 switch (Op.getOpcode()) { 10735 default: break; 10736 case PPCISD::LBRX: { 10737 // lhbrx is known to have the top bits cleared out. 10738 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10739 KnownZero = 0xFFFF0000; 10740 break; 10741 } 10742 case ISD::INTRINSIC_WO_CHAIN: { 10743 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10744 default: break; 10745 case Intrinsic::ppc_altivec_vcmpbfp_p: 10746 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10747 case Intrinsic::ppc_altivec_vcmpequb_p: 10748 case Intrinsic::ppc_altivec_vcmpequh_p: 10749 case Intrinsic::ppc_altivec_vcmpequw_p: 10750 case Intrinsic::ppc_altivec_vcmpequd_p: 10751 case Intrinsic::ppc_altivec_vcmpgefp_p: 10752 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10753 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10754 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10755 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10756 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10757 case Intrinsic::ppc_altivec_vcmpgtub_p: 10758 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10759 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10760 case Intrinsic::ppc_altivec_vcmpgtud_p: 10761 KnownZero = ~1U; // All bits but the low one are known to be zero. 10762 break; 10763 } 10764 } 10765 } 10766 } 10767 10768 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10769 switch (Subtarget.getDarwinDirective()) { 10770 default: break; 10771 case PPC::DIR_970: 10772 case PPC::DIR_PWR4: 10773 case PPC::DIR_PWR5: 10774 case PPC::DIR_PWR5X: 10775 case PPC::DIR_PWR6: 10776 case PPC::DIR_PWR6X: 10777 case PPC::DIR_PWR7: 10778 case PPC::DIR_PWR8: { 10779 if (!ML) 10780 break; 10781 10782 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10783 10784 // For small loops (between 5 and 8 instructions), align to a 32-byte 10785 // boundary so that the entire loop fits in one instruction-cache line. 10786 uint64_t LoopSize = 0; 10787 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10788 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10789 LoopSize += TII->GetInstSizeInBytes(J); 10790 10791 if (LoopSize > 16 && LoopSize <= 32) 10792 return 5; 10793 10794 break; 10795 } 10796 } 10797 10798 return TargetLowering::getPrefLoopAlignment(ML); 10799 } 10800 10801 /// getConstraintType - Given a constraint, return the type of 10802 /// constraint it is for this target. 10803 PPCTargetLowering::ConstraintType 10804 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10805 if (Constraint.size() == 1) { 10806 switch (Constraint[0]) { 10807 default: break; 10808 case 'b': 10809 case 'r': 10810 case 'f': 10811 case 'v': 10812 case 'y': 10813 return C_RegisterClass; 10814 case 'Z': 10815 // FIXME: While Z does indicate a memory constraint, it specifically 10816 // indicates an r+r address (used in conjunction with the 'y' modifier 10817 // in the replacement string). Currently, we're forcing the base 10818 // register to be r0 in the asm printer (which is interpreted as zero) 10819 // and forming the complete address in the second register. This is 10820 // suboptimal. 10821 return C_Memory; 10822 } 10823 } else if (Constraint == "wc") { // individual CR bits. 10824 return C_RegisterClass; 10825 } else if (Constraint == "wa" || Constraint == "wd" || 10826 Constraint == "wf" || Constraint == "ws") { 10827 return C_RegisterClass; // VSX registers. 10828 } 10829 return TargetLowering::getConstraintType(Constraint); 10830 } 10831 10832 /// Examine constraint type and operand type and determine a weight value. 10833 /// This object must already have been set up with the operand type 10834 /// and the current alternative constraint selected. 10835 TargetLowering::ConstraintWeight 10836 PPCTargetLowering::getSingleConstraintMatchWeight( 10837 AsmOperandInfo &info, const char *constraint) const { 10838 ConstraintWeight weight = CW_Invalid; 10839 Value *CallOperandVal = info.CallOperandVal; 10840 // If we don't have a value, we can't do a match, 10841 // but allow it at the lowest weight. 10842 if (!CallOperandVal) 10843 return CW_Default; 10844 Type *type = CallOperandVal->getType(); 10845 10846 // Look at the constraint type. 10847 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10848 return CW_Register; // an individual CR bit. 10849 else if ((StringRef(constraint) == "wa" || 10850 StringRef(constraint) == "wd" || 10851 StringRef(constraint) == "wf") && 10852 type->isVectorTy()) 10853 return CW_Register; 10854 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10855 return CW_Register; 10856 10857 switch (*constraint) { 10858 default: 10859 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10860 break; 10861 case 'b': 10862 if (type->isIntegerTy()) 10863 weight = CW_Register; 10864 break; 10865 case 'f': 10866 if (type->isFloatTy()) 10867 weight = CW_Register; 10868 break; 10869 case 'd': 10870 if (type->isDoubleTy()) 10871 weight = CW_Register; 10872 break; 10873 case 'v': 10874 if (type->isVectorTy()) 10875 weight = CW_Register; 10876 break; 10877 case 'y': 10878 weight = CW_Register; 10879 break; 10880 case 'Z': 10881 weight = CW_Memory; 10882 break; 10883 } 10884 return weight; 10885 } 10886 10887 std::pair<unsigned, const TargetRegisterClass *> 10888 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10889 StringRef Constraint, 10890 MVT VT) const { 10891 if (Constraint.size() == 1) { 10892 // GCC RS6000 Constraint Letters 10893 switch (Constraint[0]) { 10894 case 'b': // R1-R31 10895 if (VT == MVT::i64 && Subtarget.isPPC64()) 10896 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10897 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10898 case 'r': // R0-R31 10899 if (VT == MVT::i64 && Subtarget.isPPC64()) 10900 return std::make_pair(0U, &PPC::G8RCRegClass); 10901 return std::make_pair(0U, &PPC::GPRCRegClass); 10902 case 'f': 10903 if (VT == MVT::f32 || VT == MVT::i32) 10904 return std::make_pair(0U, &PPC::F4RCRegClass); 10905 if (VT == MVT::f64 || VT == MVT::i64) 10906 return std::make_pair(0U, &PPC::F8RCRegClass); 10907 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10908 return std::make_pair(0U, &PPC::QFRCRegClass); 10909 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10910 return std::make_pair(0U, &PPC::QSRCRegClass); 10911 break; 10912 case 'v': 10913 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10914 return std::make_pair(0U, &PPC::QFRCRegClass); 10915 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10916 return std::make_pair(0U, &PPC::QSRCRegClass); 10917 if (Subtarget.hasAltivec()) 10918 return std::make_pair(0U, &PPC::VRRCRegClass); 10919 case 'y': // crrc 10920 return std::make_pair(0U, &PPC::CRRCRegClass); 10921 } 10922 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 10923 // An individual CR bit. 10924 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10925 } else if ((Constraint == "wa" || Constraint == "wd" || 10926 Constraint == "wf") && Subtarget.hasVSX()) { 10927 return std::make_pair(0U, &PPC::VSRCRegClass); 10928 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 10929 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 10930 return std::make_pair(0U, &PPC::VSSRCRegClass); 10931 else 10932 return std::make_pair(0U, &PPC::VSFRCRegClass); 10933 } 10934 10935 std::pair<unsigned, const TargetRegisterClass *> R = 10936 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10937 10938 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10939 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10940 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10941 // register. 10942 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10943 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10944 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10945 PPC::GPRCRegClass.contains(R.first)) 10946 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10947 PPC::sub_32, &PPC::G8RCRegClass), 10948 &PPC::G8RCRegClass); 10949 10950 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10951 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10952 R.first = PPC::CR0; 10953 R.second = &PPC::CRRCRegClass; 10954 } 10955 10956 return R; 10957 } 10958 10959 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10960 /// vector. If it is invalid, don't add anything to Ops. 10961 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10962 std::string &Constraint, 10963 std::vector<SDValue>&Ops, 10964 SelectionDAG &DAG) const { 10965 SDValue Result; 10966 10967 // Only support length 1 constraints. 10968 if (Constraint.length() > 1) return; 10969 10970 char Letter = Constraint[0]; 10971 switch (Letter) { 10972 default: break; 10973 case 'I': 10974 case 'J': 10975 case 'K': 10976 case 'L': 10977 case 'M': 10978 case 'N': 10979 case 'O': 10980 case 'P': { 10981 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10982 if (!CST) return; // Must be an immediate to match. 10983 SDLoc dl(Op); 10984 int64_t Value = CST->getSExtValue(); 10985 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10986 // numbers are printed as such. 10987 switch (Letter) { 10988 default: llvm_unreachable("Unknown constraint letter!"); 10989 case 'I': // "I" is a signed 16-bit constant. 10990 if (isInt<16>(Value)) 10991 Result = DAG.getTargetConstant(Value, dl, TCVT); 10992 break; 10993 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 10994 if (isShiftedUInt<16, 16>(Value)) 10995 Result = DAG.getTargetConstant(Value, dl, TCVT); 10996 break; 10997 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 10998 if (isShiftedInt<16, 16>(Value)) 10999 Result = DAG.getTargetConstant(Value, dl, TCVT); 11000 break; 11001 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11002 if (isUInt<16>(Value)) 11003 Result = DAG.getTargetConstant(Value, dl, TCVT); 11004 break; 11005 case 'M': // "M" is a constant that is greater than 31. 11006 if (Value > 31) 11007 Result = DAG.getTargetConstant(Value, dl, TCVT); 11008 break; 11009 case 'N': // "N" is a positive constant that is an exact power of two. 11010 if (Value > 0 && isPowerOf2_64(Value)) 11011 Result = DAG.getTargetConstant(Value, dl, TCVT); 11012 break; 11013 case 'O': // "O" is the constant zero. 11014 if (Value == 0) 11015 Result = DAG.getTargetConstant(Value, dl, TCVT); 11016 break; 11017 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11018 if (isInt<16>(-Value)) 11019 Result = DAG.getTargetConstant(Value, dl, TCVT); 11020 break; 11021 } 11022 break; 11023 } 11024 } 11025 11026 if (Result.getNode()) { 11027 Ops.push_back(Result); 11028 return; 11029 } 11030 11031 // Handle standard constraint letters. 11032 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11033 } 11034 11035 // isLegalAddressingMode - Return true if the addressing mode represented 11036 // by AM is legal for this target, for a load/store of the specified type. 11037 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11038 const AddrMode &AM, Type *Ty, 11039 unsigned AS) const { 11040 // PPC does not allow r+i addressing modes for vectors! 11041 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11042 return false; 11043 11044 // PPC allows a sign-extended 16-bit immediate field. 11045 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11046 return false; 11047 11048 // No global is ever allowed as a base. 11049 if (AM.BaseGV) 11050 return false; 11051 11052 // PPC only support r+r, 11053 switch (AM.Scale) { 11054 case 0: // "r+i" or just "i", depending on HasBaseReg. 11055 break; 11056 case 1: 11057 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11058 return false; 11059 // Otherwise we have r+r or r+i. 11060 break; 11061 case 2: 11062 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11063 return false; 11064 // Allow 2*r as r+r. 11065 break; 11066 default: 11067 // No other scales are supported. 11068 return false; 11069 } 11070 11071 return true; 11072 } 11073 11074 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11075 SelectionDAG &DAG) const { 11076 MachineFunction &MF = DAG.getMachineFunction(); 11077 MachineFrameInfo *MFI = MF.getFrameInfo(); 11078 MFI->setReturnAddressIsTaken(true); 11079 11080 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11081 return SDValue(); 11082 11083 SDLoc dl(Op); 11084 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11085 11086 // Make sure the function does not optimize away the store of the RA to 11087 // the stack. 11088 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11089 FuncInfo->setLRStoreRequired(); 11090 bool isPPC64 = Subtarget.isPPC64(); 11091 auto PtrVT = getPointerTy(MF.getDataLayout()); 11092 11093 if (Depth > 0) { 11094 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11095 SDValue Offset = 11096 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11097 isPPC64 ? MVT::i64 : MVT::i32); 11098 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11099 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11100 MachinePointerInfo(), false, false, false, 0); 11101 } 11102 11103 // Just load the return address off the stack. 11104 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11105 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11106 MachinePointerInfo(), false, false, false, 0); 11107 } 11108 11109 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11110 SelectionDAG &DAG) const { 11111 SDLoc dl(Op); 11112 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11113 11114 MachineFunction &MF = DAG.getMachineFunction(); 11115 MachineFrameInfo *MFI = MF.getFrameInfo(); 11116 MFI->setFrameAddressIsTaken(true); 11117 11118 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11119 bool isPPC64 = PtrVT == MVT::i64; 11120 11121 // Naked functions never have a frame pointer, and so we use r1. For all 11122 // other functions, this decision must be delayed until during PEI. 11123 unsigned FrameReg; 11124 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11125 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11126 else 11127 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11128 11129 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11130 PtrVT); 11131 while (Depth--) 11132 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11133 FrameAddr, MachinePointerInfo(), false, false, 11134 false, 0); 11135 return FrameAddr; 11136 } 11137 11138 // FIXME? Maybe this could be a TableGen attribute on some registers and 11139 // this table could be generated automatically from RegInfo. 11140 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11141 SelectionDAG &DAG) const { 11142 bool isPPC64 = Subtarget.isPPC64(); 11143 bool isDarwinABI = Subtarget.isDarwinABI(); 11144 11145 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11146 (!isPPC64 && VT != MVT::i32)) 11147 report_fatal_error("Invalid register global variable type"); 11148 11149 bool is64Bit = isPPC64 && VT == MVT::i64; 11150 unsigned Reg = StringSwitch<unsigned>(RegName) 11151 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11152 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11153 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11154 (is64Bit ? PPC::X13 : PPC::R13)) 11155 .Default(0); 11156 11157 if (Reg) 11158 return Reg; 11159 report_fatal_error("Invalid register name global variable"); 11160 } 11161 11162 bool 11163 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11164 // The PowerPC target isn't yet aware of offsets. 11165 return false; 11166 } 11167 11168 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11169 const CallInst &I, 11170 unsigned Intrinsic) const { 11171 11172 switch (Intrinsic) { 11173 case Intrinsic::ppc_qpx_qvlfd: 11174 case Intrinsic::ppc_qpx_qvlfs: 11175 case Intrinsic::ppc_qpx_qvlfcd: 11176 case Intrinsic::ppc_qpx_qvlfcs: 11177 case Intrinsic::ppc_qpx_qvlfiwa: 11178 case Intrinsic::ppc_qpx_qvlfiwz: 11179 case Intrinsic::ppc_altivec_lvx: 11180 case Intrinsic::ppc_altivec_lvxl: 11181 case Intrinsic::ppc_altivec_lvebx: 11182 case Intrinsic::ppc_altivec_lvehx: 11183 case Intrinsic::ppc_altivec_lvewx: 11184 case Intrinsic::ppc_vsx_lxvd2x: 11185 case Intrinsic::ppc_vsx_lxvw4x: { 11186 EVT VT; 11187 switch (Intrinsic) { 11188 case Intrinsic::ppc_altivec_lvebx: 11189 VT = MVT::i8; 11190 break; 11191 case Intrinsic::ppc_altivec_lvehx: 11192 VT = MVT::i16; 11193 break; 11194 case Intrinsic::ppc_altivec_lvewx: 11195 VT = MVT::i32; 11196 break; 11197 case Intrinsic::ppc_vsx_lxvd2x: 11198 VT = MVT::v2f64; 11199 break; 11200 case Intrinsic::ppc_qpx_qvlfd: 11201 VT = MVT::v4f64; 11202 break; 11203 case Intrinsic::ppc_qpx_qvlfs: 11204 VT = MVT::v4f32; 11205 break; 11206 case Intrinsic::ppc_qpx_qvlfcd: 11207 VT = MVT::v2f64; 11208 break; 11209 case Intrinsic::ppc_qpx_qvlfcs: 11210 VT = MVT::v2f32; 11211 break; 11212 default: 11213 VT = MVT::v4i32; 11214 break; 11215 } 11216 11217 Info.opc = ISD::INTRINSIC_W_CHAIN; 11218 Info.memVT = VT; 11219 Info.ptrVal = I.getArgOperand(0); 11220 Info.offset = -VT.getStoreSize()+1; 11221 Info.size = 2*VT.getStoreSize()-1; 11222 Info.align = 1; 11223 Info.vol = false; 11224 Info.readMem = true; 11225 Info.writeMem = false; 11226 return true; 11227 } 11228 case Intrinsic::ppc_qpx_qvlfda: 11229 case Intrinsic::ppc_qpx_qvlfsa: 11230 case Intrinsic::ppc_qpx_qvlfcda: 11231 case Intrinsic::ppc_qpx_qvlfcsa: 11232 case Intrinsic::ppc_qpx_qvlfiwaa: 11233 case Intrinsic::ppc_qpx_qvlfiwza: { 11234 EVT VT; 11235 switch (Intrinsic) { 11236 case Intrinsic::ppc_qpx_qvlfda: 11237 VT = MVT::v4f64; 11238 break; 11239 case Intrinsic::ppc_qpx_qvlfsa: 11240 VT = MVT::v4f32; 11241 break; 11242 case Intrinsic::ppc_qpx_qvlfcda: 11243 VT = MVT::v2f64; 11244 break; 11245 case Intrinsic::ppc_qpx_qvlfcsa: 11246 VT = MVT::v2f32; 11247 break; 11248 default: 11249 VT = MVT::v4i32; 11250 break; 11251 } 11252 11253 Info.opc = ISD::INTRINSIC_W_CHAIN; 11254 Info.memVT = VT; 11255 Info.ptrVal = I.getArgOperand(0); 11256 Info.offset = 0; 11257 Info.size = VT.getStoreSize(); 11258 Info.align = 1; 11259 Info.vol = false; 11260 Info.readMem = true; 11261 Info.writeMem = false; 11262 return true; 11263 } 11264 case Intrinsic::ppc_qpx_qvstfd: 11265 case Intrinsic::ppc_qpx_qvstfs: 11266 case Intrinsic::ppc_qpx_qvstfcd: 11267 case Intrinsic::ppc_qpx_qvstfcs: 11268 case Intrinsic::ppc_qpx_qvstfiw: 11269 case Intrinsic::ppc_altivec_stvx: 11270 case Intrinsic::ppc_altivec_stvxl: 11271 case Intrinsic::ppc_altivec_stvebx: 11272 case Intrinsic::ppc_altivec_stvehx: 11273 case Intrinsic::ppc_altivec_stvewx: 11274 case Intrinsic::ppc_vsx_stxvd2x: 11275 case Intrinsic::ppc_vsx_stxvw4x: { 11276 EVT VT; 11277 switch (Intrinsic) { 11278 case Intrinsic::ppc_altivec_stvebx: 11279 VT = MVT::i8; 11280 break; 11281 case Intrinsic::ppc_altivec_stvehx: 11282 VT = MVT::i16; 11283 break; 11284 case Intrinsic::ppc_altivec_stvewx: 11285 VT = MVT::i32; 11286 break; 11287 case Intrinsic::ppc_vsx_stxvd2x: 11288 VT = MVT::v2f64; 11289 break; 11290 case Intrinsic::ppc_qpx_qvstfd: 11291 VT = MVT::v4f64; 11292 break; 11293 case Intrinsic::ppc_qpx_qvstfs: 11294 VT = MVT::v4f32; 11295 break; 11296 case Intrinsic::ppc_qpx_qvstfcd: 11297 VT = MVT::v2f64; 11298 break; 11299 case Intrinsic::ppc_qpx_qvstfcs: 11300 VT = MVT::v2f32; 11301 break; 11302 default: 11303 VT = MVT::v4i32; 11304 break; 11305 } 11306 11307 Info.opc = ISD::INTRINSIC_VOID; 11308 Info.memVT = VT; 11309 Info.ptrVal = I.getArgOperand(1); 11310 Info.offset = -VT.getStoreSize()+1; 11311 Info.size = 2*VT.getStoreSize()-1; 11312 Info.align = 1; 11313 Info.vol = false; 11314 Info.readMem = false; 11315 Info.writeMem = true; 11316 return true; 11317 } 11318 case Intrinsic::ppc_qpx_qvstfda: 11319 case Intrinsic::ppc_qpx_qvstfsa: 11320 case Intrinsic::ppc_qpx_qvstfcda: 11321 case Intrinsic::ppc_qpx_qvstfcsa: 11322 case Intrinsic::ppc_qpx_qvstfiwa: { 11323 EVT VT; 11324 switch (Intrinsic) { 11325 case Intrinsic::ppc_qpx_qvstfda: 11326 VT = MVT::v4f64; 11327 break; 11328 case Intrinsic::ppc_qpx_qvstfsa: 11329 VT = MVT::v4f32; 11330 break; 11331 case Intrinsic::ppc_qpx_qvstfcda: 11332 VT = MVT::v2f64; 11333 break; 11334 case Intrinsic::ppc_qpx_qvstfcsa: 11335 VT = MVT::v2f32; 11336 break; 11337 default: 11338 VT = MVT::v4i32; 11339 break; 11340 } 11341 11342 Info.opc = ISD::INTRINSIC_VOID; 11343 Info.memVT = VT; 11344 Info.ptrVal = I.getArgOperand(1); 11345 Info.offset = 0; 11346 Info.size = VT.getStoreSize(); 11347 Info.align = 1; 11348 Info.vol = false; 11349 Info.readMem = false; 11350 Info.writeMem = true; 11351 return true; 11352 } 11353 default: 11354 break; 11355 } 11356 11357 return false; 11358 } 11359 11360 /// getOptimalMemOpType - Returns the target specific optimal type for load 11361 /// and store operations as a result of memset, memcpy, and memmove 11362 /// lowering. If DstAlign is zero that means it's safe to destination 11363 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11364 /// means there isn't a need to check it against alignment requirement, 11365 /// probably because the source does not need to be loaded. If 'IsMemset' is 11366 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11367 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11368 /// source is constant so it does not need to be loaded. 11369 /// It returns EVT::Other if the type should be determined using generic 11370 /// target-independent logic. 11371 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11372 unsigned DstAlign, unsigned SrcAlign, 11373 bool IsMemset, bool ZeroMemset, 11374 bool MemcpyStrSrc, 11375 MachineFunction &MF) const { 11376 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11377 const Function *F = MF.getFunction(); 11378 // When expanding a memset, require at least two QPX instructions to cover 11379 // the cost of loading the value to be stored from the constant pool. 11380 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11381 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11382 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11383 return MVT::v4f64; 11384 } 11385 11386 // We should use Altivec/VSX loads and stores when available. For unaligned 11387 // addresses, unaligned VSX loads are only fast starting with the P8. 11388 if (Subtarget.hasAltivec() && Size >= 16 && 11389 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11390 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11391 return MVT::v4i32; 11392 } 11393 11394 if (Subtarget.isPPC64()) { 11395 return MVT::i64; 11396 } 11397 11398 return MVT::i32; 11399 } 11400 11401 /// \brief Returns true if it is beneficial to convert a load of a constant 11402 /// to just the constant itself. 11403 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11404 Type *Ty) const { 11405 assert(Ty->isIntegerTy()); 11406 11407 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11408 if (BitSize == 0 || BitSize > 64) 11409 return false; 11410 return true; 11411 } 11412 11413 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11414 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11415 return false; 11416 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11417 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11418 return NumBits1 == 64 && NumBits2 == 32; 11419 } 11420 11421 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11422 if (!VT1.isInteger() || !VT2.isInteger()) 11423 return false; 11424 unsigned NumBits1 = VT1.getSizeInBits(); 11425 unsigned NumBits2 = VT2.getSizeInBits(); 11426 return NumBits1 == 64 && NumBits2 == 32; 11427 } 11428 11429 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11430 // Generally speaking, zexts are not free, but they are free when they can be 11431 // folded with other operations. 11432 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11433 EVT MemVT = LD->getMemoryVT(); 11434 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11435 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11436 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11437 LD->getExtensionType() == ISD::ZEXTLOAD)) 11438 return true; 11439 } 11440 11441 // FIXME: Add other cases... 11442 // - 32-bit shifts with a zext to i64 11443 // - zext after ctlz, bswap, etc. 11444 // - zext after and by a constant mask 11445 11446 return TargetLowering::isZExtFree(Val, VT2); 11447 } 11448 11449 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11450 assert(VT.isFloatingPoint()); 11451 return true; 11452 } 11453 11454 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11455 return isInt<16>(Imm) || isUInt<16>(Imm); 11456 } 11457 11458 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11459 return isInt<16>(Imm) || isUInt<16>(Imm); 11460 } 11461 11462 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11463 unsigned, 11464 unsigned, 11465 bool *Fast) const { 11466 if (DisablePPCUnaligned) 11467 return false; 11468 11469 // PowerPC supports unaligned memory access for simple non-vector types. 11470 // Although accessing unaligned addresses is not as efficient as accessing 11471 // aligned addresses, it is generally more efficient than manual expansion, 11472 // and generally only traps for software emulation when crossing page 11473 // boundaries. 11474 11475 if (!VT.isSimple()) 11476 return false; 11477 11478 if (VT.getSimpleVT().isVector()) { 11479 if (Subtarget.hasVSX()) { 11480 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11481 VT != MVT::v4f32 && VT != MVT::v4i32) 11482 return false; 11483 } else { 11484 return false; 11485 } 11486 } 11487 11488 if (VT == MVT::ppcf128) 11489 return false; 11490 11491 if (Fast) 11492 *Fast = true; 11493 11494 return true; 11495 } 11496 11497 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11498 VT = VT.getScalarType(); 11499 11500 if (!VT.isSimple()) 11501 return false; 11502 11503 switch (VT.getSimpleVT().SimpleTy) { 11504 case MVT::f32: 11505 case MVT::f64: 11506 return true; 11507 default: 11508 break; 11509 } 11510 11511 return false; 11512 } 11513 11514 const MCPhysReg * 11515 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11516 // LR is a callee-save register, but we must treat it as clobbered by any call 11517 // site. Hence we include LR in the scratch registers, which are in turn added 11518 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11519 // to CTR, which is used by any indirect call. 11520 static const MCPhysReg ScratchRegs[] = { 11521 PPC::X12, PPC::LR8, PPC::CTR8, 0 11522 }; 11523 11524 return ScratchRegs; 11525 } 11526 11527 unsigned PPCTargetLowering::getExceptionPointerRegister( 11528 const Constant *PersonalityFn) const { 11529 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11530 } 11531 11532 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11533 const Constant *PersonalityFn) const { 11534 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11535 } 11536 11537 bool 11538 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11539 EVT VT , unsigned DefinedValues) const { 11540 if (VT == MVT::v2i64) 11541 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11542 11543 if (Subtarget.hasQPX()) { 11544 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11545 return true; 11546 } 11547 11548 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11549 } 11550 11551 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11552 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11553 return TargetLowering::getSchedulingPreference(N); 11554 11555 return Sched::ILP; 11556 } 11557 11558 // Create a fast isel object. 11559 FastISel * 11560 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11561 const TargetLibraryInfo *LibInfo) const { 11562 return PPC::createFastISel(FuncInfo, LibInfo); 11563 } 11564