1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 STATISTIC(NumTailCalls, "Number of tail calls"); 125 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 // FIXME: Remove this once the bug has been fixed! 134 extern cl::opt<bool> ANDIGlueBug; 135 136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 137 const PPCSubtarget &STI) 138 : TargetLowering(TM), Subtarget(STI) { 139 // Initialize map that relates the PPC addressing modes to the computed flags 140 // of a load/store instruction. The map is used to determine the optimal 141 // addressing mode when selecting load and stores. 142 initializeAddrModeMap(); 143 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 144 // arguments are at least 4/8 bytes aligned. 145 bool isPPC64 = Subtarget.isPPC64(); 146 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 147 148 // Set up the register classes. 149 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 150 if (!useSoftFloat()) { 151 if (hasSPE()) { 152 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 153 // EFPU2 APU only supports f32 154 if (!Subtarget.hasEFPU2()) 155 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 156 } else { 157 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 158 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 159 } 160 } 161 162 // Match BITREVERSE to customized fast code sequence in the td file. 163 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 164 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 165 166 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 167 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 168 169 // Custom lower inline assembly to check for special registers. 170 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 171 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 172 173 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 174 for (MVT VT : MVT::integer_valuetypes()) { 175 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 176 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 177 } 178 179 if (Subtarget.isISA3_0()) { 180 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 181 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 182 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 183 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 184 } else { 185 // No extending loads from f16 or HW conversions back and forth. 186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 187 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 188 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 189 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 190 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 191 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 192 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 193 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 194 } 195 196 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 197 198 // PowerPC has pre-inc load and store's. 199 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 206 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 209 if (!Subtarget.hasSPE()) { 210 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 211 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 214 } 215 216 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 217 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 218 for (MVT VT : ScalarIntVTs) { 219 setOperationAction(ISD::ADDC, VT, Legal); 220 setOperationAction(ISD::ADDE, VT, Legal); 221 setOperationAction(ISD::SUBC, VT, Legal); 222 setOperationAction(ISD::SUBE, VT, Legal); 223 } 224 225 if (Subtarget.useCRBits()) { 226 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 227 228 if (isPPC64 || Subtarget.hasFPCVT()) { 229 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 233 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 234 isPPC64 ? MVT::i64 : MVT::i32); 235 236 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 247 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 } else { 257 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 258 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 259 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 260 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 261 } 262 263 // PowerPC does not support direct load/store of condition registers. 264 setOperationAction(ISD::LOAD, MVT::i1, Custom); 265 setOperationAction(ISD::STORE, MVT::i1, Custom); 266 267 // FIXME: Remove this once the ANDI glue bug is fixed: 268 if (ANDIGlueBug) 269 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 270 271 for (MVT VT : MVT::integer_valuetypes()) { 272 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 273 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 274 setTruncStoreAction(VT, MVT::i1, Expand); 275 } 276 277 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 278 } 279 280 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 281 // PPC (the libcall is not available). 282 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 283 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 284 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 285 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 286 287 // We do not currently implement these libm ops for PowerPC. 288 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 289 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 290 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 291 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 292 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 293 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 294 295 // PowerPC has no SREM/UREM instructions unless we are on P9 296 // On P9 we may use a hardware instruction to compute the remainder. 297 // When the result of both the remainder and the division is required it is 298 // more efficient to compute the remainder from the result of the division 299 // rather than use the remainder instruction. The instructions are legalized 300 // directly because the DivRemPairsPass performs the transformation at the IR 301 // level. 302 if (Subtarget.isISA3_0()) { 303 setOperationAction(ISD::SREM, MVT::i32, Legal); 304 setOperationAction(ISD::UREM, MVT::i32, Legal); 305 setOperationAction(ISD::SREM, MVT::i64, Legal); 306 setOperationAction(ISD::UREM, MVT::i64, Legal); 307 } else { 308 setOperationAction(ISD::SREM, MVT::i32, Expand); 309 setOperationAction(ISD::UREM, MVT::i32, Expand); 310 setOperationAction(ISD::SREM, MVT::i64, Expand); 311 setOperationAction(ISD::UREM, MVT::i64, Expand); 312 } 313 314 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 315 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 316 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 317 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 318 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 319 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 320 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 321 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 322 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 323 324 // Handle constrained floating-point operations of scalar. 325 // TODO: Handle SPE specific operation. 326 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 329 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 330 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 331 332 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 335 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 336 337 if (!Subtarget.hasSPE()) { 338 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 340 } 341 342 if (Subtarget.hasVSX()) { 343 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 344 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 345 } 346 347 if (Subtarget.hasFSQRT()) { 348 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 349 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 350 } 351 352 if (Subtarget.hasFPRND()) { 353 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 354 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 355 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 357 358 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 359 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 360 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 361 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 362 } 363 364 // We don't support sin/cos/sqrt/fmod/pow 365 setOperationAction(ISD::FSIN , MVT::f64, Expand); 366 setOperationAction(ISD::FCOS , MVT::f64, Expand); 367 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 368 setOperationAction(ISD::FREM , MVT::f64, Expand); 369 setOperationAction(ISD::FPOW , MVT::f64, Expand); 370 setOperationAction(ISD::FSIN , MVT::f32, Expand); 371 setOperationAction(ISD::FCOS , MVT::f32, Expand); 372 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 373 setOperationAction(ISD::FREM , MVT::f32, Expand); 374 setOperationAction(ISD::FPOW , MVT::f32, Expand); 375 if (Subtarget.hasSPE()) { 376 setOperationAction(ISD::FMA , MVT::f64, Expand); 377 setOperationAction(ISD::FMA , MVT::f32, Expand); 378 } else { 379 setOperationAction(ISD::FMA , MVT::f64, Legal); 380 setOperationAction(ISD::FMA , MVT::f32, Legal); 381 } 382 383 if (Subtarget.hasSPE()) 384 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 385 386 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 387 388 // If we're enabling GP optimizations, use hardware square root 389 if (!Subtarget.hasFSQRT() && 390 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 391 Subtarget.hasFRE())) 392 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 393 394 if (!Subtarget.hasFSQRT() && 395 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 396 Subtarget.hasFRES())) 397 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 398 399 if (Subtarget.hasFCPSGN()) { 400 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 401 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 402 } else { 403 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 404 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 405 } 406 407 if (Subtarget.hasFPRND()) { 408 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 409 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 410 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 411 setOperationAction(ISD::FROUND, MVT::f64, Legal); 412 413 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 414 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 415 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 416 setOperationAction(ISD::FROUND, MVT::f32, Legal); 417 } 418 419 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 420 // to speed up scalar BSWAP64. 421 // CTPOP or CTTZ were introduced in P8/P9 respectively 422 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 423 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 424 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 425 else 426 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 427 if (Subtarget.isISA3_0()) { 428 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 429 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 430 } else { 431 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 432 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 433 } 434 435 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 436 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 437 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 438 } else { 439 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 440 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 441 } 442 443 // PowerPC does not have ROTR 444 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 445 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 446 447 if (!Subtarget.useCRBits()) { 448 // PowerPC does not have Select 449 setOperationAction(ISD::SELECT, MVT::i32, Expand); 450 setOperationAction(ISD::SELECT, MVT::i64, Expand); 451 setOperationAction(ISD::SELECT, MVT::f32, Expand); 452 setOperationAction(ISD::SELECT, MVT::f64, Expand); 453 } 454 455 // PowerPC wants to turn select_cc of FP into fsel when possible. 456 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 457 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 458 459 // PowerPC wants to optimize integer setcc a bit 460 if (!Subtarget.useCRBits()) 461 setOperationAction(ISD::SETCC, MVT::i32, Custom); 462 463 if (Subtarget.hasFPU()) { 464 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 465 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 466 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 467 468 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 469 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 470 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 471 } 472 473 // PowerPC does not have BRCOND which requires SetCC 474 if (!Subtarget.useCRBits()) 475 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 476 477 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 478 479 if (Subtarget.hasSPE()) { 480 // SPE has built-in conversions 481 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 482 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 483 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 484 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 485 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 486 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 487 488 // SPE supports signaling compare of f32/f64. 489 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 490 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 491 } else { 492 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 493 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 494 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 495 496 // PowerPC does not have [U|S]INT_TO_FP 497 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 498 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 499 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 500 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 501 } 502 503 if (Subtarget.hasDirectMove() && isPPC64) { 504 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 505 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 506 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 507 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 508 if (TM.Options.UnsafeFPMath) { 509 setOperationAction(ISD::LRINT, MVT::f64, Legal); 510 setOperationAction(ISD::LRINT, MVT::f32, Legal); 511 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 512 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 513 setOperationAction(ISD::LROUND, MVT::f64, Legal); 514 setOperationAction(ISD::LROUND, MVT::f32, Legal); 515 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 516 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 517 } 518 } else { 519 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 520 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 521 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 522 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 523 } 524 525 // We cannot sextinreg(i1). Expand to shifts. 526 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 527 528 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 529 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 530 // support continuation, user-level threading, and etc.. As a result, no 531 // other SjLj exception interfaces are implemented and please don't build 532 // your own exception handling based on them. 533 // LLVM/Clang supports zero-cost DWARF exception handling. 534 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 535 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 536 537 // We want to legalize GlobalAddress and ConstantPool nodes into the 538 // appropriate instructions to materialize the address. 539 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 540 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 541 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 542 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 543 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 544 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 545 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 546 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 547 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 548 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 549 550 // TRAP is legal. 551 setOperationAction(ISD::TRAP, MVT::Other, Legal); 552 553 // TRAMPOLINE is custom lowered. 554 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 555 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 556 557 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 558 setOperationAction(ISD::VASTART , MVT::Other, Custom); 559 560 if (Subtarget.is64BitELFABI()) { 561 // VAARG always uses double-word chunks, so promote anything smaller. 562 setOperationAction(ISD::VAARG, MVT::i1, Promote); 563 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 564 setOperationAction(ISD::VAARG, MVT::i8, Promote); 565 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 566 setOperationAction(ISD::VAARG, MVT::i16, Promote); 567 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 568 setOperationAction(ISD::VAARG, MVT::i32, Promote); 569 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 570 setOperationAction(ISD::VAARG, MVT::Other, Expand); 571 } else if (Subtarget.is32BitELFABI()) { 572 // VAARG is custom lowered with the 32-bit SVR4 ABI. 573 setOperationAction(ISD::VAARG, MVT::Other, Custom); 574 setOperationAction(ISD::VAARG, MVT::i64, Custom); 575 } else 576 setOperationAction(ISD::VAARG, MVT::Other, Expand); 577 578 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 579 if (Subtarget.is32BitELFABI()) 580 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 581 else 582 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 583 584 // Use the default implementation. 585 setOperationAction(ISD::VAEND , MVT::Other, Expand); 586 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 587 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 588 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 589 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 590 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 591 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 592 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 593 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 594 595 // We want to custom lower some of our intrinsics. 596 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 597 598 // To handle counter-based loop conditions. 599 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 600 601 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 602 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 603 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 604 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 605 606 // Comparisons that require checking two conditions. 607 if (Subtarget.hasSPE()) { 608 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 609 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 610 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 612 } 613 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 614 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 615 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 619 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 620 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 621 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 622 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 623 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 624 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 625 626 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 627 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 628 629 if (Subtarget.has64BitSupport()) { 630 // They also have instructions for converting between i64 and fp. 631 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 632 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 633 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 635 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 636 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 637 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 638 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 639 // This is just the low 32 bits of a (signed) fp->i64 conversion. 640 // We cannot do this with Promote because i64 is not a legal type. 641 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 642 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 643 644 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 645 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 646 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 647 } 648 } else { 649 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 650 if (Subtarget.hasSPE()) { 651 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 652 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 653 } else { 654 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 655 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 656 } 657 } 658 659 // With the instructions enabled under FPCVT, we can do everything. 660 if (Subtarget.hasFPCVT()) { 661 if (Subtarget.has64BitSupport()) { 662 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 663 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 664 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 665 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 666 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 668 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 670 } 671 672 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 673 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 674 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 675 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 676 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 679 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 680 } 681 682 if (Subtarget.use64BitRegs()) { 683 // 64-bit PowerPC implementations can support i64 types directly 684 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 685 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 686 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 687 // 64-bit PowerPC wants to expand i128 shifts itself. 688 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 689 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 690 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 691 } else { 692 // 32-bit PowerPC wants to expand i64 shifts itself. 693 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 694 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 695 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 696 } 697 698 // PowerPC has better expansions for funnel shifts than the generic 699 // TargetLowering::expandFunnelShift. 700 if (Subtarget.has64BitSupport()) { 701 setOperationAction(ISD::FSHL, MVT::i64, Custom); 702 setOperationAction(ISD::FSHR, MVT::i64, Custom); 703 } 704 setOperationAction(ISD::FSHL, MVT::i32, Custom); 705 setOperationAction(ISD::FSHR, MVT::i32, Custom); 706 707 if (Subtarget.hasVSX()) { 708 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 709 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 710 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 711 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 712 } 713 714 if (Subtarget.hasAltivec()) { 715 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 716 setOperationAction(ISD::SADDSAT, VT, Legal); 717 setOperationAction(ISD::SSUBSAT, VT, Legal); 718 setOperationAction(ISD::UADDSAT, VT, Legal); 719 setOperationAction(ISD::USUBSAT, VT, Legal); 720 } 721 // First set operation action for all vector types to expand. Then we 722 // will selectively turn on ones that can be effectively codegen'd. 723 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 724 // add/sub are legal for all supported vector VT's. 725 setOperationAction(ISD::ADD, VT, Legal); 726 setOperationAction(ISD::SUB, VT, Legal); 727 728 // For v2i64, these are only valid with P8Vector. This is corrected after 729 // the loop. 730 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 731 setOperationAction(ISD::SMAX, VT, Legal); 732 setOperationAction(ISD::SMIN, VT, Legal); 733 setOperationAction(ISD::UMAX, VT, Legal); 734 setOperationAction(ISD::UMIN, VT, Legal); 735 } 736 else { 737 setOperationAction(ISD::SMAX, VT, Expand); 738 setOperationAction(ISD::SMIN, VT, Expand); 739 setOperationAction(ISD::UMAX, VT, Expand); 740 setOperationAction(ISD::UMIN, VT, Expand); 741 } 742 743 if (Subtarget.hasVSX()) { 744 setOperationAction(ISD::FMAXNUM, VT, Legal); 745 setOperationAction(ISD::FMINNUM, VT, Legal); 746 } 747 748 // Vector instructions introduced in P8 749 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 750 setOperationAction(ISD::CTPOP, VT, Legal); 751 setOperationAction(ISD::CTLZ, VT, Legal); 752 } 753 else { 754 setOperationAction(ISD::CTPOP, VT, Expand); 755 setOperationAction(ISD::CTLZ, VT, Expand); 756 } 757 758 // Vector instructions introduced in P9 759 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 760 setOperationAction(ISD::CTTZ, VT, Legal); 761 else 762 setOperationAction(ISD::CTTZ, VT, Expand); 763 764 // We promote all shuffles to v16i8. 765 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 766 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 767 768 // We promote all non-typed operations to v4i32. 769 setOperationAction(ISD::AND , VT, Promote); 770 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 771 setOperationAction(ISD::OR , VT, Promote); 772 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 773 setOperationAction(ISD::XOR , VT, Promote); 774 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 775 setOperationAction(ISD::LOAD , VT, Promote); 776 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 777 setOperationAction(ISD::SELECT, VT, Promote); 778 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 779 setOperationAction(ISD::VSELECT, VT, Legal); 780 setOperationAction(ISD::SELECT_CC, VT, Promote); 781 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 782 setOperationAction(ISD::STORE, VT, Promote); 783 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 784 785 // No other operations are legal. 786 setOperationAction(ISD::MUL , VT, Expand); 787 setOperationAction(ISD::SDIV, VT, Expand); 788 setOperationAction(ISD::SREM, VT, Expand); 789 setOperationAction(ISD::UDIV, VT, Expand); 790 setOperationAction(ISD::UREM, VT, Expand); 791 setOperationAction(ISD::FDIV, VT, Expand); 792 setOperationAction(ISD::FREM, VT, Expand); 793 setOperationAction(ISD::FNEG, VT, Expand); 794 setOperationAction(ISD::FSQRT, VT, Expand); 795 setOperationAction(ISD::FLOG, VT, Expand); 796 setOperationAction(ISD::FLOG10, VT, Expand); 797 setOperationAction(ISD::FLOG2, VT, Expand); 798 setOperationAction(ISD::FEXP, VT, Expand); 799 setOperationAction(ISD::FEXP2, VT, Expand); 800 setOperationAction(ISD::FSIN, VT, Expand); 801 setOperationAction(ISD::FCOS, VT, Expand); 802 setOperationAction(ISD::FABS, VT, Expand); 803 setOperationAction(ISD::FFLOOR, VT, Expand); 804 setOperationAction(ISD::FCEIL, VT, Expand); 805 setOperationAction(ISD::FTRUNC, VT, Expand); 806 setOperationAction(ISD::FRINT, VT, Expand); 807 setOperationAction(ISD::FNEARBYINT, VT, Expand); 808 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 809 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 810 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 811 setOperationAction(ISD::MULHU, VT, Expand); 812 setOperationAction(ISD::MULHS, VT, Expand); 813 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 814 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 815 setOperationAction(ISD::UDIVREM, VT, Expand); 816 setOperationAction(ISD::SDIVREM, VT, Expand); 817 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 818 setOperationAction(ISD::FPOW, VT, Expand); 819 setOperationAction(ISD::BSWAP, VT, Expand); 820 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 821 setOperationAction(ISD::ROTL, VT, Expand); 822 setOperationAction(ISD::ROTR, VT, Expand); 823 824 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 825 setTruncStoreAction(VT, InnerVT, Expand); 826 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 827 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 828 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 829 } 830 } 831 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 832 if (!Subtarget.hasP8Vector()) { 833 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 834 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 835 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 836 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 837 } 838 839 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 840 // with merges, splats, etc. 841 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 842 843 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 844 // are cheap, so handle them before they get expanded to scalar. 845 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 846 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 847 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 848 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 849 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 850 851 setOperationAction(ISD::AND , MVT::v4i32, Legal); 852 setOperationAction(ISD::OR , MVT::v4i32, Legal); 853 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 854 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 855 setOperationAction(ISD::SELECT, MVT::v4i32, 856 Subtarget.useCRBits() ? Legal : Expand); 857 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 858 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 859 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 860 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 861 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 862 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 863 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 864 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 865 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 866 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 867 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 868 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 869 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 870 871 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 872 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 873 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 874 if (Subtarget.hasAltivec()) 875 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 876 setOperationAction(ISD::ROTL, VT, Legal); 877 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 878 if (Subtarget.hasP8Altivec()) 879 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 880 881 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 882 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 883 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 884 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 885 886 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 887 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 888 889 if (Subtarget.hasVSX()) { 890 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 891 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 892 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 893 } 894 895 if (Subtarget.hasP8Altivec()) 896 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 897 else 898 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 899 900 if (Subtarget.isISA3_1()) { 901 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 902 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 903 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 904 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 905 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 906 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 907 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 908 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 909 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 910 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 911 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 912 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 913 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 914 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 915 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 916 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 917 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 918 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 919 } 920 921 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 922 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 923 924 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 925 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 926 927 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 928 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 929 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 930 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 931 932 // Altivec does not contain unordered floating-point compare instructions 933 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 934 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 935 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 936 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 937 938 if (Subtarget.hasVSX()) { 939 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 940 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 941 if (Subtarget.hasP8Vector()) { 942 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 944 } 945 if (Subtarget.hasDirectMove() && isPPC64) { 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 947 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 948 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 951 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 952 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 953 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 954 } 955 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 956 957 // The nearbyint variants are not allowed to raise the inexact exception 958 // so we can only code-gen them with unsafe math. 959 if (TM.Options.UnsafeFPMath) { 960 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 961 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 962 } 963 964 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 965 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 966 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 967 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 968 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 969 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 970 setOperationAction(ISD::FROUND, MVT::f64, Legal); 971 setOperationAction(ISD::FRINT, MVT::f64, Legal); 972 973 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 974 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 975 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 976 setOperationAction(ISD::FROUND, MVT::f32, Legal); 977 setOperationAction(ISD::FRINT, MVT::f32, Legal); 978 979 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 980 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 981 982 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 983 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 984 985 // Share the Altivec comparison restrictions. 986 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 987 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 988 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 989 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 990 991 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 992 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 993 994 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 995 996 if (Subtarget.hasP8Vector()) 997 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 998 999 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1000 1001 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1002 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1003 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1004 1005 if (Subtarget.hasP8Altivec()) { 1006 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1007 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1008 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1009 1010 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1011 // SRL, but not for SRA because of the instructions available: 1012 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1013 // doing 1014 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1015 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1016 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1017 1018 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1019 } 1020 else { 1021 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1022 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1023 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1024 1025 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1026 1027 // VSX v2i64 only supports non-arithmetic operations. 1028 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1029 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1030 } 1031 1032 if (Subtarget.isISA3_1()) 1033 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1034 else 1035 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1036 1037 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1038 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1039 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1040 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1041 1042 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1043 1044 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1045 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1046 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1047 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1048 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1049 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1050 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1051 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1052 1053 // Custom handling for partial vectors of integers converted to 1054 // floating point. We already have optimal handling for v2i32 through 1055 // the DAG combine, so those aren't necessary. 1056 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1057 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1058 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1059 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1060 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1061 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1062 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1063 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1064 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1065 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1066 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1067 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1068 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1069 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1070 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1071 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1072 1073 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1074 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1075 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1076 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1077 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1078 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1079 1080 if (Subtarget.hasDirectMove()) 1081 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1082 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1083 1084 // Handle constrained floating-point operations of vector. 1085 // The predictor is `hasVSX` because altivec instruction has 1086 // no exception but VSX vector instruction has. 1087 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1088 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1089 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1090 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1091 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1092 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1093 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1100 1101 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1102 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1103 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1104 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1105 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1106 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1107 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1114 1115 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1116 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1117 1118 for (MVT FPT : MVT::fp_valuetypes()) 1119 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1120 1121 // Expand the SELECT to SELECT_CC 1122 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1123 1124 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1125 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1126 1127 // No implementation for these ops for PowerPC. 1128 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1129 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1130 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1131 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1132 setOperationAction(ISD::FREM, MVT::f128, Expand); 1133 } 1134 1135 if (Subtarget.hasP8Altivec()) { 1136 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1137 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1138 } 1139 1140 if (Subtarget.hasP9Vector()) { 1141 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1142 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1143 1144 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1145 // SRL, but not for SRA because of the instructions available: 1146 // VS{RL} and VS{RL}O. 1147 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1148 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1149 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1150 1151 setOperationAction(ISD::FADD, MVT::f128, Legal); 1152 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1153 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1154 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1155 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1156 1157 setOperationAction(ISD::FMA, MVT::f128, Legal); 1158 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1159 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1160 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1161 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1162 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1163 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1164 1165 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1166 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1167 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1168 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1169 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1170 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1171 1172 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1173 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1174 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1175 1176 // Handle constrained floating-point operations of fp128 1177 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1178 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1179 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1180 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1181 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1182 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1183 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1185 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1186 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1191 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1192 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1193 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1194 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1195 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1196 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1197 } else if (Subtarget.hasVSX()) { 1198 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1199 setOperationAction(ISD::STORE, MVT::f128, Promote); 1200 1201 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1202 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1203 1204 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1205 // fp_to_uint and int_to_fp. 1206 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1207 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1208 1209 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1210 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1211 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1212 setOperationAction(ISD::FABS, MVT::f128, Expand); 1213 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1214 setOperationAction(ISD::FMA, MVT::f128, Expand); 1215 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1216 1217 // Expand the fp_extend if the target type is fp128. 1218 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1219 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1220 1221 // Expand the fp_round if the source type is fp128. 1222 for (MVT VT : {MVT::f32, MVT::f64}) { 1223 setOperationAction(ISD::FP_ROUND, VT, Custom); 1224 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1225 } 1226 1227 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1228 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1229 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1230 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1231 1232 // Lower following f128 select_cc pattern: 1233 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1234 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1235 1236 // We need to handle f128 SELECT_CC with integer result type. 1237 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1238 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1239 } 1240 1241 if (Subtarget.hasP9Altivec()) { 1242 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1243 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1244 1245 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1246 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1247 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1248 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1249 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1250 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1252 } 1253 1254 if (Subtarget.isISA3_1()) 1255 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1256 } 1257 1258 if (Subtarget.pairedVectorMemops()) { 1259 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1260 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1261 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1262 } 1263 if (Subtarget.hasMMA()) { 1264 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1265 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1266 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1267 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1268 } 1269 1270 if (Subtarget.has64BitSupport()) 1271 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1272 1273 if (Subtarget.isISA3_1()) 1274 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1275 1276 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1277 1278 if (!isPPC64) { 1279 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1280 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1281 } 1282 1283 setBooleanContents(ZeroOrOneBooleanContent); 1284 1285 if (Subtarget.hasAltivec()) { 1286 // Altivec instructions set fields to all zeros or all ones. 1287 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1288 } 1289 1290 if (!isPPC64) { 1291 // These libcalls are not available in 32-bit. 1292 setLibcallName(RTLIB::SHL_I128, nullptr); 1293 setLibcallName(RTLIB::SRL_I128, nullptr); 1294 setLibcallName(RTLIB::SRA_I128, nullptr); 1295 } 1296 1297 if (!isPPC64) 1298 setMaxAtomicSizeInBitsSupported(32); 1299 1300 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1301 1302 // We have target-specific dag combine patterns for the following nodes: 1303 setTargetDAGCombine(ISD::ADD); 1304 setTargetDAGCombine(ISD::SHL); 1305 setTargetDAGCombine(ISD::SRA); 1306 setTargetDAGCombine(ISD::SRL); 1307 setTargetDAGCombine(ISD::MUL); 1308 setTargetDAGCombine(ISD::FMA); 1309 setTargetDAGCombine(ISD::SINT_TO_FP); 1310 setTargetDAGCombine(ISD::BUILD_VECTOR); 1311 if (Subtarget.hasFPCVT()) 1312 setTargetDAGCombine(ISD::UINT_TO_FP); 1313 setTargetDAGCombine(ISD::LOAD); 1314 setTargetDAGCombine(ISD::STORE); 1315 setTargetDAGCombine(ISD::BR_CC); 1316 if (Subtarget.useCRBits()) 1317 setTargetDAGCombine(ISD::BRCOND); 1318 setTargetDAGCombine(ISD::BSWAP); 1319 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1320 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1321 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1322 1323 setTargetDAGCombine(ISD::SIGN_EXTEND); 1324 setTargetDAGCombine(ISD::ZERO_EXTEND); 1325 setTargetDAGCombine(ISD::ANY_EXTEND); 1326 1327 setTargetDAGCombine(ISD::TRUNCATE); 1328 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1329 1330 1331 if (Subtarget.useCRBits()) { 1332 setTargetDAGCombine(ISD::TRUNCATE); 1333 setTargetDAGCombine(ISD::SETCC); 1334 setTargetDAGCombine(ISD::SELECT_CC); 1335 } 1336 1337 if (Subtarget.hasP9Altivec()) { 1338 setTargetDAGCombine(ISD::ABS); 1339 setTargetDAGCombine(ISD::VSELECT); 1340 } 1341 1342 setLibcallName(RTLIB::LOG_F128, "logf128"); 1343 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1344 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1345 setLibcallName(RTLIB::EXP_F128, "expf128"); 1346 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1347 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1348 setLibcallName(RTLIB::COS_F128, "cosf128"); 1349 setLibcallName(RTLIB::POW_F128, "powf128"); 1350 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1351 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1352 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1353 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1354 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1355 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1356 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1357 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1358 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1359 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1360 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1361 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1362 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1363 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1364 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1365 1366 // With 32 condition bits, we don't need to sink (and duplicate) compares 1367 // aggressively in CodeGenPrep. 1368 if (Subtarget.useCRBits()) { 1369 setHasMultipleConditionRegisters(); 1370 setJumpIsExpensive(); 1371 } 1372 1373 setMinFunctionAlignment(Align(4)); 1374 1375 switch (Subtarget.getCPUDirective()) { 1376 default: break; 1377 case PPC::DIR_970: 1378 case PPC::DIR_A2: 1379 case PPC::DIR_E500: 1380 case PPC::DIR_E500mc: 1381 case PPC::DIR_E5500: 1382 case PPC::DIR_PWR4: 1383 case PPC::DIR_PWR5: 1384 case PPC::DIR_PWR5X: 1385 case PPC::DIR_PWR6: 1386 case PPC::DIR_PWR6X: 1387 case PPC::DIR_PWR7: 1388 case PPC::DIR_PWR8: 1389 case PPC::DIR_PWR9: 1390 case PPC::DIR_PWR10: 1391 case PPC::DIR_PWR_FUTURE: 1392 setPrefLoopAlignment(Align(16)); 1393 setPrefFunctionAlignment(Align(16)); 1394 break; 1395 } 1396 1397 if (Subtarget.enableMachineScheduler()) 1398 setSchedulingPreference(Sched::Source); 1399 else 1400 setSchedulingPreference(Sched::Hybrid); 1401 1402 computeRegisterProperties(STI.getRegisterInfo()); 1403 1404 // The Freescale cores do better with aggressive inlining of memcpy and 1405 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1406 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1407 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1408 MaxStoresPerMemset = 32; 1409 MaxStoresPerMemsetOptSize = 16; 1410 MaxStoresPerMemcpy = 32; 1411 MaxStoresPerMemcpyOptSize = 8; 1412 MaxStoresPerMemmove = 32; 1413 MaxStoresPerMemmoveOptSize = 8; 1414 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1415 // The A2 also benefits from (very) aggressive inlining of memcpy and 1416 // friends. The overhead of a the function call, even when warm, can be 1417 // over one hundred cycles. 1418 MaxStoresPerMemset = 128; 1419 MaxStoresPerMemcpy = 128; 1420 MaxStoresPerMemmove = 128; 1421 MaxLoadsPerMemcmp = 128; 1422 } else { 1423 MaxLoadsPerMemcmp = 8; 1424 MaxLoadsPerMemcmpOptSize = 4; 1425 } 1426 1427 IsStrictFPEnabled = true; 1428 1429 // Let the subtarget (CPU) decide if a predictable select is more expensive 1430 // than the corresponding branch. This information is used in CGP to decide 1431 // when to convert selects into branches. 1432 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1433 } 1434 1435 // *********************************** NOTE ************************************ 1436 // For selecting load and store instructions, the addressing modes are defined 1437 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1438 // patterns to match the load the store instructions. 1439 // 1440 // The TD definitions for the addressing modes correspond to their respective 1441 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1442 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1443 // address mode flags of a particular node. Afterwards, the computed address 1444 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1445 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1446 // accordingly, based on the preferred addressing mode. 1447 // 1448 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1449 // MemOpFlags contains all the possible flags that can be used to compute the 1450 // optimal addressing mode for load and store instructions. 1451 // AddrMode contains all the possible load and store addressing modes available 1452 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1453 // 1454 // When adding new load and store instructions, it is possible that new address 1455 // flags may need to be added into MemOpFlags, and a new addressing mode will 1456 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1457 // of the minimal and main distinguishing address flags for the new load/store 1458 // instructions) will need to be added into initializeAddrModeMap() below. 1459 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1460 // need to be updated to account for selecting the optimal addressing mode. 1461 // ***************************************************************************** 1462 /// Initialize the map that relates the different addressing modes of the load 1463 /// and store instructions to a set of flags. This ensures the load/store 1464 /// instruction is correctly matched during instruction selection. 1465 void PPCTargetLowering::initializeAddrModeMap() { 1466 AddrModesMap[PPC::AM_DForm] = { 1467 // LWZ, STW 1468 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1469 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1470 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1471 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1472 // LBZ, LHZ, STB, STH 1473 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1474 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1475 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1476 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1477 // LHA 1478 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1479 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1480 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1481 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1482 // LFS, LFD, STFS, STFD 1483 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1484 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1485 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1486 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1487 }; 1488 AddrModesMap[PPC::AM_DSForm] = { 1489 // LWA 1490 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1491 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1492 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1493 // LD, STD 1494 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1495 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1496 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1497 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1498 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1499 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1500 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1501 }; 1502 AddrModesMap[PPC::AM_DQForm] = { 1503 // LXV, STXV 1504 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1505 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1506 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1507 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1508 PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1509 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1510 }; 1511 } 1512 1513 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1514 /// the desired ByVal argument alignment. 1515 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1516 if (MaxAlign == MaxMaxAlign) 1517 return; 1518 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1519 if (MaxMaxAlign >= 32 && 1520 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1521 MaxAlign = Align(32); 1522 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1523 MaxAlign < 16) 1524 MaxAlign = Align(16); 1525 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1526 Align EltAlign; 1527 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1528 if (EltAlign > MaxAlign) 1529 MaxAlign = EltAlign; 1530 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1531 for (auto *EltTy : STy->elements()) { 1532 Align EltAlign; 1533 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1534 if (EltAlign > MaxAlign) 1535 MaxAlign = EltAlign; 1536 if (MaxAlign == MaxMaxAlign) 1537 break; 1538 } 1539 } 1540 } 1541 1542 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1543 /// function arguments in the caller parameter area. 1544 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1545 const DataLayout &DL) const { 1546 // 16byte and wider vectors are passed on 16byte boundary. 1547 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1548 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1549 if (Subtarget.hasAltivec()) 1550 getMaxByValAlign(Ty, Alignment, Align(16)); 1551 return Alignment.value(); 1552 } 1553 1554 bool PPCTargetLowering::useSoftFloat() const { 1555 return Subtarget.useSoftFloat(); 1556 } 1557 1558 bool PPCTargetLowering::hasSPE() const { 1559 return Subtarget.hasSPE(); 1560 } 1561 1562 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1563 return VT.isScalarInteger(); 1564 } 1565 1566 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1567 switch ((PPCISD::NodeType)Opcode) { 1568 case PPCISD::FIRST_NUMBER: break; 1569 case PPCISD::FSEL: return "PPCISD::FSEL"; 1570 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1571 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1572 case PPCISD::FCFID: return "PPCISD::FCFID"; 1573 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1574 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1575 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1576 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1577 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1578 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1579 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1580 case PPCISD::FP_TO_UINT_IN_VSR: 1581 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1582 case PPCISD::FP_TO_SINT_IN_VSR: 1583 return "PPCISD::FP_TO_SINT_IN_VSR"; 1584 case PPCISD::FRE: return "PPCISD::FRE"; 1585 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1586 case PPCISD::FTSQRT: 1587 return "PPCISD::FTSQRT"; 1588 case PPCISD::FSQRT: 1589 return "PPCISD::FSQRT"; 1590 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1591 case PPCISD::VPERM: return "PPCISD::VPERM"; 1592 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1593 case PPCISD::XXSPLTI_SP_TO_DP: 1594 return "PPCISD::XXSPLTI_SP_TO_DP"; 1595 case PPCISD::XXSPLTI32DX: 1596 return "PPCISD::XXSPLTI32DX"; 1597 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1598 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1599 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1600 case PPCISD::CMPB: return "PPCISD::CMPB"; 1601 case PPCISD::Hi: return "PPCISD::Hi"; 1602 case PPCISD::Lo: return "PPCISD::Lo"; 1603 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1604 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1605 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1606 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1607 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1608 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1609 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1610 case PPCISD::SRL: return "PPCISD::SRL"; 1611 case PPCISD::SRA: return "PPCISD::SRA"; 1612 case PPCISD::SHL: return "PPCISD::SHL"; 1613 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1614 case PPCISD::CALL: return "PPCISD::CALL"; 1615 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1616 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1617 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1618 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1619 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1620 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1621 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1622 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1623 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1624 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1625 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1626 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1627 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1628 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1629 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1630 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1631 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1632 case PPCISD::ANDI_rec_1_EQ_BIT: 1633 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1634 case PPCISD::ANDI_rec_1_GT_BIT: 1635 return "PPCISD::ANDI_rec_1_GT_BIT"; 1636 case PPCISD::VCMP: return "PPCISD::VCMP"; 1637 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1638 case PPCISD::LBRX: return "PPCISD::LBRX"; 1639 case PPCISD::STBRX: return "PPCISD::STBRX"; 1640 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1641 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1642 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1643 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1644 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1645 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1646 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1647 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1648 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1649 case PPCISD::ST_VSR_SCAL_INT: 1650 return "PPCISD::ST_VSR_SCAL_INT"; 1651 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1652 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1653 case PPCISD::BDZ: return "PPCISD::BDZ"; 1654 case PPCISD::MFFS: return "PPCISD::MFFS"; 1655 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1656 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1657 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1658 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1659 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1660 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1661 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1662 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1663 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1664 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1665 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1666 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1667 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1668 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1669 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1670 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1671 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1672 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1673 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1674 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1675 case PPCISD::PADDI_DTPREL: 1676 return "PPCISD::PADDI_DTPREL"; 1677 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1678 case PPCISD::SC: return "PPCISD::SC"; 1679 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1680 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1681 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1682 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1683 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1684 case PPCISD::VABSD: return "PPCISD::VABSD"; 1685 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1686 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1687 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1688 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1689 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1690 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1691 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1692 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1693 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1694 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1695 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1696 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1697 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1698 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1699 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1700 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1701 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1702 case PPCISD::STRICT_FADDRTZ: 1703 return "PPCISD::STRICT_FADDRTZ"; 1704 case PPCISD::STRICT_FCTIDZ: 1705 return "PPCISD::STRICT_FCTIDZ"; 1706 case PPCISD::STRICT_FCTIWZ: 1707 return "PPCISD::STRICT_FCTIWZ"; 1708 case PPCISD::STRICT_FCTIDUZ: 1709 return "PPCISD::STRICT_FCTIDUZ"; 1710 case PPCISD::STRICT_FCTIWUZ: 1711 return "PPCISD::STRICT_FCTIWUZ"; 1712 case PPCISD::STRICT_FCFID: 1713 return "PPCISD::STRICT_FCFID"; 1714 case PPCISD::STRICT_FCFIDU: 1715 return "PPCISD::STRICT_FCFIDU"; 1716 case PPCISD::STRICT_FCFIDS: 1717 return "PPCISD::STRICT_FCFIDS"; 1718 case PPCISD::STRICT_FCFIDUS: 1719 return "PPCISD::STRICT_FCFIDUS"; 1720 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1721 } 1722 return nullptr; 1723 } 1724 1725 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1726 EVT VT) const { 1727 if (!VT.isVector()) 1728 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1729 1730 return VT.changeVectorElementTypeToInteger(); 1731 } 1732 1733 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1734 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1735 return true; 1736 } 1737 1738 //===----------------------------------------------------------------------===// 1739 // Node matching predicates, for use by the tblgen matching code. 1740 //===----------------------------------------------------------------------===// 1741 1742 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1743 static bool isFloatingPointZero(SDValue Op) { 1744 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1745 return CFP->getValueAPF().isZero(); 1746 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1747 // Maybe this has already been legalized into the constant pool? 1748 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1749 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1750 return CFP->getValueAPF().isZero(); 1751 } 1752 return false; 1753 } 1754 1755 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1756 /// true if Op is undef or if it matches the specified value. 1757 static bool isConstantOrUndef(int Op, int Val) { 1758 return Op < 0 || Op == Val; 1759 } 1760 1761 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1762 /// VPKUHUM instruction. 1763 /// The ShuffleKind distinguishes between big-endian operations with 1764 /// two different inputs (0), either-endian operations with two identical 1765 /// inputs (1), and little-endian operations with two different inputs (2). 1766 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1767 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1768 SelectionDAG &DAG) { 1769 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1770 if (ShuffleKind == 0) { 1771 if (IsLE) 1772 return false; 1773 for (unsigned i = 0; i != 16; ++i) 1774 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1775 return false; 1776 } else if (ShuffleKind == 2) { 1777 if (!IsLE) 1778 return false; 1779 for (unsigned i = 0; i != 16; ++i) 1780 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1781 return false; 1782 } else if (ShuffleKind == 1) { 1783 unsigned j = IsLE ? 0 : 1; 1784 for (unsigned i = 0; i != 8; ++i) 1785 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1786 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1787 return false; 1788 } 1789 return true; 1790 } 1791 1792 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1793 /// VPKUWUM instruction. 1794 /// The ShuffleKind distinguishes between big-endian operations with 1795 /// two different inputs (0), either-endian operations with two identical 1796 /// inputs (1), and little-endian operations with two different inputs (2). 1797 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1798 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1799 SelectionDAG &DAG) { 1800 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1801 if (ShuffleKind == 0) { 1802 if (IsLE) 1803 return false; 1804 for (unsigned i = 0; i != 16; i += 2) 1805 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1806 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1807 return false; 1808 } else if (ShuffleKind == 2) { 1809 if (!IsLE) 1810 return false; 1811 for (unsigned i = 0; i != 16; i += 2) 1812 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1813 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1814 return false; 1815 } else if (ShuffleKind == 1) { 1816 unsigned j = IsLE ? 0 : 2; 1817 for (unsigned i = 0; i != 8; i += 2) 1818 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1819 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1820 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1821 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1822 return false; 1823 } 1824 return true; 1825 } 1826 1827 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1828 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1829 /// current subtarget. 1830 /// 1831 /// The ShuffleKind distinguishes between big-endian operations with 1832 /// two different inputs (0), either-endian operations with two identical 1833 /// inputs (1), and little-endian operations with two different inputs (2). 1834 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1835 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1836 SelectionDAG &DAG) { 1837 const PPCSubtarget& Subtarget = 1838 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1839 if (!Subtarget.hasP8Vector()) 1840 return false; 1841 1842 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1843 if (ShuffleKind == 0) { 1844 if (IsLE) 1845 return false; 1846 for (unsigned i = 0; i != 16; i += 4) 1847 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1848 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1849 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1850 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1851 return false; 1852 } else if (ShuffleKind == 2) { 1853 if (!IsLE) 1854 return false; 1855 for (unsigned i = 0; i != 16; i += 4) 1856 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1857 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1858 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1859 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1860 return false; 1861 } else if (ShuffleKind == 1) { 1862 unsigned j = IsLE ? 0 : 4; 1863 for (unsigned i = 0; i != 8; i += 4) 1864 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1865 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1866 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1867 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1868 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1869 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1870 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1871 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1872 return false; 1873 } 1874 return true; 1875 } 1876 1877 /// isVMerge - Common function, used to match vmrg* shuffles. 1878 /// 1879 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1880 unsigned LHSStart, unsigned RHSStart) { 1881 if (N->getValueType(0) != MVT::v16i8) 1882 return false; 1883 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1884 "Unsupported merge size!"); 1885 1886 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1887 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1888 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1889 LHSStart+j+i*UnitSize) || 1890 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1891 RHSStart+j+i*UnitSize)) 1892 return false; 1893 } 1894 return true; 1895 } 1896 1897 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1898 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1899 /// The ShuffleKind distinguishes between big-endian merges with two 1900 /// different inputs (0), either-endian merges with two identical inputs (1), 1901 /// and little-endian merges with two different inputs (2). For the latter, 1902 /// the input operands are swapped (see PPCInstrAltivec.td). 1903 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1904 unsigned ShuffleKind, SelectionDAG &DAG) { 1905 if (DAG.getDataLayout().isLittleEndian()) { 1906 if (ShuffleKind == 1) // unary 1907 return isVMerge(N, UnitSize, 0, 0); 1908 else if (ShuffleKind == 2) // swapped 1909 return isVMerge(N, UnitSize, 0, 16); 1910 else 1911 return false; 1912 } else { 1913 if (ShuffleKind == 1) // unary 1914 return isVMerge(N, UnitSize, 8, 8); 1915 else if (ShuffleKind == 0) // normal 1916 return isVMerge(N, UnitSize, 8, 24); 1917 else 1918 return false; 1919 } 1920 } 1921 1922 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1923 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1924 /// The ShuffleKind distinguishes between big-endian merges with two 1925 /// different inputs (0), either-endian merges with two identical inputs (1), 1926 /// and little-endian merges with two different inputs (2). For the latter, 1927 /// the input operands are swapped (see PPCInstrAltivec.td). 1928 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1929 unsigned ShuffleKind, SelectionDAG &DAG) { 1930 if (DAG.getDataLayout().isLittleEndian()) { 1931 if (ShuffleKind == 1) // unary 1932 return isVMerge(N, UnitSize, 8, 8); 1933 else if (ShuffleKind == 2) // swapped 1934 return isVMerge(N, UnitSize, 8, 24); 1935 else 1936 return false; 1937 } else { 1938 if (ShuffleKind == 1) // unary 1939 return isVMerge(N, UnitSize, 0, 0); 1940 else if (ShuffleKind == 0) // normal 1941 return isVMerge(N, UnitSize, 0, 16); 1942 else 1943 return false; 1944 } 1945 } 1946 1947 /** 1948 * Common function used to match vmrgew and vmrgow shuffles 1949 * 1950 * The indexOffset determines whether to look for even or odd words in 1951 * the shuffle mask. This is based on the of the endianness of the target 1952 * machine. 1953 * - Little Endian: 1954 * - Use offset of 0 to check for odd elements 1955 * - Use offset of 4 to check for even elements 1956 * - Big Endian: 1957 * - Use offset of 0 to check for even elements 1958 * - Use offset of 4 to check for odd elements 1959 * A detailed description of the vector element ordering for little endian and 1960 * big endian can be found at 1961 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1962 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1963 * compiler differences mean to you 1964 * 1965 * The mask to the shuffle vector instruction specifies the indices of the 1966 * elements from the two input vectors to place in the result. The elements are 1967 * numbered in array-access order, starting with the first vector. These vectors 1968 * are always of type v16i8, thus each vector will contain 16 elements of size 1969 * 8. More info on the shuffle vector can be found in the 1970 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1971 * Language Reference. 1972 * 1973 * The RHSStartValue indicates whether the same input vectors are used (unary) 1974 * or two different input vectors are used, based on the following: 1975 * - If the instruction uses the same vector for both inputs, the range of the 1976 * indices will be 0 to 15. In this case, the RHSStart value passed should 1977 * be 0. 1978 * - If the instruction has two different vectors then the range of the 1979 * indices will be 0 to 31. In this case, the RHSStart value passed should 1980 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1981 * to 31 specify elements in the second vector). 1982 * 1983 * \param[in] N The shuffle vector SD Node to analyze 1984 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1985 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1986 * vector to the shuffle_vector instruction 1987 * \return true iff this shuffle vector represents an even or odd word merge 1988 */ 1989 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1990 unsigned RHSStartValue) { 1991 if (N->getValueType(0) != MVT::v16i8) 1992 return false; 1993 1994 for (unsigned i = 0; i < 2; ++i) 1995 for (unsigned j = 0; j < 4; ++j) 1996 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1997 i*RHSStartValue+j+IndexOffset) || 1998 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1999 i*RHSStartValue+j+IndexOffset+8)) 2000 return false; 2001 return true; 2002 } 2003 2004 /** 2005 * Determine if the specified shuffle mask is suitable for the vmrgew or 2006 * vmrgow instructions. 2007 * 2008 * \param[in] N The shuffle vector SD Node to analyze 2009 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2010 * \param[in] ShuffleKind Identify the type of merge: 2011 * - 0 = big-endian merge with two different inputs; 2012 * - 1 = either-endian merge with two identical inputs; 2013 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2014 * little-endian merges). 2015 * \param[in] DAG The current SelectionDAG 2016 * \return true iff this shuffle mask 2017 */ 2018 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2019 unsigned ShuffleKind, SelectionDAG &DAG) { 2020 if (DAG.getDataLayout().isLittleEndian()) { 2021 unsigned indexOffset = CheckEven ? 4 : 0; 2022 if (ShuffleKind == 1) // Unary 2023 return isVMerge(N, indexOffset, 0); 2024 else if (ShuffleKind == 2) // swapped 2025 return isVMerge(N, indexOffset, 16); 2026 else 2027 return false; 2028 } 2029 else { 2030 unsigned indexOffset = CheckEven ? 0 : 4; 2031 if (ShuffleKind == 1) // Unary 2032 return isVMerge(N, indexOffset, 0); 2033 else if (ShuffleKind == 0) // Normal 2034 return isVMerge(N, indexOffset, 16); 2035 else 2036 return false; 2037 } 2038 return false; 2039 } 2040 2041 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2042 /// amount, otherwise return -1. 2043 /// The ShuffleKind distinguishes between big-endian operations with two 2044 /// different inputs (0), either-endian operations with two identical inputs 2045 /// (1), and little-endian operations with two different inputs (2). For the 2046 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2047 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2048 SelectionDAG &DAG) { 2049 if (N->getValueType(0) != MVT::v16i8) 2050 return -1; 2051 2052 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2053 2054 // Find the first non-undef value in the shuffle mask. 2055 unsigned i; 2056 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2057 /*search*/; 2058 2059 if (i == 16) return -1; // all undef. 2060 2061 // Otherwise, check to see if the rest of the elements are consecutively 2062 // numbered from this value. 2063 unsigned ShiftAmt = SVOp->getMaskElt(i); 2064 if (ShiftAmt < i) return -1; 2065 2066 ShiftAmt -= i; 2067 bool isLE = DAG.getDataLayout().isLittleEndian(); 2068 2069 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2070 // Check the rest of the elements to see if they are consecutive. 2071 for (++i; i != 16; ++i) 2072 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2073 return -1; 2074 } else if (ShuffleKind == 1) { 2075 // Check the rest of the elements to see if they are consecutive. 2076 for (++i; i != 16; ++i) 2077 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2078 return -1; 2079 } else 2080 return -1; 2081 2082 if (isLE) 2083 ShiftAmt = 16 - ShiftAmt; 2084 2085 return ShiftAmt; 2086 } 2087 2088 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2089 /// specifies a splat of a single element that is suitable for input to 2090 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2091 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2092 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2093 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2094 2095 // The consecutive indices need to specify an element, not part of two 2096 // different elements. So abandon ship early if this isn't the case. 2097 if (N->getMaskElt(0) % EltSize != 0) 2098 return false; 2099 2100 // This is a splat operation if each element of the permute is the same, and 2101 // if the value doesn't reference the second vector. 2102 unsigned ElementBase = N->getMaskElt(0); 2103 2104 // FIXME: Handle UNDEF elements too! 2105 if (ElementBase >= 16) 2106 return false; 2107 2108 // Check that the indices are consecutive, in the case of a multi-byte element 2109 // splatted with a v16i8 mask. 2110 for (unsigned i = 1; i != EltSize; ++i) 2111 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2112 return false; 2113 2114 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2115 if (N->getMaskElt(i) < 0) continue; 2116 for (unsigned j = 0; j != EltSize; ++j) 2117 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2118 return false; 2119 } 2120 return true; 2121 } 2122 2123 /// Check that the mask is shuffling N byte elements. Within each N byte 2124 /// element of the mask, the indices could be either in increasing or 2125 /// decreasing order as long as they are consecutive. 2126 /// \param[in] N the shuffle vector SD Node to analyze 2127 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2128 /// Word/DoubleWord/QuadWord). 2129 /// \param[in] StepLen the delta indices number among the N byte element, if 2130 /// the mask is in increasing/decreasing order then it is 1/-1. 2131 /// \return true iff the mask is shuffling N byte elements. 2132 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2133 int StepLen) { 2134 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2135 "Unexpected element width."); 2136 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2137 2138 unsigned NumOfElem = 16 / Width; 2139 unsigned MaskVal[16]; // Width is never greater than 16 2140 for (unsigned i = 0; i < NumOfElem; ++i) { 2141 MaskVal[0] = N->getMaskElt(i * Width); 2142 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2143 return false; 2144 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2145 return false; 2146 } 2147 2148 for (unsigned int j = 1; j < Width; ++j) { 2149 MaskVal[j] = N->getMaskElt(i * Width + j); 2150 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2151 return false; 2152 } 2153 } 2154 } 2155 2156 return true; 2157 } 2158 2159 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2160 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2161 if (!isNByteElemShuffleMask(N, 4, 1)) 2162 return false; 2163 2164 // Now we look at mask elements 0,4,8,12 2165 unsigned M0 = N->getMaskElt(0) / 4; 2166 unsigned M1 = N->getMaskElt(4) / 4; 2167 unsigned M2 = N->getMaskElt(8) / 4; 2168 unsigned M3 = N->getMaskElt(12) / 4; 2169 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2170 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2171 2172 // Below, let H and L be arbitrary elements of the shuffle mask 2173 // where H is in the range [4,7] and L is in the range [0,3]. 2174 // H, 1, 2, 3 or L, 5, 6, 7 2175 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2176 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2177 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2178 InsertAtByte = IsLE ? 12 : 0; 2179 Swap = M0 < 4; 2180 return true; 2181 } 2182 // 0, H, 2, 3 or 4, L, 6, 7 2183 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2184 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2185 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2186 InsertAtByte = IsLE ? 8 : 4; 2187 Swap = M1 < 4; 2188 return true; 2189 } 2190 // 0, 1, H, 3 or 4, 5, L, 7 2191 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2192 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2193 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2194 InsertAtByte = IsLE ? 4 : 8; 2195 Swap = M2 < 4; 2196 return true; 2197 } 2198 // 0, 1, 2, H or 4, 5, 6, L 2199 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2200 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2201 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2202 InsertAtByte = IsLE ? 0 : 12; 2203 Swap = M3 < 4; 2204 return true; 2205 } 2206 2207 // If both vector operands for the shuffle are the same vector, the mask will 2208 // contain only elements from the first one and the second one will be undef. 2209 if (N->getOperand(1).isUndef()) { 2210 ShiftElts = 0; 2211 Swap = true; 2212 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2213 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2214 InsertAtByte = IsLE ? 12 : 0; 2215 return true; 2216 } 2217 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2218 InsertAtByte = IsLE ? 8 : 4; 2219 return true; 2220 } 2221 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2222 InsertAtByte = IsLE ? 4 : 8; 2223 return true; 2224 } 2225 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2226 InsertAtByte = IsLE ? 0 : 12; 2227 return true; 2228 } 2229 } 2230 2231 return false; 2232 } 2233 2234 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2235 bool &Swap, bool IsLE) { 2236 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2237 // Ensure each byte index of the word is consecutive. 2238 if (!isNByteElemShuffleMask(N, 4, 1)) 2239 return false; 2240 2241 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2242 unsigned M0 = N->getMaskElt(0) / 4; 2243 unsigned M1 = N->getMaskElt(4) / 4; 2244 unsigned M2 = N->getMaskElt(8) / 4; 2245 unsigned M3 = N->getMaskElt(12) / 4; 2246 2247 // If both vector operands for the shuffle are the same vector, the mask will 2248 // contain only elements from the first one and the second one will be undef. 2249 if (N->getOperand(1).isUndef()) { 2250 assert(M0 < 4 && "Indexing into an undef vector?"); 2251 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2252 return false; 2253 2254 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2255 Swap = false; 2256 return true; 2257 } 2258 2259 // Ensure each word index of the ShuffleVector Mask is consecutive. 2260 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2261 return false; 2262 2263 if (IsLE) { 2264 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2265 // Input vectors don't need to be swapped if the leading element 2266 // of the result is one of the 3 left elements of the second vector 2267 // (or if there is no shift to be done at all). 2268 Swap = false; 2269 ShiftElts = (8 - M0) % 8; 2270 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2271 // Input vectors need to be swapped if the leading element 2272 // of the result is one of the 3 left elements of the first vector 2273 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2274 Swap = true; 2275 ShiftElts = (4 - M0) % 4; 2276 } 2277 2278 return true; 2279 } else { // BE 2280 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2281 // Input vectors don't need to be swapped if the leading element 2282 // of the result is one of the 4 elements of the first vector. 2283 Swap = false; 2284 ShiftElts = M0; 2285 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2286 // Input vectors need to be swapped if the leading element 2287 // of the result is one of the 4 elements of the right vector. 2288 Swap = true; 2289 ShiftElts = M0 - 4; 2290 } 2291 2292 return true; 2293 } 2294 } 2295 2296 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2297 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2298 2299 if (!isNByteElemShuffleMask(N, Width, -1)) 2300 return false; 2301 2302 for (int i = 0; i < 16; i += Width) 2303 if (N->getMaskElt(i) != i + Width - 1) 2304 return false; 2305 2306 return true; 2307 } 2308 2309 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2310 return isXXBRShuffleMaskHelper(N, 2); 2311 } 2312 2313 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2314 return isXXBRShuffleMaskHelper(N, 4); 2315 } 2316 2317 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2318 return isXXBRShuffleMaskHelper(N, 8); 2319 } 2320 2321 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2322 return isXXBRShuffleMaskHelper(N, 16); 2323 } 2324 2325 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2326 /// if the inputs to the instruction should be swapped and set \p DM to the 2327 /// value for the immediate. 2328 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2329 /// AND element 0 of the result comes from the first input (LE) or second input 2330 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2331 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2332 /// mask. 2333 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2334 bool &Swap, bool IsLE) { 2335 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2336 2337 // Ensure each byte index of the double word is consecutive. 2338 if (!isNByteElemShuffleMask(N, 8, 1)) 2339 return false; 2340 2341 unsigned M0 = N->getMaskElt(0) / 8; 2342 unsigned M1 = N->getMaskElt(8) / 8; 2343 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2344 2345 // If both vector operands for the shuffle are the same vector, the mask will 2346 // contain only elements from the first one and the second one will be undef. 2347 if (N->getOperand(1).isUndef()) { 2348 if ((M0 | M1) < 2) { 2349 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2350 Swap = false; 2351 return true; 2352 } else 2353 return false; 2354 } 2355 2356 if (IsLE) { 2357 if (M0 > 1 && M1 < 2) { 2358 Swap = false; 2359 } else if (M0 < 2 && M1 > 1) { 2360 M0 = (M0 + 2) % 4; 2361 M1 = (M1 + 2) % 4; 2362 Swap = true; 2363 } else 2364 return false; 2365 2366 // Note: if control flow comes here that means Swap is already set above 2367 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2368 return true; 2369 } else { // BE 2370 if (M0 < 2 && M1 > 1) { 2371 Swap = false; 2372 } else if (M0 > 1 && M1 < 2) { 2373 M0 = (M0 + 2) % 4; 2374 M1 = (M1 + 2) % 4; 2375 Swap = true; 2376 } else 2377 return false; 2378 2379 // Note: if control flow comes here that means Swap is already set above 2380 DM = (M0 << 1) + (M1 & 1); 2381 return true; 2382 } 2383 } 2384 2385 2386 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2387 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2388 /// elements are counted from the left of the vector register). 2389 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2390 SelectionDAG &DAG) { 2391 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2392 assert(isSplatShuffleMask(SVOp, EltSize)); 2393 if (DAG.getDataLayout().isLittleEndian()) 2394 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2395 else 2396 return SVOp->getMaskElt(0) / EltSize; 2397 } 2398 2399 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2400 /// by using a vspltis[bhw] instruction of the specified element size, return 2401 /// the constant being splatted. The ByteSize field indicates the number of 2402 /// bytes of each element [124] -> [bhw]. 2403 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2404 SDValue OpVal(nullptr, 0); 2405 2406 // If ByteSize of the splat is bigger than the element size of the 2407 // build_vector, then we have a case where we are checking for a splat where 2408 // multiple elements of the buildvector are folded together into a single 2409 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2410 unsigned EltSize = 16/N->getNumOperands(); 2411 if (EltSize < ByteSize) { 2412 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2413 SDValue UniquedVals[4]; 2414 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2415 2416 // See if all of the elements in the buildvector agree across. 2417 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2418 if (N->getOperand(i).isUndef()) continue; 2419 // If the element isn't a constant, bail fully out. 2420 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2421 2422 if (!UniquedVals[i&(Multiple-1)].getNode()) 2423 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2424 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2425 return SDValue(); // no match. 2426 } 2427 2428 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2429 // either constant or undef values that are identical for each chunk. See 2430 // if these chunks can form into a larger vspltis*. 2431 2432 // Check to see if all of the leading entries are either 0 or -1. If 2433 // neither, then this won't fit into the immediate field. 2434 bool LeadingZero = true; 2435 bool LeadingOnes = true; 2436 for (unsigned i = 0; i != Multiple-1; ++i) { 2437 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2438 2439 LeadingZero &= isNullConstant(UniquedVals[i]); 2440 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2441 } 2442 // Finally, check the least significant entry. 2443 if (LeadingZero) { 2444 if (!UniquedVals[Multiple-1].getNode()) 2445 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2446 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2447 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2448 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2449 } 2450 if (LeadingOnes) { 2451 if (!UniquedVals[Multiple-1].getNode()) 2452 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2453 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2454 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2455 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2456 } 2457 2458 return SDValue(); 2459 } 2460 2461 // Check to see if this buildvec has a single non-undef value in its elements. 2462 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2463 if (N->getOperand(i).isUndef()) continue; 2464 if (!OpVal.getNode()) 2465 OpVal = N->getOperand(i); 2466 else if (OpVal != N->getOperand(i)) 2467 return SDValue(); 2468 } 2469 2470 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2471 2472 unsigned ValSizeInBytes = EltSize; 2473 uint64_t Value = 0; 2474 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2475 Value = CN->getZExtValue(); 2476 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2477 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2478 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2479 } 2480 2481 // If the splat value is larger than the element value, then we can never do 2482 // this splat. The only case that we could fit the replicated bits into our 2483 // immediate field for would be zero, and we prefer to use vxor for it. 2484 if (ValSizeInBytes < ByteSize) return SDValue(); 2485 2486 // If the element value is larger than the splat value, check if it consists 2487 // of a repeated bit pattern of size ByteSize. 2488 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2489 return SDValue(); 2490 2491 // Properly sign extend the value. 2492 int MaskVal = SignExtend32(Value, ByteSize * 8); 2493 2494 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2495 if (MaskVal == 0) return SDValue(); 2496 2497 // Finally, if this value fits in a 5 bit sext field, return it 2498 if (SignExtend32<5>(MaskVal) == MaskVal) 2499 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2500 return SDValue(); 2501 } 2502 2503 //===----------------------------------------------------------------------===// 2504 // Addressing Mode Selection 2505 //===----------------------------------------------------------------------===// 2506 2507 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2508 /// or 64-bit immediate, and if the value can be accurately represented as a 2509 /// sign extension from a 16-bit value. If so, this returns true and the 2510 /// immediate. 2511 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2512 if (!isa<ConstantSDNode>(N)) 2513 return false; 2514 2515 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2516 if (N->getValueType(0) == MVT::i32) 2517 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2518 else 2519 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2520 } 2521 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2522 return isIntS16Immediate(Op.getNode(), Imm); 2523 } 2524 2525 /// Used when computing address flags for selecting loads and stores. 2526 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2527 /// An OR of two provably disjoint values is equivalent to an ADD. 2528 /// Most PPC load/store instructions compute the effective address as a sum, 2529 /// so doing this conversion is useful. 2530 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2531 if (N.getOpcode() != ISD::OR) 2532 return false; 2533 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2534 if (!LHSKnown.Zero.getBoolValue()) 2535 return false; 2536 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2537 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2538 } 2539 2540 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2541 /// be represented as an indexed [r+r] operation. 2542 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2543 SDValue &Index, 2544 SelectionDAG &DAG) const { 2545 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2546 UI != E; ++UI) { 2547 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2548 if (Memop->getMemoryVT() == MVT::f64) { 2549 Base = N.getOperand(0); 2550 Index = N.getOperand(1); 2551 return true; 2552 } 2553 } 2554 } 2555 return false; 2556 } 2557 2558 /// isIntS34Immediate - This method tests if value of node given can be 2559 /// accurately represented as a sign extension from a 34-bit value. If so, 2560 /// this returns true and the immediate. 2561 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2562 if (!isa<ConstantSDNode>(N)) 2563 return false; 2564 2565 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2566 return isInt<34>(Imm); 2567 } 2568 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2569 return isIntS34Immediate(Op.getNode(), Imm); 2570 } 2571 2572 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2573 /// can be represented as an indexed [r+r] operation. Returns false if it 2574 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2575 /// non-zero and N can be represented by a base register plus a signed 16-bit 2576 /// displacement, make a more precise judgement by checking (displacement % \p 2577 /// EncodingAlignment). 2578 bool PPCTargetLowering::SelectAddressRegReg( 2579 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2580 MaybeAlign EncodingAlignment) const { 2581 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2582 // a [pc+imm]. 2583 if (SelectAddressPCRel(N, Base)) 2584 return false; 2585 2586 int16_t Imm = 0; 2587 if (N.getOpcode() == ISD::ADD) { 2588 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2589 // SPE load/store can only handle 8-bit offsets. 2590 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2591 return true; 2592 if (isIntS16Immediate(N.getOperand(1), Imm) && 2593 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2594 return false; // r+i 2595 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2596 return false; // r+i 2597 2598 Base = N.getOperand(0); 2599 Index = N.getOperand(1); 2600 return true; 2601 } else if (N.getOpcode() == ISD::OR) { 2602 if (isIntS16Immediate(N.getOperand(1), Imm) && 2603 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2604 return false; // r+i can fold it if we can. 2605 2606 // If this is an or of disjoint bitfields, we can codegen this as an add 2607 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2608 // disjoint. 2609 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2610 2611 if (LHSKnown.Zero.getBoolValue()) { 2612 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2613 // If all of the bits are known zero on the LHS or RHS, the add won't 2614 // carry. 2615 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2616 Base = N.getOperand(0); 2617 Index = N.getOperand(1); 2618 return true; 2619 } 2620 } 2621 } 2622 2623 return false; 2624 } 2625 2626 // If we happen to be doing an i64 load or store into a stack slot that has 2627 // less than a 4-byte alignment, then the frame-index elimination may need to 2628 // use an indexed load or store instruction (because the offset may not be a 2629 // multiple of 4). The extra register needed to hold the offset comes from the 2630 // register scavenger, and it is possible that the scavenger will need to use 2631 // an emergency spill slot. As a result, we need to make sure that a spill slot 2632 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2633 // stack slot. 2634 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2635 // FIXME: This does not handle the LWA case. 2636 if (VT != MVT::i64) 2637 return; 2638 2639 // NOTE: We'll exclude negative FIs here, which come from argument 2640 // lowering, because there are no known test cases triggering this problem 2641 // using packed structures (or similar). We can remove this exclusion if 2642 // we find such a test case. The reason why this is so test-case driven is 2643 // because this entire 'fixup' is only to prevent crashes (from the 2644 // register scavenger) on not-really-valid inputs. For example, if we have: 2645 // %a = alloca i1 2646 // %b = bitcast i1* %a to i64* 2647 // store i64* a, i64 b 2648 // then the store should really be marked as 'align 1', but is not. If it 2649 // were marked as 'align 1' then the indexed form would have been 2650 // instruction-selected initially, and the problem this 'fixup' is preventing 2651 // won't happen regardless. 2652 if (FrameIdx < 0) 2653 return; 2654 2655 MachineFunction &MF = DAG.getMachineFunction(); 2656 MachineFrameInfo &MFI = MF.getFrameInfo(); 2657 2658 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2659 return; 2660 2661 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2662 FuncInfo->setHasNonRISpills(); 2663 } 2664 2665 /// Returns true if the address N can be represented by a base register plus 2666 /// a signed 16-bit displacement [r+imm], and if it is not better 2667 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2668 /// displacements that are multiples of that value. 2669 bool PPCTargetLowering::SelectAddressRegImm( 2670 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2671 MaybeAlign EncodingAlignment) const { 2672 // FIXME dl should come from parent load or store, not from address 2673 SDLoc dl(N); 2674 2675 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2676 // a [pc+imm]. 2677 if (SelectAddressPCRel(N, Base)) 2678 return false; 2679 2680 // If this can be more profitably realized as r+r, fail. 2681 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2682 return false; 2683 2684 if (N.getOpcode() == ISD::ADD) { 2685 int16_t imm = 0; 2686 if (isIntS16Immediate(N.getOperand(1), imm) && 2687 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2688 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2689 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2690 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2691 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2692 } else { 2693 Base = N.getOperand(0); 2694 } 2695 return true; // [r+i] 2696 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2697 // Match LOAD (ADD (X, Lo(G))). 2698 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2699 && "Cannot handle constant offsets yet!"); 2700 Disp = N.getOperand(1).getOperand(0); // The global address. 2701 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2702 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2703 Disp.getOpcode() == ISD::TargetConstantPool || 2704 Disp.getOpcode() == ISD::TargetJumpTable); 2705 Base = N.getOperand(0); 2706 return true; // [&g+r] 2707 } 2708 } else if (N.getOpcode() == ISD::OR) { 2709 int16_t imm = 0; 2710 if (isIntS16Immediate(N.getOperand(1), imm) && 2711 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2712 // If this is an or of disjoint bitfields, we can codegen this as an add 2713 // (for better address arithmetic) if the LHS and RHS of the OR are 2714 // provably disjoint. 2715 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2716 2717 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2718 // If all of the bits are known zero on the LHS or RHS, the add won't 2719 // carry. 2720 if (FrameIndexSDNode *FI = 2721 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2722 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2723 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2724 } else { 2725 Base = N.getOperand(0); 2726 } 2727 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2728 return true; 2729 } 2730 } 2731 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2732 // Loading from a constant address. 2733 2734 // If this address fits entirely in a 16-bit sext immediate field, codegen 2735 // this as "d, 0" 2736 int16_t Imm; 2737 if (isIntS16Immediate(CN, Imm) && 2738 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2739 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2740 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2741 CN->getValueType(0)); 2742 return true; 2743 } 2744 2745 // Handle 32-bit sext immediates with LIS + addr mode. 2746 if ((CN->getValueType(0) == MVT::i32 || 2747 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2748 (!EncodingAlignment || 2749 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2750 int Addr = (int)CN->getZExtValue(); 2751 2752 // Otherwise, break this down into an LIS + disp. 2753 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2754 2755 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2756 MVT::i32); 2757 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2758 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2759 return true; 2760 } 2761 } 2762 2763 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2764 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2765 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2766 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2767 } else 2768 Base = N; 2769 return true; // [r+0] 2770 } 2771 2772 /// Similar to the 16-bit case but for instructions that take a 34-bit 2773 /// displacement field (prefixed loads/stores). 2774 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2775 SDValue &Base, 2776 SelectionDAG &DAG) const { 2777 // Only on 64-bit targets. 2778 if (N.getValueType() != MVT::i64) 2779 return false; 2780 2781 SDLoc dl(N); 2782 int64_t Imm = 0; 2783 2784 if (N.getOpcode() == ISD::ADD) { 2785 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2786 return false; 2787 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2788 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2789 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2790 else 2791 Base = N.getOperand(0); 2792 return true; 2793 } 2794 2795 if (N.getOpcode() == ISD::OR) { 2796 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2797 return false; 2798 // If this is an or of disjoint bitfields, we can codegen this as an add 2799 // (for better address arithmetic) if the LHS and RHS of the OR are 2800 // provably disjoint. 2801 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2802 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2803 return false; 2804 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2805 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2806 else 2807 Base = N.getOperand(0); 2808 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2809 return true; 2810 } 2811 2812 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2813 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2814 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2815 return true; 2816 } 2817 2818 return false; 2819 } 2820 2821 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2822 /// represented as an indexed [r+r] operation. 2823 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2824 SDValue &Index, 2825 SelectionDAG &DAG) const { 2826 // Check to see if we can easily represent this as an [r+r] address. This 2827 // will fail if it thinks that the address is more profitably represented as 2828 // reg+imm, e.g. where imm = 0. 2829 if (SelectAddressRegReg(N, Base, Index, DAG)) 2830 return true; 2831 2832 // If the address is the result of an add, we will utilize the fact that the 2833 // address calculation includes an implicit add. However, we can reduce 2834 // register pressure if we do not materialize a constant just for use as the 2835 // index register. We only get rid of the add if it is not an add of a 2836 // value and a 16-bit signed constant and both have a single use. 2837 int16_t imm = 0; 2838 if (N.getOpcode() == ISD::ADD && 2839 (!isIntS16Immediate(N.getOperand(1), imm) || 2840 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2841 Base = N.getOperand(0); 2842 Index = N.getOperand(1); 2843 return true; 2844 } 2845 2846 // Otherwise, do it the hard way, using R0 as the base register. 2847 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2848 N.getValueType()); 2849 Index = N; 2850 return true; 2851 } 2852 2853 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2854 Ty *PCRelCand = dyn_cast<Ty>(N); 2855 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2856 } 2857 2858 /// Returns true if this address is a PC Relative address. 2859 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2860 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2861 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2862 // This is a materialize PC Relative node. Always select this as PC Relative. 2863 Base = N; 2864 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2865 return true; 2866 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2867 isValidPCRelNode<GlobalAddressSDNode>(N) || 2868 isValidPCRelNode<JumpTableSDNode>(N) || 2869 isValidPCRelNode<BlockAddressSDNode>(N)) 2870 return true; 2871 return false; 2872 } 2873 2874 /// Returns true if we should use a direct load into vector instruction 2875 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2876 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2877 2878 // If there are any other uses other than scalar to vector, then we should 2879 // keep it as a scalar load -> direct move pattern to prevent multiple 2880 // loads. 2881 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2882 if (!LD) 2883 return false; 2884 2885 EVT MemVT = LD->getMemoryVT(); 2886 if (!MemVT.isSimple()) 2887 return false; 2888 switch(MemVT.getSimpleVT().SimpleTy) { 2889 case MVT::i64: 2890 break; 2891 case MVT::i32: 2892 if (!ST.hasP8Vector()) 2893 return false; 2894 break; 2895 case MVT::i16: 2896 case MVT::i8: 2897 if (!ST.hasP9Vector()) 2898 return false; 2899 break; 2900 default: 2901 return false; 2902 } 2903 2904 SDValue LoadedVal(N, 0); 2905 if (!LoadedVal.hasOneUse()) 2906 return false; 2907 2908 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2909 UI != UE; ++UI) 2910 if (UI.getUse().get().getResNo() == 0 && 2911 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2912 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2913 return false; 2914 2915 return true; 2916 } 2917 2918 /// getPreIndexedAddressParts - returns true by value, base pointer and 2919 /// offset pointer and addressing mode by reference if the node's address 2920 /// can be legally represented as pre-indexed load / store address. 2921 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2922 SDValue &Offset, 2923 ISD::MemIndexedMode &AM, 2924 SelectionDAG &DAG) const { 2925 if (DisablePPCPreinc) return false; 2926 2927 bool isLoad = true; 2928 SDValue Ptr; 2929 EVT VT; 2930 unsigned Alignment; 2931 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2932 Ptr = LD->getBasePtr(); 2933 VT = LD->getMemoryVT(); 2934 Alignment = LD->getAlignment(); 2935 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2936 Ptr = ST->getBasePtr(); 2937 VT = ST->getMemoryVT(); 2938 Alignment = ST->getAlignment(); 2939 isLoad = false; 2940 } else 2941 return false; 2942 2943 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2944 // instructions because we can fold these into a more efficient instruction 2945 // instead, (such as LXSD). 2946 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2947 return false; 2948 } 2949 2950 // PowerPC doesn't have preinc load/store instructions for vectors 2951 if (VT.isVector()) 2952 return false; 2953 2954 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2955 // Common code will reject creating a pre-inc form if the base pointer 2956 // is a frame index, or if N is a store and the base pointer is either 2957 // the same as or a predecessor of the value being stored. Check for 2958 // those situations here, and try with swapped Base/Offset instead. 2959 bool Swap = false; 2960 2961 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2962 Swap = true; 2963 else if (!isLoad) { 2964 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2965 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2966 Swap = true; 2967 } 2968 2969 if (Swap) 2970 std::swap(Base, Offset); 2971 2972 AM = ISD::PRE_INC; 2973 return true; 2974 } 2975 2976 // LDU/STU can only handle immediates that are a multiple of 4. 2977 if (VT != MVT::i64) { 2978 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2979 return false; 2980 } else { 2981 // LDU/STU need an address with at least 4-byte alignment. 2982 if (Alignment < 4) 2983 return false; 2984 2985 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2986 return false; 2987 } 2988 2989 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2990 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2991 // sext i32 to i64 when addr mode is r+i. 2992 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2993 LD->getExtensionType() == ISD::SEXTLOAD && 2994 isa<ConstantSDNode>(Offset)) 2995 return false; 2996 } 2997 2998 AM = ISD::PRE_INC; 2999 return true; 3000 } 3001 3002 //===----------------------------------------------------------------------===// 3003 // LowerOperation implementation 3004 //===----------------------------------------------------------------------===// 3005 3006 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3007 /// and LoOpFlags to the target MO flags. 3008 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3009 unsigned &HiOpFlags, unsigned &LoOpFlags, 3010 const GlobalValue *GV = nullptr) { 3011 HiOpFlags = PPCII::MO_HA; 3012 LoOpFlags = PPCII::MO_LO; 3013 3014 // Don't use the pic base if not in PIC relocation model. 3015 if (IsPIC) { 3016 HiOpFlags |= PPCII::MO_PIC_FLAG; 3017 LoOpFlags |= PPCII::MO_PIC_FLAG; 3018 } 3019 } 3020 3021 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3022 SelectionDAG &DAG) { 3023 SDLoc DL(HiPart); 3024 EVT PtrVT = HiPart.getValueType(); 3025 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3026 3027 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3028 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3029 3030 // With PIC, the first instruction is actually "GR+hi(&G)". 3031 if (isPIC) 3032 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3033 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3034 3035 // Generate non-pic code that has direct accesses to the constant pool. 3036 // The address of the global is just (hi(&g)+lo(&g)). 3037 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3038 } 3039 3040 static void setUsesTOCBasePtr(MachineFunction &MF) { 3041 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3042 FuncInfo->setUsesTOCBasePtr(); 3043 } 3044 3045 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3046 setUsesTOCBasePtr(DAG.getMachineFunction()); 3047 } 3048 3049 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3050 SDValue GA) const { 3051 const bool Is64Bit = Subtarget.isPPC64(); 3052 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3053 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3054 : Subtarget.isAIXABI() 3055 ? DAG.getRegister(PPC::R2, VT) 3056 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3057 SDValue Ops[] = { GA, Reg }; 3058 return DAG.getMemIntrinsicNode( 3059 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3060 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3061 MachineMemOperand::MOLoad); 3062 } 3063 3064 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3065 SelectionDAG &DAG) const { 3066 EVT PtrVT = Op.getValueType(); 3067 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3068 const Constant *C = CP->getConstVal(); 3069 3070 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3071 // The actual address of the GlobalValue is stored in the TOC. 3072 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3073 if (Subtarget.isUsingPCRelativeCalls()) { 3074 SDLoc DL(CP); 3075 EVT Ty = getPointerTy(DAG.getDataLayout()); 3076 SDValue ConstPool = DAG.getTargetConstantPool( 3077 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3078 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3079 } 3080 setUsesTOCBasePtr(DAG); 3081 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3082 return getTOCEntry(DAG, SDLoc(CP), GA); 3083 } 3084 3085 unsigned MOHiFlag, MOLoFlag; 3086 bool IsPIC = isPositionIndependent(); 3087 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3088 3089 if (IsPIC && Subtarget.isSVR4ABI()) { 3090 SDValue GA = 3091 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3092 return getTOCEntry(DAG, SDLoc(CP), GA); 3093 } 3094 3095 SDValue CPIHi = 3096 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3097 SDValue CPILo = 3098 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3099 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3100 } 3101 3102 // For 64-bit PowerPC, prefer the more compact relative encodings. 3103 // This trades 32 bits per jump table entry for one or two instructions 3104 // on the jump site. 3105 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3106 if (isJumpTableRelative()) 3107 return MachineJumpTableInfo::EK_LabelDifference32; 3108 3109 return TargetLowering::getJumpTableEncoding(); 3110 } 3111 3112 bool PPCTargetLowering::isJumpTableRelative() const { 3113 if (UseAbsoluteJumpTables) 3114 return false; 3115 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3116 return true; 3117 return TargetLowering::isJumpTableRelative(); 3118 } 3119 3120 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3121 SelectionDAG &DAG) const { 3122 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3123 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3124 3125 switch (getTargetMachine().getCodeModel()) { 3126 case CodeModel::Small: 3127 case CodeModel::Medium: 3128 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3129 default: 3130 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3131 getPointerTy(DAG.getDataLayout())); 3132 } 3133 } 3134 3135 const MCExpr * 3136 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3137 unsigned JTI, 3138 MCContext &Ctx) const { 3139 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3140 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3141 3142 switch (getTargetMachine().getCodeModel()) { 3143 case CodeModel::Small: 3144 case CodeModel::Medium: 3145 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3146 default: 3147 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3148 } 3149 } 3150 3151 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3152 EVT PtrVT = Op.getValueType(); 3153 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3154 3155 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3156 if (Subtarget.isUsingPCRelativeCalls()) { 3157 SDLoc DL(JT); 3158 EVT Ty = getPointerTy(DAG.getDataLayout()); 3159 SDValue GA = 3160 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3161 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3162 return MatAddr; 3163 } 3164 3165 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3166 // The actual address of the GlobalValue is stored in the TOC. 3167 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3168 setUsesTOCBasePtr(DAG); 3169 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3170 return getTOCEntry(DAG, SDLoc(JT), GA); 3171 } 3172 3173 unsigned MOHiFlag, MOLoFlag; 3174 bool IsPIC = isPositionIndependent(); 3175 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3176 3177 if (IsPIC && Subtarget.isSVR4ABI()) { 3178 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3179 PPCII::MO_PIC_FLAG); 3180 return getTOCEntry(DAG, SDLoc(GA), GA); 3181 } 3182 3183 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3184 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3185 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3186 } 3187 3188 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3189 SelectionDAG &DAG) const { 3190 EVT PtrVT = Op.getValueType(); 3191 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3192 const BlockAddress *BA = BASDN->getBlockAddress(); 3193 3194 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3195 if (Subtarget.isUsingPCRelativeCalls()) { 3196 SDLoc DL(BASDN); 3197 EVT Ty = getPointerTy(DAG.getDataLayout()); 3198 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3199 PPCII::MO_PCREL_FLAG); 3200 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3201 return MatAddr; 3202 } 3203 3204 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3205 // The actual BlockAddress is stored in the TOC. 3206 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3207 setUsesTOCBasePtr(DAG); 3208 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3209 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3210 } 3211 3212 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3213 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3214 return getTOCEntry( 3215 DAG, SDLoc(BASDN), 3216 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3217 3218 unsigned MOHiFlag, MOLoFlag; 3219 bool IsPIC = isPositionIndependent(); 3220 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3221 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3222 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3223 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3224 } 3225 3226 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3227 SelectionDAG &DAG) const { 3228 if (Subtarget.isAIXABI()) 3229 return LowerGlobalTLSAddressAIX(Op, DAG); 3230 3231 return LowerGlobalTLSAddressLinux(Op, DAG); 3232 } 3233 3234 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3235 SelectionDAG &DAG) const { 3236 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3237 3238 if (DAG.getTarget().useEmulatedTLS()) 3239 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3240 3241 SDLoc dl(GA); 3242 const GlobalValue *GV = GA->getGlobal(); 3243 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3244 3245 // The general-dynamic model is the only access model supported for now, so 3246 // all the GlobalTLSAddress nodes are lowered with this model. 3247 // We need to generate two TOC entries, one for the variable offset, one for 3248 // the region handle. The global address for the TOC entry of the region 3249 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3250 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3251 SDValue VariableOffsetTGA = 3252 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3253 SDValue RegionHandleTGA = 3254 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3255 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3256 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3257 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3258 RegionHandle); 3259 } 3260 3261 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3262 SelectionDAG &DAG) const { 3263 // FIXME: TLS addresses currently use medium model code sequences, 3264 // which is the most useful form. Eventually support for small and 3265 // large models could be added if users need it, at the cost of 3266 // additional complexity. 3267 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3268 if (DAG.getTarget().useEmulatedTLS()) 3269 return LowerToTLSEmulatedModel(GA, DAG); 3270 3271 SDLoc dl(GA); 3272 const GlobalValue *GV = GA->getGlobal(); 3273 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3274 bool is64bit = Subtarget.isPPC64(); 3275 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3276 PICLevel::Level picLevel = M->getPICLevel(); 3277 3278 const TargetMachine &TM = getTargetMachine(); 3279 TLSModel::Model Model = TM.getTLSModel(GV); 3280 3281 if (Model == TLSModel::LocalExec) { 3282 if (Subtarget.isUsingPCRelativeCalls()) { 3283 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3284 SDValue TGA = DAG.getTargetGlobalAddress( 3285 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3286 SDValue MatAddr = 3287 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3288 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3289 } 3290 3291 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3292 PPCII::MO_TPREL_HA); 3293 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3294 PPCII::MO_TPREL_LO); 3295 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3296 : DAG.getRegister(PPC::R2, MVT::i32); 3297 3298 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3299 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3300 } 3301 3302 if (Model == TLSModel::InitialExec) { 3303 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3304 SDValue TGA = DAG.getTargetGlobalAddress( 3305 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3306 SDValue TGATLS = DAG.getTargetGlobalAddress( 3307 GV, dl, PtrVT, 0, 3308 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3309 SDValue TPOffset; 3310 if (IsPCRel) { 3311 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3312 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3313 MachinePointerInfo()); 3314 } else { 3315 SDValue GOTPtr; 3316 if (is64bit) { 3317 setUsesTOCBasePtr(DAG); 3318 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3319 GOTPtr = 3320 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3321 } else { 3322 if (!TM.isPositionIndependent()) 3323 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3324 else if (picLevel == PICLevel::SmallPIC) 3325 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3326 else 3327 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3328 } 3329 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3330 } 3331 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3332 } 3333 3334 if (Model == TLSModel::GeneralDynamic) { 3335 if (Subtarget.isUsingPCRelativeCalls()) { 3336 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3337 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3338 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3339 } 3340 3341 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3342 SDValue GOTPtr; 3343 if (is64bit) { 3344 setUsesTOCBasePtr(DAG); 3345 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3346 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3347 GOTReg, TGA); 3348 } else { 3349 if (picLevel == PICLevel::SmallPIC) 3350 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3351 else 3352 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3353 } 3354 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3355 GOTPtr, TGA, TGA); 3356 } 3357 3358 if (Model == TLSModel::LocalDynamic) { 3359 if (Subtarget.isUsingPCRelativeCalls()) { 3360 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3361 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3362 SDValue MatPCRel = 3363 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3364 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3365 } 3366 3367 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3368 SDValue GOTPtr; 3369 if (is64bit) { 3370 setUsesTOCBasePtr(DAG); 3371 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3372 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3373 GOTReg, TGA); 3374 } else { 3375 if (picLevel == PICLevel::SmallPIC) 3376 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3377 else 3378 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3379 } 3380 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3381 PtrVT, GOTPtr, TGA, TGA); 3382 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3383 PtrVT, TLSAddr, TGA); 3384 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3385 } 3386 3387 llvm_unreachable("Unknown TLS model!"); 3388 } 3389 3390 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3391 SelectionDAG &DAG) const { 3392 EVT PtrVT = Op.getValueType(); 3393 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3394 SDLoc DL(GSDN); 3395 const GlobalValue *GV = GSDN->getGlobal(); 3396 3397 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3398 // The actual address of the GlobalValue is stored in the TOC. 3399 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3400 if (Subtarget.isUsingPCRelativeCalls()) { 3401 EVT Ty = getPointerTy(DAG.getDataLayout()); 3402 if (isAccessedAsGotIndirect(Op)) { 3403 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3404 PPCII::MO_PCREL_FLAG | 3405 PPCII::MO_GOT_FLAG); 3406 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3407 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3408 MachinePointerInfo()); 3409 return Load; 3410 } else { 3411 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3412 PPCII::MO_PCREL_FLAG); 3413 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3414 } 3415 } 3416 setUsesTOCBasePtr(DAG); 3417 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3418 return getTOCEntry(DAG, DL, GA); 3419 } 3420 3421 unsigned MOHiFlag, MOLoFlag; 3422 bool IsPIC = isPositionIndependent(); 3423 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3424 3425 if (IsPIC && Subtarget.isSVR4ABI()) { 3426 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3427 GSDN->getOffset(), 3428 PPCII::MO_PIC_FLAG); 3429 return getTOCEntry(DAG, DL, GA); 3430 } 3431 3432 SDValue GAHi = 3433 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3434 SDValue GALo = 3435 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3436 3437 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3438 } 3439 3440 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3441 bool IsStrict = Op->isStrictFPOpcode(); 3442 ISD::CondCode CC = 3443 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3444 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3445 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3446 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3447 EVT LHSVT = LHS.getValueType(); 3448 SDLoc dl(Op); 3449 3450 // Soften the setcc with libcall if it is fp128. 3451 if (LHSVT == MVT::f128) { 3452 assert(!Subtarget.hasP9Vector() && 3453 "SETCC for f128 is already legal under Power9!"); 3454 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3455 Op->getOpcode() == ISD::STRICT_FSETCCS); 3456 if (RHS.getNode()) 3457 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3458 DAG.getCondCode(CC)); 3459 if (IsStrict) 3460 return DAG.getMergeValues({LHS, Chain}, dl); 3461 return LHS; 3462 } 3463 3464 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3465 3466 if (Op.getValueType() == MVT::v2i64) { 3467 // When the operands themselves are v2i64 values, we need to do something 3468 // special because VSX has no underlying comparison operations for these. 3469 if (LHS.getValueType() == MVT::v2i64) { 3470 // Equality can be handled by casting to the legal type for Altivec 3471 // comparisons, everything else needs to be expanded. 3472 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3473 return DAG.getNode( 3474 ISD::BITCAST, dl, MVT::v2i64, 3475 DAG.getSetCC(dl, MVT::v4i32, 3476 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3477 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3478 } 3479 3480 return SDValue(); 3481 } 3482 3483 // We handle most of these in the usual way. 3484 return Op; 3485 } 3486 3487 // If we're comparing for equality to zero, expose the fact that this is 3488 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3489 // fold the new nodes. 3490 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3491 return V; 3492 3493 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3494 // Leave comparisons against 0 and -1 alone for now, since they're usually 3495 // optimized. FIXME: revisit this when we can custom lower all setcc 3496 // optimizations. 3497 if (C->isAllOnesValue() || C->isNullValue()) 3498 return SDValue(); 3499 } 3500 3501 // If we have an integer seteq/setne, turn it into a compare against zero 3502 // by xor'ing the rhs with the lhs, which is faster than setting a 3503 // condition register, reading it back out, and masking the correct bit. The 3504 // normal approach here uses sub to do this instead of xor. Using xor exposes 3505 // the result to other bit-twiddling opportunities. 3506 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3507 EVT VT = Op.getValueType(); 3508 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3509 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3510 } 3511 return SDValue(); 3512 } 3513 3514 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3515 SDNode *Node = Op.getNode(); 3516 EVT VT = Node->getValueType(0); 3517 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3518 SDValue InChain = Node->getOperand(0); 3519 SDValue VAListPtr = Node->getOperand(1); 3520 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3521 SDLoc dl(Node); 3522 3523 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3524 3525 // gpr_index 3526 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3527 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3528 InChain = GprIndex.getValue(1); 3529 3530 if (VT == MVT::i64) { 3531 // Check if GprIndex is even 3532 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3533 DAG.getConstant(1, dl, MVT::i32)); 3534 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3535 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3536 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3537 DAG.getConstant(1, dl, MVT::i32)); 3538 // Align GprIndex to be even if it isn't 3539 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3540 GprIndex); 3541 } 3542 3543 // fpr index is 1 byte after gpr 3544 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3545 DAG.getConstant(1, dl, MVT::i32)); 3546 3547 // fpr 3548 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3549 FprPtr, MachinePointerInfo(SV), MVT::i8); 3550 InChain = FprIndex.getValue(1); 3551 3552 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3553 DAG.getConstant(8, dl, MVT::i32)); 3554 3555 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3556 DAG.getConstant(4, dl, MVT::i32)); 3557 3558 // areas 3559 SDValue OverflowArea = 3560 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3561 InChain = OverflowArea.getValue(1); 3562 3563 SDValue RegSaveArea = 3564 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3565 InChain = RegSaveArea.getValue(1); 3566 3567 // select overflow_area if index > 8 3568 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3569 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3570 3571 // adjustment constant gpr_index * 4/8 3572 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3573 VT.isInteger() ? GprIndex : FprIndex, 3574 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3575 MVT::i32)); 3576 3577 // OurReg = RegSaveArea + RegConstant 3578 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3579 RegConstant); 3580 3581 // Floating types are 32 bytes into RegSaveArea 3582 if (VT.isFloatingPoint()) 3583 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3584 DAG.getConstant(32, dl, MVT::i32)); 3585 3586 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3587 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3588 VT.isInteger() ? GprIndex : FprIndex, 3589 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3590 MVT::i32)); 3591 3592 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3593 VT.isInteger() ? VAListPtr : FprPtr, 3594 MachinePointerInfo(SV), MVT::i8); 3595 3596 // determine if we should load from reg_save_area or overflow_area 3597 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3598 3599 // increase overflow_area by 4/8 if gpr/fpr > 8 3600 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3601 DAG.getConstant(VT.isInteger() ? 4 : 8, 3602 dl, MVT::i32)); 3603 3604 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3605 OverflowAreaPlusN); 3606 3607 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3608 MachinePointerInfo(), MVT::i32); 3609 3610 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3611 } 3612 3613 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3614 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3615 3616 // We have to copy the entire va_list struct: 3617 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3618 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3619 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3620 false, true, false, MachinePointerInfo(), 3621 MachinePointerInfo()); 3622 } 3623 3624 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3625 SelectionDAG &DAG) const { 3626 if (Subtarget.isAIXABI()) 3627 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3628 3629 return Op.getOperand(0); 3630 } 3631 3632 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3633 MachineFunction &MF = DAG.getMachineFunction(); 3634 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3635 3636 assert((Op.getOpcode() == ISD::INLINEASM || 3637 Op.getOpcode() == ISD::INLINEASM_BR) && 3638 "Expecting Inline ASM node."); 3639 3640 // If an LR store is already known to be required then there is not point in 3641 // checking this ASM as well. 3642 if (MFI.isLRStoreRequired()) 3643 return Op; 3644 3645 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3646 // type MVT::Glue. We want to ignore this last operand if that is the case. 3647 unsigned NumOps = Op.getNumOperands(); 3648 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3649 --NumOps; 3650 3651 // Check all operands that may contain the LR. 3652 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3653 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3654 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3655 ++i; // Skip the ID value. 3656 3657 switch (InlineAsm::getKind(Flags)) { 3658 default: 3659 llvm_unreachable("Bad flags!"); 3660 case InlineAsm::Kind_RegUse: 3661 case InlineAsm::Kind_Imm: 3662 case InlineAsm::Kind_Mem: 3663 i += NumVals; 3664 break; 3665 case InlineAsm::Kind_Clobber: 3666 case InlineAsm::Kind_RegDef: 3667 case InlineAsm::Kind_RegDefEarlyClobber: { 3668 for (; NumVals; --NumVals, ++i) { 3669 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3670 if (Reg != PPC::LR && Reg != PPC::LR8) 3671 continue; 3672 MFI.setLRStoreRequired(); 3673 return Op; 3674 } 3675 break; 3676 } 3677 } 3678 } 3679 3680 return Op; 3681 } 3682 3683 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3684 SelectionDAG &DAG) const { 3685 if (Subtarget.isAIXABI()) 3686 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3687 3688 SDValue Chain = Op.getOperand(0); 3689 SDValue Trmp = Op.getOperand(1); // trampoline 3690 SDValue FPtr = Op.getOperand(2); // nested function 3691 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3692 SDLoc dl(Op); 3693 3694 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3695 bool isPPC64 = (PtrVT == MVT::i64); 3696 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3697 3698 TargetLowering::ArgListTy Args; 3699 TargetLowering::ArgListEntry Entry; 3700 3701 Entry.Ty = IntPtrTy; 3702 Entry.Node = Trmp; Args.push_back(Entry); 3703 3704 // TrampSize == (isPPC64 ? 48 : 40); 3705 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3706 isPPC64 ? MVT::i64 : MVT::i32); 3707 Args.push_back(Entry); 3708 3709 Entry.Node = FPtr; Args.push_back(Entry); 3710 Entry.Node = Nest; Args.push_back(Entry); 3711 3712 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3713 TargetLowering::CallLoweringInfo CLI(DAG); 3714 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3715 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3716 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3717 3718 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3719 return CallResult.second; 3720 } 3721 3722 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3723 MachineFunction &MF = DAG.getMachineFunction(); 3724 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3725 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3726 3727 SDLoc dl(Op); 3728 3729 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3730 // vastart just stores the address of the VarArgsFrameIndex slot into the 3731 // memory location argument. 3732 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3733 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3734 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3735 MachinePointerInfo(SV)); 3736 } 3737 3738 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3739 // We suppose the given va_list is already allocated. 3740 // 3741 // typedef struct { 3742 // char gpr; /* index into the array of 8 GPRs 3743 // * stored in the register save area 3744 // * gpr=0 corresponds to r3, 3745 // * gpr=1 to r4, etc. 3746 // */ 3747 // char fpr; /* index into the array of 8 FPRs 3748 // * stored in the register save area 3749 // * fpr=0 corresponds to f1, 3750 // * fpr=1 to f2, etc. 3751 // */ 3752 // char *overflow_arg_area; 3753 // /* location on stack that holds 3754 // * the next overflow argument 3755 // */ 3756 // char *reg_save_area; 3757 // /* where r3:r10 and f1:f8 (if saved) 3758 // * are stored 3759 // */ 3760 // } va_list[1]; 3761 3762 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3763 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3764 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3765 PtrVT); 3766 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3767 PtrVT); 3768 3769 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3770 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3771 3772 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3773 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3774 3775 uint64_t FPROffset = 1; 3776 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3777 3778 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3779 3780 // Store first byte : number of int regs 3781 SDValue firstStore = 3782 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3783 MachinePointerInfo(SV), MVT::i8); 3784 uint64_t nextOffset = FPROffset; 3785 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3786 ConstFPROffset); 3787 3788 // Store second byte : number of float regs 3789 SDValue secondStore = 3790 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3791 MachinePointerInfo(SV, nextOffset), MVT::i8); 3792 nextOffset += StackOffset; 3793 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3794 3795 // Store second word : arguments given on stack 3796 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3797 MachinePointerInfo(SV, nextOffset)); 3798 nextOffset += FrameOffset; 3799 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3800 3801 // Store third word : arguments given in registers 3802 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3803 MachinePointerInfo(SV, nextOffset)); 3804 } 3805 3806 /// FPR - The set of FP registers that should be allocated for arguments 3807 /// on Darwin and AIX. 3808 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3809 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3810 PPC::F11, PPC::F12, PPC::F13}; 3811 3812 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3813 /// the stack. 3814 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3815 unsigned PtrByteSize) { 3816 unsigned ArgSize = ArgVT.getStoreSize(); 3817 if (Flags.isByVal()) 3818 ArgSize = Flags.getByValSize(); 3819 3820 // Round up to multiples of the pointer size, except for array members, 3821 // which are always packed. 3822 if (!Flags.isInConsecutiveRegs()) 3823 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3824 3825 return ArgSize; 3826 } 3827 3828 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3829 /// on the stack. 3830 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3831 ISD::ArgFlagsTy Flags, 3832 unsigned PtrByteSize) { 3833 Align Alignment(PtrByteSize); 3834 3835 // Altivec parameters are padded to a 16 byte boundary. 3836 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3837 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3838 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3839 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3840 Alignment = Align(16); 3841 3842 // ByVal parameters are aligned as requested. 3843 if (Flags.isByVal()) { 3844 auto BVAlign = Flags.getNonZeroByValAlign(); 3845 if (BVAlign > PtrByteSize) { 3846 if (BVAlign.value() % PtrByteSize != 0) 3847 llvm_unreachable( 3848 "ByVal alignment is not a multiple of the pointer size"); 3849 3850 Alignment = BVAlign; 3851 } 3852 } 3853 3854 // Array members are always packed to their original alignment. 3855 if (Flags.isInConsecutiveRegs()) { 3856 // If the array member was split into multiple registers, the first 3857 // needs to be aligned to the size of the full type. (Except for 3858 // ppcf128, which is only aligned as its f64 components.) 3859 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3860 Alignment = Align(OrigVT.getStoreSize()); 3861 else 3862 Alignment = Align(ArgVT.getStoreSize()); 3863 } 3864 3865 return Alignment; 3866 } 3867 3868 /// CalculateStackSlotUsed - Return whether this argument will use its 3869 /// stack slot (instead of being passed in registers). ArgOffset, 3870 /// AvailableFPRs, and AvailableVRs must hold the current argument 3871 /// position, and will be updated to account for this argument. 3872 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3873 unsigned PtrByteSize, unsigned LinkageSize, 3874 unsigned ParamAreaSize, unsigned &ArgOffset, 3875 unsigned &AvailableFPRs, 3876 unsigned &AvailableVRs) { 3877 bool UseMemory = false; 3878 3879 // Respect alignment of argument on the stack. 3880 Align Alignment = 3881 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3882 ArgOffset = alignTo(ArgOffset, Alignment); 3883 // If there's no space left in the argument save area, we must 3884 // use memory (this check also catches zero-sized arguments). 3885 if (ArgOffset >= LinkageSize + ParamAreaSize) 3886 UseMemory = true; 3887 3888 // Allocate argument on the stack. 3889 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3890 if (Flags.isInConsecutiveRegsLast()) 3891 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3892 // If we overran the argument save area, we must use memory 3893 // (this check catches arguments passed partially in memory) 3894 if (ArgOffset > LinkageSize + ParamAreaSize) 3895 UseMemory = true; 3896 3897 // However, if the argument is actually passed in an FPR or a VR, 3898 // we don't use memory after all. 3899 if (!Flags.isByVal()) { 3900 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3901 if (AvailableFPRs > 0) { 3902 --AvailableFPRs; 3903 return false; 3904 } 3905 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3906 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3907 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3908 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3909 if (AvailableVRs > 0) { 3910 --AvailableVRs; 3911 return false; 3912 } 3913 } 3914 3915 return UseMemory; 3916 } 3917 3918 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3919 /// ensure minimum alignment required for target. 3920 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3921 unsigned NumBytes) { 3922 return alignTo(NumBytes, Lowering->getStackAlign()); 3923 } 3924 3925 SDValue PPCTargetLowering::LowerFormalArguments( 3926 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3927 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3928 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3929 if (Subtarget.isAIXABI()) 3930 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3931 InVals); 3932 if (Subtarget.is64BitELFABI()) 3933 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3934 InVals); 3935 assert(Subtarget.is32BitELFABI()); 3936 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3937 InVals); 3938 } 3939 3940 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3941 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3942 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3943 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3944 3945 // 32-bit SVR4 ABI Stack Frame Layout: 3946 // +-----------------------------------+ 3947 // +--> | Back chain | 3948 // | +-----------------------------------+ 3949 // | | Floating-point register save area | 3950 // | +-----------------------------------+ 3951 // | | General register save area | 3952 // | +-----------------------------------+ 3953 // | | CR save word | 3954 // | +-----------------------------------+ 3955 // | | VRSAVE save word | 3956 // | +-----------------------------------+ 3957 // | | Alignment padding | 3958 // | +-----------------------------------+ 3959 // | | Vector register save area | 3960 // | +-----------------------------------+ 3961 // | | Local variable space | 3962 // | +-----------------------------------+ 3963 // | | Parameter list area | 3964 // | +-----------------------------------+ 3965 // | | LR save word | 3966 // | +-----------------------------------+ 3967 // SP--> +--- | Back chain | 3968 // +-----------------------------------+ 3969 // 3970 // Specifications: 3971 // System V Application Binary Interface PowerPC Processor Supplement 3972 // AltiVec Technology Programming Interface Manual 3973 3974 MachineFunction &MF = DAG.getMachineFunction(); 3975 MachineFrameInfo &MFI = MF.getFrameInfo(); 3976 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3977 3978 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3979 // Potential tail calls could cause overwriting of argument stack slots. 3980 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3981 (CallConv == CallingConv::Fast)); 3982 const Align PtrAlign(4); 3983 3984 // Assign locations to all of the incoming arguments. 3985 SmallVector<CCValAssign, 16> ArgLocs; 3986 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3987 *DAG.getContext()); 3988 3989 // Reserve space for the linkage area on the stack. 3990 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3991 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3992 if (useSoftFloat()) 3993 CCInfo.PreAnalyzeFormalArguments(Ins); 3994 3995 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3996 CCInfo.clearWasPPCF128(); 3997 3998 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3999 CCValAssign &VA = ArgLocs[i]; 4000 4001 // Arguments stored in registers. 4002 if (VA.isRegLoc()) { 4003 const TargetRegisterClass *RC; 4004 EVT ValVT = VA.getValVT(); 4005 4006 switch (ValVT.getSimpleVT().SimpleTy) { 4007 default: 4008 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4009 case MVT::i1: 4010 case MVT::i32: 4011 RC = &PPC::GPRCRegClass; 4012 break; 4013 case MVT::f32: 4014 if (Subtarget.hasP8Vector()) 4015 RC = &PPC::VSSRCRegClass; 4016 else if (Subtarget.hasSPE()) 4017 RC = &PPC::GPRCRegClass; 4018 else 4019 RC = &PPC::F4RCRegClass; 4020 break; 4021 case MVT::f64: 4022 if (Subtarget.hasVSX()) 4023 RC = &PPC::VSFRCRegClass; 4024 else if (Subtarget.hasSPE()) 4025 // SPE passes doubles in GPR pairs. 4026 RC = &PPC::GPRCRegClass; 4027 else 4028 RC = &PPC::F8RCRegClass; 4029 break; 4030 case MVT::v16i8: 4031 case MVT::v8i16: 4032 case MVT::v4i32: 4033 RC = &PPC::VRRCRegClass; 4034 break; 4035 case MVT::v4f32: 4036 RC = &PPC::VRRCRegClass; 4037 break; 4038 case MVT::v2f64: 4039 case MVT::v2i64: 4040 RC = &PPC::VRRCRegClass; 4041 break; 4042 } 4043 4044 SDValue ArgValue; 4045 // Transform the arguments stored in physical registers into 4046 // virtual ones. 4047 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4048 assert(i + 1 < e && "No second half of double precision argument"); 4049 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4050 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4051 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4052 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4053 if (!Subtarget.isLittleEndian()) 4054 std::swap (ArgValueLo, ArgValueHi); 4055 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4056 ArgValueHi); 4057 } else { 4058 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4059 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4060 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4061 if (ValVT == MVT::i1) 4062 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4063 } 4064 4065 InVals.push_back(ArgValue); 4066 } else { 4067 // Argument stored in memory. 4068 assert(VA.isMemLoc()); 4069 4070 // Get the extended size of the argument type in stack 4071 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4072 // Get the actual size of the argument type 4073 unsigned ObjSize = VA.getValVT().getStoreSize(); 4074 unsigned ArgOffset = VA.getLocMemOffset(); 4075 // Stack objects in PPC32 are right justified. 4076 ArgOffset += ArgSize - ObjSize; 4077 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4078 4079 // Create load nodes to retrieve arguments from the stack. 4080 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4081 InVals.push_back( 4082 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4083 } 4084 } 4085 4086 // Assign locations to all of the incoming aggregate by value arguments. 4087 // Aggregates passed by value are stored in the local variable space of the 4088 // caller's stack frame, right above the parameter list area. 4089 SmallVector<CCValAssign, 16> ByValArgLocs; 4090 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4091 ByValArgLocs, *DAG.getContext()); 4092 4093 // Reserve stack space for the allocations in CCInfo. 4094 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4095 4096 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4097 4098 // Area that is at least reserved in the caller of this function. 4099 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4100 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4101 4102 // Set the size that is at least reserved in caller of this function. Tail 4103 // call optimized function's reserved stack space needs to be aligned so that 4104 // taking the difference between two stack areas will result in an aligned 4105 // stack. 4106 MinReservedArea = 4107 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4108 FuncInfo->setMinReservedArea(MinReservedArea); 4109 4110 SmallVector<SDValue, 8> MemOps; 4111 4112 // If the function takes variable number of arguments, make a frame index for 4113 // the start of the first vararg value... for expansion of llvm.va_start. 4114 if (isVarArg) { 4115 static const MCPhysReg GPArgRegs[] = { 4116 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4117 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4118 }; 4119 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4120 4121 static const MCPhysReg FPArgRegs[] = { 4122 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4123 PPC::F8 4124 }; 4125 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4126 4127 if (useSoftFloat() || hasSPE()) 4128 NumFPArgRegs = 0; 4129 4130 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4131 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4132 4133 // Make room for NumGPArgRegs and NumFPArgRegs. 4134 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4135 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4136 4137 FuncInfo->setVarArgsStackOffset( 4138 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4139 CCInfo.getNextStackOffset(), true)); 4140 4141 FuncInfo->setVarArgsFrameIndex( 4142 MFI.CreateStackObject(Depth, Align(8), false)); 4143 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4144 4145 // The fixed integer arguments of a variadic function are stored to the 4146 // VarArgsFrameIndex on the stack so that they may be loaded by 4147 // dereferencing the result of va_next. 4148 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4149 // Get an existing live-in vreg, or add a new one. 4150 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4151 if (!VReg) 4152 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4153 4154 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4155 SDValue Store = 4156 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4157 MemOps.push_back(Store); 4158 // Increment the address by four for the next argument to store 4159 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4160 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4161 } 4162 4163 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4164 // is set. 4165 // The double arguments are stored to the VarArgsFrameIndex 4166 // on the stack. 4167 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4168 // Get an existing live-in vreg, or add a new one. 4169 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4170 if (!VReg) 4171 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4172 4173 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4174 SDValue Store = 4175 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4176 MemOps.push_back(Store); 4177 // Increment the address by eight for the next argument to store 4178 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4179 PtrVT); 4180 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4181 } 4182 } 4183 4184 if (!MemOps.empty()) 4185 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4186 4187 return Chain; 4188 } 4189 4190 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4191 // value to MVT::i64 and then truncate to the correct register size. 4192 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4193 EVT ObjectVT, SelectionDAG &DAG, 4194 SDValue ArgVal, 4195 const SDLoc &dl) const { 4196 if (Flags.isSExt()) 4197 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4198 DAG.getValueType(ObjectVT)); 4199 else if (Flags.isZExt()) 4200 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4201 DAG.getValueType(ObjectVT)); 4202 4203 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4204 } 4205 4206 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4207 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4208 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4209 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4210 // TODO: add description of PPC stack frame format, or at least some docs. 4211 // 4212 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4213 bool isLittleEndian = Subtarget.isLittleEndian(); 4214 MachineFunction &MF = DAG.getMachineFunction(); 4215 MachineFrameInfo &MFI = MF.getFrameInfo(); 4216 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4217 4218 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4219 "fastcc not supported on varargs functions"); 4220 4221 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4222 // Potential tail calls could cause overwriting of argument stack slots. 4223 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4224 (CallConv == CallingConv::Fast)); 4225 unsigned PtrByteSize = 8; 4226 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4227 4228 static const MCPhysReg GPR[] = { 4229 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4230 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4231 }; 4232 static const MCPhysReg VR[] = { 4233 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4234 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4235 }; 4236 4237 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4238 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4239 const unsigned Num_VR_Regs = array_lengthof(VR); 4240 4241 // Do a first pass over the arguments to determine whether the ABI 4242 // guarantees that our caller has allocated the parameter save area 4243 // on its stack frame. In the ELFv1 ABI, this is always the case; 4244 // in the ELFv2 ABI, it is true if this is a vararg function or if 4245 // any parameter is located in a stack slot. 4246 4247 bool HasParameterArea = !isELFv2ABI || isVarArg; 4248 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4249 unsigned NumBytes = LinkageSize; 4250 unsigned AvailableFPRs = Num_FPR_Regs; 4251 unsigned AvailableVRs = Num_VR_Regs; 4252 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4253 if (Ins[i].Flags.isNest()) 4254 continue; 4255 4256 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4257 PtrByteSize, LinkageSize, ParamAreaSize, 4258 NumBytes, AvailableFPRs, AvailableVRs)) 4259 HasParameterArea = true; 4260 } 4261 4262 // Add DAG nodes to load the arguments or copy them out of registers. On 4263 // entry to a function on PPC, the arguments start after the linkage area, 4264 // although the first ones are often in registers. 4265 4266 unsigned ArgOffset = LinkageSize; 4267 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4268 SmallVector<SDValue, 8> MemOps; 4269 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4270 unsigned CurArgIdx = 0; 4271 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4272 SDValue ArgVal; 4273 bool needsLoad = false; 4274 EVT ObjectVT = Ins[ArgNo].VT; 4275 EVT OrigVT = Ins[ArgNo].ArgVT; 4276 unsigned ObjSize = ObjectVT.getStoreSize(); 4277 unsigned ArgSize = ObjSize; 4278 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4279 if (Ins[ArgNo].isOrigArg()) { 4280 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4281 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4282 } 4283 // We re-align the argument offset for each argument, except when using the 4284 // fast calling convention, when we need to make sure we do that only when 4285 // we'll actually use a stack slot. 4286 unsigned CurArgOffset; 4287 Align Alignment; 4288 auto ComputeArgOffset = [&]() { 4289 /* Respect alignment of argument on the stack. */ 4290 Alignment = 4291 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4292 ArgOffset = alignTo(ArgOffset, Alignment); 4293 CurArgOffset = ArgOffset; 4294 }; 4295 4296 if (CallConv != CallingConv::Fast) { 4297 ComputeArgOffset(); 4298 4299 /* Compute GPR index associated with argument offset. */ 4300 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4301 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4302 } 4303 4304 // FIXME the codegen can be much improved in some cases. 4305 // We do not have to keep everything in memory. 4306 if (Flags.isByVal()) { 4307 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4308 4309 if (CallConv == CallingConv::Fast) 4310 ComputeArgOffset(); 4311 4312 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4313 ObjSize = Flags.getByValSize(); 4314 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4315 // Empty aggregate parameters do not take up registers. Examples: 4316 // struct { } a; 4317 // union { } b; 4318 // int c[0]; 4319 // etc. However, we have to provide a place-holder in InVals, so 4320 // pretend we have an 8-byte item at the current address for that 4321 // purpose. 4322 if (!ObjSize) { 4323 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4324 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4325 InVals.push_back(FIN); 4326 continue; 4327 } 4328 4329 // Create a stack object covering all stack doublewords occupied 4330 // by the argument. If the argument is (fully or partially) on 4331 // the stack, or if the argument is fully in registers but the 4332 // caller has allocated the parameter save anyway, we can refer 4333 // directly to the caller's stack frame. Otherwise, create a 4334 // local copy in our own frame. 4335 int FI; 4336 if (HasParameterArea || 4337 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4338 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4339 else 4340 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4341 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4342 4343 // Handle aggregates smaller than 8 bytes. 4344 if (ObjSize < PtrByteSize) { 4345 // The value of the object is its address, which differs from the 4346 // address of the enclosing doubleword on big-endian systems. 4347 SDValue Arg = FIN; 4348 if (!isLittleEndian) { 4349 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4350 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4351 } 4352 InVals.push_back(Arg); 4353 4354 if (GPR_idx != Num_GPR_Regs) { 4355 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4356 FuncInfo->addLiveInAttr(VReg, Flags); 4357 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4358 SDValue Store; 4359 4360 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4361 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4362 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4363 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4364 MachinePointerInfo(&*FuncArg), ObjType); 4365 } else { 4366 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4367 // store the whole register as-is to the parameter save area 4368 // slot. 4369 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4370 MachinePointerInfo(&*FuncArg)); 4371 } 4372 4373 MemOps.push_back(Store); 4374 } 4375 // Whether we copied from a register or not, advance the offset 4376 // into the parameter save area by a full doubleword. 4377 ArgOffset += PtrByteSize; 4378 continue; 4379 } 4380 4381 // The value of the object is its address, which is the address of 4382 // its first stack doubleword. 4383 InVals.push_back(FIN); 4384 4385 // Store whatever pieces of the object are in registers to memory. 4386 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4387 if (GPR_idx == Num_GPR_Regs) 4388 break; 4389 4390 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4391 FuncInfo->addLiveInAttr(VReg, Flags); 4392 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4393 SDValue Addr = FIN; 4394 if (j) { 4395 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4396 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4397 } 4398 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4399 MachinePointerInfo(&*FuncArg, j)); 4400 MemOps.push_back(Store); 4401 ++GPR_idx; 4402 } 4403 ArgOffset += ArgSize; 4404 continue; 4405 } 4406 4407 switch (ObjectVT.getSimpleVT().SimpleTy) { 4408 default: llvm_unreachable("Unhandled argument type!"); 4409 case MVT::i1: 4410 case MVT::i32: 4411 case MVT::i64: 4412 if (Flags.isNest()) { 4413 // The 'nest' parameter, if any, is passed in R11. 4414 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4415 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4416 4417 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4418 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4419 4420 break; 4421 } 4422 4423 // These can be scalar arguments or elements of an integer array type 4424 // passed directly. Clang may use those instead of "byval" aggregate 4425 // types to avoid forcing arguments to memory unnecessarily. 4426 if (GPR_idx != Num_GPR_Regs) { 4427 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4428 FuncInfo->addLiveInAttr(VReg, Flags); 4429 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4430 4431 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4432 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4433 // value to MVT::i64 and then truncate to the correct register size. 4434 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4435 } else { 4436 if (CallConv == CallingConv::Fast) 4437 ComputeArgOffset(); 4438 4439 needsLoad = true; 4440 ArgSize = PtrByteSize; 4441 } 4442 if (CallConv != CallingConv::Fast || needsLoad) 4443 ArgOffset += 8; 4444 break; 4445 4446 case MVT::f32: 4447 case MVT::f64: 4448 // These can be scalar arguments or elements of a float array type 4449 // passed directly. The latter are used to implement ELFv2 homogenous 4450 // float aggregates. 4451 if (FPR_idx != Num_FPR_Regs) { 4452 unsigned VReg; 4453 4454 if (ObjectVT == MVT::f32) 4455 VReg = MF.addLiveIn(FPR[FPR_idx], 4456 Subtarget.hasP8Vector() 4457 ? &PPC::VSSRCRegClass 4458 : &PPC::F4RCRegClass); 4459 else 4460 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4461 ? &PPC::VSFRCRegClass 4462 : &PPC::F8RCRegClass); 4463 4464 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4465 ++FPR_idx; 4466 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4467 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4468 // once we support fp <-> gpr moves. 4469 4470 // This can only ever happen in the presence of f32 array types, 4471 // since otherwise we never run out of FPRs before running out 4472 // of GPRs. 4473 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4474 FuncInfo->addLiveInAttr(VReg, Flags); 4475 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4476 4477 if (ObjectVT == MVT::f32) { 4478 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4479 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4480 DAG.getConstant(32, dl, MVT::i32)); 4481 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4482 } 4483 4484 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4485 } else { 4486 if (CallConv == CallingConv::Fast) 4487 ComputeArgOffset(); 4488 4489 needsLoad = true; 4490 } 4491 4492 // When passing an array of floats, the array occupies consecutive 4493 // space in the argument area; only round up to the next doubleword 4494 // at the end of the array. Otherwise, each float takes 8 bytes. 4495 if (CallConv != CallingConv::Fast || needsLoad) { 4496 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4497 ArgOffset += ArgSize; 4498 if (Flags.isInConsecutiveRegsLast()) 4499 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4500 } 4501 break; 4502 case MVT::v4f32: 4503 case MVT::v4i32: 4504 case MVT::v8i16: 4505 case MVT::v16i8: 4506 case MVT::v2f64: 4507 case MVT::v2i64: 4508 case MVT::v1i128: 4509 case MVT::f128: 4510 // These can be scalar arguments or elements of a vector array type 4511 // passed directly. The latter are used to implement ELFv2 homogenous 4512 // vector aggregates. 4513 if (VR_idx != Num_VR_Regs) { 4514 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4515 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4516 ++VR_idx; 4517 } else { 4518 if (CallConv == CallingConv::Fast) 4519 ComputeArgOffset(); 4520 needsLoad = true; 4521 } 4522 if (CallConv != CallingConv::Fast || needsLoad) 4523 ArgOffset += 16; 4524 break; 4525 } 4526 4527 // We need to load the argument to a virtual register if we determined 4528 // above that we ran out of physical registers of the appropriate type. 4529 if (needsLoad) { 4530 if (ObjSize < ArgSize && !isLittleEndian) 4531 CurArgOffset += ArgSize - ObjSize; 4532 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4533 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4534 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4535 } 4536 4537 InVals.push_back(ArgVal); 4538 } 4539 4540 // Area that is at least reserved in the caller of this function. 4541 unsigned MinReservedArea; 4542 if (HasParameterArea) 4543 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4544 else 4545 MinReservedArea = LinkageSize; 4546 4547 // Set the size that is at least reserved in caller of this function. Tail 4548 // call optimized functions' reserved stack space needs to be aligned so that 4549 // taking the difference between two stack areas will result in an aligned 4550 // stack. 4551 MinReservedArea = 4552 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4553 FuncInfo->setMinReservedArea(MinReservedArea); 4554 4555 // If the function takes variable number of arguments, make a frame index for 4556 // the start of the first vararg value... for expansion of llvm.va_start. 4557 // On ELFv2ABI spec, it writes: 4558 // C programs that are intended to be *portable* across different compilers 4559 // and architectures must use the header file <stdarg.h> to deal with variable 4560 // argument lists. 4561 if (isVarArg && MFI.hasVAStart()) { 4562 int Depth = ArgOffset; 4563 4564 FuncInfo->setVarArgsFrameIndex( 4565 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4566 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4567 4568 // If this function is vararg, store any remaining integer argument regs 4569 // to their spots on the stack so that they may be loaded by dereferencing 4570 // the result of va_next. 4571 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4572 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4573 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4574 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4575 SDValue Store = 4576 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4577 MemOps.push_back(Store); 4578 // Increment the address by four for the next argument to store 4579 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4580 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4581 } 4582 } 4583 4584 if (!MemOps.empty()) 4585 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4586 4587 return Chain; 4588 } 4589 4590 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4591 /// adjusted to accommodate the arguments for the tailcall. 4592 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4593 unsigned ParamSize) { 4594 4595 if (!isTailCall) return 0; 4596 4597 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4598 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4599 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4600 // Remember only if the new adjustment is bigger. 4601 if (SPDiff < FI->getTailCallSPDelta()) 4602 FI->setTailCallSPDelta(SPDiff); 4603 4604 return SPDiff; 4605 } 4606 4607 static bool isFunctionGlobalAddress(SDValue Callee); 4608 4609 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4610 const TargetMachine &TM) { 4611 // It does not make sense to call callsShareTOCBase() with a caller that 4612 // is PC Relative since PC Relative callers do not have a TOC. 4613 #ifndef NDEBUG 4614 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4615 assert(!STICaller->isUsingPCRelativeCalls() && 4616 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4617 #endif 4618 4619 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4620 // don't have enough information to determine if the caller and callee share 4621 // the same TOC base, so we have to pessimistically assume they don't for 4622 // correctness. 4623 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4624 if (!G) 4625 return false; 4626 4627 const GlobalValue *GV = G->getGlobal(); 4628 4629 // If the callee is preemptable, then the static linker will use a plt-stub 4630 // which saves the toc to the stack, and needs a nop after the call 4631 // instruction to convert to a toc-restore. 4632 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4633 return false; 4634 4635 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4636 // We may need a TOC restore in the situation where the caller requires a 4637 // valid TOC but the callee is PC Relative and does not. 4638 const Function *F = dyn_cast<Function>(GV); 4639 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4640 4641 // If we have an Alias we can try to get the function from there. 4642 if (Alias) { 4643 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4644 F = dyn_cast<Function>(GlobalObj); 4645 } 4646 4647 // If we still have no valid function pointer we do not have enough 4648 // information to determine if the callee uses PC Relative calls so we must 4649 // assume that it does. 4650 if (!F) 4651 return false; 4652 4653 // If the callee uses PC Relative we cannot guarantee that the callee won't 4654 // clobber the TOC of the caller and so we must assume that the two 4655 // functions do not share a TOC base. 4656 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4657 if (STICallee->isUsingPCRelativeCalls()) 4658 return false; 4659 4660 // If the GV is not a strong definition then we need to assume it can be 4661 // replaced by another function at link time. The function that replaces 4662 // it may not share the same TOC as the caller since the callee may be 4663 // replaced by a PC Relative version of the same function. 4664 if (!GV->isStrongDefinitionForLinker()) 4665 return false; 4666 4667 // The medium and large code models are expected to provide a sufficiently 4668 // large TOC to provide all data addressing needs of a module with a 4669 // single TOC. 4670 if (CodeModel::Medium == TM.getCodeModel() || 4671 CodeModel::Large == TM.getCodeModel()) 4672 return true; 4673 4674 // Any explicitly-specified sections and section prefixes must also match. 4675 // Also, if we're using -ffunction-sections, then each function is always in 4676 // a different section (the same is true for COMDAT functions). 4677 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4678 GV->getSection() != Caller->getSection()) 4679 return false; 4680 if (const auto *F = dyn_cast<Function>(GV)) { 4681 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4682 return false; 4683 } 4684 4685 return true; 4686 } 4687 4688 static bool 4689 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4690 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4691 assert(Subtarget.is64BitELFABI()); 4692 4693 const unsigned PtrByteSize = 8; 4694 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4695 4696 static const MCPhysReg GPR[] = { 4697 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4698 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4699 }; 4700 static const MCPhysReg VR[] = { 4701 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4702 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4703 }; 4704 4705 const unsigned NumGPRs = array_lengthof(GPR); 4706 const unsigned NumFPRs = 13; 4707 const unsigned NumVRs = array_lengthof(VR); 4708 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4709 4710 unsigned NumBytes = LinkageSize; 4711 unsigned AvailableFPRs = NumFPRs; 4712 unsigned AvailableVRs = NumVRs; 4713 4714 for (const ISD::OutputArg& Param : Outs) { 4715 if (Param.Flags.isNest()) continue; 4716 4717 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4718 LinkageSize, ParamAreaSize, NumBytes, 4719 AvailableFPRs, AvailableVRs)) 4720 return true; 4721 } 4722 return false; 4723 } 4724 4725 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4726 if (CB.arg_size() != CallerFn->arg_size()) 4727 return false; 4728 4729 auto CalleeArgIter = CB.arg_begin(); 4730 auto CalleeArgEnd = CB.arg_end(); 4731 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4732 4733 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4734 const Value* CalleeArg = *CalleeArgIter; 4735 const Value* CallerArg = &(*CallerArgIter); 4736 if (CalleeArg == CallerArg) 4737 continue; 4738 4739 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4740 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4741 // } 4742 // 1st argument of callee is undef and has the same type as caller. 4743 if (CalleeArg->getType() == CallerArg->getType() && 4744 isa<UndefValue>(CalleeArg)) 4745 continue; 4746 4747 return false; 4748 } 4749 4750 return true; 4751 } 4752 4753 // Returns true if TCO is possible between the callers and callees 4754 // calling conventions. 4755 static bool 4756 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4757 CallingConv::ID CalleeCC) { 4758 // Tail calls are possible with fastcc and ccc. 4759 auto isTailCallableCC = [] (CallingConv::ID CC){ 4760 return CC == CallingConv::C || CC == CallingConv::Fast; 4761 }; 4762 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4763 return false; 4764 4765 // We can safely tail call both fastcc and ccc callees from a c calling 4766 // convention caller. If the caller is fastcc, we may have less stack space 4767 // than a non-fastcc caller with the same signature so disable tail-calls in 4768 // that case. 4769 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4770 } 4771 4772 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4773 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4774 const SmallVectorImpl<ISD::OutputArg> &Outs, 4775 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4776 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4777 4778 if (DisableSCO && !TailCallOpt) return false; 4779 4780 // Variadic argument functions are not supported. 4781 if (isVarArg) return false; 4782 4783 auto &Caller = DAG.getMachineFunction().getFunction(); 4784 // Check that the calling conventions are compatible for tco. 4785 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4786 return false; 4787 4788 // Caller contains any byval parameter is not supported. 4789 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4790 return false; 4791 4792 // Callee contains any byval parameter is not supported, too. 4793 // Note: This is a quick work around, because in some cases, e.g. 4794 // caller's stack size > callee's stack size, we are still able to apply 4795 // sibling call optimization. For example, gcc is able to do SCO for caller1 4796 // in the following example, but not for caller2. 4797 // struct test { 4798 // long int a; 4799 // char ary[56]; 4800 // } gTest; 4801 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4802 // b->a = v.a; 4803 // return 0; 4804 // } 4805 // void caller1(struct test a, struct test c, struct test *b) { 4806 // callee(gTest, b); } 4807 // void caller2(struct test *b) { callee(gTest, b); } 4808 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4809 return false; 4810 4811 // If callee and caller use different calling conventions, we cannot pass 4812 // parameters on stack since offsets for the parameter area may be different. 4813 if (Caller.getCallingConv() != CalleeCC && 4814 needStackSlotPassParameters(Subtarget, Outs)) 4815 return false; 4816 4817 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4818 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4819 // callee potentially have different TOC bases then we cannot tail call since 4820 // we need to restore the TOC pointer after the call. 4821 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4822 // We cannot guarantee this for indirect calls or calls to external functions. 4823 // When PC-Relative addressing is used, the concept of the TOC is no longer 4824 // applicable so this check is not required. 4825 // Check first for indirect calls. 4826 if (!Subtarget.isUsingPCRelativeCalls() && 4827 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4828 return false; 4829 4830 // Check if we share the TOC base. 4831 if (!Subtarget.isUsingPCRelativeCalls() && 4832 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4833 return false; 4834 4835 // TCO allows altering callee ABI, so we don't have to check further. 4836 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4837 return true; 4838 4839 if (DisableSCO) return false; 4840 4841 // If callee use the same argument list that caller is using, then we can 4842 // apply SCO on this case. If it is not, then we need to check if callee needs 4843 // stack for passing arguments. 4844 // PC Relative tail calls may not have a CallBase. 4845 // If there is no CallBase we cannot verify if we have the same argument 4846 // list so assume that we don't have the same argument list. 4847 if (CB && !hasSameArgumentList(&Caller, *CB) && 4848 needStackSlotPassParameters(Subtarget, Outs)) 4849 return false; 4850 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4851 return false; 4852 4853 return true; 4854 } 4855 4856 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4857 /// for tail call optimization. Targets which want to do tail call 4858 /// optimization should implement this function. 4859 bool 4860 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4861 CallingConv::ID CalleeCC, 4862 bool isVarArg, 4863 const SmallVectorImpl<ISD::InputArg> &Ins, 4864 SelectionDAG& DAG) const { 4865 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4866 return false; 4867 4868 // Variable argument functions are not supported. 4869 if (isVarArg) 4870 return false; 4871 4872 MachineFunction &MF = DAG.getMachineFunction(); 4873 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4874 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4875 // Functions containing by val parameters are not supported. 4876 for (unsigned i = 0; i != Ins.size(); i++) { 4877 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4878 if (Flags.isByVal()) return false; 4879 } 4880 4881 // Non-PIC/GOT tail calls are supported. 4882 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4883 return true; 4884 4885 // At the moment we can only do local tail calls (in same module, hidden 4886 // or protected) if we are generating PIC. 4887 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4888 return G->getGlobal()->hasHiddenVisibility() 4889 || G->getGlobal()->hasProtectedVisibility(); 4890 } 4891 4892 return false; 4893 } 4894 4895 /// isCallCompatibleAddress - Return the immediate to use if the specified 4896 /// 32-bit value is representable in the immediate field of a BxA instruction. 4897 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4898 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4899 if (!C) return nullptr; 4900 4901 int Addr = C->getZExtValue(); 4902 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4903 SignExtend32<26>(Addr) != Addr) 4904 return nullptr; // Top 6 bits have to be sext of immediate. 4905 4906 return DAG 4907 .getConstant( 4908 (int)C->getZExtValue() >> 2, SDLoc(Op), 4909 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4910 .getNode(); 4911 } 4912 4913 namespace { 4914 4915 struct TailCallArgumentInfo { 4916 SDValue Arg; 4917 SDValue FrameIdxOp; 4918 int FrameIdx = 0; 4919 4920 TailCallArgumentInfo() = default; 4921 }; 4922 4923 } // end anonymous namespace 4924 4925 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4926 static void StoreTailCallArgumentsToStackSlot( 4927 SelectionDAG &DAG, SDValue Chain, 4928 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4929 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4930 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4931 SDValue Arg = TailCallArgs[i].Arg; 4932 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4933 int FI = TailCallArgs[i].FrameIdx; 4934 // Store relative to framepointer. 4935 MemOpChains.push_back(DAG.getStore( 4936 Chain, dl, Arg, FIN, 4937 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4938 } 4939 } 4940 4941 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4942 /// the appropriate stack slot for the tail call optimized function call. 4943 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4944 SDValue OldRetAddr, SDValue OldFP, 4945 int SPDiff, const SDLoc &dl) { 4946 if (SPDiff) { 4947 // Calculate the new stack slot for the return address. 4948 MachineFunction &MF = DAG.getMachineFunction(); 4949 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4950 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4951 bool isPPC64 = Subtarget.isPPC64(); 4952 int SlotSize = isPPC64 ? 8 : 4; 4953 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4954 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4955 NewRetAddrLoc, true); 4956 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4957 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4958 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4959 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4960 } 4961 return Chain; 4962 } 4963 4964 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4965 /// the position of the argument. 4966 static void 4967 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4968 SDValue Arg, int SPDiff, unsigned ArgOffset, 4969 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4970 int Offset = ArgOffset + SPDiff; 4971 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4972 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4973 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4974 SDValue FIN = DAG.getFrameIndex(FI, VT); 4975 TailCallArgumentInfo Info; 4976 Info.Arg = Arg; 4977 Info.FrameIdxOp = FIN; 4978 Info.FrameIdx = FI; 4979 TailCallArguments.push_back(Info); 4980 } 4981 4982 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4983 /// stack slot. Returns the chain as result and the loaded frame pointers in 4984 /// LROpOut/FPOpout. Used when tail calling. 4985 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4986 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4987 SDValue &FPOpOut, const SDLoc &dl) const { 4988 if (SPDiff) { 4989 // Load the LR and FP stack slot for later adjusting. 4990 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4991 LROpOut = getReturnAddrFrameIndex(DAG); 4992 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4993 Chain = SDValue(LROpOut.getNode(), 1); 4994 } 4995 return Chain; 4996 } 4997 4998 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4999 /// by "Src" to address "Dst" of size "Size". Alignment information is 5000 /// specified by the specific parameter attribute. The copy will be passed as 5001 /// a byval function parameter. 5002 /// Sometimes what we are copying is the end of a larger object, the part that 5003 /// does not fit in registers. 5004 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5005 SDValue Chain, ISD::ArgFlagsTy Flags, 5006 SelectionDAG &DAG, const SDLoc &dl) { 5007 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5008 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5009 Flags.getNonZeroByValAlign(), false, false, false, 5010 MachinePointerInfo(), MachinePointerInfo()); 5011 } 5012 5013 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5014 /// tail calls. 5015 static void LowerMemOpCallTo( 5016 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5017 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5018 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5019 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5020 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5021 if (!isTailCall) { 5022 if (isVector) { 5023 SDValue StackPtr; 5024 if (isPPC64) 5025 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5026 else 5027 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5028 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5029 DAG.getConstant(ArgOffset, dl, PtrVT)); 5030 } 5031 MemOpChains.push_back( 5032 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5033 // Calculate and remember argument location. 5034 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5035 TailCallArguments); 5036 } 5037 5038 static void 5039 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5040 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5041 SDValue FPOp, 5042 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5043 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5044 // might overwrite each other in case of tail call optimization. 5045 SmallVector<SDValue, 8> MemOpChains2; 5046 // Do not flag preceding copytoreg stuff together with the following stuff. 5047 InFlag = SDValue(); 5048 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5049 MemOpChains2, dl); 5050 if (!MemOpChains2.empty()) 5051 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5052 5053 // Store the return address to the appropriate stack slot. 5054 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5055 5056 // Emit callseq_end just before tailcall node. 5057 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5058 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5059 InFlag = Chain.getValue(1); 5060 } 5061 5062 // Is this global address that of a function that can be called by name? (as 5063 // opposed to something that must hold a descriptor for an indirect call). 5064 static bool isFunctionGlobalAddress(SDValue Callee) { 5065 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5066 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5067 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5068 return false; 5069 5070 return G->getGlobal()->getValueType()->isFunctionTy(); 5071 } 5072 5073 return false; 5074 } 5075 5076 SDValue PPCTargetLowering::LowerCallResult( 5077 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5078 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5079 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5080 SmallVector<CCValAssign, 16> RVLocs; 5081 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5082 *DAG.getContext()); 5083 5084 CCRetInfo.AnalyzeCallResult( 5085 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5086 ? RetCC_PPC_Cold 5087 : RetCC_PPC); 5088 5089 // Copy all of the result registers out of their specified physreg. 5090 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5091 CCValAssign &VA = RVLocs[i]; 5092 assert(VA.isRegLoc() && "Can only return in registers!"); 5093 5094 SDValue Val; 5095 5096 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5097 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5098 InFlag); 5099 Chain = Lo.getValue(1); 5100 InFlag = Lo.getValue(2); 5101 VA = RVLocs[++i]; // skip ahead to next loc 5102 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5103 InFlag); 5104 Chain = Hi.getValue(1); 5105 InFlag = Hi.getValue(2); 5106 if (!Subtarget.isLittleEndian()) 5107 std::swap (Lo, Hi); 5108 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5109 } else { 5110 Val = DAG.getCopyFromReg(Chain, dl, 5111 VA.getLocReg(), VA.getLocVT(), InFlag); 5112 Chain = Val.getValue(1); 5113 InFlag = Val.getValue(2); 5114 } 5115 5116 switch (VA.getLocInfo()) { 5117 default: llvm_unreachable("Unknown loc info!"); 5118 case CCValAssign::Full: break; 5119 case CCValAssign::AExt: 5120 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5121 break; 5122 case CCValAssign::ZExt: 5123 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5124 DAG.getValueType(VA.getValVT())); 5125 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5126 break; 5127 case CCValAssign::SExt: 5128 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5129 DAG.getValueType(VA.getValVT())); 5130 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5131 break; 5132 } 5133 5134 InVals.push_back(Val); 5135 } 5136 5137 return Chain; 5138 } 5139 5140 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5141 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5142 // PatchPoint calls are not indirect. 5143 if (isPatchPoint) 5144 return false; 5145 5146 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5147 return false; 5148 5149 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5150 // becuase the immediate function pointer points to a descriptor instead of 5151 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5152 // pointer immediate points to the global entry point, while the BLA would 5153 // need to jump to the local entry point (see rL211174). 5154 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5155 isBLACompatibleAddress(Callee, DAG)) 5156 return false; 5157 5158 return true; 5159 } 5160 5161 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5162 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5163 return Subtarget.isAIXABI() || 5164 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5165 } 5166 5167 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5168 const Function &Caller, 5169 const SDValue &Callee, 5170 const PPCSubtarget &Subtarget, 5171 const TargetMachine &TM) { 5172 if (CFlags.IsTailCall) 5173 return PPCISD::TC_RETURN; 5174 5175 // This is a call through a function pointer. 5176 if (CFlags.IsIndirect) { 5177 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5178 // indirect calls. The save of the caller's TOC pointer to the stack will be 5179 // inserted into the DAG as part of call lowering. The restore of the TOC 5180 // pointer is modeled by using a pseudo instruction for the call opcode that 5181 // represents the 2 instruction sequence of an indirect branch and link, 5182 // immediately followed by a load of the TOC pointer from the the stack save 5183 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5184 // as it is not saved or used. 5185 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5186 : PPCISD::BCTRL; 5187 } 5188 5189 if (Subtarget.isUsingPCRelativeCalls()) { 5190 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5191 return PPCISD::CALL_NOTOC; 5192 } 5193 5194 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5195 // immediately following the call instruction if the caller and callee may 5196 // have different TOC bases. At link time if the linker determines the calls 5197 // may not share a TOC base, the call is redirected to a trampoline inserted 5198 // by the linker. The trampoline will (among other things) save the callers 5199 // TOC pointer at an ABI designated offset in the linkage area and the linker 5200 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5201 // into gpr2. 5202 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5203 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5204 : PPCISD::CALL_NOP; 5205 5206 return PPCISD::CALL; 5207 } 5208 5209 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5210 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5211 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5212 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5213 return SDValue(Dest, 0); 5214 5215 // Returns true if the callee is local, and false otherwise. 5216 auto isLocalCallee = [&]() { 5217 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5218 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5219 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5220 5221 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5222 !dyn_cast_or_null<GlobalIFunc>(GV); 5223 }; 5224 5225 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5226 // a static relocation model causes some versions of GNU LD (2.17.50, at 5227 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5228 // built with secure-PLT. 5229 bool UsePlt = 5230 Subtarget.is32BitELFABI() && !isLocalCallee() && 5231 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5232 5233 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5234 const TargetMachine &TM = Subtarget.getTargetMachine(); 5235 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5236 MCSymbolXCOFF *S = 5237 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5238 5239 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5240 return DAG.getMCSymbol(S, PtrVT); 5241 }; 5242 5243 if (isFunctionGlobalAddress(Callee)) { 5244 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5245 5246 if (Subtarget.isAIXABI()) { 5247 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5248 return getAIXFuncEntryPointSymbolSDNode(GV); 5249 } 5250 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5251 UsePlt ? PPCII::MO_PLT : 0); 5252 } 5253 5254 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5255 const char *SymName = S->getSymbol(); 5256 if (Subtarget.isAIXABI()) { 5257 // If there exists a user-declared function whose name is the same as the 5258 // ExternalSymbol's, then we pick up the user-declared version. 5259 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5260 if (const Function *F = 5261 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5262 return getAIXFuncEntryPointSymbolSDNode(F); 5263 5264 // On AIX, direct function calls reference the symbol for the function's 5265 // entry point, which is named by prepending a "." before the function's 5266 // C-linkage name. A Qualname is returned here because an external 5267 // function entry point is a csect with XTY_ER property. 5268 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5269 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5270 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5271 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5272 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5273 return Sec->getQualNameSymbol(); 5274 }; 5275 5276 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5277 } 5278 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5279 UsePlt ? PPCII::MO_PLT : 0); 5280 } 5281 5282 // No transformation needed. 5283 assert(Callee.getNode() && "What no callee?"); 5284 return Callee; 5285 } 5286 5287 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5288 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5289 "Expected a CALLSEQ_STARTSDNode."); 5290 5291 // The last operand is the chain, except when the node has glue. If the node 5292 // has glue, then the last operand is the glue, and the chain is the second 5293 // last operand. 5294 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5295 if (LastValue.getValueType() != MVT::Glue) 5296 return LastValue; 5297 5298 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5299 } 5300 5301 // Creates the node that moves a functions address into the count register 5302 // to prepare for an indirect call instruction. 5303 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5304 SDValue &Glue, SDValue &Chain, 5305 const SDLoc &dl) { 5306 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5307 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5308 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5309 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5310 // The glue is the second value produced. 5311 Glue = Chain.getValue(1); 5312 } 5313 5314 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5315 SDValue &Glue, SDValue &Chain, 5316 SDValue CallSeqStart, 5317 const CallBase *CB, const SDLoc &dl, 5318 bool hasNest, 5319 const PPCSubtarget &Subtarget) { 5320 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5321 // entry point, but to the function descriptor (the function entry point 5322 // address is part of the function descriptor though). 5323 // The function descriptor is a three doubleword structure with the 5324 // following fields: function entry point, TOC base address and 5325 // environment pointer. 5326 // Thus for a call through a function pointer, the following actions need 5327 // to be performed: 5328 // 1. Save the TOC of the caller in the TOC save area of its stack 5329 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5330 // 2. Load the address of the function entry point from the function 5331 // descriptor. 5332 // 3. Load the TOC of the callee from the function descriptor into r2. 5333 // 4. Load the environment pointer from the function descriptor into 5334 // r11. 5335 // 5. Branch to the function entry point address. 5336 // 6. On return of the callee, the TOC of the caller needs to be 5337 // restored (this is done in FinishCall()). 5338 // 5339 // The loads are scheduled at the beginning of the call sequence, and the 5340 // register copies are flagged together to ensure that no other 5341 // operations can be scheduled in between. E.g. without flagging the 5342 // copies together, a TOC access in the caller could be scheduled between 5343 // the assignment of the callee TOC and the branch to the callee, which leads 5344 // to incorrect code. 5345 5346 // Start by loading the function address from the descriptor. 5347 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5348 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5349 ? (MachineMemOperand::MODereferenceable | 5350 MachineMemOperand::MOInvariant) 5351 : MachineMemOperand::MONone; 5352 5353 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5354 5355 // Registers used in building the DAG. 5356 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5357 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5358 5359 // Offsets of descriptor members. 5360 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5361 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5362 5363 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5364 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5365 5366 // One load for the functions entry point address. 5367 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5368 Alignment, MMOFlags); 5369 5370 // One for loading the TOC anchor for the module that contains the called 5371 // function. 5372 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5373 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5374 SDValue TOCPtr = 5375 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5376 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5377 5378 // One for loading the environment pointer. 5379 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5380 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5381 SDValue LoadEnvPtr = 5382 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5383 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5384 5385 5386 // Then copy the newly loaded TOC anchor to the TOC pointer. 5387 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5388 Chain = TOCVal.getValue(0); 5389 Glue = TOCVal.getValue(1); 5390 5391 // If the function call has an explicit 'nest' parameter, it takes the 5392 // place of the environment pointer. 5393 assert((!hasNest || !Subtarget.isAIXABI()) && 5394 "Nest parameter is not supported on AIX."); 5395 if (!hasNest) { 5396 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5397 Chain = EnvVal.getValue(0); 5398 Glue = EnvVal.getValue(1); 5399 } 5400 5401 // The rest of the indirect call sequence is the same as the non-descriptor 5402 // DAG. 5403 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5404 } 5405 5406 static void 5407 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5408 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5409 SelectionDAG &DAG, 5410 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5411 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5412 const PPCSubtarget &Subtarget) { 5413 const bool IsPPC64 = Subtarget.isPPC64(); 5414 // MVT for a general purpose register. 5415 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5416 5417 // First operand is always the chain. 5418 Ops.push_back(Chain); 5419 5420 // If it's a direct call pass the callee as the second operand. 5421 if (!CFlags.IsIndirect) 5422 Ops.push_back(Callee); 5423 else { 5424 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5425 5426 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5427 // on the stack (this would have been done in `LowerCall_64SVR4` or 5428 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5429 // represents both the indirect branch and a load that restores the TOC 5430 // pointer from the linkage area. The operand for the TOC restore is an add 5431 // of the TOC save offset to the stack pointer. This must be the second 5432 // operand: after the chain input but before any other variadic arguments. 5433 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5434 // saved or used. 5435 if (isTOCSaveRestoreRequired(Subtarget)) { 5436 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5437 5438 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5439 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5440 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5441 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5442 Ops.push_back(AddTOC); 5443 } 5444 5445 // Add the register used for the environment pointer. 5446 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5447 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5448 RegVT)); 5449 5450 5451 // Add CTR register as callee so a bctr can be emitted later. 5452 if (CFlags.IsTailCall) 5453 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5454 } 5455 5456 // If this is a tail call add stack pointer delta. 5457 if (CFlags.IsTailCall) 5458 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5459 5460 // Add argument registers to the end of the list so that they are known live 5461 // into the call. 5462 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5463 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5464 RegsToPass[i].second.getValueType())); 5465 5466 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5467 // no way to mark dependencies as implicit here. 5468 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5469 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5470 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5471 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5472 5473 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5474 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5475 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5476 5477 // Add a register mask operand representing the call-preserved registers. 5478 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5479 const uint32_t *Mask = 5480 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5481 assert(Mask && "Missing call preserved mask for calling convention"); 5482 Ops.push_back(DAG.getRegisterMask(Mask)); 5483 5484 // If the glue is valid, it is the last operand. 5485 if (Glue.getNode()) 5486 Ops.push_back(Glue); 5487 } 5488 5489 SDValue PPCTargetLowering::FinishCall( 5490 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5491 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5492 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5493 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5494 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5495 5496 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5497 Subtarget.isAIXABI()) 5498 setUsesTOCBasePtr(DAG); 5499 5500 unsigned CallOpc = 5501 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5502 Subtarget, DAG.getTarget()); 5503 5504 if (!CFlags.IsIndirect) 5505 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5506 else if (Subtarget.usesFunctionDescriptors()) 5507 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5508 dl, CFlags.HasNest, Subtarget); 5509 else 5510 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5511 5512 // Build the operand list for the call instruction. 5513 SmallVector<SDValue, 8> Ops; 5514 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5515 SPDiff, Subtarget); 5516 5517 // Emit tail call. 5518 if (CFlags.IsTailCall) { 5519 // Indirect tail call when using PC Relative calls do not have the same 5520 // constraints. 5521 assert(((Callee.getOpcode() == ISD::Register && 5522 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5523 Callee.getOpcode() == ISD::TargetExternalSymbol || 5524 Callee.getOpcode() == ISD::TargetGlobalAddress || 5525 isa<ConstantSDNode>(Callee) || 5526 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5527 "Expecting a global address, external symbol, absolute value, " 5528 "register or an indirect tail call when PC Relative calls are " 5529 "used."); 5530 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5531 assert(CallOpc == PPCISD::TC_RETURN && 5532 "Unexpected call opcode for a tail call."); 5533 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5534 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5535 } 5536 5537 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5538 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5539 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5540 Glue = Chain.getValue(1); 5541 5542 // When performing tail call optimization the callee pops its arguments off 5543 // the stack. Account for this here so these bytes can be pushed back on in 5544 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5545 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5546 getTargetMachine().Options.GuaranteedTailCallOpt) 5547 ? NumBytes 5548 : 0; 5549 5550 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5551 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5552 Glue, dl); 5553 Glue = Chain.getValue(1); 5554 5555 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5556 DAG, InVals); 5557 } 5558 5559 SDValue 5560 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5561 SmallVectorImpl<SDValue> &InVals) const { 5562 SelectionDAG &DAG = CLI.DAG; 5563 SDLoc &dl = CLI.DL; 5564 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5565 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5566 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5567 SDValue Chain = CLI.Chain; 5568 SDValue Callee = CLI.Callee; 5569 bool &isTailCall = CLI.IsTailCall; 5570 CallingConv::ID CallConv = CLI.CallConv; 5571 bool isVarArg = CLI.IsVarArg; 5572 bool isPatchPoint = CLI.IsPatchPoint; 5573 const CallBase *CB = CLI.CB; 5574 5575 if (isTailCall) { 5576 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5577 isTailCall = false; 5578 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5579 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5580 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5581 else 5582 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5583 Ins, DAG); 5584 if (isTailCall) { 5585 ++NumTailCalls; 5586 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5587 ++NumSiblingCalls; 5588 5589 // PC Relative calls no longer guarantee that the callee is a Global 5590 // Address Node. The callee could be an indirect tail call in which 5591 // case the SDValue for the callee could be a load (to load the address 5592 // of a function pointer) or it may be a register copy (to move the 5593 // address of the callee from a function parameter into a virtual 5594 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5595 assert((Subtarget.isUsingPCRelativeCalls() || 5596 isa<GlobalAddressSDNode>(Callee)) && 5597 "Callee should be an llvm::Function object."); 5598 5599 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5600 << "\nTCO callee: "); 5601 LLVM_DEBUG(Callee.dump()); 5602 } 5603 } 5604 5605 if (!isTailCall && CB && CB->isMustTailCall()) 5606 report_fatal_error("failed to perform tail call elimination on a call " 5607 "site marked musttail"); 5608 5609 // When long calls (i.e. indirect calls) are always used, calls are always 5610 // made via function pointer. If we have a function name, first translate it 5611 // into a pointer. 5612 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5613 !isTailCall) 5614 Callee = LowerGlobalAddress(Callee, DAG); 5615 5616 CallFlags CFlags( 5617 CallConv, isTailCall, isVarArg, isPatchPoint, 5618 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5619 // hasNest 5620 Subtarget.is64BitELFABI() && 5621 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5622 CLI.NoMerge); 5623 5624 if (Subtarget.isAIXABI()) 5625 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5626 InVals, CB); 5627 5628 assert(Subtarget.isSVR4ABI()); 5629 if (Subtarget.isPPC64()) 5630 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5631 InVals, CB); 5632 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5633 InVals, CB); 5634 } 5635 5636 SDValue PPCTargetLowering::LowerCall_32SVR4( 5637 SDValue Chain, SDValue Callee, CallFlags CFlags, 5638 const SmallVectorImpl<ISD::OutputArg> &Outs, 5639 const SmallVectorImpl<SDValue> &OutVals, 5640 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5641 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5642 const CallBase *CB) const { 5643 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5644 // of the 32-bit SVR4 ABI stack frame layout. 5645 5646 const CallingConv::ID CallConv = CFlags.CallConv; 5647 const bool IsVarArg = CFlags.IsVarArg; 5648 const bool IsTailCall = CFlags.IsTailCall; 5649 5650 assert((CallConv == CallingConv::C || 5651 CallConv == CallingConv::Cold || 5652 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5653 5654 const Align PtrAlign(4); 5655 5656 MachineFunction &MF = DAG.getMachineFunction(); 5657 5658 // Mark this function as potentially containing a function that contains a 5659 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5660 // and restoring the callers stack pointer in this functions epilog. This is 5661 // done because by tail calling the called function might overwrite the value 5662 // in this function's (MF) stack pointer stack slot 0(SP). 5663 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5664 CallConv == CallingConv::Fast) 5665 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5666 5667 // Count how many bytes are to be pushed on the stack, including the linkage 5668 // area, parameter list area and the part of the local variable space which 5669 // contains copies of aggregates which are passed by value. 5670 5671 // Assign locations to all of the outgoing arguments. 5672 SmallVector<CCValAssign, 16> ArgLocs; 5673 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5674 5675 // Reserve space for the linkage area on the stack. 5676 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5677 PtrAlign); 5678 if (useSoftFloat()) 5679 CCInfo.PreAnalyzeCallOperands(Outs); 5680 5681 if (IsVarArg) { 5682 // Handle fixed and variable vector arguments differently. 5683 // Fixed vector arguments go into registers as long as registers are 5684 // available. Variable vector arguments always go into memory. 5685 unsigned NumArgs = Outs.size(); 5686 5687 for (unsigned i = 0; i != NumArgs; ++i) { 5688 MVT ArgVT = Outs[i].VT; 5689 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5690 bool Result; 5691 5692 if (Outs[i].IsFixed) { 5693 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5694 CCInfo); 5695 } else { 5696 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5697 ArgFlags, CCInfo); 5698 } 5699 5700 if (Result) { 5701 #ifndef NDEBUG 5702 errs() << "Call operand #" << i << " has unhandled type " 5703 << EVT(ArgVT).getEVTString() << "\n"; 5704 #endif 5705 llvm_unreachable(nullptr); 5706 } 5707 } 5708 } else { 5709 // All arguments are treated the same. 5710 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5711 } 5712 CCInfo.clearWasPPCF128(); 5713 5714 // Assign locations to all of the outgoing aggregate by value arguments. 5715 SmallVector<CCValAssign, 16> ByValArgLocs; 5716 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5717 5718 // Reserve stack space for the allocations in CCInfo. 5719 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5720 5721 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5722 5723 // Size of the linkage area, parameter list area and the part of the local 5724 // space variable where copies of aggregates which are passed by value are 5725 // stored. 5726 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5727 5728 // Calculate by how many bytes the stack has to be adjusted in case of tail 5729 // call optimization. 5730 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5731 5732 // Adjust the stack pointer for the new arguments... 5733 // These operations are automatically eliminated by the prolog/epilog pass 5734 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5735 SDValue CallSeqStart = Chain; 5736 5737 // Load the return address and frame pointer so it can be moved somewhere else 5738 // later. 5739 SDValue LROp, FPOp; 5740 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5741 5742 // Set up a copy of the stack pointer for use loading and storing any 5743 // arguments that may not fit in the registers available for argument 5744 // passing. 5745 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5746 5747 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5748 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5749 SmallVector<SDValue, 8> MemOpChains; 5750 5751 bool seenFloatArg = false; 5752 // Walk the register/memloc assignments, inserting copies/loads. 5753 // i - Tracks the index into the list of registers allocated for the call 5754 // RealArgIdx - Tracks the index into the list of actual function arguments 5755 // j - Tracks the index into the list of byval arguments 5756 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5757 i != e; 5758 ++i, ++RealArgIdx) { 5759 CCValAssign &VA = ArgLocs[i]; 5760 SDValue Arg = OutVals[RealArgIdx]; 5761 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5762 5763 if (Flags.isByVal()) { 5764 // Argument is an aggregate which is passed by value, thus we need to 5765 // create a copy of it in the local variable space of the current stack 5766 // frame (which is the stack frame of the caller) and pass the address of 5767 // this copy to the callee. 5768 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5769 CCValAssign &ByValVA = ByValArgLocs[j++]; 5770 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5771 5772 // Memory reserved in the local variable space of the callers stack frame. 5773 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5774 5775 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5776 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5777 StackPtr, PtrOff); 5778 5779 // Create a copy of the argument in the local area of the current 5780 // stack frame. 5781 SDValue MemcpyCall = 5782 CreateCopyOfByValArgument(Arg, PtrOff, 5783 CallSeqStart.getNode()->getOperand(0), 5784 Flags, DAG, dl); 5785 5786 // This must go outside the CALLSEQ_START..END. 5787 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5788 SDLoc(MemcpyCall)); 5789 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5790 NewCallSeqStart.getNode()); 5791 Chain = CallSeqStart = NewCallSeqStart; 5792 5793 // Pass the address of the aggregate copy on the stack either in a 5794 // physical register or in the parameter list area of the current stack 5795 // frame to the callee. 5796 Arg = PtrOff; 5797 } 5798 5799 // When useCRBits() is true, there can be i1 arguments. 5800 // It is because getRegisterType(MVT::i1) => MVT::i1, 5801 // and for other integer types getRegisterType() => MVT::i32. 5802 // Extend i1 and ensure callee will get i32. 5803 if (Arg.getValueType() == MVT::i1) 5804 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5805 dl, MVT::i32, Arg); 5806 5807 if (VA.isRegLoc()) { 5808 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5809 // Put argument in a physical register. 5810 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5811 bool IsLE = Subtarget.isLittleEndian(); 5812 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5813 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5814 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5815 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5816 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5817 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5818 SVal.getValue(0))); 5819 } else 5820 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5821 } else { 5822 // Put argument in the parameter list area of the current stack frame. 5823 assert(VA.isMemLoc()); 5824 unsigned LocMemOffset = VA.getLocMemOffset(); 5825 5826 if (!IsTailCall) { 5827 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5828 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5829 StackPtr, PtrOff); 5830 5831 MemOpChains.push_back( 5832 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5833 } else { 5834 // Calculate and remember argument location. 5835 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5836 TailCallArguments); 5837 } 5838 } 5839 } 5840 5841 if (!MemOpChains.empty()) 5842 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5843 5844 // Build a sequence of copy-to-reg nodes chained together with token chain 5845 // and flag operands which copy the outgoing args into the appropriate regs. 5846 SDValue InFlag; 5847 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5848 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5849 RegsToPass[i].second, InFlag); 5850 InFlag = Chain.getValue(1); 5851 } 5852 5853 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5854 // registers. 5855 if (IsVarArg) { 5856 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5857 SDValue Ops[] = { Chain, InFlag }; 5858 5859 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5860 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5861 5862 InFlag = Chain.getValue(1); 5863 } 5864 5865 if (IsTailCall) 5866 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5867 TailCallArguments); 5868 5869 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5870 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5871 } 5872 5873 // Copy an argument into memory, being careful to do this outside the 5874 // call sequence for the call to which the argument belongs. 5875 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5876 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5877 SelectionDAG &DAG, const SDLoc &dl) const { 5878 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5879 CallSeqStart.getNode()->getOperand(0), 5880 Flags, DAG, dl); 5881 // The MEMCPY must go outside the CALLSEQ_START..END. 5882 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5883 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5884 SDLoc(MemcpyCall)); 5885 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5886 NewCallSeqStart.getNode()); 5887 return NewCallSeqStart; 5888 } 5889 5890 SDValue PPCTargetLowering::LowerCall_64SVR4( 5891 SDValue Chain, SDValue Callee, CallFlags CFlags, 5892 const SmallVectorImpl<ISD::OutputArg> &Outs, 5893 const SmallVectorImpl<SDValue> &OutVals, 5894 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5895 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5896 const CallBase *CB) const { 5897 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5898 bool isLittleEndian = Subtarget.isLittleEndian(); 5899 unsigned NumOps = Outs.size(); 5900 bool IsSibCall = false; 5901 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5902 5903 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5904 unsigned PtrByteSize = 8; 5905 5906 MachineFunction &MF = DAG.getMachineFunction(); 5907 5908 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5909 IsSibCall = true; 5910 5911 // Mark this function as potentially containing a function that contains a 5912 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5913 // and restoring the callers stack pointer in this functions epilog. This is 5914 // done because by tail calling the called function might overwrite the value 5915 // in this function's (MF) stack pointer stack slot 0(SP). 5916 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5917 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5918 5919 assert(!(IsFastCall && CFlags.IsVarArg) && 5920 "fastcc not supported on varargs functions"); 5921 5922 // Count how many bytes are to be pushed on the stack, including the linkage 5923 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5924 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5925 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5926 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5927 unsigned NumBytes = LinkageSize; 5928 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5929 5930 static const MCPhysReg GPR[] = { 5931 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5932 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5933 }; 5934 static const MCPhysReg VR[] = { 5935 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5936 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5937 }; 5938 5939 const unsigned NumGPRs = array_lengthof(GPR); 5940 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5941 const unsigned NumVRs = array_lengthof(VR); 5942 5943 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5944 // can be passed to the callee in registers. 5945 // For the fast calling convention, there is another check below. 5946 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5947 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5948 if (!HasParameterArea) { 5949 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5950 unsigned AvailableFPRs = NumFPRs; 5951 unsigned AvailableVRs = NumVRs; 5952 unsigned NumBytesTmp = NumBytes; 5953 for (unsigned i = 0; i != NumOps; ++i) { 5954 if (Outs[i].Flags.isNest()) continue; 5955 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5956 PtrByteSize, LinkageSize, ParamAreaSize, 5957 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5958 HasParameterArea = true; 5959 } 5960 } 5961 5962 // When using the fast calling convention, we don't provide backing for 5963 // arguments that will be in registers. 5964 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5965 5966 // Avoid allocating parameter area for fastcc functions if all the arguments 5967 // can be passed in the registers. 5968 if (IsFastCall) 5969 HasParameterArea = false; 5970 5971 // Add up all the space actually used. 5972 for (unsigned i = 0; i != NumOps; ++i) { 5973 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5974 EVT ArgVT = Outs[i].VT; 5975 EVT OrigVT = Outs[i].ArgVT; 5976 5977 if (Flags.isNest()) 5978 continue; 5979 5980 if (IsFastCall) { 5981 if (Flags.isByVal()) { 5982 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5983 if (NumGPRsUsed > NumGPRs) 5984 HasParameterArea = true; 5985 } else { 5986 switch (ArgVT.getSimpleVT().SimpleTy) { 5987 default: llvm_unreachable("Unexpected ValueType for argument!"); 5988 case MVT::i1: 5989 case MVT::i32: 5990 case MVT::i64: 5991 if (++NumGPRsUsed <= NumGPRs) 5992 continue; 5993 break; 5994 case MVT::v4i32: 5995 case MVT::v8i16: 5996 case MVT::v16i8: 5997 case MVT::v2f64: 5998 case MVT::v2i64: 5999 case MVT::v1i128: 6000 case MVT::f128: 6001 if (++NumVRsUsed <= NumVRs) 6002 continue; 6003 break; 6004 case MVT::v4f32: 6005 if (++NumVRsUsed <= NumVRs) 6006 continue; 6007 break; 6008 case MVT::f32: 6009 case MVT::f64: 6010 if (++NumFPRsUsed <= NumFPRs) 6011 continue; 6012 break; 6013 } 6014 HasParameterArea = true; 6015 } 6016 } 6017 6018 /* Respect alignment of argument on the stack. */ 6019 auto Alignement = 6020 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6021 NumBytes = alignTo(NumBytes, Alignement); 6022 6023 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6024 if (Flags.isInConsecutiveRegsLast()) 6025 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6026 } 6027 6028 unsigned NumBytesActuallyUsed = NumBytes; 6029 6030 // In the old ELFv1 ABI, 6031 // the prolog code of the callee may store up to 8 GPR argument registers to 6032 // the stack, allowing va_start to index over them in memory if its varargs. 6033 // Because we cannot tell if this is needed on the caller side, we have to 6034 // conservatively assume that it is needed. As such, make sure we have at 6035 // least enough stack space for the caller to store the 8 GPRs. 6036 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6037 // really requires memory operands, e.g. a vararg function. 6038 if (HasParameterArea) 6039 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6040 else 6041 NumBytes = LinkageSize; 6042 6043 // Tail call needs the stack to be aligned. 6044 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6045 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6046 6047 int SPDiff = 0; 6048 6049 // Calculate by how many bytes the stack has to be adjusted in case of tail 6050 // call optimization. 6051 if (!IsSibCall) 6052 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6053 6054 // To protect arguments on the stack from being clobbered in a tail call, 6055 // force all the loads to happen before doing any other lowering. 6056 if (CFlags.IsTailCall) 6057 Chain = DAG.getStackArgumentTokenFactor(Chain); 6058 6059 // Adjust the stack pointer for the new arguments... 6060 // These operations are automatically eliminated by the prolog/epilog pass 6061 if (!IsSibCall) 6062 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6063 SDValue CallSeqStart = Chain; 6064 6065 // Load the return address and frame pointer so it can be move somewhere else 6066 // later. 6067 SDValue LROp, FPOp; 6068 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6069 6070 // Set up a copy of the stack pointer for use loading and storing any 6071 // arguments that may not fit in the registers available for argument 6072 // passing. 6073 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6074 6075 // Figure out which arguments are going to go in registers, and which in 6076 // memory. Also, if this is a vararg function, floating point operations 6077 // must be stored to our stack, and loaded into integer regs as well, if 6078 // any integer regs are available for argument passing. 6079 unsigned ArgOffset = LinkageSize; 6080 6081 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6082 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6083 6084 SmallVector<SDValue, 8> MemOpChains; 6085 for (unsigned i = 0; i != NumOps; ++i) { 6086 SDValue Arg = OutVals[i]; 6087 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6088 EVT ArgVT = Outs[i].VT; 6089 EVT OrigVT = Outs[i].ArgVT; 6090 6091 // PtrOff will be used to store the current argument to the stack if a 6092 // register cannot be found for it. 6093 SDValue PtrOff; 6094 6095 // We re-align the argument offset for each argument, except when using the 6096 // fast calling convention, when we need to make sure we do that only when 6097 // we'll actually use a stack slot. 6098 auto ComputePtrOff = [&]() { 6099 /* Respect alignment of argument on the stack. */ 6100 auto Alignment = 6101 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6102 ArgOffset = alignTo(ArgOffset, Alignment); 6103 6104 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6105 6106 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6107 }; 6108 6109 if (!IsFastCall) { 6110 ComputePtrOff(); 6111 6112 /* Compute GPR index associated with argument offset. */ 6113 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6114 GPR_idx = std::min(GPR_idx, NumGPRs); 6115 } 6116 6117 // Promote integers to 64-bit values. 6118 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6119 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6120 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6121 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6122 } 6123 6124 // FIXME memcpy is used way more than necessary. Correctness first. 6125 // Note: "by value" is code for passing a structure by value, not 6126 // basic types. 6127 if (Flags.isByVal()) { 6128 // Note: Size includes alignment padding, so 6129 // struct x { short a; char b; } 6130 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6131 // These are the proper values we need for right-justifying the 6132 // aggregate in a parameter register. 6133 unsigned Size = Flags.getByValSize(); 6134 6135 // An empty aggregate parameter takes up no storage and no 6136 // registers. 6137 if (Size == 0) 6138 continue; 6139 6140 if (IsFastCall) 6141 ComputePtrOff(); 6142 6143 // All aggregates smaller than 8 bytes must be passed right-justified. 6144 if (Size==1 || Size==2 || Size==4) { 6145 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6146 if (GPR_idx != NumGPRs) { 6147 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6148 MachinePointerInfo(), VT); 6149 MemOpChains.push_back(Load.getValue(1)); 6150 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6151 6152 ArgOffset += PtrByteSize; 6153 continue; 6154 } 6155 } 6156 6157 if (GPR_idx == NumGPRs && Size < 8) { 6158 SDValue AddPtr = PtrOff; 6159 if (!isLittleEndian) { 6160 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6161 PtrOff.getValueType()); 6162 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6163 } 6164 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6165 CallSeqStart, 6166 Flags, DAG, dl); 6167 ArgOffset += PtrByteSize; 6168 continue; 6169 } 6170 // Copy entire object into memory. There are cases where gcc-generated 6171 // code assumes it is there, even if it could be put entirely into 6172 // registers. (This is not what the doc says.) 6173 6174 // FIXME: The above statement is likely due to a misunderstanding of the 6175 // documents. All arguments must be copied into the parameter area BY 6176 // THE CALLEE in the event that the callee takes the address of any 6177 // formal argument. That has not yet been implemented. However, it is 6178 // reasonable to use the stack area as a staging area for the register 6179 // load. 6180 6181 // Skip this for small aggregates, as we will use the same slot for a 6182 // right-justified copy, below. 6183 if (Size >= 8) 6184 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6185 CallSeqStart, 6186 Flags, DAG, dl); 6187 6188 // When a register is available, pass a small aggregate right-justified. 6189 if (Size < 8 && GPR_idx != NumGPRs) { 6190 // The easiest way to get this right-justified in a register 6191 // is to copy the structure into the rightmost portion of a 6192 // local variable slot, then load the whole slot into the 6193 // register. 6194 // FIXME: The memcpy seems to produce pretty awful code for 6195 // small aggregates, particularly for packed ones. 6196 // FIXME: It would be preferable to use the slot in the 6197 // parameter save area instead of a new local variable. 6198 SDValue AddPtr = PtrOff; 6199 if (!isLittleEndian) { 6200 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6201 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6202 } 6203 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6204 CallSeqStart, 6205 Flags, DAG, dl); 6206 6207 // Load the slot into the register. 6208 SDValue Load = 6209 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6210 MemOpChains.push_back(Load.getValue(1)); 6211 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6212 6213 // Done with this argument. 6214 ArgOffset += PtrByteSize; 6215 continue; 6216 } 6217 6218 // For aggregates larger than PtrByteSize, copy the pieces of the 6219 // object that fit into registers from the parameter save area. 6220 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6221 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6222 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6223 if (GPR_idx != NumGPRs) { 6224 SDValue Load = 6225 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6226 MemOpChains.push_back(Load.getValue(1)); 6227 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6228 ArgOffset += PtrByteSize; 6229 } else { 6230 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6231 break; 6232 } 6233 } 6234 continue; 6235 } 6236 6237 switch (Arg.getSimpleValueType().SimpleTy) { 6238 default: llvm_unreachable("Unexpected ValueType for argument!"); 6239 case MVT::i1: 6240 case MVT::i32: 6241 case MVT::i64: 6242 if (Flags.isNest()) { 6243 // The 'nest' parameter, if any, is passed in R11. 6244 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6245 break; 6246 } 6247 6248 // These can be scalar arguments or elements of an integer array type 6249 // passed directly. Clang may use those instead of "byval" aggregate 6250 // types to avoid forcing arguments to memory unnecessarily. 6251 if (GPR_idx != NumGPRs) { 6252 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6253 } else { 6254 if (IsFastCall) 6255 ComputePtrOff(); 6256 6257 assert(HasParameterArea && 6258 "Parameter area must exist to pass an argument in memory."); 6259 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6260 true, CFlags.IsTailCall, false, MemOpChains, 6261 TailCallArguments, dl); 6262 if (IsFastCall) 6263 ArgOffset += PtrByteSize; 6264 } 6265 if (!IsFastCall) 6266 ArgOffset += PtrByteSize; 6267 break; 6268 case MVT::f32: 6269 case MVT::f64: { 6270 // These can be scalar arguments or elements of a float array type 6271 // passed directly. The latter are used to implement ELFv2 homogenous 6272 // float aggregates. 6273 6274 // Named arguments go into FPRs first, and once they overflow, the 6275 // remaining arguments go into GPRs and then the parameter save area. 6276 // Unnamed arguments for vararg functions always go to GPRs and 6277 // then the parameter save area. For now, put all arguments to vararg 6278 // routines always in both locations (FPR *and* GPR or stack slot). 6279 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6280 bool NeededLoad = false; 6281 6282 // First load the argument into the next available FPR. 6283 if (FPR_idx != NumFPRs) 6284 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6285 6286 // Next, load the argument into GPR or stack slot if needed. 6287 if (!NeedGPROrStack) 6288 ; 6289 else if (GPR_idx != NumGPRs && !IsFastCall) { 6290 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6291 // once we support fp <-> gpr moves. 6292 6293 // In the non-vararg case, this can only ever happen in the 6294 // presence of f32 array types, since otherwise we never run 6295 // out of FPRs before running out of GPRs. 6296 SDValue ArgVal; 6297 6298 // Double values are always passed in a single GPR. 6299 if (Arg.getValueType() != MVT::f32) { 6300 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6301 6302 // Non-array float values are extended and passed in a GPR. 6303 } else if (!Flags.isInConsecutiveRegs()) { 6304 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6305 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6306 6307 // If we have an array of floats, we collect every odd element 6308 // together with its predecessor into one GPR. 6309 } else if (ArgOffset % PtrByteSize != 0) { 6310 SDValue Lo, Hi; 6311 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6312 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6313 if (!isLittleEndian) 6314 std::swap(Lo, Hi); 6315 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6316 6317 // The final element, if even, goes into the first half of a GPR. 6318 } else if (Flags.isInConsecutiveRegsLast()) { 6319 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6320 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6321 if (!isLittleEndian) 6322 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6323 DAG.getConstant(32, dl, MVT::i32)); 6324 6325 // Non-final even elements are skipped; they will be handled 6326 // together the with subsequent argument on the next go-around. 6327 } else 6328 ArgVal = SDValue(); 6329 6330 if (ArgVal.getNode()) 6331 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6332 } else { 6333 if (IsFastCall) 6334 ComputePtrOff(); 6335 6336 // Single-precision floating-point values are mapped to the 6337 // second (rightmost) word of the stack doubleword. 6338 if (Arg.getValueType() == MVT::f32 && 6339 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6340 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6341 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6342 } 6343 6344 assert(HasParameterArea && 6345 "Parameter area must exist to pass an argument in memory."); 6346 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6347 true, CFlags.IsTailCall, false, MemOpChains, 6348 TailCallArguments, dl); 6349 6350 NeededLoad = true; 6351 } 6352 // When passing an array of floats, the array occupies consecutive 6353 // space in the argument area; only round up to the next doubleword 6354 // at the end of the array. Otherwise, each float takes 8 bytes. 6355 if (!IsFastCall || NeededLoad) { 6356 ArgOffset += (Arg.getValueType() == MVT::f32 && 6357 Flags.isInConsecutiveRegs()) ? 4 : 8; 6358 if (Flags.isInConsecutiveRegsLast()) 6359 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6360 } 6361 break; 6362 } 6363 case MVT::v4f32: 6364 case MVT::v4i32: 6365 case MVT::v8i16: 6366 case MVT::v16i8: 6367 case MVT::v2f64: 6368 case MVT::v2i64: 6369 case MVT::v1i128: 6370 case MVT::f128: 6371 // These can be scalar arguments or elements of a vector array type 6372 // passed directly. The latter are used to implement ELFv2 homogenous 6373 // vector aggregates. 6374 6375 // For a varargs call, named arguments go into VRs or on the stack as 6376 // usual; unnamed arguments always go to the stack or the corresponding 6377 // GPRs when within range. For now, we always put the value in both 6378 // locations (or even all three). 6379 if (CFlags.IsVarArg) { 6380 assert(HasParameterArea && 6381 "Parameter area must exist if we have a varargs call."); 6382 // We could elide this store in the case where the object fits 6383 // entirely in R registers. Maybe later. 6384 SDValue Store = 6385 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6386 MemOpChains.push_back(Store); 6387 if (VR_idx != NumVRs) { 6388 SDValue Load = 6389 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6390 MemOpChains.push_back(Load.getValue(1)); 6391 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6392 } 6393 ArgOffset += 16; 6394 for (unsigned i=0; i<16; i+=PtrByteSize) { 6395 if (GPR_idx == NumGPRs) 6396 break; 6397 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6398 DAG.getConstant(i, dl, PtrVT)); 6399 SDValue Load = 6400 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6401 MemOpChains.push_back(Load.getValue(1)); 6402 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6403 } 6404 break; 6405 } 6406 6407 // Non-varargs Altivec params go into VRs or on the stack. 6408 if (VR_idx != NumVRs) { 6409 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6410 } else { 6411 if (IsFastCall) 6412 ComputePtrOff(); 6413 6414 assert(HasParameterArea && 6415 "Parameter area must exist to pass an argument in memory."); 6416 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6417 true, CFlags.IsTailCall, true, MemOpChains, 6418 TailCallArguments, dl); 6419 if (IsFastCall) 6420 ArgOffset += 16; 6421 } 6422 6423 if (!IsFastCall) 6424 ArgOffset += 16; 6425 break; 6426 } 6427 } 6428 6429 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6430 "mismatch in size of parameter area"); 6431 (void)NumBytesActuallyUsed; 6432 6433 if (!MemOpChains.empty()) 6434 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6435 6436 // Check if this is an indirect call (MTCTR/BCTRL). 6437 // See prepareDescriptorIndirectCall and buildCallOperands for more 6438 // information about calls through function pointers in the 64-bit SVR4 ABI. 6439 if (CFlags.IsIndirect) { 6440 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6441 // caller in the TOC save area. 6442 if (isTOCSaveRestoreRequired(Subtarget)) { 6443 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6444 // Load r2 into a virtual register and store it to the TOC save area. 6445 setUsesTOCBasePtr(DAG); 6446 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6447 // TOC save area offset. 6448 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6449 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6450 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6451 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6452 MachinePointerInfo::getStack( 6453 DAG.getMachineFunction(), TOCSaveOffset)); 6454 } 6455 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6456 // This does not mean the MTCTR instruction must use R12; it's easier 6457 // to model this as an extra parameter, so do that. 6458 if (isELFv2ABI && !CFlags.IsPatchPoint) 6459 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6460 } 6461 6462 // Build a sequence of copy-to-reg nodes chained together with token chain 6463 // and flag operands which copy the outgoing args into the appropriate regs. 6464 SDValue InFlag; 6465 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6466 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6467 RegsToPass[i].second, InFlag); 6468 InFlag = Chain.getValue(1); 6469 } 6470 6471 if (CFlags.IsTailCall && !IsSibCall) 6472 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6473 TailCallArguments); 6474 6475 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6476 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6477 } 6478 6479 // Returns true when the shadow of a general purpose argument register 6480 // in the parameter save area is aligned to at least 'RequiredAlign'. 6481 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6482 assert(RequiredAlign.value() <= 16 && 6483 "Required alignment greater than stack alignment."); 6484 switch (Reg) { 6485 default: 6486 report_fatal_error("called on invalid register."); 6487 case PPC::R5: 6488 case PPC::R9: 6489 case PPC::X3: 6490 case PPC::X5: 6491 case PPC::X7: 6492 case PPC::X9: 6493 // These registers are 16 byte aligned which is the most strict aligment 6494 // we can support. 6495 return true; 6496 case PPC::R3: 6497 case PPC::R7: 6498 case PPC::X4: 6499 case PPC::X6: 6500 case PPC::X8: 6501 case PPC::X10: 6502 // The shadow of these registers in the PSA is 8 byte aligned. 6503 return RequiredAlign <= 8; 6504 case PPC::R4: 6505 case PPC::R6: 6506 case PPC::R8: 6507 case PPC::R10: 6508 return RequiredAlign <= 4; 6509 } 6510 } 6511 6512 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6513 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6514 CCState &S) { 6515 AIXCCState &State = static_cast<AIXCCState &>(S); 6516 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6517 State.getMachineFunction().getSubtarget()); 6518 const bool IsPPC64 = Subtarget.isPPC64(); 6519 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6520 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6521 6522 if (ValVT == MVT::f128) 6523 report_fatal_error("f128 is unimplemented on AIX."); 6524 6525 if (ArgFlags.isNest()) 6526 report_fatal_error("Nest arguments are unimplemented."); 6527 6528 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6529 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6530 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6531 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6532 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6533 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6534 6535 static const MCPhysReg VR[] = {// Vector registers. 6536 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6537 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6538 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6539 6540 if (ArgFlags.isByVal()) { 6541 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6542 report_fatal_error("Pass-by-value arguments with alignment greater than " 6543 "register width are not supported."); 6544 6545 const unsigned ByValSize = ArgFlags.getByValSize(); 6546 6547 // An empty aggregate parameter takes up no storage and no registers, 6548 // but needs a MemLoc for a stack slot for the formal arguments side. 6549 if (ByValSize == 0) { 6550 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6551 State.getNextStackOffset(), RegVT, 6552 LocInfo)); 6553 return false; 6554 } 6555 6556 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6557 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6558 for (const unsigned E = Offset + StackSize; Offset < E; 6559 Offset += PtrAlign.value()) { 6560 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6561 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6562 else { 6563 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6564 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6565 LocInfo)); 6566 break; 6567 } 6568 } 6569 return false; 6570 } 6571 6572 // Arguments always reserve parameter save area. 6573 switch (ValVT.SimpleTy) { 6574 default: 6575 report_fatal_error("Unhandled value type for argument."); 6576 case MVT::i64: 6577 // i64 arguments should have been split to i32 for PPC32. 6578 assert(IsPPC64 && "PPC32 should have split i64 values."); 6579 LLVM_FALLTHROUGH; 6580 case MVT::i1: 6581 case MVT::i32: { 6582 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6583 // AIX integer arguments are always passed in register width. 6584 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6585 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6586 : CCValAssign::LocInfo::ZExt; 6587 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6588 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6589 else 6590 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6591 6592 return false; 6593 } 6594 case MVT::f32: 6595 case MVT::f64: { 6596 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6597 const unsigned StoreSize = LocVT.getStoreSize(); 6598 // Floats are always 4-byte aligned in the PSA on AIX. 6599 // This includes f64 in 64-bit mode for ABI compatibility. 6600 const unsigned Offset = 6601 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6602 unsigned FReg = State.AllocateReg(FPR); 6603 if (FReg) 6604 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6605 6606 // Reserve and initialize GPRs or initialize the PSA as required. 6607 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6608 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6609 assert(FReg && "An FPR should be available when a GPR is reserved."); 6610 if (State.isVarArg()) { 6611 // Successfully reserved GPRs are only initialized for vararg calls. 6612 // Custom handling is required for: 6613 // f64 in PPC32 needs to be split into 2 GPRs. 6614 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6615 State.addLoc( 6616 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6617 } 6618 } else { 6619 // If there are insufficient GPRs, the PSA needs to be initialized. 6620 // Initialization occurs even if an FPR was initialized for 6621 // compatibility with the AIX XL compiler. The full memory for the 6622 // argument will be initialized even if a prior word is saved in GPR. 6623 // A custom memLoc is used when the argument also passes in FPR so 6624 // that the callee handling can skip over it easily. 6625 State.addLoc( 6626 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6627 LocInfo) 6628 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6629 break; 6630 } 6631 } 6632 6633 return false; 6634 } 6635 case MVT::v4f32: 6636 case MVT::v4i32: 6637 case MVT::v8i16: 6638 case MVT::v16i8: 6639 case MVT::v2i64: 6640 case MVT::v2f64: 6641 case MVT::v1i128: { 6642 const unsigned VecSize = 16; 6643 const Align VecAlign(VecSize); 6644 6645 if (!State.isVarArg()) { 6646 // If there are vector registers remaining we don't consume any stack 6647 // space. 6648 if (unsigned VReg = State.AllocateReg(VR)) { 6649 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6650 return false; 6651 } 6652 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6653 // might be allocated in the portion of the PSA that is shadowed by the 6654 // GPRs. 6655 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6656 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6657 return false; 6658 } 6659 6660 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6661 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6662 6663 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6664 // Burn any underaligned registers and their shadowed stack space until 6665 // we reach the required alignment. 6666 while (NextRegIndex != GPRs.size() && 6667 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6668 // Shadow allocate register and its stack shadow. 6669 unsigned Reg = State.AllocateReg(GPRs); 6670 State.AllocateStack(PtrSize, PtrAlign); 6671 assert(Reg && "Allocating register unexpectedly failed."); 6672 (void)Reg; 6673 NextRegIndex = State.getFirstUnallocated(GPRs); 6674 } 6675 6676 // Vectors that are passed as fixed arguments are handled differently. 6677 // They are passed in VRs if any are available (unlike arguments passed 6678 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6679 // functions) 6680 if (State.isFixed(ValNo)) { 6681 if (unsigned VReg = State.AllocateReg(VR)) { 6682 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6683 // Shadow allocate GPRs and stack space even though we pass in a VR. 6684 for (unsigned I = 0; I != VecSize; I += PtrSize) 6685 State.AllocateReg(GPRs); 6686 State.AllocateStack(VecSize, VecAlign); 6687 return false; 6688 } 6689 // No vector registers remain so pass on the stack. 6690 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6691 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6692 return false; 6693 } 6694 6695 // If all GPRS are consumed then we pass the argument fully on the stack. 6696 if (NextRegIndex == GPRs.size()) { 6697 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6698 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6699 return false; 6700 } 6701 6702 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6703 // half of the argument, and then need to pass the remaining half on the 6704 // stack. 6705 if (GPRs[NextRegIndex] == PPC::R9) { 6706 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6707 State.addLoc( 6708 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6709 6710 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6711 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6712 assert(FirstReg && SecondReg && 6713 "Allocating R9 or R10 unexpectedly failed."); 6714 State.addLoc( 6715 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6716 State.addLoc( 6717 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6718 return false; 6719 } 6720 6721 // We have enough GPRs to fully pass the vector argument, and we have 6722 // already consumed any underaligned registers. Start with the custom 6723 // MemLoc and then the custom RegLocs. 6724 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6725 State.addLoc( 6726 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6727 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6728 const unsigned Reg = State.AllocateReg(GPRs); 6729 assert(Reg && "Failed to allocated register for vararg vector argument"); 6730 State.addLoc( 6731 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6732 } 6733 return false; 6734 } 6735 } 6736 return true; 6737 } 6738 6739 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6740 bool IsPPC64) { 6741 assert((IsPPC64 || SVT != MVT::i64) && 6742 "i64 should have been split for 32-bit codegen."); 6743 6744 switch (SVT) { 6745 default: 6746 report_fatal_error("Unexpected value type for formal argument"); 6747 case MVT::i1: 6748 case MVT::i32: 6749 case MVT::i64: 6750 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6751 case MVT::f32: 6752 return &PPC::F4RCRegClass; 6753 case MVT::f64: 6754 return &PPC::F8RCRegClass; 6755 case MVT::v4f32: 6756 case MVT::v4i32: 6757 case MVT::v8i16: 6758 case MVT::v16i8: 6759 case MVT::v2i64: 6760 case MVT::v2f64: 6761 case MVT::v1i128: 6762 return &PPC::VRRCRegClass; 6763 } 6764 } 6765 6766 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6767 SelectionDAG &DAG, SDValue ArgValue, 6768 MVT LocVT, const SDLoc &dl) { 6769 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6770 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6771 6772 if (Flags.isSExt()) 6773 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6774 DAG.getValueType(ValVT)); 6775 else if (Flags.isZExt()) 6776 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6777 DAG.getValueType(ValVT)); 6778 6779 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6780 } 6781 6782 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6783 const unsigned LASize = FL->getLinkageSize(); 6784 6785 if (PPC::GPRCRegClass.contains(Reg)) { 6786 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6787 "Reg must be a valid argument register!"); 6788 return LASize + 4 * (Reg - PPC::R3); 6789 } 6790 6791 if (PPC::G8RCRegClass.contains(Reg)) { 6792 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6793 "Reg must be a valid argument register!"); 6794 return LASize + 8 * (Reg - PPC::X3); 6795 } 6796 6797 llvm_unreachable("Only general purpose registers expected."); 6798 } 6799 6800 // AIX ABI Stack Frame Layout: 6801 // 6802 // Low Memory +--------------------------------------------+ 6803 // SP +---> | Back chain | ---+ 6804 // | +--------------------------------------------+ | 6805 // | | Saved Condition Register | | 6806 // | +--------------------------------------------+ | 6807 // | | Saved Linkage Register | | 6808 // | +--------------------------------------------+ | Linkage Area 6809 // | | Reserved for compilers | | 6810 // | +--------------------------------------------+ | 6811 // | | Reserved for binders | | 6812 // | +--------------------------------------------+ | 6813 // | | Saved TOC pointer | ---+ 6814 // | +--------------------------------------------+ 6815 // | | Parameter save area | 6816 // | +--------------------------------------------+ 6817 // | | Alloca space | 6818 // | +--------------------------------------------+ 6819 // | | Local variable space | 6820 // | +--------------------------------------------+ 6821 // | | Float/int conversion temporary | 6822 // | +--------------------------------------------+ 6823 // | | Save area for AltiVec registers | 6824 // | +--------------------------------------------+ 6825 // | | AltiVec alignment padding | 6826 // | +--------------------------------------------+ 6827 // | | Save area for VRSAVE register | 6828 // | +--------------------------------------------+ 6829 // | | Save area for General Purpose registers | 6830 // | +--------------------------------------------+ 6831 // | | Save area for Floating Point registers | 6832 // | +--------------------------------------------+ 6833 // +---- | Back chain | 6834 // High Memory +--------------------------------------------+ 6835 // 6836 // Specifications: 6837 // AIX 7.2 Assembler Language Reference 6838 // Subroutine linkage convention 6839 6840 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6841 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6842 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6843 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6844 6845 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6846 CallConv == CallingConv::Fast) && 6847 "Unexpected calling convention!"); 6848 6849 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6850 report_fatal_error("Tail call support is unimplemented on AIX."); 6851 6852 if (useSoftFloat()) 6853 report_fatal_error("Soft float support is unimplemented on AIX."); 6854 6855 const PPCSubtarget &Subtarget = 6856 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6857 6858 const bool IsPPC64 = Subtarget.isPPC64(); 6859 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6860 6861 // Assign locations to all of the incoming arguments. 6862 SmallVector<CCValAssign, 16> ArgLocs; 6863 MachineFunction &MF = DAG.getMachineFunction(); 6864 MachineFrameInfo &MFI = MF.getFrameInfo(); 6865 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6866 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6867 6868 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6869 // Reserve space for the linkage area on the stack. 6870 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6871 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6872 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6873 6874 SmallVector<SDValue, 8> MemOps; 6875 6876 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6877 CCValAssign &VA = ArgLocs[I++]; 6878 MVT LocVT = VA.getLocVT(); 6879 MVT ValVT = VA.getValVT(); 6880 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6881 // For compatibility with the AIX XL compiler, the float args in the 6882 // parameter save area are initialized even if the argument is available 6883 // in register. The caller is required to initialize both the register 6884 // and memory, however, the callee can choose to expect it in either. 6885 // The memloc is dismissed here because the argument is retrieved from 6886 // the register. 6887 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6888 continue; 6889 6890 auto HandleMemLoc = [&]() { 6891 const unsigned LocSize = LocVT.getStoreSize(); 6892 const unsigned ValSize = ValVT.getStoreSize(); 6893 assert((ValSize <= LocSize) && 6894 "Object size is larger than size of MemLoc"); 6895 int CurArgOffset = VA.getLocMemOffset(); 6896 // Objects are right-justified because AIX is big-endian. 6897 if (LocSize > ValSize) 6898 CurArgOffset += LocSize - ValSize; 6899 // Potential tail calls could cause overwriting of argument stack slots. 6900 const bool IsImmutable = 6901 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6902 (CallConv == CallingConv::Fast)); 6903 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6904 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6905 SDValue ArgValue = 6906 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6907 InVals.push_back(ArgValue); 6908 }; 6909 6910 // Vector arguments to VaArg functions are passed both on the stack, and 6911 // in any available GPRs. Load the value from the stack and add the GPRs 6912 // as live ins. 6913 if (VA.isMemLoc() && VA.needsCustom()) { 6914 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6915 assert(isVarArg && "Only use custom memloc for vararg."); 6916 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6917 // matching custom RegLocs. 6918 const unsigned OriginalValNo = VA.getValNo(); 6919 (void)OriginalValNo; 6920 6921 auto HandleCustomVecRegLoc = [&]() { 6922 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6923 "Missing custom RegLoc."); 6924 VA = ArgLocs[I++]; 6925 assert(VA.getValVT().isVector() && 6926 "Unexpected Val type for custom RegLoc."); 6927 assert(VA.getValNo() == OriginalValNo && 6928 "ValNo mismatch between custom MemLoc and RegLoc."); 6929 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6930 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6931 }; 6932 6933 HandleMemLoc(); 6934 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6935 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6936 // R10. 6937 HandleCustomVecRegLoc(); 6938 HandleCustomVecRegLoc(); 6939 6940 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6941 // we passed the vector in R5, R6, R7 and R8. 6942 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6943 assert(!IsPPC64 && 6944 "Only 2 custom RegLocs expected for 64-bit codegen."); 6945 HandleCustomVecRegLoc(); 6946 HandleCustomVecRegLoc(); 6947 } 6948 6949 continue; 6950 } 6951 6952 if (VA.isRegLoc()) { 6953 if (VA.getValVT().isScalarInteger()) 6954 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6955 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) 6956 FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32 6957 ? PPCFunctionInfo::ShortFloatPoint 6958 : PPCFunctionInfo::LongFloatPoint); 6959 } 6960 6961 if (Flags.isByVal() && VA.isMemLoc()) { 6962 const unsigned Size = 6963 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6964 PtrByteSize); 6965 const int FI = MF.getFrameInfo().CreateFixedObject( 6966 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 6967 /* IsAliased */ true); 6968 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6969 InVals.push_back(FIN); 6970 6971 continue; 6972 } 6973 6974 if (Flags.isByVal()) { 6975 assert(VA.isRegLoc() && "MemLocs should already be handled."); 6976 6977 const MCPhysReg ArgReg = VA.getLocReg(); 6978 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 6979 6980 if (Flags.getNonZeroByValAlign() > PtrByteSize) 6981 report_fatal_error("Over aligned byvals not supported yet."); 6982 6983 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 6984 const int FI = MF.getFrameInfo().CreateFixedObject( 6985 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 6986 /* IsAliased */ true); 6987 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6988 InVals.push_back(FIN); 6989 6990 // Add live ins for all the RegLocs for the same ByVal. 6991 const TargetRegisterClass *RegClass = 6992 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6993 6994 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 6995 unsigned Offset) { 6996 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 6997 // Since the callers side has left justified the aggregate in the 6998 // register, we can simply store the entire register into the stack 6999 // slot. 7000 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7001 // The store to the fixedstack object is needed becuase accessing a 7002 // field of the ByVal will use a gep and load. Ideally we will optimize 7003 // to extracting the value from the register directly, and elide the 7004 // stores when the arguments address is not taken, but that will need to 7005 // be future work. 7006 SDValue Store = DAG.getStore( 7007 CopyFrom.getValue(1), dl, CopyFrom, 7008 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7009 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7010 7011 MemOps.push_back(Store); 7012 }; 7013 7014 unsigned Offset = 0; 7015 HandleRegLoc(VA.getLocReg(), Offset); 7016 Offset += PtrByteSize; 7017 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7018 Offset += PtrByteSize) { 7019 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7020 "RegLocs should be for ByVal argument."); 7021 7022 const CCValAssign RL = ArgLocs[I++]; 7023 HandleRegLoc(RL.getLocReg(), Offset); 7024 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7025 } 7026 7027 if (Offset != StackSize) { 7028 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7029 "Expected MemLoc for remaining bytes."); 7030 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7031 // Consume the MemLoc.The InVal has already been emitted, so nothing 7032 // more needs to be done. 7033 ++I; 7034 } 7035 7036 continue; 7037 } 7038 7039 if (VA.isRegLoc() && !VA.needsCustom()) { 7040 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7041 unsigned VReg = 7042 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7043 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7044 if (ValVT.isScalarInteger() && 7045 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7046 ArgValue = 7047 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7048 } 7049 InVals.push_back(ArgValue); 7050 continue; 7051 } 7052 if (VA.isMemLoc()) { 7053 HandleMemLoc(); 7054 continue; 7055 } 7056 } 7057 7058 // On AIX a minimum of 8 words is saved to the parameter save area. 7059 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7060 // Area that is at least reserved in the caller of this function. 7061 unsigned CallerReservedArea = 7062 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7063 7064 // Set the size that is at least reserved in caller of this function. Tail 7065 // call optimized function's reserved stack space needs to be aligned so 7066 // that taking the difference between two stack areas will result in an 7067 // aligned stack. 7068 CallerReservedArea = 7069 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7070 FuncInfo->setMinReservedArea(CallerReservedArea); 7071 7072 if (isVarArg) { 7073 FuncInfo->setVarArgsFrameIndex( 7074 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7075 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7076 7077 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7078 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7079 7080 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7081 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7082 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7083 7084 // The fixed integer arguments of a variadic function are stored to the 7085 // VarArgsFrameIndex on the stack so that they may be loaded by 7086 // dereferencing the result of va_next. 7087 for (unsigned GPRIndex = 7088 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7089 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7090 7091 const unsigned VReg = 7092 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7093 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7094 7095 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7096 SDValue Store = 7097 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7098 MemOps.push_back(Store); 7099 // Increment the address for the next argument to store. 7100 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7101 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7102 } 7103 } 7104 7105 if (!MemOps.empty()) 7106 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7107 7108 return Chain; 7109 } 7110 7111 SDValue PPCTargetLowering::LowerCall_AIX( 7112 SDValue Chain, SDValue Callee, CallFlags CFlags, 7113 const SmallVectorImpl<ISD::OutputArg> &Outs, 7114 const SmallVectorImpl<SDValue> &OutVals, 7115 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7116 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7117 const CallBase *CB) const { 7118 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7119 // AIX ABI stack frame layout. 7120 7121 assert((CFlags.CallConv == CallingConv::C || 7122 CFlags.CallConv == CallingConv::Cold || 7123 CFlags.CallConv == CallingConv::Fast) && 7124 "Unexpected calling convention!"); 7125 7126 if (CFlags.IsPatchPoint) 7127 report_fatal_error("This call type is unimplemented on AIX."); 7128 7129 const PPCSubtarget& Subtarget = 7130 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7131 7132 MachineFunction &MF = DAG.getMachineFunction(); 7133 SmallVector<CCValAssign, 16> ArgLocs; 7134 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7135 *DAG.getContext()); 7136 7137 // Reserve space for the linkage save area (LSA) on the stack. 7138 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7139 // [SP][CR][LR][2 x reserved][TOC]. 7140 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7141 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7142 const bool IsPPC64 = Subtarget.isPPC64(); 7143 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7144 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7145 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7146 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7147 7148 // The prolog code of the callee may store up to 8 GPR argument registers to 7149 // the stack, allowing va_start to index over them in memory if the callee 7150 // is variadic. 7151 // Because we cannot tell if this is needed on the caller side, we have to 7152 // conservatively assume that it is needed. As such, make sure we have at 7153 // least enough stack space for the caller to store the 8 GPRs. 7154 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7155 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7156 CCInfo.getNextStackOffset()); 7157 7158 // Adjust the stack pointer for the new arguments... 7159 // These operations are automatically eliminated by the prolog/epilog pass. 7160 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7161 SDValue CallSeqStart = Chain; 7162 7163 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7164 SmallVector<SDValue, 8> MemOpChains; 7165 7166 // Set up a copy of the stack pointer for loading and storing any 7167 // arguments that may not fit in the registers available for argument 7168 // passing. 7169 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7170 : DAG.getRegister(PPC::R1, MVT::i32); 7171 7172 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7173 const unsigned ValNo = ArgLocs[I].getValNo(); 7174 SDValue Arg = OutVals[ValNo]; 7175 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7176 7177 if (Flags.isByVal()) { 7178 const unsigned ByValSize = Flags.getByValSize(); 7179 7180 // Nothing to do for zero-sized ByVals on the caller side. 7181 if (!ByValSize) { 7182 ++I; 7183 continue; 7184 } 7185 7186 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7187 return DAG.getExtLoad( 7188 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7189 (LoadOffset != 0) 7190 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7191 : Arg, 7192 MachinePointerInfo(), VT); 7193 }; 7194 7195 unsigned LoadOffset = 0; 7196 7197 // Initialize registers, which are fully occupied by the by-val argument. 7198 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7199 SDValue Load = GetLoad(PtrVT, LoadOffset); 7200 MemOpChains.push_back(Load.getValue(1)); 7201 LoadOffset += PtrByteSize; 7202 const CCValAssign &ByValVA = ArgLocs[I++]; 7203 assert(ByValVA.getValNo() == ValNo && 7204 "Unexpected location for pass-by-value argument."); 7205 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7206 } 7207 7208 if (LoadOffset == ByValSize) 7209 continue; 7210 7211 // There must be one more loc to handle the remainder. 7212 assert(ArgLocs[I].getValNo() == ValNo && 7213 "Expected additional location for by-value argument."); 7214 7215 if (ArgLocs[I].isMemLoc()) { 7216 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7217 const CCValAssign &ByValVA = ArgLocs[I++]; 7218 ISD::ArgFlagsTy MemcpyFlags = Flags; 7219 // Only memcpy the bytes that don't pass in register. 7220 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7221 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7222 (LoadOffset != 0) 7223 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7224 : Arg, 7225 DAG.getObjectPtrOffset(dl, StackPtr, 7226 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7227 CallSeqStart, MemcpyFlags, DAG, dl); 7228 continue; 7229 } 7230 7231 // Initialize the final register residue. 7232 // Any residue that occupies the final by-val arg register must be 7233 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7234 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7235 // 2 and 1 byte loads. 7236 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7237 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7238 "Unexpected register residue for by-value argument."); 7239 SDValue ResidueVal; 7240 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7241 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7242 const MVT VT = 7243 N == 1 ? MVT::i8 7244 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7245 SDValue Load = GetLoad(VT, LoadOffset); 7246 MemOpChains.push_back(Load.getValue(1)); 7247 LoadOffset += N; 7248 Bytes += N; 7249 7250 // By-val arguments are passed left-justfied in register. 7251 // Every load here needs to be shifted, otherwise a full register load 7252 // should have been used. 7253 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7254 "Unexpected load emitted during handling of pass-by-value " 7255 "argument."); 7256 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7257 EVT ShiftAmountTy = 7258 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7259 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7260 SDValue ShiftedLoad = 7261 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7262 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7263 ShiftedLoad) 7264 : ShiftedLoad; 7265 } 7266 7267 const CCValAssign &ByValVA = ArgLocs[I++]; 7268 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7269 continue; 7270 } 7271 7272 CCValAssign &VA = ArgLocs[I++]; 7273 const MVT LocVT = VA.getLocVT(); 7274 const MVT ValVT = VA.getValVT(); 7275 7276 switch (VA.getLocInfo()) { 7277 default: 7278 report_fatal_error("Unexpected argument extension type."); 7279 case CCValAssign::Full: 7280 break; 7281 case CCValAssign::ZExt: 7282 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7283 break; 7284 case CCValAssign::SExt: 7285 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7286 break; 7287 } 7288 7289 if (VA.isRegLoc() && !VA.needsCustom()) { 7290 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7291 continue; 7292 } 7293 7294 // Vector arguments passed to VarArg functions need custom handling when 7295 // they are passed (at least partially) in GPRs. 7296 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7297 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7298 // Store value to its stack slot. 7299 SDValue PtrOff = 7300 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7301 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7302 SDValue Store = 7303 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7304 MemOpChains.push_back(Store); 7305 const unsigned OriginalValNo = VA.getValNo(); 7306 // Then load the GPRs from the stack 7307 unsigned LoadOffset = 0; 7308 auto HandleCustomVecRegLoc = [&]() { 7309 assert(I != E && "Unexpected end of CCvalAssigns."); 7310 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7311 "Expected custom RegLoc."); 7312 CCValAssign RegVA = ArgLocs[I++]; 7313 assert(RegVA.getValNo() == OriginalValNo && 7314 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7315 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7316 DAG.getConstant(LoadOffset, dl, PtrVT)); 7317 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7318 MemOpChains.push_back(Load.getValue(1)); 7319 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7320 LoadOffset += PtrByteSize; 7321 }; 7322 7323 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7324 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7325 // R10. 7326 HandleCustomVecRegLoc(); 7327 HandleCustomVecRegLoc(); 7328 7329 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7330 ArgLocs[I].getValNo() == OriginalValNo) { 7331 assert(!IsPPC64 && 7332 "Only 2 custom RegLocs expected for 64-bit codegen."); 7333 HandleCustomVecRegLoc(); 7334 HandleCustomVecRegLoc(); 7335 } 7336 7337 continue; 7338 } 7339 7340 if (VA.isMemLoc()) { 7341 SDValue PtrOff = 7342 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7343 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7344 MemOpChains.push_back( 7345 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7346 7347 continue; 7348 } 7349 7350 if (!ValVT.isFloatingPoint()) 7351 report_fatal_error( 7352 "Unexpected register handling for calling convention."); 7353 7354 // Custom handling is used for GPR initializations for vararg float 7355 // arguments. 7356 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7357 LocVT.isInteger() && 7358 "Custom register handling only expected for VarArg."); 7359 7360 SDValue ArgAsInt = 7361 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7362 7363 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7364 // f32 in 32-bit GPR 7365 // f64 in 64-bit GPR 7366 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7367 else if (Arg.getValueType().getFixedSizeInBits() < 7368 LocVT.getFixedSizeInBits()) 7369 // f32 in 64-bit GPR. 7370 RegsToPass.push_back(std::make_pair( 7371 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7372 else { 7373 // f64 in two 32-bit GPRs 7374 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7375 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7376 "Unexpected custom register for argument!"); 7377 CCValAssign &GPR1 = VA; 7378 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7379 DAG.getConstant(32, dl, MVT::i8)); 7380 RegsToPass.push_back(std::make_pair( 7381 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7382 7383 if (I != E) { 7384 // If only 1 GPR was available, there will only be one custom GPR and 7385 // the argument will also pass in memory. 7386 CCValAssign &PeekArg = ArgLocs[I]; 7387 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7388 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7389 CCValAssign &GPR2 = ArgLocs[I++]; 7390 RegsToPass.push_back(std::make_pair( 7391 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7392 } 7393 } 7394 } 7395 } 7396 7397 if (!MemOpChains.empty()) 7398 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7399 7400 // For indirect calls, we need to save the TOC base to the stack for 7401 // restoration after the call. 7402 if (CFlags.IsIndirect) { 7403 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7404 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7405 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7406 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7407 const unsigned TOCSaveOffset = 7408 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7409 7410 setUsesTOCBasePtr(DAG); 7411 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7412 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7413 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7414 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7415 Chain = DAG.getStore( 7416 Val.getValue(1), dl, Val, AddPtr, 7417 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7418 } 7419 7420 // Build a sequence of copy-to-reg nodes chained together with token chain 7421 // and flag operands which copy the outgoing args into the appropriate regs. 7422 SDValue InFlag; 7423 for (auto Reg : RegsToPass) { 7424 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7425 InFlag = Chain.getValue(1); 7426 } 7427 7428 const int SPDiff = 0; 7429 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7430 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7431 } 7432 7433 bool 7434 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7435 MachineFunction &MF, bool isVarArg, 7436 const SmallVectorImpl<ISD::OutputArg> &Outs, 7437 LLVMContext &Context) const { 7438 SmallVector<CCValAssign, 16> RVLocs; 7439 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7440 return CCInfo.CheckReturn( 7441 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7442 ? RetCC_PPC_Cold 7443 : RetCC_PPC); 7444 } 7445 7446 SDValue 7447 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7448 bool isVarArg, 7449 const SmallVectorImpl<ISD::OutputArg> &Outs, 7450 const SmallVectorImpl<SDValue> &OutVals, 7451 const SDLoc &dl, SelectionDAG &DAG) const { 7452 SmallVector<CCValAssign, 16> RVLocs; 7453 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7454 *DAG.getContext()); 7455 CCInfo.AnalyzeReturn(Outs, 7456 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7457 ? RetCC_PPC_Cold 7458 : RetCC_PPC); 7459 7460 SDValue Flag; 7461 SmallVector<SDValue, 4> RetOps(1, Chain); 7462 7463 // Copy the result values into the output registers. 7464 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7465 CCValAssign &VA = RVLocs[i]; 7466 assert(VA.isRegLoc() && "Can only return in registers!"); 7467 7468 SDValue Arg = OutVals[RealResIdx]; 7469 7470 switch (VA.getLocInfo()) { 7471 default: llvm_unreachable("Unknown loc info!"); 7472 case CCValAssign::Full: break; 7473 case CCValAssign::AExt: 7474 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7475 break; 7476 case CCValAssign::ZExt: 7477 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7478 break; 7479 case CCValAssign::SExt: 7480 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7481 break; 7482 } 7483 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7484 bool isLittleEndian = Subtarget.isLittleEndian(); 7485 // Legalize ret f64 -> ret 2 x i32. 7486 SDValue SVal = 7487 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7488 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7489 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7490 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7491 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7492 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7493 Flag = Chain.getValue(1); 7494 VA = RVLocs[++i]; // skip ahead to next loc 7495 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7496 } else 7497 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7498 Flag = Chain.getValue(1); 7499 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7500 } 7501 7502 RetOps[0] = Chain; // Update chain. 7503 7504 // Add the flag if we have it. 7505 if (Flag.getNode()) 7506 RetOps.push_back(Flag); 7507 7508 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7509 } 7510 7511 SDValue 7512 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7513 SelectionDAG &DAG) const { 7514 SDLoc dl(Op); 7515 7516 // Get the correct type for integers. 7517 EVT IntVT = Op.getValueType(); 7518 7519 // Get the inputs. 7520 SDValue Chain = Op.getOperand(0); 7521 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7522 // Build a DYNAREAOFFSET node. 7523 SDValue Ops[2] = {Chain, FPSIdx}; 7524 SDVTList VTs = DAG.getVTList(IntVT); 7525 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7526 } 7527 7528 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7529 SelectionDAG &DAG) const { 7530 // When we pop the dynamic allocation we need to restore the SP link. 7531 SDLoc dl(Op); 7532 7533 // Get the correct type for pointers. 7534 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7535 7536 // Construct the stack pointer operand. 7537 bool isPPC64 = Subtarget.isPPC64(); 7538 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7539 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7540 7541 // Get the operands for the STACKRESTORE. 7542 SDValue Chain = Op.getOperand(0); 7543 SDValue SaveSP = Op.getOperand(1); 7544 7545 // Load the old link SP. 7546 SDValue LoadLinkSP = 7547 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7548 7549 // Restore the stack pointer. 7550 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7551 7552 // Store the old link SP. 7553 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7554 } 7555 7556 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7557 MachineFunction &MF = DAG.getMachineFunction(); 7558 bool isPPC64 = Subtarget.isPPC64(); 7559 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7560 7561 // Get current frame pointer save index. The users of this index will be 7562 // primarily DYNALLOC instructions. 7563 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7564 int RASI = FI->getReturnAddrSaveIndex(); 7565 7566 // If the frame pointer save index hasn't been defined yet. 7567 if (!RASI) { 7568 // Find out what the fix offset of the frame pointer save area. 7569 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7570 // Allocate the frame index for frame pointer save area. 7571 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7572 // Save the result. 7573 FI->setReturnAddrSaveIndex(RASI); 7574 } 7575 return DAG.getFrameIndex(RASI, PtrVT); 7576 } 7577 7578 SDValue 7579 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7580 MachineFunction &MF = DAG.getMachineFunction(); 7581 bool isPPC64 = Subtarget.isPPC64(); 7582 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7583 7584 // Get current frame pointer save index. The users of this index will be 7585 // primarily DYNALLOC instructions. 7586 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7587 int FPSI = FI->getFramePointerSaveIndex(); 7588 7589 // If the frame pointer save index hasn't been defined yet. 7590 if (!FPSI) { 7591 // Find out what the fix offset of the frame pointer save area. 7592 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7593 // Allocate the frame index for frame pointer save area. 7594 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7595 // Save the result. 7596 FI->setFramePointerSaveIndex(FPSI); 7597 } 7598 return DAG.getFrameIndex(FPSI, PtrVT); 7599 } 7600 7601 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7602 SelectionDAG &DAG) const { 7603 MachineFunction &MF = DAG.getMachineFunction(); 7604 // Get the inputs. 7605 SDValue Chain = Op.getOperand(0); 7606 SDValue Size = Op.getOperand(1); 7607 SDLoc dl(Op); 7608 7609 // Get the correct type for pointers. 7610 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7611 // Negate the size. 7612 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7613 DAG.getConstant(0, dl, PtrVT), Size); 7614 // Construct a node for the frame pointer save index. 7615 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7616 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7617 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7618 if (hasInlineStackProbe(MF)) 7619 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7620 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7621 } 7622 7623 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7624 SelectionDAG &DAG) const { 7625 MachineFunction &MF = DAG.getMachineFunction(); 7626 7627 bool isPPC64 = Subtarget.isPPC64(); 7628 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7629 7630 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7631 return DAG.getFrameIndex(FI, PtrVT); 7632 } 7633 7634 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7635 SelectionDAG &DAG) const { 7636 SDLoc DL(Op); 7637 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7638 DAG.getVTList(MVT::i32, MVT::Other), 7639 Op.getOperand(0), Op.getOperand(1)); 7640 } 7641 7642 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7643 SelectionDAG &DAG) const { 7644 SDLoc DL(Op); 7645 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7646 Op.getOperand(0), Op.getOperand(1)); 7647 } 7648 7649 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7650 if (Op.getValueType().isVector()) 7651 return LowerVectorLoad(Op, DAG); 7652 7653 assert(Op.getValueType() == MVT::i1 && 7654 "Custom lowering only for i1 loads"); 7655 7656 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7657 7658 SDLoc dl(Op); 7659 LoadSDNode *LD = cast<LoadSDNode>(Op); 7660 7661 SDValue Chain = LD->getChain(); 7662 SDValue BasePtr = LD->getBasePtr(); 7663 MachineMemOperand *MMO = LD->getMemOperand(); 7664 7665 SDValue NewLD = 7666 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7667 BasePtr, MVT::i8, MMO); 7668 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7669 7670 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7671 return DAG.getMergeValues(Ops, dl); 7672 } 7673 7674 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7675 if (Op.getOperand(1).getValueType().isVector()) 7676 return LowerVectorStore(Op, DAG); 7677 7678 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7679 "Custom lowering only for i1 stores"); 7680 7681 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7682 7683 SDLoc dl(Op); 7684 StoreSDNode *ST = cast<StoreSDNode>(Op); 7685 7686 SDValue Chain = ST->getChain(); 7687 SDValue BasePtr = ST->getBasePtr(); 7688 SDValue Value = ST->getValue(); 7689 MachineMemOperand *MMO = ST->getMemOperand(); 7690 7691 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7692 Value); 7693 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7694 } 7695 7696 // FIXME: Remove this once the ANDI glue bug is fixed: 7697 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7698 assert(Op.getValueType() == MVT::i1 && 7699 "Custom lowering only for i1 results"); 7700 7701 SDLoc DL(Op); 7702 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7703 } 7704 7705 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7706 SelectionDAG &DAG) const { 7707 7708 // Implements a vector truncate that fits in a vector register as a shuffle. 7709 // We want to legalize vector truncates down to where the source fits in 7710 // a vector register (and target is therefore smaller than vector register 7711 // size). At that point legalization will try to custom lower the sub-legal 7712 // result and get here - where we can contain the truncate as a single target 7713 // operation. 7714 7715 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7716 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7717 // 7718 // We will implement it for big-endian ordering as this (where x denotes 7719 // undefined): 7720 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7721 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7722 // 7723 // The same operation in little-endian ordering will be: 7724 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7725 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7726 7727 EVT TrgVT = Op.getValueType(); 7728 assert(TrgVT.isVector() && "Vector type expected."); 7729 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7730 EVT EltVT = TrgVT.getVectorElementType(); 7731 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7732 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7733 !isPowerOf2_32(EltVT.getSizeInBits())) 7734 return SDValue(); 7735 7736 SDValue N1 = Op.getOperand(0); 7737 EVT SrcVT = N1.getValueType(); 7738 unsigned SrcSize = SrcVT.getSizeInBits(); 7739 if (SrcSize > 256 || 7740 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7741 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7742 return SDValue(); 7743 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7744 return SDValue(); 7745 7746 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7747 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7748 7749 SDLoc DL(Op); 7750 SDValue Op1, Op2; 7751 if (SrcSize == 256) { 7752 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7753 EVT SplitVT = 7754 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7755 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7756 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7757 DAG.getConstant(0, DL, VecIdxTy)); 7758 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7759 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7760 } 7761 else { 7762 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7763 Op2 = DAG.getUNDEF(WideVT); 7764 } 7765 7766 // First list the elements we want to keep. 7767 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7768 SmallVector<int, 16> ShuffV; 7769 if (Subtarget.isLittleEndian()) 7770 for (unsigned i = 0; i < TrgNumElts; ++i) 7771 ShuffV.push_back(i * SizeMult); 7772 else 7773 for (unsigned i = 1; i <= TrgNumElts; ++i) 7774 ShuffV.push_back(i * SizeMult - 1); 7775 7776 // Populate the remaining elements with undefs. 7777 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7778 // ShuffV.push_back(i + WideNumElts); 7779 ShuffV.push_back(WideNumElts + 1); 7780 7781 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7782 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7783 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7784 } 7785 7786 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7787 /// possible. 7788 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7789 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7790 EVT ResVT = Op.getValueType(); 7791 EVT CmpVT = Op.getOperand(0).getValueType(); 7792 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7793 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7794 SDLoc dl(Op); 7795 7796 // Without power9-vector, we don't have native instruction for f128 comparison. 7797 // Following transformation to libcall is needed for setcc: 7798 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7799 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7800 SDValue Z = DAG.getSetCC( 7801 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7802 LHS, RHS, CC); 7803 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7804 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7805 } 7806 7807 // Not FP, or using SPE? Not a fsel. 7808 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7809 Subtarget.hasSPE()) 7810 return Op; 7811 7812 SDNodeFlags Flags = Op.getNode()->getFlags(); 7813 7814 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7815 // presence of infinities. 7816 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7817 switch (CC) { 7818 default: 7819 break; 7820 case ISD::SETOGT: 7821 case ISD::SETGT: 7822 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7823 case ISD::SETOLT: 7824 case ISD::SETLT: 7825 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7826 } 7827 } 7828 7829 // We might be able to do better than this under some circumstances, but in 7830 // general, fsel-based lowering of select is a finite-math-only optimization. 7831 // For more information, see section F.3 of the 2.06 ISA specification. 7832 // With ISA 3.0 7833 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7834 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7835 return Op; 7836 7837 // If the RHS of the comparison is a 0.0, we don't need to do the 7838 // subtraction at all. 7839 SDValue Sel1; 7840 if (isFloatingPointZero(RHS)) 7841 switch (CC) { 7842 default: break; // SETUO etc aren't handled by fsel. 7843 case ISD::SETNE: 7844 std::swap(TV, FV); 7845 LLVM_FALLTHROUGH; 7846 case ISD::SETEQ: 7847 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7848 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7849 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7850 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7851 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7852 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7853 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7854 case ISD::SETULT: 7855 case ISD::SETLT: 7856 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7857 LLVM_FALLTHROUGH; 7858 case ISD::SETOGE: 7859 case ISD::SETGE: 7860 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7861 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7862 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7863 case ISD::SETUGT: 7864 case ISD::SETGT: 7865 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7866 LLVM_FALLTHROUGH; 7867 case ISD::SETOLE: 7868 case ISD::SETLE: 7869 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7870 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7871 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7872 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7873 } 7874 7875 SDValue Cmp; 7876 switch (CC) { 7877 default: break; // SETUO etc aren't handled by fsel. 7878 case ISD::SETNE: 7879 std::swap(TV, FV); 7880 LLVM_FALLTHROUGH; 7881 case ISD::SETEQ: 7882 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7883 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7884 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7885 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7886 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7887 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7888 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7889 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7890 case ISD::SETULT: 7891 case ISD::SETLT: 7892 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7893 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7894 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7895 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7896 case ISD::SETOGE: 7897 case ISD::SETGE: 7898 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7899 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7900 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7901 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7902 case ISD::SETUGT: 7903 case ISD::SETGT: 7904 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7905 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7906 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7907 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7908 case ISD::SETOLE: 7909 case ISD::SETLE: 7910 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7911 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7912 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7913 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7914 } 7915 return Op; 7916 } 7917 7918 static unsigned getPPCStrictOpcode(unsigned Opc) { 7919 switch (Opc) { 7920 default: 7921 llvm_unreachable("No strict version of this opcode!"); 7922 case PPCISD::FCTIDZ: 7923 return PPCISD::STRICT_FCTIDZ; 7924 case PPCISD::FCTIWZ: 7925 return PPCISD::STRICT_FCTIWZ; 7926 case PPCISD::FCTIDUZ: 7927 return PPCISD::STRICT_FCTIDUZ; 7928 case PPCISD::FCTIWUZ: 7929 return PPCISD::STRICT_FCTIWUZ; 7930 case PPCISD::FCFID: 7931 return PPCISD::STRICT_FCFID; 7932 case PPCISD::FCFIDU: 7933 return PPCISD::STRICT_FCFIDU; 7934 case PPCISD::FCFIDS: 7935 return PPCISD::STRICT_FCFIDS; 7936 case PPCISD::FCFIDUS: 7937 return PPCISD::STRICT_FCFIDUS; 7938 } 7939 } 7940 7941 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7942 const PPCSubtarget &Subtarget) { 7943 SDLoc dl(Op); 7944 bool IsStrict = Op->isStrictFPOpcode(); 7945 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7946 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7947 7948 // TODO: Any other flags to propagate? 7949 SDNodeFlags Flags; 7950 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7951 7952 // For strict nodes, source is the second operand. 7953 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7954 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7955 assert(Src.getValueType().isFloatingPoint()); 7956 if (Src.getValueType() == MVT::f32) { 7957 if (IsStrict) { 7958 Src = 7959 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7960 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7961 Chain = Src.getValue(1); 7962 } else 7963 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7964 } 7965 SDValue Conv; 7966 unsigned Opc = ISD::DELETED_NODE; 7967 switch (Op.getSimpleValueType().SimpleTy) { 7968 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7969 case MVT::i32: 7970 Opc = IsSigned ? PPCISD::FCTIWZ 7971 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 7972 break; 7973 case MVT::i64: 7974 assert((IsSigned || Subtarget.hasFPCVT()) && 7975 "i64 FP_TO_UINT is supported only with FPCVT"); 7976 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 7977 } 7978 if (IsStrict) { 7979 Opc = getPPCStrictOpcode(Opc); 7980 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 7981 {Chain, Src}, Flags); 7982 } else { 7983 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 7984 } 7985 return Conv; 7986 } 7987 7988 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7989 SelectionDAG &DAG, 7990 const SDLoc &dl) const { 7991 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7992 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7993 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7994 bool IsStrict = Op->isStrictFPOpcode(); 7995 7996 // Convert the FP value to an int value through memory. 7997 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7998 (IsSigned || Subtarget.hasFPCVT()); 7999 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8000 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8001 MachinePointerInfo MPI = 8002 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8003 8004 // Emit a store to the stack slot. 8005 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8006 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8007 if (i32Stack) { 8008 MachineFunction &MF = DAG.getMachineFunction(); 8009 Alignment = Align(4); 8010 MachineMemOperand *MMO = 8011 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8012 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8013 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8014 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8015 } else 8016 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8017 8018 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8019 // add in a bias on big endian. 8020 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8021 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8022 DAG.getConstant(4, dl, FIPtr.getValueType())); 8023 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8024 } 8025 8026 RLI.Chain = Chain; 8027 RLI.Ptr = FIPtr; 8028 RLI.MPI = MPI; 8029 RLI.Alignment = Alignment; 8030 } 8031 8032 /// Custom lowers floating point to integer conversions to use 8033 /// the direct move instructions available in ISA 2.07 to avoid the 8034 /// need for load/store combinations. 8035 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8036 SelectionDAG &DAG, 8037 const SDLoc &dl) const { 8038 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8039 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8040 if (Op->isStrictFPOpcode()) 8041 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8042 else 8043 return Mov; 8044 } 8045 8046 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8047 const SDLoc &dl) const { 8048 bool IsStrict = Op->isStrictFPOpcode(); 8049 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8050 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8051 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8052 EVT SrcVT = Src.getValueType(); 8053 EVT DstVT = Op.getValueType(); 8054 8055 // FP to INT conversions are legal for f128. 8056 if (SrcVT == MVT::f128) 8057 return Subtarget.hasP9Vector() ? Op : SDValue(); 8058 8059 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8060 // PPC (the libcall is not available). 8061 if (SrcVT == MVT::ppcf128) { 8062 if (DstVT == MVT::i32) { 8063 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8064 // set other fast-math flags to FP operations in both strict and 8065 // non-strict cases. (FP_TO_SINT, FSUB) 8066 SDNodeFlags Flags; 8067 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8068 8069 if (IsSigned) { 8070 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8071 DAG.getIntPtrConstant(0, dl)); 8072 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8073 DAG.getIntPtrConstant(1, dl)); 8074 8075 // Add the two halves of the long double in round-to-zero mode, and use 8076 // a smaller FP_TO_SINT. 8077 if (IsStrict) { 8078 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8079 DAG.getVTList(MVT::f64, MVT::Other), 8080 {Op.getOperand(0), Lo, Hi}, Flags); 8081 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8082 DAG.getVTList(MVT::i32, MVT::Other), 8083 {Res.getValue(1), Res}, Flags); 8084 } else { 8085 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8086 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8087 } 8088 } else { 8089 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8090 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8091 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8092 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8093 if (IsStrict) { 8094 // Sel = Src < 0x80000000 8095 // FltOfs = select Sel, 0.0, 0x80000000 8096 // IntOfs = select Sel, 0, 0x80000000 8097 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8098 SDValue Chain = Op.getOperand(0); 8099 EVT SetCCVT = 8100 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8101 EVT DstSetCCVT = 8102 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8103 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8104 Chain, true); 8105 Chain = Sel.getValue(1); 8106 8107 SDValue FltOfs = DAG.getSelect( 8108 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8109 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8110 8111 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8112 DAG.getVTList(SrcVT, MVT::Other), 8113 {Chain, Src, FltOfs}, Flags); 8114 Chain = Val.getValue(1); 8115 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8116 DAG.getVTList(DstVT, MVT::Other), 8117 {Chain, Val}, Flags); 8118 Chain = SInt.getValue(1); 8119 SDValue IntOfs = DAG.getSelect( 8120 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8121 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8122 return DAG.getMergeValues({Result, Chain}, dl); 8123 } else { 8124 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8125 // FIXME: generated code sucks. 8126 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8127 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8128 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8129 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8130 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8131 } 8132 } 8133 } 8134 8135 return SDValue(); 8136 } 8137 8138 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8139 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8140 8141 ReuseLoadInfo RLI; 8142 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8143 8144 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8145 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8146 } 8147 8148 // We're trying to insert a regular store, S, and then a load, L. If the 8149 // incoming value, O, is a load, we might just be able to have our load use the 8150 // address used by O. However, we don't know if anything else will store to 8151 // that address before we can load from it. To prevent this situation, we need 8152 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8153 // the same chain operand as O, we create a token factor from the chain results 8154 // of O and L, and we replace all uses of O's chain result with that token 8155 // factor (see spliceIntoChain below for this last part). 8156 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8157 ReuseLoadInfo &RLI, 8158 SelectionDAG &DAG, 8159 ISD::LoadExtType ET) const { 8160 // Conservatively skip reusing for constrained FP nodes. 8161 if (Op->isStrictFPOpcode()) 8162 return false; 8163 8164 SDLoc dl(Op); 8165 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8166 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8167 if (ET == ISD::NON_EXTLOAD && 8168 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8169 isOperationLegalOrCustom(Op.getOpcode(), 8170 Op.getOperand(0).getValueType())) { 8171 8172 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8173 return true; 8174 } 8175 8176 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8177 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8178 LD->isNonTemporal()) 8179 return false; 8180 if (LD->getMemoryVT() != MemVT) 8181 return false; 8182 8183 // If the result of the load is an illegal type, then we can't build a 8184 // valid chain for reuse since the legalised loads and token factor node that 8185 // ties the legalised loads together uses a different output chain then the 8186 // illegal load. 8187 if (!isTypeLegal(LD->getValueType(0))) 8188 return false; 8189 8190 RLI.Ptr = LD->getBasePtr(); 8191 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8192 assert(LD->getAddressingMode() == ISD::PRE_INC && 8193 "Non-pre-inc AM on PPC?"); 8194 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8195 LD->getOffset()); 8196 } 8197 8198 RLI.Chain = LD->getChain(); 8199 RLI.MPI = LD->getPointerInfo(); 8200 RLI.IsDereferenceable = LD->isDereferenceable(); 8201 RLI.IsInvariant = LD->isInvariant(); 8202 RLI.Alignment = LD->getAlign(); 8203 RLI.AAInfo = LD->getAAInfo(); 8204 RLI.Ranges = LD->getRanges(); 8205 8206 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8207 return true; 8208 } 8209 8210 // Given the head of the old chain, ResChain, insert a token factor containing 8211 // it and NewResChain, and make users of ResChain now be users of that token 8212 // factor. 8213 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8214 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8215 SDValue NewResChain, 8216 SelectionDAG &DAG) const { 8217 if (!ResChain) 8218 return; 8219 8220 SDLoc dl(NewResChain); 8221 8222 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8223 NewResChain, DAG.getUNDEF(MVT::Other)); 8224 assert(TF.getNode() != NewResChain.getNode() && 8225 "A new TF really is required here"); 8226 8227 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8228 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8229 } 8230 8231 /// Analyze profitability of direct move 8232 /// prefer float load to int load plus direct move 8233 /// when there is no integer use of int load 8234 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8235 SDNode *Origin = Op.getOperand(0).getNode(); 8236 if (Origin->getOpcode() != ISD::LOAD) 8237 return true; 8238 8239 // If there is no LXSIBZX/LXSIHZX, like Power8, 8240 // prefer direct move if the memory size is 1 or 2 bytes. 8241 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8242 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8243 return true; 8244 8245 for (SDNode::use_iterator UI = Origin->use_begin(), 8246 UE = Origin->use_end(); 8247 UI != UE; ++UI) { 8248 8249 // Only look at the users of the loaded value. 8250 if (UI.getUse().get().getResNo() != 0) 8251 continue; 8252 8253 if (UI->getOpcode() != ISD::SINT_TO_FP && 8254 UI->getOpcode() != ISD::UINT_TO_FP && 8255 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8256 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8257 return true; 8258 } 8259 8260 return false; 8261 } 8262 8263 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8264 const PPCSubtarget &Subtarget, 8265 SDValue Chain = SDValue()) { 8266 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8267 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8268 SDLoc dl(Op); 8269 8270 // TODO: Any other flags to propagate? 8271 SDNodeFlags Flags; 8272 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8273 8274 // If we have FCFIDS, then use it when converting to single-precision. 8275 // Otherwise, convert to double-precision and then round. 8276 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8277 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8278 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8279 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8280 if (Op->isStrictFPOpcode()) { 8281 if (!Chain) 8282 Chain = Op.getOperand(0); 8283 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8284 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8285 } else 8286 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8287 } 8288 8289 /// Custom lowers integer to floating point conversions to use 8290 /// the direct move instructions available in ISA 2.07 to avoid the 8291 /// need for load/store combinations. 8292 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8293 SelectionDAG &DAG, 8294 const SDLoc &dl) const { 8295 assert((Op.getValueType() == MVT::f32 || 8296 Op.getValueType() == MVT::f64) && 8297 "Invalid floating point type as target of conversion"); 8298 assert(Subtarget.hasFPCVT() && 8299 "Int to FP conversions with direct moves require FPCVT"); 8300 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8301 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8302 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8303 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8304 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8305 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8306 return convertIntToFP(Op, Mov, DAG, Subtarget); 8307 } 8308 8309 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8310 8311 EVT VecVT = Vec.getValueType(); 8312 assert(VecVT.isVector() && "Expected a vector type."); 8313 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8314 8315 EVT EltVT = VecVT.getVectorElementType(); 8316 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8317 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8318 8319 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8320 SmallVector<SDValue, 16> Ops(NumConcat); 8321 Ops[0] = Vec; 8322 SDValue UndefVec = DAG.getUNDEF(VecVT); 8323 for (unsigned i = 1; i < NumConcat; ++i) 8324 Ops[i] = UndefVec; 8325 8326 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8327 } 8328 8329 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8330 const SDLoc &dl) const { 8331 bool IsStrict = Op->isStrictFPOpcode(); 8332 unsigned Opc = Op.getOpcode(); 8333 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8334 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8335 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8336 "Unexpected conversion type"); 8337 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8338 "Supports conversions to v2f64/v4f32 only."); 8339 8340 // TODO: Any other flags to propagate? 8341 SDNodeFlags Flags; 8342 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8343 8344 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8345 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8346 8347 SDValue Wide = widenVec(DAG, Src, dl); 8348 EVT WideVT = Wide.getValueType(); 8349 unsigned WideNumElts = WideVT.getVectorNumElements(); 8350 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8351 8352 SmallVector<int, 16> ShuffV; 8353 for (unsigned i = 0; i < WideNumElts; ++i) 8354 ShuffV.push_back(i + WideNumElts); 8355 8356 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8357 int SaveElts = FourEltRes ? 4 : 2; 8358 if (Subtarget.isLittleEndian()) 8359 for (int i = 0; i < SaveElts; i++) 8360 ShuffV[i * Stride] = i; 8361 else 8362 for (int i = 1; i <= SaveElts; i++) 8363 ShuffV[i * Stride - 1] = i - 1; 8364 8365 SDValue ShuffleSrc2 = 8366 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8367 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8368 8369 SDValue Extend; 8370 if (SignedConv) { 8371 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8372 EVT ExtVT = Src.getValueType(); 8373 if (Subtarget.hasP9Altivec()) 8374 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8375 IntermediateVT.getVectorNumElements()); 8376 8377 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8378 DAG.getValueType(ExtVT)); 8379 } else 8380 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8381 8382 if (IsStrict) 8383 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8384 {Op.getOperand(0), Extend}, Flags); 8385 8386 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8387 } 8388 8389 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8390 SelectionDAG &DAG) const { 8391 SDLoc dl(Op); 8392 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8393 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8394 bool IsStrict = Op->isStrictFPOpcode(); 8395 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8396 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8397 8398 // TODO: Any other flags to propagate? 8399 SDNodeFlags Flags; 8400 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8401 8402 EVT InVT = Src.getValueType(); 8403 EVT OutVT = Op.getValueType(); 8404 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8405 isOperationCustom(Op.getOpcode(), InVT)) 8406 return LowerINT_TO_FPVector(Op, DAG, dl); 8407 8408 // Conversions to f128 are legal. 8409 if (Op.getValueType() == MVT::f128) 8410 return Subtarget.hasP9Vector() ? Op : SDValue(); 8411 8412 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8413 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8414 return SDValue(); 8415 8416 if (Src.getValueType() == MVT::i1) { 8417 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8418 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8419 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8420 if (IsStrict) 8421 return DAG.getMergeValues({Sel, Chain}, dl); 8422 else 8423 return Sel; 8424 } 8425 8426 // If we have direct moves, we can do all the conversion, skip the store/load 8427 // however, without FPCVT we can't do most conversions. 8428 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8429 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8430 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8431 8432 assert((IsSigned || Subtarget.hasFPCVT()) && 8433 "UINT_TO_FP is supported only with FPCVT"); 8434 8435 if (Src.getValueType() == MVT::i64) { 8436 SDValue SINT = Src; 8437 // When converting to single-precision, we actually need to convert 8438 // to double-precision first and then round to single-precision. 8439 // To avoid double-rounding effects during that operation, we have 8440 // to prepare the input operand. Bits that might be truncated when 8441 // converting to double-precision are replaced by a bit that won't 8442 // be lost at this stage, but is below the single-precision rounding 8443 // position. 8444 // 8445 // However, if -enable-unsafe-fp-math is in effect, accept double 8446 // rounding to avoid the extra overhead. 8447 if (Op.getValueType() == MVT::f32 && 8448 !Subtarget.hasFPCVT() && 8449 !DAG.getTarget().Options.UnsafeFPMath) { 8450 8451 // Twiddle input to make sure the low 11 bits are zero. (If this 8452 // is the case, we are guaranteed the value will fit into the 53 bit 8453 // mantissa of an IEEE double-precision value without rounding.) 8454 // If any of those low 11 bits were not zero originally, make sure 8455 // bit 12 (value 2048) is set instead, so that the final rounding 8456 // to single-precision gets the correct result. 8457 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8458 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8459 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8460 Round, DAG.getConstant(2047, dl, MVT::i64)); 8461 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8462 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8463 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8464 8465 // However, we cannot use that value unconditionally: if the magnitude 8466 // of the input value is small, the bit-twiddling we did above might 8467 // end up visibly changing the output. Fortunately, in that case, we 8468 // don't need to twiddle bits since the original input will convert 8469 // exactly to double-precision floating-point already. Therefore, 8470 // construct a conditional to use the original value if the top 11 8471 // bits are all sign-bit copies, and use the rounded value computed 8472 // above otherwise. 8473 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8474 SINT, DAG.getConstant(53, dl, MVT::i32)); 8475 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8476 Cond, DAG.getConstant(1, dl, MVT::i64)); 8477 Cond = DAG.getSetCC( 8478 dl, 8479 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8480 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8481 8482 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8483 } 8484 8485 ReuseLoadInfo RLI; 8486 SDValue Bits; 8487 8488 MachineFunction &MF = DAG.getMachineFunction(); 8489 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8490 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8491 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8492 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8493 } else if (Subtarget.hasLFIWAX() && 8494 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8495 MachineMemOperand *MMO = 8496 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8497 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8498 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8499 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8500 DAG.getVTList(MVT::f64, MVT::Other), 8501 Ops, MVT::i32, MMO); 8502 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8503 } else if (Subtarget.hasFPCVT() && 8504 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8505 MachineMemOperand *MMO = 8506 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8507 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8508 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8509 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8510 DAG.getVTList(MVT::f64, MVT::Other), 8511 Ops, MVT::i32, MMO); 8512 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8513 } else if (((Subtarget.hasLFIWAX() && 8514 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8515 (Subtarget.hasFPCVT() && 8516 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8517 SINT.getOperand(0).getValueType() == MVT::i32) { 8518 MachineFrameInfo &MFI = MF.getFrameInfo(); 8519 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8520 8521 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8522 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8523 8524 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8525 MachinePointerInfo::getFixedStack( 8526 DAG.getMachineFunction(), FrameIdx)); 8527 Chain = Store; 8528 8529 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8530 "Expected an i32 store"); 8531 8532 RLI.Ptr = FIdx; 8533 RLI.Chain = Chain; 8534 RLI.MPI = 8535 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8536 RLI.Alignment = Align(4); 8537 8538 MachineMemOperand *MMO = 8539 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8540 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8541 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8542 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8543 PPCISD::LFIWZX : PPCISD::LFIWAX, 8544 dl, DAG.getVTList(MVT::f64, MVT::Other), 8545 Ops, MVT::i32, MMO); 8546 Chain = Bits.getValue(1); 8547 } else 8548 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8549 8550 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8551 if (IsStrict) 8552 Chain = FP.getValue(1); 8553 8554 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8555 if (IsStrict) 8556 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8557 DAG.getVTList(MVT::f32, MVT::Other), 8558 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8559 else 8560 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8561 DAG.getIntPtrConstant(0, dl)); 8562 } 8563 return FP; 8564 } 8565 8566 assert(Src.getValueType() == MVT::i32 && 8567 "Unhandled INT_TO_FP type in custom expander!"); 8568 // Since we only generate this in 64-bit mode, we can take advantage of 8569 // 64-bit registers. In particular, sign extend the input value into the 8570 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8571 // then lfd it and fcfid it. 8572 MachineFunction &MF = DAG.getMachineFunction(); 8573 MachineFrameInfo &MFI = MF.getFrameInfo(); 8574 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8575 8576 SDValue Ld; 8577 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8578 ReuseLoadInfo RLI; 8579 bool ReusingLoad; 8580 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8581 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8582 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8583 8584 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8585 MachinePointerInfo::getFixedStack( 8586 DAG.getMachineFunction(), FrameIdx)); 8587 Chain = Store; 8588 8589 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8590 "Expected an i32 store"); 8591 8592 RLI.Ptr = FIdx; 8593 RLI.Chain = Chain; 8594 RLI.MPI = 8595 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8596 RLI.Alignment = Align(4); 8597 } 8598 8599 MachineMemOperand *MMO = 8600 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8601 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8602 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8603 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8604 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8605 MVT::i32, MMO); 8606 Chain = Ld.getValue(1); 8607 if (ReusingLoad) 8608 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8609 } else { 8610 assert(Subtarget.isPPC64() && 8611 "i32->FP without LFIWAX supported only on PPC64"); 8612 8613 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8614 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8615 8616 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8617 8618 // STD the extended value into the stack slot. 8619 SDValue Store = DAG.getStore( 8620 Chain, dl, Ext64, FIdx, 8621 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8622 Chain = Store; 8623 8624 // Load the value as a double. 8625 Ld = DAG.getLoad( 8626 MVT::f64, dl, Chain, FIdx, 8627 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8628 Chain = Ld.getValue(1); 8629 } 8630 8631 // FCFID it and return it. 8632 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8633 if (IsStrict) 8634 Chain = FP.getValue(1); 8635 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8636 if (IsStrict) 8637 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8638 DAG.getVTList(MVT::f32, MVT::Other), 8639 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8640 else 8641 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8642 DAG.getIntPtrConstant(0, dl)); 8643 } 8644 return FP; 8645 } 8646 8647 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8648 SelectionDAG &DAG) const { 8649 SDLoc dl(Op); 8650 /* 8651 The rounding mode is in bits 30:31 of FPSR, and has the following 8652 settings: 8653 00 Round to nearest 8654 01 Round to 0 8655 10 Round to +inf 8656 11 Round to -inf 8657 8658 FLT_ROUNDS, on the other hand, expects the following: 8659 -1 Undefined 8660 0 Round to 0 8661 1 Round to nearest 8662 2 Round to +inf 8663 3 Round to -inf 8664 8665 To perform the conversion, we do: 8666 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8667 */ 8668 8669 MachineFunction &MF = DAG.getMachineFunction(); 8670 EVT VT = Op.getValueType(); 8671 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8672 8673 // Save FP Control Word to register 8674 SDValue Chain = Op.getOperand(0); 8675 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8676 Chain = MFFS.getValue(1); 8677 8678 SDValue CWD; 8679 if (isTypeLegal(MVT::i64)) { 8680 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8681 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8682 } else { 8683 // Save FP register to stack slot 8684 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8685 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8686 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8687 8688 // Load FP Control Word from low 32 bits of stack slot. 8689 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8690 "Stack slot adjustment is valid only on big endian subtargets!"); 8691 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8692 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8693 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8694 Chain = CWD.getValue(1); 8695 } 8696 8697 // Transform as necessary 8698 SDValue CWD1 = 8699 DAG.getNode(ISD::AND, dl, MVT::i32, 8700 CWD, DAG.getConstant(3, dl, MVT::i32)); 8701 SDValue CWD2 = 8702 DAG.getNode(ISD::SRL, dl, MVT::i32, 8703 DAG.getNode(ISD::AND, dl, MVT::i32, 8704 DAG.getNode(ISD::XOR, dl, MVT::i32, 8705 CWD, DAG.getConstant(3, dl, MVT::i32)), 8706 DAG.getConstant(3, dl, MVT::i32)), 8707 DAG.getConstant(1, dl, MVT::i32)); 8708 8709 SDValue RetVal = 8710 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8711 8712 RetVal = 8713 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8714 dl, VT, RetVal); 8715 8716 return DAG.getMergeValues({RetVal, Chain}, dl); 8717 } 8718 8719 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8720 EVT VT = Op.getValueType(); 8721 unsigned BitWidth = VT.getSizeInBits(); 8722 SDLoc dl(Op); 8723 assert(Op.getNumOperands() == 3 && 8724 VT == Op.getOperand(1).getValueType() && 8725 "Unexpected SHL!"); 8726 8727 // Expand into a bunch of logical ops. Note that these ops 8728 // depend on the PPC behavior for oversized shift amounts. 8729 SDValue Lo = Op.getOperand(0); 8730 SDValue Hi = Op.getOperand(1); 8731 SDValue Amt = Op.getOperand(2); 8732 EVT AmtVT = Amt.getValueType(); 8733 8734 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8735 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8736 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8737 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8738 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8739 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8740 DAG.getConstant(-BitWidth, dl, AmtVT)); 8741 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8742 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8743 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8744 SDValue OutOps[] = { OutLo, OutHi }; 8745 return DAG.getMergeValues(OutOps, dl); 8746 } 8747 8748 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8749 EVT VT = Op.getValueType(); 8750 SDLoc dl(Op); 8751 unsigned BitWidth = VT.getSizeInBits(); 8752 assert(Op.getNumOperands() == 3 && 8753 VT == Op.getOperand(1).getValueType() && 8754 "Unexpected SRL!"); 8755 8756 // Expand into a bunch of logical ops. Note that these ops 8757 // depend on the PPC behavior for oversized shift amounts. 8758 SDValue Lo = Op.getOperand(0); 8759 SDValue Hi = Op.getOperand(1); 8760 SDValue Amt = Op.getOperand(2); 8761 EVT AmtVT = Amt.getValueType(); 8762 8763 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8764 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8765 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8766 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8767 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8768 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8769 DAG.getConstant(-BitWidth, dl, AmtVT)); 8770 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8771 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8772 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8773 SDValue OutOps[] = { OutLo, OutHi }; 8774 return DAG.getMergeValues(OutOps, dl); 8775 } 8776 8777 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8778 SDLoc dl(Op); 8779 EVT VT = Op.getValueType(); 8780 unsigned BitWidth = VT.getSizeInBits(); 8781 assert(Op.getNumOperands() == 3 && 8782 VT == Op.getOperand(1).getValueType() && 8783 "Unexpected SRA!"); 8784 8785 // Expand into a bunch of logical ops, followed by a select_cc. 8786 SDValue Lo = Op.getOperand(0); 8787 SDValue Hi = Op.getOperand(1); 8788 SDValue Amt = Op.getOperand(2); 8789 EVT AmtVT = Amt.getValueType(); 8790 8791 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8792 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8793 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8794 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8795 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8796 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8797 DAG.getConstant(-BitWidth, dl, AmtVT)); 8798 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8799 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8800 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8801 Tmp4, Tmp6, ISD::SETLE); 8802 SDValue OutOps[] = { OutLo, OutHi }; 8803 return DAG.getMergeValues(OutOps, dl); 8804 } 8805 8806 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8807 SelectionDAG &DAG) const { 8808 SDLoc dl(Op); 8809 EVT VT = Op.getValueType(); 8810 unsigned BitWidth = VT.getSizeInBits(); 8811 8812 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8813 SDValue X = Op.getOperand(0); 8814 SDValue Y = Op.getOperand(1); 8815 SDValue Z = Op.getOperand(2); 8816 EVT AmtVT = Z.getValueType(); 8817 8818 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8819 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8820 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8821 // on PowerPC shift by BW being well defined. 8822 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8823 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8824 SDValue SubZ = 8825 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8826 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8827 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8828 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8829 } 8830 8831 //===----------------------------------------------------------------------===// 8832 // Vector related lowering. 8833 // 8834 8835 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8836 /// element size of SplatSize. Cast the result to VT. 8837 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8838 SelectionDAG &DAG, const SDLoc &dl) { 8839 static const MVT VTys[] = { // canonical VT to use for each size. 8840 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8841 }; 8842 8843 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8844 8845 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8846 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8847 SplatSize = 1; 8848 Val = 0xFF; 8849 } 8850 8851 EVT CanonicalVT = VTys[SplatSize-1]; 8852 8853 // Build a canonical splat for this value. 8854 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8855 } 8856 8857 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8858 /// specified intrinsic ID. 8859 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8860 const SDLoc &dl, EVT DestVT = MVT::Other) { 8861 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8862 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8863 DAG.getConstant(IID, dl, MVT::i32), Op); 8864 } 8865 8866 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8867 /// specified intrinsic ID. 8868 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8869 SelectionDAG &DAG, const SDLoc &dl, 8870 EVT DestVT = MVT::Other) { 8871 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8872 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8873 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8874 } 8875 8876 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8877 /// specified intrinsic ID. 8878 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8879 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8880 EVT DestVT = MVT::Other) { 8881 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8882 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8883 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8884 } 8885 8886 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8887 /// amount. The result has the specified value type. 8888 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8889 SelectionDAG &DAG, const SDLoc &dl) { 8890 // Force LHS/RHS to be the right type. 8891 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8892 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8893 8894 int Ops[16]; 8895 for (unsigned i = 0; i != 16; ++i) 8896 Ops[i] = i + Amt; 8897 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8898 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8899 } 8900 8901 /// Do we have an efficient pattern in a .td file for this node? 8902 /// 8903 /// \param V - pointer to the BuildVectorSDNode being matched 8904 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8905 /// 8906 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8907 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8908 /// the opposite is true (expansion is beneficial) are: 8909 /// - The node builds a vector out of integers that are not 32 or 64-bits 8910 /// - The node builds a vector out of constants 8911 /// - The node is a "load-and-splat" 8912 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8913 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8914 bool HasDirectMove, 8915 bool HasP8Vector) { 8916 EVT VecVT = V->getValueType(0); 8917 bool RightType = VecVT == MVT::v2f64 || 8918 (HasP8Vector && VecVT == MVT::v4f32) || 8919 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8920 if (!RightType) 8921 return false; 8922 8923 bool IsSplat = true; 8924 bool IsLoad = false; 8925 SDValue Op0 = V->getOperand(0); 8926 8927 // This function is called in a block that confirms the node is not a constant 8928 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8929 // different constants. 8930 if (V->isConstant()) 8931 return false; 8932 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8933 if (V->getOperand(i).isUndef()) 8934 return false; 8935 // We want to expand nodes that represent load-and-splat even if the 8936 // loaded value is a floating point truncation or conversion to int. 8937 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8938 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8939 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8940 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8941 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8942 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8943 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8944 IsLoad = true; 8945 // If the operands are different or the input is not a load and has more 8946 // uses than just this BV node, then it isn't a splat. 8947 if (V->getOperand(i) != Op0 || 8948 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8949 IsSplat = false; 8950 } 8951 return !(IsSplat && IsLoad); 8952 } 8953 8954 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8955 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8956 8957 SDLoc dl(Op); 8958 SDValue Op0 = Op->getOperand(0); 8959 8960 if ((Op.getValueType() != MVT::f128) || 8961 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8962 (Op0.getOperand(0).getValueType() != MVT::i64) || 8963 (Op0.getOperand(1).getValueType() != MVT::i64)) 8964 return SDValue(); 8965 8966 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8967 Op0.getOperand(1)); 8968 } 8969 8970 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8971 const SDValue *InputLoad = &Op; 8972 if (InputLoad->getOpcode() == ISD::BITCAST) 8973 InputLoad = &InputLoad->getOperand(0); 8974 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8975 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8976 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8977 InputLoad = &InputLoad->getOperand(0); 8978 } 8979 if (InputLoad->getOpcode() != ISD::LOAD) 8980 return nullptr; 8981 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8982 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8983 } 8984 8985 // Convert the argument APFloat to a single precision APFloat if there is no 8986 // loss in information during the conversion to single precision APFloat and the 8987 // resulting number is not a denormal number. Return true if successful. 8988 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8989 APFloat APFloatToConvert = ArgAPFloat; 8990 bool LosesInfo = true; 8991 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8992 &LosesInfo); 8993 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8994 if (Success) 8995 ArgAPFloat = APFloatToConvert; 8996 return Success; 8997 } 8998 8999 // Bitcast the argument APInt to a double and convert it to a single precision 9000 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9001 // argument if there is no loss in information during the conversion from 9002 // double to single precision APFloat and the resulting number is not a denormal 9003 // number. Return true if successful. 9004 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9005 double DpValue = ArgAPInt.bitsToDouble(); 9006 APFloat APFloatDp(DpValue); 9007 bool Success = convertToNonDenormSingle(APFloatDp); 9008 if (Success) 9009 ArgAPInt = APFloatDp.bitcastToAPInt(); 9010 return Success; 9011 } 9012 9013 // Nondestructive check for convertTonNonDenormSingle. 9014 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9015 // Only convert if it loses info, since XXSPLTIDP should 9016 // handle the other case. 9017 APFloat APFloatToConvert = ArgAPFloat; 9018 bool LosesInfo = true; 9019 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9020 &LosesInfo); 9021 9022 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9023 } 9024 9025 // If this is a case we can't handle, return null and let the default 9026 // expansion code take care of it. If we CAN select this case, and if it 9027 // selects to a single instruction, return Op. Otherwise, if we can codegen 9028 // this case more efficiently than a constant pool load, lower it to the 9029 // sequence of ops that should be used. 9030 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9031 SelectionDAG &DAG) const { 9032 SDLoc dl(Op); 9033 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9034 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9035 9036 // Check if this is a splat of a constant value. 9037 APInt APSplatBits, APSplatUndef; 9038 unsigned SplatBitSize; 9039 bool HasAnyUndefs; 9040 bool BVNIsConstantSplat = 9041 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9042 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9043 9044 // If it is a splat of a double, check if we can shrink it to a 32 bit 9045 // non-denormal float which when converted back to double gives us the same 9046 // double. This is to exploit the XXSPLTIDP instruction. 9047 // If we lose precision, we use XXSPLTI32DX. 9048 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9049 Subtarget.hasPrefixInstrs()) { 9050 // Check the type first to short-circuit so we don't modify APSplatBits if 9051 // this block isn't executed. 9052 if ((Op->getValueType(0) == MVT::v2f64) && 9053 convertToNonDenormSingle(APSplatBits)) { 9054 SDValue SplatNode = DAG.getNode( 9055 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9056 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9057 return DAG.getBitcast(Op.getValueType(), SplatNode); 9058 } else { 9059 // We may lose precision, so we have to use XXSPLTI32DX. 9060 9061 uint32_t Hi = 9062 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9063 uint32_t Lo = 9064 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9065 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9066 9067 if (!Hi || !Lo) 9068 // If either load is 0, then we should generate XXLXOR to set to 0. 9069 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9070 9071 if (Hi) 9072 SplatNode = DAG.getNode( 9073 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9074 DAG.getTargetConstant(0, dl, MVT::i32), 9075 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9076 9077 if (Lo) 9078 SplatNode = 9079 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9080 DAG.getTargetConstant(1, dl, MVT::i32), 9081 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9082 9083 return DAG.getBitcast(Op.getValueType(), SplatNode); 9084 } 9085 } 9086 9087 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9088 9089 bool IsPermutedLoad = false; 9090 const SDValue *InputLoad = 9091 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9092 // Handle load-and-splat patterns as we have instructions that will do this 9093 // in one go. 9094 if (InputLoad && DAG.isSplatValue(Op, true)) { 9095 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9096 9097 // We have handling for 4 and 8 byte elements. 9098 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9099 9100 // Checking for a single use of this load, we have to check for vector 9101 // width (128 bits) / ElementSize uses (since each operand of the 9102 // BUILD_VECTOR is a separate use of the value. 9103 unsigned NumUsesOfInputLD = 128 / ElementSize; 9104 for (SDValue BVInOp : Op->ops()) 9105 if (BVInOp.isUndef()) 9106 NumUsesOfInputLD--; 9107 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9108 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9109 ((Subtarget.hasVSX() && ElementSize == 64) || 9110 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9111 SDValue Ops[] = { 9112 LD->getChain(), // Chain 9113 LD->getBasePtr(), // Ptr 9114 DAG.getValueType(Op.getValueType()) // VT 9115 }; 9116 SDValue LdSplt = DAG.getMemIntrinsicNode( 9117 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9118 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9119 // Replace all uses of the output chain of the original load with the 9120 // output chain of the new load. 9121 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9122 LdSplt.getValue(1)); 9123 return LdSplt; 9124 } 9125 } 9126 9127 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9128 // 32-bits can be lowered to VSX instructions under certain conditions. 9129 // Without VSX, there is no pattern more efficient than expanding the node. 9130 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9131 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9132 Subtarget.hasP8Vector())) 9133 return Op; 9134 return SDValue(); 9135 } 9136 9137 uint64_t SplatBits = APSplatBits.getZExtValue(); 9138 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9139 unsigned SplatSize = SplatBitSize / 8; 9140 9141 // First, handle single instruction cases. 9142 9143 // All zeros? 9144 if (SplatBits == 0) { 9145 // Canonicalize all zero vectors to be v4i32. 9146 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9147 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9148 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9149 } 9150 return Op; 9151 } 9152 9153 // We have XXSPLTIW for constant splats four bytes wide. 9154 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9155 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9156 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9157 // turned into a 4-byte splat of 0xABABABAB. 9158 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9159 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9160 Op.getValueType(), DAG, dl); 9161 9162 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9163 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9164 dl); 9165 9166 // We have XXSPLTIB for constant splats one byte wide. 9167 if (Subtarget.hasP9Vector() && SplatSize == 1) 9168 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9169 dl); 9170 9171 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9172 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9173 (32-SplatBitSize)); 9174 if (SextVal >= -16 && SextVal <= 15) 9175 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9176 dl); 9177 9178 // Two instruction sequences. 9179 9180 // If this value is in the range [-32,30] and is even, use: 9181 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9182 // If this value is in the range [17,31] and is odd, use: 9183 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9184 // If this value is in the range [-31,-17] and is odd, use: 9185 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9186 // Note the last two are three-instruction sequences. 9187 if (SextVal >= -32 && SextVal <= 31) { 9188 // To avoid having these optimizations undone by constant folding, 9189 // we convert to a pseudo that will be expanded later into one of 9190 // the above forms. 9191 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9192 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9193 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9194 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9195 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9196 if (VT == Op.getValueType()) 9197 return RetVal; 9198 else 9199 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9200 } 9201 9202 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9203 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9204 // for fneg/fabs. 9205 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9206 // Make -1 and vspltisw -1: 9207 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9208 9209 // Make the VSLW intrinsic, computing 0x8000_0000. 9210 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9211 OnesV, DAG, dl); 9212 9213 // xor by OnesV to invert it. 9214 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9215 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9216 } 9217 9218 // Check to see if this is a wide variety of vsplti*, binop self cases. 9219 static const signed char SplatCsts[] = { 9220 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9221 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9222 }; 9223 9224 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9225 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9226 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9227 int i = SplatCsts[idx]; 9228 9229 // Figure out what shift amount will be used by altivec if shifted by i in 9230 // this splat size. 9231 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9232 9233 // vsplti + shl self. 9234 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9235 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9236 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9237 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9238 Intrinsic::ppc_altivec_vslw 9239 }; 9240 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9241 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9242 } 9243 9244 // vsplti + srl self. 9245 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9246 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9247 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9248 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9249 Intrinsic::ppc_altivec_vsrw 9250 }; 9251 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9252 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9253 } 9254 9255 // vsplti + rol self. 9256 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9257 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9258 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9259 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9260 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9261 Intrinsic::ppc_altivec_vrlw 9262 }; 9263 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9264 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9265 } 9266 9267 // t = vsplti c, result = vsldoi t, t, 1 9268 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9269 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9270 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9271 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9272 } 9273 // t = vsplti c, result = vsldoi t, t, 2 9274 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9275 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9276 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9277 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9278 } 9279 // t = vsplti c, result = vsldoi t, t, 3 9280 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9281 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9282 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9283 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9284 } 9285 } 9286 9287 return SDValue(); 9288 } 9289 9290 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9291 /// the specified operations to build the shuffle. 9292 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9293 SDValue RHS, SelectionDAG &DAG, 9294 const SDLoc &dl) { 9295 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9296 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9297 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9298 9299 enum { 9300 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9301 OP_VMRGHW, 9302 OP_VMRGLW, 9303 OP_VSPLTISW0, 9304 OP_VSPLTISW1, 9305 OP_VSPLTISW2, 9306 OP_VSPLTISW3, 9307 OP_VSLDOI4, 9308 OP_VSLDOI8, 9309 OP_VSLDOI12 9310 }; 9311 9312 if (OpNum == OP_COPY) { 9313 if (LHSID == (1*9+2)*9+3) return LHS; 9314 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9315 return RHS; 9316 } 9317 9318 SDValue OpLHS, OpRHS; 9319 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9320 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9321 9322 int ShufIdxs[16]; 9323 switch (OpNum) { 9324 default: llvm_unreachable("Unknown i32 permute!"); 9325 case OP_VMRGHW: 9326 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9327 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9328 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9329 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9330 break; 9331 case OP_VMRGLW: 9332 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9333 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9334 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9335 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9336 break; 9337 case OP_VSPLTISW0: 9338 for (unsigned i = 0; i != 16; ++i) 9339 ShufIdxs[i] = (i&3)+0; 9340 break; 9341 case OP_VSPLTISW1: 9342 for (unsigned i = 0; i != 16; ++i) 9343 ShufIdxs[i] = (i&3)+4; 9344 break; 9345 case OP_VSPLTISW2: 9346 for (unsigned i = 0; i != 16; ++i) 9347 ShufIdxs[i] = (i&3)+8; 9348 break; 9349 case OP_VSPLTISW3: 9350 for (unsigned i = 0; i != 16; ++i) 9351 ShufIdxs[i] = (i&3)+12; 9352 break; 9353 case OP_VSLDOI4: 9354 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9355 case OP_VSLDOI8: 9356 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9357 case OP_VSLDOI12: 9358 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9359 } 9360 EVT VT = OpLHS.getValueType(); 9361 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9362 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9363 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9364 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9365 } 9366 9367 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9368 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9369 /// SDValue. 9370 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9371 SelectionDAG &DAG) const { 9372 const unsigned BytesInVector = 16; 9373 bool IsLE = Subtarget.isLittleEndian(); 9374 SDLoc dl(N); 9375 SDValue V1 = N->getOperand(0); 9376 SDValue V2 = N->getOperand(1); 9377 unsigned ShiftElts = 0, InsertAtByte = 0; 9378 bool Swap = false; 9379 9380 // Shifts required to get the byte we want at element 7. 9381 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9382 0, 15, 14, 13, 12, 11, 10, 9}; 9383 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9384 1, 2, 3, 4, 5, 6, 7, 8}; 9385 9386 ArrayRef<int> Mask = N->getMask(); 9387 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9388 9389 // For each mask element, find out if we're just inserting something 9390 // from V2 into V1 or vice versa. 9391 // Possible permutations inserting an element from V2 into V1: 9392 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9393 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9394 // ... 9395 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9396 // Inserting from V1 into V2 will be similar, except mask range will be 9397 // [16,31]. 9398 9399 bool FoundCandidate = false; 9400 // If both vector operands for the shuffle are the same vector, the mask 9401 // will contain only elements from the first one and the second one will be 9402 // undef. 9403 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9404 // Go through the mask of half-words to find an element that's being moved 9405 // from one vector to the other. 9406 for (unsigned i = 0; i < BytesInVector; ++i) { 9407 unsigned CurrentElement = Mask[i]; 9408 // If 2nd operand is undefined, we should only look for element 7 in the 9409 // Mask. 9410 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9411 continue; 9412 9413 bool OtherElementsInOrder = true; 9414 // Examine the other elements in the Mask to see if they're in original 9415 // order. 9416 for (unsigned j = 0; j < BytesInVector; ++j) { 9417 if (j == i) 9418 continue; 9419 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9420 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9421 // in which we always assume we're always picking from the 1st operand. 9422 int MaskOffset = 9423 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9424 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9425 OtherElementsInOrder = false; 9426 break; 9427 } 9428 } 9429 // If other elements are in original order, we record the number of shifts 9430 // we need to get the element we want into element 7. Also record which byte 9431 // in the vector we should insert into. 9432 if (OtherElementsInOrder) { 9433 // If 2nd operand is undefined, we assume no shifts and no swapping. 9434 if (V2.isUndef()) { 9435 ShiftElts = 0; 9436 Swap = false; 9437 } else { 9438 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9439 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9440 : BigEndianShifts[CurrentElement & 0xF]; 9441 Swap = CurrentElement < BytesInVector; 9442 } 9443 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9444 FoundCandidate = true; 9445 break; 9446 } 9447 } 9448 9449 if (!FoundCandidate) 9450 return SDValue(); 9451 9452 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9453 // optionally with VECSHL if shift is required. 9454 if (Swap) 9455 std::swap(V1, V2); 9456 if (V2.isUndef()) 9457 V2 = V1; 9458 if (ShiftElts) { 9459 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9460 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9461 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9462 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9463 } 9464 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9465 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9466 } 9467 9468 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9469 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9470 /// SDValue. 9471 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9472 SelectionDAG &DAG) const { 9473 const unsigned NumHalfWords = 8; 9474 const unsigned BytesInVector = NumHalfWords * 2; 9475 // Check that the shuffle is on half-words. 9476 if (!isNByteElemShuffleMask(N, 2, 1)) 9477 return SDValue(); 9478 9479 bool IsLE = Subtarget.isLittleEndian(); 9480 SDLoc dl(N); 9481 SDValue V1 = N->getOperand(0); 9482 SDValue V2 = N->getOperand(1); 9483 unsigned ShiftElts = 0, InsertAtByte = 0; 9484 bool Swap = false; 9485 9486 // Shifts required to get the half-word we want at element 3. 9487 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9488 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9489 9490 uint32_t Mask = 0; 9491 uint32_t OriginalOrderLow = 0x1234567; 9492 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9493 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9494 // 32-bit space, only need 4-bit nibbles per element. 9495 for (unsigned i = 0; i < NumHalfWords; ++i) { 9496 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9497 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9498 } 9499 9500 // For each mask element, find out if we're just inserting something 9501 // from V2 into V1 or vice versa. Possible permutations inserting an element 9502 // from V2 into V1: 9503 // X, 1, 2, 3, 4, 5, 6, 7 9504 // 0, X, 2, 3, 4, 5, 6, 7 9505 // 0, 1, X, 3, 4, 5, 6, 7 9506 // 0, 1, 2, X, 4, 5, 6, 7 9507 // 0, 1, 2, 3, X, 5, 6, 7 9508 // 0, 1, 2, 3, 4, X, 6, 7 9509 // 0, 1, 2, 3, 4, 5, X, 7 9510 // 0, 1, 2, 3, 4, 5, 6, X 9511 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9512 9513 bool FoundCandidate = false; 9514 // Go through the mask of half-words to find an element that's being moved 9515 // from one vector to the other. 9516 for (unsigned i = 0; i < NumHalfWords; ++i) { 9517 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9518 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9519 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9520 uint32_t TargetOrder = 0x0; 9521 9522 // If both vector operands for the shuffle are the same vector, the mask 9523 // will contain only elements from the first one and the second one will be 9524 // undef. 9525 if (V2.isUndef()) { 9526 ShiftElts = 0; 9527 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9528 TargetOrder = OriginalOrderLow; 9529 Swap = false; 9530 // Skip if not the correct element or mask of other elements don't equal 9531 // to our expected order. 9532 if (MaskOneElt == VINSERTHSrcElem && 9533 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9534 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9535 FoundCandidate = true; 9536 break; 9537 } 9538 } else { // If both operands are defined. 9539 // Target order is [8,15] if the current mask is between [0,7]. 9540 TargetOrder = 9541 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9542 // Skip if mask of other elements don't equal our expected order. 9543 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9544 // We only need the last 3 bits for the number of shifts. 9545 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9546 : BigEndianShifts[MaskOneElt & 0x7]; 9547 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9548 Swap = MaskOneElt < NumHalfWords; 9549 FoundCandidate = true; 9550 break; 9551 } 9552 } 9553 } 9554 9555 if (!FoundCandidate) 9556 return SDValue(); 9557 9558 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9559 // optionally with VECSHL if shift is required. 9560 if (Swap) 9561 std::swap(V1, V2); 9562 if (V2.isUndef()) 9563 V2 = V1; 9564 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9565 if (ShiftElts) { 9566 // Double ShiftElts because we're left shifting on v16i8 type. 9567 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9568 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9569 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9570 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9571 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9572 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9573 } 9574 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9575 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9576 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9577 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9578 } 9579 9580 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9581 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9582 /// return the default SDValue. 9583 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9584 SelectionDAG &DAG) const { 9585 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9586 // to v16i8. Peek through the bitcasts to get the actual operands. 9587 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9588 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9589 9590 auto ShuffleMask = SVN->getMask(); 9591 SDValue VecShuffle(SVN, 0); 9592 SDLoc DL(SVN); 9593 9594 // Check that we have a four byte shuffle. 9595 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9596 return SDValue(); 9597 9598 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9599 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9600 std::swap(LHS, RHS); 9601 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9602 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9603 } 9604 9605 // Ensure that the RHS is a vector of constants. 9606 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9607 if (!BVN) 9608 return SDValue(); 9609 9610 // Check if RHS is a splat of 4-bytes (or smaller). 9611 APInt APSplatValue, APSplatUndef; 9612 unsigned SplatBitSize; 9613 bool HasAnyUndefs; 9614 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9615 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9616 SplatBitSize > 32) 9617 return SDValue(); 9618 9619 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9620 // The instruction splats a constant C into two words of the source vector 9621 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9622 // Thus we check that the shuffle mask is the equivalent of 9623 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9624 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9625 // within each word are consecutive, so we only need to check the first byte. 9626 SDValue Index; 9627 bool IsLE = Subtarget.isLittleEndian(); 9628 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9629 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9630 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9631 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9632 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9633 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9634 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9635 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9636 else 9637 return SDValue(); 9638 9639 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9640 // for XXSPLTI32DX. 9641 unsigned SplatVal = APSplatValue.getZExtValue(); 9642 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9643 SplatVal |= (SplatVal << SplatBitSize); 9644 9645 SDValue SplatNode = DAG.getNode( 9646 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9647 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9648 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9649 } 9650 9651 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9652 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9653 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9654 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9655 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9656 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9657 assert(Op.getValueType() == MVT::v1i128 && 9658 "Only set v1i128 as custom, other type shouldn't reach here!"); 9659 SDLoc dl(Op); 9660 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9661 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9662 unsigned SHLAmt = N1.getConstantOperandVal(0); 9663 if (SHLAmt % 8 == 0) { 9664 SmallVector<int, 16> Mask(16, 0); 9665 std::iota(Mask.begin(), Mask.end(), 0); 9666 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9667 if (SDValue Shuffle = 9668 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9669 DAG.getUNDEF(MVT::v16i8), Mask)) 9670 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9671 } 9672 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9673 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9674 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9675 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9676 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9677 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9678 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9679 } 9680 9681 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9682 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9683 /// return the code it can be lowered into. Worst case, it can always be 9684 /// lowered into a vperm. 9685 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9686 SelectionDAG &DAG) const { 9687 SDLoc dl(Op); 9688 SDValue V1 = Op.getOperand(0); 9689 SDValue V2 = Op.getOperand(1); 9690 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9691 9692 // Any nodes that were combined in the target-independent combiner prior 9693 // to vector legalization will not be sent to the target combine. Try to 9694 // combine it here. 9695 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9696 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9697 return NewShuffle; 9698 Op = NewShuffle; 9699 SVOp = cast<ShuffleVectorSDNode>(Op); 9700 V1 = Op.getOperand(0); 9701 V2 = Op.getOperand(1); 9702 } 9703 EVT VT = Op.getValueType(); 9704 bool isLittleEndian = Subtarget.isLittleEndian(); 9705 9706 unsigned ShiftElts, InsertAtByte; 9707 bool Swap = false; 9708 9709 // If this is a load-and-splat, we can do that with a single instruction 9710 // in some cases. However if the load has multiple uses, we don't want to 9711 // combine it because that will just produce multiple loads. 9712 bool IsPermutedLoad = false; 9713 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9714 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9715 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9716 InputLoad->hasOneUse()) { 9717 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9718 int SplatIdx = 9719 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9720 9721 // The splat index for permuted loads will be in the left half of the vector 9722 // which is strictly wider than the loaded value by 8 bytes. So we need to 9723 // adjust the splat index to point to the correct address in memory. 9724 if (IsPermutedLoad) { 9725 assert((isLittleEndian || IsFourByte) && 9726 "Unexpected size for permuted load on big endian target"); 9727 SplatIdx += IsFourByte ? 2 : 1; 9728 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9729 "Splat of a value outside of the loaded memory"); 9730 } 9731 9732 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9733 // For 4-byte load-and-splat, we need Power9. 9734 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9735 uint64_t Offset = 0; 9736 if (IsFourByte) 9737 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9738 else 9739 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9740 9741 // If the width of the load is the same as the width of the splat, 9742 // loading with an offset would load the wrong memory. 9743 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9744 Offset = 0; 9745 9746 SDValue BasePtr = LD->getBasePtr(); 9747 if (Offset != 0) 9748 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9749 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9750 SDValue Ops[] = { 9751 LD->getChain(), // Chain 9752 BasePtr, // BasePtr 9753 DAG.getValueType(Op.getValueType()) // VT 9754 }; 9755 SDVTList VTL = 9756 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9757 SDValue LdSplt = 9758 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9759 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9760 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9761 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9762 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9763 return LdSplt; 9764 } 9765 } 9766 if (Subtarget.hasP9Vector() && 9767 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9768 isLittleEndian)) { 9769 if (Swap) 9770 std::swap(V1, V2); 9771 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9772 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9773 if (ShiftElts) { 9774 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9775 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9776 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9777 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9778 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9779 } 9780 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9781 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9782 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9783 } 9784 9785 if (Subtarget.hasPrefixInstrs()) { 9786 SDValue SplatInsertNode; 9787 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9788 return SplatInsertNode; 9789 } 9790 9791 if (Subtarget.hasP9Altivec()) { 9792 SDValue NewISDNode; 9793 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9794 return NewISDNode; 9795 9796 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9797 return NewISDNode; 9798 } 9799 9800 if (Subtarget.hasVSX() && 9801 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9802 if (Swap) 9803 std::swap(V1, V2); 9804 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9805 SDValue Conv2 = 9806 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9807 9808 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9809 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9810 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9811 } 9812 9813 if (Subtarget.hasVSX() && 9814 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9815 if (Swap) 9816 std::swap(V1, V2); 9817 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9818 SDValue Conv2 = 9819 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9820 9821 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9822 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9823 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9824 } 9825 9826 if (Subtarget.hasP9Vector()) { 9827 if (PPC::isXXBRHShuffleMask(SVOp)) { 9828 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9829 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9830 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9831 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9832 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9833 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9834 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9835 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9836 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9837 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9838 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9839 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9840 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9841 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9842 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9843 } 9844 } 9845 9846 if (Subtarget.hasVSX()) { 9847 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9848 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9849 9850 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9851 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9852 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9853 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9854 } 9855 9856 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9857 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9858 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9859 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9860 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9861 } 9862 } 9863 9864 // Cases that are handled by instructions that take permute immediates 9865 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9866 // selected by the instruction selector. 9867 if (V2.isUndef()) { 9868 if (PPC::isSplatShuffleMask(SVOp, 1) || 9869 PPC::isSplatShuffleMask(SVOp, 2) || 9870 PPC::isSplatShuffleMask(SVOp, 4) || 9871 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9872 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9873 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9874 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9875 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9876 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9877 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9878 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9879 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9880 (Subtarget.hasP8Altivec() && ( 9881 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9882 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9883 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9884 return Op; 9885 } 9886 } 9887 9888 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9889 // and produce a fixed permutation. If any of these match, do not lower to 9890 // VPERM. 9891 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9892 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9893 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9894 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9895 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9896 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9897 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9898 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9899 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9900 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9901 (Subtarget.hasP8Altivec() && ( 9902 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9903 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9904 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9905 return Op; 9906 9907 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9908 // perfect shuffle table to emit an optimal matching sequence. 9909 ArrayRef<int> PermMask = SVOp->getMask(); 9910 9911 unsigned PFIndexes[4]; 9912 bool isFourElementShuffle = true; 9913 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9914 unsigned EltNo = 8; // Start out undef. 9915 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9916 if (PermMask[i*4+j] < 0) 9917 continue; // Undef, ignore it. 9918 9919 unsigned ByteSource = PermMask[i*4+j]; 9920 if ((ByteSource & 3) != j) { 9921 isFourElementShuffle = false; 9922 break; 9923 } 9924 9925 if (EltNo == 8) { 9926 EltNo = ByteSource/4; 9927 } else if (EltNo != ByteSource/4) { 9928 isFourElementShuffle = false; 9929 break; 9930 } 9931 } 9932 PFIndexes[i] = EltNo; 9933 } 9934 9935 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9936 // perfect shuffle vector to determine if it is cost effective to do this as 9937 // discrete instructions, or whether we should use a vperm. 9938 // For now, we skip this for little endian until such time as we have a 9939 // little-endian perfect shuffle table. 9940 if (isFourElementShuffle && !isLittleEndian) { 9941 // Compute the index in the perfect shuffle table. 9942 unsigned PFTableIndex = 9943 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9944 9945 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9946 unsigned Cost = (PFEntry >> 30); 9947 9948 // Determining when to avoid vperm is tricky. Many things affect the cost 9949 // of vperm, particularly how many times the perm mask needs to be computed. 9950 // For example, if the perm mask can be hoisted out of a loop or is already 9951 // used (perhaps because there are multiple permutes with the same shuffle 9952 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9953 // the loop requires an extra register. 9954 // 9955 // As a compromise, we only emit discrete instructions if the shuffle can be 9956 // generated in 3 or fewer operations. When we have loop information 9957 // available, if this block is within a loop, we should avoid using vperm 9958 // for 3-operation perms and use a constant pool load instead. 9959 if (Cost < 3) 9960 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9961 } 9962 9963 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9964 // vector that will get spilled to the constant pool. 9965 if (V2.isUndef()) V2 = V1; 9966 9967 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9968 // that it is in input element units, not in bytes. Convert now. 9969 9970 // For little endian, the order of the input vectors is reversed, and 9971 // the permutation mask is complemented with respect to 31. This is 9972 // necessary to produce proper semantics with the big-endian-biased vperm 9973 // instruction. 9974 EVT EltVT = V1.getValueType().getVectorElementType(); 9975 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9976 9977 SmallVector<SDValue, 16> ResultMask; 9978 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9979 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9980 9981 for (unsigned j = 0; j != BytesPerElement; ++j) 9982 if (isLittleEndian) 9983 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9984 dl, MVT::i32)); 9985 else 9986 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9987 MVT::i32)); 9988 } 9989 9990 ShufflesHandledWithVPERM++; 9991 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9992 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9993 LLVM_DEBUG(SVOp->dump()); 9994 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9995 LLVM_DEBUG(VPermMask.dump()); 9996 9997 if (isLittleEndian) 9998 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9999 V2, V1, VPermMask); 10000 else 10001 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10002 V1, V2, VPermMask); 10003 } 10004 10005 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10006 /// vector comparison. If it is, return true and fill in Opc/isDot with 10007 /// information about the intrinsic. 10008 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10009 bool &isDot, const PPCSubtarget &Subtarget) { 10010 unsigned IntrinsicID = 10011 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10012 CompareOpc = -1; 10013 isDot = false; 10014 switch (IntrinsicID) { 10015 default: 10016 return false; 10017 // Comparison predicates. 10018 case Intrinsic::ppc_altivec_vcmpbfp_p: 10019 CompareOpc = 966; 10020 isDot = true; 10021 break; 10022 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10023 CompareOpc = 198; 10024 isDot = true; 10025 break; 10026 case Intrinsic::ppc_altivec_vcmpequb_p: 10027 CompareOpc = 6; 10028 isDot = true; 10029 break; 10030 case Intrinsic::ppc_altivec_vcmpequh_p: 10031 CompareOpc = 70; 10032 isDot = true; 10033 break; 10034 case Intrinsic::ppc_altivec_vcmpequw_p: 10035 CompareOpc = 134; 10036 isDot = true; 10037 break; 10038 case Intrinsic::ppc_altivec_vcmpequd_p: 10039 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10040 CompareOpc = 199; 10041 isDot = true; 10042 } else 10043 return false; 10044 break; 10045 case Intrinsic::ppc_altivec_vcmpneb_p: 10046 case Intrinsic::ppc_altivec_vcmpneh_p: 10047 case Intrinsic::ppc_altivec_vcmpnew_p: 10048 case Intrinsic::ppc_altivec_vcmpnezb_p: 10049 case Intrinsic::ppc_altivec_vcmpnezh_p: 10050 case Intrinsic::ppc_altivec_vcmpnezw_p: 10051 if (Subtarget.hasP9Altivec()) { 10052 switch (IntrinsicID) { 10053 default: 10054 llvm_unreachable("Unknown comparison intrinsic."); 10055 case Intrinsic::ppc_altivec_vcmpneb_p: 10056 CompareOpc = 7; 10057 break; 10058 case Intrinsic::ppc_altivec_vcmpneh_p: 10059 CompareOpc = 71; 10060 break; 10061 case Intrinsic::ppc_altivec_vcmpnew_p: 10062 CompareOpc = 135; 10063 break; 10064 case Intrinsic::ppc_altivec_vcmpnezb_p: 10065 CompareOpc = 263; 10066 break; 10067 case Intrinsic::ppc_altivec_vcmpnezh_p: 10068 CompareOpc = 327; 10069 break; 10070 case Intrinsic::ppc_altivec_vcmpnezw_p: 10071 CompareOpc = 391; 10072 break; 10073 } 10074 isDot = true; 10075 } else 10076 return false; 10077 break; 10078 case Intrinsic::ppc_altivec_vcmpgefp_p: 10079 CompareOpc = 454; 10080 isDot = true; 10081 break; 10082 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10083 CompareOpc = 710; 10084 isDot = true; 10085 break; 10086 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10087 CompareOpc = 774; 10088 isDot = true; 10089 break; 10090 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10091 CompareOpc = 838; 10092 isDot = true; 10093 break; 10094 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10095 CompareOpc = 902; 10096 isDot = true; 10097 break; 10098 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10099 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10100 CompareOpc = 967; 10101 isDot = true; 10102 } else 10103 return false; 10104 break; 10105 case Intrinsic::ppc_altivec_vcmpgtub_p: 10106 CompareOpc = 518; 10107 isDot = true; 10108 break; 10109 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10110 CompareOpc = 582; 10111 isDot = true; 10112 break; 10113 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10114 CompareOpc = 646; 10115 isDot = true; 10116 break; 10117 case Intrinsic::ppc_altivec_vcmpgtud_p: 10118 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10119 CompareOpc = 711; 10120 isDot = true; 10121 } else 10122 return false; 10123 break; 10124 10125 case Intrinsic::ppc_altivec_vcmpequq: 10126 case Intrinsic::ppc_altivec_vcmpgtsq: 10127 case Intrinsic::ppc_altivec_vcmpgtuq: 10128 if (!Subtarget.isISA3_1()) 10129 return false; 10130 switch (IntrinsicID) { 10131 default: 10132 llvm_unreachable("Unknown comparison intrinsic."); 10133 case Intrinsic::ppc_altivec_vcmpequq: 10134 CompareOpc = 455; 10135 break; 10136 case Intrinsic::ppc_altivec_vcmpgtsq: 10137 CompareOpc = 903; 10138 break; 10139 case Intrinsic::ppc_altivec_vcmpgtuq: 10140 CompareOpc = 647; 10141 break; 10142 } 10143 break; 10144 10145 // VSX predicate comparisons use the same infrastructure 10146 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10147 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10148 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10149 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10150 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10151 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10152 if (Subtarget.hasVSX()) { 10153 switch (IntrinsicID) { 10154 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10155 CompareOpc = 99; 10156 break; 10157 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10158 CompareOpc = 115; 10159 break; 10160 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10161 CompareOpc = 107; 10162 break; 10163 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10164 CompareOpc = 67; 10165 break; 10166 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10167 CompareOpc = 83; 10168 break; 10169 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10170 CompareOpc = 75; 10171 break; 10172 } 10173 isDot = true; 10174 } else 10175 return false; 10176 break; 10177 10178 // Normal Comparisons. 10179 case Intrinsic::ppc_altivec_vcmpbfp: 10180 CompareOpc = 966; 10181 break; 10182 case Intrinsic::ppc_altivec_vcmpeqfp: 10183 CompareOpc = 198; 10184 break; 10185 case Intrinsic::ppc_altivec_vcmpequb: 10186 CompareOpc = 6; 10187 break; 10188 case Intrinsic::ppc_altivec_vcmpequh: 10189 CompareOpc = 70; 10190 break; 10191 case Intrinsic::ppc_altivec_vcmpequw: 10192 CompareOpc = 134; 10193 break; 10194 case Intrinsic::ppc_altivec_vcmpequd: 10195 if (Subtarget.hasP8Altivec()) 10196 CompareOpc = 199; 10197 else 10198 return false; 10199 break; 10200 case Intrinsic::ppc_altivec_vcmpneb: 10201 case Intrinsic::ppc_altivec_vcmpneh: 10202 case Intrinsic::ppc_altivec_vcmpnew: 10203 case Intrinsic::ppc_altivec_vcmpnezb: 10204 case Intrinsic::ppc_altivec_vcmpnezh: 10205 case Intrinsic::ppc_altivec_vcmpnezw: 10206 if (Subtarget.hasP9Altivec()) 10207 switch (IntrinsicID) { 10208 default: 10209 llvm_unreachable("Unknown comparison intrinsic."); 10210 case Intrinsic::ppc_altivec_vcmpneb: 10211 CompareOpc = 7; 10212 break; 10213 case Intrinsic::ppc_altivec_vcmpneh: 10214 CompareOpc = 71; 10215 break; 10216 case Intrinsic::ppc_altivec_vcmpnew: 10217 CompareOpc = 135; 10218 break; 10219 case Intrinsic::ppc_altivec_vcmpnezb: 10220 CompareOpc = 263; 10221 break; 10222 case Intrinsic::ppc_altivec_vcmpnezh: 10223 CompareOpc = 327; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpnezw: 10226 CompareOpc = 391; 10227 break; 10228 } 10229 else 10230 return false; 10231 break; 10232 case Intrinsic::ppc_altivec_vcmpgefp: 10233 CompareOpc = 454; 10234 break; 10235 case Intrinsic::ppc_altivec_vcmpgtfp: 10236 CompareOpc = 710; 10237 break; 10238 case Intrinsic::ppc_altivec_vcmpgtsb: 10239 CompareOpc = 774; 10240 break; 10241 case Intrinsic::ppc_altivec_vcmpgtsh: 10242 CompareOpc = 838; 10243 break; 10244 case Intrinsic::ppc_altivec_vcmpgtsw: 10245 CompareOpc = 902; 10246 break; 10247 case Intrinsic::ppc_altivec_vcmpgtsd: 10248 if (Subtarget.hasP8Altivec()) 10249 CompareOpc = 967; 10250 else 10251 return false; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpgtub: 10254 CompareOpc = 518; 10255 break; 10256 case Intrinsic::ppc_altivec_vcmpgtuh: 10257 CompareOpc = 582; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpgtuw: 10260 CompareOpc = 646; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpgtud: 10263 if (Subtarget.hasP8Altivec()) 10264 CompareOpc = 711; 10265 else 10266 return false; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpequq_p: 10269 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10270 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10271 if (!Subtarget.isISA3_1()) 10272 return false; 10273 switch (IntrinsicID) { 10274 default: 10275 llvm_unreachable("Unknown comparison intrinsic."); 10276 case Intrinsic::ppc_altivec_vcmpequq_p: 10277 CompareOpc = 455; 10278 break; 10279 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10280 CompareOpc = 903; 10281 break; 10282 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10283 CompareOpc = 647; 10284 break; 10285 } 10286 isDot = true; 10287 break; 10288 } 10289 return true; 10290 } 10291 10292 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10293 /// lower, do it, otherwise return null. 10294 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10295 SelectionDAG &DAG) const { 10296 unsigned IntrinsicID = 10297 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10298 10299 SDLoc dl(Op); 10300 10301 switch (IntrinsicID) { 10302 case Intrinsic::thread_pointer: 10303 // Reads the thread pointer register, used for __builtin_thread_pointer. 10304 if (Subtarget.isPPC64()) 10305 return DAG.getRegister(PPC::X13, MVT::i64); 10306 return DAG.getRegister(PPC::R2, MVT::i32); 10307 10308 case Intrinsic::ppc_mma_disassemble_acc: 10309 case Intrinsic::ppc_vsx_disassemble_pair: { 10310 int NumVecs = 2; 10311 SDValue WideVec = Op.getOperand(1); 10312 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10313 NumVecs = 4; 10314 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10315 } 10316 SmallVector<SDValue, 4> RetOps; 10317 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10318 SDValue Extract = DAG.getNode( 10319 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10320 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10321 : VecNo, 10322 dl, getPointerTy(DAG.getDataLayout()))); 10323 RetOps.push_back(Extract); 10324 } 10325 return DAG.getMergeValues(RetOps, dl); 10326 } 10327 } 10328 10329 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10330 // opcode number of the comparison. 10331 int CompareOpc; 10332 bool isDot; 10333 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10334 return SDValue(); // Don't custom lower most intrinsics. 10335 10336 // If this is a non-dot comparison, make the VCMP node and we are done. 10337 if (!isDot) { 10338 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10339 Op.getOperand(1), Op.getOperand(2), 10340 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10341 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10342 } 10343 10344 // Create the PPCISD altivec 'dot' comparison node. 10345 SDValue Ops[] = { 10346 Op.getOperand(2), // LHS 10347 Op.getOperand(3), // RHS 10348 DAG.getConstant(CompareOpc, dl, MVT::i32) 10349 }; 10350 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10351 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10352 10353 // Now that we have the comparison, emit a copy from the CR to a GPR. 10354 // This is flagged to the above dot comparison. 10355 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10356 DAG.getRegister(PPC::CR6, MVT::i32), 10357 CompNode.getValue(1)); 10358 10359 // Unpack the result based on how the target uses it. 10360 unsigned BitNo; // Bit # of CR6. 10361 bool InvertBit; // Invert result? 10362 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10363 default: // Can't happen, don't crash on invalid number though. 10364 case 0: // Return the value of the EQ bit of CR6. 10365 BitNo = 0; InvertBit = false; 10366 break; 10367 case 1: // Return the inverted value of the EQ bit of CR6. 10368 BitNo = 0; InvertBit = true; 10369 break; 10370 case 2: // Return the value of the LT bit of CR6. 10371 BitNo = 2; InvertBit = false; 10372 break; 10373 case 3: // Return the inverted value of the LT bit of CR6. 10374 BitNo = 2; InvertBit = true; 10375 break; 10376 } 10377 10378 // Shift the bit into the low position. 10379 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10380 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10381 // Isolate the bit. 10382 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10383 DAG.getConstant(1, dl, MVT::i32)); 10384 10385 // If we are supposed to, toggle the bit. 10386 if (InvertBit) 10387 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10388 DAG.getConstant(1, dl, MVT::i32)); 10389 return Flags; 10390 } 10391 10392 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10393 SelectionDAG &DAG) const { 10394 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10395 // the beginning of the argument list. 10396 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10397 SDLoc DL(Op); 10398 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10399 case Intrinsic::ppc_cfence: { 10400 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10401 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10402 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10403 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10404 Op.getOperand(ArgStart + 1)), 10405 Op.getOperand(0)), 10406 0); 10407 } 10408 default: 10409 break; 10410 } 10411 return SDValue(); 10412 } 10413 10414 // Lower scalar BSWAP64 to xxbrd. 10415 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10416 SDLoc dl(Op); 10417 if (!Subtarget.isPPC64()) 10418 return Op; 10419 // MTVSRDD 10420 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10421 Op.getOperand(0)); 10422 // XXBRD 10423 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10424 // MFVSRD 10425 int VectorIndex = 0; 10426 if (Subtarget.isLittleEndian()) 10427 VectorIndex = 1; 10428 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10429 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10430 return Op; 10431 } 10432 10433 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10434 // compared to a value that is atomically loaded (atomic loads zero-extend). 10435 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10436 SelectionDAG &DAG) const { 10437 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10438 "Expecting an atomic compare-and-swap here."); 10439 SDLoc dl(Op); 10440 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10441 EVT MemVT = AtomicNode->getMemoryVT(); 10442 if (MemVT.getSizeInBits() >= 32) 10443 return Op; 10444 10445 SDValue CmpOp = Op.getOperand(2); 10446 // If this is already correctly zero-extended, leave it alone. 10447 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10448 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10449 return Op; 10450 10451 // Clear the high bits of the compare operand. 10452 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10453 SDValue NewCmpOp = 10454 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10455 DAG.getConstant(MaskVal, dl, MVT::i32)); 10456 10457 // Replace the existing compare operand with the properly zero-extended one. 10458 SmallVector<SDValue, 4> Ops; 10459 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10460 Ops.push_back(AtomicNode->getOperand(i)); 10461 Ops[2] = NewCmpOp; 10462 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10463 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10464 auto NodeTy = 10465 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10466 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10467 } 10468 10469 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10470 SelectionDAG &DAG) const { 10471 SDLoc dl(Op); 10472 // Create a stack slot that is 16-byte aligned. 10473 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10474 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10475 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10476 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10477 10478 // Store the input value into Value#0 of the stack slot. 10479 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10480 MachinePointerInfo()); 10481 // Load it out. 10482 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10483 } 10484 10485 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10486 SelectionDAG &DAG) const { 10487 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10488 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10489 10490 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10491 10492 EVT VT = Op.getValueType(); 10493 SDLoc dl(Op); 10494 SDValue V1 = Op.getOperand(0); 10495 SDValue V2 = Op.getOperand(1); 10496 SDValue V3 = Op.getOperand(2); 10497 10498 if (VT == MVT::v2f64 && C) 10499 return Op; 10500 10501 if (Subtarget.isISA3_1()) { 10502 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10503 return SDValue(); 10504 // On P10, we have legal lowering for constant and variable indices for 10505 // integer vectors. 10506 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10507 VT == MVT::v2i64) 10508 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10509 // For f32 and f64 vectors, we have legal lowering for variable indices. 10510 // For f32 we also have legal lowering when the element is loaded from 10511 // memory. 10512 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10513 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10514 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10515 return Op; 10516 } 10517 } 10518 10519 // Before P10, we have legal lowering for constant indices but not for 10520 // variable ones. 10521 if (!C) 10522 return SDValue(); 10523 10524 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10525 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10526 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10527 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10528 unsigned InsertAtElement = C->getZExtValue(); 10529 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10530 if (Subtarget.isLittleEndian()) { 10531 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10532 } 10533 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10534 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10535 } 10536 return Op; 10537 } 10538 10539 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10540 SelectionDAG &DAG) const { 10541 SDLoc dl(Op); 10542 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10543 SDValue LoadChain = LN->getChain(); 10544 SDValue BasePtr = LN->getBasePtr(); 10545 EVT VT = Op.getValueType(); 10546 10547 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10548 return Op; 10549 10550 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10551 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10552 // 2 or 4 vsx registers. 10553 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10554 "Type unsupported without MMA"); 10555 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10556 "Type unsupported without paired vector support"); 10557 Align Alignment = LN->getAlign(); 10558 SmallVector<SDValue, 4> Loads; 10559 SmallVector<SDValue, 4> LoadChains; 10560 unsigned NumVecs = VT.getSizeInBits() / 128; 10561 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10562 SDValue Load = 10563 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10564 LN->getPointerInfo().getWithOffset(Idx * 16), 10565 commonAlignment(Alignment, Idx * 16), 10566 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10567 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10568 DAG.getConstant(16, dl, BasePtr.getValueType())); 10569 Loads.push_back(Load); 10570 LoadChains.push_back(Load.getValue(1)); 10571 } 10572 if (Subtarget.isLittleEndian()) { 10573 std::reverse(Loads.begin(), Loads.end()); 10574 std::reverse(LoadChains.begin(), LoadChains.end()); 10575 } 10576 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10577 SDValue Value = 10578 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10579 dl, VT, Loads); 10580 SDValue RetOps[] = {Value, TF}; 10581 return DAG.getMergeValues(RetOps, dl); 10582 } 10583 10584 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10585 SelectionDAG &DAG) const { 10586 SDLoc dl(Op); 10587 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10588 SDValue StoreChain = SN->getChain(); 10589 SDValue BasePtr = SN->getBasePtr(); 10590 SDValue Value = SN->getValue(); 10591 EVT StoreVT = Value.getValueType(); 10592 10593 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10594 return Op; 10595 10596 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10597 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10598 // underlying registers individually. 10599 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10600 "Type unsupported without MMA"); 10601 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10602 "Type unsupported without paired vector support"); 10603 Align Alignment = SN->getAlign(); 10604 SmallVector<SDValue, 4> Stores; 10605 unsigned NumVecs = 2; 10606 if (StoreVT == MVT::v512i1) { 10607 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10608 NumVecs = 4; 10609 } 10610 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10611 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10612 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10613 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10614 SDValue Store = 10615 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10616 SN->getPointerInfo().getWithOffset(Idx * 16), 10617 commonAlignment(Alignment, Idx * 16), 10618 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10619 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10620 DAG.getConstant(16, dl, BasePtr.getValueType())); 10621 Stores.push_back(Store); 10622 } 10623 SDValue TF = DAG.getTokenFactor(dl, Stores); 10624 return TF; 10625 } 10626 10627 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10628 SDLoc dl(Op); 10629 if (Op.getValueType() == MVT::v4i32) { 10630 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10631 10632 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10633 // +16 as shift amt. 10634 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10635 SDValue RHSSwap = // = vrlw RHS, 16 10636 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10637 10638 // Shrinkify inputs to v8i16. 10639 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10640 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10641 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10642 10643 // Low parts multiplied together, generating 32-bit results (we ignore the 10644 // top parts). 10645 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10646 LHS, RHS, DAG, dl, MVT::v4i32); 10647 10648 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10649 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10650 // Shift the high parts up 16 bits. 10651 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10652 Neg16, DAG, dl); 10653 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10654 } else if (Op.getValueType() == MVT::v16i8) { 10655 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10656 bool isLittleEndian = Subtarget.isLittleEndian(); 10657 10658 // Multiply the even 8-bit parts, producing 16-bit sums. 10659 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10660 LHS, RHS, DAG, dl, MVT::v8i16); 10661 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10662 10663 // Multiply the odd 8-bit parts, producing 16-bit sums. 10664 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10665 LHS, RHS, DAG, dl, MVT::v8i16); 10666 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10667 10668 // Merge the results together. Because vmuleub and vmuloub are 10669 // instructions with a big-endian bias, we must reverse the 10670 // element numbering and reverse the meaning of "odd" and "even" 10671 // when generating little endian code. 10672 int Ops[16]; 10673 for (unsigned i = 0; i != 8; ++i) { 10674 if (isLittleEndian) { 10675 Ops[i*2 ] = 2*i; 10676 Ops[i*2+1] = 2*i+16; 10677 } else { 10678 Ops[i*2 ] = 2*i+1; 10679 Ops[i*2+1] = 2*i+1+16; 10680 } 10681 } 10682 if (isLittleEndian) 10683 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10684 else 10685 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10686 } else { 10687 llvm_unreachable("Unknown mul to lower!"); 10688 } 10689 } 10690 10691 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10692 bool IsStrict = Op->isStrictFPOpcode(); 10693 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10694 !Subtarget.hasP9Vector()) 10695 return SDValue(); 10696 10697 return Op; 10698 } 10699 10700 // Custom lowering for fpext vf32 to v2f64 10701 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10702 10703 assert(Op.getOpcode() == ISD::FP_EXTEND && 10704 "Should only be called for ISD::FP_EXTEND"); 10705 10706 // FIXME: handle extends from half precision float vectors on P9. 10707 // We only want to custom lower an extend from v2f32 to v2f64. 10708 if (Op.getValueType() != MVT::v2f64 || 10709 Op.getOperand(0).getValueType() != MVT::v2f32) 10710 return SDValue(); 10711 10712 SDLoc dl(Op); 10713 SDValue Op0 = Op.getOperand(0); 10714 10715 switch (Op0.getOpcode()) { 10716 default: 10717 return SDValue(); 10718 case ISD::EXTRACT_SUBVECTOR: { 10719 assert(Op0.getNumOperands() == 2 && 10720 isa<ConstantSDNode>(Op0->getOperand(1)) && 10721 "Node should have 2 operands with second one being a constant!"); 10722 10723 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10724 return SDValue(); 10725 10726 // Custom lower is only done for high or low doubleword. 10727 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10728 if (Idx % 2 != 0) 10729 return SDValue(); 10730 10731 // Since input is v4f32, at this point Idx is either 0 or 2. 10732 // Shift to get the doubleword position we want. 10733 int DWord = Idx >> 1; 10734 10735 // High and low word positions are different on little endian. 10736 if (Subtarget.isLittleEndian()) 10737 DWord ^= 0x1; 10738 10739 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10740 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10741 } 10742 case ISD::FADD: 10743 case ISD::FMUL: 10744 case ISD::FSUB: { 10745 SDValue NewLoad[2]; 10746 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10747 // Ensure both input are loads. 10748 SDValue LdOp = Op0.getOperand(i); 10749 if (LdOp.getOpcode() != ISD::LOAD) 10750 return SDValue(); 10751 // Generate new load node. 10752 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10753 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10754 NewLoad[i] = DAG.getMemIntrinsicNode( 10755 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10756 LD->getMemoryVT(), LD->getMemOperand()); 10757 } 10758 SDValue NewOp = 10759 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10760 NewLoad[1], Op0.getNode()->getFlags()); 10761 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10762 DAG.getConstant(0, dl, MVT::i32)); 10763 } 10764 case ISD::LOAD: { 10765 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10766 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10767 SDValue NewLd = DAG.getMemIntrinsicNode( 10768 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10769 LD->getMemoryVT(), LD->getMemOperand()); 10770 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10771 DAG.getConstant(0, dl, MVT::i32)); 10772 } 10773 } 10774 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10775 } 10776 10777 /// LowerOperation - Provide custom lowering hooks for some operations. 10778 /// 10779 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10780 switch (Op.getOpcode()) { 10781 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10782 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10783 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10784 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10785 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10786 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10787 case ISD::STRICT_FSETCC: 10788 case ISD::STRICT_FSETCCS: 10789 case ISD::SETCC: return LowerSETCC(Op, DAG); 10790 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10791 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10792 10793 case ISD::INLINEASM: 10794 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10795 // Variable argument lowering. 10796 case ISD::VASTART: return LowerVASTART(Op, DAG); 10797 case ISD::VAARG: return LowerVAARG(Op, DAG); 10798 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10799 10800 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10801 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10802 case ISD::GET_DYNAMIC_AREA_OFFSET: 10803 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10804 10805 // Exception handling lowering. 10806 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10807 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10808 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10809 10810 case ISD::LOAD: return LowerLOAD(Op, DAG); 10811 case ISD::STORE: return LowerSTORE(Op, DAG); 10812 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10813 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10814 case ISD::STRICT_FP_TO_UINT: 10815 case ISD::STRICT_FP_TO_SINT: 10816 case ISD::FP_TO_UINT: 10817 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10818 case ISD::STRICT_UINT_TO_FP: 10819 case ISD::STRICT_SINT_TO_FP: 10820 case ISD::UINT_TO_FP: 10821 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10822 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10823 10824 // Lower 64-bit shifts. 10825 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10826 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10827 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10828 10829 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10830 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10831 10832 // Vector-related lowering. 10833 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10834 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10835 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10836 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10837 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10838 case ISD::MUL: return LowerMUL(Op, DAG); 10839 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10840 case ISD::STRICT_FP_ROUND: 10841 case ISD::FP_ROUND: 10842 return LowerFP_ROUND(Op, DAG); 10843 case ISD::ROTL: return LowerROTL(Op, DAG); 10844 10845 // For counter-based loop handling. 10846 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10847 10848 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10849 10850 // Frame & Return address. 10851 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10852 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10853 10854 case ISD::INTRINSIC_VOID: 10855 return LowerINTRINSIC_VOID(Op, DAG); 10856 case ISD::BSWAP: 10857 return LowerBSWAP(Op, DAG); 10858 case ISD::ATOMIC_CMP_SWAP: 10859 return LowerATOMIC_CMP_SWAP(Op, DAG); 10860 } 10861 } 10862 10863 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10864 SmallVectorImpl<SDValue>&Results, 10865 SelectionDAG &DAG) const { 10866 SDLoc dl(N); 10867 switch (N->getOpcode()) { 10868 default: 10869 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10870 case ISD::READCYCLECOUNTER: { 10871 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10872 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10873 10874 Results.push_back( 10875 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10876 Results.push_back(RTB.getValue(2)); 10877 break; 10878 } 10879 case ISD::INTRINSIC_W_CHAIN: { 10880 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10881 Intrinsic::loop_decrement) 10882 break; 10883 10884 assert(N->getValueType(0) == MVT::i1 && 10885 "Unexpected result type for CTR decrement intrinsic"); 10886 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10887 N->getValueType(0)); 10888 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10889 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10890 N->getOperand(1)); 10891 10892 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10893 Results.push_back(NewInt.getValue(1)); 10894 break; 10895 } 10896 case ISD::VAARG: { 10897 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10898 return; 10899 10900 EVT VT = N->getValueType(0); 10901 10902 if (VT == MVT::i64) { 10903 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10904 10905 Results.push_back(NewNode); 10906 Results.push_back(NewNode.getValue(1)); 10907 } 10908 return; 10909 } 10910 case ISD::STRICT_FP_TO_SINT: 10911 case ISD::STRICT_FP_TO_UINT: 10912 case ISD::FP_TO_SINT: 10913 case ISD::FP_TO_UINT: 10914 // LowerFP_TO_INT() can only handle f32 and f64. 10915 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10916 MVT::ppcf128) 10917 return; 10918 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10919 return; 10920 case ISD::TRUNCATE: { 10921 if (!N->getValueType(0).isVector()) 10922 return; 10923 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10924 if (Lowered) 10925 Results.push_back(Lowered); 10926 return; 10927 } 10928 case ISD::FSHL: 10929 case ISD::FSHR: 10930 // Don't handle funnel shifts here. 10931 return; 10932 case ISD::BITCAST: 10933 // Don't handle bitcast here. 10934 return; 10935 case ISD::FP_EXTEND: 10936 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10937 if (Lowered) 10938 Results.push_back(Lowered); 10939 return; 10940 } 10941 } 10942 10943 //===----------------------------------------------------------------------===// 10944 // Other Lowering Code 10945 //===----------------------------------------------------------------------===// 10946 10947 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10948 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10949 Function *Func = Intrinsic::getDeclaration(M, Id); 10950 return Builder.CreateCall(Func, {}); 10951 } 10952 10953 // The mappings for emitLeading/TrailingFence is taken from 10954 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10955 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10956 Instruction *Inst, 10957 AtomicOrdering Ord) const { 10958 if (Ord == AtomicOrdering::SequentiallyConsistent) 10959 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10960 if (isReleaseOrStronger(Ord)) 10961 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10962 return nullptr; 10963 } 10964 10965 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10966 Instruction *Inst, 10967 AtomicOrdering Ord) const { 10968 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10969 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10970 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10971 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10972 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10973 return Builder.CreateCall( 10974 Intrinsic::getDeclaration( 10975 Builder.GetInsertBlock()->getParent()->getParent(), 10976 Intrinsic::ppc_cfence, {Inst->getType()}), 10977 {Inst}); 10978 // FIXME: Can use isync for rmw operation. 10979 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10980 } 10981 return nullptr; 10982 } 10983 10984 MachineBasicBlock * 10985 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10986 unsigned AtomicSize, 10987 unsigned BinOpcode, 10988 unsigned CmpOpcode, 10989 unsigned CmpPred) const { 10990 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10991 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10992 10993 auto LoadMnemonic = PPC::LDARX; 10994 auto StoreMnemonic = PPC::STDCX; 10995 switch (AtomicSize) { 10996 default: 10997 llvm_unreachable("Unexpected size of atomic entity"); 10998 case 1: 10999 LoadMnemonic = PPC::LBARX; 11000 StoreMnemonic = PPC::STBCX; 11001 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11002 break; 11003 case 2: 11004 LoadMnemonic = PPC::LHARX; 11005 StoreMnemonic = PPC::STHCX; 11006 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11007 break; 11008 case 4: 11009 LoadMnemonic = PPC::LWARX; 11010 StoreMnemonic = PPC::STWCX; 11011 break; 11012 case 8: 11013 LoadMnemonic = PPC::LDARX; 11014 StoreMnemonic = PPC::STDCX; 11015 break; 11016 } 11017 11018 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11019 MachineFunction *F = BB->getParent(); 11020 MachineFunction::iterator It = ++BB->getIterator(); 11021 11022 Register dest = MI.getOperand(0).getReg(); 11023 Register ptrA = MI.getOperand(1).getReg(); 11024 Register ptrB = MI.getOperand(2).getReg(); 11025 Register incr = MI.getOperand(3).getReg(); 11026 DebugLoc dl = MI.getDebugLoc(); 11027 11028 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11029 MachineBasicBlock *loop2MBB = 11030 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11031 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11032 F->insert(It, loopMBB); 11033 if (CmpOpcode) 11034 F->insert(It, loop2MBB); 11035 F->insert(It, exitMBB); 11036 exitMBB->splice(exitMBB->begin(), BB, 11037 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11038 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11039 11040 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11041 Register TmpReg = (!BinOpcode) ? incr : 11042 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11043 : &PPC::GPRCRegClass); 11044 11045 // thisMBB: 11046 // ... 11047 // fallthrough --> loopMBB 11048 BB->addSuccessor(loopMBB); 11049 11050 // loopMBB: 11051 // l[wd]arx dest, ptr 11052 // add r0, dest, incr 11053 // st[wd]cx. r0, ptr 11054 // bne- loopMBB 11055 // fallthrough --> exitMBB 11056 11057 // For max/min... 11058 // loopMBB: 11059 // l[wd]arx dest, ptr 11060 // cmpl?[wd] incr, dest 11061 // bgt exitMBB 11062 // loop2MBB: 11063 // st[wd]cx. dest, ptr 11064 // bne- loopMBB 11065 // fallthrough --> exitMBB 11066 11067 BB = loopMBB; 11068 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11069 .addReg(ptrA).addReg(ptrB); 11070 if (BinOpcode) 11071 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11072 if (CmpOpcode) { 11073 // Signed comparisons of byte or halfword values must be sign-extended. 11074 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11075 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11076 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11077 ExtReg).addReg(dest); 11078 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11079 .addReg(incr).addReg(ExtReg); 11080 } else 11081 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11082 .addReg(incr).addReg(dest); 11083 11084 BuildMI(BB, dl, TII->get(PPC::BCC)) 11085 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11086 BB->addSuccessor(loop2MBB); 11087 BB->addSuccessor(exitMBB); 11088 BB = loop2MBB; 11089 } 11090 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11091 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11092 BuildMI(BB, dl, TII->get(PPC::BCC)) 11093 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11094 BB->addSuccessor(loopMBB); 11095 BB->addSuccessor(exitMBB); 11096 11097 // exitMBB: 11098 // ... 11099 BB = exitMBB; 11100 return BB; 11101 } 11102 11103 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11104 switch(MI.getOpcode()) { 11105 default: 11106 return false; 11107 case PPC::COPY: 11108 return TII->isSignExtended(MI); 11109 case PPC::LHA: 11110 case PPC::LHA8: 11111 case PPC::LHAU: 11112 case PPC::LHAU8: 11113 case PPC::LHAUX: 11114 case PPC::LHAUX8: 11115 case PPC::LHAX: 11116 case PPC::LHAX8: 11117 case PPC::LWA: 11118 case PPC::LWAUX: 11119 case PPC::LWAX: 11120 case PPC::LWAX_32: 11121 case PPC::LWA_32: 11122 case PPC::PLHA: 11123 case PPC::PLHA8: 11124 case PPC::PLHA8pc: 11125 case PPC::PLHApc: 11126 case PPC::PLWA: 11127 case PPC::PLWA8: 11128 case PPC::PLWA8pc: 11129 case PPC::PLWApc: 11130 case PPC::EXTSB: 11131 case PPC::EXTSB8: 11132 case PPC::EXTSB8_32_64: 11133 case PPC::EXTSB8_rec: 11134 case PPC::EXTSB_rec: 11135 case PPC::EXTSH: 11136 case PPC::EXTSH8: 11137 case PPC::EXTSH8_32_64: 11138 case PPC::EXTSH8_rec: 11139 case PPC::EXTSH_rec: 11140 case PPC::EXTSW: 11141 case PPC::EXTSWSLI: 11142 case PPC::EXTSWSLI_32_64: 11143 case PPC::EXTSWSLI_32_64_rec: 11144 case PPC::EXTSWSLI_rec: 11145 case PPC::EXTSW_32: 11146 case PPC::EXTSW_32_64: 11147 case PPC::EXTSW_32_64_rec: 11148 case PPC::EXTSW_rec: 11149 case PPC::SRAW: 11150 case PPC::SRAWI: 11151 case PPC::SRAWI_rec: 11152 case PPC::SRAW_rec: 11153 return true; 11154 } 11155 return false; 11156 } 11157 11158 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11159 MachineInstr &MI, MachineBasicBlock *BB, 11160 bool is8bit, // operation 11161 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11162 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11163 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11164 11165 // If this is a signed comparison and the value being compared is not known 11166 // to be sign extended, sign extend it here. 11167 DebugLoc dl = MI.getDebugLoc(); 11168 MachineFunction *F = BB->getParent(); 11169 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11170 Register incr = MI.getOperand(3).getReg(); 11171 bool IsSignExtended = Register::isVirtualRegister(incr) && 11172 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11173 11174 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11175 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11176 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11177 .addReg(MI.getOperand(3).getReg()); 11178 MI.getOperand(3).setReg(ValueReg); 11179 } 11180 // If we support part-word atomic mnemonics, just use them 11181 if (Subtarget.hasPartwordAtomics()) 11182 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11183 CmpPred); 11184 11185 // In 64 bit mode we have to use 64 bits for addresses, even though the 11186 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11187 // registers without caring whether they're 32 or 64, but here we're 11188 // doing actual arithmetic on the addresses. 11189 bool is64bit = Subtarget.isPPC64(); 11190 bool isLittleEndian = Subtarget.isLittleEndian(); 11191 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11192 11193 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11194 MachineFunction::iterator It = ++BB->getIterator(); 11195 11196 Register dest = MI.getOperand(0).getReg(); 11197 Register ptrA = MI.getOperand(1).getReg(); 11198 Register ptrB = MI.getOperand(2).getReg(); 11199 11200 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11201 MachineBasicBlock *loop2MBB = 11202 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11203 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11204 F->insert(It, loopMBB); 11205 if (CmpOpcode) 11206 F->insert(It, loop2MBB); 11207 F->insert(It, exitMBB); 11208 exitMBB->splice(exitMBB->begin(), BB, 11209 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11210 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11211 11212 const TargetRegisterClass *RC = 11213 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11214 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11215 11216 Register PtrReg = RegInfo.createVirtualRegister(RC); 11217 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11218 Register ShiftReg = 11219 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11220 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11221 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11222 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11223 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11224 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11225 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11226 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11227 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11228 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11229 Register Ptr1Reg; 11230 Register TmpReg = 11231 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11232 11233 // thisMBB: 11234 // ... 11235 // fallthrough --> loopMBB 11236 BB->addSuccessor(loopMBB); 11237 11238 // The 4-byte load must be aligned, while a char or short may be 11239 // anywhere in the word. Hence all this nasty bookkeeping code. 11240 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11241 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11242 // xori shift, shift1, 24 [16] 11243 // rlwinm ptr, ptr1, 0, 0, 29 11244 // slw incr2, incr, shift 11245 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11246 // slw mask, mask2, shift 11247 // loopMBB: 11248 // lwarx tmpDest, ptr 11249 // add tmp, tmpDest, incr2 11250 // andc tmp2, tmpDest, mask 11251 // and tmp3, tmp, mask 11252 // or tmp4, tmp3, tmp2 11253 // stwcx. tmp4, ptr 11254 // bne- loopMBB 11255 // fallthrough --> exitMBB 11256 // srw SrwDest, tmpDest, shift 11257 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11258 if (ptrA != ZeroReg) { 11259 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11260 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11261 .addReg(ptrA) 11262 .addReg(ptrB); 11263 } else { 11264 Ptr1Reg = ptrB; 11265 } 11266 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11267 // mode. 11268 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11269 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11270 .addImm(3) 11271 .addImm(27) 11272 .addImm(is8bit ? 28 : 27); 11273 if (!isLittleEndian) 11274 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11275 .addReg(Shift1Reg) 11276 .addImm(is8bit ? 24 : 16); 11277 if (is64bit) 11278 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11279 .addReg(Ptr1Reg) 11280 .addImm(0) 11281 .addImm(61); 11282 else 11283 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11284 .addReg(Ptr1Reg) 11285 .addImm(0) 11286 .addImm(0) 11287 .addImm(29); 11288 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11289 if (is8bit) 11290 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11291 else { 11292 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11293 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11294 .addReg(Mask3Reg) 11295 .addImm(65535); 11296 } 11297 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11298 .addReg(Mask2Reg) 11299 .addReg(ShiftReg); 11300 11301 BB = loopMBB; 11302 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11303 .addReg(ZeroReg) 11304 .addReg(PtrReg); 11305 if (BinOpcode) 11306 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11307 .addReg(Incr2Reg) 11308 .addReg(TmpDestReg); 11309 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11310 .addReg(TmpDestReg) 11311 .addReg(MaskReg); 11312 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11313 if (CmpOpcode) { 11314 // For unsigned comparisons, we can directly compare the shifted values. 11315 // For signed comparisons we shift and sign extend. 11316 Register SReg = RegInfo.createVirtualRegister(GPRC); 11317 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11318 .addReg(TmpDestReg) 11319 .addReg(MaskReg); 11320 unsigned ValueReg = SReg; 11321 unsigned CmpReg = Incr2Reg; 11322 if (CmpOpcode == PPC::CMPW) { 11323 ValueReg = RegInfo.createVirtualRegister(GPRC); 11324 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11325 .addReg(SReg) 11326 .addReg(ShiftReg); 11327 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11328 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11329 .addReg(ValueReg); 11330 ValueReg = ValueSReg; 11331 CmpReg = incr; 11332 } 11333 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11334 .addReg(CmpReg) 11335 .addReg(ValueReg); 11336 BuildMI(BB, dl, TII->get(PPC::BCC)) 11337 .addImm(CmpPred) 11338 .addReg(PPC::CR0) 11339 .addMBB(exitMBB); 11340 BB->addSuccessor(loop2MBB); 11341 BB->addSuccessor(exitMBB); 11342 BB = loop2MBB; 11343 } 11344 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11345 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11346 .addReg(Tmp4Reg) 11347 .addReg(ZeroReg) 11348 .addReg(PtrReg); 11349 BuildMI(BB, dl, TII->get(PPC::BCC)) 11350 .addImm(PPC::PRED_NE) 11351 .addReg(PPC::CR0) 11352 .addMBB(loopMBB); 11353 BB->addSuccessor(loopMBB); 11354 BB->addSuccessor(exitMBB); 11355 11356 // exitMBB: 11357 // ... 11358 BB = exitMBB; 11359 // Since the shift amount is not a constant, we need to clear 11360 // the upper bits with a separate RLWINM. 11361 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11362 .addReg(SrwDestReg) 11363 .addImm(0) 11364 .addImm(is8bit ? 24 : 16) 11365 .addImm(31); 11366 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11367 .addReg(TmpDestReg) 11368 .addReg(ShiftReg); 11369 return BB; 11370 } 11371 11372 llvm::MachineBasicBlock * 11373 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11374 MachineBasicBlock *MBB) const { 11375 DebugLoc DL = MI.getDebugLoc(); 11376 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11377 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11378 11379 MachineFunction *MF = MBB->getParent(); 11380 MachineRegisterInfo &MRI = MF->getRegInfo(); 11381 11382 const BasicBlock *BB = MBB->getBasicBlock(); 11383 MachineFunction::iterator I = ++MBB->getIterator(); 11384 11385 Register DstReg = MI.getOperand(0).getReg(); 11386 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11387 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11388 Register mainDstReg = MRI.createVirtualRegister(RC); 11389 Register restoreDstReg = MRI.createVirtualRegister(RC); 11390 11391 MVT PVT = getPointerTy(MF->getDataLayout()); 11392 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11393 "Invalid Pointer Size!"); 11394 // For v = setjmp(buf), we generate 11395 // 11396 // thisMBB: 11397 // SjLjSetup mainMBB 11398 // bl mainMBB 11399 // v_restore = 1 11400 // b sinkMBB 11401 // 11402 // mainMBB: 11403 // buf[LabelOffset] = LR 11404 // v_main = 0 11405 // 11406 // sinkMBB: 11407 // v = phi(main, restore) 11408 // 11409 11410 MachineBasicBlock *thisMBB = MBB; 11411 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11412 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11413 MF->insert(I, mainMBB); 11414 MF->insert(I, sinkMBB); 11415 11416 MachineInstrBuilder MIB; 11417 11418 // Transfer the remainder of BB and its successor edges to sinkMBB. 11419 sinkMBB->splice(sinkMBB->begin(), MBB, 11420 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11421 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11422 11423 // Note that the structure of the jmp_buf used here is not compatible 11424 // with that used by libc, and is not designed to be. Specifically, it 11425 // stores only those 'reserved' registers that LLVM does not otherwise 11426 // understand how to spill. Also, by convention, by the time this 11427 // intrinsic is called, Clang has already stored the frame address in the 11428 // first slot of the buffer and stack address in the third. Following the 11429 // X86 target code, we'll store the jump address in the second slot. We also 11430 // need to save the TOC pointer (R2) to handle jumps between shared 11431 // libraries, and that will be stored in the fourth slot. The thread 11432 // identifier (R13) is not affected. 11433 11434 // thisMBB: 11435 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11436 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11437 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11438 11439 // Prepare IP either in reg. 11440 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11441 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11442 Register BufReg = MI.getOperand(1).getReg(); 11443 11444 if (Subtarget.is64BitELFABI()) { 11445 setUsesTOCBasePtr(*MBB->getParent()); 11446 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11447 .addReg(PPC::X2) 11448 .addImm(TOCOffset) 11449 .addReg(BufReg) 11450 .cloneMemRefs(MI); 11451 } 11452 11453 // Naked functions never have a base pointer, and so we use r1. For all 11454 // other functions, this decision must be delayed until during PEI. 11455 unsigned BaseReg; 11456 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11457 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11458 else 11459 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11460 11461 MIB = BuildMI(*thisMBB, MI, DL, 11462 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11463 .addReg(BaseReg) 11464 .addImm(BPOffset) 11465 .addReg(BufReg) 11466 .cloneMemRefs(MI); 11467 11468 // Setup 11469 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11470 MIB.addRegMask(TRI->getNoPreservedMask()); 11471 11472 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11473 11474 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11475 .addMBB(mainMBB); 11476 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11477 11478 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11479 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11480 11481 // mainMBB: 11482 // mainDstReg = 0 11483 MIB = 11484 BuildMI(mainMBB, DL, 11485 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11486 11487 // Store IP 11488 if (Subtarget.isPPC64()) { 11489 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11490 .addReg(LabelReg) 11491 .addImm(LabelOffset) 11492 .addReg(BufReg); 11493 } else { 11494 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11495 .addReg(LabelReg) 11496 .addImm(LabelOffset) 11497 .addReg(BufReg); 11498 } 11499 MIB.cloneMemRefs(MI); 11500 11501 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11502 mainMBB->addSuccessor(sinkMBB); 11503 11504 // sinkMBB: 11505 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11506 TII->get(PPC::PHI), DstReg) 11507 .addReg(mainDstReg).addMBB(mainMBB) 11508 .addReg(restoreDstReg).addMBB(thisMBB); 11509 11510 MI.eraseFromParent(); 11511 return sinkMBB; 11512 } 11513 11514 MachineBasicBlock * 11515 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11516 MachineBasicBlock *MBB) const { 11517 DebugLoc DL = MI.getDebugLoc(); 11518 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11519 11520 MachineFunction *MF = MBB->getParent(); 11521 MachineRegisterInfo &MRI = MF->getRegInfo(); 11522 11523 MVT PVT = getPointerTy(MF->getDataLayout()); 11524 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11525 "Invalid Pointer Size!"); 11526 11527 const TargetRegisterClass *RC = 11528 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11529 Register Tmp = MRI.createVirtualRegister(RC); 11530 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11531 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11532 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11533 unsigned BP = 11534 (PVT == MVT::i64) 11535 ? PPC::X30 11536 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11537 : PPC::R30); 11538 11539 MachineInstrBuilder MIB; 11540 11541 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11542 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11543 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11544 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11545 11546 Register BufReg = MI.getOperand(0).getReg(); 11547 11548 // Reload FP (the jumped-to function may not have had a 11549 // frame pointer, and if so, then its r31 will be restored 11550 // as necessary). 11551 if (PVT == MVT::i64) { 11552 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11553 .addImm(0) 11554 .addReg(BufReg); 11555 } else { 11556 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11557 .addImm(0) 11558 .addReg(BufReg); 11559 } 11560 MIB.cloneMemRefs(MI); 11561 11562 // Reload IP 11563 if (PVT == MVT::i64) { 11564 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11565 .addImm(LabelOffset) 11566 .addReg(BufReg); 11567 } else { 11568 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11569 .addImm(LabelOffset) 11570 .addReg(BufReg); 11571 } 11572 MIB.cloneMemRefs(MI); 11573 11574 // Reload SP 11575 if (PVT == MVT::i64) { 11576 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11577 .addImm(SPOffset) 11578 .addReg(BufReg); 11579 } else { 11580 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11581 .addImm(SPOffset) 11582 .addReg(BufReg); 11583 } 11584 MIB.cloneMemRefs(MI); 11585 11586 // Reload BP 11587 if (PVT == MVT::i64) { 11588 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11589 .addImm(BPOffset) 11590 .addReg(BufReg); 11591 } else { 11592 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11593 .addImm(BPOffset) 11594 .addReg(BufReg); 11595 } 11596 MIB.cloneMemRefs(MI); 11597 11598 // Reload TOC 11599 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11600 setUsesTOCBasePtr(*MBB->getParent()); 11601 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11602 .addImm(TOCOffset) 11603 .addReg(BufReg) 11604 .cloneMemRefs(MI); 11605 } 11606 11607 // Jump 11608 BuildMI(*MBB, MI, DL, 11609 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11610 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11611 11612 MI.eraseFromParent(); 11613 return MBB; 11614 } 11615 11616 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11617 // If the function specifically requests inline stack probes, emit them. 11618 if (MF.getFunction().hasFnAttribute("probe-stack")) 11619 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11620 "inline-asm"; 11621 return false; 11622 } 11623 11624 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11625 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11626 unsigned StackAlign = TFI->getStackAlignment(); 11627 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11628 "Unexpected stack alignment"); 11629 // The default stack probe size is 4096 if the function has no 11630 // stack-probe-size attribute. 11631 unsigned StackProbeSize = 4096; 11632 const Function &Fn = MF.getFunction(); 11633 if (Fn.hasFnAttribute("stack-probe-size")) 11634 Fn.getFnAttribute("stack-probe-size") 11635 .getValueAsString() 11636 .getAsInteger(0, StackProbeSize); 11637 // Round down to the stack alignment. 11638 StackProbeSize &= ~(StackAlign - 1); 11639 return StackProbeSize ? StackProbeSize : StackAlign; 11640 } 11641 11642 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11643 // into three phases. In the first phase, it uses pseudo instruction 11644 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11645 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11646 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11647 // MaxCallFrameSize so that it can calculate correct data area pointer. 11648 MachineBasicBlock * 11649 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11650 MachineBasicBlock *MBB) const { 11651 const bool isPPC64 = Subtarget.isPPC64(); 11652 MachineFunction *MF = MBB->getParent(); 11653 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11654 DebugLoc DL = MI.getDebugLoc(); 11655 const unsigned ProbeSize = getStackProbeSize(*MF); 11656 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11657 MachineRegisterInfo &MRI = MF->getRegInfo(); 11658 // The CFG of probing stack looks as 11659 // +-----+ 11660 // | MBB | 11661 // +--+--+ 11662 // | 11663 // +----v----+ 11664 // +--->+ TestMBB +---+ 11665 // | +----+----+ | 11666 // | | | 11667 // | +-----v----+ | 11668 // +---+ BlockMBB | | 11669 // +----------+ | 11670 // | 11671 // +---------+ | 11672 // | TailMBB +<--+ 11673 // +---------+ 11674 // In MBB, calculate previous frame pointer and final stack pointer. 11675 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11676 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11677 // TailMBB is spliced via \p MI. 11678 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11679 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11680 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11681 11682 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11683 MF->insert(MBBIter, TestMBB); 11684 MF->insert(MBBIter, BlockMBB); 11685 MF->insert(MBBIter, TailMBB); 11686 11687 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11688 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11689 11690 Register DstReg = MI.getOperand(0).getReg(); 11691 Register NegSizeReg = MI.getOperand(1).getReg(); 11692 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11693 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11694 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11695 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11696 11697 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11698 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11699 // NegSize. 11700 unsigned ProbeOpc; 11701 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11702 ProbeOpc = 11703 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11704 else 11705 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11706 // and NegSizeReg will be allocated in the same phyreg to avoid 11707 // redundant copy when NegSizeReg has only one use which is current MI and 11708 // will be replaced by PREPARE_PROBED_ALLOCA then. 11709 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11710 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11711 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11712 .addDef(ActualNegSizeReg) 11713 .addReg(NegSizeReg) 11714 .add(MI.getOperand(2)) 11715 .add(MI.getOperand(3)); 11716 11717 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11718 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11719 FinalStackPtr) 11720 .addReg(SPReg) 11721 .addReg(ActualNegSizeReg); 11722 11723 // Materialize a scratch register for update. 11724 int64_t NegProbeSize = -(int64_t)ProbeSize; 11725 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11726 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11727 if (!isInt<16>(NegProbeSize)) { 11728 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11729 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11730 .addImm(NegProbeSize >> 16); 11731 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11732 ScratchReg) 11733 .addReg(TempReg) 11734 .addImm(NegProbeSize & 0xFFFF); 11735 } else 11736 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11737 .addImm(NegProbeSize); 11738 11739 { 11740 // Probing leading residual part. 11741 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11742 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11743 .addReg(ActualNegSizeReg) 11744 .addReg(ScratchReg); 11745 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11746 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11747 .addReg(Div) 11748 .addReg(ScratchReg); 11749 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11750 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11751 .addReg(Mul) 11752 .addReg(ActualNegSizeReg); 11753 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11754 .addReg(FramePointer) 11755 .addReg(SPReg) 11756 .addReg(NegMod); 11757 } 11758 11759 { 11760 // Remaining part should be multiple of ProbeSize. 11761 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11762 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11763 .addReg(SPReg) 11764 .addReg(FinalStackPtr); 11765 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11766 .addImm(PPC::PRED_EQ) 11767 .addReg(CmpResult) 11768 .addMBB(TailMBB); 11769 TestMBB->addSuccessor(BlockMBB); 11770 TestMBB->addSuccessor(TailMBB); 11771 } 11772 11773 { 11774 // Touch the block. 11775 // |P...|P...|P... 11776 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11777 .addReg(FramePointer) 11778 .addReg(SPReg) 11779 .addReg(ScratchReg); 11780 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11781 BlockMBB->addSuccessor(TestMBB); 11782 } 11783 11784 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11785 // DYNAREAOFFSET pseudo instruction to get the future result. 11786 Register MaxCallFrameSizeReg = 11787 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11788 BuildMI(TailMBB, DL, 11789 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11790 MaxCallFrameSizeReg) 11791 .add(MI.getOperand(2)) 11792 .add(MI.getOperand(3)); 11793 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11794 .addReg(SPReg) 11795 .addReg(MaxCallFrameSizeReg); 11796 11797 // Splice instructions after MI to TailMBB. 11798 TailMBB->splice(TailMBB->end(), MBB, 11799 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11800 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11801 MBB->addSuccessor(TestMBB); 11802 11803 // Delete the pseudo instruction. 11804 MI.eraseFromParent(); 11805 11806 ++NumDynamicAllocaProbed; 11807 return TailMBB; 11808 } 11809 11810 MachineBasicBlock * 11811 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11812 MachineBasicBlock *BB) const { 11813 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11814 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11815 if (Subtarget.is64BitELFABI() && 11816 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11817 !Subtarget.isUsingPCRelativeCalls()) { 11818 // Call lowering should have added an r2 operand to indicate a dependence 11819 // on the TOC base pointer value. It can't however, because there is no 11820 // way to mark the dependence as implicit there, and so the stackmap code 11821 // will confuse it with a regular operand. Instead, add the dependence 11822 // here. 11823 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11824 } 11825 11826 return emitPatchPoint(MI, BB); 11827 } 11828 11829 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11830 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11831 return emitEHSjLjSetJmp(MI, BB); 11832 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11833 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11834 return emitEHSjLjLongJmp(MI, BB); 11835 } 11836 11837 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11838 11839 // To "insert" these instructions we actually have to insert their 11840 // control-flow patterns. 11841 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11842 MachineFunction::iterator It = ++BB->getIterator(); 11843 11844 MachineFunction *F = BB->getParent(); 11845 11846 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11847 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11848 MI.getOpcode() == PPC::SELECT_I8) { 11849 SmallVector<MachineOperand, 2> Cond; 11850 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11851 MI.getOpcode() == PPC::SELECT_CC_I8) 11852 Cond.push_back(MI.getOperand(4)); 11853 else 11854 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11855 Cond.push_back(MI.getOperand(1)); 11856 11857 DebugLoc dl = MI.getDebugLoc(); 11858 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11859 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11860 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11861 MI.getOpcode() == PPC::SELECT_CC_F8 || 11862 MI.getOpcode() == PPC::SELECT_CC_F16 || 11863 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11864 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11865 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11866 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11867 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11868 MI.getOpcode() == PPC::SELECT_CC_SPE || 11869 MI.getOpcode() == PPC::SELECT_F4 || 11870 MI.getOpcode() == PPC::SELECT_F8 || 11871 MI.getOpcode() == PPC::SELECT_F16 || 11872 MI.getOpcode() == PPC::SELECT_SPE || 11873 MI.getOpcode() == PPC::SELECT_SPE4 || 11874 MI.getOpcode() == PPC::SELECT_VRRC || 11875 MI.getOpcode() == PPC::SELECT_VSFRC || 11876 MI.getOpcode() == PPC::SELECT_VSSRC || 11877 MI.getOpcode() == PPC::SELECT_VSRC) { 11878 // The incoming instruction knows the destination vreg to set, the 11879 // condition code register to branch on, the true/false values to 11880 // select between, and a branch opcode to use. 11881 11882 // thisMBB: 11883 // ... 11884 // TrueVal = ... 11885 // cmpTY ccX, r1, r2 11886 // bCC copy1MBB 11887 // fallthrough --> copy0MBB 11888 MachineBasicBlock *thisMBB = BB; 11889 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11890 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11891 DebugLoc dl = MI.getDebugLoc(); 11892 F->insert(It, copy0MBB); 11893 F->insert(It, sinkMBB); 11894 11895 // Transfer the remainder of BB and its successor edges to sinkMBB. 11896 sinkMBB->splice(sinkMBB->begin(), BB, 11897 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11898 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11899 11900 // Next, add the true and fallthrough blocks as its successors. 11901 BB->addSuccessor(copy0MBB); 11902 BB->addSuccessor(sinkMBB); 11903 11904 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11905 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11906 MI.getOpcode() == PPC::SELECT_F16 || 11907 MI.getOpcode() == PPC::SELECT_SPE4 || 11908 MI.getOpcode() == PPC::SELECT_SPE || 11909 MI.getOpcode() == PPC::SELECT_VRRC || 11910 MI.getOpcode() == PPC::SELECT_VSFRC || 11911 MI.getOpcode() == PPC::SELECT_VSSRC || 11912 MI.getOpcode() == PPC::SELECT_VSRC) { 11913 BuildMI(BB, dl, TII->get(PPC::BC)) 11914 .addReg(MI.getOperand(1).getReg()) 11915 .addMBB(sinkMBB); 11916 } else { 11917 unsigned SelectPred = MI.getOperand(4).getImm(); 11918 BuildMI(BB, dl, TII->get(PPC::BCC)) 11919 .addImm(SelectPred) 11920 .addReg(MI.getOperand(1).getReg()) 11921 .addMBB(sinkMBB); 11922 } 11923 11924 // copy0MBB: 11925 // %FalseValue = ... 11926 // # fallthrough to sinkMBB 11927 BB = copy0MBB; 11928 11929 // Update machine-CFG edges 11930 BB->addSuccessor(sinkMBB); 11931 11932 // sinkMBB: 11933 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11934 // ... 11935 BB = sinkMBB; 11936 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11937 .addReg(MI.getOperand(3).getReg()) 11938 .addMBB(copy0MBB) 11939 .addReg(MI.getOperand(2).getReg()) 11940 .addMBB(thisMBB); 11941 } else if (MI.getOpcode() == PPC::ReadTB) { 11942 // To read the 64-bit time-base register on a 32-bit target, we read the 11943 // two halves. Should the counter have wrapped while it was being read, we 11944 // need to try again. 11945 // ... 11946 // readLoop: 11947 // mfspr Rx,TBU # load from TBU 11948 // mfspr Ry,TB # load from TB 11949 // mfspr Rz,TBU # load from TBU 11950 // cmpw crX,Rx,Rz # check if 'old'='new' 11951 // bne readLoop # branch if they're not equal 11952 // ... 11953 11954 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11955 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11956 DebugLoc dl = MI.getDebugLoc(); 11957 F->insert(It, readMBB); 11958 F->insert(It, sinkMBB); 11959 11960 // Transfer the remainder of BB and its successor edges to sinkMBB. 11961 sinkMBB->splice(sinkMBB->begin(), BB, 11962 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11963 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11964 11965 BB->addSuccessor(readMBB); 11966 BB = readMBB; 11967 11968 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11969 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11970 Register LoReg = MI.getOperand(0).getReg(); 11971 Register HiReg = MI.getOperand(1).getReg(); 11972 11973 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11974 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11975 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11976 11977 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11978 11979 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11980 .addReg(HiReg) 11981 .addReg(ReadAgainReg); 11982 BuildMI(BB, dl, TII->get(PPC::BCC)) 11983 .addImm(PPC::PRED_NE) 11984 .addReg(CmpReg) 11985 .addMBB(readMBB); 11986 11987 BB->addSuccessor(readMBB); 11988 BB->addSuccessor(sinkMBB); 11989 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11990 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11991 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11992 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11993 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11994 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11995 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11996 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11997 11998 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11999 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12000 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12001 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12002 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12003 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12004 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12005 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12006 12007 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12008 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12009 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12010 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12011 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12012 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12013 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12014 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12015 12016 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12017 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12018 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12019 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12020 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12021 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12022 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12023 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12024 12025 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12026 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12027 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12028 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12029 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12030 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12031 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12032 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12033 12034 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12035 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12036 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12037 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12038 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12039 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12040 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12041 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12042 12043 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12044 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12045 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12046 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12047 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12048 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12049 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12050 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12051 12052 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12053 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12054 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12055 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12056 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12057 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12058 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12059 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12060 12061 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12062 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12063 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12064 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12065 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12066 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12067 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12068 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12069 12070 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12071 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12072 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12073 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12074 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12075 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12076 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12077 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12078 12079 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12080 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12081 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12082 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12083 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12084 BB = EmitAtomicBinary(MI, BB, 4, 0); 12085 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12086 BB = EmitAtomicBinary(MI, BB, 8, 0); 12087 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12088 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12089 (Subtarget.hasPartwordAtomics() && 12090 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12091 (Subtarget.hasPartwordAtomics() && 12092 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12093 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12094 12095 auto LoadMnemonic = PPC::LDARX; 12096 auto StoreMnemonic = PPC::STDCX; 12097 switch (MI.getOpcode()) { 12098 default: 12099 llvm_unreachable("Compare and swap of unknown size"); 12100 case PPC::ATOMIC_CMP_SWAP_I8: 12101 LoadMnemonic = PPC::LBARX; 12102 StoreMnemonic = PPC::STBCX; 12103 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12104 break; 12105 case PPC::ATOMIC_CMP_SWAP_I16: 12106 LoadMnemonic = PPC::LHARX; 12107 StoreMnemonic = PPC::STHCX; 12108 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12109 break; 12110 case PPC::ATOMIC_CMP_SWAP_I32: 12111 LoadMnemonic = PPC::LWARX; 12112 StoreMnemonic = PPC::STWCX; 12113 break; 12114 case PPC::ATOMIC_CMP_SWAP_I64: 12115 LoadMnemonic = PPC::LDARX; 12116 StoreMnemonic = PPC::STDCX; 12117 break; 12118 } 12119 Register dest = MI.getOperand(0).getReg(); 12120 Register ptrA = MI.getOperand(1).getReg(); 12121 Register ptrB = MI.getOperand(2).getReg(); 12122 Register oldval = MI.getOperand(3).getReg(); 12123 Register newval = MI.getOperand(4).getReg(); 12124 DebugLoc dl = MI.getDebugLoc(); 12125 12126 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12127 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12128 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12129 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12130 F->insert(It, loop1MBB); 12131 F->insert(It, loop2MBB); 12132 F->insert(It, midMBB); 12133 F->insert(It, exitMBB); 12134 exitMBB->splice(exitMBB->begin(), BB, 12135 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12136 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12137 12138 // thisMBB: 12139 // ... 12140 // fallthrough --> loopMBB 12141 BB->addSuccessor(loop1MBB); 12142 12143 // loop1MBB: 12144 // l[bhwd]arx dest, ptr 12145 // cmp[wd] dest, oldval 12146 // bne- midMBB 12147 // loop2MBB: 12148 // st[bhwd]cx. newval, ptr 12149 // bne- loopMBB 12150 // b exitBB 12151 // midMBB: 12152 // st[bhwd]cx. dest, ptr 12153 // exitBB: 12154 BB = loop1MBB; 12155 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12156 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12157 .addReg(oldval) 12158 .addReg(dest); 12159 BuildMI(BB, dl, TII->get(PPC::BCC)) 12160 .addImm(PPC::PRED_NE) 12161 .addReg(PPC::CR0) 12162 .addMBB(midMBB); 12163 BB->addSuccessor(loop2MBB); 12164 BB->addSuccessor(midMBB); 12165 12166 BB = loop2MBB; 12167 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12168 .addReg(newval) 12169 .addReg(ptrA) 12170 .addReg(ptrB); 12171 BuildMI(BB, dl, TII->get(PPC::BCC)) 12172 .addImm(PPC::PRED_NE) 12173 .addReg(PPC::CR0) 12174 .addMBB(loop1MBB); 12175 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12176 BB->addSuccessor(loop1MBB); 12177 BB->addSuccessor(exitMBB); 12178 12179 BB = midMBB; 12180 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12181 .addReg(dest) 12182 .addReg(ptrA) 12183 .addReg(ptrB); 12184 BB->addSuccessor(exitMBB); 12185 12186 // exitMBB: 12187 // ... 12188 BB = exitMBB; 12189 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12190 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12191 // We must use 64-bit registers for addresses when targeting 64-bit, 12192 // since we're actually doing arithmetic on them. Other registers 12193 // can be 32-bit. 12194 bool is64bit = Subtarget.isPPC64(); 12195 bool isLittleEndian = Subtarget.isLittleEndian(); 12196 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12197 12198 Register dest = MI.getOperand(0).getReg(); 12199 Register ptrA = MI.getOperand(1).getReg(); 12200 Register ptrB = MI.getOperand(2).getReg(); 12201 Register oldval = MI.getOperand(3).getReg(); 12202 Register newval = MI.getOperand(4).getReg(); 12203 DebugLoc dl = MI.getDebugLoc(); 12204 12205 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12206 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12207 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12208 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12209 F->insert(It, loop1MBB); 12210 F->insert(It, loop2MBB); 12211 F->insert(It, midMBB); 12212 F->insert(It, exitMBB); 12213 exitMBB->splice(exitMBB->begin(), BB, 12214 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12215 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12216 12217 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12218 const TargetRegisterClass *RC = 12219 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12220 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12221 12222 Register PtrReg = RegInfo.createVirtualRegister(RC); 12223 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12224 Register ShiftReg = 12225 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12226 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12227 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12228 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12229 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12230 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12231 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12232 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12233 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12234 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12235 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12236 Register Ptr1Reg; 12237 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12238 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12239 // thisMBB: 12240 // ... 12241 // fallthrough --> loopMBB 12242 BB->addSuccessor(loop1MBB); 12243 12244 // The 4-byte load must be aligned, while a char or short may be 12245 // anywhere in the word. Hence all this nasty bookkeeping code. 12246 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12247 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12248 // xori shift, shift1, 24 [16] 12249 // rlwinm ptr, ptr1, 0, 0, 29 12250 // slw newval2, newval, shift 12251 // slw oldval2, oldval,shift 12252 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12253 // slw mask, mask2, shift 12254 // and newval3, newval2, mask 12255 // and oldval3, oldval2, mask 12256 // loop1MBB: 12257 // lwarx tmpDest, ptr 12258 // and tmp, tmpDest, mask 12259 // cmpw tmp, oldval3 12260 // bne- midMBB 12261 // loop2MBB: 12262 // andc tmp2, tmpDest, mask 12263 // or tmp4, tmp2, newval3 12264 // stwcx. tmp4, ptr 12265 // bne- loop1MBB 12266 // b exitBB 12267 // midMBB: 12268 // stwcx. tmpDest, ptr 12269 // exitBB: 12270 // srw dest, tmpDest, shift 12271 if (ptrA != ZeroReg) { 12272 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12273 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12274 .addReg(ptrA) 12275 .addReg(ptrB); 12276 } else { 12277 Ptr1Reg = ptrB; 12278 } 12279 12280 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12281 // mode. 12282 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12283 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12284 .addImm(3) 12285 .addImm(27) 12286 .addImm(is8bit ? 28 : 27); 12287 if (!isLittleEndian) 12288 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12289 .addReg(Shift1Reg) 12290 .addImm(is8bit ? 24 : 16); 12291 if (is64bit) 12292 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12293 .addReg(Ptr1Reg) 12294 .addImm(0) 12295 .addImm(61); 12296 else 12297 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12298 .addReg(Ptr1Reg) 12299 .addImm(0) 12300 .addImm(0) 12301 .addImm(29); 12302 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12303 .addReg(newval) 12304 .addReg(ShiftReg); 12305 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12306 .addReg(oldval) 12307 .addReg(ShiftReg); 12308 if (is8bit) 12309 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12310 else { 12311 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12312 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12313 .addReg(Mask3Reg) 12314 .addImm(65535); 12315 } 12316 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12317 .addReg(Mask2Reg) 12318 .addReg(ShiftReg); 12319 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12320 .addReg(NewVal2Reg) 12321 .addReg(MaskReg); 12322 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12323 .addReg(OldVal2Reg) 12324 .addReg(MaskReg); 12325 12326 BB = loop1MBB; 12327 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12328 .addReg(ZeroReg) 12329 .addReg(PtrReg); 12330 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12331 .addReg(TmpDestReg) 12332 .addReg(MaskReg); 12333 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12334 .addReg(TmpReg) 12335 .addReg(OldVal3Reg); 12336 BuildMI(BB, dl, TII->get(PPC::BCC)) 12337 .addImm(PPC::PRED_NE) 12338 .addReg(PPC::CR0) 12339 .addMBB(midMBB); 12340 BB->addSuccessor(loop2MBB); 12341 BB->addSuccessor(midMBB); 12342 12343 BB = loop2MBB; 12344 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12345 .addReg(TmpDestReg) 12346 .addReg(MaskReg); 12347 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12348 .addReg(Tmp2Reg) 12349 .addReg(NewVal3Reg); 12350 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12351 .addReg(Tmp4Reg) 12352 .addReg(ZeroReg) 12353 .addReg(PtrReg); 12354 BuildMI(BB, dl, TII->get(PPC::BCC)) 12355 .addImm(PPC::PRED_NE) 12356 .addReg(PPC::CR0) 12357 .addMBB(loop1MBB); 12358 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12359 BB->addSuccessor(loop1MBB); 12360 BB->addSuccessor(exitMBB); 12361 12362 BB = midMBB; 12363 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12364 .addReg(TmpDestReg) 12365 .addReg(ZeroReg) 12366 .addReg(PtrReg); 12367 BB->addSuccessor(exitMBB); 12368 12369 // exitMBB: 12370 // ... 12371 BB = exitMBB; 12372 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12373 .addReg(TmpReg) 12374 .addReg(ShiftReg); 12375 } else if (MI.getOpcode() == PPC::FADDrtz) { 12376 // This pseudo performs an FADD with rounding mode temporarily forced 12377 // to round-to-zero. We emit this via custom inserter since the FPSCR 12378 // is not modeled at the SelectionDAG level. 12379 Register Dest = MI.getOperand(0).getReg(); 12380 Register Src1 = MI.getOperand(1).getReg(); 12381 Register Src2 = MI.getOperand(2).getReg(); 12382 DebugLoc dl = MI.getDebugLoc(); 12383 12384 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12385 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12386 12387 // Save FPSCR value. 12388 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12389 12390 // Set rounding mode to round-to-zero. 12391 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12392 .addImm(31) 12393 .addReg(PPC::RM, RegState::ImplicitDefine); 12394 12395 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12396 .addImm(30) 12397 .addReg(PPC::RM, RegState::ImplicitDefine); 12398 12399 // Perform addition. 12400 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12401 .addReg(Src1) 12402 .addReg(Src2); 12403 if (MI.getFlag(MachineInstr::NoFPExcept)) 12404 MIB.setMIFlag(MachineInstr::NoFPExcept); 12405 12406 // Restore FPSCR value. 12407 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12408 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12409 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12410 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12411 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12412 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12413 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12414 ? PPC::ANDI8_rec 12415 : PPC::ANDI_rec; 12416 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12417 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12418 12419 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12420 Register Dest = RegInfo.createVirtualRegister( 12421 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12422 12423 DebugLoc Dl = MI.getDebugLoc(); 12424 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12425 .addReg(MI.getOperand(1).getReg()) 12426 .addImm(1); 12427 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12428 MI.getOperand(0).getReg()) 12429 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12430 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12431 DebugLoc Dl = MI.getDebugLoc(); 12432 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12433 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12434 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12435 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12436 MI.getOperand(0).getReg()) 12437 .addReg(CRReg); 12438 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12439 DebugLoc Dl = MI.getDebugLoc(); 12440 unsigned Imm = MI.getOperand(1).getImm(); 12441 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12442 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12443 MI.getOperand(0).getReg()) 12444 .addReg(PPC::CR0EQ); 12445 } else if (MI.getOpcode() == PPC::SETRNDi) { 12446 DebugLoc dl = MI.getDebugLoc(); 12447 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12448 12449 // Save FPSCR value. 12450 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12451 12452 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12453 // the following settings: 12454 // 00 Round to nearest 12455 // 01 Round to 0 12456 // 10 Round to +inf 12457 // 11 Round to -inf 12458 12459 // When the operand is immediate, using the two least significant bits of 12460 // the immediate to set the bits 62:63 of FPSCR. 12461 unsigned Mode = MI.getOperand(1).getImm(); 12462 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12463 .addImm(31) 12464 .addReg(PPC::RM, RegState::ImplicitDefine); 12465 12466 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12467 .addImm(30) 12468 .addReg(PPC::RM, RegState::ImplicitDefine); 12469 } else if (MI.getOpcode() == PPC::SETRND) { 12470 DebugLoc dl = MI.getDebugLoc(); 12471 12472 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12473 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12474 // If the target doesn't have DirectMove, we should use stack to do the 12475 // conversion, because the target doesn't have the instructions like mtvsrd 12476 // or mfvsrd to do this conversion directly. 12477 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12478 if (Subtarget.hasDirectMove()) { 12479 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12480 .addReg(SrcReg); 12481 } else { 12482 // Use stack to do the register copy. 12483 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12484 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12485 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12486 if (RC == &PPC::F8RCRegClass) { 12487 // Copy register from F8RCRegClass to G8RCRegclass. 12488 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12489 "Unsupported RegClass."); 12490 12491 StoreOp = PPC::STFD; 12492 LoadOp = PPC::LD; 12493 } else { 12494 // Copy register from G8RCRegClass to F8RCRegclass. 12495 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12496 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12497 "Unsupported RegClass."); 12498 } 12499 12500 MachineFrameInfo &MFI = F->getFrameInfo(); 12501 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12502 12503 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12504 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12505 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12506 MFI.getObjectAlign(FrameIdx)); 12507 12508 // Store the SrcReg into the stack. 12509 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12510 .addReg(SrcReg) 12511 .addImm(0) 12512 .addFrameIndex(FrameIdx) 12513 .addMemOperand(MMOStore); 12514 12515 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12516 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12517 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12518 MFI.getObjectAlign(FrameIdx)); 12519 12520 // Load from the stack where SrcReg is stored, and save to DestReg, 12521 // so we have done the RegClass conversion from RegClass::SrcReg to 12522 // RegClass::DestReg. 12523 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12524 .addImm(0) 12525 .addFrameIndex(FrameIdx) 12526 .addMemOperand(MMOLoad); 12527 } 12528 }; 12529 12530 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12531 12532 // Save FPSCR value. 12533 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12534 12535 // When the operand is gprc register, use two least significant bits of the 12536 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12537 // 12538 // copy OldFPSCRTmpReg, OldFPSCRReg 12539 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12540 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12541 // copy NewFPSCRReg, NewFPSCRTmpReg 12542 // mtfsf 255, NewFPSCRReg 12543 MachineOperand SrcOp = MI.getOperand(1); 12544 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12545 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12546 12547 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12548 12549 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12550 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12551 12552 // The first operand of INSERT_SUBREG should be a register which has 12553 // subregisters, we only care about its RegClass, so we should use an 12554 // IMPLICIT_DEF register. 12555 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12556 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12557 .addReg(ImDefReg) 12558 .add(SrcOp) 12559 .addImm(1); 12560 12561 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12562 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12563 .addReg(OldFPSCRTmpReg) 12564 .addReg(ExtSrcReg) 12565 .addImm(0) 12566 .addImm(62); 12567 12568 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12569 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12570 12571 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12572 // bits of FPSCR. 12573 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12574 .addImm(255) 12575 .addReg(NewFPSCRReg) 12576 .addImm(0) 12577 .addImm(0); 12578 } else if (MI.getOpcode() == PPC::SETFLM) { 12579 DebugLoc Dl = MI.getDebugLoc(); 12580 12581 // Result of setflm is previous FPSCR content, so we need to save it first. 12582 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12583 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12584 12585 // Put bits in 32:63 to FPSCR. 12586 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12587 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12588 .addImm(255) 12589 .addReg(NewFPSCRReg) 12590 .addImm(0) 12591 .addImm(0); 12592 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12593 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12594 return emitProbedAlloca(MI, BB); 12595 } else { 12596 llvm_unreachable("Unexpected instr type to insert"); 12597 } 12598 12599 MI.eraseFromParent(); // The pseudo instruction is gone now. 12600 return BB; 12601 } 12602 12603 //===----------------------------------------------------------------------===// 12604 // Target Optimization Hooks 12605 //===----------------------------------------------------------------------===// 12606 12607 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12608 // For the estimates, convergence is quadratic, so we essentially double the 12609 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12610 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12611 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12612 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12613 if (VT.getScalarType() == MVT::f64) 12614 RefinementSteps++; 12615 return RefinementSteps; 12616 } 12617 12618 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12619 const DenormalMode &Mode) const { 12620 // We only have VSX Vector Test for software Square Root. 12621 EVT VT = Op.getValueType(); 12622 if (!isTypeLegal(MVT::i1) || 12623 (VT != MVT::f64 && 12624 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12625 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12626 12627 SDLoc DL(Op); 12628 // The output register of FTSQRT is CR field. 12629 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12630 // ftsqrt BF,FRB 12631 // Let e_b be the unbiased exponent of the double-precision 12632 // floating-point operand in register FRB. 12633 // fe_flag is set to 1 if either of the following conditions occurs. 12634 // - The double-precision floating-point operand in register FRB is a zero, 12635 // a NaN, or an infinity, or a negative value. 12636 // - e_b is less than or equal to -970. 12637 // Otherwise fe_flag is set to 0. 12638 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12639 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12640 // exponent is less than -970) 12641 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12642 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12643 FTSQRT, SRIdxVal), 12644 0); 12645 } 12646 12647 SDValue 12648 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12649 SelectionDAG &DAG) const { 12650 // We only have VSX Vector Square Root. 12651 EVT VT = Op.getValueType(); 12652 if (VT != MVT::f64 && 12653 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12654 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12655 12656 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12657 } 12658 12659 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12660 int Enabled, int &RefinementSteps, 12661 bool &UseOneConstNR, 12662 bool Reciprocal) const { 12663 EVT VT = Operand.getValueType(); 12664 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12665 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12666 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12667 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12668 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12669 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12670 12671 // The Newton-Raphson computation with a single constant does not provide 12672 // enough accuracy on some CPUs. 12673 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12674 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12675 } 12676 return SDValue(); 12677 } 12678 12679 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12680 int Enabled, 12681 int &RefinementSteps) const { 12682 EVT VT = Operand.getValueType(); 12683 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12684 (VT == MVT::f64 && Subtarget.hasFRE()) || 12685 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12686 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12687 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12688 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12689 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12690 } 12691 return SDValue(); 12692 } 12693 12694 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12695 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12696 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12697 // enabled for division), this functionality is redundant with the default 12698 // combiner logic (once the division -> reciprocal/multiply transformation 12699 // has taken place). As a result, this matters more for older cores than for 12700 // newer ones. 12701 12702 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12703 // reciprocal if there are two or more FDIVs (for embedded cores with only 12704 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12705 switch (Subtarget.getCPUDirective()) { 12706 default: 12707 return 3; 12708 case PPC::DIR_440: 12709 case PPC::DIR_A2: 12710 case PPC::DIR_E500: 12711 case PPC::DIR_E500mc: 12712 case PPC::DIR_E5500: 12713 return 2; 12714 } 12715 } 12716 12717 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12718 // collapsed, and so we need to look through chains of them. 12719 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12720 int64_t& Offset, SelectionDAG &DAG) { 12721 if (DAG.isBaseWithConstantOffset(Loc)) { 12722 Base = Loc.getOperand(0); 12723 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12724 12725 // The base might itself be a base plus an offset, and if so, accumulate 12726 // that as well. 12727 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12728 } 12729 } 12730 12731 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12732 unsigned Bytes, int Dist, 12733 SelectionDAG &DAG) { 12734 if (VT.getSizeInBits() / 8 != Bytes) 12735 return false; 12736 12737 SDValue BaseLoc = Base->getBasePtr(); 12738 if (Loc.getOpcode() == ISD::FrameIndex) { 12739 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12740 return false; 12741 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12742 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12743 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12744 int FS = MFI.getObjectSize(FI); 12745 int BFS = MFI.getObjectSize(BFI); 12746 if (FS != BFS || FS != (int)Bytes) return false; 12747 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12748 } 12749 12750 SDValue Base1 = Loc, Base2 = BaseLoc; 12751 int64_t Offset1 = 0, Offset2 = 0; 12752 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12753 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12754 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12755 return true; 12756 12757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12758 const GlobalValue *GV1 = nullptr; 12759 const GlobalValue *GV2 = nullptr; 12760 Offset1 = 0; 12761 Offset2 = 0; 12762 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12763 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12764 if (isGA1 && isGA2 && GV1 == GV2) 12765 return Offset1 == (Offset2 + Dist*Bytes); 12766 return false; 12767 } 12768 12769 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12770 // not enforce equality of the chain operands. 12771 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12772 unsigned Bytes, int Dist, 12773 SelectionDAG &DAG) { 12774 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12775 EVT VT = LS->getMemoryVT(); 12776 SDValue Loc = LS->getBasePtr(); 12777 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12778 } 12779 12780 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12781 EVT VT; 12782 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12783 default: return false; 12784 case Intrinsic::ppc_altivec_lvx: 12785 case Intrinsic::ppc_altivec_lvxl: 12786 case Intrinsic::ppc_vsx_lxvw4x: 12787 case Intrinsic::ppc_vsx_lxvw4x_be: 12788 VT = MVT::v4i32; 12789 break; 12790 case Intrinsic::ppc_vsx_lxvd2x: 12791 case Intrinsic::ppc_vsx_lxvd2x_be: 12792 VT = MVT::v2f64; 12793 break; 12794 case Intrinsic::ppc_altivec_lvebx: 12795 VT = MVT::i8; 12796 break; 12797 case Intrinsic::ppc_altivec_lvehx: 12798 VT = MVT::i16; 12799 break; 12800 case Intrinsic::ppc_altivec_lvewx: 12801 VT = MVT::i32; 12802 break; 12803 } 12804 12805 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12806 } 12807 12808 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12809 EVT VT; 12810 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12811 default: return false; 12812 case Intrinsic::ppc_altivec_stvx: 12813 case Intrinsic::ppc_altivec_stvxl: 12814 case Intrinsic::ppc_vsx_stxvw4x: 12815 VT = MVT::v4i32; 12816 break; 12817 case Intrinsic::ppc_vsx_stxvd2x: 12818 VT = MVT::v2f64; 12819 break; 12820 case Intrinsic::ppc_vsx_stxvw4x_be: 12821 VT = MVT::v4i32; 12822 break; 12823 case Intrinsic::ppc_vsx_stxvd2x_be: 12824 VT = MVT::v2f64; 12825 break; 12826 case Intrinsic::ppc_altivec_stvebx: 12827 VT = MVT::i8; 12828 break; 12829 case Intrinsic::ppc_altivec_stvehx: 12830 VT = MVT::i16; 12831 break; 12832 case Intrinsic::ppc_altivec_stvewx: 12833 VT = MVT::i32; 12834 break; 12835 } 12836 12837 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12838 } 12839 12840 return false; 12841 } 12842 12843 // Return true is there is a nearyby consecutive load to the one provided 12844 // (regardless of alignment). We search up and down the chain, looking though 12845 // token factors and other loads (but nothing else). As a result, a true result 12846 // indicates that it is safe to create a new consecutive load adjacent to the 12847 // load provided. 12848 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12849 SDValue Chain = LD->getChain(); 12850 EVT VT = LD->getMemoryVT(); 12851 12852 SmallSet<SDNode *, 16> LoadRoots; 12853 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12854 SmallSet<SDNode *, 16> Visited; 12855 12856 // First, search up the chain, branching to follow all token-factor operands. 12857 // If we find a consecutive load, then we're done, otherwise, record all 12858 // nodes just above the top-level loads and token factors. 12859 while (!Queue.empty()) { 12860 SDNode *ChainNext = Queue.pop_back_val(); 12861 if (!Visited.insert(ChainNext).second) 12862 continue; 12863 12864 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12865 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12866 return true; 12867 12868 if (!Visited.count(ChainLD->getChain().getNode())) 12869 Queue.push_back(ChainLD->getChain().getNode()); 12870 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12871 for (const SDUse &O : ChainNext->ops()) 12872 if (!Visited.count(O.getNode())) 12873 Queue.push_back(O.getNode()); 12874 } else 12875 LoadRoots.insert(ChainNext); 12876 } 12877 12878 // Second, search down the chain, starting from the top-level nodes recorded 12879 // in the first phase. These top-level nodes are the nodes just above all 12880 // loads and token factors. Starting with their uses, recursively look though 12881 // all loads (just the chain uses) and token factors to find a consecutive 12882 // load. 12883 Visited.clear(); 12884 Queue.clear(); 12885 12886 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12887 IE = LoadRoots.end(); I != IE; ++I) { 12888 Queue.push_back(*I); 12889 12890 while (!Queue.empty()) { 12891 SDNode *LoadRoot = Queue.pop_back_val(); 12892 if (!Visited.insert(LoadRoot).second) 12893 continue; 12894 12895 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12896 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12897 return true; 12898 12899 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12900 UE = LoadRoot->use_end(); UI != UE; ++UI) 12901 if (((isa<MemSDNode>(*UI) && 12902 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12903 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12904 Queue.push_back(*UI); 12905 } 12906 } 12907 12908 return false; 12909 } 12910 12911 /// This function is called when we have proved that a SETCC node can be replaced 12912 /// by subtraction (and other supporting instructions) so that the result of 12913 /// comparison is kept in a GPR instead of CR. This function is purely for 12914 /// codegen purposes and has some flags to guide the codegen process. 12915 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12916 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12917 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12918 12919 // Zero extend the operands to the largest legal integer. Originally, they 12920 // must be of a strictly smaller size. 12921 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12922 DAG.getConstant(Size, DL, MVT::i32)); 12923 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12924 DAG.getConstant(Size, DL, MVT::i32)); 12925 12926 // Swap if needed. Depends on the condition code. 12927 if (Swap) 12928 std::swap(Op0, Op1); 12929 12930 // Subtract extended integers. 12931 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12932 12933 // Move the sign bit to the least significant position and zero out the rest. 12934 // Now the least significant bit carries the result of original comparison. 12935 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12936 DAG.getConstant(Size - 1, DL, MVT::i32)); 12937 auto Final = Shifted; 12938 12939 // Complement the result if needed. Based on the condition code. 12940 if (Complement) 12941 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12942 DAG.getConstant(1, DL, MVT::i64)); 12943 12944 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12945 } 12946 12947 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12948 DAGCombinerInfo &DCI) const { 12949 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12950 12951 SelectionDAG &DAG = DCI.DAG; 12952 SDLoc DL(N); 12953 12954 // Size of integers being compared has a critical role in the following 12955 // analysis, so we prefer to do this when all types are legal. 12956 if (!DCI.isAfterLegalizeDAG()) 12957 return SDValue(); 12958 12959 // If all users of SETCC extend its value to a legal integer type 12960 // then we replace SETCC with a subtraction 12961 for (SDNode::use_iterator UI = N->use_begin(), 12962 UE = N->use_end(); UI != UE; ++UI) { 12963 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12964 return SDValue(); 12965 } 12966 12967 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12968 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12969 12970 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12971 12972 if (OpSize < Size) { 12973 switch (CC) { 12974 default: break; 12975 case ISD::SETULT: 12976 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12977 case ISD::SETULE: 12978 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12979 case ISD::SETUGT: 12980 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12981 case ISD::SETUGE: 12982 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12983 } 12984 } 12985 12986 return SDValue(); 12987 } 12988 12989 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12990 DAGCombinerInfo &DCI) const { 12991 SelectionDAG &DAG = DCI.DAG; 12992 SDLoc dl(N); 12993 12994 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12995 // If we're tracking CR bits, we need to be careful that we don't have: 12996 // trunc(binary-ops(zext(x), zext(y))) 12997 // or 12998 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12999 // such that we're unnecessarily moving things into GPRs when it would be 13000 // better to keep them in CR bits. 13001 13002 // Note that trunc here can be an actual i1 trunc, or can be the effective 13003 // truncation that comes from a setcc or select_cc. 13004 if (N->getOpcode() == ISD::TRUNCATE && 13005 N->getValueType(0) != MVT::i1) 13006 return SDValue(); 13007 13008 if (N->getOperand(0).getValueType() != MVT::i32 && 13009 N->getOperand(0).getValueType() != MVT::i64) 13010 return SDValue(); 13011 13012 if (N->getOpcode() == ISD::SETCC || 13013 N->getOpcode() == ISD::SELECT_CC) { 13014 // If we're looking at a comparison, then we need to make sure that the 13015 // high bits (all except for the first) don't matter the result. 13016 ISD::CondCode CC = 13017 cast<CondCodeSDNode>(N->getOperand( 13018 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13019 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13020 13021 if (ISD::isSignedIntSetCC(CC)) { 13022 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13023 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13024 return SDValue(); 13025 } else if (ISD::isUnsignedIntSetCC(CC)) { 13026 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13027 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13028 !DAG.MaskedValueIsZero(N->getOperand(1), 13029 APInt::getHighBitsSet(OpBits, OpBits-1))) 13030 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13031 : SDValue()); 13032 } else { 13033 // This is neither a signed nor an unsigned comparison, just make sure 13034 // that the high bits are equal. 13035 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13036 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13037 13038 // We don't really care about what is known about the first bit (if 13039 // anything), so pretend that it is known zero for both to ensure they can 13040 // be compared as constants. 13041 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13042 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13043 13044 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13045 Op1Known.getConstant() != Op2Known.getConstant()) 13046 return SDValue(); 13047 } 13048 } 13049 13050 // We now know that the higher-order bits are irrelevant, we just need to 13051 // make sure that all of the intermediate operations are bit operations, and 13052 // all inputs are extensions. 13053 if (N->getOperand(0).getOpcode() != ISD::AND && 13054 N->getOperand(0).getOpcode() != ISD::OR && 13055 N->getOperand(0).getOpcode() != ISD::XOR && 13056 N->getOperand(0).getOpcode() != ISD::SELECT && 13057 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13058 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13059 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13060 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13061 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13062 return SDValue(); 13063 13064 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13065 N->getOperand(1).getOpcode() != ISD::AND && 13066 N->getOperand(1).getOpcode() != ISD::OR && 13067 N->getOperand(1).getOpcode() != ISD::XOR && 13068 N->getOperand(1).getOpcode() != ISD::SELECT && 13069 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13070 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13071 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13072 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13073 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13074 return SDValue(); 13075 13076 SmallVector<SDValue, 4> Inputs; 13077 SmallVector<SDValue, 8> BinOps, PromOps; 13078 SmallPtrSet<SDNode *, 16> Visited; 13079 13080 for (unsigned i = 0; i < 2; ++i) { 13081 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13082 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13083 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13084 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13085 isa<ConstantSDNode>(N->getOperand(i))) 13086 Inputs.push_back(N->getOperand(i)); 13087 else 13088 BinOps.push_back(N->getOperand(i)); 13089 13090 if (N->getOpcode() == ISD::TRUNCATE) 13091 break; 13092 } 13093 13094 // Visit all inputs, collect all binary operations (and, or, xor and 13095 // select) that are all fed by extensions. 13096 while (!BinOps.empty()) { 13097 SDValue BinOp = BinOps.pop_back_val(); 13098 13099 if (!Visited.insert(BinOp.getNode()).second) 13100 continue; 13101 13102 PromOps.push_back(BinOp); 13103 13104 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13105 // The condition of the select is not promoted. 13106 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13107 continue; 13108 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13109 continue; 13110 13111 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13112 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13113 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13114 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13115 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13116 Inputs.push_back(BinOp.getOperand(i)); 13117 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13118 BinOp.getOperand(i).getOpcode() == ISD::OR || 13119 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13120 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13121 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13122 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13123 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13124 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13125 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13126 BinOps.push_back(BinOp.getOperand(i)); 13127 } else { 13128 // We have an input that is not an extension or another binary 13129 // operation; we'll abort this transformation. 13130 return SDValue(); 13131 } 13132 } 13133 } 13134 13135 // Make sure that this is a self-contained cluster of operations (which 13136 // is not quite the same thing as saying that everything has only one 13137 // use). 13138 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13139 if (isa<ConstantSDNode>(Inputs[i])) 13140 continue; 13141 13142 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13143 UE = Inputs[i].getNode()->use_end(); 13144 UI != UE; ++UI) { 13145 SDNode *User = *UI; 13146 if (User != N && !Visited.count(User)) 13147 return SDValue(); 13148 13149 // Make sure that we're not going to promote the non-output-value 13150 // operand(s) or SELECT or SELECT_CC. 13151 // FIXME: Although we could sometimes handle this, and it does occur in 13152 // practice that one of the condition inputs to the select is also one of 13153 // the outputs, we currently can't deal with this. 13154 if (User->getOpcode() == ISD::SELECT) { 13155 if (User->getOperand(0) == Inputs[i]) 13156 return SDValue(); 13157 } else if (User->getOpcode() == ISD::SELECT_CC) { 13158 if (User->getOperand(0) == Inputs[i] || 13159 User->getOperand(1) == Inputs[i]) 13160 return SDValue(); 13161 } 13162 } 13163 } 13164 13165 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13166 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13167 UE = PromOps[i].getNode()->use_end(); 13168 UI != UE; ++UI) { 13169 SDNode *User = *UI; 13170 if (User != N && !Visited.count(User)) 13171 return SDValue(); 13172 13173 // Make sure that we're not going to promote the non-output-value 13174 // operand(s) or SELECT or SELECT_CC. 13175 // FIXME: Although we could sometimes handle this, and it does occur in 13176 // practice that one of the condition inputs to the select is also one of 13177 // the outputs, we currently can't deal with this. 13178 if (User->getOpcode() == ISD::SELECT) { 13179 if (User->getOperand(0) == PromOps[i]) 13180 return SDValue(); 13181 } else if (User->getOpcode() == ISD::SELECT_CC) { 13182 if (User->getOperand(0) == PromOps[i] || 13183 User->getOperand(1) == PromOps[i]) 13184 return SDValue(); 13185 } 13186 } 13187 } 13188 13189 // Replace all inputs with the extension operand. 13190 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13191 // Constants may have users outside the cluster of to-be-promoted nodes, 13192 // and so we need to replace those as we do the promotions. 13193 if (isa<ConstantSDNode>(Inputs[i])) 13194 continue; 13195 else 13196 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13197 } 13198 13199 std::list<HandleSDNode> PromOpHandles; 13200 for (auto &PromOp : PromOps) 13201 PromOpHandles.emplace_back(PromOp); 13202 13203 // Replace all operations (these are all the same, but have a different 13204 // (i1) return type). DAG.getNode will validate that the types of 13205 // a binary operator match, so go through the list in reverse so that 13206 // we've likely promoted both operands first. Any intermediate truncations or 13207 // extensions disappear. 13208 while (!PromOpHandles.empty()) { 13209 SDValue PromOp = PromOpHandles.back().getValue(); 13210 PromOpHandles.pop_back(); 13211 13212 if (PromOp.getOpcode() == ISD::TRUNCATE || 13213 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13214 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13215 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13216 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13217 PromOp.getOperand(0).getValueType() != MVT::i1) { 13218 // The operand is not yet ready (see comment below). 13219 PromOpHandles.emplace_front(PromOp); 13220 continue; 13221 } 13222 13223 SDValue RepValue = PromOp.getOperand(0); 13224 if (isa<ConstantSDNode>(RepValue)) 13225 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13226 13227 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13228 continue; 13229 } 13230 13231 unsigned C; 13232 switch (PromOp.getOpcode()) { 13233 default: C = 0; break; 13234 case ISD::SELECT: C = 1; break; 13235 case ISD::SELECT_CC: C = 2; break; 13236 } 13237 13238 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13239 PromOp.getOperand(C).getValueType() != MVT::i1) || 13240 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13241 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13242 // The to-be-promoted operands of this node have not yet been 13243 // promoted (this should be rare because we're going through the 13244 // list backward, but if one of the operands has several users in 13245 // this cluster of to-be-promoted nodes, it is possible). 13246 PromOpHandles.emplace_front(PromOp); 13247 continue; 13248 } 13249 13250 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13251 PromOp.getNode()->op_end()); 13252 13253 // If there are any constant inputs, make sure they're replaced now. 13254 for (unsigned i = 0; i < 2; ++i) 13255 if (isa<ConstantSDNode>(Ops[C+i])) 13256 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13257 13258 DAG.ReplaceAllUsesOfValueWith(PromOp, 13259 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13260 } 13261 13262 // Now we're left with the initial truncation itself. 13263 if (N->getOpcode() == ISD::TRUNCATE) 13264 return N->getOperand(0); 13265 13266 // Otherwise, this is a comparison. The operands to be compared have just 13267 // changed type (to i1), but everything else is the same. 13268 return SDValue(N, 0); 13269 } 13270 13271 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13272 DAGCombinerInfo &DCI) const { 13273 SelectionDAG &DAG = DCI.DAG; 13274 SDLoc dl(N); 13275 13276 // If we're tracking CR bits, we need to be careful that we don't have: 13277 // zext(binary-ops(trunc(x), trunc(y))) 13278 // or 13279 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13280 // such that we're unnecessarily moving things into CR bits that can more 13281 // efficiently stay in GPRs. Note that if we're not certain that the high 13282 // bits are set as required by the final extension, we still may need to do 13283 // some masking to get the proper behavior. 13284 13285 // This same functionality is important on PPC64 when dealing with 13286 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13287 // the return values of functions. Because it is so similar, it is handled 13288 // here as well. 13289 13290 if (N->getValueType(0) != MVT::i32 && 13291 N->getValueType(0) != MVT::i64) 13292 return SDValue(); 13293 13294 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13295 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13296 return SDValue(); 13297 13298 if (N->getOperand(0).getOpcode() != ISD::AND && 13299 N->getOperand(0).getOpcode() != ISD::OR && 13300 N->getOperand(0).getOpcode() != ISD::XOR && 13301 N->getOperand(0).getOpcode() != ISD::SELECT && 13302 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13303 return SDValue(); 13304 13305 SmallVector<SDValue, 4> Inputs; 13306 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13307 SmallPtrSet<SDNode *, 16> Visited; 13308 13309 // Visit all inputs, collect all binary operations (and, or, xor and 13310 // select) that are all fed by truncations. 13311 while (!BinOps.empty()) { 13312 SDValue BinOp = BinOps.pop_back_val(); 13313 13314 if (!Visited.insert(BinOp.getNode()).second) 13315 continue; 13316 13317 PromOps.push_back(BinOp); 13318 13319 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13320 // The condition of the select is not promoted. 13321 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13322 continue; 13323 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13324 continue; 13325 13326 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13327 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13328 Inputs.push_back(BinOp.getOperand(i)); 13329 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13330 BinOp.getOperand(i).getOpcode() == ISD::OR || 13331 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13332 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13333 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13334 BinOps.push_back(BinOp.getOperand(i)); 13335 } else { 13336 // We have an input that is not a truncation or another binary 13337 // operation; we'll abort this transformation. 13338 return SDValue(); 13339 } 13340 } 13341 } 13342 13343 // The operands of a select that must be truncated when the select is 13344 // promoted because the operand is actually part of the to-be-promoted set. 13345 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13346 13347 // Make sure that this is a self-contained cluster of operations (which 13348 // is not quite the same thing as saying that everything has only one 13349 // use). 13350 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13351 if (isa<ConstantSDNode>(Inputs[i])) 13352 continue; 13353 13354 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13355 UE = Inputs[i].getNode()->use_end(); 13356 UI != UE; ++UI) { 13357 SDNode *User = *UI; 13358 if (User != N && !Visited.count(User)) 13359 return SDValue(); 13360 13361 // If we're going to promote the non-output-value operand(s) or SELECT or 13362 // SELECT_CC, record them for truncation. 13363 if (User->getOpcode() == ISD::SELECT) { 13364 if (User->getOperand(0) == Inputs[i]) 13365 SelectTruncOp[0].insert(std::make_pair(User, 13366 User->getOperand(0).getValueType())); 13367 } else if (User->getOpcode() == ISD::SELECT_CC) { 13368 if (User->getOperand(0) == Inputs[i]) 13369 SelectTruncOp[0].insert(std::make_pair(User, 13370 User->getOperand(0).getValueType())); 13371 if (User->getOperand(1) == Inputs[i]) 13372 SelectTruncOp[1].insert(std::make_pair(User, 13373 User->getOperand(1).getValueType())); 13374 } 13375 } 13376 } 13377 13378 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13379 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13380 UE = PromOps[i].getNode()->use_end(); 13381 UI != UE; ++UI) { 13382 SDNode *User = *UI; 13383 if (User != N && !Visited.count(User)) 13384 return SDValue(); 13385 13386 // If we're going to promote the non-output-value operand(s) or SELECT or 13387 // SELECT_CC, record them for truncation. 13388 if (User->getOpcode() == ISD::SELECT) { 13389 if (User->getOperand(0) == PromOps[i]) 13390 SelectTruncOp[0].insert(std::make_pair(User, 13391 User->getOperand(0).getValueType())); 13392 } else if (User->getOpcode() == ISD::SELECT_CC) { 13393 if (User->getOperand(0) == PromOps[i]) 13394 SelectTruncOp[0].insert(std::make_pair(User, 13395 User->getOperand(0).getValueType())); 13396 if (User->getOperand(1) == PromOps[i]) 13397 SelectTruncOp[1].insert(std::make_pair(User, 13398 User->getOperand(1).getValueType())); 13399 } 13400 } 13401 } 13402 13403 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13404 bool ReallyNeedsExt = false; 13405 if (N->getOpcode() != ISD::ANY_EXTEND) { 13406 // If all of the inputs are not already sign/zero extended, then 13407 // we'll still need to do that at the end. 13408 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13409 if (isa<ConstantSDNode>(Inputs[i])) 13410 continue; 13411 13412 unsigned OpBits = 13413 Inputs[i].getOperand(0).getValueSizeInBits(); 13414 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13415 13416 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13417 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13418 APInt::getHighBitsSet(OpBits, 13419 OpBits-PromBits))) || 13420 (N->getOpcode() == ISD::SIGN_EXTEND && 13421 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13422 (OpBits-(PromBits-1)))) { 13423 ReallyNeedsExt = true; 13424 break; 13425 } 13426 } 13427 } 13428 13429 // Replace all inputs, either with the truncation operand, or a 13430 // truncation or extension to the final output type. 13431 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13432 // Constant inputs need to be replaced with the to-be-promoted nodes that 13433 // use them because they might have users outside of the cluster of 13434 // promoted nodes. 13435 if (isa<ConstantSDNode>(Inputs[i])) 13436 continue; 13437 13438 SDValue InSrc = Inputs[i].getOperand(0); 13439 if (Inputs[i].getValueType() == N->getValueType(0)) 13440 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13441 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13442 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13443 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13444 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13445 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13446 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13447 else 13448 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13449 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13450 } 13451 13452 std::list<HandleSDNode> PromOpHandles; 13453 for (auto &PromOp : PromOps) 13454 PromOpHandles.emplace_back(PromOp); 13455 13456 // Replace all operations (these are all the same, but have a different 13457 // (promoted) return type). DAG.getNode will validate that the types of 13458 // a binary operator match, so go through the list in reverse so that 13459 // we've likely promoted both operands first. 13460 while (!PromOpHandles.empty()) { 13461 SDValue PromOp = PromOpHandles.back().getValue(); 13462 PromOpHandles.pop_back(); 13463 13464 unsigned C; 13465 switch (PromOp.getOpcode()) { 13466 default: C = 0; break; 13467 case ISD::SELECT: C = 1; break; 13468 case ISD::SELECT_CC: C = 2; break; 13469 } 13470 13471 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13472 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13473 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13474 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13475 // The to-be-promoted operands of this node have not yet been 13476 // promoted (this should be rare because we're going through the 13477 // list backward, but if one of the operands has several users in 13478 // this cluster of to-be-promoted nodes, it is possible). 13479 PromOpHandles.emplace_front(PromOp); 13480 continue; 13481 } 13482 13483 // For SELECT and SELECT_CC nodes, we do a similar check for any 13484 // to-be-promoted comparison inputs. 13485 if (PromOp.getOpcode() == ISD::SELECT || 13486 PromOp.getOpcode() == ISD::SELECT_CC) { 13487 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13488 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13489 (SelectTruncOp[1].count(PromOp.getNode()) && 13490 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13491 PromOpHandles.emplace_front(PromOp); 13492 continue; 13493 } 13494 } 13495 13496 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13497 PromOp.getNode()->op_end()); 13498 13499 // If this node has constant inputs, then they'll need to be promoted here. 13500 for (unsigned i = 0; i < 2; ++i) { 13501 if (!isa<ConstantSDNode>(Ops[C+i])) 13502 continue; 13503 if (Ops[C+i].getValueType() == N->getValueType(0)) 13504 continue; 13505 13506 if (N->getOpcode() == ISD::SIGN_EXTEND) 13507 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13508 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13509 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13510 else 13511 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13512 } 13513 13514 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13515 // truncate them again to the original value type. 13516 if (PromOp.getOpcode() == ISD::SELECT || 13517 PromOp.getOpcode() == ISD::SELECT_CC) { 13518 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13519 if (SI0 != SelectTruncOp[0].end()) 13520 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13521 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13522 if (SI1 != SelectTruncOp[1].end()) 13523 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13524 } 13525 13526 DAG.ReplaceAllUsesOfValueWith(PromOp, 13527 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13528 } 13529 13530 // Now we're left with the initial extension itself. 13531 if (!ReallyNeedsExt) 13532 return N->getOperand(0); 13533 13534 // To zero extend, just mask off everything except for the first bit (in the 13535 // i1 case). 13536 if (N->getOpcode() == ISD::ZERO_EXTEND) 13537 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13538 DAG.getConstant(APInt::getLowBitsSet( 13539 N->getValueSizeInBits(0), PromBits), 13540 dl, N->getValueType(0))); 13541 13542 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13543 "Invalid extension type"); 13544 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13545 SDValue ShiftCst = 13546 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13547 return DAG.getNode( 13548 ISD::SRA, dl, N->getValueType(0), 13549 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13550 ShiftCst); 13551 } 13552 13553 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13554 DAGCombinerInfo &DCI) const { 13555 assert(N->getOpcode() == ISD::SETCC && 13556 "Should be called with a SETCC node"); 13557 13558 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13559 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13560 SDValue LHS = N->getOperand(0); 13561 SDValue RHS = N->getOperand(1); 13562 13563 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13564 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13565 LHS.hasOneUse()) 13566 std::swap(LHS, RHS); 13567 13568 // x == 0-y --> x+y == 0 13569 // x != 0-y --> x+y != 0 13570 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13571 RHS.hasOneUse()) { 13572 SDLoc DL(N); 13573 SelectionDAG &DAG = DCI.DAG; 13574 EVT VT = N->getValueType(0); 13575 EVT OpVT = LHS.getValueType(); 13576 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13577 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13578 } 13579 } 13580 13581 return DAGCombineTruncBoolExt(N, DCI); 13582 } 13583 13584 // Is this an extending load from an f32 to an f64? 13585 static bool isFPExtLoad(SDValue Op) { 13586 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13587 return LD->getExtensionType() == ISD::EXTLOAD && 13588 Op.getValueType() == MVT::f64; 13589 return false; 13590 } 13591 13592 /// Reduces the number of fp-to-int conversion when building a vector. 13593 /// 13594 /// If this vector is built out of floating to integer conversions, 13595 /// transform it to a vector built out of floating point values followed by a 13596 /// single floating to integer conversion of the vector. 13597 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13598 /// becomes (fptosi (build_vector ($A, $B, ...))) 13599 SDValue PPCTargetLowering:: 13600 combineElementTruncationToVectorTruncation(SDNode *N, 13601 DAGCombinerInfo &DCI) const { 13602 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13603 "Should be called with a BUILD_VECTOR node"); 13604 13605 SelectionDAG &DAG = DCI.DAG; 13606 SDLoc dl(N); 13607 13608 SDValue FirstInput = N->getOperand(0); 13609 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13610 "The input operand must be an fp-to-int conversion."); 13611 13612 // This combine happens after legalization so the fp_to_[su]i nodes are 13613 // already converted to PPCSISD nodes. 13614 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13615 if (FirstConversion == PPCISD::FCTIDZ || 13616 FirstConversion == PPCISD::FCTIDUZ || 13617 FirstConversion == PPCISD::FCTIWZ || 13618 FirstConversion == PPCISD::FCTIWUZ) { 13619 bool IsSplat = true; 13620 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13621 FirstConversion == PPCISD::FCTIWUZ; 13622 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13623 SmallVector<SDValue, 4> Ops; 13624 EVT TargetVT = N->getValueType(0); 13625 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13626 SDValue NextOp = N->getOperand(i); 13627 if (NextOp.getOpcode() != PPCISD::MFVSR) 13628 return SDValue(); 13629 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13630 if (NextConversion != FirstConversion) 13631 return SDValue(); 13632 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13633 // This is not valid if the input was originally double precision. It is 13634 // also not profitable to do unless this is an extending load in which 13635 // case doing this combine will allow us to combine consecutive loads. 13636 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13637 return SDValue(); 13638 if (N->getOperand(i) != FirstInput) 13639 IsSplat = false; 13640 } 13641 13642 // If this is a splat, we leave it as-is since there will be only a single 13643 // fp-to-int conversion followed by a splat of the integer. This is better 13644 // for 32-bit and smaller ints and neutral for 64-bit ints. 13645 if (IsSplat) 13646 return SDValue(); 13647 13648 // Now that we know we have the right type of node, get its operands 13649 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13650 SDValue In = N->getOperand(i).getOperand(0); 13651 if (Is32Bit) { 13652 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13653 // here, we know that all inputs are extending loads so this is safe). 13654 if (In.isUndef()) 13655 Ops.push_back(DAG.getUNDEF(SrcVT)); 13656 else { 13657 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13658 MVT::f32, In.getOperand(0), 13659 DAG.getIntPtrConstant(1, dl)); 13660 Ops.push_back(Trunc); 13661 } 13662 } else 13663 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13664 } 13665 13666 unsigned Opcode; 13667 if (FirstConversion == PPCISD::FCTIDZ || 13668 FirstConversion == PPCISD::FCTIWZ) 13669 Opcode = ISD::FP_TO_SINT; 13670 else 13671 Opcode = ISD::FP_TO_UINT; 13672 13673 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13674 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13675 return DAG.getNode(Opcode, dl, TargetVT, BV); 13676 } 13677 return SDValue(); 13678 } 13679 13680 /// Reduce the number of loads when building a vector. 13681 /// 13682 /// Building a vector out of multiple loads can be converted to a load 13683 /// of the vector type if the loads are consecutive. If the loads are 13684 /// consecutive but in descending order, a shuffle is added at the end 13685 /// to reorder the vector. 13686 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13687 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13688 "Should be called with a BUILD_VECTOR node"); 13689 13690 SDLoc dl(N); 13691 13692 // Return early for non byte-sized type, as they can't be consecutive. 13693 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13694 return SDValue(); 13695 13696 bool InputsAreConsecutiveLoads = true; 13697 bool InputsAreReverseConsecutive = true; 13698 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13699 SDValue FirstInput = N->getOperand(0); 13700 bool IsRoundOfExtLoad = false; 13701 13702 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13703 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13704 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13705 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13706 } 13707 // Not a build vector of (possibly fp_rounded) loads. 13708 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13709 N->getNumOperands() == 1) 13710 return SDValue(); 13711 13712 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13713 // If any inputs are fp_round(extload), they all must be. 13714 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13715 return SDValue(); 13716 13717 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13718 N->getOperand(i); 13719 if (NextInput.getOpcode() != ISD::LOAD) 13720 return SDValue(); 13721 13722 SDValue PreviousInput = 13723 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13724 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13725 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13726 13727 // If any inputs are fp_round(extload), they all must be. 13728 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13729 return SDValue(); 13730 13731 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13732 InputsAreConsecutiveLoads = false; 13733 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13734 InputsAreReverseConsecutive = false; 13735 13736 // Exit early if the loads are neither consecutive nor reverse consecutive. 13737 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13738 return SDValue(); 13739 } 13740 13741 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13742 "The loads cannot be both consecutive and reverse consecutive."); 13743 13744 SDValue FirstLoadOp = 13745 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13746 SDValue LastLoadOp = 13747 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13748 N->getOperand(N->getNumOperands()-1); 13749 13750 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13751 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13752 if (InputsAreConsecutiveLoads) { 13753 assert(LD1 && "Input needs to be a LoadSDNode."); 13754 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13755 LD1->getBasePtr(), LD1->getPointerInfo(), 13756 LD1->getAlignment()); 13757 } 13758 if (InputsAreReverseConsecutive) { 13759 assert(LDL && "Input needs to be a LoadSDNode."); 13760 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13761 LDL->getBasePtr(), LDL->getPointerInfo(), 13762 LDL->getAlignment()); 13763 SmallVector<int, 16> Ops; 13764 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13765 Ops.push_back(i); 13766 13767 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13768 DAG.getUNDEF(N->getValueType(0)), Ops); 13769 } 13770 return SDValue(); 13771 } 13772 13773 // This function adds the required vector_shuffle needed to get 13774 // the elements of the vector extract in the correct position 13775 // as specified by the CorrectElems encoding. 13776 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13777 SDValue Input, uint64_t Elems, 13778 uint64_t CorrectElems) { 13779 SDLoc dl(N); 13780 13781 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13782 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13783 13784 // Knowing the element indices being extracted from the original 13785 // vector and the order in which they're being inserted, just put 13786 // them at element indices required for the instruction. 13787 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13788 if (DAG.getDataLayout().isLittleEndian()) 13789 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13790 else 13791 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13792 CorrectElems = CorrectElems >> 8; 13793 Elems = Elems >> 8; 13794 } 13795 13796 SDValue Shuffle = 13797 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13798 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13799 13800 EVT VT = N->getValueType(0); 13801 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13802 13803 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13804 Input.getValueType().getVectorElementType(), 13805 VT.getVectorNumElements()); 13806 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13807 DAG.getValueType(ExtVT)); 13808 } 13809 13810 // Look for build vector patterns where input operands come from sign 13811 // extended vector_extract elements of specific indices. If the correct indices 13812 // aren't used, add a vector shuffle to fix up the indices and create 13813 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13814 // during instruction selection. 13815 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13816 // This array encodes the indices that the vector sign extend instructions 13817 // extract from when extending from one type to another for both BE and LE. 13818 // The right nibble of each byte corresponds to the LE incides. 13819 // and the left nibble of each byte corresponds to the BE incides. 13820 // For example: 0x3074B8FC byte->word 13821 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13822 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13823 // For example: 0x000070F8 byte->double word 13824 // For LE: the allowed indices are: 0x0,0x8 13825 // For BE: the allowed indices are: 0x7,0xF 13826 uint64_t TargetElems[] = { 13827 0x3074B8FC, // b->w 13828 0x000070F8, // b->d 13829 0x10325476, // h->w 13830 0x00003074, // h->d 13831 0x00001032, // w->d 13832 }; 13833 13834 uint64_t Elems = 0; 13835 int Index; 13836 SDValue Input; 13837 13838 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13839 if (!Op) 13840 return false; 13841 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13842 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13843 return false; 13844 13845 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13846 // of the right width. 13847 SDValue Extract = Op.getOperand(0); 13848 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13849 Extract = Extract.getOperand(0); 13850 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13851 return false; 13852 13853 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13854 if (!ExtOp) 13855 return false; 13856 13857 Index = ExtOp->getZExtValue(); 13858 if (Input && Input != Extract.getOperand(0)) 13859 return false; 13860 13861 if (!Input) 13862 Input = Extract.getOperand(0); 13863 13864 Elems = Elems << 8; 13865 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13866 Elems |= Index; 13867 13868 return true; 13869 }; 13870 13871 // If the build vector operands aren't sign extended vector extracts, 13872 // of the same input vector, then return. 13873 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13874 if (!isSExtOfVecExtract(N->getOperand(i))) { 13875 return SDValue(); 13876 } 13877 } 13878 13879 // If the vector extract indicies are not correct, add the appropriate 13880 // vector_shuffle. 13881 int TgtElemArrayIdx; 13882 int InputSize = Input.getValueType().getScalarSizeInBits(); 13883 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13884 if (InputSize + OutputSize == 40) 13885 TgtElemArrayIdx = 0; 13886 else if (InputSize + OutputSize == 72) 13887 TgtElemArrayIdx = 1; 13888 else if (InputSize + OutputSize == 48) 13889 TgtElemArrayIdx = 2; 13890 else if (InputSize + OutputSize == 80) 13891 TgtElemArrayIdx = 3; 13892 else if (InputSize + OutputSize == 96) 13893 TgtElemArrayIdx = 4; 13894 else 13895 return SDValue(); 13896 13897 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13898 CorrectElems = DAG.getDataLayout().isLittleEndian() 13899 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13900 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13901 if (Elems != CorrectElems) { 13902 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13903 } 13904 13905 // Regular lowering will catch cases where a shuffle is not needed. 13906 return SDValue(); 13907 } 13908 13909 // Look for the pattern of a load from a narrow width to i128, feeding 13910 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13911 // (LXVRZX). This node represents a zero extending load that will be matched 13912 // to the Load VSX Vector Rightmost instructions. 13913 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13914 SDLoc DL(N); 13915 13916 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13917 if (N->getValueType(0) != MVT::v1i128) 13918 return SDValue(); 13919 13920 SDValue Operand = N->getOperand(0); 13921 // Proceed with the transformation if the operand to the BUILD_VECTOR 13922 // is a load instruction. 13923 if (Operand.getOpcode() != ISD::LOAD) 13924 return SDValue(); 13925 13926 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13927 EVT MemoryType = LD->getMemoryVT(); 13928 13929 // This transformation is only valid if the we are loading either a byte, 13930 // halfword, word, or doubleword. 13931 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13932 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13933 13934 // Ensure that the load from the narrow width is being zero extended to i128. 13935 if (!ValidLDType || 13936 (LD->getExtensionType() != ISD::ZEXTLOAD && 13937 LD->getExtensionType() != ISD::EXTLOAD)) 13938 return SDValue(); 13939 13940 SDValue LoadOps[] = { 13941 LD->getChain(), LD->getBasePtr(), 13942 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13943 13944 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13945 DAG.getVTList(MVT::v1i128, MVT::Other), 13946 LoadOps, MemoryType, LD->getMemOperand()); 13947 } 13948 13949 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13950 DAGCombinerInfo &DCI) const { 13951 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13952 "Should be called with a BUILD_VECTOR node"); 13953 13954 SelectionDAG &DAG = DCI.DAG; 13955 SDLoc dl(N); 13956 13957 if (!Subtarget.hasVSX()) 13958 return SDValue(); 13959 13960 // The target independent DAG combiner will leave a build_vector of 13961 // float-to-int conversions intact. We can generate MUCH better code for 13962 // a float-to-int conversion of a vector of floats. 13963 SDValue FirstInput = N->getOperand(0); 13964 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13965 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13966 if (Reduced) 13967 return Reduced; 13968 } 13969 13970 // If we're building a vector out of consecutive loads, just load that 13971 // vector type. 13972 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13973 if (Reduced) 13974 return Reduced; 13975 13976 // If we're building a vector out of extended elements from another vector 13977 // we have P9 vector integer extend instructions. The code assumes legal 13978 // input types (i.e. it can't handle things like v4i16) so do not run before 13979 // legalization. 13980 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13981 Reduced = combineBVOfVecSExt(N, DAG); 13982 if (Reduced) 13983 return Reduced; 13984 } 13985 13986 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13987 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13988 // is a load from <valid narrow width> to i128. 13989 if (Subtarget.isISA3_1()) { 13990 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13991 if (BVOfZLoad) 13992 return BVOfZLoad; 13993 } 13994 13995 if (N->getValueType(0) != MVT::v2f64) 13996 return SDValue(); 13997 13998 // Looking for: 13999 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14000 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14001 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14002 return SDValue(); 14003 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14004 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14005 return SDValue(); 14006 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14007 return SDValue(); 14008 14009 SDValue Ext1 = FirstInput.getOperand(0); 14010 SDValue Ext2 = N->getOperand(1).getOperand(0); 14011 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14012 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14013 return SDValue(); 14014 14015 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14016 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14017 if (!Ext1Op || !Ext2Op) 14018 return SDValue(); 14019 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14020 Ext1.getOperand(0) != Ext2.getOperand(0)) 14021 return SDValue(); 14022 14023 int FirstElem = Ext1Op->getZExtValue(); 14024 int SecondElem = Ext2Op->getZExtValue(); 14025 int SubvecIdx; 14026 if (FirstElem == 0 && SecondElem == 1) 14027 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14028 else if (FirstElem == 2 && SecondElem == 3) 14029 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14030 else 14031 return SDValue(); 14032 14033 SDValue SrcVec = Ext1.getOperand(0); 14034 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14035 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14036 return DAG.getNode(NodeType, dl, MVT::v2f64, 14037 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14038 } 14039 14040 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14041 DAGCombinerInfo &DCI) const { 14042 assert((N->getOpcode() == ISD::SINT_TO_FP || 14043 N->getOpcode() == ISD::UINT_TO_FP) && 14044 "Need an int -> FP conversion node here"); 14045 14046 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14047 return SDValue(); 14048 14049 SelectionDAG &DAG = DCI.DAG; 14050 SDLoc dl(N); 14051 SDValue Op(N, 0); 14052 14053 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14054 // from the hardware. 14055 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14056 return SDValue(); 14057 if (!Op.getOperand(0).getValueType().isSimple()) 14058 return SDValue(); 14059 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14060 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14061 return SDValue(); 14062 14063 SDValue FirstOperand(Op.getOperand(0)); 14064 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14065 (FirstOperand.getValueType() == MVT::i8 || 14066 FirstOperand.getValueType() == MVT::i16); 14067 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14068 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14069 bool DstDouble = Op.getValueType() == MVT::f64; 14070 unsigned ConvOp = Signed ? 14071 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14072 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14073 SDValue WidthConst = 14074 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14075 dl, false); 14076 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14077 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14078 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14079 DAG.getVTList(MVT::f64, MVT::Other), 14080 Ops, MVT::i8, LDN->getMemOperand()); 14081 14082 // For signed conversion, we need to sign-extend the value in the VSR 14083 if (Signed) { 14084 SDValue ExtOps[] = { Ld, WidthConst }; 14085 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14086 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14087 } else 14088 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14089 } 14090 14091 14092 // For i32 intermediate values, unfortunately, the conversion functions 14093 // leave the upper 32 bits of the value are undefined. Within the set of 14094 // scalar instructions, we have no method for zero- or sign-extending the 14095 // value. Thus, we cannot handle i32 intermediate values here. 14096 if (Op.getOperand(0).getValueType() == MVT::i32) 14097 return SDValue(); 14098 14099 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14100 "UINT_TO_FP is supported only with FPCVT"); 14101 14102 // If we have FCFIDS, then use it when converting to single-precision. 14103 // Otherwise, convert to double-precision and then round. 14104 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14105 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14106 : PPCISD::FCFIDS) 14107 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14108 : PPCISD::FCFID); 14109 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14110 ? MVT::f32 14111 : MVT::f64; 14112 14113 // If we're converting from a float, to an int, and back to a float again, 14114 // then we don't need the store/load pair at all. 14115 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14116 Subtarget.hasFPCVT()) || 14117 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14118 SDValue Src = Op.getOperand(0).getOperand(0); 14119 if (Src.getValueType() == MVT::f32) { 14120 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14121 DCI.AddToWorklist(Src.getNode()); 14122 } else if (Src.getValueType() != MVT::f64) { 14123 // Make sure that we don't pick up a ppc_fp128 source value. 14124 return SDValue(); 14125 } 14126 14127 unsigned FCTOp = 14128 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14129 PPCISD::FCTIDUZ; 14130 14131 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14132 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14133 14134 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14135 FP = DAG.getNode(ISD::FP_ROUND, dl, 14136 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14137 DCI.AddToWorklist(FP.getNode()); 14138 } 14139 14140 return FP; 14141 } 14142 14143 return SDValue(); 14144 } 14145 14146 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14147 // builtins) into loads with swaps. 14148 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14149 DAGCombinerInfo &DCI) const { 14150 SelectionDAG &DAG = DCI.DAG; 14151 SDLoc dl(N); 14152 SDValue Chain; 14153 SDValue Base; 14154 MachineMemOperand *MMO; 14155 14156 switch (N->getOpcode()) { 14157 default: 14158 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14159 case ISD::LOAD: { 14160 LoadSDNode *LD = cast<LoadSDNode>(N); 14161 Chain = LD->getChain(); 14162 Base = LD->getBasePtr(); 14163 MMO = LD->getMemOperand(); 14164 // If the MMO suggests this isn't a load of a full vector, leave 14165 // things alone. For a built-in, we have to make the change for 14166 // correctness, so if there is a size problem that will be a bug. 14167 if (MMO->getSize() < 16) 14168 return SDValue(); 14169 break; 14170 } 14171 case ISD::INTRINSIC_W_CHAIN: { 14172 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14173 Chain = Intrin->getChain(); 14174 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14175 // us what we want. Get operand 2 instead. 14176 Base = Intrin->getOperand(2); 14177 MMO = Intrin->getMemOperand(); 14178 break; 14179 } 14180 } 14181 14182 MVT VecTy = N->getValueType(0).getSimpleVT(); 14183 14184 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14185 // aligned and the type is a vector with elements up to 4 bytes 14186 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14187 VecTy.getScalarSizeInBits() <= 32) { 14188 return SDValue(); 14189 } 14190 14191 SDValue LoadOps[] = { Chain, Base }; 14192 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14193 DAG.getVTList(MVT::v2f64, MVT::Other), 14194 LoadOps, MVT::v2f64, MMO); 14195 14196 DCI.AddToWorklist(Load.getNode()); 14197 Chain = Load.getValue(1); 14198 SDValue Swap = DAG.getNode( 14199 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14200 DCI.AddToWorklist(Swap.getNode()); 14201 14202 // Add a bitcast if the resulting load type doesn't match v2f64. 14203 if (VecTy != MVT::v2f64) { 14204 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14205 DCI.AddToWorklist(N.getNode()); 14206 // Package {bitcast value, swap's chain} to match Load's shape. 14207 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14208 N, Swap.getValue(1)); 14209 } 14210 14211 return Swap; 14212 } 14213 14214 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14215 // builtins) into stores with swaps. 14216 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14217 DAGCombinerInfo &DCI) const { 14218 SelectionDAG &DAG = DCI.DAG; 14219 SDLoc dl(N); 14220 SDValue Chain; 14221 SDValue Base; 14222 unsigned SrcOpnd; 14223 MachineMemOperand *MMO; 14224 14225 switch (N->getOpcode()) { 14226 default: 14227 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14228 case ISD::STORE: { 14229 StoreSDNode *ST = cast<StoreSDNode>(N); 14230 Chain = ST->getChain(); 14231 Base = ST->getBasePtr(); 14232 MMO = ST->getMemOperand(); 14233 SrcOpnd = 1; 14234 // If the MMO suggests this isn't a store of a full vector, leave 14235 // things alone. For a built-in, we have to make the change for 14236 // correctness, so if there is a size problem that will be a bug. 14237 if (MMO->getSize() < 16) 14238 return SDValue(); 14239 break; 14240 } 14241 case ISD::INTRINSIC_VOID: { 14242 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14243 Chain = Intrin->getChain(); 14244 // Intrin->getBasePtr() oddly does not get what we want. 14245 Base = Intrin->getOperand(3); 14246 MMO = Intrin->getMemOperand(); 14247 SrcOpnd = 2; 14248 break; 14249 } 14250 } 14251 14252 SDValue Src = N->getOperand(SrcOpnd); 14253 MVT VecTy = Src.getValueType().getSimpleVT(); 14254 14255 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14256 // aligned and the type is a vector with elements up to 4 bytes 14257 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14258 VecTy.getScalarSizeInBits() <= 32) { 14259 return SDValue(); 14260 } 14261 14262 // All stores are done as v2f64 and possible bit cast. 14263 if (VecTy != MVT::v2f64) { 14264 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14265 DCI.AddToWorklist(Src.getNode()); 14266 } 14267 14268 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14269 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14270 DCI.AddToWorklist(Swap.getNode()); 14271 Chain = Swap.getValue(1); 14272 SDValue StoreOps[] = { Chain, Swap, Base }; 14273 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14274 DAG.getVTList(MVT::Other), 14275 StoreOps, VecTy, MMO); 14276 DCI.AddToWorklist(Store.getNode()); 14277 return Store; 14278 } 14279 14280 // Handle DAG combine for STORE (FP_TO_INT F). 14281 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14282 DAGCombinerInfo &DCI) const { 14283 14284 SelectionDAG &DAG = DCI.DAG; 14285 SDLoc dl(N); 14286 unsigned Opcode = N->getOperand(1).getOpcode(); 14287 14288 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14289 && "Not a FP_TO_INT Instruction!"); 14290 14291 SDValue Val = N->getOperand(1).getOperand(0); 14292 EVT Op1VT = N->getOperand(1).getValueType(); 14293 EVT ResVT = Val.getValueType(); 14294 14295 if (!isTypeLegal(ResVT)) 14296 return SDValue(); 14297 14298 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14299 bool ValidTypeForStoreFltAsInt = 14300 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14301 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14302 14303 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14304 return SDValue(); 14305 14306 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14307 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14308 return SDValue(); 14309 14310 // Extend f32 values to f64 14311 if (ResVT.getScalarSizeInBits() == 32) { 14312 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14313 DCI.AddToWorklist(Val.getNode()); 14314 } 14315 14316 // Set signed or unsigned conversion opcode. 14317 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14318 PPCISD::FP_TO_SINT_IN_VSR : 14319 PPCISD::FP_TO_UINT_IN_VSR; 14320 14321 Val = DAG.getNode(ConvOpcode, 14322 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14323 DCI.AddToWorklist(Val.getNode()); 14324 14325 // Set number of bytes being converted. 14326 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14327 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14328 DAG.getIntPtrConstant(ByteSize, dl, false), 14329 DAG.getValueType(Op1VT) }; 14330 14331 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14332 DAG.getVTList(MVT::Other), Ops, 14333 cast<StoreSDNode>(N)->getMemoryVT(), 14334 cast<StoreSDNode>(N)->getMemOperand()); 14335 14336 DCI.AddToWorklist(Val.getNode()); 14337 return Val; 14338 } 14339 14340 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14341 // Check that the source of the element keeps flipping 14342 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14343 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14344 for (int i = 1, e = Mask.size(); i < e; i++) { 14345 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14346 return false; 14347 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14348 return false; 14349 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14350 } 14351 return true; 14352 } 14353 14354 static bool isSplatBV(SDValue Op) { 14355 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14356 return false; 14357 SDValue FirstOp; 14358 14359 // Find first non-undef input. 14360 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14361 FirstOp = Op.getOperand(i); 14362 if (!FirstOp.isUndef()) 14363 break; 14364 } 14365 14366 // All inputs are undef or the same as the first non-undef input. 14367 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14368 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14369 return false; 14370 return true; 14371 } 14372 14373 static SDValue isScalarToVec(SDValue Op) { 14374 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14375 return Op; 14376 if (Op.getOpcode() != ISD::BITCAST) 14377 return SDValue(); 14378 Op = Op.getOperand(0); 14379 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14380 return Op; 14381 return SDValue(); 14382 } 14383 14384 // Fix up the shuffle mask to account for the fact that the result of 14385 // scalar_to_vector is not in lane zero. This just takes all values in 14386 // the ranges specified by the min/max indices and adds the number of 14387 // elements required to ensure each element comes from the respective 14388 // position in the valid lane. 14389 // On little endian, that's just the corresponding element in the other 14390 // half of the vector. On big endian, it is in the same half but right 14391 // justified rather than left justified in that half. 14392 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14393 int LHSMaxIdx, int RHSMinIdx, 14394 int RHSMaxIdx, int HalfVec, 14395 unsigned ValidLaneWidth, 14396 const PPCSubtarget &Subtarget) { 14397 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14398 int Idx = ShuffV[i]; 14399 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14400 ShuffV[i] += 14401 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14402 } 14403 } 14404 14405 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14406 // the original is: 14407 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14408 // In such a case, just change the shuffle mask to extract the element 14409 // from the permuted index. 14410 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14411 const PPCSubtarget &Subtarget) { 14412 SDLoc dl(OrigSToV); 14413 EVT VT = OrigSToV.getValueType(); 14414 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14415 "Expecting a SCALAR_TO_VECTOR here"); 14416 SDValue Input = OrigSToV.getOperand(0); 14417 14418 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14419 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14420 SDValue OrigVector = Input.getOperand(0); 14421 14422 // Can't handle non-const element indices or different vector types 14423 // for the input to the extract and the output of the scalar_to_vector. 14424 if (Idx && VT == OrigVector.getValueType()) { 14425 unsigned NumElts = VT.getVectorNumElements(); 14426 assert( 14427 NumElts > 1 && 14428 "Cannot produce a permuted scalar_to_vector for one element vector"); 14429 SmallVector<int, 16> NewMask(NumElts, -1); 14430 unsigned ResultInElt = NumElts / 2; 14431 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14432 NewMask[ResultInElt] = Idx->getZExtValue(); 14433 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14434 } 14435 } 14436 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14437 OrigSToV.getOperand(0)); 14438 } 14439 14440 // On little endian subtargets, combine shuffles such as: 14441 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14442 // into: 14443 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14444 // because the latter can be matched to a single instruction merge. 14445 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14446 // to put the value into element zero. Adjust the shuffle mask so that the 14447 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14448 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14449 // nodes with elements smaller than doubleword because all the ways 14450 // of getting scalar data into a vector register put the value in the 14451 // rightmost element of the left half of the vector. 14452 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14453 SelectionDAG &DAG) const { 14454 SDValue LHS = SVN->getOperand(0); 14455 SDValue RHS = SVN->getOperand(1); 14456 auto Mask = SVN->getMask(); 14457 int NumElts = LHS.getValueType().getVectorNumElements(); 14458 SDValue Res(SVN, 0); 14459 SDLoc dl(SVN); 14460 bool IsLittleEndian = Subtarget.isLittleEndian(); 14461 14462 // On little endian targets, do these combines on all VSX targets since 14463 // canonical shuffles match efficient permutes. On big endian targets, 14464 // this is only useful for targets with direct moves. 14465 if (!Subtarget.hasDirectMove() && !(IsLittleEndian && Subtarget.hasVSX())) 14466 return Res; 14467 14468 // If this is not a shuffle of a shuffle and the first element comes from 14469 // the second vector, canonicalize to the commuted form. This will make it 14470 // more likely to match one of the single instruction patterns. 14471 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14472 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14473 std::swap(LHS, RHS); 14474 Res = DAG.getCommutedVectorShuffle(*SVN); 14475 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14476 } 14477 14478 // Adjust the shuffle mask if either input vector comes from a 14479 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14480 // form (to prevent the need for a swap). 14481 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14482 SDValue SToVLHS = isScalarToVec(LHS); 14483 SDValue SToVRHS = isScalarToVec(RHS); 14484 if (SToVLHS || SToVRHS) { 14485 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14486 : SToVRHS.getValueType().getVectorNumElements(); 14487 int NumEltsOut = ShuffV.size(); 14488 unsigned InElemSizeInBits = 14489 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() 14490 : SToVRHS.getValueType().getScalarSizeInBits(); 14491 unsigned OutElemSizeInBits = SToVLHS 14492 ? LHS.getValueType().getScalarSizeInBits() 14493 : RHS.getValueType().getScalarSizeInBits(); 14494 14495 // The width of the "valid lane" (i.e. the lane that contains the value that 14496 // is vectorized) needs to be expressed in terms of the number of elements 14497 // of the shuffle. It is thereby the ratio of the values before and after 14498 // any bitcast. 14499 unsigned ValidLaneWidth = InElemSizeInBits / OutElemSizeInBits; 14500 14501 // Initially assume that neither input is permuted. These will be adjusted 14502 // accordingly if either input is. 14503 int LHSMaxIdx = -1; 14504 int RHSMinIdx = -1; 14505 int RHSMaxIdx = -1; 14506 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14507 14508 // Get the permuted scalar to vector nodes for the source(s) that come from 14509 // ISD::SCALAR_TO_VECTOR. 14510 // On big endian systems, this only makes sense for element sizes smaller 14511 // than 64 bits since for 64-bit elements, all instructions already put 14512 // the value into element zero. 14513 if (SToVLHS) { 14514 if (!IsLittleEndian && InElemSizeInBits >= 64) 14515 return Res; 14516 // Set up the values for the shuffle vector fixup. 14517 LHSMaxIdx = NumEltsOut / NumEltsIn; 14518 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14519 if (SToVLHS.getValueType() != LHS.getValueType()) 14520 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14521 LHS = SToVLHS; 14522 } 14523 if (SToVRHS) { 14524 if (!IsLittleEndian && InElemSizeInBits >= 64) 14525 return Res; 14526 RHSMinIdx = NumEltsOut; 14527 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14528 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14529 if (SToVRHS.getValueType() != RHS.getValueType()) 14530 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14531 RHS = SToVRHS; 14532 } 14533 14534 // Fix up the shuffle mask to reflect where the desired element actually is. 14535 // The minimum and maximum indices that correspond to element zero for both 14536 // the LHS and RHS are computed and will control which shuffle mask entries 14537 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14538 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14539 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14540 HalfVec, ValidLaneWidth, Subtarget); 14541 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14542 14543 // We may have simplified away the shuffle. We won't be able to do anything 14544 // further with it here. 14545 if (!isa<ShuffleVectorSDNode>(Res)) 14546 return Res; 14547 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14548 } 14549 14550 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14551 // The common case after we commuted the shuffle is that the RHS is a splat 14552 // and we have elements coming in from the splat at indices that are not 14553 // conducive to using a merge. 14554 // Example: 14555 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14556 if (!isSplatBV(TheSplat)) 14557 return Res; 14558 14559 // We are looking for a mask such that all even elements are from 14560 // one vector and all odd elements from the other. 14561 if (!isAlternatingShuffMask(Mask, NumElts)) 14562 return Res; 14563 14564 // Adjust the mask so we are pulling in the same index from the splat 14565 // as the index from the interesting vector in consecutive elements. 14566 if (IsLittleEndian) { 14567 // Example (even elements from first vector): 14568 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14569 if (Mask[0] < NumElts) 14570 for (int i = 1, e = Mask.size(); i < e; i += 2) 14571 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14572 // Example (odd elements from first vector): 14573 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14574 else 14575 for (int i = 0, e = Mask.size(); i < e; i += 2) 14576 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14577 } else { 14578 // Example (even elements from first vector): 14579 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14580 if (Mask[0] < NumElts) 14581 for (int i = 0, e = Mask.size(); i < e; i += 2) 14582 ShuffV[i] = ShuffV[i + 1] - NumElts; 14583 // Example (odd elements from first vector): 14584 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14585 else 14586 for (int i = 1, e = Mask.size(); i < e; i += 2) 14587 ShuffV[i] = ShuffV[i - 1] - NumElts; 14588 } 14589 14590 // If the RHS has undefs, we need to remove them since we may have created 14591 // a shuffle that adds those instead of the splat value. 14592 SDValue SplatVal = 14593 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14594 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14595 14596 if (IsLittleEndian) 14597 RHS = TheSplat; 14598 else 14599 LHS = TheSplat; 14600 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14601 } 14602 14603 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14604 LSBaseSDNode *LSBase, 14605 DAGCombinerInfo &DCI) const { 14606 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14607 "Not a reverse memop pattern!"); 14608 14609 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14610 auto Mask = SVN->getMask(); 14611 int i = 0; 14612 auto I = Mask.rbegin(); 14613 auto E = Mask.rend(); 14614 14615 for (; I != E; ++I) { 14616 if (*I != i) 14617 return false; 14618 i++; 14619 } 14620 return true; 14621 }; 14622 14623 SelectionDAG &DAG = DCI.DAG; 14624 EVT VT = SVN->getValueType(0); 14625 14626 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14627 return SDValue(); 14628 14629 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14630 // See comment in PPCVSXSwapRemoval.cpp. 14631 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14632 if (!Subtarget.hasP9Vector()) 14633 return SDValue(); 14634 14635 if(!IsElementReverse(SVN)) 14636 return SDValue(); 14637 14638 if (LSBase->getOpcode() == ISD::LOAD) { 14639 // If the load return value 0 has more than one user except the 14640 // shufflevector instruction, it is not profitable to replace the 14641 // shufflevector with a reverse load. 14642 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14643 UI != UE; ++UI) 14644 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14645 return SDValue(); 14646 14647 SDLoc dl(LSBase); 14648 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14649 return DAG.getMemIntrinsicNode( 14650 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14651 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14652 } 14653 14654 if (LSBase->getOpcode() == ISD::STORE) { 14655 // If there are other uses of the shuffle, the swap cannot be avoided. 14656 // Forcing the use of an X-Form (since swapped stores only have 14657 // X-Forms) without removing the swap is unprofitable. 14658 if (!SVN->hasOneUse()) 14659 return SDValue(); 14660 14661 SDLoc dl(LSBase); 14662 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14663 LSBase->getBasePtr()}; 14664 return DAG.getMemIntrinsicNode( 14665 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14666 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14667 } 14668 14669 llvm_unreachable("Expected a load or store node here"); 14670 } 14671 14672 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14673 DAGCombinerInfo &DCI) const { 14674 SelectionDAG &DAG = DCI.DAG; 14675 SDLoc dl(N); 14676 switch (N->getOpcode()) { 14677 default: break; 14678 case ISD::ADD: 14679 return combineADD(N, DCI); 14680 case ISD::SHL: 14681 return combineSHL(N, DCI); 14682 case ISD::SRA: 14683 return combineSRA(N, DCI); 14684 case ISD::SRL: 14685 return combineSRL(N, DCI); 14686 case ISD::MUL: 14687 return combineMUL(N, DCI); 14688 case ISD::FMA: 14689 case PPCISD::FNMSUB: 14690 return combineFMALike(N, DCI); 14691 case PPCISD::SHL: 14692 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14693 return N->getOperand(0); 14694 break; 14695 case PPCISD::SRL: 14696 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14697 return N->getOperand(0); 14698 break; 14699 case PPCISD::SRA: 14700 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14701 if (C->isNullValue() || // 0 >>s V -> 0. 14702 C->isAllOnesValue()) // -1 >>s V -> -1. 14703 return N->getOperand(0); 14704 } 14705 break; 14706 case ISD::SIGN_EXTEND: 14707 case ISD::ZERO_EXTEND: 14708 case ISD::ANY_EXTEND: 14709 return DAGCombineExtBoolTrunc(N, DCI); 14710 case ISD::TRUNCATE: 14711 return combineTRUNCATE(N, DCI); 14712 case ISD::SETCC: 14713 if (SDValue CSCC = combineSetCC(N, DCI)) 14714 return CSCC; 14715 LLVM_FALLTHROUGH; 14716 case ISD::SELECT_CC: 14717 return DAGCombineTruncBoolExt(N, DCI); 14718 case ISD::SINT_TO_FP: 14719 case ISD::UINT_TO_FP: 14720 return combineFPToIntToFP(N, DCI); 14721 case ISD::VECTOR_SHUFFLE: 14722 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14723 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14724 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14725 } 14726 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14727 case ISD::STORE: { 14728 14729 EVT Op1VT = N->getOperand(1).getValueType(); 14730 unsigned Opcode = N->getOperand(1).getOpcode(); 14731 14732 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14733 SDValue Val= combineStoreFPToInt(N, DCI); 14734 if (Val) 14735 return Val; 14736 } 14737 14738 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14739 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14740 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14741 if (Val) 14742 return Val; 14743 } 14744 14745 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14746 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14747 N->getOperand(1).getNode()->hasOneUse() && 14748 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14749 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14750 14751 // STBRX can only handle simple types and it makes no sense to store less 14752 // two bytes in byte-reversed order. 14753 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14754 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14755 break; 14756 14757 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14758 // Do an any-extend to 32-bits if this is a half-word input. 14759 if (BSwapOp.getValueType() == MVT::i16) 14760 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14761 14762 // If the type of BSWAP operand is wider than stored memory width 14763 // it need to be shifted to the right side before STBRX. 14764 if (Op1VT.bitsGT(mVT)) { 14765 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14766 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14767 DAG.getConstant(Shift, dl, MVT::i32)); 14768 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14769 if (Op1VT == MVT::i64) 14770 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14771 } 14772 14773 SDValue Ops[] = { 14774 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14775 }; 14776 return 14777 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14778 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14779 cast<StoreSDNode>(N)->getMemOperand()); 14780 } 14781 14782 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14783 // So it can increase the chance of CSE constant construction. 14784 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14785 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14786 // Need to sign-extended to 64-bits to handle negative values. 14787 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14788 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14789 MemVT.getSizeInBits()); 14790 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14791 14792 // DAG.getTruncStore() can't be used here because it doesn't accept 14793 // the general (base + offset) addressing mode. 14794 // So we use UpdateNodeOperands and setTruncatingStore instead. 14795 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14796 N->getOperand(3)); 14797 cast<StoreSDNode>(N)->setTruncatingStore(true); 14798 return SDValue(N, 0); 14799 } 14800 14801 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14802 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14803 if (Op1VT.isSimple()) { 14804 MVT StoreVT = Op1VT.getSimpleVT(); 14805 if (Subtarget.needsSwapsForVSXMemOps() && 14806 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14807 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14808 return expandVSXStoreForLE(N, DCI); 14809 } 14810 break; 14811 } 14812 case ISD::LOAD: { 14813 LoadSDNode *LD = cast<LoadSDNode>(N); 14814 EVT VT = LD->getValueType(0); 14815 14816 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14817 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14818 if (VT.isSimple()) { 14819 MVT LoadVT = VT.getSimpleVT(); 14820 if (Subtarget.needsSwapsForVSXMemOps() && 14821 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14822 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14823 return expandVSXLoadForLE(N, DCI); 14824 } 14825 14826 // We sometimes end up with a 64-bit integer load, from which we extract 14827 // two single-precision floating-point numbers. This happens with 14828 // std::complex<float>, and other similar structures, because of the way we 14829 // canonicalize structure copies. However, if we lack direct moves, 14830 // then the final bitcasts from the extracted integer values to the 14831 // floating-point numbers turn into store/load pairs. Even with direct moves, 14832 // just loading the two floating-point numbers is likely better. 14833 auto ReplaceTwoFloatLoad = [&]() { 14834 if (VT != MVT::i64) 14835 return false; 14836 14837 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14838 LD->isVolatile()) 14839 return false; 14840 14841 // We're looking for a sequence like this: 14842 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14843 // t16: i64 = srl t13, Constant:i32<32> 14844 // t17: i32 = truncate t16 14845 // t18: f32 = bitcast t17 14846 // t19: i32 = truncate t13 14847 // t20: f32 = bitcast t19 14848 14849 if (!LD->hasNUsesOfValue(2, 0)) 14850 return false; 14851 14852 auto UI = LD->use_begin(); 14853 while (UI.getUse().getResNo() != 0) ++UI; 14854 SDNode *Trunc = *UI++; 14855 while (UI.getUse().getResNo() != 0) ++UI; 14856 SDNode *RightShift = *UI; 14857 if (Trunc->getOpcode() != ISD::TRUNCATE) 14858 std::swap(Trunc, RightShift); 14859 14860 if (Trunc->getOpcode() != ISD::TRUNCATE || 14861 Trunc->getValueType(0) != MVT::i32 || 14862 !Trunc->hasOneUse()) 14863 return false; 14864 if (RightShift->getOpcode() != ISD::SRL || 14865 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14866 RightShift->getConstantOperandVal(1) != 32 || 14867 !RightShift->hasOneUse()) 14868 return false; 14869 14870 SDNode *Trunc2 = *RightShift->use_begin(); 14871 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14872 Trunc2->getValueType(0) != MVT::i32 || 14873 !Trunc2->hasOneUse()) 14874 return false; 14875 14876 SDNode *Bitcast = *Trunc->use_begin(); 14877 SDNode *Bitcast2 = *Trunc2->use_begin(); 14878 14879 if (Bitcast->getOpcode() != ISD::BITCAST || 14880 Bitcast->getValueType(0) != MVT::f32) 14881 return false; 14882 if (Bitcast2->getOpcode() != ISD::BITCAST || 14883 Bitcast2->getValueType(0) != MVT::f32) 14884 return false; 14885 14886 if (Subtarget.isLittleEndian()) 14887 std::swap(Bitcast, Bitcast2); 14888 14889 // Bitcast has the second float (in memory-layout order) and Bitcast2 14890 // has the first one. 14891 14892 SDValue BasePtr = LD->getBasePtr(); 14893 if (LD->isIndexed()) { 14894 assert(LD->getAddressingMode() == ISD::PRE_INC && 14895 "Non-pre-inc AM on PPC?"); 14896 BasePtr = 14897 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14898 LD->getOffset()); 14899 } 14900 14901 auto MMOFlags = 14902 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14903 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14904 LD->getPointerInfo(), LD->getAlignment(), 14905 MMOFlags, LD->getAAInfo()); 14906 SDValue AddPtr = 14907 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14908 BasePtr, DAG.getIntPtrConstant(4, dl)); 14909 SDValue FloatLoad2 = DAG.getLoad( 14910 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14911 LD->getPointerInfo().getWithOffset(4), 14912 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14913 14914 if (LD->isIndexed()) { 14915 // Note that DAGCombine should re-form any pre-increment load(s) from 14916 // what is produced here if that makes sense. 14917 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14918 } 14919 14920 DCI.CombineTo(Bitcast2, FloatLoad); 14921 DCI.CombineTo(Bitcast, FloatLoad2); 14922 14923 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14924 SDValue(FloatLoad2.getNode(), 1)); 14925 return true; 14926 }; 14927 14928 if (ReplaceTwoFloatLoad()) 14929 return SDValue(N, 0); 14930 14931 EVT MemVT = LD->getMemoryVT(); 14932 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14933 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14934 if (LD->isUnindexed() && VT.isVector() && 14935 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14936 // P8 and later hardware should just use LOAD. 14937 !Subtarget.hasP8Vector() && 14938 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14939 VT == MVT::v4f32))) && 14940 LD->getAlign() < ABIAlignment) { 14941 // This is a type-legal unaligned Altivec load. 14942 SDValue Chain = LD->getChain(); 14943 SDValue Ptr = LD->getBasePtr(); 14944 bool isLittleEndian = Subtarget.isLittleEndian(); 14945 14946 // This implements the loading of unaligned vectors as described in 14947 // the venerable Apple Velocity Engine overview. Specifically: 14948 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14949 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14950 // 14951 // The general idea is to expand a sequence of one or more unaligned 14952 // loads into an alignment-based permutation-control instruction (lvsl 14953 // or lvsr), a series of regular vector loads (which always truncate 14954 // their input address to an aligned address), and a series of 14955 // permutations. The results of these permutations are the requested 14956 // loaded values. The trick is that the last "extra" load is not taken 14957 // from the address you might suspect (sizeof(vector) bytes after the 14958 // last requested load), but rather sizeof(vector) - 1 bytes after the 14959 // last requested vector. The point of this is to avoid a page fault if 14960 // the base address happened to be aligned. This works because if the 14961 // base address is aligned, then adding less than a full vector length 14962 // will cause the last vector in the sequence to be (re)loaded. 14963 // Otherwise, the next vector will be fetched as you might suspect was 14964 // necessary. 14965 14966 // We might be able to reuse the permutation generation from 14967 // a different base address offset from this one by an aligned amount. 14968 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14969 // optimization later. 14970 Intrinsic::ID Intr, IntrLD, IntrPerm; 14971 MVT PermCntlTy, PermTy, LDTy; 14972 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14973 : Intrinsic::ppc_altivec_lvsl; 14974 IntrLD = Intrinsic::ppc_altivec_lvx; 14975 IntrPerm = Intrinsic::ppc_altivec_vperm; 14976 PermCntlTy = MVT::v16i8; 14977 PermTy = MVT::v4i32; 14978 LDTy = MVT::v4i32; 14979 14980 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14981 14982 // Create the new MMO for the new base load. It is like the original MMO, 14983 // but represents an area in memory almost twice the vector size centered 14984 // on the original address. If the address is unaligned, we might start 14985 // reading up to (sizeof(vector)-1) bytes below the address of the 14986 // original unaligned load. 14987 MachineFunction &MF = DAG.getMachineFunction(); 14988 MachineMemOperand *BaseMMO = 14989 MF.getMachineMemOperand(LD->getMemOperand(), 14990 -(long)MemVT.getStoreSize()+1, 14991 2*MemVT.getStoreSize()-1); 14992 14993 // Create the new base load. 14994 SDValue LDXIntID = 14995 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14996 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14997 SDValue BaseLoad = 14998 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14999 DAG.getVTList(PermTy, MVT::Other), 15000 BaseLoadOps, LDTy, BaseMMO); 15001 15002 // Note that the value of IncOffset (which is provided to the next 15003 // load's pointer info offset value, and thus used to calculate the 15004 // alignment), and the value of IncValue (which is actually used to 15005 // increment the pointer value) are different! This is because we 15006 // require the next load to appear to be aligned, even though it 15007 // is actually offset from the base pointer by a lesser amount. 15008 int IncOffset = VT.getSizeInBits() / 8; 15009 int IncValue = IncOffset; 15010 15011 // Walk (both up and down) the chain looking for another load at the real 15012 // (aligned) offset (the alignment of the other load does not matter in 15013 // this case). If found, then do not use the offset reduction trick, as 15014 // that will prevent the loads from being later combined (as they would 15015 // otherwise be duplicates). 15016 if (!findConsecutiveLoad(LD, DAG)) 15017 --IncValue; 15018 15019 SDValue Increment = 15020 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15021 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15022 15023 MachineMemOperand *ExtraMMO = 15024 MF.getMachineMemOperand(LD->getMemOperand(), 15025 1, 2*MemVT.getStoreSize()-1); 15026 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15027 SDValue ExtraLoad = 15028 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15029 DAG.getVTList(PermTy, MVT::Other), 15030 ExtraLoadOps, LDTy, ExtraMMO); 15031 15032 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15033 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15034 15035 // Because vperm has a big-endian bias, we must reverse the order 15036 // of the input vectors and complement the permute control vector 15037 // when generating little endian code. We have already handled the 15038 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15039 // and ExtraLoad here. 15040 SDValue Perm; 15041 if (isLittleEndian) 15042 Perm = BuildIntrinsicOp(IntrPerm, 15043 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15044 else 15045 Perm = BuildIntrinsicOp(IntrPerm, 15046 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15047 15048 if (VT != PermTy) 15049 Perm = Subtarget.hasAltivec() 15050 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15051 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15052 DAG.getTargetConstant(1, dl, MVT::i64)); 15053 // second argument is 1 because this rounding 15054 // is always exact. 15055 15056 // The output of the permutation is our loaded result, the TokenFactor is 15057 // our new chain. 15058 DCI.CombineTo(N, Perm, TF); 15059 return SDValue(N, 0); 15060 } 15061 } 15062 break; 15063 case ISD::INTRINSIC_WO_CHAIN: { 15064 bool isLittleEndian = Subtarget.isLittleEndian(); 15065 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15066 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15067 : Intrinsic::ppc_altivec_lvsl); 15068 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15069 SDValue Add = N->getOperand(1); 15070 15071 int Bits = 4 /* 16 byte alignment */; 15072 15073 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15074 APInt::getAllOnesValue(Bits /* alignment */) 15075 .zext(Add.getScalarValueSizeInBits()))) { 15076 SDNode *BasePtr = Add->getOperand(0).getNode(); 15077 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15078 UE = BasePtr->use_end(); 15079 UI != UE; ++UI) { 15080 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15081 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15082 IID) { 15083 // We've found another LVSL/LVSR, and this address is an aligned 15084 // multiple of that one. The results will be the same, so use the 15085 // one we've just found instead. 15086 15087 return SDValue(*UI, 0); 15088 } 15089 } 15090 } 15091 15092 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15093 SDNode *BasePtr = Add->getOperand(0).getNode(); 15094 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15095 UE = BasePtr->use_end(); UI != UE; ++UI) { 15096 if (UI->getOpcode() == ISD::ADD && 15097 isa<ConstantSDNode>(UI->getOperand(1)) && 15098 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15099 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15100 (1ULL << Bits) == 0) { 15101 SDNode *OtherAdd = *UI; 15102 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15103 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15104 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15105 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15106 return SDValue(*VI, 0); 15107 } 15108 } 15109 } 15110 } 15111 } 15112 } 15113 15114 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15115 // Expose the vabsduw/h/b opportunity for down stream 15116 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15117 (IID == Intrinsic::ppc_altivec_vmaxsw || 15118 IID == Intrinsic::ppc_altivec_vmaxsh || 15119 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15120 SDValue V1 = N->getOperand(1); 15121 SDValue V2 = N->getOperand(2); 15122 if ((V1.getSimpleValueType() == MVT::v4i32 || 15123 V1.getSimpleValueType() == MVT::v8i16 || 15124 V1.getSimpleValueType() == MVT::v16i8) && 15125 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15126 // (0-a, a) 15127 if (V1.getOpcode() == ISD::SUB && 15128 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15129 V1.getOperand(1) == V2) { 15130 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15131 } 15132 // (a, 0-a) 15133 if (V2.getOpcode() == ISD::SUB && 15134 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15135 V2.getOperand(1) == V1) { 15136 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15137 } 15138 // (x-y, y-x) 15139 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15140 V1.getOperand(0) == V2.getOperand(1) && 15141 V1.getOperand(1) == V2.getOperand(0)) { 15142 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15143 } 15144 } 15145 } 15146 } 15147 15148 break; 15149 case ISD::INTRINSIC_W_CHAIN: 15150 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15151 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15152 if (Subtarget.needsSwapsForVSXMemOps()) { 15153 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15154 default: 15155 break; 15156 case Intrinsic::ppc_vsx_lxvw4x: 15157 case Intrinsic::ppc_vsx_lxvd2x: 15158 return expandVSXLoadForLE(N, DCI); 15159 } 15160 } 15161 break; 15162 case ISD::INTRINSIC_VOID: 15163 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15164 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15165 if (Subtarget.needsSwapsForVSXMemOps()) { 15166 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15167 default: 15168 break; 15169 case Intrinsic::ppc_vsx_stxvw4x: 15170 case Intrinsic::ppc_vsx_stxvd2x: 15171 return expandVSXStoreForLE(N, DCI); 15172 } 15173 } 15174 break; 15175 case ISD::BSWAP: 15176 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15177 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15178 N->getOperand(0).hasOneUse() && 15179 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15180 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15181 N->getValueType(0) == MVT::i64))) { 15182 SDValue Load = N->getOperand(0); 15183 LoadSDNode *LD = cast<LoadSDNode>(Load); 15184 // Create the byte-swapping load. 15185 SDValue Ops[] = { 15186 LD->getChain(), // Chain 15187 LD->getBasePtr(), // Ptr 15188 DAG.getValueType(N->getValueType(0)) // VT 15189 }; 15190 SDValue BSLoad = 15191 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15192 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15193 MVT::i64 : MVT::i32, MVT::Other), 15194 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15195 15196 // If this is an i16 load, insert the truncate. 15197 SDValue ResVal = BSLoad; 15198 if (N->getValueType(0) == MVT::i16) 15199 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15200 15201 // First, combine the bswap away. This makes the value produced by the 15202 // load dead. 15203 DCI.CombineTo(N, ResVal); 15204 15205 // Next, combine the load away, we give it a bogus result value but a real 15206 // chain result. The result value is dead because the bswap is dead. 15207 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15208 15209 // Return N so it doesn't get rechecked! 15210 return SDValue(N, 0); 15211 } 15212 break; 15213 case PPCISD::VCMP: 15214 // If a VCMP_rec node already exists with exactly the same operands as this 15215 // node, use its result instead of this node (VCMP_rec computes both a CR6 15216 // and a normal output). 15217 // 15218 if (!N->getOperand(0).hasOneUse() && 15219 !N->getOperand(1).hasOneUse() && 15220 !N->getOperand(2).hasOneUse()) { 15221 15222 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15223 SDNode *VCMPrecNode = nullptr; 15224 15225 SDNode *LHSN = N->getOperand(0).getNode(); 15226 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15227 UI != E; ++UI) 15228 if (UI->getOpcode() == PPCISD::VCMP_rec && 15229 UI->getOperand(1) == N->getOperand(1) && 15230 UI->getOperand(2) == N->getOperand(2) && 15231 UI->getOperand(0) == N->getOperand(0)) { 15232 VCMPrecNode = *UI; 15233 break; 15234 } 15235 15236 // If there is no VCMP_rec node, or if the flag value has a single use, 15237 // don't transform this. 15238 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15239 break; 15240 15241 // Look at the (necessarily single) use of the flag value. If it has a 15242 // chain, this transformation is more complex. Note that multiple things 15243 // could use the value result, which we should ignore. 15244 SDNode *FlagUser = nullptr; 15245 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15246 FlagUser == nullptr; ++UI) { 15247 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15248 SDNode *User = *UI; 15249 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15250 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15251 FlagUser = User; 15252 break; 15253 } 15254 } 15255 } 15256 15257 // If the user is a MFOCRF instruction, we know this is safe. 15258 // Otherwise we give up for right now. 15259 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15260 return SDValue(VCMPrecNode, 0); 15261 } 15262 break; 15263 case ISD::BRCOND: { 15264 SDValue Cond = N->getOperand(1); 15265 SDValue Target = N->getOperand(2); 15266 15267 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15268 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15269 Intrinsic::loop_decrement) { 15270 15271 // We now need to make the intrinsic dead (it cannot be instruction 15272 // selected). 15273 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15274 assert(Cond.getNode()->hasOneUse() && 15275 "Counter decrement has more than one use"); 15276 15277 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15278 N->getOperand(0), Target); 15279 } 15280 } 15281 break; 15282 case ISD::BR_CC: { 15283 // If this is a branch on an altivec predicate comparison, lower this so 15284 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15285 // lowering is done pre-legalize, because the legalizer lowers the predicate 15286 // compare down to code that is difficult to reassemble. 15287 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15288 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15289 15290 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15291 // value. If so, pass-through the AND to get to the intrinsic. 15292 if (LHS.getOpcode() == ISD::AND && 15293 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15294 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15295 Intrinsic::loop_decrement && 15296 isa<ConstantSDNode>(LHS.getOperand(1)) && 15297 !isNullConstant(LHS.getOperand(1))) 15298 LHS = LHS.getOperand(0); 15299 15300 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15301 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15302 Intrinsic::loop_decrement && 15303 isa<ConstantSDNode>(RHS)) { 15304 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15305 "Counter decrement comparison is not EQ or NE"); 15306 15307 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15308 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15309 (CC == ISD::SETNE && !Val); 15310 15311 // We now need to make the intrinsic dead (it cannot be instruction 15312 // selected). 15313 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15314 assert(LHS.getNode()->hasOneUse() && 15315 "Counter decrement has more than one use"); 15316 15317 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15318 N->getOperand(0), N->getOperand(4)); 15319 } 15320 15321 int CompareOpc; 15322 bool isDot; 15323 15324 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15325 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15326 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15327 assert(isDot && "Can't compare against a vector result!"); 15328 15329 // If this is a comparison against something other than 0/1, then we know 15330 // that the condition is never/always true. 15331 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15332 if (Val != 0 && Val != 1) { 15333 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15334 return N->getOperand(0); 15335 // Always !=, turn it into an unconditional branch. 15336 return DAG.getNode(ISD::BR, dl, MVT::Other, 15337 N->getOperand(0), N->getOperand(4)); 15338 } 15339 15340 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15341 15342 // Create the PPCISD altivec 'dot' comparison node. 15343 SDValue Ops[] = { 15344 LHS.getOperand(2), // LHS of compare 15345 LHS.getOperand(3), // RHS of compare 15346 DAG.getConstant(CompareOpc, dl, MVT::i32) 15347 }; 15348 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15349 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15350 15351 // Unpack the result based on how the target uses it. 15352 PPC::Predicate CompOpc; 15353 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15354 default: // Can't happen, don't crash on invalid number though. 15355 case 0: // Branch on the value of the EQ bit of CR6. 15356 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15357 break; 15358 case 1: // Branch on the inverted value of the EQ bit of CR6. 15359 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15360 break; 15361 case 2: // Branch on the value of the LT bit of CR6. 15362 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15363 break; 15364 case 3: // Branch on the inverted value of the LT bit of CR6. 15365 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15366 break; 15367 } 15368 15369 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15370 DAG.getConstant(CompOpc, dl, MVT::i32), 15371 DAG.getRegister(PPC::CR6, MVT::i32), 15372 N->getOperand(4), CompNode.getValue(1)); 15373 } 15374 break; 15375 } 15376 case ISD::BUILD_VECTOR: 15377 return DAGCombineBuildVector(N, DCI); 15378 case ISD::ABS: 15379 return combineABS(N, DCI); 15380 case ISD::VSELECT: 15381 return combineVSelect(N, DCI); 15382 } 15383 15384 return SDValue(); 15385 } 15386 15387 SDValue 15388 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15389 SelectionDAG &DAG, 15390 SmallVectorImpl<SDNode *> &Created) const { 15391 // fold (sdiv X, pow2) 15392 EVT VT = N->getValueType(0); 15393 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15394 return SDValue(); 15395 if ((VT != MVT::i32 && VT != MVT::i64) || 15396 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15397 return SDValue(); 15398 15399 SDLoc DL(N); 15400 SDValue N0 = N->getOperand(0); 15401 15402 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15403 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15404 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15405 15406 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15407 Created.push_back(Op.getNode()); 15408 15409 if (IsNegPow2) { 15410 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15411 Created.push_back(Op.getNode()); 15412 } 15413 15414 return Op; 15415 } 15416 15417 //===----------------------------------------------------------------------===// 15418 // Inline Assembly Support 15419 //===----------------------------------------------------------------------===// 15420 15421 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15422 KnownBits &Known, 15423 const APInt &DemandedElts, 15424 const SelectionDAG &DAG, 15425 unsigned Depth) const { 15426 Known.resetAll(); 15427 switch (Op.getOpcode()) { 15428 default: break; 15429 case PPCISD::LBRX: { 15430 // lhbrx is known to have the top bits cleared out. 15431 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15432 Known.Zero = 0xFFFF0000; 15433 break; 15434 } 15435 case ISD::INTRINSIC_WO_CHAIN: { 15436 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15437 default: break; 15438 case Intrinsic::ppc_altivec_vcmpbfp_p: 15439 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15440 case Intrinsic::ppc_altivec_vcmpequb_p: 15441 case Intrinsic::ppc_altivec_vcmpequh_p: 15442 case Intrinsic::ppc_altivec_vcmpequw_p: 15443 case Intrinsic::ppc_altivec_vcmpequd_p: 15444 case Intrinsic::ppc_altivec_vcmpequq_p: 15445 case Intrinsic::ppc_altivec_vcmpgefp_p: 15446 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15447 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15448 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15449 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15450 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15451 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15452 case Intrinsic::ppc_altivec_vcmpgtub_p: 15453 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15454 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15455 case Intrinsic::ppc_altivec_vcmpgtud_p: 15456 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15457 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15458 break; 15459 } 15460 } 15461 } 15462 } 15463 15464 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15465 switch (Subtarget.getCPUDirective()) { 15466 default: break; 15467 case PPC::DIR_970: 15468 case PPC::DIR_PWR4: 15469 case PPC::DIR_PWR5: 15470 case PPC::DIR_PWR5X: 15471 case PPC::DIR_PWR6: 15472 case PPC::DIR_PWR6X: 15473 case PPC::DIR_PWR7: 15474 case PPC::DIR_PWR8: 15475 case PPC::DIR_PWR9: 15476 case PPC::DIR_PWR10: 15477 case PPC::DIR_PWR_FUTURE: { 15478 if (!ML) 15479 break; 15480 15481 if (!DisableInnermostLoopAlign32) { 15482 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15483 // so that we can decrease cache misses and branch-prediction misses. 15484 // Actual alignment of the loop will depend on the hotness check and other 15485 // logic in alignBlocks. 15486 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15487 return Align(32); 15488 } 15489 15490 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15491 15492 // For small loops (between 5 and 8 instructions), align to a 32-byte 15493 // boundary so that the entire loop fits in one instruction-cache line. 15494 uint64_t LoopSize = 0; 15495 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15496 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15497 LoopSize += TII->getInstSizeInBytes(*J); 15498 if (LoopSize > 32) 15499 break; 15500 } 15501 15502 if (LoopSize > 16 && LoopSize <= 32) 15503 return Align(32); 15504 15505 break; 15506 } 15507 } 15508 15509 return TargetLowering::getPrefLoopAlignment(ML); 15510 } 15511 15512 /// getConstraintType - Given a constraint, return the type of 15513 /// constraint it is for this target. 15514 PPCTargetLowering::ConstraintType 15515 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15516 if (Constraint.size() == 1) { 15517 switch (Constraint[0]) { 15518 default: break; 15519 case 'b': 15520 case 'r': 15521 case 'f': 15522 case 'd': 15523 case 'v': 15524 case 'y': 15525 return C_RegisterClass; 15526 case 'Z': 15527 // FIXME: While Z does indicate a memory constraint, it specifically 15528 // indicates an r+r address (used in conjunction with the 'y' modifier 15529 // in the replacement string). Currently, we're forcing the base 15530 // register to be r0 in the asm printer (which is interpreted as zero) 15531 // and forming the complete address in the second register. This is 15532 // suboptimal. 15533 return C_Memory; 15534 } 15535 } else if (Constraint == "wc") { // individual CR bits. 15536 return C_RegisterClass; 15537 } else if (Constraint == "wa" || Constraint == "wd" || 15538 Constraint == "wf" || Constraint == "ws" || 15539 Constraint == "wi" || Constraint == "ww") { 15540 return C_RegisterClass; // VSX registers. 15541 } 15542 return TargetLowering::getConstraintType(Constraint); 15543 } 15544 15545 /// Examine constraint type and operand type and determine a weight value. 15546 /// This object must already have been set up with the operand type 15547 /// and the current alternative constraint selected. 15548 TargetLowering::ConstraintWeight 15549 PPCTargetLowering::getSingleConstraintMatchWeight( 15550 AsmOperandInfo &info, const char *constraint) const { 15551 ConstraintWeight weight = CW_Invalid; 15552 Value *CallOperandVal = info.CallOperandVal; 15553 // If we don't have a value, we can't do a match, 15554 // but allow it at the lowest weight. 15555 if (!CallOperandVal) 15556 return CW_Default; 15557 Type *type = CallOperandVal->getType(); 15558 15559 // Look at the constraint type. 15560 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15561 return CW_Register; // an individual CR bit. 15562 else if ((StringRef(constraint) == "wa" || 15563 StringRef(constraint) == "wd" || 15564 StringRef(constraint) == "wf") && 15565 type->isVectorTy()) 15566 return CW_Register; 15567 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15568 return CW_Register; // just hold 64-bit integers data. 15569 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15570 return CW_Register; 15571 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15572 return CW_Register; 15573 15574 switch (*constraint) { 15575 default: 15576 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15577 break; 15578 case 'b': 15579 if (type->isIntegerTy()) 15580 weight = CW_Register; 15581 break; 15582 case 'f': 15583 if (type->isFloatTy()) 15584 weight = CW_Register; 15585 break; 15586 case 'd': 15587 if (type->isDoubleTy()) 15588 weight = CW_Register; 15589 break; 15590 case 'v': 15591 if (type->isVectorTy()) 15592 weight = CW_Register; 15593 break; 15594 case 'y': 15595 weight = CW_Register; 15596 break; 15597 case 'Z': 15598 weight = CW_Memory; 15599 break; 15600 } 15601 return weight; 15602 } 15603 15604 std::pair<unsigned, const TargetRegisterClass *> 15605 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15606 StringRef Constraint, 15607 MVT VT) const { 15608 if (Constraint.size() == 1) { 15609 // GCC RS6000 Constraint Letters 15610 switch (Constraint[0]) { 15611 case 'b': // R1-R31 15612 if (VT == MVT::i64 && Subtarget.isPPC64()) 15613 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15614 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15615 case 'r': // R0-R31 15616 if (VT == MVT::i64 && Subtarget.isPPC64()) 15617 return std::make_pair(0U, &PPC::G8RCRegClass); 15618 return std::make_pair(0U, &PPC::GPRCRegClass); 15619 // 'd' and 'f' constraints are both defined to be "the floating point 15620 // registers", where one is for 32-bit and the other for 64-bit. We don't 15621 // really care overly much here so just give them all the same reg classes. 15622 case 'd': 15623 case 'f': 15624 if (Subtarget.hasSPE()) { 15625 if (VT == MVT::f32 || VT == MVT::i32) 15626 return std::make_pair(0U, &PPC::GPRCRegClass); 15627 if (VT == MVT::f64 || VT == MVT::i64) 15628 return std::make_pair(0U, &PPC::SPERCRegClass); 15629 } else { 15630 if (VT == MVT::f32 || VT == MVT::i32) 15631 return std::make_pair(0U, &PPC::F4RCRegClass); 15632 if (VT == MVT::f64 || VT == MVT::i64) 15633 return std::make_pair(0U, &PPC::F8RCRegClass); 15634 } 15635 break; 15636 case 'v': 15637 if (Subtarget.hasAltivec()) 15638 return std::make_pair(0U, &PPC::VRRCRegClass); 15639 break; 15640 case 'y': // crrc 15641 return std::make_pair(0U, &PPC::CRRCRegClass); 15642 } 15643 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15644 // An individual CR bit. 15645 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15646 } else if ((Constraint == "wa" || Constraint == "wd" || 15647 Constraint == "wf" || Constraint == "wi") && 15648 Subtarget.hasVSX()) { 15649 return std::make_pair(0U, &PPC::VSRCRegClass); 15650 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15651 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15652 return std::make_pair(0U, &PPC::VSSRCRegClass); 15653 else 15654 return std::make_pair(0U, &PPC::VSFRCRegClass); 15655 } else if (Constraint == "lr") { 15656 if (VT == MVT::i64) 15657 return std::make_pair(0U, &PPC::LR8RCRegClass); 15658 else 15659 return std::make_pair(0U, &PPC::LRRCRegClass); 15660 } 15661 15662 // Handle special cases of physical registers that are not properly handled 15663 // by the base class. 15664 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15665 // If we name a VSX register, we can't defer to the base class because it 15666 // will not recognize the correct register (their names will be VSL{0-31} 15667 // and V{0-31} so they won't match). So we match them here. 15668 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15669 int VSNum = atoi(Constraint.data() + 3); 15670 assert(VSNum >= 0 && VSNum <= 63 && 15671 "Attempted to access a vsr out of range"); 15672 if (VSNum < 32) 15673 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15674 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15675 } 15676 15677 // For float registers, we can't defer to the base class as it will match 15678 // the SPILLTOVSRRC class. 15679 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15680 int RegNum = atoi(Constraint.data() + 2); 15681 if (RegNum > 31 || RegNum < 0) 15682 report_fatal_error("Invalid floating point register number"); 15683 if (VT == MVT::f32 || VT == MVT::i32) 15684 return Subtarget.hasSPE() 15685 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15686 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15687 if (VT == MVT::f64 || VT == MVT::i64) 15688 return Subtarget.hasSPE() 15689 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15690 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15691 } 15692 } 15693 15694 std::pair<unsigned, const TargetRegisterClass *> R = 15695 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15696 15697 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15698 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15699 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15700 // register. 15701 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15702 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15703 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15704 PPC::GPRCRegClass.contains(R.first)) 15705 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15706 PPC::sub_32, &PPC::G8RCRegClass), 15707 &PPC::G8RCRegClass); 15708 15709 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15710 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15711 R.first = PPC::CR0; 15712 R.second = &PPC::CRRCRegClass; 15713 } 15714 // FIXME: This warning should ideally be emitted in the front end. 15715 const auto &TM = getTargetMachine(); 15716 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15717 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15718 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15719 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15720 errs() << "warning: vector registers 20 to 32 are reserved in the " 15721 "default AIX AltiVec ABI and cannot be used\n"; 15722 } 15723 15724 return R; 15725 } 15726 15727 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15728 /// vector. If it is invalid, don't add anything to Ops. 15729 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15730 std::string &Constraint, 15731 std::vector<SDValue>&Ops, 15732 SelectionDAG &DAG) const { 15733 SDValue Result; 15734 15735 // Only support length 1 constraints. 15736 if (Constraint.length() > 1) return; 15737 15738 char Letter = Constraint[0]; 15739 switch (Letter) { 15740 default: break; 15741 case 'I': 15742 case 'J': 15743 case 'K': 15744 case 'L': 15745 case 'M': 15746 case 'N': 15747 case 'O': 15748 case 'P': { 15749 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15750 if (!CST) return; // Must be an immediate to match. 15751 SDLoc dl(Op); 15752 int64_t Value = CST->getSExtValue(); 15753 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15754 // numbers are printed as such. 15755 switch (Letter) { 15756 default: llvm_unreachable("Unknown constraint letter!"); 15757 case 'I': // "I" is a signed 16-bit constant. 15758 if (isInt<16>(Value)) 15759 Result = DAG.getTargetConstant(Value, dl, TCVT); 15760 break; 15761 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15762 if (isShiftedUInt<16, 16>(Value)) 15763 Result = DAG.getTargetConstant(Value, dl, TCVT); 15764 break; 15765 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15766 if (isShiftedInt<16, 16>(Value)) 15767 Result = DAG.getTargetConstant(Value, dl, TCVT); 15768 break; 15769 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15770 if (isUInt<16>(Value)) 15771 Result = DAG.getTargetConstant(Value, dl, TCVT); 15772 break; 15773 case 'M': // "M" is a constant that is greater than 31. 15774 if (Value > 31) 15775 Result = DAG.getTargetConstant(Value, dl, TCVT); 15776 break; 15777 case 'N': // "N" is a positive constant that is an exact power of two. 15778 if (Value > 0 && isPowerOf2_64(Value)) 15779 Result = DAG.getTargetConstant(Value, dl, TCVT); 15780 break; 15781 case 'O': // "O" is the constant zero. 15782 if (Value == 0) 15783 Result = DAG.getTargetConstant(Value, dl, TCVT); 15784 break; 15785 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15786 if (isInt<16>(-Value)) 15787 Result = DAG.getTargetConstant(Value, dl, TCVT); 15788 break; 15789 } 15790 break; 15791 } 15792 } 15793 15794 if (Result.getNode()) { 15795 Ops.push_back(Result); 15796 return; 15797 } 15798 15799 // Handle standard constraint letters. 15800 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15801 } 15802 15803 // isLegalAddressingMode - Return true if the addressing mode represented 15804 // by AM is legal for this target, for a load/store of the specified type. 15805 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15806 const AddrMode &AM, Type *Ty, 15807 unsigned AS, 15808 Instruction *I) const { 15809 // Vector type r+i form is supported since power9 as DQ form. We don't check 15810 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15811 // imm form is preferred and the offset can be adjusted to use imm form later 15812 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15813 // max offset to check legal addressing mode, we should be a little aggressive 15814 // to contain other offsets for that LSRUse. 15815 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15816 return false; 15817 15818 // PPC allows a sign-extended 16-bit immediate field. 15819 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15820 return false; 15821 15822 // No global is ever allowed as a base. 15823 if (AM.BaseGV) 15824 return false; 15825 15826 // PPC only support r+r, 15827 switch (AM.Scale) { 15828 case 0: // "r+i" or just "i", depending on HasBaseReg. 15829 break; 15830 case 1: 15831 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15832 return false; 15833 // Otherwise we have r+r or r+i. 15834 break; 15835 case 2: 15836 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15837 return false; 15838 // Allow 2*r as r+r. 15839 break; 15840 default: 15841 // No other scales are supported. 15842 return false; 15843 } 15844 15845 return true; 15846 } 15847 15848 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15849 SelectionDAG &DAG) const { 15850 MachineFunction &MF = DAG.getMachineFunction(); 15851 MachineFrameInfo &MFI = MF.getFrameInfo(); 15852 MFI.setReturnAddressIsTaken(true); 15853 15854 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15855 return SDValue(); 15856 15857 SDLoc dl(Op); 15858 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15859 15860 // Make sure the function does not optimize away the store of the RA to 15861 // the stack. 15862 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15863 FuncInfo->setLRStoreRequired(); 15864 bool isPPC64 = Subtarget.isPPC64(); 15865 auto PtrVT = getPointerTy(MF.getDataLayout()); 15866 15867 if (Depth > 0) { 15868 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15869 SDValue Offset = 15870 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15871 isPPC64 ? MVT::i64 : MVT::i32); 15872 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15873 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15874 MachinePointerInfo()); 15875 } 15876 15877 // Just load the return address off the stack. 15878 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15879 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15880 MachinePointerInfo()); 15881 } 15882 15883 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15884 SelectionDAG &DAG) const { 15885 SDLoc dl(Op); 15886 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15887 15888 MachineFunction &MF = DAG.getMachineFunction(); 15889 MachineFrameInfo &MFI = MF.getFrameInfo(); 15890 MFI.setFrameAddressIsTaken(true); 15891 15892 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15893 bool isPPC64 = PtrVT == MVT::i64; 15894 15895 // Naked functions never have a frame pointer, and so we use r1. For all 15896 // other functions, this decision must be delayed until during PEI. 15897 unsigned FrameReg; 15898 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15899 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15900 else 15901 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15902 15903 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15904 PtrVT); 15905 while (Depth--) 15906 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15907 FrameAddr, MachinePointerInfo()); 15908 return FrameAddr; 15909 } 15910 15911 // FIXME? Maybe this could be a TableGen attribute on some registers and 15912 // this table could be generated automatically from RegInfo. 15913 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15914 const MachineFunction &MF) const { 15915 bool isPPC64 = Subtarget.isPPC64(); 15916 15917 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15918 if (!is64Bit && VT != LLT::scalar(32)) 15919 report_fatal_error("Invalid register global variable type"); 15920 15921 Register Reg = StringSwitch<Register>(RegName) 15922 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15923 .Case("r2", isPPC64 ? Register() : PPC::R2) 15924 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15925 .Default(Register()); 15926 15927 if (Reg) 15928 return Reg; 15929 report_fatal_error("Invalid register name global variable"); 15930 } 15931 15932 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15933 // 32-bit SVR4 ABI access everything as got-indirect. 15934 if (Subtarget.is32BitELFABI()) 15935 return true; 15936 15937 // AIX accesses everything indirectly through the TOC, which is similar to 15938 // the GOT. 15939 if (Subtarget.isAIXABI()) 15940 return true; 15941 15942 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15943 // If it is small or large code model, module locals are accessed 15944 // indirectly by loading their address from .toc/.got. 15945 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15946 return true; 15947 15948 // JumpTable and BlockAddress are accessed as got-indirect. 15949 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15950 return true; 15951 15952 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15953 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15954 15955 return false; 15956 } 15957 15958 bool 15959 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15960 // The PowerPC target isn't yet aware of offsets. 15961 return false; 15962 } 15963 15964 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15965 const CallInst &I, 15966 MachineFunction &MF, 15967 unsigned Intrinsic) const { 15968 switch (Intrinsic) { 15969 case Intrinsic::ppc_altivec_lvx: 15970 case Intrinsic::ppc_altivec_lvxl: 15971 case Intrinsic::ppc_altivec_lvebx: 15972 case Intrinsic::ppc_altivec_lvehx: 15973 case Intrinsic::ppc_altivec_lvewx: 15974 case Intrinsic::ppc_vsx_lxvd2x: 15975 case Intrinsic::ppc_vsx_lxvw4x: 15976 case Intrinsic::ppc_vsx_lxvd2x_be: 15977 case Intrinsic::ppc_vsx_lxvw4x_be: 15978 case Intrinsic::ppc_vsx_lxvl: 15979 case Intrinsic::ppc_vsx_lxvll: { 15980 EVT VT; 15981 switch (Intrinsic) { 15982 case Intrinsic::ppc_altivec_lvebx: 15983 VT = MVT::i8; 15984 break; 15985 case Intrinsic::ppc_altivec_lvehx: 15986 VT = MVT::i16; 15987 break; 15988 case Intrinsic::ppc_altivec_lvewx: 15989 VT = MVT::i32; 15990 break; 15991 case Intrinsic::ppc_vsx_lxvd2x: 15992 case Intrinsic::ppc_vsx_lxvd2x_be: 15993 VT = MVT::v2f64; 15994 break; 15995 default: 15996 VT = MVT::v4i32; 15997 break; 15998 } 15999 16000 Info.opc = ISD::INTRINSIC_W_CHAIN; 16001 Info.memVT = VT; 16002 Info.ptrVal = I.getArgOperand(0); 16003 Info.offset = -VT.getStoreSize()+1; 16004 Info.size = 2*VT.getStoreSize()-1; 16005 Info.align = Align(1); 16006 Info.flags = MachineMemOperand::MOLoad; 16007 return true; 16008 } 16009 case Intrinsic::ppc_altivec_stvx: 16010 case Intrinsic::ppc_altivec_stvxl: 16011 case Intrinsic::ppc_altivec_stvebx: 16012 case Intrinsic::ppc_altivec_stvehx: 16013 case Intrinsic::ppc_altivec_stvewx: 16014 case Intrinsic::ppc_vsx_stxvd2x: 16015 case Intrinsic::ppc_vsx_stxvw4x: 16016 case Intrinsic::ppc_vsx_stxvd2x_be: 16017 case Intrinsic::ppc_vsx_stxvw4x_be: 16018 case Intrinsic::ppc_vsx_stxvl: 16019 case Intrinsic::ppc_vsx_stxvll: { 16020 EVT VT; 16021 switch (Intrinsic) { 16022 case Intrinsic::ppc_altivec_stvebx: 16023 VT = MVT::i8; 16024 break; 16025 case Intrinsic::ppc_altivec_stvehx: 16026 VT = MVT::i16; 16027 break; 16028 case Intrinsic::ppc_altivec_stvewx: 16029 VT = MVT::i32; 16030 break; 16031 case Intrinsic::ppc_vsx_stxvd2x: 16032 case Intrinsic::ppc_vsx_stxvd2x_be: 16033 VT = MVT::v2f64; 16034 break; 16035 default: 16036 VT = MVT::v4i32; 16037 break; 16038 } 16039 16040 Info.opc = ISD::INTRINSIC_VOID; 16041 Info.memVT = VT; 16042 Info.ptrVal = I.getArgOperand(1); 16043 Info.offset = -VT.getStoreSize()+1; 16044 Info.size = 2*VT.getStoreSize()-1; 16045 Info.align = Align(1); 16046 Info.flags = MachineMemOperand::MOStore; 16047 return true; 16048 } 16049 default: 16050 break; 16051 } 16052 16053 return false; 16054 } 16055 16056 /// It returns EVT::Other if the type should be determined using generic 16057 /// target-independent logic. 16058 EVT PPCTargetLowering::getOptimalMemOpType( 16059 const MemOp &Op, const AttributeList &FuncAttributes) const { 16060 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16061 // We should use Altivec/VSX loads and stores when available. For unaligned 16062 // addresses, unaligned VSX loads are only fast starting with the P8. 16063 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16064 (Op.isAligned(Align(16)) || 16065 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16066 return MVT::v4i32; 16067 } 16068 16069 if (Subtarget.isPPC64()) { 16070 return MVT::i64; 16071 } 16072 16073 return MVT::i32; 16074 } 16075 16076 /// Returns true if it is beneficial to convert a load of a constant 16077 /// to just the constant itself. 16078 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16079 Type *Ty) const { 16080 assert(Ty->isIntegerTy()); 16081 16082 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16083 return !(BitSize == 0 || BitSize > 64); 16084 } 16085 16086 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16087 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16088 return false; 16089 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16090 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16091 return NumBits1 == 64 && NumBits2 == 32; 16092 } 16093 16094 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16095 if (!VT1.isInteger() || !VT2.isInteger()) 16096 return false; 16097 unsigned NumBits1 = VT1.getSizeInBits(); 16098 unsigned NumBits2 = VT2.getSizeInBits(); 16099 return NumBits1 == 64 && NumBits2 == 32; 16100 } 16101 16102 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16103 // Generally speaking, zexts are not free, but they are free when they can be 16104 // folded with other operations. 16105 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16106 EVT MemVT = LD->getMemoryVT(); 16107 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16108 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16109 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16110 LD->getExtensionType() == ISD::ZEXTLOAD)) 16111 return true; 16112 } 16113 16114 // FIXME: Add other cases... 16115 // - 32-bit shifts with a zext to i64 16116 // - zext after ctlz, bswap, etc. 16117 // - zext after and by a constant mask 16118 16119 return TargetLowering::isZExtFree(Val, VT2); 16120 } 16121 16122 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16123 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16124 "invalid fpext types"); 16125 // Extending to float128 is not free. 16126 if (DestVT == MVT::f128) 16127 return false; 16128 return true; 16129 } 16130 16131 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16132 return isInt<16>(Imm) || isUInt<16>(Imm); 16133 } 16134 16135 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16136 return isInt<16>(Imm) || isUInt<16>(Imm); 16137 } 16138 16139 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16140 MachineMemOperand::Flags, 16141 bool *Fast) const { 16142 if (DisablePPCUnaligned) 16143 return false; 16144 16145 // PowerPC supports unaligned memory access for simple non-vector types. 16146 // Although accessing unaligned addresses is not as efficient as accessing 16147 // aligned addresses, it is generally more efficient than manual expansion, 16148 // and generally only traps for software emulation when crossing page 16149 // boundaries. 16150 16151 if (!VT.isSimple()) 16152 return false; 16153 16154 if (VT.isFloatingPoint() && !VT.isVector() && 16155 !Subtarget.allowsUnalignedFPAccess()) 16156 return false; 16157 16158 if (VT.getSimpleVT().isVector()) { 16159 if (Subtarget.hasVSX()) { 16160 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16161 VT != MVT::v4f32 && VT != MVT::v4i32) 16162 return false; 16163 } else { 16164 return false; 16165 } 16166 } 16167 16168 if (VT == MVT::ppcf128) 16169 return false; 16170 16171 if (Fast) 16172 *Fast = true; 16173 16174 return true; 16175 } 16176 16177 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16178 SDValue C) const { 16179 // Check integral scalar types. 16180 if (!VT.isScalarInteger()) 16181 return false; 16182 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16183 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16184 return false; 16185 // This transformation will generate >= 2 operations. But the following 16186 // cases will generate <= 2 instructions during ISEL. So exclude them. 16187 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16188 // HW instruction, ie. MULLI 16189 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16190 // instruction is needed than case 1, ie. MULLI and RLDICR 16191 int64_t Imm = ConstNode->getSExtValue(); 16192 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16193 Imm >>= Shift; 16194 if (isInt<16>(Imm)) 16195 return false; 16196 uint64_t UImm = static_cast<uint64_t>(Imm); 16197 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16198 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16199 return true; 16200 } 16201 return false; 16202 } 16203 16204 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16205 EVT VT) const { 16206 return isFMAFasterThanFMulAndFAdd( 16207 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16208 } 16209 16210 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16211 Type *Ty) const { 16212 switch (Ty->getScalarType()->getTypeID()) { 16213 case Type::FloatTyID: 16214 case Type::DoubleTyID: 16215 return true; 16216 case Type::FP128TyID: 16217 return Subtarget.hasP9Vector(); 16218 default: 16219 return false; 16220 } 16221 } 16222 16223 // FIXME: add more patterns which are not profitable to hoist. 16224 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16225 if (!I->hasOneUse()) 16226 return true; 16227 16228 Instruction *User = I->user_back(); 16229 assert(User && "A single use instruction with no uses."); 16230 16231 switch (I->getOpcode()) { 16232 case Instruction::FMul: { 16233 // Don't break FMA, PowerPC prefers FMA. 16234 if (User->getOpcode() != Instruction::FSub && 16235 User->getOpcode() != Instruction::FAdd) 16236 return true; 16237 16238 const TargetOptions &Options = getTargetMachine().Options; 16239 const Function *F = I->getFunction(); 16240 const DataLayout &DL = F->getParent()->getDataLayout(); 16241 Type *Ty = User->getOperand(0)->getType(); 16242 16243 return !( 16244 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16245 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16246 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16247 } 16248 case Instruction::Load: { 16249 // Don't break "store (load float*)" pattern, this pattern will be combined 16250 // to "store (load int32)" in later InstCombine pass. See function 16251 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16252 // cycles than loading a 32 bit integer. 16253 LoadInst *LI = cast<LoadInst>(I); 16254 // For the loads that combineLoadToOperationType does nothing, like 16255 // ordered load, it should be profitable to hoist them. 16256 // For swifterror load, it can only be used for pointer to pointer type, so 16257 // later type check should get rid of this case. 16258 if (!LI->isUnordered()) 16259 return true; 16260 16261 if (User->getOpcode() != Instruction::Store) 16262 return true; 16263 16264 if (I->getType()->getTypeID() != Type::FloatTyID) 16265 return true; 16266 16267 return false; 16268 } 16269 default: 16270 return true; 16271 } 16272 return true; 16273 } 16274 16275 const MCPhysReg * 16276 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16277 // LR is a callee-save register, but we must treat it as clobbered by any call 16278 // site. Hence we include LR in the scratch registers, which are in turn added 16279 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16280 // to CTR, which is used by any indirect call. 16281 static const MCPhysReg ScratchRegs[] = { 16282 PPC::X12, PPC::LR8, PPC::CTR8, 0 16283 }; 16284 16285 return ScratchRegs; 16286 } 16287 16288 Register PPCTargetLowering::getExceptionPointerRegister( 16289 const Constant *PersonalityFn) const { 16290 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16291 } 16292 16293 Register PPCTargetLowering::getExceptionSelectorRegister( 16294 const Constant *PersonalityFn) const { 16295 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16296 } 16297 16298 bool 16299 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16300 EVT VT , unsigned DefinedValues) const { 16301 if (VT == MVT::v2i64) 16302 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16303 16304 if (Subtarget.hasVSX()) 16305 return true; 16306 16307 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16308 } 16309 16310 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16311 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16312 return TargetLowering::getSchedulingPreference(N); 16313 16314 return Sched::ILP; 16315 } 16316 16317 // Create a fast isel object. 16318 FastISel * 16319 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16320 const TargetLibraryInfo *LibInfo) const { 16321 return PPC::createFastISel(FuncInfo, LibInfo); 16322 } 16323 16324 // 'Inverted' means the FMA opcode after negating one multiplicand. 16325 // For example, (fma -a b c) = (fnmsub a b c) 16326 static unsigned invertFMAOpcode(unsigned Opc) { 16327 switch (Opc) { 16328 default: 16329 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16330 case ISD::FMA: 16331 return PPCISD::FNMSUB; 16332 case PPCISD::FNMSUB: 16333 return ISD::FMA; 16334 } 16335 } 16336 16337 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16338 bool LegalOps, bool OptForSize, 16339 NegatibleCost &Cost, 16340 unsigned Depth) const { 16341 if (Depth > SelectionDAG::MaxRecursionDepth) 16342 return SDValue(); 16343 16344 unsigned Opc = Op.getOpcode(); 16345 EVT VT = Op.getValueType(); 16346 SDNodeFlags Flags = Op.getNode()->getFlags(); 16347 16348 switch (Opc) { 16349 case PPCISD::FNMSUB: 16350 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16351 break; 16352 16353 const TargetOptions &Options = getTargetMachine().Options; 16354 SDValue N0 = Op.getOperand(0); 16355 SDValue N1 = Op.getOperand(1); 16356 SDValue N2 = Op.getOperand(2); 16357 SDLoc Loc(Op); 16358 16359 NegatibleCost N2Cost = NegatibleCost::Expensive; 16360 SDValue NegN2 = 16361 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16362 16363 if (!NegN2) 16364 return SDValue(); 16365 16366 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16367 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16368 // These transformations may change sign of zeroes. For example, 16369 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16370 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16371 // Try and choose the cheaper one to negate. 16372 NegatibleCost N0Cost = NegatibleCost::Expensive; 16373 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16374 N0Cost, Depth + 1); 16375 16376 NegatibleCost N1Cost = NegatibleCost::Expensive; 16377 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16378 N1Cost, Depth + 1); 16379 16380 if (NegN0 && N0Cost <= N1Cost) { 16381 Cost = std::min(N0Cost, N2Cost); 16382 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16383 } else if (NegN1) { 16384 Cost = std::min(N1Cost, N2Cost); 16385 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16386 } 16387 } 16388 16389 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16390 if (isOperationLegal(ISD::FMA, VT)) { 16391 Cost = N2Cost; 16392 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16393 } 16394 16395 break; 16396 } 16397 16398 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16399 Cost, Depth); 16400 } 16401 16402 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16403 bool PPCTargetLowering::useLoadStackGuardNode() const { 16404 if (!Subtarget.isTargetLinux()) 16405 return TargetLowering::useLoadStackGuardNode(); 16406 return true; 16407 } 16408 16409 // Override to disable global variable loading on Linux. 16410 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16411 if (!Subtarget.isTargetLinux()) 16412 return TargetLowering::insertSSPDeclarations(M); 16413 } 16414 16415 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16416 bool ForCodeSize) const { 16417 if (!VT.isSimple() || !Subtarget.hasVSX()) 16418 return false; 16419 16420 switch(VT.getSimpleVT().SimpleTy) { 16421 default: 16422 // For FP types that are currently not supported by PPC backend, return 16423 // false. Examples: f16, f80. 16424 return false; 16425 case MVT::f32: 16426 case MVT::f64: 16427 if (Subtarget.hasPrefixInstrs()) { 16428 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16429 return true; 16430 } 16431 LLVM_FALLTHROUGH; 16432 case MVT::ppcf128: 16433 return Imm.isPosZero(); 16434 } 16435 } 16436 16437 // For vector shift operation op, fold 16438 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16439 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16440 SelectionDAG &DAG) { 16441 SDValue N0 = N->getOperand(0); 16442 SDValue N1 = N->getOperand(1); 16443 EVT VT = N0.getValueType(); 16444 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16445 unsigned Opcode = N->getOpcode(); 16446 unsigned TargetOpcode; 16447 16448 switch (Opcode) { 16449 default: 16450 llvm_unreachable("Unexpected shift operation"); 16451 case ISD::SHL: 16452 TargetOpcode = PPCISD::SHL; 16453 break; 16454 case ISD::SRL: 16455 TargetOpcode = PPCISD::SRL; 16456 break; 16457 case ISD::SRA: 16458 TargetOpcode = PPCISD::SRA; 16459 break; 16460 } 16461 16462 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16463 N1->getOpcode() == ISD::AND) 16464 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16465 if (Mask->getZExtValue() == OpSizeInBits - 1) 16466 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16467 16468 return SDValue(); 16469 } 16470 16471 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16472 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16473 return Value; 16474 16475 SDValue N0 = N->getOperand(0); 16476 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16477 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16478 N0.getOpcode() != ISD::SIGN_EXTEND || 16479 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16480 N->getValueType(0) != MVT::i64) 16481 return SDValue(); 16482 16483 // We can't save an operation here if the value is already extended, and 16484 // the existing shift is easier to combine. 16485 SDValue ExtsSrc = N0.getOperand(0); 16486 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16487 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16488 return SDValue(); 16489 16490 SDLoc DL(N0); 16491 SDValue ShiftBy = SDValue(CN1, 0); 16492 // We want the shift amount to be i32 on the extswli, but the shift could 16493 // have an i64. 16494 if (ShiftBy.getValueType() == MVT::i64) 16495 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16496 16497 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16498 ShiftBy); 16499 } 16500 16501 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16502 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16503 return Value; 16504 16505 return SDValue(); 16506 } 16507 16508 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16509 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16510 return Value; 16511 16512 return SDValue(); 16513 } 16514 16515 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16516 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16517 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16518 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16519 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16520 const PPCSubtarget &Subtarget) { 16521 if (!Subtarget.isPPC64()) 16522 return SDValue(); 16523 16524 SDValue LHS = N->getOperand(0); 16525 SDValue RHS = N->getOperand(1); 16526 16527 auto isZextOfCompareWithConstant = [](SDValue Op) { 16528 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16529 Op.getValueType() != MVT::i64) 16530 return false; 16531 16532 SDValue Cmp = Op.getOperand(0); 16533 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16534 Cmp.getOperand(0).getValueType() != MVT::i64) 16535 return false; 16536 16537 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16538 int64_t NegConstant = 0 - Constant->getSExtValue(); 16539 // Due to the limitations of the addi instruction, 16540 // -C is required to be [-32768, 32767]. 16541 return isInt<16>(NegConstant); 16542 } 16543 16544 return false; 16545 }; 16546 16547 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16548 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16549 16550 // If there is a pattern, canonicalize a zext operand to the RHS. 16551 if (LHSHasPattern && !RHSHasPattern) 16552 std::swap(LHS, RHS); 16553 else if (!LHSHasPattern && !RHSHasPattern) 16554 return SDValue(); 16555 16556 SDLoc DL(N); 16557 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16558 SDValue Cmp = RHS.getOperand(0); 16559 SDValue Z = Cmp.getOperand(0); 16560 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16561 16562 assert(Constant && "Constant Should not be a null pointer."); 16563 int64_t NegConstant = 0 - Constant->getSExtValue(); 16564 16565 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16566 default: break; 16567 case ISD::SETNE: { 16568 // when C == 0 16569 // --> addze X, (addic Z, -1).carry 16570 // / 16571 // add X, (zext(setne Z, C))-- 16572 // \ when -32768 <= -C <= 32767 && C != 0 16573 // --> addze X, (addic (addi Z, -C), -1).carry 16574 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16575 DAG.getConstant(NegConstant, DL, MVT::i64)); 16576 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16577 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16578 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16579 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16580 SDValue(Addc.getNode(), 1)); 16581 } 16582 case ISD::SETEQ: { 16583 // when C == 0 16584 // --> addze X, (subfic Z, 0).carry 16585 // / 16586 // add X, (zext(sete Z, C))-- 16587 // \ when -32768 <= -C <= 32767 && C != 0 16588 // --> addze X, (subfic (addi Z, -C), 0).carry 16589 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16590 DAG.getConstant(NegConstant, DL, MVT::i64)); 16591 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16592 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16593 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16594 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16595 SDValue(Subc.getNode(), 1)); 16596 } 16597 } 16598 16599 return SDValue(); 16600 } 16601 16602 // Transform 16603 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16604 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16605 // In this case both C1 and C2 must be known constants. 16606 // C1+C2 must fit into a 34 bit signed integer. 16607 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16608 const PPCSubtarget &Subtarget) { 16609 if (!Subtarget.isUsingPCRelativeCalls()) 16610 return SDValue(); 16611 16612 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16613 // If we find that node try to cast the Global Address and the Constant. 16614 SDValue LHS = N->getOperand(0); 16615 SDValue RHS = N->getOperand(1); 16616 16617 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16618 std::swap(LHS, RHS); 16619 16620 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16621 return SDValue(); 16622 16623 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16624 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16625 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16626 16627 // Check that both casts succeeded. 16628 if (!GSDN || !ConstNode) 16629 return SDValue(); 16630 16631 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16632 SDLoc DL(GSDN); 16633 16634 // The signed int offset needs to fit in 34 bits. 16635 if (!isInt<34>(NewOffset)) 16636 return SDValue(); 16637 16638 // The new global address is a copy of the old global address except 16639 // that it has the updated Offset. 16640 SDValue GA = 16641 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16642 NewOffset, GSDN->getTargetFlags()); 16643 SDValue MatPCRel = 16644 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16645 return MatPCRel; 16646 } 16647 16648 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16649 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16650 return Value; 16651 16652 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16653 return Value; 16654 16655 return SDValue(); 16656 } 16657 16658 // Detect TRUNCATE operations on bitcasts of float128 values. 16659 // What we are looking for here is the situtation where we extract a subset 16660 // of bits from a 128 bit float. 16661 // This can be of two forms: 16662 // 1) BITCAST of f128 feeding TRUNCATE 16663 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16664 // The reason this is required is because we do not have a legal i128 type 16665 // and so we want to prevent having to store the f128 and then reload part 16666 // of it. 16667 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16668 DAGCombinerInfo &DCI) const { 16669 // If we are using CRBits then try that first. 16670 if (Subtarget.useCRBits()) { 16671 // Check if CRBits did anything and return that if it did. 16672 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16673 return CRTruncValue; 16674 } 16675 16676 SDLoc dl(N); 16677 SDValue Op0 = N->getOperand(0); 16678 16679 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16680 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16681 EVT VT = N->getValueType(0); 16682 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16683 return SDValue(); 16684 SDValue Sub = Op0.getOperand(0); 16685 if (Sub.getOpcode() == ISD::SUB) { 16686 SDValue SubOp0 = Sub.getOperand(0); 16687 SDValue SubOp1 = Sub.getOperand(1); 16688 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16689 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16690 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16691 SubOp1.getOperand(0), 16692 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16693 } 16694 } 16695 } 16696 16697 // Looking for a truncate of i128 to i64. 16698 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16699 return SDValue(); 16700 16701 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16702 16703 // SRL feeding TRUNCATE. 16704 if (Op0.getOpcode() == ISD::SRL) { 16705 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16706 // The right shift has to be by 64 bits. 16707 if (!ConstNode || ConstNode->getZExtValue() != 64) 16708 return SDValue(); 16709 16710 // Switch the element number to extract. 16711 EltToExtract = EltToExtract ? 0 : 1; 16712 // Update Op0 past the SRL. 16713 Op0 = Op0.getOperand(0); 16714 } 16715 16716 // BITCAST feeding a TRUNCATE possibly via SRL. 16717 if (Op0.getOpcode() == ISD::BITCAST && 16718 Op0.getValueType() == MVT::i128 && 16719 Op0.getOperand(0).getValueType() == MVT::f128) { 16720 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16721 return DCI.DAG.getNode( 16722 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16723 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16724 } 16725 return SDValue(); 16726 } 16727 16728 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16729 SelectionDAG &DAG = DCI.DAG; 16730 16731 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16732 if (!ConstOpOrElement) 16733 return SDValue(); 16734 16735 // An imul is usually smaller than the alternative sequence for legal type. 16736 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16737 isOperationLegal(ISD::MUL, N->getValueType(0))) 16738 return SDValue(); 16739 16740 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16741 switch (this->Subtarget.getCPUDirective()) { 16742 default: 16743 // TODO: enhance the condition for subtarget before pwr8 16744 return false; 16745 case PPC::DIR_PWR8: 16746 // type mul add shl 16747 // scalar 4 1 1 16748 // vector 7 2 2 16749 return true; 16750 case PPC::DIR_PWR9: 16751 case PPC::DIR_PWR10: 16752 case PPC::DIR_PWR_FUTURE: 16753 // type mul add shl 16754 // scalar 5 2 2 16755 // vector 7 2 2 16756 16757 // The cycle RATIO of related operations are showed as a table above. 16758 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16759 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16760 // are 4, it is always profitable; but for 3 instrs patterns 16761 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16762 // So we should only do it for vector type. 16763 return IsAddOne && IsNeg ? VT.isVector() : true; 16764 } 16765 }; 16766 16767 EVT VT = N->getValueType(0); 16768 SDLoc DL(N); 16769 16770 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16771 bool IsNeg = MulAmt.isNegative(); 16772 APInt MulAmtAbs = MulAmt.abs(); 16773 16774 if ((MulAmtAbs - 1).isPowerOf2()) { 16775 // (mul x, 2^N + 1) => (add (shl x, N), x) 16776 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16777 16778 if (!IsProfitable(IsNeg, true, VT)) 16779 return SDValue(); 16780 16781 SDValue Op0 = N->getOperand(0); 16782 SDValue Op1 = 16783 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16784 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16785 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16786 16787 if (!IsNeg) 16788 return Res; 16789 16790 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16791 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16792 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16793 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16794 16795 if (!IsProfitable(IsNeg, false, VT)) 16796 return SDValue(); 16797 16798 SDValue Op0 = N->getOperand(0); 16799 SDValue Op1 = 16800 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16801 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16802 16803 if (!IsNeg) 16804 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16805 else 16806 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16807 16808 } else { 16809 return SDValue(); 16810 } 16811 } 16812 16813 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16814 // in combiner since we need to check SD flags and other subtarget features. 16815 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16816 DAGCombinerInfo &DCI) const { 16817 SDValue N0 = N->getOperand(0); 16818 SDValue N1 = N->getOperand(1); 16819 SDValue N2 = N->getOperand(2); 16820 SDNodeFlags Flags = N->getFlags(); 16821 EVT VT = N->getValueType(0); 16822 SelectionDAG &DAG = DCI.DAG; 16823 const TargetOptions &Options = getTargetMachine().Options; 16824 unsigned Opc = N->getOpcode(); 16825 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16826 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16827 SDLoc Loc(N); 16828 16829 if (!isOperationLegal(ISD::FMA, VT)) 16830 return SDValue(); 16831 16832 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16833 // since (fnmsub a b c)=-0 while c-ab=+0. 16834 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16835 return SDValue(); 16836 16837 // (fma (fneg a) b c) => (fnmsub a b c) 16838 // (fnmsub (fneg a) b c) => (fma a b c) 16839 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16840 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16841 16842 // (fma a (fneg b) c) => (fnmsub a b c) 16843 // (fnmsub a (fneg b) c) => (fma a b c) 16844 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16845 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16846 16847 return SDValue(); 16848 } 16849 16850 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16851 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16852 if (!Subtarget.is64BitELFABI()) 16853 return false; 16854 16855 // If not a tail call then no need to proceed. 16856 if (!CI->isTailCall()) 16857 return false; 16858 16859 // If sibling calls have been disabled and tail-calls aren't guaranteed 16860 // there is no reason to duplicate. 16861 auto &TM = getTargetMachine(); 16862 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16863 return false; 16864 16865 // Can't tail call a function called indirectly, or if it has variadic args. 16866 const Function *Callee = CI->getCalledFunction(); 16867 if (!Callee || Callee->isVarArg()) 16868 return false; 16869 16870 // Make sure the callee and caller calling conventions are eligible for tco. 16871 const Function *Caller = CI->getParent()->getParent(); 16872 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16873 CI->getCallingConv())) 16874 return false; 16875 16876 // If the function is local then we have a good chance at tail-calling it 16877 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16878 } 16879 16880 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16881 if (!Subtarget.hasVSX()) 16882 return false; 16883 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16884 return true; 16885 return VT == MVT::f32 || VT == MVT::f64 || 16886 VT == MVT::v4f32 || VT == MVT::v2f64; 16887 } 16888 16889 bool PPCTargetLowering:: 16890 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16891 const Value *Mask = AndI.getOperand(1); 16892 // If the mask is suitable for andi. or andis. we should sink the and. 16893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16894 // Can't handle constants wider than 64-bits. 16895 if (CI->getBitWidth() > 64) 16896 return false; 16897 int64_t ConstVal = CI->getZExtValue(); 16898 return isUInt<16>(ConstVal) || 16899 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16900 } 16901 16902 // For non-constant masks, we can always use the record-form and. 16903 return true; 16904 } 16905 16906 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16907 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16908 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16909 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16910 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16911 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16912 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16913 assert(Subtarget.hasP9Altivec() && 16914 "Only combine this when P9 altivec supported!"); 16915 EVT VT = N->getValueType(0); 16916 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16917 return SDValue(); 16918 16919 SelectionDAG &DAG = DCI.DAG; 16920 SDLoc dl(N); 16921 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16922 // Even for signed integers, if it's known to be positive (as signed 16923 // integer) due to zero-extended inputs. 16924 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16925 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16926 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16927 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16928 (SubOpcd1 == ISD::ZERO_EXTEND || 16929 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16930 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16931 N->getOperand(0)->getOperand(0), 16932 N->getOperand(0)->getOperand(1), 16933 DAG.getTargetConstant(0, dl, MVT::i32)); 16934 } 16935 16936 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16937 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16938 N->getOperand(0).hasOneUse()) { 16939 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16940 N->getOperand(0)->getOperand(0), 16941 N->getOperand(0)->getOperand(1), 16942 DAG.getTargetConstant(1, dl, MVT::i32)); 16943 } 16944 } 16945 16946 return SDValue(); 16947 } 16948 16949 // For type v4i32/v8ii16/v16i8, transform 16950 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16951 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16952 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16953 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16954 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16955 DAGCombinerInfo &DCI) const { 16956 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16957 assert(Subtarget.hasP9Altivec() && 16958 "Only combine this when P9 altivec supported!"); 16959 16960 SelectionDAG &DAG = DCI.DAG; 16961 SDLoc dl(N); 16962 SDValue Cond = N->getOperand(0); 16963 SDValue TrueOpnd = N->getOperand(1); 16964 SDValue FalseOpnd = N->getOperand(2); 16965 EVT VT = N->getOperand(1).getValueType(); 16966 16967 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16968 FalseOpnd.getOpcode() != ISD::SUB) 16969 return SDValue(); 16970 16971 // ABSD only available for type v4i32/v8i16/v16i8 16972 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16973 return SDValue(); 16974 16975 // At least to save one more dependent computation 16976 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16977 return SDValue(); 16978 16979 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16980 16981 // Can only handle unsigned comparison here 16982 switch (CC) { 16983 default: 16984 return SDValue(); 16985 case ISD::SETUGT: 16986 case ISD::SETUGE: 16987 break; 16988 case ISD::SETULT: 16989 case ISD::SETULE: 16990 std::swap(TrueOpnd, FalseOpnd); 16991 break; 16992 } 16993 16994 SDValue CmpOpnd1 = Cond.getOperand(0); 16995 SDValue CmpOpnd2 = Cond.getOperand(1); 16996 16997 // SETCC CmpOpnd1 CmpOpnd2 cond 16998 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16999 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17000 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17001 TrueOpnd.getOperand(1) == CmpOpnd2 && 17002 FalseOpnd.getOperand(0) == CmpOpnd2 && 17003 FalseOpnd.getOperand(1) == CmpOpnd1) { 17004 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17005 CmpOpnd1, CmpOpnd2, 17006 DAG.getTargetConstant(0, dl, MVT::i32)); 17007 } 17008 17009 return SDValue(); 17010 } 17011 17012 /// getAddrModeForFlags - Based on the set of address flags, select the most 17013 /// optimal instruction format to match by. 17014 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17015 // This is not a node we should be handling here. 17016 if (Flags == PPC::MOF_None) 17017 return PPC::AM_None; 17018 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17019 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17020 if ((Flags & FlagSet) == FlagSet) 17021 return PPC::AM_DForm; 17022 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17023 if ((Flags & FlagSet) == FlagSet) 17024 return PPC::AM_DSForm; 17025 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17026 if ((Flags & FlagSet) == FlagSet) 17027 return PPC::AM_DQForm; 17028 // If no other forms are selected, return an X-Form as it is the most 17029 // general addressing mode. 17030 return PPC::AM_XForm; 17031 } 17032 17033 /// Set alignment flags based on whether or not the Frame Index is aligned. 17034 /// Utilized when computing flags for address computation when selecting 17035 /// load and store instructions. 17036 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17037 SelectionDAG &DAG) { 17038 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17039 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17040 if (!FI) 17041 return; 17042 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17043 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17044 // If this is (add $FI, $S16Imm), the alignment flags are already set 17045 // based on the immediate. We just need to clear the alignment flags 17046 // if the FI alignment is weaker. 17047 if ((FrameIndexAlign % 4) != 0) 17048 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17049 if ((FrameIndexAlign % 16) != 0) 17050 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17051 // If the address is a plain FrameIndex, set alignment flags based on 17052 // FI alignment. 17053 if (!IsAdd) { 17054 if ((FrameIndexAlign % 4) == 0) 17055 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17056 if ((FrameIndexAlign % 16) == 0) 17057 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17058 } 17059 } 17060 17061 /// Given a node, compute flags that are used for address computation when 17062 /// selecting load and store instructions. The flags computed are stored in 17063 /// FlagSet. This function takes into account whether the node is a constant, 17064 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17065 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17066 SelectionDAG &DAG) { 17067 // Set the alignment flags for the node depending on if the node is 17068 // 4-byte or 16-byte aligned. 17069 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17070 if ((Imm & 0x3) == 0) 17071 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17072 if ((Imm & 0xf) == 0) 17073 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17074 }; 17075 17076 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17077 // All 32-bit constants can be computed as LIS + Disp. 17078 const APInt &ConstImm = CN->getAPIntValue(); 17079 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17080 FlagSet |= PPC::MOF_AddrIsSImm32; 17081 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17082 setAlignFlagsForFI(N, FlagSet, DAG); 17083 } 17084 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17085 FlagSet |= PPC::MOF_RPlusSImm34; 17086 else // Let constant materialization handle large constants. 17087 FlagSet |= PPC::MOF_NotAddNorCst; 17088 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17089 // This address can be represented as an addition of: 17090 // - Register + Imm16 (possibly a multiple of 4/16) 17091 // - Register + Imm34 17092 // - Register + PPCISD::Lo 17093 // - Register + Register 17094 // In any case, we won't have to match this as Base + Zero. 17095 SDValue RHS = N.getOperand(1); 17096 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17097 const APInt &ConstImm = CN->getAPIntValue(); 17098 if (ConstImm.isSignedIntN(16)) { 17099 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17100 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17101 setAlignFlagsForFI(N, FlagSet, DAG); 17102 } 17103 if (ConstImm.isSignedIntN(34)) 17104 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17105 else 17106 FlagSet |= PPC::MOF_RPlusR; // Register. 17107 } else if (RHS.getOpcode() == PPCISD::Lo && 17108 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17109 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17110 else 17111 FlagSet |= PPC::MOF_RPlusR; 17112 } else { // The address computation is not a constant or an addition. 17113 setAlignFlagsForFI(N, FlagSet, DAG); 17114 FlagSet |= PPC::MOF_NotAddNorCst; 17115 } 17116 } 17117 17118 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17119 /// the address flags of the load/store instruction that is to be matched. 17120 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17121 SelectionDAG &DAG) const { 17122 unsigned FlagSet = PPC::MOF_None; 17123 17124 // Compute subtarget flags. 17125 if (!Subtarget.hasP9Vector()) 17126 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17127 else { 17128 FlagSet |= PPC::MOF_SubtargetP9; 17129 if (Subtarget.hasPrefixInstrs()) 17130 FlagSet |= PPC::MOF_SubtargetP10; 17131 } 17132 if (Subtarget.hasSPE()) 17133 FlagSet |= PPC::MOF_SubtargetSPE; 17134 17135 // Mark this as something we don't want to handle here if it is atomic 17136 // or pre-increment instruction. 17137 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17138 if (LSB->isIndexed()) 17139 return PPC::MOF_None; 17140 17141 // Compute in-memory type flags. This is based on if there are scalars, 17142 // floats or vectors. 17143 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17144 assert(MN && "Parent should be a MemSDNode!"); 17145 EVT MemVT = MN->getMemoryVT(); 17146 unsigned Size = MemVT.getSizeInBits(); 17147 if (MemVT.isScalarInteger()) { 17148 assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!"); 17149 if (Size < 32) 17150 FlagSet |= PPC::MOF_SubWordInt; 17151 else if (Size == 32) 17152 FlagSet |= PPC::MOF_WordInt; 17153 else 17154 FlagSet |= PPC::MOF_DoubleWordInt; 17155 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17156 if (Size == 128) 17157 FlagSet |= PPC::MOF_Vector; 17158 else if (Size == 256) 17159 FlagSet |= PPC::MOF_Vector256; 17160 else 17161 llvm_unreachable("Not expecting illegal vectors!"); 17162 } else { // Floating point type: can be scalar, f128 or vector types. 17163 if (Size == 32 || Size == 64) 17164 FlagSet |= PPC::MOF_ScalarFloat; 17165 else if (MemVT == MVT::f128 || MemVT.isVector()) 17166 FlagSet |= PPC::MOF_Vector; 17167 else 17168 llvm_unreachable("Not expecting illegal scalar floats!"); 17169 } 17170 17171 // Compute flags for address computation. 17172 computeFlagsForAddressComputation(N, FlagSet, DAG); 17173 17174 // Compute type extension flags. 17175 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17176 switch (LN->getExtensionType()) { 17177 case ISD::SEXTLOAD: 17178 FlagSet |= PPC::MOF_SExt; 17179 break; 17180 case ISD::EXTLOAD: 17181 case ISD::ZEXTLOAD: 17182 FlagSet |= PPC::MOF_ZExt; 17183 break; 17184 case ISD::NON_EXTLOAD: 17185 FlagSet |= PPC::MOF_NoExt; 17186 break; 17187 } 17188 } else 17189 FlagSet |= PPC::MOF_NoExt; 17190 17191 // For integers, no extension is the same as zero extension. 17192 // We set the extension mode to zero extension so we don't have 17193 // to add separate entries in AddrModesMap for loads and stores. 17194 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17195 FlagSet |= PPC::MOF_ZExt; 17196 FlagSet &= ~PPC::MOF_NoExt; 17197 } 17198 17199 // If we don't have prefixed instructions, 34-bit constants should be 17200 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17201 bool IsNonP1034BitConst = 17202 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17203 FlagSet) == PPC::MOF_RPlusSImm34; 17204 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17205 IsNonP1034BitConst) 17206 FlagSet |= PPC::MOF_NotAddNorCst; 17207 17208 return FlagSet; 17209 } 17210 17211 /// SelectForceXFormMode - Given the specified address, force it to be 17212 /// represented as an indexed [r+r] operation (an XForm instruction). 17213 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17214 SDValue &Base, 17215 SelectionDAG &DAG) const { 17216 17217 PPC::AddrMode Mode = PPC::AM_XForm; 17218 int16_t ForceXFormImm = 0; 17219 if (provablyDisjointOr(DAG, N) && 17220 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17221 Disp = N.getOperand(0); 17222 Base = N.getOperand(1); 17223 return Mode; 17224 } 17225 17226 // If the address is the result of an add, we will utilize the fact that the 17227 // address calculation includes an implicit add. However, we can reduce 17228 // register pressure if we do not materialize a constant just for use as the 17229 // index register. We only get rid of the add if it is not an add of a 17230 // value and a 16-bit signed constant and both have a single use. 17231 if (N.getOpcode() == ISD::ADD && 17232 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17233 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17234 Disp = N.getOperand(0); 17235 Base = N.getOperand(1); 17236 return Mode; 17237 } 17238 17239 // Otherwise, use R0 as the base register. 17240 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17241 N.getValueType()); 17242 Base = N; 17243 17244 return Mode; 17245 } 17246 17247 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17248 /// compute the address flags of the node, get the optimal address mode based 17249 /// on the flags, and set the Base and Disp based on the address mode. 17250 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17251 SDValue N, SDValue &Disp, 17252 SDValue &Base, 17253 SelectionDAG &DAG, 17254 MaybeAlign Align) const { 17255 SDLoc DL(Parent); 17256 17257 // Compute the address flags. 17258 unsigned Flags = computeMOFlags(Parent, N, DAG); 17259 17260 // Get the optimal address mode based on the Flags. 17261 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17262 17263 // Set Base and Disp accordingly depending on the address mode. 17264 switch (Mode) { 17265 case PPC::AM_DForm: 17266 case PPC::AM_DSForm: 17267 case PPC::AM_DQForm: { 17268 // This is a register plus a 16-bit immediate. The base will be the 17269 // register and the displacement will be the immediate unless it 17270 // isn't sufficiently aligned. 17271 if (Flags & PPC::MOF_RPlusSImm16) { 17272 SDValue Op0 = N.getOperand(0); 17273 SDValue Op1 = N.getOperand(1); 17274 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1); 17275 int16_t Imm = CN->getAPIntValue().getZExtValue(); 17276 if (!Align || isAligned(*Align, Imm)) { 17277 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17278 Base = Op0; 17279 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17280 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17281 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17282 } 17283 break; 17284 } 17285 } 17286 // This is a register plus the @lo relocation. The base is the register 17287 // and the displacement is the global address. 17288 else if (Flags & PPC::MOF_RPlusLo) { 17289 Disp = N.getOperand(1).getOperand(0); // The global address. 17290 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17291 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17292 Disp.getOpcode() == ISD::TargetConstantPool || 17293 Disp.getOpcode() == ISD::TargetJumpTable); 17294 Base = N.getOperand(0); 17295 break; 17296 } 17297 // This is a constant address at most 32 bits. The base will be 17298 // zero or load-immediate-shifted and the displacement will be 17299 // the low 16 bits of the address. 17300 else if (Flags & PPC::MOF_AddrIsSImm32) { 17301 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 17302 EVT CNType = CN->getValueType(0); 17303 uint64_t CNImm = CN->getZExtValue(); 17304 // If this address fits entirely in a 16-bit sext immediate field, codegen 17305 // this as "d, 0". 17306 int16_t Imm; 17307 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17308 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17309 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17310 CNType); 17311 break; 17312 } 17313 // Handle 32-bit sext immediate with LIS + Addr mode. 17314 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17315 (!Align || isAligned(*Align, CNImm))) { 17316 int32_t Addr = (int32_t)CNImm; 17317 // Otherwise, break this down into LIS + Disp. 17318 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17319 Base = 17320 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17321 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17322 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17323 break; 17324 } 17325 } 17326 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17327 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17328 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17329 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17330 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17331 } else 17332 Base = N; 17333 break; 17334 } 17335 case PPC::AM_None: 17336 break; 17337 default: { // By default, X-Form is always available to be selected. 17338 // When a frame index is not aligned, we also match by XForm. 17339 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17340 Base = FI ? N : N.getOperand(1); 17341 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17342 N.getValueType()) 17343 : N.getOperand(0); 17344 break; 17345 } 17346 } 17347 return Mode; 17348 } 17349