1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCCCState.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCPerfectShuffle.h"
20 #include "PPCTargetMachine.h"
21 #include "PPCTargetObjectFile.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include <list>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "ppc-lowering"
50 
51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
53 
54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
56 
57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
59 
60 static cl::opt<bool> DisableSCO("disable-ppc-sco",
61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
62 
63 STATISTIC(NumTailCalls, "Number of tail calls");
64 STATISTIC(NumSiblingCalls, "Number of sibling calls");
65 
66 // FIXME: Remove this once the bug has been fixed!
67 extern cl::opt<bool> ANDIGlueBug;
68 
69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
70                                      const PPCSubtarget &STI)
71     : TargetLowering(TM), Subtarget(STI) {
72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
73   setUseUnderscoreSetJmp(true);
74   setUseUnderscoreLongJmp(true);
75 
76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77   // arguments are at least 4/8 bytes aligned.
78   bool isPPC64 = Subtarget.isPPC64();
79   setMinStackArgumentAlignment(isPPC64 ? 8:4);
80 
81   // Set up the register classes.
82   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
83   if (!Subtarget.useSoftFloat()) {
84     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86   }
87 
88   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
89   for (MVT VT : MVT::integer_valuetypes()) {
90     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
91     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
92   }
93 
94   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
95 
96   // PowerPC has pre-inc load and store's.
97   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
98   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
99   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
100   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
101   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
102   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
103   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
104   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
105   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
106   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
107   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
108   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
109   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
110   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
111 
112   if (Subtarget.useCRBits()) {
113     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
114 
115     if (isPPC64 || Subtarget.hasFPCVT()) {
116       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
117       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
118                          isPPC64 ? MVT::i64 : MVT::i32);
119       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
120       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
121                         isPPC64 ? MVT::i64 : MVT::i32);
122     } else {
123       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
124       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
125     }
126 
127     // PowerPC does not support direct load / store of condition registers
128     setOperationAction(ISD::LOAD, MVT::i1, Custom);
129     setOperationAction(ISD::STORE, MVT::i1, Custom);
130 
131     // FIXME: Remove this once the ANDI glue bug is fixed:
132     if (ANDIGlueBug)
133       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
134 
135     for (MVT VT : MVT::integer_valuetypes()) {
136       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
137       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138       setTruncStoreAction(VT, MVT::i1, Expand);
139     }
140 
141     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
142   }
143 
144   // This is used in the ppcf128->int sequence.  Note it has different semantics
145   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
146   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
147 
148   // We do not currently implement these libm ops for PowerPC.
149   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
150   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
151   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
152   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
153   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
154   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
155 
156   // PowerPC has no SREM/UREM instructions
157   setOperationAction(ISD::SREM, MVT::i32, Expand);
158   setOperationAction(ISD::UREM, MVT::i32, Expand);
159   setOperationAction(ISD::SREM, MVT::i64, Expand);
160   setOperationAction(ISD::UREM, MVT::i64, Expand);
161 
162   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
163   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
164   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
165   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
166   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
167   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
169   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
170   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
171 
172   // We don't support sin/cos/sqrt/fmod/pow
173   setOperationAction(ISD::FSIN , MVT::f64, Expand);
174   setOperationAction(ISD::FCOS , MVT::f64, Expand);
175   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
176   setOperationAction(ISD::FREM , MVT::f64, Expand);
177   setOperationAction(ISD::FPOW , MVT::f64, Expand);
178   setOperationAction(ISD::FMA  , MVT::f64, Legal);
179   setOperationAction(ISD::FSIN , MVT::f32, Expand);
180   setOperationAction(ISD::FCOS , MVT::f32, Expand);
181   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
182   setOperationAction(ISD::FREM , MVT::f32, Expand);
183   setOperationAction(ISD::FPOW , MVT::f32, Expand);
184   setOperationAction(ISD::FMA  , MVT::f32, Legal);
185 
186   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
187 
188   // If we're enabling GP optimizations, use hardware square root
189   if (!Subtarget.hasFSQRT() &&
190       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
191         Subtarget.hasFRE()))
192     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
193 
194   if (!Subtarget.hasFSQRT() &&
195       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
196         Subtarget.hasFRES()))
197     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
198 
199   if (Subtarget.hasFCPSGN()) {
200     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
201     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
202   } else {
203     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
204     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
205   }
206 
207   if (Subtarget.hasFPRND()) {
208     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
209     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
210     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
211     setOperationAction(ISD::FROUND, MVT::f64, Legal);
212 
213     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
214     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
215     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
216     setOperationAction(ISD::FROUND, MVT::f32, Legal);
217   }
218 
219   // PowerPC does not have BSWAP, CTPOP or CTTZ
220   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
221   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
222   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
223   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
224 
225   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
226     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
227     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
228   } else {
229     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
230     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
231   }
232 
233   // PowerPC does not have ROTR
234   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
235   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
236 
237   if (!Subtarget.useCRBits()) {
238     // PowerPC does not have Select
239     setOperationAction(ISD::SELECT, MVT::i32, Expand);
240     setOperationAction(ISD::SELECT, MVT::i64, Expand);
241     setOperationAction(ISD::SELECT, MVT::f32, Expand);
242     setOperationAction(ISD::SELECT, MVT::f64, Expand);
243   }
244 
245   // PowerPC wants to turn select_cc of FP into fsel when possible.
246   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
247   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
248 
249   // PowerPC wants to optimize integer setcc a bit
250   if (!Subtarget.useCRBits())
251     setOperationAction(ISD::SETCC, MVT::i32, Custom);
252 
253   // PowerPC does not have BRCOND which requires SetCC
254   if (!Subtarget.useCRBits())
255     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
256 
257   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
258 
259   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
260   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
261 
262   // PowerPC does not have [U|S]INT_TO_FP
263   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
264   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
265 
266   if (Subtarget.hasDirectMove() && isPPC64) {
267     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
268     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
269     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
270     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
271   } else {
272     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
273     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
274     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
275     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
276   }
277 
278   // We cannot sextinreg(i1).  Expand to shifts.
279   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
280 
281   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
282   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
283   // support continuation, user-level threading, and etc.. As a result, no
284   // other SjLj exception interfaces are implemented and please don't build
285   // your own exception handling based on them.
286   // LLVM/Clang supports zero-cost DWARF exception handling.
287   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
288   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
289 
290   // We want to legalize GlobalAddress and ConstantPool nodes into the
291   // appropriate instructions to materialize the address.
292   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
293   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
294   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
295   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
296   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
297   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
298   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
299   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
300   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
301   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
302 
303   // TRAP is legal.
304   setOperationAction(ISD::TRAP, MVT::Other, Legal);
305 
306   // TRAMPOLINE is custom lowered.
307   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
308   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
309 
310   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
311   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
312 
313   if (Subtarget.isSVR4ABI()) {
314     if (isPPC64) {
315       // VAARG always uses double-word chunks, so promote anything smaller.
316       setOperationAction(ISD::VAARG, MVT::i1, Promote);
317       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
318       setOperationAction(ISD::VAARG, MVT::i8, Promote);
319       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
320       setOperationAction(ISD::VAARG, MVT::i16, Promote);
321       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
322       setOperationAction(ISD::VAARG, MVT::i32, Promote);
323       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
324       setOperationAction(ISD::VAARG, MVT::Other, Expand);
325     } else {
326       // VAARG is custom lowered with the 32-bit SVR4 ABI.
327       setOperationAction(ISD::VAARG, MVT::Other, Custom);
328       setOperationAction(ISD::VAARG, MVT::i64, Custom);
329     }
330   } else
331     setOperationAction(ISD::VAARG, MVT::Other, Expand);
332 
333   if (Subtarget.isSVR4ABI() && !isPPC64)
334     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
335     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
336   else
337     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
338 
339   // Use the default implementation.
340   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
341   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
342   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
343   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
344   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
345   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
346   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
347 
348   // We want to custom lower some of our intrinsics.
349   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
350 
351   // To handle counter-based loop conditions.
352   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
353 
354   // Comparisons that require checking two conditions.
355   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
356   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
357   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
358   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
359   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
360   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
361   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
362   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
363   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
364   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
365   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
366   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
367 
368   if (Subtarget.has64BitSupport()) {
369     // They also have instructions for converting between i64 and fp.
370     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
371     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
372     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
373     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
374     // This is just the low 32 bits of a (signed) fp->i64 conversion.
375     // We cannot do this with Promote because i64 is not a legal type.
376     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
377 
378     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
379       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
380   } else {
381     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
382     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
383   }
384 
385   // With the instructions enabled under FPCVT, we can do everything.
386   if (Subtarget.hasFPCVT()) {
387     if (Subtarget.has64BitSupport()) {
388       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
389       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
390       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
391       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
392     }
393 
394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
396     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
397     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
398   }
399 
400   if (Subtarget.use64BitRegs()) {
401     // 64-bit PowerPC implementations can support i64 types directly
402     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
403     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
404     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
405     // 64-bit PowerPC wants to expand i128 shifts itself.
406     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
407     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
408     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
409   } else {
410     // 32-bit PowerPC wants to expand i64 shifts itself.
411     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
412     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
413     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
414   }
415 
416   if (Subtarget.hasAltivec()) {
417     // First set operation action for all vector types to expand. Then we
418     // will selectively turn on ones that can be effectively codegen'd.
419     for (MVT VT : MVT::vector_valuetypes()) {
420       // add/sub are legal for all supported vector VT's.
421       setOperationAction(ISD::ADD, VT, Legal);
422       setOperationAction(ISD::SUB, VT, Legal);
423 
424       // Vector instructions introduced in P8
425       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
426         setOperationAction(ISD::CTPOP, VT, Legal);
427         setOperationAction(ISD::CTLZ, VT, Legal);
428       }
429       else {
430         setOperationAction(ISD::CTPOP, VT, Expand);
431         setOperationAction(ISD::CTLZ, VT, Expand);
432       }
433 
434       // We promote all shuffles to v16i8.
435       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
436       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
437 
438       // We promote all non-typed operations to v4i32.
439       setOperationAction(ISD::AND   , VT, Promote);
440       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
441       setOperationAction(ISD::OR    , VT, Promote);
442       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
443       setOperationAction(ISD::XOR   , VT, Promote);
444       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
445       setOperationAction(ISD::LOAD  , VT, Promote);
446       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
447       setOperationAction(ISD::SELECT, VT, Promote);
448       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
449       setOperationAction(ISD::SELECT_CC, VT, Promote);
450       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
451       setOperationAction(ISD::STORE, VT, Promote);
452       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
453 
454       // No other operations are legal.
455       setOperationAction(ISD::MUL , VT, Expand);
456       setOperationAction(ISD::SDIV, VT, Expand);
457       setOperationAction(ISD::SREM, VT, Expand);
458       setOperationAction(ISD::UDIV, VT, Expand);
459       setOperationAction(ISD::UREM, VT, Expand);
460       setOperationAction(ISD::FDIV, VT, Expand);
461       setOperationAction(ISD::FREM, VT, Expand);
462       setOperationAction(ISD::FNEG, VT, Expand);
463       setOperationAction(ISD::FSQRT, VT, Expand);
464       setOperationAction(ISD::FLOG, VT, Expand);
465       setOperationAction(ISD::FLOG10, VT, Expand);
466       setOperationAction(ISD::FLOG2, VT, Expand);
467       setOperationAction(ISD::FEXP, VT, Expand);
468       setOperationAction(ISD::FEXP2, VT, Expand);
469       setOperationAction(ISD::FSIN, VT, Expand);
470       setOperationAction(ISD::FCOS, VT, Expand);
471       setOperationAction(ISD::FABS, VT, Expand);
472       setOperationAction(ISD::FPOWI, VT, Expand);
473       setOperationAction(ISD::FFLOOR, VT, Expand);
474       setOperationAction(ISD::FCEIL,  VT, Expand);
475       setOperationAction(ISD::FTRUNC, VT, Expand);
476       setOperationAction(ISD::FRINT,  VT, Expand);
477       setOperationAction(ISD::FNEARBYINT, VT, Expand);
478       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
479       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
480       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
481       setOperationAction(ISD::MULHU, VT, Expand);
482       setOperationAction(ISD::MULHS, VT, Expand);
483       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
485       setOperationAction(ISD::UDIVREM, VT, Expand);
486       setOperationAction(ISD::SDIVREM, VT, Expand);
487       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
488       setOperationAction(ISD::FPOW, VT, Expand);
489       setOperationAction(ISD::BSWAP, VT, Expand);
490       setOperationAction(ISD::CTTZ, VT, Expand);
491       setOperationAction(ISD::VSELECT, VT, Expand);
492       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
493       setOperationAction(ISD::ROTL, VT, Expand);
494       setOperationAction(ISD::ROTR, VT, Expand);
495 
496       for (MVT InnerVT : MVT::vector_valuetypes()) {
497         setTruncStoreAction(VT, InnerVT, Expand);
498         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
499         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
500         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
501       }
502     }
503 
504     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
505     // with merges, splats, etc.
506     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
507 
508     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
509     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
510     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
511     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
512     setOperationAction(ISD::SELECT, MVT::v4i32,
513                        Subtarget.useCRBits() ? Legal : Expand);
514     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
515     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
516     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
517     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
518     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
519     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
520     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
521     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
522     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
523 
524     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
525     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
526     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
527     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
528 
529     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
530     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
531 
532     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
533       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
534       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
535     }
536 
537     if (Subtarget.hasP8Altivec())
538       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
539     else
540       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
541 
542     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
543     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
544 
545     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
546     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
547 
548     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
549     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
550     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
551     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
552 
553     // Altivec does not contain unordered floating-point compare instructions
554     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
555     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
556     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
557     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
558 
559     if (Subtarget.hasVSX()) {
560       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
562       if (Subtarget.hasP8Vector()) {
563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
564         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
565       }
566       if (Subtarget.hasDirectMove() && isPPC64) {
567         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
568         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
569         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
570         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
571         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
572         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
573         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
574         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
575       }
576       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
577 
578       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
579       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
580       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
581       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
582       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
583 
584       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
585 
586       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
587       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
588 
589       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
590       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
591 
592       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
593       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
594       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
595       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
596       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
597 
598       // Share the Altivec comparison restrictions.
599       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
600       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
601       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
602       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
603 
604       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
605       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
606 
607       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
608 
609       if (Subtarget.hasP8Vector())
610         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
611 
612       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
613 
614       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
615       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
616       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
617 
618       if (Subtarget.hasP8Altivec()) {
619         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
620         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
621         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
622 
623         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
624       }
625       else {
626         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
627         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
628         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
629 
630         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
631 
632         // VSX v2i64 only supports non-arithmetic operations.
633         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
634         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
635       }
636 
637       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
638       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
639       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
640       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
641 
642       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
643 
644       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
645       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
646       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
647       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
648 
649       // Vector operation legalization checks the result type of
650       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
651       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
652       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
653       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
654       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
655 
656       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
657       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
658       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
659       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
660 
661       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
662     }
663 
664     if (Subtarget.hasP8Altivec()) {
665       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
666       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
667     }
668   }
669 
670   if (Subtarget.hasQPX()) {
671     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
672     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
673     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
674     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
675 
676     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
677     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
678 
679     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
680     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
681 
682     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
683     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
684 
685     if (!Subtarget.useCRBits())
686       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
687     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
688 
689     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
690     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
691     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
692     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
693     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
694     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
695     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
696 
697     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
698     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
699 
700     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
701     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
702     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
703 
704     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
705     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
706     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
707     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
708     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
709     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
710     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
711     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
712     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
713     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
714     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
715 
716     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
717     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
718 
719     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
720     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
721 
722     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
723 
724     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
725     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
726     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
727     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
728 
729     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
730     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
731 
732     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
733     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
734 
735     if (!Subtarget.useCRBits())
736       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
737     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
738 
739     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
740     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
741     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
742     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
743     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
744     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
745     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
746 
747     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
748     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
749 
750     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
751     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
752     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
753     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
754     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
755     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
756     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
757     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
758     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
759     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
760     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
761 
762     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
763     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
764 
765     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
766     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
767 
768     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
769 
770     setOperationAction(ISD::AND , MVT::v4i1, Legal);
771     setOperationAction(ISD::OR , MVT::v4i1, Legal);
772     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
773 
774     if (!Subtarget.useCRBits())
775       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
776     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
777 
778     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
779     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
780 
781     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
782     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
783     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
784     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
785     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
786     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
787     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
788 
789     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
790     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
791 
792     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
793 
794     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
795     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
796     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
797     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
798 
799     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
800     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
801     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
802     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
803 
804     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
805     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
806 
807     // These need to set FE_INEXACT, and so cannot be vectorized here.
808     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
809     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
810 
811     if (TM.Options.UnsafeFPMath) {
812       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
813       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
814 
815       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
816       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
817     } else {
818       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
819       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
820 
821       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
822       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
823     }
824   }
825 
826   if (Subtarget.has64BitSupport())
827     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
828 
829   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
830 
831   if (!isPPC64) {
832     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
833     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
834   }
835 
836   setBooleanContents(ZeroOrOneBooleanContent);
837 
838   if (Subtarget.hasAltivec()) {
839     // Altivec instructions set fields to all zeros or all ones.
840     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
841   }
842 
843   if (!isPPC64) {
844     // These libcalls are not available in 32-bit.
845     setLibcallName(RTLIB::SHL_I128, nullptr);
846     setLibcallName(RTLIB::SRL_I128, nullptr);
847     setLibcallName(RTLIB::SRA_I128, nullptr);
848   }
849 
850   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
851 
852   // We have target-specific dag combine patterns for the following nodes:
853   setTargetDAGCombine(ISD::SINT_TO_FP);
854   if (Subtarget.hasFPCVT())
855     setTargetDAGCombine(ISD::UINT_TO_FP);
856   setTargetDAGCombine(ISD::LOAD);
857   setTargetDAGCombine(ISD::STORE);
858   setTargetDAGCombine(ISD::BR_CC);
859   if (Subtarget.useCRBits())
860     setTargetDAGCombine(ISD::BRCOND);
861   setTargetDAGCombine(ISD::BSWAP);
862   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
863   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
864   setTargetDAGCombine(ISD::INTRINSIC_VOID);
865 
866   setTargetDAGCombine(ISD::SIGN_EXTEND);
867   setTargetDAGCombine(ISD::ZERO_EXTEND);
868   setTargetDAGCombine(ISD::ANY_EXTEND);
869 
870   if (Subtarget.useCRBits()) {
871     setTargetDAGCombine(ISD::TRUNCATE);
872     setTargetDAGCombine(ISD::SETCC);
873     setTargetDAGCombine(ISD::SELECT_CC);
874   }
875 
876   // Use reciprocal estimates.
877   if (TM.Options.UnsafeFPMath) {
878     setTargetDAGCombine(ISD::FDIV);
879     setTargetDAGCombine(ISD::FSQRT);
880   }
881 
882   // Darwin long double math library functions have $LDBL128 appended.
883   if (Subtarget.isDarwin()) {
884     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
885     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
886     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
887     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
888     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
889     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
890     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
891     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
892     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
893     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
894   }
895 
896   // With 32 condition bits, we don't need to sink (and duplicate) compares
897   // aggressively in CodeGenPrep.
898   if (Subtarget.useCRBits()) {
899     setHasMultipleConditionRegisters();
900     setJumpIsExpensive();
901   }
902 
903   setMinFunctionAlignment(2);
904   if (Subtarget.isDarwin())
905     setPrefFunctionAlignment(4);
906 
907   switch (Subtarget.getDarwinDirective()) {
908   default: break;
909   case PPC::DIR_970:
910   case PPC::DIR_A2:
911   case PPC::DIR_E500mc:
912   case PPC::DIR_E5500:
913   case PPC::DIR_PWR4:
914   case PPC::DIR_PWR5:
915   case PPC::DIR_PWR5X:
916   case PPC::DIR_PWR6:
917   case PPC::DIR_PWR6X:
918   case PPC::DIR_PWR7:
919   case PPC::DIR_PWR8:
920   case PPC::DIR_PWR9:
921     setPrefFunctionAlignment(4);
922     setPrefLoopAlignment(4);
923     break;
924   }
925 
926   if (Subtarget.enableMachineScheduler())
927     setSchedulingPreference(Sched::Source);
928   else
929     setSchedulingPreference(Sched::Hybrid);
930 
931   computeRegisterProperties(STI.getRegisterInfo());
932 
933   // The Freescale cores do better with aggressive inlining of memcpy and
934   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
935   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
936       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
937     MaxStoresPerMemset = 32;
938     MaxStoresPerMemsetOptSize = 16;
939     MaxStoresPerMemcpy = 32;
940     MaxStoresPerMemcpyOptSize = 8;
941     MaxStoresPerMemmove = 32;
942     MaxStoresPerMemmoveOptSize = 8;
943   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
944     // The A2 also benefits from (very) aggressive inlining of memcpy and
945     // friends. The overhead of a the function call, even when warm, can be
946     // over one hundred cycles.
947     MaxStoresPerMemset = 128;
948     MaxStoresPerMemcpy = 128;
949     MaxStoresPerMemmove = 128;
950   }
951 }
952 
953 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
954 /// the desired ByVal argument alignment.
955 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
956                              unsigned MaxMaxAlign) {
957   if (MaxAlign == MaxMaxAlign)
958     return;
959   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
960     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
961       MaxAlign = 32;
962     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
963       MaxAlign = 16;
964   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
965     unsigned EltAlign = 0;
966     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
967     if (EltAlign > MaxAlign)
968       MaxAlign = EltAlign;
969   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
970     for (auto *EltTy : STy->elements()) {
971       unsigned EltAlign = 0;
972       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
973       if (EltAlign > MaxAlign)
974         MaxAlign = EltAlign;
975       if (MaxAlign == MaxMaxAlign)
976         break;
977     }
978   }
979 }
980 
981 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982 /// function arguments in the caller parameter area.
983 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
984                                                   const DataLayout &DL) const {
985   // Darwin passes everything on 4 byte boundary.
986   if (Subtarget.isDarwin())
987     return 4;
988 
989   // 16byte and wider vectors are passed on 16byte boundary.
990   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
991   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
992   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
993     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
994   return Align;
995 }
996 
997 bool PPCTargetLowering::useSoftFloat() const {
998   return Subtarget.useSoftFloat();
999 }
1000 
1001 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1002   switch ((PPCISD::NodeType)Opcode) {
1003   case PPCISD::FIRST_NUMBER:    break;
1004   case PPCISD::FSEL:            return "PPCISD::FSEL";
1005   case PPCISD::FCFID:           return "PPCISD::FCFID";
1006   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1007   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1008   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1009   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1010   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1011   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1012   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1013   case PPCISD::FRE:             return "PPCISD::FRE";
1014   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1015   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1016   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1017   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1018   case PPCISD::VPERM:           return "PPCISD::VPERM";
1019   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1020   case PPCISD::CMPB:            return "PPCISD::CMPB";
1021   case PPCISD::Hi:              return "PPCISD::Hi";
1022   case PPCISD::Lo:              return "PPCISD::Lo";
1023   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1024   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1025   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1026   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1027   case PPCISD::SRL:             return "PPCISD::SRL";
1028   case PPCISD::SRA:             return "PPCISD::SRA";
1029   case PPCISD::SHL:             return "PPCISD::SHL";
1030   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1031   case PPCISD::CALL:            return "PPCISD::CALL";
1032   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1033   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1034   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1035   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1036   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1037   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1038   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1039   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1040   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1041   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1042   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1043   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1044   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1045   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1046   case PPCISD::VCMP:            return "PPCISD::VCMP";
1047   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1048   case PPCISD::LBRX:            return "PPCISD::LBRX";
1049   case PPCISD::STBRX:           return "PPCISD::STBRX";
1050   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1051   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1052   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1053   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1054   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1055   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1056   case PPCISD::BDZ:             return "PPCISD::BDZ";
1057   case PPCISD::MFFS:            return "PPCISD::MFFS";
1058   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1059   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1060   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1061   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1062   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1063   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1064   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1065   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1066   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1067   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1068   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1069   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1070   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1071   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1072   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1073   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1074   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1075   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1076   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1077   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1078   case PPCISD::SC:              return "PPCISD::SC";
1079   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1080   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1081   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1082   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1083   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1084   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1085   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1086   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1087   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1088   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1089   }
1090   return nullptr;
1091 }
1092 
1093 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1094                                           EVT VT) const {
1095   if (!VT.isVector())
1096     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1097 
1098   if (Subtarget.hasQPX())
1099     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1100 
1101   return VT.changeVectorElementTypeToInteger();
1102 }
1103 
1104 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1105   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1106   return true;
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // Node matching predicates, for use by the tblgen matching code.
1111 //===----------------------------------------------------------------------===//
1112 
1113 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1114 static bool isFloatingPointZero(SDValue Op) {
1115   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1116     return CFP->getValueAPF().isZero();
1117   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1118     // Maybe this has already been legalized into the constant pool?
1119     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1120       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1121         return CFP->getValueAPF().isZero();
1122   }
1123   return false;
1124 }
1125 
1126 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1127 /// true if Op is undef or if it matches the specified value.
1128 static bool isConstantOrUndef(int Op, int Val) {
1129   return Op < 0 || Op == Val;
1130 }
1131 
1132 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1133 /// VPKUHUM instruction.
1134 /// The ShuffleKind distinguishes between big-endian operations with
1135 /// two different inputs (0), either-endian operations with two identical
1136 /// inputs (1), and little-endian operations with two different inputs (2).
1137 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1138 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1139                                SelectionDAG &DAG) {
1140   bool IsLE = DAG.getDataLayout().isLittleEndian();
1141   if (ShuffleKind == 0) {
1142     if (IsLE)
1143       return false;
1144     for (unsigned i = 0; i != 16; ++i)
1145       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1146         return false;
1147   } else if (ShuffleKind == 2) {
1148     if (!IsLE)
1149       return false;
1150     for (unsigned i = 0; i != 16; ++i)
1151       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1152         return false;
1153   } else if (ShuffleKind == 1) {
1154     unsigned j = IsLE ? 0 : 1;
1155     for (unsigned i = 0; i != 8; ++i)
1156       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1157           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1158         return false;
1159   }
1160   return true;
1161 }
1162 
1163 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1164 /// VPKUWUM instruction.
1165 /// The ShuffleKind distinguishes between big-endian operations with
1166 /// two different inputs (0), either-endian operations with two identical
1167 /// inputs (1), and little-endian operations with two different inputs (2).
1168 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1169 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1170                                SelectionDAG &DAG) {
1171   bool IsLE = DAG.getDataLayout().isLittleEndian();
1172   if (ShuffleKind == 0) {
1173     if (IsLE)
1174       return false;
1175     for (unsigned i = 0; i != 16; i += 2)
1176       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1177           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1178         return false;
1179   } else if (ShuffleKind == 2) {
1180     if (!IsLE)
1181       return false;
1182     for (unsigned i = 0; i != 16; i += 2)
1183       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1184           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1185         return false;
1186   } else if (ShuffleKind == 1) {
1187     unsigned j = IsLE ? 0 : 2;
1188     for (unsigned i = 0; i != 8; i += 2)
1189       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1190           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1191           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1192           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1193         return false;
1194   }
1195   return true;
1196 }
1197 
1198 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1199 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1200 /// current subtarget.
1201 ///
1202 /// The ShuffleKind distinguishes between big-endian operations with
1203 /// two different inputs (0), either-endian operations with two identical
1204 /// inputs (1), and little-endian operations with two different inputs (2).
1205 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1206 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1207                                SelectionDAG &DAG) {
1208   const PPCSubtarget& Subtarget =
1209     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1210   if (!Subtarget.hasP8Vector())
1211     return false;
1212 
1213   bool IsLE = DAG.getDataLayout().isLittleEndian();
1214   if (ShuffleKind == 0) {
1215     if (IsLE)
1216       return false;
1217     for (unsigned i = 0; i != 16; i += 4)
1218       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1219           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1220           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1221           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1222         return false;
1223   } else if (ShuffleKind == 2) {
1224     if (!IsLE)
1225       return false;
1226     for (unsigned i = 0; i != 16; i += 4)
1227       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1228           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1229           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1230           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1231         return false;
1232   } else if (ShuffleKind == 1) {
1233     unsigned j = IsLE ? 0 : 4;
1234     for (unsigned i = 0; i != 8; i += 4)
1235       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1236           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1237           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1238           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1239           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1240           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1241           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1242           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1243         return false;
1244   }
1245   return true;
1246 }
1247 
1248 /// isVMerge - Common function, used to match vmrg* shuffles.
1249 ///
1250 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1251                      unsigned LHSStart, unsigned RHSStart) {
1252   if (N->getValueType(0) != MVT::v16i8)
1253     return false;
1254   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1255          "Unsupported merge size!");
1256 
1257   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1258     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1259       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1260                              LHSStart+j+i*UnitSize) ||
1261           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1262                              RHSStart+j+i*UnitSize))
1263         return false;
1264     }
1265   return true;
1266 }
1267 
1268 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1269 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1270 /// The ShuffleKind distinguishes between big-endian merges with two
1271 /// different inputs (0), either-endian merges with two identical inputs (1),
1272 /// and little-endian merges with two different inputs (2).  For the latter,
1273 /// the input operands are swapped (see PPCInstrAltivec.td).
1274 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1275                              unsigned ShuffleKind, SelectionDAG &DAG) {
1276   if (DAG.getDataLayout().isLittleEndian()) {
1277     if (ShuffleKind == 1) // unary
1278       return isVMerge(N, UnitSize, 0, 0);
1279     else if (ShuffleKind == 2) // swapped
1280       return isVMerge(N, UnitSize, 0, 16);
1281     else
1282       return false;
1283   } else {
1284     if (ShuffleKind == 1) // unary
1285       return isVMerge(N, UnitSize, 8, 8);
1286     else if (ShuffleKind == 0) // normal
1287       return isVMerge(N, UnitSize, 8, 24);
1288     else
1289       return false;
1290   }
1291 }
1292 
1293 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1294 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1295 /// The ShuffleKind distinguishes between big-endian merges with two
1296 /// different inputs (0), either-endian merges with two identical inputs (1),
1297 /// and little-endian merges with two different inputs (2).  For the latter,
1298 /// the input operands are swapped (see PPCInstrAltivec.td).
1299 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1300                              unsigned ShuffleKind, SelectionDAG &DAG) {
1301   if (DAG.getDataLayout().isLittleEndian()) {
1302     if (ShuffleKind == 1) // unary
1303       return isVMerge(N, UnitSize, 8, 8);
1304     else if (ShuffleKind == 2) // swapped
1305       return isVMerge(N, UnitSize, 8, 24);
1306     else
1307       return false;
1308   } else {
1309     if (ShuffleKind == 1) // unary
1310       return isVMerge(N, UnitSize, 0, 0);
1311     else if (ShuffleKind == 0) // normal
1312       return isVMerge(N, UnitSize, 0, 16);
1313     else
1314       return false;
1315   }
1316 }
1317 
1318 /**
1319  * \brief Common function used to match vmrgew and vmrgow shuffles
1320  *
1321  * The indexOffset determines whether to look for even or odd words in
1322  * the shuffle mask. This is based on the of the endianness of the target
1323  * machine.
1324  *   - Little Endian:
1325  *     - Use offset of 0 to check for odd elements
1326  *     - Use offset of 4 to check for even elements
1327  *   - Big Endian:
1328  *     - Use offset of 0 to check for even elements
1329  *     - Use offset of 4 to check for odd elements
1330  * A detailed description of the vector element ordering for little endian and
1331  * big endian can be found at
1332  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1333  * Targeting your applications - what little endian and big endian IBM XL C/C++
1334  * compiler differences mean to you
1335  *
1336  * The mask to the shuffle vector instruction specifies the indices of the
1337  * elements from the two input vectors to place in the result. The elements are
1338  * numbered in array-access order, starting with the first vector. These vectors
1339  * are always of type v16i8, thus each vector will contain 16 elements of size
1340  * 8. More info on the shuffle vector can be found in the
1341  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1342  * Language Reference.
1343  *
1344  * The RHSStartValue indicates whether the same input vectors are used (unary)
1345  * or two different input vectors are used, based on the following:
1346  *   - If the instruction uses the same vector for both inputs, the range of the
1347  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1348  *     be 0.
1349  *   - If the instruction has two different vectors then the range of the
1350  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1351  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1352  *     to 31 specify elements in the second vector).
1353  *
1354  * \param[in] N The shuffle vector SD Node to analyze
1355  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1356  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1357  * vector to the shuffle_vector instruction
1358  * \return true iff this shuffle vector represents an even or odd word merge
1359  */
1360 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1361                      unsigned RHSStartValue) {
1362   if (N->getValueType(0) != MVT::v16i8)
1363     return false;
1364 
1365   for (unsigned i = 0; i < 2; ++i)
1366     for (unsigned j = 0; j < 4; ++j)
1367       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1368                              i*RHSStartValue+j+IndexOffset) ||
1369           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1370                              i*RHSStartValue+j+IndexOffset+8))
1371         return false;
1372   return true;
1373 }
1374 
1375 /**
1376  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1377  * vmrgow instructions.
1378  *
1379  * \param[in] N The shuffle vector SD Node to analyze
1380  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1381  * \param[in] ShuffleKind Identify the type of merge:
1382  *   - 0 = big-endian merge with two different inputs;
1383  *   - 1 = either-endian merge with two identical inputs;
1384  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1385  *     little-endian merges).
1386  * \param[in] DAG The current SelectionDAG
1387  * \return true iff this shuffle mask
1388  */
1389 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1390                               unsigned ShuffleKind, SelectionDAG &DAG) {
1391   if (DAG.getDataLayout().isLittleEndian()) {
1392     unsigned indexOffset = CheckEven ? 4 : 0;
1393     if (ShuffleKind == 1) // Unary
1394       return isVMerge(N, indexOffset, 0);
1395     else if (ShuffleKind == 2) // swapped
1396       return isVMerge(N, indexOffset, 16);
1397     else
1398       return false;
1399   }
1400   else {
1401     unsigned indexOffset = CheckEven ? 0 : 4;
1402     if (ShuffleKind == 1) // Unary
1403       return isVMerge(N, indexOffset, 0);
1404     else if (ShuffleKind == 0) // Normal
1405       return isVMerge(N, indexOffset, 16);
1406     else
1407       return false;
1408   }
1409   return false;
1410 }
1411 
1412 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1413 /// amount, otherwise return -1.
1414 /// The ShuffleKind distinguishes between big-endian operations with two
1415 /// different inputs (0), either-endian operations with two identical inputs
1416 /// (1), and little-endian operations with two different inputs (2).  For the
1417 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1418 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1419                              SelectionDAG &DAG) {
1420   if (N->getValueType(0) != MVT::v16i8)
1421     return -1;
1422 
1423   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1424 
1425   // Find the first non-undef value in the shuffle mask.
1426   unsigned i;
1427   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1428     /*search*/;
1429 
1430   if (i == 16) return -1;  // all undef.
1431 
1432   // Otherwise, check to see if the rest of the elements are consecutively
1433   // numbered from this value.
1434   unsigned ShiftAmt = SVOp->getMaskElt(i);
1435   if (ShiftAmt < i) return -1;
1436 
1437   ShiftAmt -= i;
1438   bool isLE = DAG.getDataLayout().isLittleEndian();
1439 
1440   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1441     // Check the rest of the elements to see if they are consecutive.
1442     for (++i; i != 16; ++i)
1443       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1444         return -1;
1445   } else if (ShuffleKind == 1) {
1446     // Check the rest of the elements to see if they are consecutive.
1447     for (++i; i != 16; ++i)
1448       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1449         return -1;
1450   } else
1451     return -1;
1452 
1453   if (isLE)
1454     ShiftAmt = 16 - ShiftAmt;
1455 
1456   return ShiftAmt;
1457 }
1458 
1459 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1460 /// specifies a splat of a single element that is suitable for input to
1461 /// VSPLTB/VSPLTH/VSPLTW.
1462 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1463   assert(N->getValueType(0) == MVT::v16i8 &&
1464          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1465 
1466   // The consecutive indices need to specify an element, not part of two
1467   // different elements.  So abandon ship early if this isn't the case.
1468   if (N->getMaskElt(0) % EltSize != 0)
1469     return false;
1470 
1471   // This is a splat operation if each element of the permute is the same, and
1472   // if the value doesn't reference the second vector.
1473   unsigned ElementBase = N->getMaskElt(0);
1474 
1475   // FIXME: Handle UNDEF elements too!
1476   if (ElementBase >= 16)
1477     return false;
1478 
1479   // Check that the indices are consecutive, in the case of a multi-byte element
1480   // splatted with a v16i8 mask.
1481   for (unsigned i = 1; i != EltSize; ++i)
1482     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1483       return false;
1484 
1485   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1486     if (N->getMaskElt(i) < 0) continue;
1487     for (unsigned j = 0; j != EltSize; ++j)
1488       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1489         return false;
1490   }
1491   return true;
1492 }
1493 
1494 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1495 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1496 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1497                                 SelectionDAG &DAG) {
1498   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1499   assert(isSplatShuffleMask(SVOp, EltSize));
1500   if (DAG.getDataLayout().isLittleEndian())
1501     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1502   else
1503     return SVOp->getMaskElt(0) / EltSize;
1504 }
1505 
1506 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1507 /// by using a vspltis[bhw] instruction of the specified element size, return
1508 /// the constant being splatted.  The ByteSize field indicates the number of
1509 /// bytes of each element [124] -> [bhw].
1510 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1511   SDValue OpVal(nullptr, 0);
1512 
1513   // If ByteSize of the splat is bigger than the element size of the
1514   // build_vector, then we have a case where we are checking for a splat where
1515   // multiple elements of the buildvector are folded together into a single
1516   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1517   unsigned EltSize = 16/N->getNumOperands();
1518   if (EltSize < ByteSize) {
1519     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1520     SDValue UniquedVals[4];
1521     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1522 
1523     // See if all of the elements in the buildvector agree across.
1524     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1525       if (N->getOperand(i).isUndef()) continue;
1526       // If the element isn't a constant, bail fully out.
1527       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1528 
1529 
1530       if (!UniquedVals[i&(Multiple-1)].getNode())
1531         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1532       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1533         return SDValue();  // no match.
1534     }
1535 
1536     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1537     // either constant or undef values that are identical for each chunk.  See
1538     // if these chunks can form into a larger vspltis*.
1539 
1540     // Check to see if all of the leading entries are either 0 or -1.  If
1541     // neither, then this won't fit into the immediate field.
1542     bool LeadingZero = true;
1543     bool LeadingOnes = true;
1544     for (unsigned i = 0; i != Multiple-1; ++i) {
1545       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1546 
1547       LeadingZero &= isNullConstant(UniquedVals[i]);
1548       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1549     }
1550     // Finally, check the least significant entry.
1551     if (LeadingZero) {
1552       if (!UniquedVals[Multiple-1].getNode())
1553         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1554       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1555       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1556         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1557     }
1558     if (LeadingOnes) {
1559       if (!UniquedVals[Multiple-1].getNode())
1560         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1561       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1562       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1563         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1564     }
1565 
1566     return SDValue();
1567   }
1568 
1569   // Check to see if this buildvec has a single non-undef value in its elements.
1570   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1571     if (N->getOperand(i).isUndef()) continue;
1572     if (!OpVal.getNode())
1573       OpVal = N->getOperand(i);
1574     else if (OpVal != N->getOperand(i))
1575       return SDValue();
1576   }
1577 
1578   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1579 
1580   unsigned ValSizeInBytes = EltSize;
1581   uint64_t Value = 0;
1582   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1583     Value = CN->getZExtValue();
1584   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1585     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1586     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1587   }
1588 
1589   // If the splat value is larger than the element value, then we can never do
1590   // this splat.  The only case that we could fit the replicated bits into our
1591   // immediate field for would be zero, and we prefer to use vxor for it.
1592   if (ValSizeInBytes < ByteSize) return SDValue();
1593 
1594   // If the element value is larger than the splat value, check if it consists
1595   // of a repeated bit pattern of size ByteSize.
1596   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1597     return SDValue();
1598 
1599   // Properly sign extend the value.
1600   int MaskVal = SignExtend32(Value, ByteSize * 8);
1601 
1602   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1603   if (MaskVal == 0) return SDValue();
1604 
1605   // Finally, if this value fits in a 5 bit sext field, return it
1606   if (SignExtend32<5>(MaskVal) == MaskVal)
1607     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1608   return SDValue();
1609 }
1610 
1611 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1612 /// amount, otherwise return -1.
1613 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1614   EVT VT = N->getValueType(0);
1615   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1616     return -1;
1617 
1618   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1619 
1620   // Find the first non-undef value in the shuffle mask.
1621   unsigned i;
1622   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1623     /*search*/;
1624 
1625   if (i == 4) return -1;  // all undef.
1626 
1627   // Otherwise, check to see if the rest of the elements are consecutively
1628   // numbered from this value.
1629   unsigned ShiftAmt = SVOp->getMaskElt(i);
1630   if (ShiftAmt < i) return -1;
1631   ShiftAmt -= i;
1632 
1633   // Check the rest of the elements to see if they are consecutive.
1634   for (++i; i != 4; ++i)
1635     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1636       return -1;
1637 
1638   return ShiftAmt;
1639 }
1640 
1641 //===----------------------------------------------------------------------===//
1642 //  Addressing Mode Selection
1643 //===----------------------------------------------------------------------===//
1644 
1645 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1646 /// or 64-bit immediate, and if the value can be accurately represented as a
1647 /// sign extension from a 16-bit value.  If so, this returns true and the
1648 /// immediate.
1649 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1650   if (!isa<ConstantSDNode>(N))
1651     return false;
1652 
1653   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1654   if (N->getValueType(0) == MVT::i32)
1655     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1656   else
1657     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1658 }
1659 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1660   return isIntS16Immediate(Op.getNode(), Imm);
1661 }
1662 
1663 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1664 /// can be represented as an indexed [r+r] operation.  Returns false if it
1665 /// can be more efficiently represented with [r+imm].
1666 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1667                                             SDValue &Index,
1668                                             SelectionDAG &DAG) const {
1669   short imm = 0;
1670   if (N.getOpcode() == ISD::ADD) {
1671     if (isIntS16Immediate(N.getOperand(1), imm))
1672       return false;    // r+i
1673     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1674       return false;    // r+i
1675 
1676     Base = N.getOperand(0);
1677     Index = N.getOperand(1);
1678     return true;
1679   } else if (N.getOpcode() == ISD::OR) {
1680     if (isIntS16Immediate(N.getOperand(1), imm))
1681       return false;    // r+i can fold it if we can.
1682 
1683     // If this is an or of disjoint bitfields, we can codegen this as an add
1684     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1685     // disjoint.
1686     APInt LHSKnownZero, LHSKnownOne;
1687     APInt RHSKnownZero, RHSKnownOne;
1688     DAG.computeKnownBits(N.getOperand(0),
1689                          LHSKnownZero, LHSKnownOne);
1690 
1691     if (LHSKnownZero.getBoolValue()) {
1692       DAG.computeKnownBits(N.getOperand(1),
1693                            RHSKnownZero, RHSKnownOne);
1694       // If all of the bits are known zero on the LHS or RHS, the add won't
1695       // carry.
1696       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1697         Base = N.getOperand(0);
1698         Index = N.getOperand(1);
1699         return true;
1700       }
1701     }
1702   }
1703 
1704   return false;
1705 }
1706 
1707 // If we happen to be doing an i64 load or store into a stack slot that has
1708 // less than a 4-byte alignment, then the frame-index elimination may need to
1709 // use an indexed load or store instruction (because the offset may not be a
1710 // multiple of 4). The extra register needed to hold the offset comes from the
1711 // register scavenger, and it is possible that the scavenger will need to use
1712 // an emergency spill slot. As a result, we need to make sure that a spill slot
1713 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1714 // stack slot.
1715 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1716   // FIXME: This does not handle the LWA case.
1717   if (VT != MVT::i64)
1718     return;
1719 
1720   // NOTE: We'll exclude negative FIs here, which come from argument
1721   // lowering, because there are no known test cases triggering this problem
1722   // using packed structures (or similar). We can remove this exclusion if
1723   // we find such a test case. The reason why this is so test-case driven is
1724   // because this entire 'fixup' is only to prevent crashes (from the
1725   // register scavenger) on not-really-valid inputs. For example, if we have:
1726   //   %a = alloca i1
1727   //   %b = bitcast i1* %a to i64*
1728   //   store i64* a, i64 b
1729   // then the store should really be marked as 'align 1', but is not. If it
1730   // were marked as 'align 1' then the indexed form would have been
1731   // instruction-selected initially, and the problem this 'fixup' is preventing
1732   // won't happen regardless.
1733   if (FrameIdx < 0)
1734     return;
1735 
1736   MachineFunction &MF = DAG.getMachineFunction();
1737   MachineFrameInfo *MFI = MF.getFrameInfo();
1738 
1739   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1740   if (Align >= 4)
1741     return;
1742 
1743   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1744   FuncInfo->setHasNonRISpills();
1745 }
1746 
1747 /// Returns true if the address N can be represented by a base register plus
1748 /// a signed 16-bit displacement [r+imm], and if it is not better
1749 /// represented as reg+reg.  If Aligned is true, only accept displacements
1750 /// suitable for STD and friends, i.e. multiples of 4.
1751 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1752                                             SDValue &Base,
1753                                             SelectionDAG &DAG,
1754                                             bool Aligned) const {
1755   // FIXME dl should come from parent load or store, not from address
1756   SDLoc dl(N);
1757   // If this can be more profitably realized as r+r, fail.
1758   if (SelectAddressRegReg(N, Disp, Base, DAG))
1759     return false;
1760 
1761   if (N.getOpcode() == ISD::ADD) {
1762     short imm = 0;
1763     if (isIntS16Immediate(N.getOperand(1), imm) &&
1764         (!Aligned || (imm & 3) == 0)) {
1765       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1766       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1767         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1768         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1769       } else {
1770         Base = N.getOperand(0);
1771       }
1772       return true; // [r+i]
1773     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1774       // Match LOAD (ADD (X, Lo(G))).
1775       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1776              && "Cannot handle constant offsets yet!");
1777       Disp = N.getOperand(1).getOperand(0);  // The global address.
1778       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1779              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1780              Disp.getOpcode() == ISD::TargetConstantPool ||
1781              Disp.getOpcode() == ISD::TargetJumpTable);
1782       Base = N.getOperand(0);
1783       return true;  // [&g+r]
1784     }
1785   } else if (N.getOpcode() == ISD::OR) {
1786     short imm = 0;
1787     if (isIntS16Immediate(N.getOperand(1), imm) &&
1788         (!Aligned || (imm & 3) == 0)) {
1789       // If this is an or of disjoint bitfields, we can codegen this as an add
1790       // (for better address arithmetic) if the LHS and RHS of the OR are
1791       // provably disjoint.
1792       APInt LHSKnownZero, LHSKnownOne;
1793       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1794 
1795       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1796         // If all of the bits are known zero on the LHS or RHS, the add won't
1797         // carry.
1798         if (FrameIndexSDNode *FI =
1799               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1800           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1801           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1802         } else {
1803           Base = N.getOperand(0);
1804         }
1805         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1806         return true;
1807       }
1808     }
1809   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1810     // Loading from a constant address.
1811 
1812     // If this address fits entirely in a 16-bit sext immediate field, codegen
1813     // this as "d, 0"
1814     short Imm;
1815     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1816       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1817       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1818                              CN->getValueType(0));
1819       return true;
1820     }
1821 
1822     // Handle 32-bit sext immediates with LIS + addr mode.
1823     if ((CN->getValueType(0) == MVT::i32 ||
1824          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1825         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1826       int Addr = (int)CN->getZExtValue();
1827 
1828       // Otherwise, break this down into an LIS + disp.
1829       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1830 
1831       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1832                                    MVT::i32);
1833       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1834       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1835       return true;
1836     }
1837   }
1838 
1839   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1840   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1841     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1842     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1843   } else
1844     Base = N;
1845   return true;      // [r+0]
1846 }
1847 
1848 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1849 /// represented as an indexed [r+r] operation.
1850 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1851                                                 SDValue &Index,
1852                                                 SelectionDAG &DAG) const {
1853   // Check to see if we can easily represent this as an [r+r] address.  This
1854   // will fail if it thinks that the address is more profitably represented as
1855   // reg+imm, e.g. where imm = 0.
1856   if (SelectAddressRegReg(N, Base, Index, DAG))
1857     return true;
1858 
1859   // If the operand is an addition, always emit this as [r+r], since this is
1860   // better (for code size, and execution, as the memop does the add for free)
1861   // than emitting an explicit add.
1862   if (N.getOpcode() == ISD::ADD) {
1863     Base = N.getOperand(0);
1864     Index = N.getOperand(1);
1865     return true;
1866   }
1867 
1868   // Otherwise, do it the hard way, using R0 as the base register.
1869   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1870                          N.getValueType());
1871   Index = N;
1872   return true;
1873 }
1874 
1875 /// getPreIndexedAddressParts - returns true by value, base pointer and
1876 /// offset pointer and addressing mode by reference if the node's address
1877 /// can be legally represented as pre-indexed load / store address.
1878 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1879                                                   SDValue &Offset,
1880                                                   ISD::MemIndexedMode &AM,
1881                                                   SelectionDAG &DAG) const {
1882   if (DisablePPCPreinc) return false;
1883 
1884   bool isLoad = true;
1885   SDValue Ptr;
1886   EVT VT;
1887   unsigned Alignment;
1888   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1889     Ptr = LD->getBasePtr();
1890     VT = LD->getMemoryVT();
1891     Alignment = LD->getAlignment();
1892   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1893     Ptr = ST->getBasePtr();
1894     VT  = ST->getMemoryVT();
1895     Alignment = ST->getAlignment();
1896     isLoad = false;
1897   } else
1898     return false;
1899 
1900   // PowerPC doesn't have preinc load/store instructions for vectors (except
1901   // for QPX, which does have preinc r+r forms).
1902   if (VT.isVector()) {
1903     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1904       return false;
1905     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1906       AM = ISD::PRE_INC;
1907       return true;
1908     }
1909   }
1910 
1911   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1912 
1913     // Common code will reject creating a pre-inc form if the base pointer
1914     // is a frame index, or if N is a store and the base pointer is either
1915     // the same as or a predecessor of the value being stored.  Check for
1916     // those situations here, and try with swapped Base/Offset instead.
1917     bool Swap = false;
1918 
1919     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1920       Swap = true;
1921     else if (!isLoad) {
1922       SDValue Val = cast<StoreSDNode>(N)->getValue();
1923       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1924         Swap = true;
1925     }
1926 
1927     if (Swap)
1928       std::swap(Base, Offset);
1929 
1930     AM = ISD::PRE_INC;
1931     return true;
1932   }
1933 
1934   // LDU/STU can only handle immediates that are a multiple of 4.
1935   if (VT != MVT::i64) {
1936     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1937       return false;
1938   } else {
1939     // LDU/STU need an address with at least 4-byte alignment.
1940     if (Alignment < 4)
1941       return false;
1942 
1943     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1944       return false;
1945   }
1946 
1947   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1948     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1949     // sext i32 to i64 when addr mode is r+i.
1950     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1951         LD->getExtensionType() == ISD::SEXTLOAD &&
1952         isa<ConstantSDNode>(Offset))
1953       return false;
1954   }
1955 
1956   AM = ISD::PRE_INC;
1957   return true;
1958 }
1959 
1960 //===----------------------------------------------------------------------===//
1961 //  LowerOperation implementation
1962 //===----------------------------------------------------------------------===//
1963 
1964 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
1965 /// and LoOpFlags to the target MO flags.
1966 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
1967                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1968                                const GlobalValue *GV = nullptr) {
1969   HiOpFlags = PPCII::MO_HA;
1970   LoOpFlags = PPCII::MO_LO;
1971 
1972   // Don't use the pic base if not in PIC relocation model.
1973   if (IsPIC) {
1974     HiOpFlags |= PPCII::MO_PIC_FLAG;
1975     LoOpFlags |= PPCII::MO_PIC_FLAG;
1976   }
1977 
1978   // If this is a reference to a global value that requires a non-lazy-ptr, make
1979   // sure that instruction lowering adds it.
1980   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1981     HiOpFlags |= PPCII::MO_NLP_FLAG;
1982     LoOpFlags |= PPCII::MO_NLP_FLAG;
1983 
1984     if (GV->hasHiddenVisibility()) {
1985       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1986       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1987     }
1988   }
1989 }
1990 
1991 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1992                              SelectionDAG &DAG) {
1993   SDLoc DL(HiPart);
1994   EVT PtrVT = HiPart.getValueType();
1995   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1996 
1997   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1998   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1999 
2000   // With PIC, the first instruction is actually "GR+hi(&G)".
2001   if (isPIC)
2002     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2003                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2004 
2005   // Generate non-pic code that has direct accesses to the constant pool.
2006   // The address of the global is just (hi(&g)+lo(&g)).
2007   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2008 }
2009 
2010 static void setUsesTOCBasePtr(MachineFunction &MF) {
2011   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2012   FuncInfo->setUsesTOCBasePtr();
2013 }
2014 
2015 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2016   setUsesTOCBasePtr(DAG.getMachineFunction());
2017 }
2018 
2019 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2020                            SDValue GA) {
2021   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2022   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2023                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2024 
2025   SDValue Ops[] = { GA, Reg };
2026   return DAG.getMemIntrinsicNode(
2027       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2028       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2029       false, 0);
2030 }
2031 
2032 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2033                                              SelectionDAG &DAG) const {
2034   EVT PtrVT = Op.getValueType();
2035   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2036   const Constant *C = CP->getConstVal();
2037 
2038   // 64-bit SVR4 ABI code is always position-independent.
2039   // The actual address of the GlobalValue is stored in the TOC.
2040   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2041     setUsesTOCBasePtr(DAG);
2042     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2043     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2044   }
2045 
2046   unsigned MOHiFlag, MOLoFlag;
2047   bool IsPIC = isPositionIndependent();
2048   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2049 
2050   if (IsPIC && Subtarget.isSVR4ABI()) {
2051     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2052                                            PPCII::MO_PIC_FLAG);
2053     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2054   }
2055 
2056   SDValue CPIHi =
2057     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2058   SDValue CPILo =
2059     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2060   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2061 }
2062 
2063 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2064   EVT PtrVT = Op.getValueType();
2065   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2066 
2067   // 64-bit SVR4 ABI code is always position-independent.
2068   // The actual address of the GlobalValue is stored in the TOC.
2069   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2070     setUsesTOCBasePtr(DAG);
2071     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2072     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2073   }
2074 
2075   unsigned MOHiFlag, MOLoFlag;
2076   bool IsPIC = isPositionIndependent();
2077   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2078 
2079   if (IsPIC && Subtarget.isSVR4ABI()) {
2080     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2081                                         PPCII::MO_PIC_FLAG);
2082     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2083   }
2084 
2085   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2086   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2087   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2088 }
2089 
2090 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2091                                              SelectionDAG &DAG) const {
2092   EVT PtrVT = Op.getValueType();
2093   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2094   const BlockAddress *BA = BASDN->getBlockAddress();
2095 
2096   // 64-bit SVR4 ABI code is always position-independent.
2097   // The actual BlockAddress is stored in the TOC.
2098   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2099     setUsesTOCBasePtr(DAG);
2100     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2101     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2102   }
2103 
2104   unsigned MOHiFlag, MOLoFlag;
2105   bool IsPIC = isPositionIndependent();
2106   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2107   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2108   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2109   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2110 }
2111 
2112 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2113                                               SelectionDAG &DAG) const {
2114 
2115   // FIXME: TLS addresses currently use medium model code sequences,
2116   // which is the most useful form.  Eventually support for small and
2117   // large models could be added if users need it, at the cost of
2118   // additional complexity.
2119   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2120   if (DAG.getTarget().Options.EmulatedTLS)
2121     return LowerToTLSEmulatedModel(GA, DAG);
2122 
2123   SDLoc dl(GA);
2124   const GlobalValue *GV = GA->getGlobal();
2125   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2126   bool is64bit = Subtarget.isPPC64();
2127   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2128   PICLevel::Level picLevel = M->getPICLevel();
2129 
2130   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2131 
2132   if (Model == TLSModel::LocalExec) {
2133     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2134                                                PPCII::MO_TPREL_HA);
2135     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2136                                                PPCII::MO_TPREL_LO);
2137     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2138                                      is64bit ? MVT::i64 : MVT::i32);
2139     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2140     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2141   }
2142 
2143   if (Model == TLSModel::InitialExec) {
2144     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2145     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2146                                                 PPCII::MO_TLS);
2147     SDValue GOTPtr;
2148     if (is64bit) {
2149       setUsesTOCBasePtr(DAG);
2150       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2151       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2152                            PtrVT, GOTReg, TGA);
2153     } else
2154       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2155     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2156                                    PtrVT, TGA, GOTPtr);
2157     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2158   }
2159 
2160   if (Model == TLSModel::GeneralDynamic) {
2161     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2162     SDValue GOTPtr;
2163     if (is64bit) {
2164       setUsesTOCBasePtr(DAG);
2165       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2166       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2167                                    GOTReg, TGA);
2168     } else {
2169       if (picLevel == PICLevel::SmallPIC)
2170         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2171       else
2172         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2173     }
2174     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2175                        GOTPtr, TGA, TGA);
2176   }
2177 
2178   if (Model == TLSModel::LocalDynamic) {
2179     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2180     SDValue GOTPtr;
2181     if (is64bit) {
2182       setUsesTOCBasePtr(DAG);
2183       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2184       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2185                            GOTReg, TGA);
2186     } else {
2187       if (picLevel == PICLevel::SmallPIC)
2188         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2189       else
2190         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2191     }
2192     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2193                                   PtrVT, GOTPtr, TGA, TGA);
2194     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2195                                       PtrVT, TLSAddr, TGA);
2196     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2197   }
2198 
2199   llvm_unreachable("Unknown TLS model!");
2200 }
2201 
2202 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2203                                               SelectionDAG &DAG) const {
2204   EVT PtrVT = Op.getValueType();
2205   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2206   SDLoc DL(GSDN);
2207   const GlobalValue *GV = GSDN->getGlobal();
2208 
2209   // 64-bit SVR4 ABI code is always position-independent.
2210   // The actual address of the GlobalValue is stored in the TOC.
2211   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2212     setUsesTOCBasePtr(DAG);
2213     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2214     return getTOCEntry(DAG, DL, true, GA);
2215   }
2216 
2217   unsigned MOHiFlag, MOLoFlag;
2218   bool IsPIC = isPositionIndependent();
2219   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2220 
2221   if (IsPIC && Subtarget.isSVR4ABI()) {
2222     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2223                                             GSDN->getOffset(),
2224                                             PPCII::MO_PIC_FLAG);
2225     return getTOCEntry(DAG, DL, false, GA);
2226   }
2227 
2228   SDValue GAHi =
2229     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2230   SDValue GALo =
2231     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2232 
2233   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2234 
2235   // If the global reference is actually to a non-lazy-pointer, we have to do an
2236   // extra load to get the address of the global.
2237   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2238     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2239                       false, false, false, 0);
2240   return Ptr;
2241 }
2242 
2243 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2244   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2245   SDLoc dl(Op);
2246 
2247   if (Op.getValueType() == MVT::v2i64) {
2248     // When the operands themselves are v2i64 values, we need to do something
2249     // special because VSX has no underlying comparison operations for these.
2250     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2251       // Equality can be handled by casting to the legal type for Altivec
2252       // comparisons, everything else needs to be expanded.
2253       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2254         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2255                  DAG.getSetCC(dl, MVT::v4i32,
2256                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2257                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2258                    CC));
2259       }
2260 
2261       return SDValue();
2262     }
2263 
2264     // We handle most of these in the usual way.
2265     return Op;
2266   }
2267 
2268   // If we're comparing for equality to zero, expose the fact that this is
2269   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2270   // fold the new nodes.
2271   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2272     if (C->isNullValue() && CC == ISD::SETEQ) {
2273       EVT VT = Op.getOperand(0).getValueType();
2274       SDValue Zext = Op.getOperand(0);
2275       if (VT.bitsLT(MVT::i32)) {
2276         VT = MVT::i32;
2277         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2278       }
2279       unsigned Log2b = Log2_32(VT.getSizeInBits());
2280       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2281       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2282                                 DAG.getConstant(Log2b, dl, MVT::i32));
2283       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2284     }
2285     // Leave comparisons against 0 and -1 alone for now, since they're usually
2286     // optimized.  FIXME: revisit this when we can custom lower all setcc
2287     // optimizations.
2288     if (C->isAllOnesValue() || C->isNullValue())
2289       return SDValue();
2290   }
2291 
2292   // If we have an integer seteq/setne, turn it into a compare against zero
2293   // by xor'ing the rhs with the lhs, which is faster than setting a
2294   // condition register, reading it back out, and masking the correct bit.  The
2295   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2296   // the result to other bit-twiddling opportunities.
2297   EVT LHSVT = Op.getOperand(0).getValueType();
2298   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2299     EVT VT = Op.getValueType();
2300     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2301                                 Op.getOperand(1));
2302     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2303   }
2304   return SDValue();
2305 }
2306 
2307 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2308                                       const PPCSubtarget &Subtarget) const {
2309   SDNode *Node = Op.getNode();
2310   EVT VT = Node->getValueType(0);
2311   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2312   SDValue InChain = Node->getOperand(0);
2313   SDValue VAListPtr = Node->getOperand(1);
2314   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2315   SDLoc dl(Node);
2316 
2317   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2318 
2319   // gpr_index
2320   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2321                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2322                                     false, false, false, 0);
2323   InChain = GprIndex.getValue(1);
2324 
2325   if (VT == MVT::i64) {
2326     // Check if GprIndex is even
2327     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2328                                  DAG.getConstant(1, dl, MVT::i32));
2329     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2330                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2331     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2332                                           DAG.getConstant(1, dl, MVT::i32));
2333     // Align GprIndex to be even if it isn't
2334     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2335                            GprIndex);
2336   }
2337 
2338   // fpr index is 1 byte after gpr
2339   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2340                                DAG.getConstant(1, dl, MVT::i32));
2341 
2342   // fpr
2343   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2344                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2345                                     false, false, false, 0);
2346   InChain = FprIndex.getValue(1);
2347 
2348   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2349                                        DAG.getConstant(8, dl, MVT::i32));
2350 
2351   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2352                                         DAG.getConstant(4, dl, MVT::i32));
2353 
2354   // areas
2355   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2356                                      MachinePointerInfo(), false, false,
2357                                      false, 0);
2358   InChain = OverflowArea.getValue(1);
2359 
2360   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2361                                     MachinePointerInfo(), false, false,
2362                                     false, 0);
2363   InChain = RegSaveArea.getValue(1);
2364 
2365   // select overflow_area if index > 8
2366   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2367                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2368 
2369   // adjustment constant gpr_index * 4/8
2370   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2371                                     VT.isInteger() ? GprIndex : FprIndex,
2372                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2373                                                     MVT::i32));
2374 
2375   // OurReg = RegSaveArea + RegConstant
2376   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2377                                RegConstant);
2378 
2379   // Floating types are 32 bytes into RegSaveArea
2380   if (VT.isFloatingPoint())
2381     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2382                          DAG.getConstant(32, dl, MVT::i32));
2383 
2384   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2385   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2386                                    VT.isInteger() ? GprIndex : FprIndex,
2387                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2388                                                    MVT::i32));
2389 
2390   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2391                               VT.isInteger() ? VAListPtr : FprPtr,
2392                               MachinePointerInfo(SV),
2393                               MVT::i8, false, false, 0);
2394 
2395   // determine if we should load from reg_save_area or overflow_area
2396   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2397 
2398   // increase overflow_area by 4/8 if gpr/fpr > 8
2399   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2400                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2401                                           dl, MVT::i32));
2402 
2403   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2404                              OverflowAreaPlusN);
2405 
2406   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2407                               OverflowAreaPtr,
2408                               MachinePointerInfo(),
2409                               MVT::i32, false, false, 0);
2410 
2411   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2412                      false, false, false, 0);
2413 }
2414 
2415 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2416                                        const PPCSubtarget &Subtarget) const {
2417   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2418 
2419   // We have to copy the entire va_list struct:
2420   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2421   return DAG.getMemcpy(Op.getOperand(0), Op,
2422                        Op.getOperand(1), Op.getOperand(2),
2423                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2424                        false, MachinePointerInfo(), MachinePointerInfo());
2425 }
2426 
2427 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2428                                                   SelectionDAG &DAG) const {
2429   return Op.getOperand(0);
2430 }
2431 
2432 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2433                                                 SelectionDAG &DAG) const {
2434   SDValue Chain = Op.getOperand(0);
2435   SDValue Trmp = Op.getOperand(1); // trampoline
2436   SDValue FPtr = Op.getOperand(2); // nested function
2437   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2438   SDLoc dl(Op);
2439 
2440   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2441   bool isPPC64 = (PtrVT == MVT::i64);
2442   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2443 
2444   TargetLowering::ArgListTy Args;
2445   TargetLowering::ArgListEntry Entry;
2446 
2447   Entry.Ty = IntPtrTy;
2448   Entry.Node = Trmp; Args.push_back(Entry);
2449 
2450   // TrampSize == (isPPC64 ? 48 : 40);
2451   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2452                                isPPC64 ? MVT::i64 : MVT::i32);
2453   Args.push_back(Entry);
2454 
2455   Entry.Node = FPtr; Args.push_back(Entry);
2456   Entry.Node = Nest; Args.push_back(Entry);
2457 
2458   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2459   TargetLowering::CallLoweringInfo CLI(DAG);
2460   CLI.setDebugLoc(dl).setChain(Chain)
2461     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2462                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2463                std::move(Args));
2464 
2465   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2466   return CallResult.second;
2467 }
2468 
2469 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2470                                         const PPCSubtarget &Subtarget) const {
2471   MachineFunction &MF = DAG.getMachineFunction();
2472   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2473 
2474   SDLoc dl(Op);
2475 
2476   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2477     // vastart just stores the address of the VarArgsFrameIndex slot into the
2478     // memory location argument.
2479     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2480     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2481     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2482     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2483                         MachinePointerInfo(SV),
2484                         false, false, 0);
2485   }
2486 
2487   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2488   // We suppose the given va_list is already allocated.
2489   //
2490   // typedef struct {
2491   //  char gpr;     /* index into the array of 8 GPRs
2492   //                 * stored in the register save area
2493   //                 * gpr=0 corresponds to r3,
2494   //                 * gpr=1 to r4, etc.
2495   //                 */
2496   //  char fpr;     /* index into the array of 8 FPRs
2497   //                 * stored in the register save area
2498   //                 * fpr=0 corresponds to f1,
2499   //                 * fpr=1 to f2, etc.
2500   //                 */
2501   //  char *overflow_arg_area;
2502   //                /* location on stack that holds
2503   //                 * the next overflow argument
2504   //                 */
2505   //  char *reg_save_area;
2506   //               /* where r3:r10 and f1:f8 (if saved)
2507   //                * are stored
2508   //                */
2509   // } va_list[1];
2510 
2511   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2512   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2513 
2514   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2515 
2516   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2517                                             PtrVT);
2518   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2519                                  PtrVT);
2520 
2521   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2522   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2523 
2524   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2525   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2526 
2527   uint64_t FPROffset = 1;
2528   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2529 
2530   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2531 
2532   // Store first byte : number of int regs
2533   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2534                                          Op.getOperand(1),
2535                                          MachinePointerInfo(SV),
2536                                          MVT::i8, false, false, 0);
2537   uint64_t nextOffset = FPROffset;
2538   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2539                                   ConstFPROffset);
2540 
2541   // Store second byte : number of float regs
2542   SDValue secondStore =
2543     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2544                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2545                       false, false, 0);
2546   nextOffset += StackOffset;
2547   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2548 
2549   // Store second word : arguments given on stack
2550   SDValue thirdStore =
2551     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2552                  MachinePointerInfo(SV, nextOffset),
2553                  false, false, 0);
2554   nextOffset += FrameOffset;
2555   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2556 
2557   // Store third word : arguments given in registers
2558   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2559                       MachinePointerInfo(SV, nextOffset),
2560                       false, false, 0);
2561 
2562 }
2563 
2564 #include "PPCGenCallingConv.inc"
2565 
2566 // Function whose sole purpose is to kill compiler warnings
2567 // stemming from unused functions included from PPCGenCallingConv.inc.
2568 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2569   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2570 }
2571 
2572 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2573                                       CCValAssign::LocInfo &LocInfo,
2574                                       ISD::ArgFlagsTy &ArgFlags,
2575                                       CCState &State) {
2576   return true;
2577 }
2578 
2579 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2580                                              MVT &LocVT,
2581                                              CCValAssign::LocInfo &LocInfo,
2582                                              ISD::ArgFlagsTy &ArgFlags,
2583                                              CCState &State) {
2584   static const MCPhysReg ArgRegs[] = {
2585     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2586     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2587   };
2588   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2589 
2590   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2591 
2592   // Skip one register if the first unallocated register has an even register
2593   // number and there are still argument registers available which have not been
2594   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2595   // need to skip a register if RegNum is odd.
2596   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2597     State.AllocateReg(ArgRegs[RegNum]);
2598   }
2599 
2600   // Always return false here, as this function only makes sure that the first
2601   // unallocated register has an odd register number and does not actually
2602   // allocate a register for the current argument.
2603   return false;
2604 }
2605 
2606 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2607                                                MVT &LocVT,
2608                                                CCValAssign::LocInfo &LocInfo,
2609                                                ISD::ArgFlagsTy &ArgFlags,
2610                                                CCState &State) {
2611   static const MCPhysReg ArgRegs[] = {
2612     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2613     PPC::F8
2614   };
2615 
2616   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2617 
2618   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2619 
2620   // If there is only one Floating-point register left we need to put both f64
2621   // values of a split ppc_fp128 value on the stack.
2622   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2623     State.AllocateReg(ArgRegs[RegNum]);
2624   }
2625 
2626   // Always return false here, as this function only makes sure that the two f64
2627   // values a ppc_fp128 value is split into are both passed in registers or both
2628   // passed on the stack and does not actually allocate a register for the
2629   // current argument.
2630   return false;
2631 }
2632 
2633 /// FPR - The set of FP registers that should be allocated for arguments,
2634 /// on Darwin.
2635 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2636                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2637                                 PPC::F11, PPC::F12, PPC::F13};
2638 
2639 /// QFPR - The set of QPX registers that should be allocated for arguments.
2640 static const MCPhysReg QFPR[] = {
2641     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2642     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2643 
2644 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2645 /// the stack.
2646 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2647                                        unsigned PtrByteSize) {
2648   unsigned ArgSize = ArgVT.getStoreSize();
2649   if (Flags.isByVal())
2650     ArgSize = Flags.getByValSize();
2651 
2652   // Round up to multiples of the pointer size, except for array members,
2653   // which are always packed.
2654   if (!Flags.isInConsecutiveRegs())
2655     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2656 
2657   return ArgSize;
2658 }
2659 
2660 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2661 /// on the stack.
2662 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2663                                             ISD::ArgFlagsTy Flags,
2664                                             unsigned PtrByteSize) {
2665   unsigned Align = PtrByteSize;
2666 
2667   // Altivec parameters are padded to a 16 byte boundary.
2668   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2669       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2670       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2671       ArgVT == MVT::v1i128)
2672     Align = 16;
2673   // QPX vector types stored in double-precision are padded to a 32 byte
2674   // boundary.
2675   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2676     Align = 32;
2677 
2678   // ByVal parameters are aligned as requested.
2679   if (Flags.isByVal()) {
2680     unsigned BVAlign = Flags.getByValAlign();
2681     if (BVAlign > PtrByteSize) {
2682       if (BVAlign % PtrByteSize != 0)
2683           llvm_unreachable(
2684             "ByVal alignment is not a multiple of the pointer size");
2685 
2686       Align = BVAlign;
2687     }
2688   }
2689 
2690   // Array members are always packed to their original alignment.
2691   if (Flags.isInConsecutiveRegs()) {
2692     // If the array member was split into multiple registers, the first
2693     // needs to be aligned to the size of the full type.  (Except for
2694     // ppcf128, which is only aligned as its f64 components.)
2695     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2696       Align = OrigVT.getStoreSize();
2697     else
2698       Align = ArgVT.getStoreSize();
2699   }
2700 
2701   return Align;
2702 }
2703 
2704 /// CalculateStackSlotUsed - Return whether this argument will use its
2705 /// stack slot (instead of being passed in registers).  ArgOffset,
2706 /// AvailableFPRs, and AvailableVRs must hold the current argument
2707 /// position, and will be updated to account for this argument.
2708 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2709                                    ISD::ArgFlagsTy Flags,
2710                                    unsigned PtrByteSize,
2711                                    unsigned LinkageSize,
2712                                    unsigned ParamAreaSize,
2713                                    unsigned &ArgOffset,
2714                                    unsigned &AvailableFPRs,
2715                                    unsigned &AvailableVRs, bool HasQPX) {
2716   bool UseMemory = false;
2717 
2718   // Respect alignment of argument on the stack.
2719   unsigned Align =
2720     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2721   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2722   // If there's no space left in the argument save area, we must
2723   // use memory (this check also catches zero-sized arguments).
2724   if (ArgOffset >= LinkageSize + ParamAreaSize)
2725     UseMemory = true;
2726 
2727   // Allocate argument on the stack.
2728   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2729   if (Flags.isInConsecutiveRegsLast())
2730     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2731   // If we overran the argument save area, we must use memory
2732   // (this check catches arguments passed partially in memory)
2733   if (ArgOffset > LinkageSize + ParamAreaSize)
2734     UseMemory = true;
2735 
2736   // However, if the argument is actually passed in an FPR or a VR,
2737   // we don't use memory after all.
2738   if (!Flags.isByVal()) {
2739     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2740         // QPX registers overlap with the scalar FP registers.
2741         (HasQPX && (ArgVT == MVT::v4f32 ||
2742                     ArgVT == MVT::v4f64 ||
2743                     ArgVT == MVT::v4i1)))
2744       if (AvailableFPRs > 0) {
2745         --AvailableFPRs;
2746         return false;
2747       }
2748     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2749         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2750         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2751         ArgVT == MVT::v1i128)
2752       if (AvailableVRs > 0) {
2753         --AvailableVRs;
2754         return false;
2755       }
2756   }
2757 
2758   return UseMemory;
2759 }
2760 
2761 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2762 /// ensure minimum alignment required for target.
2763 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2764                                      unsigned NumBytes) {
2765   unsigned TargetAlign = Lowering->getStackAlignment();
2766   unsigned AlignMask = TargetAlign - 1;
2767   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2768   return NumBytes;
2769 }
2770 
2771 SDValue PPCTargetLowering::LowerFormalArguments(
2772     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2773     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2774     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2775   if (Subtarget.isSVR4ABI()) {
2776     if (Subtarget.isPPC64())
2777       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2778                                          dl, DAG, InVals);
2779     else
2780       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2781                                          dl, DAG, InVals);
2782   } else {
2783     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2784                                        dl, DAG, InVals);
2785   }
2786 }
2787 
2788 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
2789     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2790     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2791     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2792 
2793   // 32-bit SVR4 ABI Stack Frame Layout:
2794   //              +-----------------------------------+
2795   //        +-->  |            Back chain             |
2796   //        |     +-----------------------------------+
2797   //        |     | Floating-point register save area |
2798   //        |     +-----------------------------------+
2799   //        |     |    General register save area     |
2800   //        |     +-----------------------------------+
2801   //        |     |          CR save word             |
2802   //        |     +-----------------------------------+
2803   //        |     |         VRSAVE save word          |
2804   //        |     +-----------------------------------+
2805   //        |     |         Alignment padding         |
2806   //        |     +-----------------------------------+
2807   //        |     |     Vector register save area     |
2808   //        |     +-----------------------------------+
2809   //        |     |       Local variable space        |
2810   //        |     +-----------------------------------+
2811   //        |     |        Parameter list area        |
2812   //        |     +-----------------------------------+
2813   //        |     |           LR save word            |
2814   //        |     +-----------------------------------+
2815   // SP-->  +---  |            Back chain             |
2816   //              +-----------------------------------+
2817   //
2818   // Specifications:
2819   //   System V Application Binary Interface PowerPC Processor Supplement
2820   //   AltiVec Technology Programming Interface Manual
2821 
2822   MachineFunction &MF = DAG.getMachineFunction();
2823   MachineFrameInfo *MFI = MF.getFrameInfo();
2824   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2825 
2826   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2827   // Potential tail calls could cause overwriting of argument stack slots.
2828   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2829                        (CallConv == CallingConv::Fast));
2830   unsigned PtrByteSize = 4;
2831 
2832   // Assign locations to all of the incoming arguments.
2833   SmallVector<CCValAssign, 16> ArgLocs;
2834   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2835                  *DAG.getContext());
2836 
2837   // Reserve space for the linkage area on the stack.
2838   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2839   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2840   if (Subtarget.useSoftFloat())
2841     CCInfo.PreAnalyzeFormalArguments(Ins);
2842 
2843   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2844   CCInfo.clearWasPPCF128();
2845 
2846   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2847     CCValAssign &VA = ArgLocs[i];
2848 
2849     // Arguments stored in registers.
2850     if (VA.isRegLoc()) {
2851       const TargetRegisterClass *RC;
2852       EVT ValVT = VA.getValVT();
2853 
2854       switch (ValVT.getSimpleVT().SimpleTy) {
2855         default:
2856           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2857         case MVT::i1:
2858         case MVT::i32:
2859           RC = &PPC::GPRCRegClass;
2860           break;
2861         case MVT::f32:
2862           if (Subtarget.hasP8Vector())
2863             RC = &PPC::VSSRCRegClass;
2864           else
2865             RC = &PPC::F4RCRegClass;
2866           break;
2867         case MVT::f64:
2868           if (Subtarget.hasVSX())
2869             RC = &PPC::VSFRCRegClass;
2870           else
2871             RC = &PPC::F8RCRegClass;
2872           break;
2873         case MVT::v16i8:
2874         case MVT::v8i16:
2875         case MVT::v4i32:
2876           RC = &PPC::VRRCRegClass;
2877           break;
2878         case MVT::v4f32:
2879           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2880           break;
2881         case MVT::v2f64:
2882         case MVT::v2i64:
2883           RC = &PPC::VSHRCRegClass;
2884           break;
2885         case MVT::v4f64:
2886           RC = &PPC::QFRCRegClass;
2887           break;
2888         case MVT::v4i1:
2889           RC = &PPC::QBRCRegClass;
2890           break;
2891       }
2892 
2893       // Transform the arguments stored in physical registers into virtual ones.
2894       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2895       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2896                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2897 
2898       if (ValVT == MVT::i1)
2899         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2900 
2901       InVals.push_back(ArgValue);
2902     } else {
2903       // Argument stored in memory.
2904       assert(VA.isMemLoc());
2905 
2906       unsigned ArgSize = VA.getLocVT().getStoreSize();
2907       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2908                                       isImmutable);
2909 
2910       // Create load nodes to retrieve arguments from the stack.
2911       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2912       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2913                                    MachinePointerInfo(),
2914                                    false, false, false, 0));
2915     }
2916   }
2917 
2918   // Assign locations to all of the incoming aggregate by value arguments.
2919   // Aggregates passed by value are stored in the local variable space of the
2920   // caller's stack frame, right above the parameter list area.
2921   SmallVector<CCValAssign, 16> ByValArgLocs;
2922   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2923                       ByValArgLocs, *DAG.getContext());
2924 
2925   // Reserve stack space for the allocations in CCInfo.
2926   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2927 
2928   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2929 
2930   // Area that is at least reserved in the caller of this function.
2931   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2932   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2933 
2934   // Set the size that is at least reserved in caller of this function.  Tail
2935   // call optimized function's reserved stack space needs to be aligned so that
2936   // taking the difference between two stack areas will result in an aligned
2937   // stack.
2938   MinReservedArea =
2939       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2940   FuncInfo->setMinReservedArea(MinReservedArea);
2941 
2942   SmallVector<SDValue, 8> MemOps;
2943 
2944   // If the function takes variable number of arguments, make a frame index for
2945   // the start of the first vararg value... for expansion of llvm.va_start.
2946   if (isVarArg) {
2947     static const MCPhysReg GPArgRegs[] = {
2948       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2949       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2950     };
2951     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2952 
2953     static const MCPhysReg FPArgRegs[] = {
2954       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2955       PPC::F8
2956     };
2957     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2958 
2959     if (Subtarget.useSoftFloat())
2960        NumFPArgRegs = 0;
2961 
2962     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2963     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2964 
2965     // Make room for NumGPArgRegs and NumFPArgRegs.
2966     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2967                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2968 
2969     FuncInfo->setVarArgsStackOffset(
2970       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2971                              CCInfo.getNextStackOffset(), true));
2972 
2973     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2974     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2975 
2976     // The fixed integer arguments of a variadic function are stored to the
2977     // VarArgsFrameIndex on the stack so that they may be loaded by
2978     // dereferencing the result of va_next.
2979     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2980       // Get an existing live-in vreg, or add a new one.
2981       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2982       if (!VReg)
2983         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2984 
2985       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2986       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2987                                    MachinePointerInfo(), false, false, 0);
2988       MemOps.push_back(Store);
2989       // Increment the address by four for the next argument to store
2990       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
2991       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2992     }
2993 
2994     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2995     // is set.
2996     // The double arguments are stored to the VarArgsFrameIndex
2997     // on the stack.
2998     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2999       // Get an existing live-in vreg, or add a new one.
3000       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3001       if (!VReg)
3002         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3003 
3004       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3005       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3006                                    MachinePointerInfo(), false, false, 0);
3007       MemOps.push_back(Store);
3008       // Increment the address by eight for the next argument to store
3009       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3010                                          PtrVT);
3011       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3012     }
3013   }
3014 
3015   if (!MemOps.empty())
3016     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3017 
3018   return Chain;
3019 }
3020 
3021 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3022 // value to MVT::i64 and then truncate to the correct register size.
3023 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3024                                              EVT ObjectVT, SelectionDAG &DAG,
3025                                              SDValue ArgVal,
3026                                              const SDLoc &dl) const {
3027   if (Flags.isSExt())
3028     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3029                          DAG.getValueType(ObjectVT));
3030   else if (Flags.isZExt())
3031     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3032                          DAG.getValueType(ObjectVT));
3033 
3034   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3035 }
3036 
3037 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3038     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3039     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3040     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3041   // TODO: add description of PPC stack frame format, or at least some docs.
3042   //
3043   bool isELFv2ABI = Subtarget.isELFv2ABI();
3044   bool isLittleEndian = Subtarget.isLittleEndian();
3045   MachineFunction &MF = DAG.getMachineFunction();
3046   MachineFrameInfo *MFI = MF.getFrameInfo();
3047   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3048 
3049   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3050          "fastcc not supported on varargs functions");
3051 
3052   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3053   // Potential tail calls could cause overwriting of argument stack slots.
3054   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3055                        (CallConv == CallingConv::Fast));
3056   unsigned PtrByteSize = 8;
3057   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3058 
3059   static const MCPhysReg GPR[] = {
3060     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3061     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3062   };
3063   static const MCPhysReg VR[] = {
3064     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3065     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3066   };
3067   static const MCPhysReg VSRH[] = {
3068     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3069     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3070   };
3071 
3072   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3073   const unsigned Num_FPR_Regs = 13;
3074   const unsigned Num_VR_Regs  = array_lengthof(VR);
3075   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3076 
3077   // Do a first pass over the arguments to determine whether the ABI
3078   // guarantees that our caller has allocated the parameter save area
3079   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3080   // in the ELFv2 ABI, it is true if this is a vararg function or if
3081   // any parameter is located in a stack slot.
3082 
3083   bool HasParameterArea = !isELFv2ABI || isVarArg;
3084   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3085   unsigned NumBytes = LinkageSize;
3086   unsigned AvailableFPRs = Num_FPR_Regs;
3087   unsigned AvailableVRs = Num_VR_Regs;
3088   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3089     if (Ins[i].Flags.isNest())
3090       continue;
3091 
3092     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3093                                PtrByteSize, LinkageSize, ParamAreaSize,
3094                                NumBytes, AvailableFPRs, AvailableVRs,
3095                                Subtarget.hasQPX()))
3096       HasParameterArea = true;
3097   }
3098 
3099   // Add DAG nodes to load the arguments or copy them out of registers.  On
3100   // entry to a function on PPC, the arguments start after the linkage area,
3101   // although the first ones are often in registers.
3102 
3103   unsigned ArgOffset = LinkageSize;
3104   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3105   unsigned &QFPR_idx = FPR_idx;
3106   SmallVector<SDValue, 8> MemOps;
3107   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3108   unsigned CurArgIdx = 0;
3109   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3110     SDValue ArgVal;
3111     bool needsLoad = false;
3112     EVT ObjectVT = Ins[ArgNo].VT;
3113     EVT OrigVT = Ins[ArgNo].ArgVT;
3114     unsigned ObjSize = ObjectVT.getStoreSize();
3115     unsigned ArgSize = ObjSize;
3116     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3117     if (Ins[ArgNo].isOrigArg()) {
3118       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3119       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3120     }
3121     // We re-align the argument offset for each argument, except when using the
3122     // fast calling convention, when we need to make sure we do that only when
3123     // we'll actually use a stack slot.
3124     unsigned CurArgOffset, Align;
3125     auto ComputeArgOffset = [&]() {
3126       /* Respect alignment of argument on the stack.  */
3127       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3128       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3129       CurArgOffset = ArgOffset;
3130     };
3131 
3132     if (CallConv != CallingConv::Fast) {
3133       ComputeArgOffset();
3134 
3135       /* Compute GPR index associated with argument offset.  */
3136       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3137       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3138     }
3139 
3140     // FIXME the codegen can be much improved in some cases.
3141     // We do not have to keep everything in memory.
3142     if (Flags.isByVal()) {
3143       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3144 
3145       if (CallConv == CallingConv::Fast)
3146         ComputeArgOffset();
3147 
3148       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3149       ObjSize = Flags.getByValSize();
3150       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3151       // Empty aggregate parameters do not take up registers.  Examples:
3152       //   struct { } a;
3153       //   union  { } b;
3154       //   int c[0];
3155       // etc.  However, we have to provide a place-holder in InVals, so
3156       // pretend we have an 8-byte item at the current address for that
3157       // purpose.
3158       if (!ObjSize) {
3159         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3160         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3161         InVals.push_back(FIN);
3162         continue;
3163       }
3164 
3165       // Create a stack object covering all stack doublewords occupied
3166       // by the argument.  If the argument is (fully or partially) on
3167       // the stack, or if the argument is fully in registers but the
3168       // caller has allocated the parameter save anyway, we can refer
3169       // directly to the caller's stack frame.  Otherwise, create a
3170       // local copy in our own frame.
3171       int FI;
3172       if (HasParameterArea ||
3173           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3174         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3175       else
3176         FI = MFI->CreateStackObject(ArgSize, Align, false);
3177       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3178 
3179       // Handle aggregates smaller than 8 bytes.
3180       if (ObjSize < PtrByteSize) {
3181         // The value of the object is its address, which differs from the
3182         // address of the enclosing doubleword on big-endian systems.
3183         SDValue Arg = FIN;
3184         if (!isLittleEndian) {
3185           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3186           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3187         }
3188         InVals.push_back(Arg);
3189 
3190         if (GPR_idx != Num_GPR_Regs) {
3191           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3192           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3193           SDValue Store;
3194 
3195           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3196             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3197                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3198             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3199                                       MachinePointerInfo(&*FuncArg), ObjType,
3200                                       false, false, 0);
3201           } else {
3202             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3203             // store the whole register as-is to the parameter save area
3204             // slot.
3205             Store =
3206                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3207                              MachinePointerInfo(&*FuncArg), false, false, 0);
3208           }
3209 
3210           MemOps.push_back(Store);
3211         }
3212         // Whether we copied from a register or not, advance the offset
3213         // into the parameter save area by a full doubleword.
3214         ArgOffset += PtrByteSize;
3215         continue;
3216       }
3217 
3218       // The value of the object is its address, which is the address of
3219       // its first stack doubleword.
3220       InVals.push_back(FIN);
3221 
3222       // Store whatever pieces of the object are in registers to memory.
3223       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3224         if (GPR_idx == Num_GPR_Regs)
3225           break;
3226 
3227         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3228         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3229         SDValue Addr = FIN;
3230         if (j) {
3231           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3232           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3233         }
3234         SDValue Store =
3235             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3236                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3237         MemOps.push_back(Store);
3238         ++GPR_idx;
3239       }
3240       ArgOffset += ArgSize;
3241       continue;
3242     }
3243 
3244     switch (ObjectVT.getSimpleVT().SimpleTy) {
3245     default: llvm_unreachable("Unhandled argument type!");
3246     case MVT::i1:
3247     case MVT::i32:
3248     case MVT::i64:
3249       if (Flags.isNest()) {
3250         // The 'nest' parameter, if any, is passed in R11.
3251         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3252         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3253 
3254         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3255           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3256 
3257         break;
3258       }
3259 
3260       // These can be scalar arguments or elements of an integer array type
3261       // passed directly.  Clang may use those instead of "byval" aggregate
3262       // types to avoid forcing arguments to memory unnecessarily.
3263       if (GPR_idx != Num_GPR_Regs) {
3264         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3265         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3266 
3267         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3268           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3269           // value to MVT::i64 and then truncate to the correct register size.
3270           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3271       } else {
3272         if (CallConv == CallingConv::Fast)
3273           ComputeArgOffset();
3274 
3275         needsLoad = true;
3276         ArgSize = PtrByteSize;
3277       }
3278       if (CallConv != CallingConv::Fast || needsLoad)
3279         ArgOffset += 8;
3280       break;
3281 
3282     case MVT::f32:
3283     case MVT::f64:
3284       // These can be scalar arguments or elements of a float array type
3285       // passed directly.  The latter are used to implement ELFv2 homogenous
3286       // float aggregates.
3287       if (FPR_idx != Num_FPR_Regs) {
3288         unsigned VReg;
3289 
3290         if (ObjectVT == MVT::f32)
3291           VReg = MF.addLiveIn(FPR[FPR_idx],
3292                               Subtarget.hasP8Vector()
3293                                   ? &PPC::VSSRCRegClass
3294                                   : &PPC::F4RCRegClass);
3295         else
3296           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3297                                                 ? &PPC::VSFRCRegClass
3298                                                 : &PPC::F8RCRegClass);
3299 
3300         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3301         ++FPR_idx;
3302       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3303         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3304         // once we support fp <-> gpr moves.
3305 
3306         // This can only ever happen in the presence of f32 array types,
3307         // since otherwise we never run out of FPRs before running out
3308         // of GPRs.
3309         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3310         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3311 
3312         if (ObjectVT == MVT::f32) {
3313           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3314             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3315                                  DAG.getConstant(32, dl, MVT::i32));
3316           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3317         }
3318 
3319         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3320       } else {
3321         if (CallConv == CallingConv::Fast)
3322           ComputeArgOffset();
3323 
3324         needsLoad = true;
3325       }
3326 
3327       // When passing an array of floats, the array occupies consecutive
3328       // space in the argument area; only round up to the next doubleword
3329       // at the end of the array.  Otherwise, each float takes 8 bytes.
3330       if (CallConv != CallingConv::Fast || needsLoad) {
3331         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3332         ArgOffset += ArgSize;
3333         if (Flags.isInConsecutiveRegsLast())
3334           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3335       }
3336       break;
3337     case MVT::v4f32:
3338     case MVT::v4i32:
3339     case MVT::v8i16:
3340     case MVT::v16i8:
3341     case MVT::v2f64:
3342     case MVT::v2i64:
3343     case MVT::v1i128:
3344       if (!Subtarget.hasQPX()) {
3345       // These can be scalar arguments or elements of a vector array type
3346       // passed directly.  The latter are used to implement ELFv2 homogenous
3347       // vector aggregates.
3348       if (VR_idx != Num_VR_Regs) {
3349         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3350                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3351                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3352         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3353         ++VR_idx;
3354       } else {
3355         if (CallConv == CallingConv::Fast)
3356           ComputeArgOffset();
3357 
3358         needsLoad = true;
3359       }
3360       if (CallConv != CallingConv::Fast || needsLoad)
3361         ArgOffset += 16;
3362       break;
3363       } // not QPX
3364 
3365       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3366              "Invalid QPX parameter type");
3367       /* fall through */
3368 
3369     case MVT::v4f64:
3370     case MVT::v4i1:
3371       // QPX vectors are treated like their scalar floating-point subregisters
3372       // (except that they're larger).
3373       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3374       if (QFPR_idx != Num_QFPR_Regs) {
3375         const TargetRegisterClass *RC;
3376         switch (ObjectVT.getSimpleVT().SimpleTy) {
3377         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3378         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3379         default:         RC = &PPC::QBRCRegClass; break;
3380         }
3381 
3382         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3383         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3384         ++QFPR_idx;
3385       } else {
3386         if (CallConv == CallingConv::Fast)
3387           ComputeArgOffset();
3388         needsLoad = true;
3389       }
3390       if (CallConv != CallingConv::Fast || needsLoad)
3391         ArgOffset += Sz;
3392       break;
3393     }
3394 
3395     // We need to load the argument to a virtual register if we determined
3396     // above that we ran out of physical registers of the appropriate type.
3397     if (needsLoad) {
3398       if (ObjSize < ArgSize && !isLittleEndian)
3399         CurArgOffset += ArgSize - ObjSize;
3400       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3401       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3402       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3403                            false, false, false, 0);
3404     }
3405 
3406     InVals.push_back(ArgVal);
3407   }
3408 
3409   // Area that is at least reserved in the caller of this function.
3410   unsigned MinReservedArea;
3411   if (HasParameterArea)
3412     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3413   else
3414     MinReservedArea = LinkageSize;
3415 
3416   // Set the size that is at least reserved in caller of this function.  Tail
3417   // call optimized functions' reserved stack space needs to be aligned so that
3418   // taking the difference between two stack areas will result in an aligned
3419   // stack.
3420   MinReservedArea =
3421       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3422   FuncInfo->setMinReservedArea(MinReservedArea);
3423 
3424   // If the function takes variable number of arguments, make a frame index for
3425   // the start of the first vararg value... for expansion of llvm.va_start.
3426   if (isVarArg) {
3427     int Depth = ArgOffset;
3428 
3429     FuncInfo->setVarArgsFrameIndex(
3430       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3431     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3432 
3433     // If this function is vararg, store any remaining integer argument regs
3434     // to their spots on the stack so that they may be loaded by dereferencing
3435     // the result of va_next.
3436     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3437          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3438       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3439       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3440       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3441                                    MachinePointerInfo(), false, false, 0);
3442       MemOps.push_back(Store);
3443       // Increment the address by four for the next argument to store
3444       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3445       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3446     }
3447   }
3448 
3449   if (!MemOps.empty())
3450     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3451 
3452   return Chain;
3453 }
3454 
3455 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3456     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3457     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3458     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3459   // TODO: add description of PPC stack frame format, or at least some docs.
3460   //
3461   MachineFunction &MF = DAG.getMachineFunction();
3462   MachineFrameInfo *MFI = MF.getFrameInfo();
3463   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3464 
3465   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3466   bool isPPC64 = PtrVT == MVT::i64;
3467   // Potential tail calls could cause overwriting of argument stack slots.
3468   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3469                        (CallConv == CallingConv::Fast));
3470   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3471   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3472   unsigned ArgOffset = LinkageSize;
3473   // Area that is at least reserved in caller of this function.
3474   unsigned MinReservedArea = ArgOffset;
3475 
3476   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3477     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3478     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3479   };
3480   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3481     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3482     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3483   };
3484   static const MCPhysReg VR[] = {
3485     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3486     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3487   };
3488 
3489   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3490   const unsigned Num_FPR_Regs = 13;
3491   const unsigned Num_VR_Regs  = array_lengthof( VR);
3492 
3493   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3494 
3495   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3496 
3497   // In 32-bit non-varargs functions, the stack space for vectors is after the
3498   // stack space for non-vectors.  We do not use this space unless we have
3499   // too many vectors to fit in registers, something that only occurs in
3500   // constructed examples:), but we have to walk the arglist to figure
3501   // that out...for the pathological case, compute VecArgOffset as the
3502   // start of the vector parameter area.  Computing VecArgOffset is the
3503   // entire point of the following loop.
3504   unsigned VecArgOffset = ArgOffset;
3505   if (!isVarArg && !isPPC64) {
3506     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3507          ++ArgNo) {
3508       EVT ObjectVT = Ins[ArgNo].VT;
3509       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3510 
3511       if (Flags.isByVal()) {
3512         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3513         unsigned ObjSize = Flags.getByValSize();
3514         unsigned ArgSize =
3515                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3516         VecArgOffset += ArgSize;
3517         continue;
3518       }
3519 
3520       switch(ObjectVT.getSimpleVT().SimpleTy) {
3521       default: llvm_unreachable("Unhandled argument type!");
3522       case MVT::i1:
3523       case MVT::i32:
3524       case MVT::f32:
3525         VecArgOffset += 4;
3526         break;
3527       case MVT::i64:  // PPC64
3528       case MVT::f64:
3529         // FIXME: We are guaranteed to be !isPPC64 at this point.
3530         // Does MVT::i64 apply?
3531         VecArgOffset += 8;
3532         break;
3533       case MVT::v4f32:
3534       case MVT::v4i32:
3535       case MVT::v8i16:
3536       case MVT::v16i8:
3537         // Nothing to do, we're only looking at Nonvector args here.
3538         break;
3539       }
3540     }
3541   }
3542   // We've found where the vector parameter area in memory is.  Skip the
3543   // first 12 parameters; these don't use that memory.
3544   VecArgOffset = ((VecArgOffset+15)/16)*16;
3545   VecArgOffset += 12*16;
3546 
3547   // Add DAG nodes to load the arguments or copy them out of registers.  On
3548   // entry to a function on PPC, the arguments start after the linkage area,
3549   // although the first ones are often in registers.
3550 
3551   SmallVector<SDValue, 8> MemOps;
3552   unsigned nAltivecParamsAtEnd = 0;
3553   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3554   unsigned CurArgIdx = 0;
3555   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3556     SDValue ArgVal;
3557     bool needsLoad = false;
3558     EVT ObjectVT = Ins[ArgNo].VT;
3559     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3560     unsigned ArgSize = ObjSize;
3561     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3562     if (Ins[ArgNo].isOrigArg()) {
3563       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3564       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3565     }
3566     unsigned CurArgOffset = ArgOffset;
3567 
3568     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3569     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3570         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3571       if (isVarArg || isPPC64) {
3572         MinReservedArea = ((MinReservedArea+15)/16)*16;
3573         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3574                                                   Flags,
3575                                                   PtrByteSize);
3576       } else  nAltivecParamsAtEnd++;
3577     } else
3578       // Calculate min reserved area.
3579       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3580                                                 Flags,
3581                                                 PtrByteSize);
3582 
3583     // FIXME the codegen can be much improved in some cases.
3584     // We do not have to keep everything in memory.
3585     if (Flags.isByVal()) {
3586       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3587 
3588       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3589       ObjSize = Flags.getByValSize();
3590       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3591       // Objects of size 1 and 2 are right justified, everything else is
3592       // left justified.  This means the memory address is adjusted forwards.
3593       if (ObjSize==1 || ObjSize==2) {
3594         CurArgOffset = CurArgOffset + (4 - ObjSize);
3595       }
3596       // The value of the object is its address.
3597       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3598       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3599       InVals.push_back(FIN);
3600       if (ObjSize==1 || ObjSize==2) {
3601         if (GPR_idx != Num_GPR_Regs) {
3602           unsigned VReg;
3603           if (isPPC64)
3604             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3605           else
3606             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3607           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3608           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3609           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3610                                             MachinePointerInfo(&*FuncArg),
3611                                             ObjType, false, false, 0);
3612           MemOps.push_back(Store);
3613           ++GPR_idx;
3614         }
3615 
3616         ArgOffset += PtrByteSize;
3617 
3618         continue;
3619       }
3620       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3621         // Store whatever pieces of the object are in registers
3622         // to memory.  ArgOffset will be the address of the beginning
3623         // of the object.
3624         if (GPR_idx != Num_GPR_Regs) {
3625           unsigned VReg;
3626           if (isPPC64)
3627             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3628           else
3629             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3630           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3631           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3632           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3633           SDValue Store =
3634               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3635                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3636           MemOps.push_back(Store);
3637           ++GPR_idx;
3638           ArgOffset += PtrByteSize;
3639         } else {
3640           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3641           break;
3642         }
3643       }
3644       continue;
3645     }
3646 
3647     switch (ObjectVT.getSimpleVT().SimpleTy) {
3648     default: llvm_unreachable("Unhandled argument type!");
3649     case MVT::i1:
3650     case MVT::i32:
3651       if (!isPPC64) {
3652         if (GPR_idx != Num_GPR_Regs) {
3653           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3654           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3655 
3656           if (ObjectVT == MVT::i1)
3657             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3658 
3659           ++GPR_idx;
3660         } else {
3661           needsLoad = true;
3662           ArgSize = PtrByteSize;
3663         }
3664         // All int arguments reserve stack space in the Darwin ABI.
3665         ArgOffset += PtrByteSize;
3666         break;
3667       }
3668       // FALLTHROUGH
3669     case MVT::i64:  // PPC64
3670       if (GPR_idx != Num_GPR_Regs) {
3671         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3672         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3673 
3674         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3675           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3676           // value to MVT::i64 and then truncate to the correct register size.
3677           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3678 
3679         ++GPR_idx;
3680       } else {
3681         needsLoad = true;
3682         ArgSize = PtrByteSize;
3683       }
3684       // All int arguments reserve stack space in the Darwin ABI.
3685       ArgOffset += 8;
3686       break;
3687 
3688     case MVT::f32:
3689     case MVT::f64:
3690       // Every 4 bytes of argument space consumes one of the GPRs available for
3691       // argument passing.
3692       if (GPR_idx != Num_GPR_Regs) {
3693         ++GPR_idx;
3694         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3695           ++GPR_idx;
3696       }
3697       if (FPR_idx != Num_FPR_Regs) {
3698         unsigned VReg;
3699 
3700         if (ObjectVT == MVT::f32)
3701           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3702         else
3703           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3704 
3705         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3706         ++FPR_idx;
3707       } else {
3708         needsLoad = true;
3709       }
3710 
3711       // All FP arguments reserve stack space in the Darwin ABI.
3712       ArgOffset += isPPC64 ? 8 : ObjSize;
3713       break;
3714     case MVT::v4f32:
3715     case MVT::v4i32:
3716     case MVT::v8i16:
3717     case MVT::v16i8:
3718       // Note that vector arguments in registers don't reserve stack space,
3719       // except in varargs functions.
3720       if (VR_idx != Num_VR_Regs) {
3721         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3722         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3723         if (isVarArg) {
3724           while ((ArgOffset % 16) != 0) {
3725             ArgOffset += PtrByteSize;
3726             if (GPR_idx != Num_GPR_Regs)
3727               GPR_idx++;
3728           }
3729           ArgOffset += 16;
3730           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3731         }
3732         ++VR_idx;
3733       } else {
3734         if (!isVarArg && !isPPC64) {
3735           // Vectors go after all the nonvectors.
3736           CurArgOffset = VecArgOffset;
3737           VecArgOffset += 16;
3738         } else {
3739           // Vectors are aligned.
3740           ArgOffset = ((ArgOffset+15)/16)*16;
3741           CurArgOffset = ArgOffset;
3742           ArgOffset += 16;
3743         }
3744         needsLoad = true;
3745       }
3746       break;
3747     }
3748 
3749     // We need to load the argument to a virtual register if we determined above
3750     // that we ran out of physical registers of the appropriate type.
3751     if (needsLoad) {
3752       int FI = MFI->CreateFixedObject(ObjSize,
3753                                       CurArgOffset + (ArgSize - ObjSize),
3754                                       isImmutable);
3755       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3756       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3757                            false, false, false, 0);
3758     }
3759 
3760     InVals.push_back(ArgVal);
3761   }
3762 
3763   // Allow for Altivec parameters at the end, if needed.
3764   if (nAltivecParamsAtEnd) {
3765     MinReservedArea = ((MinReservedArea+15)/16)*16;
3766     MinReservedArea += 16*nAltivecParamsAtEnd;
3767   }
3768 
3769   // Area that is at least reserved in the caller of this function.
3770   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3771 
3772   // Set the size that is at least reserved in caller of this function.  Tail
3773   // call optimized functions' reserved stack space needs to be aligned so that
3774   // taking the difference between two stack areas will result in an aligned
3775   // stack.
3776   MinReservedArea =
3777       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3778   FuncInfo->setMinReservedArea(MinReservedArea);
3779 
3780   // If the function takes variable number of arguments, make a frame index for
3781   // the start of the first vararg value... for expansion of llvm.va_start.
3782   if (isVarArg) {
3783     int Depth = ArgOffset;
3784 
3785     FuncInfo->setVarArgsFrameIndex(
3786       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3787                              Depth, true));
3788     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3789 
3790     // If this function is vararg, store any remaining integer argument regs
3791     // to their spots on the stack so that they may be loaded by dereferencing
3792     // the result of va_next.
3793     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3794       unsigned VReg;
3795 
3796       if (isPPC64)
3797         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3798       else
3799         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3800 
3801       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3802       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3803                                    MachinePointerInfo(), false, false, 0);
3804       MemOps.push_back(Store);
3805       // Increment the address by four for the next argument to store
3806       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3807       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3808     }
3809   }
3810 
3811   if (!MemOps.empty())
3812     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3813 
3814   return Chain;
3815 }
3816 
3817 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3818 /// adjusted to accommodate the arguments for the tailcall.
3819 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3820                                    unsigned ParamSize) {
3821 
3822   if (!isTailCall) return 0;
3823 
3824   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3825   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3826   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3827   // Remember only if the new adjustement is bigger.
3828   if (SPDiff < FI->getTailCallSPDelta())
3829     FI->setTailCallSPDelta(SPDiff);
3830 
3831   return SPDiff;
3832 }
3833 
3834 static bool isFunctionGlobalAddress(SDValue Callee);
3835 
3836 static bool
3837 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
3838   // If !G, Callee can be an external symbol.
3839   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3840   if (!G) return false;
3841 
3842   const GlobalValue *GV = G->getGlobal();
3843 
3844   if (GV->isDeclaration()) return false;
3845 
3846   switch(GV->getLinkage()) {
3847   default: llvm_unreachable("unknow linkage type");
3848   case GlobalValue::AvailableExternallyLinkage:
3849   case GlobalValue::ExternalWeakLinkage:
3850     return false;
3851 
3852   // Callee with weak linkage is allowed if it has hidden or protected
3853   // visibility
3854   case GlobalValue::LinkOnceAnyLinkage:
3855   case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
3856   case GlobalValue::WeakAnyLinkage:
3857   case GlobalValue::WeakODRLinkage:     // e.g. c++ template instantiation
3858     if (GV->hasDefaultVisibility())
3859       return false;
3860 
3861   case GlobalValue::ExternalLinkage:
3862   case GlobalValue::InternalLinkage:
3863   case GlobalValue::PrivateLinkage:
3864     break;
3865   }
3866 
3867   // With '-fPIC', calling default visiblity function need insert 'nop' after
3868   // function call, no matter that function resides in same module or not, so
3869   // we treat it as in different module.
3870   if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
3871     return false;
3872 
3873   return true;
3874 }
3875 
3876 static bool
3877 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
3878                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
3879   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
3880 
3881   const unsigned PtrByteSize = 8;
3882   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3883 
3884   static const MCPhysReg GPR[] = {
3885     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3886     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3887   };
3888   static const MCPhysReg VR[] = {
3889     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3890     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3891   };
3892 
3893   const unsigned NumGPRs = array_lengthof(GPR);
3894   const unsigned NumFPRs = 13;
3895   const unsigned NumVRs = array_lengthof(VR);
3896   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
3897 
3898   unsigned NumBytes = LinkageSize;
3899   unsigned AvailableFPRs = NumFPRs;
3900   unsigned AvailableVRs = NumVRs;
3901 
3902   for (const ISD::OutputArg& Param : Outs) {
3903     if (Param.Flags.isNest()) continue;
3904 
3905     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
3906                                PtrByteSize, LinkageSize, ParamAreaSize,
3907                                NumBytes, AvailableFPRs, AvailableVRs,
3908                                Subtarget.hasQPX()))
3909       return true;
3910   }
3911   return false;
3912 }
3913 
3914 static bool
3915 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
3916   if (CS->arg_size() != CallerFn->getArgumentList().size())
3917     return false;
3918 
3919   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
3920   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
3921   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
3922 
3923   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
3924     const Value* CalleeArg = *CalleeArgIter;
3925     const Value* CallerArg = &(*CallerArgIter);
3926     if (CalleeArg == CallerArg)
3927       continue;
3928 
3929     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
3930     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
3931     //      }
3932     // 1st argument of callee is undef and has the same type as caller.
3933     if (CalleeArg->getType() == CallerArg->getType() &&
3934         isa<UndefValue>(CalleeArg))
3935       continue;
3936 
3937     return false;
3938   }
3939 
3940   return true;
3941 }
3942 
3943 bool
3944 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
3945                                     SDValue Callee,
3946                                     CallingConv::ID CalleeCC,
3947                                     ImmutableCallSite *CS,
3948                                     bool isVarArg,
3949                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3950                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3951                                     SelectionDAG& DAG) const {
3952   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
3953 
3954   if (DisableSCO && !TailCallOpt) return false;
3955 
3956   // Variadic argument functions are not supported.
3957   if (isVarArg) return false;
3958 
3959   MachineFunction &MF = DAG.getMachineFunction();
3960   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3961 
3962   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
3963   // the same calling convention
3964   if (CallerCC != CalleeCC) return false;
3965 
3966   // SCO support C calling convention
3967   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
3968     return false;
3969 
3970   // Functions containing by val parameters are not supported.
3971   if (std::any_of(Ins.begin(), Ins.end(),
3972                   [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
3973     return false;
3974 
3975   // No TCO/SCO on indirect call because Caller have to restore its TOC
3976   if (!isFunctionGlobalAddress(Callee) &&
3977       !isa<ExternalSymbolSDNode>(Callee))
3978     return false;
3979 
3980   // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
3981   // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
3982   // module.
3983   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
3984   if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
3985     return false;
3986 
3987   // TCO allows altering callee ABI, so we don't have to check further.
3988   if (CalleeCC == CallingConv::Fast && TailCallOpt)
3989     return true;
3990 
3991   if (DisableSCO) return false;
3992 
3993   // If callee use the same argument list that caller is using, then we can
3994   // apply SCO on this case. If it is not, then we need to check if callee needs
3995   // stack for passing arguments.
3996   if (!hasSameArgumentList(MF.getFunction(), CS) &&
3997       needStackSlotPassParameters(Subtarget, Outs)) {
3998     return false;
3999   }
4000 
4001   return true;
4002 }
4003 
4004 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4005 /// for tail call optimization. Targets which want to do tail call
4006 /// optimization should implement this function.
4007 bool
4008 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4009                                                      CallingConv::ID CalleeCC,
4010                                                      bool isVarArg,
4011                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4012                                                      SelectionDAG& DAG) const {
4013   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4014     return false;
4015 
4016   // Variable argument functions are not supported.
4017   if (isVarArg)
4018     return false;
4019 
4020   MachineFunction &MF = DAG.getMachineFunction();
4021   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4022   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4023     // Functions containing by val parameters are not supported.
4024     for (unsigned i = 0; i != Ins.size(); i++) {
4025        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4026        if (Flags.isByVal()) return false;
4027     }
4028 
4029     // Non-PIC/GOT tail calls are supported.
4030     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4031       return true;
4032 
4033     // At the moment we can only do local tail calls (in same module, hidden
4034     // or protected) if we are generating PIC.
4035     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4036       return G->getGlobal()->hasHiddenVisibility()
4037           || G->getGlobal()->hasProtectedVisibility();
4038   }
4039 
4040   return false;
4041 }
4042 
4043 /// isCallCompatibleAddress - Return the immediate to use if the specified
4044 /// 32-bit value is representable in the immediate field of a BxA instruction.
4045 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4046   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4047   if (!C) return nullptr;
4048 
4049   int Addr = C->getZExtValue();
4050   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4051       SignExtend32<26>(Addr) != Addr)
4052     return nullptr;  // Top 6 bits have to be sext of immediate.
4053 
4054   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
4055                          DAG.getTargetLoweringInfo().getPointerTy(
4056                              DAG.getDataLayout())).getNode();
4057 }
4058 
4059 namespace {
4060 
4061 struct TailCallArgumentInfo {
4062   SDValue Arg;
4063   SDValue FrameIdxOp;
4064   int       FrameIdx;
4065 
4066   TailCallArgumentInfo() : FrameIdx(0) {}
4067 };
4068 }
4069 
4070 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4071 static void StoreTailCallArgumentsToStackSlot(
4072     SelectionDAG &DAG, SDValue Chain,
4073     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4074     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4075   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4076     SDValue Arg = TailCallArgs[i].Arg;
4077     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4078     int FI = TailCallArgs[i].FrameIdx;
4079     // Store relative to framepointer.
4080     MemOpChains.push_back(DAG.getStore(
4081         Chain, dl, Arg, FIN,
4082         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
4083         false, 0));
4084   }
4085 }
4086 
4087 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4088 /// the appropriate stack slot for the tail call optimized function call.
4089 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
4090                                              MachineFunction &MF, SDValue Chain,
4091                                              SDValue OldRetAddr, SDValue OldFP,
4092                                              int SPDiff, bool isPPC64,
4093                                              bool isDarwinABI,
4094                                              const SDLoc &dl) {
4095   if (SPDiff) {
4096     // Calculate the new stack slot for the return address.
4097     int SlotSize = isPPC64 ? 8 : 4;
4098     const PPCFrameLowering *FL =
4099         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
4100     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4101     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
4102                                                           NewRetAddrLoc, true);
4103     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4104     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4105     Chain = DAG.getStore(
4106         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4107         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
4108         false, false, 0);
4109 
4110     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4111     // slot as the FP is never overwritten.
4112     if (isDarwinABI) {
4113       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4114       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
4115                                                           true);
4116       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4117       Chain = DAG.getStore(
4118           Chain, dl, OldFP, NewFramePtrIdx,
4119           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
4120           false, false, 0);
4121     }
4122   }
4123   return Chain;
4124 }
4125 
4126 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4127 /// the position of the argument.
4128 static void
4129 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4130                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4131                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4132   int Offset = ArgOffset + SPDiff;
4133   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
4134   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
4135   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4136   SDValue FIN = DAG.getFrameIndex(FI, VT);
4137   TailCallArgumentInfo Info;
4138   Info.Arg = Arg;
4139   Info.FrameIdxOp = FIN;
4140   Info.FrameIdx = FI;
4141   TailCallArguments.push_back(Info);
4142 }
4143 
4144 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4145 /// stack slot. Returns the chain as result and the loaded frame pointers in
4146 /// LROpOut/FPOpout. Used when tail calling.
4147 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4148     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4149     SDValue &FPOpOut, bool isDarwinABI, const SDLoc &dl) const {
4150   if (SPDiff) {
4151     // Load the LR and FP stack slot for later adjusting.
4152     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4153     LROpOut = getReturnAddrFrameIndex(DAG);
4154     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4155                           false, false, false, 0);
4156     Chain = SDValue(LROpOut.getNode(), 1);
4157 
4158     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4159     // slot as the FP is never overwritten.
4160     if (isDarwinABI) {
4161       FPOpOut = getFramePointerFrameIndex(DAG);
4162       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4163                             false, false, false, 0);
4164       Chain = SDValue(FPOpOut.getNode(), 1);
4165     }
4166   }
4167   return Chain;
4168 }
4169 
4170 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4171 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4172 /// specified by the specific parameter attribute. The copy will be passed as
4173 /// a byval function parameter.
4174 /// Sometimes what we are copying is the end of a larger object, the part that
4175 /// does not fit in registers.
4176 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4177                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4178                                          SelectionDAG &DAG, const SDLoc &dl) {
4179   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4180   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4181                        false, false, false, MachinePointerInfo(),
4182                        MachinePointerInfo());
4183 }
4184 
4185 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4186 /// tail calls.
4187 static void LowerMemOpCallTo(
4188     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4189     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4190     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4191     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4192   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4193   if (!isTailCall) {
4194     if (isVector) {
4195       SDValue StackPtr;
4196       if (isPPC64)
4197         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4198       else
4199         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4200       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4201                            DAG.getConstant(ArgOffset, dl, PtrVT));
4202     }
4203     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4204                                        MachinePointerInfo(), false, false, 0));
4205   // Calculate and remember argument location.
4206   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4207                                   TailCallArguments);
4208 }
4209 
4210 static void
4211 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4212                 const SDLoc &dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4213                 SDValue LROp, SDValue FPOp, bool isDarwinABI,
4214                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4215   MachineFunction &MF = DAG.getMachineFunction();
4216 
4217   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4218   // might overwrite each other in case of tail call optimization.
4219   SmallVector<SDValue, 8> MemOpChains2;
4220   // Do not flag preceding copytoreg stuff together with the following stuff.
4221   InFlag = SDValue();
4222   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4223                                     MemOpChains2, dl);
4224   if (!MemOpChains2.empty())
4225     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4226 
4227   // Store the return address to the appropriate stack slot.
4228   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4229                                         isPPC64, isDarwinABI, dl);
4230 
4231   // Emit callseq_end just before tailcall node.
4232   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4233                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4234   InFlag = Chain.getValue(1);
4235 }
4236 
4237 // Is this global address that of a function that can be called by name? (as
4238 // opposed to something that must hold a descriptor for an indirect call).
4239 static bool isFunctionGlobalAddress(SDValue Callee) {
4240   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4241     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4242         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4243       return false;
4244 
4245     return G->getGlobal()->getValueType()->isFunctionTy();
4246   }
4247 
4248   return false;
4249 }
4250 
4251 static unsigned
4252 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4253             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4254             bool IsPatchPoint, bool hasNest,
4255             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4256             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4257             ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4258 
4259   bool isPPC64 = Subtarget.isPPC64();
4260   bool isSVR4ABI = Subtarget.isSVR4ABI();
4261   bool isELFv2ABI = Subtarget.isELFv2ABI();
4262 
4263   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4264   NodeTys.push_back(MVT::Other);   // Returns a chain
4265   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4266 
4267   unsigned CallOpc = PPCISD::CALL;
4268 
4269   bool needIndirectCall = true;
4270   if (!isSVR4ABI || !isPPC64)
4271     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4272       // If this is an absolute destination address, use the munged value.
4273       Callee = SDValue(Dest, 0);
4274       needIndirectCall = false;
4275     }
4276 
4277   // PC-relative references to external symbols should go through $stub, unless
4278   // we're building with the leopard linker or later, which automatically
4279   // synthesizes these stubs.
4280   const TargetMachine &TM = DAG.getTarget();
4281   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4282   const GlobalValue *GV = nullptr;
4283   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4284     GV = G->getGlobal();
4285   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4286   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4287 
4288   if (isFunctionGlobalAddress(Callee)) {
4289     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4290     // A call to a TLS address is actually an indirect call to a
4291     // thread-specific pointer.
4292     unsigned OpFlags = 0;
4293     if (UsePlt)
4294       OpFlags = PPCII::MO_PLT;
4295 
4296     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4297     // every direct call is) turn it into a TargetGlobalAddress /
4298     // TargetExternalSymbol node so that legalize doesn't hack it.
4299     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4300                                         Callee.getValueType(), 0, OpFlags);
4301     needIndirectCall = false;
4302   }
4303 
4304   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4305     unsigned char OpFlags = 0;
4306 
4307     if (UsePlt)
4308       OpFlags = PPCII::MO_PLT;
4309 
4310     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4311                                          OpFlags);
4312     needIndirectCall = false;
4313   }
4314 
4315   if (IsPatchPoint) {
4316     // We'll form an invalid direct call when lowering a patchpoint; the full
4317     // sequence for an indirect call is complicated, and many of the
4318     // instructions introduced might have side effects (and, thus, can't be
4319     // removed later). The call itself will be removed as soon as the
4320     // argument/return lowering is complete, so the fact that it has the wrong
4321     // kind of operands should not really matter.
4322     needIndirectCall = false;
4323   }
4324 
4325   if (needIndirectCall) {
4326     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4327     // to do the call, we can't use PPCISD::CALL.
4328     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4329 
4330     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4331       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4332       // entry point, but to the function descriptor (the function entry point
4333       // address is part of the function descriptor though).
4334       // The function descriptor is a three doubleword structure with the
4335       // following fields: function entry point, TOC base address and
4336       // environment pointer.
4337       // Thus for a call through a function pointer, the following actions need
4338       // to be performed:
4339       //   1. Save the TOC of the caller in the TOC save area of its stack
4340       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4341       //   2. Load the address of the function entry point from the function
4342       //      descriptor.
4343       //   3. Load the TOC of the callee from the function descriptor into r2.
4344       //   4. Load the environment pointer from the function descriptor into
4345       //      r11.
4346       //   5. Branch to the function entry point address.
4347       //   6. On return of the callee, the TOC of the caller needs to be
4348       //      restored (this is done in FinishCall()).
4349       //
4350       // The loads are scheduled at the beginning of the call sequence, and the
4351       // register copies are flagged together to ensure that no other
4352       // operations can be scheduled in between. E.g. without flagging the
4353       // copies together, a TOC access in the caller could be scheduled between
4354       // the assignment of the callee TOC and the branch to the callee, which
4355       // results in the TOC access going through the TOC of the callee instead
4356       // of going through the TOC of the caller, which leads to incorrect code.
4357 
4358       // Load the address of the function entry point from the function
4359       // descriptor.
4360       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4361       if (LDChain.getValueType() == MVT::Glue)
4362         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4363 
4364       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4365 
4366       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4367       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4368                                         false, false, LoadsInv, 8);
4369 
4370       // Load environment pointer into r11.
4371       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4372       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4373       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4374                                        MPI.getWithOffset(16), false, false,
4375                                        LoadsInv, 8);
4376 
4377       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4378       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4379       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4380                                    MPI.getWithOffset(8), false, false,
4381                                    LoadsInv, 8);
4382 
4383       setUsesTOCBasePtr(DAG);
4384       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4385                                         InFlag);
4386       Chain = TOCVal.getValue(0);
4387       InFlag = TOCVal.getValue(1);
4388 
4389       // If the function call has an explicit 'nest' parameter, it takes the
4390       // place of the environment pointer.
4391       if (!hasNest) {
4392         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4393                                           InFlag);
4394 
4395         Chain = EnvVal.getValue(0);
4396         InFlag = EnvVal.getValue(1);
4397       }
4398 
4399       MTCTROps[0] = Chain;
4400       MTCTROps[1] = LoadFuncPtr;
4401       MTCTROps[2] = InFlag;
4402     }
4403 
4404     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4405                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4406     InFlag = Chain.getValue(1);
4407 
4408     NodeTys.clear();
4409     NodeTys.push_back(MVT::Other);
4410     NodeTys.push_back(MVT::Glue);
4411     Ops.push_back(Chain);
4412     CallOpc = PPCISD::BCTRL;
4413     Callee.setNode(nullptr);
4414     // Add use of X11 (holding environment pointer)
4415     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4416       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4417     // Add CTR register as callee so a bctr can be emitted later.
4418     if (isTailCall)
4419       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4420   }
4421 
4422   // If this is a direct call, pass the chain and the callee.
4423   if (Callee.getNode()) {
4424     Ops.push_back(Chain);
4425     Ops.push_back(Callee);
4426   }
4427   // If this is a tail call add stack pointer delta.
4428   if (isTailCall)
4429     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4430 
4431   // Add argument registers to the end of the list so that they are known live
4432   // into the call.
4433   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4434     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4435                                   RegsToPass[i].second.getValueType()));
4436 
4437   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4438   // into the call.
4439   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4440     setUsesTOCBasePtr(DAG);
4441     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4442   }
4443 
4444   return CallOpc;
4445 }
4446 
4447 static
4448 bool isLocalCall(const SDValue &Callee)
4449 {
4450   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4451     return G->getGlobal()->isStrongDefinitionForLinker();
4452   return false;
4453 }
4454 
4455 SDValue PPCTargetLowering::LowerCallResult(
4456     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4457     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4458     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4459 
4460   SmallVector<CCValAssign, 16> RVLocs;
4461   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4462                     *DAG.getContext());
4463   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4464 
4465   // Copy all of the result registers out of their specified physreg.
4466   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4467     CCValAssign &VA = RVLocs[i];
4468     assert(VA.isRegLoc() && "Can only return in registers!");
4469 
4470     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4471                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4472     Chain = Val.getValue(1);
4473     InFlag = Val.getValue(2);
4474 
4475     switch (VA.getLocInfo()) {
4476     default: llvm_unreachable("Unknown loc info!");
4477     case CCValAssign::Full: break;
4478     case CCValAssign::AExt:
4479       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4480       break;
4481     case CCValAssign::ZExt:
4482       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4483                         DAG.getValueType(VA.getValVT()));
4484       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4485       break;
4486     case CCValAssign::SExt:
4487       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4488                         DAG.getValueType(VA.getValVT()));
4489       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4490       break;
4491     }
4492 
4493     InVals.push_back(Val);
4494   }
4495 
4496   return Chain;
4497 }
4498 
4499 SDValue PPCTargetLowering::FinishCall(
4500     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4501     bool IsPatchPoint, bool hasNest, SelectionDAG &DAG,
4502     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4503     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4504     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4505     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
4506 
4507   std::vector<EVT> NodeTys;
4508   SmallVector<SDValue, 8> Ops;
4509   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4510                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4511                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4512 
4513   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4514   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4515     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4516 
4517   // When performing tail call optimization the callee pops its arguments off
4518   // the stack. Account for this here so these bytes can be pushed back on in
4519   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4520   int BytesCalleePops =
4521     (CallConv == CallingConv::Fast &&
4522      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4523 
4524   // Add a register mask operand representing the call-preserved registers.
4525   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4526   const uint32_t *Mask =
4527       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4528   assert(Mask && "Missing call preserved mask for calling convention");
4529   Ops.push_back(DAG.getRegisterMask(Mask));
4530 
4531   if (InFlag.getNode())
4532     Ops.push_back(InFlag);
4533 
4534   // Emit tail call.
4535   if (isTailCall) {
4536     assert(((Callee.getOpcode() == ISD::Register &&
4537              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4538             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4539             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4540             isa<ConstantSDNode>(Callee)) &&
4541     "Expecting an global address, external symbol, absolute value or register");
4542 
4543     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4544     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4545   }
4546 
4547   // Add a NOP immediately after the branch instruction when using the 64-bit
4548   // SVR4 ABI. At link time, if caller and callee are in a different module and
4549   // thus have a different TOC, the call will be replaced with a call to a stub
4550   // function which saves the current TOC, loads the TOC of the callee and
4551   // branches to the callee. The NOP will be replaced with a load instruction
4552   // which restores the TOC of the caller from the TOC save slot of the current
4553   // stack frame. If caller and callee belong to the same module (and have the
4554   // same TOC), the NOP will remain unchanged.
4555 
4556   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4557       !IsPatchPoint) {
4558     if (CallOpc == PPCISD::BCTRL) {
4559       // This is a call through a function pointer.
4560       // Restore the caller TOC from the save area into R2.
4561       // See PrepareCall() for more information about calls through function
4562       // pointers in the 64-bit SVR4 ABI.
4563       // We are using a target-specific load with r2 hard coded, because the
4564       // result of a target-independent load would never go directly into r2,
4565       // since r2 is a reserved register (which prevents the register allocator
4566       // from allocating it), resulting in an additional register being
4567       // allocated and an unnecessary move instruction being generated.
4568       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4569 
4570       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4571       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4572       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4573       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4574       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4575 
4576       // The address needs to go after the chain input but before the flag (or
4577       // any other variadic arguments).
4578       Ops.insert(std::next(Ops.begin()), AddTOC);
4579     } else if ((CallOpc == PPCISD::CALL) &&
4580                (!isLocalCall(Callee) ||
4581                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4582       // Otherwise insert NOP for non-local calls.
4583       CallOpc = PPCISD::CALL_NOP;
4584   }
4585 
4586   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4587   InFlag = Chain.getValue(1);
4588 
4589   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4590                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4591                              InFlag, dl);
4592   if (!Ins.empty())
4593     InFlag = Chain.getValue(1);
4594 
4595   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4596                          Ins, dl, DAG, InVals);
4597 }
4598 
4599 SDValue
4600 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4601                              SmallVectorImpl<SDValue> &InVals) const {
4602   SelectionDAG &DAG                     = CLI.DAG;
4603   SDLoc &dl                             = CLI.DL;
4604   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4605   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4606   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4607   SDValue Chain                         = CLI.Chain;
4608   SDValue Callee                        = CLI.Callee;
4609   bool &isTailCall                      = CLI.IsTailCall;
4610   CallingConv::ID CallConv              = CLI.CallConv;
4611   bool isVarArg                         = CLI.IsVarArg;
4612   bool IsPatchPoint                     = CLI.IsPatchPoint;
4613   ImmutableCallSite *CS                 = CLI.CS;
4614 
4615   if (isTailCall) {
4616     if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4617       isTailCall =
4618         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4619                                                  isVarArg, Outs, Ins, DAG);
4620     else
4621       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4622                                                      Ins, DAG);
4623     if (isTailCall) {
4624       ++NumTailCalls;
4625       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4626         ++NumSiblingCalls;
4627 
4628       assert(isa<GlobalAddressSDNode>(Callee) &&
4629              "Callee should be an llvm::Function object.");
4630       DEBUG(
4631         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4632         const unsigned Width = 80 - strlen("TCO caller: ")
4633                                   - strlen(", callee linkage: 0, 0");
4634         dbgs() << "TCO caller: "
4635                << left_justify(DAG.getMachineFunction().getName(), Width)
4636                << ", callee linkage: "
4637                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4638       );
4639     }
4640   }
4641 
4642   if (!isTailCall && CS && CS->isMustTailCall())
4643     report_fatal_error("failed to perform tail call elimination on a call "
4644                        "site marked musttail");
4645 
4646   if (Subtarget.isSVR4ABI()) {
4647     if (Subtarget.isPPC64())
4648       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4649                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4650                               dl, DAG, InVals, CS);
4651     else
4652       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4653                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4654                               dl, DAG, InVals, CS);
4655   }
4656 
4657   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4658                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4659                           dl, DAG, InVals, CS);
4660 }
4661 
4662 SDValue PPCTargetLowering::LowerCall_32SVR4(
4663     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4664     bool isTailCall, bool IsPatchPoint,
4665     const SmallVectorImpl<ISD::OutputArg> &Outs,
4666     const SmallVectorImpl<SDValue> &OutVals,
4667     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4668     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4669     ImmutableCallSite *CS) const {
4670   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4671   // of the 32-bit SVR4 ABI stack frame layout.
4672 
4673   assert((CallConv == CallingConv::C ||
4674           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4675 
4676   unsigned PtrByteSize = 4;
4677 
4678   MachineFunction &MF = DAG.getMachineFunction();
4679 
4680   // Mark this function as potentially containing a function that contains a
4681   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4682   // and restoring the callers stack pointer in this functions epilog. This is
4683   // done because by tail calling the called function might overwrite the value
4684   // in this function's (MF) stack pointer stack slot 0(SP).
4685   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4686       CallConv == CallingConv::Fast)
4687     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4688 
4689   // Count how many bytes are to be pushed on the stack, including the linkage
4690   // area, parameter list area and the part of the local variable space which
4691   // contains copies of aggregates which are passed by value.
4692 
4693   // Assign locations to all of the outgoing arguments.
4694   SmallVector<CCValAssign, 16> ArgLocs;
4695   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4696                  *DAG.getContext());
4697 
4698   // Reserve space for the linkage area on the stack.
4699   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4700                        PtrByteSize);
4701   if (Subtarget.useSoftFloat())
4702     CCInfo.PreAnalyzeCallOperands(Outs);
4703 
4704   if (isVarArg) {
4705     // Handle fixed and variable vector arguments differently.
4706     // Fixed vector arguments go into registers as long as registers are
4707     // available. Variable vector arguments always go into memory.
4708     unsigned NumArgs = Outs.size();
4709 
4710     for (unsigned i = 0; i != NumArgs; ++i) {
4711       MVT ArgVT = Outs[i].VT;
4712       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4713       bool Result;
4714 
4715       if (Outs[i].IsFixed) {
4716         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4717                                CCInfo);
4718       } else {
4719         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4720                                       ArgFlags, CCInfo);
4721       }
4722 
4723       if (Result) {
4724 #ifndef NDEBUG
4725         errs() << "Call operand #" << i << " has unhandled type "
4726              << EVT(ArgVT).getEVTString() << "\n";
4727 #endif
4728         llvm_unreachable(nullptr);
4729       }
4730     }
4731   } else {
4732     // All arguments are treated the same.
4733     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4734   }
4735   CCInfo.clearWasPPCF128();
4736 
4737   // Assign locations to all of the outgoing aggregate by value arguments.
4738   SmallVector<CCValAssign, 16> ByValArgLocs;
4739   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4740                       ByValArgLocs, *DAG.getContext());
4741 
4742   // Reserve stack space for the allocations in CCInfo.
4743   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4744 
4745   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4746 
4747   // Size of the linkage area, parameter list area and the part of the local
4748   // space variable where copies of aggregates which are passed by value are
4749   // stored.
4750   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4751 
4752   // Calculate by how many bytes the stack has to be adjusted in case of tail
4753   // call optimization.
4754   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4755 
4756   // Adjust the stack pointer for the new arguments...
4757   // These operations are automatically eliminated by the prolog/epilog pass
4758   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4759                                dl);
4760   SDValue CallSeqStart = Chain;
4761 
4762   // Load the return address and frame pointer so it can be moved somewhere else
4763   // later.
4764   SDValue LROp, FPOp;
4765   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4766                                        dl);
4767 
4768   // Set up a copy of the stack pointer for use loading and storing any
4769   // arguments that may not fit in the registers available for argument
4770   // passing.
4771   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4772 
4773   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4774   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4775   SmallVector<SDValue, 8> MemOpChains;
4776 
4777   bool seenFloatArg = false;
4778   // Walk the register/memloc assignments, inserting copies/loads.
4779   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4780        i != e;
4781        ++i) {
4782     CCValAssign &VA = ArgLocs[i];
4783     SDValue Arg = OutVals[i];
4784     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4785 
4786     if (Flags.isByVal()) {
4787       // Argument is an aggregate which is passed by value, thus we need to
4788       // create a copy of it in the local variable space of the current stack
4789       // frame (which is the stack frame of the caller) and pass the address of
4790       // this copy to the callee.
4791       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4792       CCValAssign &ByValVA = ByValArgLocs[j++];
4793       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4794 
4795       // Memory reserved in the local variable space of the callers stack frame.
4796       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4797 
4798       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4799       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4800                            StackPtr, PtrOff);
4801 
4802       // Create a copy of the argument in the local area of the current
4803       // stack frame.
4804       SDValue MemcpyCall =
4805         CreateCopyOfByValArgument(Arg, PtrOff,
4806                                   CallSeqStart.getNode()->getOperand(0),
4807                                   Flags, DAG, dl);
4808 
4809       // This must go outside the CALLSEQ_START..END.
4810       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4811                            CallSeqStart.getNode()->getOperand(1),
4812                            SDLoc(MemcpyCall));
4813       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4814                              NewCallSeqStart.getNode());
4815       Chain = CallSeqStart = NewCallSeqStart;
4816 
4817       // Pass the address of the aggregate copy on the stack either in a
4818       // physical register or in the parameter list area of the current stack
4819       // frame to the callee.
4820       Arg = PtrOff;
4821     }
4822 
4823     if (VA.isRegLoc()) {
4824       if (Arg.getValueType() == MVT::i1)
4825         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4826 
4827       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4828       // Put argument in a physical register.
4829       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4830     } else {
4831       // Put argument in the parameter list area of the current stack frame.
4832       assert(VA.isMemLoc());
4833       unsigned LocMemOffset = VA.getLocMemOffset();
4834 
4835       if (!isTailCall) {
4836         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4837         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4838                              StackPtr, PtrOff);
4839 
4840         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4841                                            MachinePointerInfo(),
4842                                            false, false, 0));
4843       } else {
4844         // Calculate and remember argument location.
4845         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4846                                  TailCallArguments);
4847       }
4848     }
4849   }
4850 
4851   if (!MemOpChains.empty())
4852     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4853 
4854   // Build a sequence of copy-to-reg nodes chained together with token chain
4855   // and flag operands which copy the outgoing args into the appropriate regs.
4856   SDValue InFlag;
4857   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4858     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4859                              RegsToPass[i].second, InFlag);
4860     InFlag = Chain.getValue(1);
4861   }
4862 
4863   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4864   // registers.
4865   if (isVarArg) {
4866     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4867     SDValue Ops[] = { Chain, InFlag };
4868 
4869     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4870                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4871 
4872     InFlag = Chain.getValue(1);
4873   }
4874 
4875   if (isTailCall)
4876     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4877                     false, TailCallArguments);
4878 
4879   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4880                     /* unused except on PPC64 ELFv1 */ false, DAG,
4881                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4882                     NumBytes, Ins, InVals, CS);
4883 }
4884 
4885 // Copy an argument into memory, being careful to do this outside the
4886 // call sequence for the call to which the argument belongs.
4887 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
4888     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
4889     SelectionDAG &DAG, const SDLoc &dl) const {
4890   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4891                         CallSeqStart.getNode()->getOperand(0),
4892                         Flags, DAG, dl);
4893   // The MEMCPY must go outside the CALLSEQ_START..END.
4894   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4895                              CallSeqStart.getNode()->getOperand(1),
4896                              SDLoc(MemcpyCall));
4897   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4898                          NewCallSeqStart.getNode());
4899   return NewCallSeqStart;
4900 }
4901 
4902 SDValue PPCTargetLowering::LowerCall_64SVR4(
4903     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4904     bool isTailCall, bool IsPatchPoint,
4905     const SmallVectorImpl<ISD::OutputArg> &Outs,
4906     const SmallVectorImpl<SDValue> &OutVals,
4907     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4908     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4909     ImmutableCallSite *CS) const {
4910 
4911   bool isELFv2ABI = Subtarget.isELFv2ABI();
4912   bool isLittleEndian = Subtarget.isLittleEndian();
4913   unsigned NumOps = Outs.size();
4914   bool hasNest = false;
4915   bool IsSibCall = false;
4916 
4917   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4918   unsigned PtrByteSize = 8;
4919 
4920   MachineFunction &MF = DAG.getMachineFunction();
4921 
4922   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
4923     IsSibCall = true;
4924 
4925   // Mark this function as potentially containing a function that contains a
4926   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4927   // and restoring the callers stack pointer in this functions epilog. This is
4928   // done because by tail calling the called function might overwrite the value
4929   // in this function's (MF) stack pointer stack slot 0(SP).
4930   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4931       CallConv == CallingConv::Fast)
4932     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4933 
4934   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4935          "fastcc not supported on varargs functions");
4936 
4937   // Count how many bytes are to be pushed on the stack, including the linkage
4938   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4939   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4940   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4941   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4942   unsigned NumBytes = LinkageSize;
4943   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4944   unsigned &QFPR_idx = FPR_idx;
4945 
4946   static const MCPhysReg GPR[] = {
4947     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4948     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4949   };
4950   static const MCPhysReg VR[] = {
4951     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4952     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4953   };
4954   static const MCPhysReg VSRH[] = {
4955     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4956     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4957   };
4958 
4959   const unsigned NumGPRs = array_lengthof(GPR);
4960   const unsigned NumFPRs = 13;
4961   const unsigned NumVRs  = array_lengthof(VR);
4962   const unsigned NumQFPRs = NumFPRs;
4963 
4964   // When using the fast calling convention, we don't provide backing for
4965   // arguments that will be in registers.
4966   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4967 
4968   // Add up all the space actually used.
4969   for (unsigned i = 0; i != NumOps; ++i) {
4970     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4971     EVT ArgVT = Outs[i].VT;
4972     EVT OrigVT = Outs[i].ArgVT;
4973 
4974     if (Flags.isNest())
4975       continue;
4976 
4977     if (CallConv == CallingConv::Fast) {
4978       if (Flags.isByVal())
4979         NumGPRsUsed += (Flags.getByValSize()+7)/8;
4980       else
4981         switch (ArgVT.getSimpleVT().SimpleTy) {
4982         default: llvm_unreachable("Unexpected ValueType for argument!");
4983         case MVT::i1:
4984         case MVT::i32:
4985         case MVT::i64:
4986           if (++NumGPRsUsed <= NumGPRs)
4987             continue;
4988           break;
4989         case MVT::v4i32:
4990         case MVT::v8i16:
4991         case MVT::v16i8:
4992         case MVT::v2f64:
4993         case MVT::v2i64:
4994         case MVT::v1i128:
4995           if (++NumVRsUsed <= NumVRs)
4996             continue;
4997           break;
4998         case MVT::v4f32:
4999           // When using QPX, this is handled like a FP register, otherwise, it
5000           // is an Altivec register.
5001           if (Subtarget.hasQPX()) {
5002             if (++NumFPRsUsed <= NumFPRs)
5003               continue;
5004           } else {
5005             if (++NumVRsUsed <= NumVRs)
5006               continue;
5007           }
5008           break;
5009         case MVT::f32:
5010         case MVT::f64:
5011         case MVT::v4f64: // QPX
5012         case MVT::v4i1:  // QPX
5013           if (++NumFPRsUsed <= NumFPRs)
5014             continue;
5015           break;
5016         }
5017     }
5018 
5019     /* Respect alignment of argument on the stack.  */
5020     unsigned Align =
5021       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5022     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5023 
5024     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5025     if (Flags.isInConsecutiveRegsLast())
5026       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5027   }
5028 
5029   unsigned NumBytesActuallyUsed = NumBytes;
5030 
5031   // The prolog code of the callee may store up to 8 GPR argument registers to
5032   // the stack, allowing va_start to index over them in memory if its varargs.
5033   // Because we cannot tell if this is needed on the caller side, we have to
5034   // conservatively assume that it is needed.  As such, make sure we have at
5035   // least enough stack space for the caller to store the 8 GPRs.
5036   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5037   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5038 
5039   // Tail call needs the stack to be aligned.
5040   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5041       CallConv == CallingConv::Fast)
5042     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5043 
5044   int SPDiff = 0;
5045 
5046   // Calculate by how many bytes the stack has to be adjusted in case of tail
5047   // call optimization.
5048   if (!IsSibCall)
5049     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5050 
5051   // To protect arguments on the stack from being clobbered in a tail call,
5052   // force all the loads to happen before doing any other lowering.
5053   if (isTailCall)
5054     Chain = DAG.getStackArgumentTokenFactor(Chain);
5055 
5056   // Adjust the stack pointer for the new arguments...
5057   // These operations are automatically eliminated by the prolog/epilog pass
5058   if (!IsSibCall)
5059     Chain = DAG.getCALLSEQ_START(Chain,
5060                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5061   SDValue CallSeqStart = Chain;
5062 
5063   // Load the return address and frame pointer so it can be move somewhere else
5064   // later.
5065   SDValue LROp, FPOp;
5066   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5067                                        dl);
5068 
5069   // Set up a copy of the stack pointer for use loading and storing any
5070   // arguments that may not fit in the registers available for argument
5071   // passing.
5072   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5073 
5074   // Figure out which arguments are going to go in registers, and which in
5075   // memory.  Also, if this is a vararg function, floating point operations
5076   // must be stored to our stack, and loaded into integer regs as well, if
5077   // any integer regs are available for argument passing.
5078   unsigned ArgOffset = LinkageSize;
5079 
5080   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5081   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5082 
5083   SmallVector<SDValue, 8> MemOpChains;
5084   for (unsigned i = 0; i != NumOps; ++i) {
5085     SDValue Arg = OutVals[i];
5086     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5087     EVT ArgVT = Outs[i].VT;
5088     EVT OrigVT = Outs[i].ArgVT;
5089 
5090     // PtrOff will be used to store the current argument to the stack if a
5091     // register cannot be found for it.
5092     SDValue PtrOff;
5093 
5094     // We re-align the argument offset for each argument, except when using the
5095     // fast calling convention, when we need to make sure we do that only when
5096     // we'll actually use a stack slot.
5097     auto ComputePtrOff = [&]() {
5098       /* Respect alignment of argument on the stack.  */
5099       unsigned Align =
5100         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5101       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5102 
5103       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5104 
5105       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5106     };
5107 
5108     if (CallConv != CallingConv::Fast) {
5109       ComputePtrOff();
5110 
5111       /* Compute GPR index associated with argument offset.  */
5112       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5113       GPR_idx = std::min(GPR_idx, NumGPRs);
5114     }
5115 
5116     // Promote integers to 64-bit values.
5117     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5118       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5119       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5120       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5121     }
5122 
5123     // FIXME memcpy is used way more than necessary.  Correctness first.
5124     // Note: "by value" is code for passing a structure by value, not
5125     // basic types.
5126     if (Flags.isByVal()) {
5127       // Note: Size includes alignment padding, so
5128       //   struct x { short a; char b; }
5129       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5130       // These are the proper values we need for right-justifying the
5131       // aggregate in a parameter register.
5132       unsigned Size = Flags.getByValSize();
5133 
5134       // An empty aggregate parameter takes up no storage and no
5135       // registers.
5136       if (Size == 0)
5137         continue;
5138 
5139       if (CallConv == CallingConv::Fast)
5140         ComputePtrOff();
5141 
5142       // All aggregates smaller than 8 bytes must be passed right-justified.
5143       if (Size==1 || Size==2 || Size==4) {
5144         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5145         if (GPR_idx != NumGPRs) {
5146           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5147                                         MachinePointerInfo(), VT,
5148                                         false, false, false, 0);
5149           MemOpChains.push_back(Load.getValue(1));
5150           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5151 
5152           ArgOffset += PtrByteSize;
5153           continue;
5154         }
5155       }
5156 
5157       if (GPR_idx == NumGPRs && Size < 8) {
5158         SDValue AddPtr = PtrOff;
5159         if (!isLittleEndian) {
5160           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5161                                           PtrOff.getValueType());
5162           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5163         }
5164         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5165                                                           CallSeqStart,
5166                                                           Flags, DAG, dl);
5167         ArgOffset += PtrByteSize;
5168         continue;
5169       }
5170       // Copy entire object into memory.  There are cases where gcc-generated
5171       // code assumes it is there, even if it could be put entirely into
5172       // registers.  (This is not what the doc says.)
5173 
5174       // FIXME: The above statement is likely due to a misunderstanding of the
5175       // documents.  All arguments must be copied into the parameter area BY
5176       // THE CALLEE in the event that the callee takes the address of any
5177       // formal argument.  That has not yet been implemented.  However, it is
5178       // reasonable to use the stack area as a staging area for the register
5179       // load.
5180 
5181       // Skip this for small aggregates, as we will use the same slot for a
5182       // right-justified copy, below.
5183       if (Size >= 8)
5184         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5185                                                           CallSeqStart,
5186                                                           Flags, DAG, dl);
5187 
5188       // When a register is available, pass a small aggregate right-justified.
5189       if (Size < 8 && GPR_idx != NumGPRs) {
5190         // The easiest way to get this right-justified in a register
5191         // is to copy the structure into the rightmost portion of a
5192         // local variable slot, then load the whole slot into the
5193         // register.
5194         // FIXME: The memcpy seems to produce pretty awful code for
5195         // small aggregates, particularly for packed ones.
5196         // FIXME: It would be preferable to use the slot in the
5197         // parameter save area instead of a new local variable.
5198         SDValue AddPtr = PtrOff;
5199         if (!isLittleEndian) {
5200           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5201           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5202         }
5203         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5204                                                           CallSeqStart,
5205                                                           Flags, DAG, dl);
5206 
5207         // Load the slot into the register.
5208         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5209                                    MachinePointerInfo(),
5210                                    false, false, false, 0);
5211         MemOpChains.push_back(Load.getValue(1));
5212         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5213 
5214         // Done with this argument.
5215         ArgOffset += PtrByteSize;
5216         continue;
5217       }
5218 
5219       // For aggregates larger than PtrByteSize, copy the pieces of the
5220       // object that fit into registers from the parameter save area.
5221       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5222         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5223         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5224         if (GPR_idx != NumGPRs) {
5225           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5226                                      MachinePointerInfo(),
5227                                      false, false, false, 0);
5228           MemOpChains.push_back(Load.getValue(1));
5229           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5230           ArgOffset += PtrByteSize;
5231         } else {
5232           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5233           break;
5234         }
5235       }
5236       continue;
5237     }
5238 
5239     switch (Arg.getSimpleValueType().SimpleTy) {
5240     default: llvm_unreachable("Unexpected ValueType for argument!");
5241     case MVT::i1:
5242     case MVT::i32:
5243     case MVT::i64:
5244       if (Flags.isNest()) {
5245         // The 'nest' parameter, if any, is passed in R11.
5246         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5247         hasNest = true;
5248         break;
5249       }
5250 
5251       // These can be scalar arguments or elements of an integer array type
5252       // passed directly.  Clang may use those instead of "byval" aggregate
5253       // types to avoid forcing arguments to memory unnecessarily.
5254       if (GPR_idx != NumGPRs) {
5255         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5256       } else {
5257         if (CallConv == CallingConv::Fast)
5258           ComputePtrOff();
5259 
5260         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5261                          true, isTailCall, false, MemOpChains,
5262                          TailCallArguments, dl);
5263         if (CallConv == CallingConv::Fast)
5264           ArgOffset += PtrByteSize;
5265       }
5266       if (CallConv != CallingConv::Fast)
5267         ArgOffset += PtrByteSize;
5268       break;
5269     case MVT::f32:
5270     case MVT::f64: {
5271       // These can be scalar arguments or elements of a float array type
5272       // passed directly.  The latter are used to implement ELFv2 homogenous
5273       // float aggregates.
5274 
5275       // Named arguments go into FPRs first, and once they overflow, the
5276       // remaining arguments go into GPRs and then the parameter save area.
5277       // Unnamed arguments for vararg functions always go to GPRs and
5278       // then the parameter save area.  For now, put all arguments to vararg
5279       // routines always in both locations (FPR *and* GPR or stack slot).
5280       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5281       bool NeededLoad = false;
5282 
5283       // First load the argument into the next available FPR.
5284       if (FPR_idx != NumFPRs)
5285         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5286 
5287       // Next, load the argument into GPR or stack slot if needed.
5288       if (!NeedGPROrStack)
5289         ;
5290       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5291         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5292         // once we support fp <-> gpr moves.
5293 
5294         // In the non-vararg case, this can only ever happen in the
5295         // presence of f32 array types, since otherwise we never run
5296         // out of FPRs before running out of GPRs.
5297         SDValue ArgVal;
5298 
5299         // Double values are always passed in a single GPR.
5300         if (Arg.getValueType() != MVT::f32) {
5301           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5302 
5303         // Non-array float values are extended and passed in a GPR.
5304         } else if (!Flags.isInConsecutiveRegs()) {
5305           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5306           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5307 
5308         // If we have an array of floats, we collect every odd element
5309         // together with its predecessor into one GPR.
5310         } else if (ArgOffset % PtrByteSize != 0) {
5311           SDValue Lo, Hi;
5312           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5313           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5314           if (!isLittleEndian)
5315             std::swap(Lo, Hi);
5316           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5317 
5318         // The final element, if even, goes into the first half of a GPR.
5319         } else if (Flags.isInConsecutiveRegsLast()) {
5320           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5321           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5322           if (!isLittleEndian)
5323             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5324                                  DAG.getConstant(32, dl, MVT::i32));
5325 
5326         // Non-final even elements are skipped; they will be handled
5327         // together the with subsequent argument on the next go-around.
5328         } else
5329           ArgVal = SDValue();
5330 
5331         if (ArgVal.getNode())
5332           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5333       } else {
5334         if (CallConv == CallingConv::Fast)
5335           ComputePtrOff();
5336 
5337         // Single-precision floating-point values are mapped to the
5338         // second (rightmost) word of the stack doubleword.
5339         if (Arg.getValueType() == MVT::f32 &&
5340             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5341           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5342           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5343         }
5344 
5345         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5346                          true, isTailCall, false, MemOpChains,
5347                          TailCallArguments, dl);
5348 
5349         NeededLoad = true;
5350       }
5351       // When passing an array of floats, the array occupies consecutive
5352       // space in the argument area; only round up to the next doubleword
5353       // at the end of the array.  Otherwise, each float takes 8 bytes.
5354       if (CallConv != CallingConv::Fast || NeededLoad) {
5355         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5356                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5357         if (Flags.isInConsecutiveRegsLast())
5358           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5359       }
5360       break;
5361     }
5362     case MVT::v4f32:
5363     case MVT::v4i32:
5364     case MVT::v8i16:
5365     case MVT::v16i8:
5366     case MVT::v2f64:
5367     case MVT::v2i64:
5368     case MVT::v1i128:
5369       if (!Subtarget.hasQPX()) {
5370       // These can be scalar arguments or elements of a vector array type
5371       // passed directly.  The latter are used to implement ELFv2 homogenous
5372       // vector aggregates.
5373 
5374       // For a varargs call, named arguments go into VRs or on the stack as
5375       // usual; unnamed arguments always go to the stack or the corresponding
5376       // GPRs when within range.  For now, we always put the value in both
5377       // locations (or even all three).
5378       if (isVarArg) {
5379         // We could elide this store in the case where the object fits
5380         // entirely in R registers.  Maybe later.
5381         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5382                                      MachinePointerInfo(), false, false, 0);
5383         MemOpChains.push_back(Store);
5384         if (VR_idx != NumVRs) {
5385           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5386                                      MachinePointerInfo(),
5387                                      false, false, false, 0);
5388           MemOpChains.push_back(Load.getValue(1));
5389 
5390           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5391                            Arg.getSimpleValueType() == MVT::v2i64) ?
5392                           VSRH[VR_idx] : VR[VR_idx];
5393           ++VR_idx;
5394 
5395           RegsToPass.push_back(std::make_pair(VReg, Load));
5396         }
5397         ArgOffset += 16;
5398         for (unsigned i=0; i<16; i+=PtrByteSize) {
5399           if (GPR_idx == NumGPRs)
5400             break;
5401           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5402                                    DAG.getConstant(i, dl, PtrVT));
5403           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5404                                      false, false, false, 0);
5405           MemOpChains.push_back(Load.getValue(1));
5406           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5407         }
5408         break;
5409       }
5410 
5411       // Non-varargs Altivec params go into VRs or on the stack.
5412       if (VR_idx != NumVRs) {
5413         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5414                          Arg.getSimpleValueType() == MVT::v2i64) ?
5415                         VSRH[VR_idx] : VR[VR_idx];
5416         ++VR_idx;
5417 
5418         RegsToPass.push_back(std::make_pair(VReg, Arg));
5419       } else {
5420         if (CallConv == CallingConv::Fast)
5421           ComputePtrOff();
5422 
5423         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5424                          true, isTailCall, true, MemOpChains,
5425                          TailCallArguments, dl);
5426         if (CallConv == CallingConv::Fast)
5427           ArgOffset += 16;
5428       }
5429 
5430       if (CallConv != CallingConv::Fast)
5431         ArgOffset += 16;
5432       break;
5433       } // not QPX
5434 
5435       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5436              "Invalid QPX parameter type");
5437 
5438       /* fall through */
5439     case MVT::v4f64:
5440     case MVT::v4i1: {
5441       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5442       if (isVarArg) {
5443         // We could elide this store in the case where the object fits
5444         // entirely in R registers.  Maybe later.
5445         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5446                                      MachinePointerInfo(), false, false, 0);
5447         MemOpChains.push_back(Store);
5448         if (QFPR_idx != NumQFPRs) {
5449           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5450                                      Store, PtrOff, MachinePointerInfo(),
5451                                      false, false, false, 0);
5452           MemOpChains.push_back(Load.getValue(1));
5453           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5454         }
5455         ArgOffset += (IsF32 ? 16 : 32);
5456         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5457           if (GPR_idx == NumGPRs)
5458             break;
5459           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5460                                    DAG.getConstant(i, dl, PtrVT));
5461           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5462                                      false, false, false, 0);
5463           MemOpChains.push_back(Load.getValue(1));
5464           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5465         }
5466         break;
5467       }
5468 
5469       // Non-varargs QPX params go into registers or on the stack.
5470       if (QFPR_idx != NumQFPRs) {
5471         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5472       } else {
5473         if (CallConv == CallingConv::Fast)
5474           ComputePtrOff();
5475 
5476         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5477                          true, isTailCall, true, MemOpChains,
5478                          TailCallArguments, dl);
5479         if (CallConv == CallingConv::Fast)
5480           ArgOffset += (IsF32 ? 16 : 32);
5481       }
5482 
5483       if (CallConv != CallingConv::Fast)
5484         ArgOffset += (IsF32 ? 16 : 32);
5485       break;
5486       }
5487     }
5488   }
5489 
5490   assert(NumBytesActuallyUsed == ArgOffset);
5491   (void)NumBytesActuallyUsed;
5492 
5493   if (!MemOpChains.empty())
5494     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5495 
5496   // Check if this is an indirect call (MTCTR/BCTRL).
5497   // See PrepareCall() for more information about calls through function
5498   // pointers in the 64-bit SVR4 ABI.
5499   if (!isTailCall && !IsPatchPoint &&
5500       !isFunctionGlobalAddress(Callee) &&
5501       !isa<ExternalSymbolSDNode>(Callee)) {
5502     // Load r2 into a virtual register and store it to the TOC save area.
5503     setUsesTOCBasePtr(DAG);
5504     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5505     // TOC save area offset.
5506     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5507     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5508     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5509     Chain = DAG.getStore(
5510         Val.getValue(1), dl, Val, AddPtr,
5511         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5512         false, false, 0);
5513     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5514     // This does not mean the MTCTR instruction must use R12; it's easier
5515     // to model this as an extra parameter, so do that.
5516     if (isELFv2ABI && !IsPatchPoint)
5517       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5518   }
5519 
5520   // Build a sequence of copy-to-reg nodes chained together with token chain
5521   // and flag operands which copy the outgoing args into the appropriate regs.
5522   SDValue InFlag;
5523   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5524     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5525                              RegsToPass[i].second, InFlag);
5526     InFlag = Chain.getValue(1);
5527   }
5528 
5529   if (isTailCall && !IsSibCall)
5530     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5531                     FPOp, true, TailCallArguments);
5532 
5533   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
5534                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5535                     SPDiff, NumBytes, Ins, InVals, CS);
5536 }
5537 
5538 SDValue PPCTargetLowering::LowerCall_Darwin(
5539     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5540     bool isTailCall, bool IsPatchPoint,
5541     const SmallVectorImpl<ISD::OutputArg> &Outs,
5542     const SmallVectorImpl<SDValue> &OutVals,
5543     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5544     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5545     ImmutableCallSite *CS) const {
5546 
5547   unsigned NumOps = Outs.size();
5548 
5549   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5550   bool isPPC64 = PtrVT == MVT::i64;
5551   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5552 
5553   MachineFunction &MF = DAG.getMachineFunction();
5554 
5555   // Mark this function as potentially containing a function that contains a
5556   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5557   // and restoring the callers stack pointer in this functions epilog. This is
5558   // done because by tail calling the called function might overwrite the value
5559   // in this function's (MF) stack pointer stack slot 0(SP).
5560   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5561       CallConv == CallingConv::Fast)
5562     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5563 
5564   // Count how many bytes are to be pushed on the stack, including the linkage
5565   // area, and parameter passing area.  We start with 24/48 bytes, which is
5566   // prereserved space for [SP][CR][LR][3 x unused].
5567   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5568   unsigned NumBytes = LinkageSize;
5569 
5570   // Add up all the space actually used.
5571   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5572   // they all go in registers, but we must reserve stack space for them for
5573   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5574   // assigned stack space in order, with padding so Altivec parameters are
5575   // 16-byte aligned.
5576   unsigned nAltivecParamsAtEnd = 0;
5577   for (unsigned i = 0; i != NumOps; ++i) {
5578     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5579     EVT ArgVT = Outs[i].VT;
5580     // Varargs Altivec parameters are padded to a 16 byte boundary.
5581     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5582         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5583         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5584       if (!isVarArg && !isPPC64) {
5585         // Non-varargs Altivec parameters go after all the non-Altivec
5586         // parameters; handle those later so we know how much padding we need.
5587         nAltivecParamsAtEnd++;
5588         continue;
5589       }
5590       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5591       NumBytes = ((NumBytes+15)/16)*16;
5592     }
5593     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5594   }
5595 
5596   // Allow for Altivec parameters at the end, if needed.
5597   if (nAltivecParamsAtEnd) {
5598     NumBytes = ((NumBytes+15)/16)*16;
5599     NumBytes += 16*nAltivecParamsAtEnd;
5600   }
5601 
5602   // The prolog code of the callee may store up to 8 GPR argument registers to
5603   // the stack, allowing va_start to index over them in memory if its varargs.
5604   // Because we cannot tell if this is needed on the caller side, we have to
5605   // conservatively assume that it is needed.  As such, make sure we have at
5606   // least enough stack space for the caller to store the 8 GPRs.
5607   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5608 
5609   // Tail call needs the stack to be aligned.
5610   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5611       CallConv == CallingConv::Fast)
5612     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5613 
5614   // Calculate by how many bytes the stack has to be adjusted in case of tail
5615   // call optimization.
5616   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5617 
5618   // To protect arguments on the stack from being clobbered in a tail call,
5619   // force all the loads to happen before doing any other lowering.
5620   if (isTailCall)
5621     Chain = DAG.getStackArgumentTokenFactor(Chain);
5622 
5623   // Adjust the stack pointer for the new arguments...
5624   // These operations are automatically eliminated by the prolog/epilog pass
5625   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5626                                dl);
5627   SDValue CallSeqStart = Chain;
5628 
5629   // Load the return address and frame pointer so it can be move somewhere else
5630   // later.
5631   SDValue LROp, FPOp;
5632   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5633                                        dl);
5634 
5635   // Set up a copy of the stack pointer for use loading and storing any
5636   // arguments that may not fit in the registers available for argument
5637   // passing.
5638   SDValue StackPtr;
5639   if (isPPC64)
5640     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5641   else
5642     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5643 
5644   // Figure out which arguments are going to go in registers, and which in
5645   // memory.  Also, if this is a vararg function, floating point operations
5646   // must be stored to our stack, and loaded into integer regs as well, if
5647   // any integer regs are available for argument passing.
5648   unsigned ArgOffset = LinkageSize;
5649   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5650 
5651   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5652     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5653     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5654   };
5655   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5656     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5657     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5658   };
5659   static const MCPhysReg VR[] = {
5660     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5661     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5662   };
5663   const unsigned NumGPRs = array_lengthof(GPR_32);
5664   const unsigned NumFPRs = 13;
5665   const unsigned NumVRs  = array_lengthof(VR);
5666 
5667   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5668 
5669   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5670   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5671 
5672   SmallVector<SDValue, 8> MemOpChains;
5673   for (unsigned i = 0; i != NumOps; ++i) {
5674     SDValue Arg = OutVals[i];
5675     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5676 
5677     // PtrOff will be used to store the current argument to the stack if a
5678     // register cannot be found for it.
5679     SDValue PtrOff;
5680 
5681     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5682 
5683     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5684 
5685     // On PPC64, promote integers to 64-bit values.
5686     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5687       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5688       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5689       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5690     }
5691 
5692     // FIXME memcpy is used way more than necessary.  Correctness first.
5693     // Note: "by value" is code for passing a structure by value, not
5694     // basic types.
5695     if (Flags.isByVal()) {
5696       unsigned Size = Flags.getByValSize();
5697       // Very small objects are passed right-justified.  Everything else is
5698       // passed left-justified.
5699       if (Size==1 || Size==2) {
5700         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5701         if (GPR_idx != NumGPRs) {
5702           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5703                                         MachinePointerInfo(), VT,
5704                                         false, false, false, 0);
5705           MemOpChains.push_back(Load.getValue(1));
5706           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5707 
5708           ArgOffset += PtrByteSize;
5709         } else {
5710           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5711                                           PtrOff.getValueType());
5712           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5713           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5714                                                             CallSeqStart,
5715                                                             Flags, DAG, dl);
5716           ArgOffset += PtrByteSize;
5717         }
5718         continue;
5719       }
5720       // Copy entire object into memory.  There are cases where gcc-generated
5721       // code assumes it is there, even if it could be put entirely into
5722       // registers.  (This is not what the doc says.)
5723       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5724                                                         CallSeqStart,
5725                                                         Flags, DAG, dl);
5726 
5727       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5728       // copy the pieces of the object that fit into registers from the
5729       // parameter save area.
5730       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5731         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5732         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5733         if (GPR_idx != NumGPRs) {
5734           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5735                                      MachinePointerInfo(),
5736                                      false, false, false, 0);
5737           MemOpChains.push_back(Load.getValue(1));
5738           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5739           ArgOffset += PtrByteSize;
5740         } else {
5741           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5742           break;
5743         }
5744       }
5745       continue;
5746     }
5747 
5748     switch (Arg.getSimpleValueType().SimpleTy) {
5749     default: llvm_unreachable("Unexpected ValueType for argument!");
5750     case MVT::i1:
5751     case MVT::i32:
5752     case MVT::i64:
5753       if (GPR_idx != NumGPRs) {
5754         if (Arg.getValueType() == MVT::i1)
5755           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5756 
5757         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5758       } else {
5759         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5760                          isPPC64, isTailCall, false, MemOpChains,
5761                          TailCallArguments, dl);
5762       }
5763       ArgOffset += PtrByteSize;
5764       break;
5765     case MVT::f32:
5766     case MVT::f64:
5767       if (FPR_idx != NumFPRs) {
5768         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5769 
5770         if (isVarArg) {
5771           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5772                                        MachinePointerInfo(), false, false, 0);
5773           MemOpChains.push_back(Store);
5774 
5775           // Float varargs are always shadowed in available integer registers
5776           if (GPR_idx != NumGPRs) {
5777             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5778                                        MachinePointerInfo(), false, false,
5779                                        false, 0);
5780             MemOpChains.push_back(Load.getValue(1));
5781             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5782           }
5783           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5784             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5785             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5786             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5787                                        MachinePointerInfo(),
5788                                        false, false, false, 0);
5789             MemOpChains.push_back(Load.getValue(1));
5790             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5791           }
5792         } else {
5793           // If we have any FPRs remaining, we may also have GPRs remaining.
5794           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5795           // GPRs.
5796           if (GPR_idx != NumGPRs)
5797             ++GPR_idx;
5798           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5799               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5800             ++GPR_idx;
5801         }
5802       } else
5803         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5804                          isPPC64, isTailCall, false, MemOpChains,
5805                          TailCallArguments, dl);
5806       if (isPPC64)
5807         ArgOffset += 8;
5808       else
5809         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5810       break;
5811     case MVT::v4f32:
5812     case MVT::v4i32:
5813     case MVT::v8i16:
5814     case MVT::v16i8:
5815       if (isVarArg) {
5816         // These go aligned on the stack, or in the corresponding R registers
5817         // when within range.  The Darwin PPC ABI doc claims they also go in
5818         // V registers; in fact gcc does this only for arguments that are
5819         // prototyped, not for those that match the ...  We do it for all
5820         // arguments, seems to work.
5821         while (ArgOffset % 16 !=0) {
5822           ArgOffset += PtrByteSize;
5823           if (GPR_idx != NumGPRs)
5824             GPR_idx++;
5825         }
5826         // We could elide this store in the case where the object fits
5827         // entirely in R registers.  Maybe later.
5828         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5829                              DAG.getConstant(ArgOffset, dl, PtrVT));
5830         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5831                                      MachinePointerInfo(), false, false, 0);
5832         MemOpChains.push_back(Store);
5833         if (VR_idx != NumVRs) {
5834           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5835                                      MachinePointerInfo(),
5836                                      false, false, false, 0);
5837           MemOpChains.push_back(Load.getValue(1));
5838           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5839         }
5840         ArgOffset += 16;
5841         for (unsigned i=0; i<16; i+=PtrByteSize) {
5842           if (GPR_idx == NumGPRs)
5843             break;
5844           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5845                                    DAG.getConstant(i, dl, PtrVT));
5846           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5847                                      false, false, false, 0);
5848           MemOpChains.push_back(Load.getValue(1));
5849           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5850         }
5851         break;
5852       }
5853 
5854       // Non-varargs Altivec params generally go in registers, but have
5855       // stack space allocated at the end.
5856       if (VR_idx != NumVRs) {
5857         // Doesn't have GPR space allocated.
5858         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5859       } else if (nAltivecParamsAtEnd==0) {
5860         // We are emitting Altivec params in order.
5861         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5862                          isPPC64, isTailCall, true, MemOpChains,
5863                          TailCallArguments, dl);
5864         ArgOffset += 16;
5865       }
5866       break;
5867     }
5868   }
5869   // If all Altivec parameters fit in registers, as they usually do,
5870   // they get stack space following the non-Altivec parameters.  We
5871   // don't track this here because nobody below needs it.
5872   // If there are more Altivec parameters than fit in registers emit
5873   // the stores here.
5874   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5875     unsigned j = 0;
5876     // Offset is aligned; skip 1st 12 params which go in V registers.
5877     ArgOffset = ((ArgOffset+15)/16)*16;
5878     ArgOffset += 12*16;
5879     for (unsigned i = 0; i != NumOps; ++i) {
5880       SDValue Arg = OutVals[i];
5881       EVT ArgType = Outs[i].VT;
5882       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5883           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5884         if (++j > NumVRs) {
5885           SDValue PtrOff;
5886           // We are emitting Altivec params in order.
5887           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5888                            isPPC64, isTailCall, true, MemOpChains,
5889                            TailCallArguments, dl);
5890           ArgOffset += 16;
5891         }
5892       }
5893     }
5894   }
5895 
5896   if (!MemOpChains.empty())
5897     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5898 
5899   // On Darwin, R12 must contain the address of an indirect callee.  This does
5900   // not mean the MTCTR instruction must use R12; it's easier to model this as
5901   // an extra parameter, so do that.
5902   if (!isTailCall &&
5903       !isFunctionGlobalAddress(Callee) &&
5904       !isa<ExternalSymbolSDNode>(Callee) &&
5905       !isBLACompatibleAddress(Callee, DAG))
5906     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5907                                                    PPC::R12), Callee));
5908 
5909   // Build a sequence of copy-to-reg nodes chained together with token chain
5910   // and flag operands which copy the outgoing args into the appropriate regs.
5911   SDValue InFlag;
5912   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5913     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5914                              RegsToPass[i].second, InFlag);
5915     InFlag = Chain.getValue(1);
5916   }
5917 
5918   if (isTailCall)
5919     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5920                     FPOp, true, TailCallArguments);
5921 
5922   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5923                     /* unused except on PPC64 ELFv1 */ false, DAG,
5924                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5925                     NumBytes, Ins, InVals, CS);
5926 }
5927 
5928 bool
5929 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5930                                   MachineFunction &MF, bool isVarArg,
5931                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5932                                   LLVMContext &Context) const {
5933   SmallVector<CCValAssign, 16> RVLocs;
5934   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5935   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5936 }
5937 
5938 SDValue
5939 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
5940                                bool isVarArg,
5941                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5942                                const SmallVectorImpl<SDValue> &OutVals,
5943                                const SDLoc &dl, SelectionDAG &DAG) const {
5944 
5945   SmallVector<CCValAssign, 16> RVLocs;
5946   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5947                  *DAG.getContext());
5948   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5949 
5950   SDValue Flag;
5951   SmallVector<SDValue, 4> RetOps(1, Chain);
5952 
5953   // Copy the result values into the output registers.
5954   for (unsigned i = 0; i != RVLocs.size(); ++i) {
5955     CCValAssign &VA = RVLocs[i];
5956     assert(VA.isRegLoc() && "Can only return in registers!");
5957 
5958     SDValue Arg = OutVals[i];
5959 
5960     switch (VA.getLocInfo()) {
5961     default: llvm_unreachable("Unknown loc info!");
5962     case CCValAssign::Full: break;
5963     case CCValAssign::AExt:
5964       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5965       break;
5966     case CCValAssign::ZExt:
5967       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5968       break;
5969     case CCValAssign::SExt:
5970       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5971       break;
5972     }
5973 
5974     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5975     Flag = Chain.getValue(1);
5976     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5977   }
5978 
5979   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
5980   const MCPhysReg *I =
5981     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
5982   if (I) {
5983     for (; *I; ++I) {
5984 
5985       if (PPC::G8RCRegClass.contains(*I))
5986         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
5987       else if (PPC::F8RCRegClass.contains(*I))
5988         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
5989       else if (PPC::CRRCRegClass.contains(*I))
5990         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
5991       else if (PPC::VRRCRegClass.contains(*I))
5992         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
5993       else
5994         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
5995     }
5996   }
5997 
5998   RetOps[0] = Chain;  // Update chain.
5999 
6000   // Add the flag if we have it.
6001   if (Flag.getNode())
6002     RetOps.push_back(Flag);
6003 
6004   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6005 }
6006 
6007 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
6008     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
6009   SDLoc dl(Op);
6010 
6011   // Get the corect type for integers.
6012   EVT IntVT = Op.getValueType();
6013 
6014   // Get the inputs.
6015   SDValue Chain = Op.getOperand(0);
6016   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6017   // Build a DYNAREAOFFSET node.
6018   SDValue Ops[2] = {Chain, FPSIdx};
6019   SDVTList VTs = DAG.getVTList(IntVT);
6020   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6021 }
6022 
6023 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
6024                                    const PPCSubtarget &Subtarget) const {
6025   // When we pop the dynamic allocation we need to restore the SP link.
6026   SDLoc dl(Op);
6027 
6028   // Get the corect type for pointers.
6029   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6030 
6031   // Construct the stack pointer operand.
6032   bool isPPC64 = Subtarget.isPPC64();
6033   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6034   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6035 
6036   // Get the operands for the STACKRESTORE.
6037   SDValue Chain = Op.getOperand(0);
6038   SDValue SaveSP = Op.getOperand(1);
6039 
6040   // Load the old link SP.
6041   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
6042                                    MachinePointerInfo(),
6043                                    false, false, false, 0);
6044 
6045   // Restore the stack pointer.
6046   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6047 
6048   // Store the old link SP.
6049   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
6050                       false, false, 0);
6051 }
6052 
6053 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6054   MachineFunction &MF = DAG.getMachineFunction();
6055   bool isPPC64 = Subtarget.isPPC64();
6056   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6057 
6058   // Get current frame pointer save index.  The users of this index will be
6059   // primarily DYNALLOC instructions.
6060   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6061   int RASI = FI->getReturnAddrSaveIndex();
6062 
6063   // If the frame pointer save index hasn't been defined yet.
6064   if (!RASI) {
6065     // Find out what the fix offset of the frame pointer save area.
6066     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6067     // Allocate the frame index for frame pointer save area.
6068     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6069     // Save the result.
6070     FI->setReturnAddrSaveIndex(RASI);
6071   }
6072   return DAG.getFrameIndex(RASI, PtrVT);
6073 }
6074 
6075 SDValue
6076 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6077   MachineFunction &MF = DAG.getMachineFunction();
6078   bool isPPC64 = Subtarget.isPPC64();
6079   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6080 
6081   // Get current frame pointer save index.  The users of this index will be
6082   // primarily DYNALLOC instructions.
6083   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6084   int FPSI = FI->getFramePointerSaveIndex();
6085 
6086   // If the frame pointer save index hasn't been defined yet.
6087   if (!FPSI) {
6088     // Find out what the fix offset of the frame pointer save area.
6089     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6090     // Allocate the frame index for frame pointer save area.
6091     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6092     // Save the result.
6093     FI->setFramePointerSaveIndex(FPSI);
6094   }
6095   return DAG.getFrameIndex(FPSI, PtrVT);
6096 }
6097 
6098 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6099                                          SelectionDAG &DAG,
6100                                          const PPCSubtarget &Subtarget) const {
6101   // Get the inputs.
6102   SDValue Chain = Op.getOperand(0);
6103   SDValue Size  = Op.getOperand(1);
6104   SDLoc dl(Op);
6105 
6106   // Get the corect type for pointers.
6107   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6108   // Negate the size.
6109   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6110                                 DAG.getConstant(0, dl, PtrVT), Size);
6111   // Construct a node for the frame pointer save index.
6112   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6113   // Build a DYNALLOC node.
6114   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6115   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6116   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6117 }
6118 
6119 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6120                                                SelectionDAG &DAG) const {
6121   SDLoc DL(Op);
6122   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6123                      DAG.getVTList(MVT::i32, MVT::Other),
6124                      Op.getOperand(0), Op.getOperand(1));
6125 }
6126 
6127 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6128                                                 SelectionDAG &DAG) const {
6129   SDLoc DL(Op);
6130   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6131                      Op.getOperand(0), Op.getOperand(1));
6132 }
6133 
6134 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6135   if (Op.getValueType().isVector())
6136     return LowerVectorLoad(Op, DAG);
6137 
6138   assert(Op.getValueType() == MVT::i1 &&
6139          "Custom lowering only for i1 loads");
6140 
6141   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6142 
6143   SDLoc dl(Op);
6144   LoadSDNode *LD = cast<LoadSDNode>(Op);
6145 
6146   SDValue Chain = LD->getChain();
6147   SDValue BasePtr = LD->getBasePtr();
6148   MachineMemOperand *MMO = LD->getMemOperand();
6149 
6150   SDValue NewLD =
6151       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6152                      BasePtr, MVT::i8, MMO);
6153   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6154 
6155   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6156   return DAG.getMergeValues(Ops, dl);
6157 }
6158 
6159 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6160   if (Op.getOperand(1).getValueType().isVector())
6161     return LowerVectorStore(Op, DAG);
6162 
6163   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6164          "Custom lowering only for i1 stores");
6165 
6166   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6167 
6168   SDLoc dl(Op);
6169   StoreSDNode *ST = cast<StoreSDNode>(Op);
6170 
6171   SDValue Chain = ST->getChain();
6172   SDValue BasePtr = ST->getBasePtr();
6173   SDValue Value = ST->getValue();
6174   MachineMemOperand *MMO = ST->getMemOperand();
6175 
6176   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6177                       Value);
6178   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6179 }
6180 
6181 // FIXME: Remove this once the ANDI glue bug is fixed:
6182 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6183   assert(Op.getValueType() == MVT::i1 &&
6184          "Custom lowering only for i1 results");
6185 
6186   SDLoc DL(Op);
6187   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6188                      Op.getOperand(0));
6189 }
6190 
6191 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6192 /// possible.
6193 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6194   // Not FP? Not a fsel.
6195   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6196       !Op.getOperand(2).getValueType().isFloatingPoint())
6197     return Op;
6198 
6199   // We might be able to do better than this under some circumstances, but in
6200   // general, fsel-based lowering of select is a finite-math-only optimization.
6201   // For more information, see section F.3 of the 2.06 ISA specification.
6202   if (!DAG.getTarget().Options.NoInfsFPMath ||
6203       !DAG.getTarget().Options.NoNaNsFPMath)
6204     return Op;
6205   // TODO: Propagate flags from the select rather than global settings.
6206   SDNodeFlags Flags;
6207   Flags.setNoInfs(true);
6208   Flags.setNoNaNs(true);
6209 
6210   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6211 
6212   EVT ResVT = Op.getValueType();
6213   EVT CmpVT = Op.getOperand(0).getValueType();
6214   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6215   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6216   SDLoc dl(Op);
6217 
6218   // If the RHS of the comparison is a 0.0, we don't need to do the
6219   // subtraction at all.
6220   SDValue Sel1;
6221   if (isFloatingPointZero(RHS))
6222     switch (CC) {
6223     default: break;       // SETUO etc aren't handled by fsel.
6224     case ISD::SETNE:
6225       std::swap(TV, FV);
6226     case ISD::SETEQ:
6227       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6228         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6229       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6230       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6231         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6232       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6233                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6234     case ISD::SETULT:
6235     case ISD::SETLT:
6236       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6237     case ISD::SETOGE:
6238     case ISD::SETGE:
6239       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6240         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6241       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6242     case ISD::SETUGT:
6243     case ISD::SETGT:
6244       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6245     case ISD::SETOLE:
6246     case ISD::SETLE:
6247       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6248         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6249       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6250                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6251     }
6252 
6253   SDValue Cmp;
6254   switch (CC) {
6255   default: break;       // SETUO etc aren't handled by fsel.
6256   case ISD::SETNE:
6257     std::swap(TV, FV);
6258   case ISD::SETEQ:
6259     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6260     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6261       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6262     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6263     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6264       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6265     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6266                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6267   case ISD::SETULT:
6268   case ISD::SETLT:
6269     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6270     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6271       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6272     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6273   case ISD::SETOGE:
6274   case ISD::SETGE:
6275     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6276     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6277       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6278     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6279   case ISD::SETUGT:
6280   case ISD::SETGT:
6281     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6282     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6283       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6284     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6285   case ISD::SETOLE:
6286   case ISD::SETLE:
6287     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6288     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6289       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6290     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6291   }
6292   return Op;
6293 }
6294 
6295 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6296                                                SelectionDAG &DAG,
6297                                                const SDLoc &dl) const {
6298   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6299   SDValue Src = Op.getOperand(0);
6300   if (Src.getValueType() == MVT::f32)
6301     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6302 
6303   SDValue Tmp;
6304   switch (Op.getSimpleValueType().SimpleTy) {
6305   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6306   case MVT::i32:
6307     Tmp = DAG.getNode(
6308         Op.getOpcode() == ISD::FP_TO_SINT
6309             ? PPCISD::FCTIWZ
6310             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6311         dl, MVT::f64, Src);
6312     break;
6313   case MVT::i64:
6314     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6315            "i64 FP_TO_UINT is supported only with FPCVT");
6316     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6317                                                         PPCISD::FCTIDUZ,
6318                       dl, MVT::f64, Src);
6319     break;
6320   }
6321 
6322   // Convert the FP value to an int value through memory.
6323   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6324     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6325   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6326   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6327   MachinePointerInfo MPI =
6328       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6329 
6330   // Emit a store to the stack slot.
6331   SDValue Chain;
6332   if (i32Stack) {
6333     MachineFunction &MF = DAG.getMachineFunction();
6334     MachineMemOperand *MMO =
6335       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6336     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6337     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6338               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6339   } else
6340     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6341                          MPI, false, false, 0);
6342 
6343   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6344   // add in a bias on big endian.
6345   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6346     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6347                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6348     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6349   }
6350 
6351   RLI.Chain = Chain;
6352   RLI.Ptr = FIPtr;
6353   RLI.MPI = MPI;
6354 }
6355 
6356 /// \brief Custom lowers floating point to integer conversions to use
6357 /// the direct move instructions available in ISA 2.07 to avoid the
6358 /// need for load/store combinations.
6359 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6360                                                     SelectionDAG &DAG,
6361                                                     const SDLoc &dl) const {
6362   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6363   SDValue Src = Op.getOperand(0);
6364 
6365   if (Src.getValueType() == MVT::f32)
6366     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6367 
6368   SDValue Tmp;
6369   switch (Op.getSimpleValueType().SimpleTy) {
6370   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6371   case MVT::i32:
6372     Tmp = DAG.getNode(
6373         Op.getOpcode() == ISD::FP_TO_SINT
6374             ? PPCISD::FCTIWZ
6375             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6376         dl, MVT::f64, Src);
6377     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6378     break;
6379   case MVT::i64:
6380     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6381            "i64 FP_TO_UINT is supported only with FPCVT");
6382     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6383                                                         PPCISD::FCTIDUZ,
6384                       dl, MVT::f64, Src);
6385     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6386     break;
6387   }
6388   return Tmp;
6389 }
6390 
6391 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6392                                           const SDLoc &dl) const {
6393   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6394     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6395 
6396   ReuseLoadInfo RLI;
6397   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6398 
6399   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6400                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6401                      RLI.Ranges);
6402 }
6403 
6404 // We're trying to insert a regular store, S, and then a load, L. If the
6405 // incoming value, O, is a load, we might just be able to have our load use the
6406 // address used by O. However, we don't know if anything else will store to
6407 // that address before we can load from it. To prevent this situation, we need
6408 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6409 // the same chain operand as O, we create a token factor from the chain results
6410 // of O and L, and we replace all uses of O's chain result with that token
6411 // factor (see spliceIntoChain below for this last part).
6412 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6413                                             ReuseLoadInfo &RLI,
6414                                             SelectionDAG &DAG,
6415                                             ISD::LoadExtType ET) const {
6416   SDLoc dl(Op);
6417   if (ET == ISD::NON_EXTLOAD &&
6418       (Op.getOpcode() == ISD::FP_TO_UINT ||
6419        Op.getOpcode() == ISD::FP_TO_SINT) &&
6420       isOperationLegalOrCustom(Op.getOpcode(),
6421                                Op.getOperand(0).getValueType())) {
6422 
6423     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6424     return true;
6425   }
6426 
6427   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6428   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6429       LD->isNonTemporal())
6430     return false;
6431   if (LD->getMemoryVT() != MemVT)
6432     return false;
6433 
6434   RLI.Ptr = LD->getBasePtr();
6435   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6436     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6437            "Non-pre-inc AM on PPC?");
6438     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6439                           LD->getOffset());
6440   }
6441 
6442   RLI.Chain = LD->getChain();
6443   RLI.MPI = LD->getPointerInfo();
6444   RLI.IsInvariant = LD->isInvariant();
6445   RLI.Alignment = LD->getAlignment();
6446   RLI.AAInfo = LD->getAAInfo();
6447   RLI.Ranges = LD->getRanges();
6448 
6449   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6450   return true;
6451 }
6452 
6453 // Given the head of the old chain, ResChain, insert a token factor containing
6454 // it and NewResChain, and make users of ResChain now be users of that token
6455 // factor.
6456 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6457                                         SDValue NewResChain,
6458                                         SelectionDAG &DAG) const {
6459   if (!ResChain)
6460     return;
6461 
6462   SDLoc dl(NewResChain);
6463 
6464   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6465                            NewResChain, DAG.getUNDEF(MVT::Other));
6466   assert(TF.getNode() != NewResChain.getNode() &&
6467          "A new TF really is required here");
6468 
6469   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6470   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6471 }
6472 
6473 /// \brief Analyze profitability of direct move
6474 /// prefer float load to int load plus direct move
6475 /// when there is no integer use of int load
6476 static bool directMoveIsProfitable(const SDValue &Op) {
6477   SDNode *Origin = Op.getOperand(0).getNode();
6478   if (Origin->getOpcode() != ISD::LOAD)
6479     return true;
6480 
6481   for (SDNode::use_iterator UI = Origin->use_begin(),
6482                             UE = Origin->use_end();
6483        UI != UE; ++UI) {
6484 
6485     // Only look at the users of the loaded value.
6486     if (UI.getUse().get().getResNo() != 0)
6487       continue;
6488 
6489     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6490         UI->getOpcode() != ISD::UINT_TO_FP)
6491       return true;
6492   }
6493 
6494   return false;
6495 }
6496 
6497 /// \brief Custom lowers integer to floating point conversions to use
6498 /// the direct move instructions available in ISA 2.07 to avoid the
6499 /// need for load/store combinations.
6500 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6501                                                     SelectionDAG &DAG,
6502                                                     const SDLoc &dl) const {
6503   assert((Op.getValueType() == MVT::f32 ||
6504           Op.getValueType() == MVT::f64) &&
6505          "Invalid floating point type as target of conversion");
6506   assert(Subtarget.hasFPCVT() &&
6507          "Int to FP conversions with direct moves require FPCVT");
6508   SDValue FP;
6509   SDValue Src = Op.getOperand(0);
6510   bool SinglePrec = Op.getValueType() == MVT::f32;
6511   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6512   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6513   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6514                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6515 
6516   if (WordInt) {
6517     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6518                      dl, MVT::f64, Src);
6519     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6520   }
6521   else {
6522     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6523     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6524   }
6525 
6526   return FP;
6527 }
6528 
6529 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6530                                           SelectionDAG &DAG) const {
6531   SDLoc dl(Op);
6532 
6533   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6534     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6535       return SDValue();
6536 
6537     SDValue Value = Op.getOperand(0);
6538     // The values are now known to be -1 (false) or 1 (true). To convert this
6539     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6540     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6541     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6542 
6543     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6544 
6545     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6546 
6547     if (Op.getValueType() != MVT::v4f64)
6548       Value = DAG.getNode(ISD::FP_ROUND, dl,
6549                           Op.getValueType(), Value,
6550                           DAG.getIntPtrConstant(1, dl));
6551     return Value;
6552   }
6553 
6554   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6555   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6556     return SDValue();
6557 
6558   if (Op.getOperand(0).getValueType() == MVT::i1)
6559     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6560                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6561                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6562 
6563   // If we have direct moves, we can do all the conversion, skip the store/load
6564   // however, without FPCVT we can't do most conversions.
6565   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6566       Subtarget.isPPC64() && Subtarget.hasFPCVT())
6567     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6568 
6569   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6570          "UINT_TO_FP is supported only with FPCVT");
6571 
6572   // If we have FCFIDS, then use it when converting to single-precision.
6573   // Otherwise, convert to double-precision and then round.
6574   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6575                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6576                                                             : PPCISD::FCFIDS)
6577                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6578                                                             : PPCISD::FCFID);
6579   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6580                   ? MVT::f32
6581                   : MVT::f64;
6582 
6583   if (Op.getOperand(0).getValueType() == MVT::i64) {
6584     SDValue SINT = Op.getOperand(0);
6585     // When converting to single-precision, we actually need to convert
6586     // to double-precision first and then round to single-precision.
6587     // To avoid double-rounding effects during that operation, we have
6588     // to prepare the input operand.  Bits that might be truncated when
6589     // converting to double-precision are replaced by a bit that won't
6590     // be lost at this stage, but is below the single-precision rounding
6591     // position.
6592     //
6593     // However, if -enable-unsafe-fp-math is in effect, accept double
6594     // rounding to avoid the extra overhead.
6595     if (Op.getValueType() == MVT::f32 &&
6596         !Subtarget.hasFPCVT() &&
6597         !DAG.getTarget().Options.UnsafeFPMath) {
6598 
6599       // Twiddle input to make sure the low 11 bits are zero.  (If this
6600       // is the case, we are guaranteed the value will fit into the 53 bit
6601       // mantissa of an IEEE double-precision value without rounding.)
6602       // If any of those low 11 bits were not zero originally, make sure
6603       // bit 12 (value 2048) is set instead, so that the final rounding
6604       // to single-precision gets the correct result.
6605       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6606                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6607       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6608                           Round, DAG.getConstant(2047, dl, MVT::i64));
6609       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6610       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6611                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6612 
6613       // However, we cannot use that value unconditionally: if the magnitude
6614       // of the input value is small, the bit-twiddling we did above might
6615       // end up visibly changing the output.  Fortunately, in that case, we
6616       // don't need to twiddle bits since the original input will convert
6617       // exactly to double-precision floating-point already.  Therefore,
6618       // construct a conditional to use the original value if the top 11
6619       // bits are all sign-bit copies, and use the rounded value computed
6620       // above otherwise.
6621       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6622                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6623       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6624                          Cond, DAG.getConstant(1, dl, MVT::i64));
6625       Cond = DAG.getSetCC(dl, MVT::i32,
6626                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6627 
6628       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6629     }
6630 
6631     ReuseLoadInfo RLI;
6632     SDValue Bits;
6633 
6634     MachineFunction &MF = DAG.getMachineFunction();
6635     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6636       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6637                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6638                          RLI.Ranges);
6639       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6640     } else if (Subtarget.hasLFIWAX() &&
6641                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6642       MachineMemOperand *MMO =
6643         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6644                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6645       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6646       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6647                                      DAG.getVTList(MVT::f64, MVT::Other),
6648                                      Ops, MVT::i32, MMO);
6649       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6650     } else if (Subtarget.hasFPCVT() &&
6651                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6652       MachineMemOperand *MMO =
6653         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6654                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6655       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6656       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6657                                      DAG.getVTList(MVT::f64, MVT::Other),
6658                                      Ops, MVT::i32, MMO);
6659       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6660     } else if (((Subtarget.hasLFIWAX() &&
6661                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6662                 (Subtarget.hasFPCVT() &&
6663                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6664                SINT.getOperand(0).getValueType() == MVT::i32) {
6665       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6666       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6667 
6668       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6669       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6670 
6671       SDValue Store = DAG.getStore(
6672           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6673           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6674           false, false, 0);
6675 
6676       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6677              "Expected an i32 store");
6678 
6679       RLI.Ptr = FIdx;
6680       RLI.Chain = Store;
6681       RLI.MPI =
6682           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6683       RLI.Alignment = 4;
6684 
6685       MachineMemOperand *MMO =
6686         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6687                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6688       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6689       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6690                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6691                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6692                                      Ops, MVT::i32, MMO);
6693     } else
6694       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6695 
6696     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6697 
6698     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6699       FP = DAG.getNode(ISD::FP_ROUND, dl,
6700                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6701     return FP;
6702   }
6703 
6704   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6705          "Unhandled INT_TO_FP type in custom expander!");
6706   // Since we only generate this in 64-bit mode, we can take advantage of
6707   // 64-bit registers.  In particular, sign extend the input value into the
6708   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6709   // then lfd it and fcfid it.
6710   MachineFunction &MF = DAG.getMachineFunction();
6711   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6712   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6713 
6714   SDValue Ld;
6715   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6716     ReuseLoadInfo RLI;
6717     bool ReusingLoad;
6718     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6719                                             DAG))) {
6720       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6721       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6722 
6723       SDValue Store = DAG.getStore(
6724           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6725           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6726           false, false, 0);
6727 
6728       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6729              "Expected an i32 store");
6730 
6731       RLI.Ptr = FIdx;
6732       RLI.Chain = Store;
6733       RLI.MPI =
6734           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6735       RLI.Alignment = 4;
6736     }
6737 
6738     MachineMemOperand *MMO =
6739       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6740                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6741     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6742     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6743                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6744                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6745                                  Ops, MVT::i32, MMO);
6746     if (ReusingLoad)
6747       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6748   } else {
6749     assert(Subtarget.isPPC64() &&
6750            "i32->FP without LFIWAX supported only on PPC64");
6751 
6752     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6753     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6754 
6755     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6756                                 Op.getOperand(0));
6757 
6758     // STD the extended value into the stack slot.
6759     SDValue Store = DAG.getStore(
6760         DAG.getEntryNode(), dl, Ext64, FIdx,
6761         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6762         false, false, 0);
6763 
6764     // Load the value as a double.
6765     Ld = DAG.getLoad(
6766         MVT::f64, dl, Store, FIdx,
6767         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6768         false, false, false, 0);
6769   }
6770 
6771   // FCFID it and return it.
6772   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6773   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6774     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6775                      DAG.getIntPtrConstant(0, dl));
6776   return FP;
6777 }
6778 
6779 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6780                                             SelectionDAG &DAG) const {
6781   SDLoc dl(Op);
6782   /*
6783    The rounding mode is in bits 30:31 of FPSR, and has the following
6784    settings:
6785      00 Round to nearest
6786      01 Round to 0
6787      10 Round to +inf
6788      11 Round to -inf
6789 
6790   FLT_ROUNDS, on the other hand, expects the following:
6791     -1 Undefined
6792      0 Round to 0
6793      1 Round to nearest
6794      2 Round to +inf
6795      3 Round to -inf
6796 
6797   To perform the conversion, we do:
6798     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6799   */
6800 
6801   MachineFunction &MF = DAG.getMachineFunction();
6802   EVT VT = Op.getValueType();
6803   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6804 
6805   // Save FP Control Word to register
6806   EVT NodeTys[] = {
6807     MVT::f64,    // return register
6808     MVT::Glue    // unused in this context
6809   };
6810   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6811 
6812   // Save FP register to stack slot
6813   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6814   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6815   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6816                                StackSlot, MachinePointerInfo(), false, false,0);
6817 
6818   // Load FP Control Word from low 32 bits of stack slot.
6819   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6820   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6821   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6822                             false, false, false, 0);
6823 
6824   // Transform as necessary
6825   SDValue CWD1 =
6826     DAG.getNode(ISD::AND, dl, MVT::i32,
6827                 CWD, DAG.getConstant(3, dl, MVT::i32));
6828   SDValue CWD2 =
6829     DAG.getNode(ISD::SRL, dl, MVT::i32,
6830                 DAG.getNode(ISD::AND, dl, MVT::i32,
6831                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6832                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6833                             DAG.getConstant(3, dl, MVT::i32)),
6834                 DAG.getConstant(1, dl, MVT::i32));
6835 
6836   SDValue RetVal =
6837     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6838 
6839   return DAG.getNode((VT.getSizeInBits() < 16 ?
6840                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6841 }
6842 
6843 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6844   EVT VT = Op.getValueType();
6845   unsigned BitWidth = VT.getSizeInBits();
6846   SDLoc dl(Op);
6847   assert(Op.getNumOperands() == 3 &&
6848          VT == Op.getOperand(1).getValueType() &&
6849          "Unexpected SHL!");
6850 
6851   // Expand into a bunch of logical ops.  Note that these ops
6852   // depend on the PPC behavior for oversized shift amounts.
6853   SDValue Lo = Op.getOperand(0);
6854   SDValue Hi = Op.getOperand(1);
6855   SDValue Amt = Op.getOperand(2);
6856   EVT AmtVT = Amt.getValueType();
6857 
6858   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6859                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6860   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6861   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6862   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6863   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6864                              DAG.getConstant(-BitWidth, dl, AmtVT));
6865   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6866   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6867   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6868   SDValue OutOps[] = { OutLo, OutHi };
6869   return DAG.getMergeValues(OutOps, dl);
6870 }
6871 
6872 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6873   EVT VT = Op.getValueType();
6874   SDLoc dl(Op);
6875   unsigned BitWidth = VT.getSizeInBits();
6876   assert(Op.getNumOperands() == 3 &&
6877          VT == Op.getOperand(1).getValueType() &&
6878          "Unexpected SRL!");
6879 
6880   // Expand into a bunch of logical ops.  Note that these ops
6881   // depend on the PPC behavior for oversized shift amounts.
6882   SDValue Lo = Op.getOperand(0);
6883   SDValue Hi = Op.getOperand(1);
6884   SDValue Amt = Op.getOperand(2);
6885   EVT AmtVT = Amt.getValueType();
6886 
6887   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6888                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6889   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6890   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6891   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6892   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6893                              DAG.getConstant(-BitWidth, dl, AmtVT));
6894   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6895   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6896   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6897   SDValue OutOps[] = { OutLo, OutHi };
6898   return DAG.getMergeValues(OutOps, dl);
6899 }
6900 
6901 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6902   SDLoc dl(Op);
6903   EVT VT = Op.getValueType();
6904   unsigned BitWidth = VT.getSizeInBits();
6905   assert(Op.getNumOperands() == 3 &&
6906          VT == Op.getOperand(1).getValueType() &&
6907          "Unexpected SRA!");
6908 
6909   // Expand into a bunch of logical ops, followed by a select_cc.
6910   SDValue Lo = Op.getOperand(0);
6911   SDValue Hi = Op.getOperand(1);
6912   SDValue Amt = Op.getOperand(2);
6913   EVT AmtVT = Amt.getValueType();
6914 
6915   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6916                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6917   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6918   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6919   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6920   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6921                              DAG.getConstant(-BitWidth, dl, AmtVT));
6922   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6923   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6924   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6925                                   Tmp4, Tmp6, ISD::SETLE);
6926   SDValue OutOps[] = { OutLo, OutHi };
6927   return DAG.getMergeValues(OutOps, dl);
6928 }
6929 
6930 //===----------------------------------------------------------------------===//
6931 // Vector related lowering.
6932 //
6933 
6934 /// BuildSplatI - Build a canonical splati of Val with an element size of
6935 /// SplatSize.  Cast the result to VT.
6936 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6937                            SelectionDAG &DAG, const SDLoc &dl) {
6938   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6939 
6940   static const MVT VTys[] = { // canonical VT to use for each size.
6941     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6942   };
6943 
6944   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6945 
6946   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6947   if (Val == -1)
6948     SplatSize = 1;
6949 
6950   EVT CanonicalVT = VTys[SplatSize-1];
6951 
6952   // Build a canonical splat for this value.
6953   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
6954 }
6955 
6956 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6957 /// specified intrinsic ID.
6958 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
6959                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
6960   if (DestVT == MVT::Other) DestVT = Op.getValueType();
6961   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6962                      DAG.getConstant(IID, dl, MVT::i32), Op);
6963 }
6964 
6965 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6966 /// specified intrinsic ID.
6967 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6968                                 SelectionDAG &DAG, const SDLoc &dl,
6969                                 EVT DestVT = MVT::Other) {
6970   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6971   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6972                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
6973 }
6974 
6975 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6976 /// specified intrinsic ID.
6977 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6978                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
6979                                 EVT DestVT = MVT::Other) {
6980   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6981   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6982                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
6983 }
6984 
6985 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6986 /// amount.  The result has the specified value type.
6987 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
6988                            SelectionDAG &DAG, const SDLoc &dl) {
6989   // Force LHS/RHS to be the right type.
6990   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6991   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6992 
6993   int Ops[16];
6994   for (unsigned i = 0; i != 16; ++i)
6995     Ops[i] = i + Amt;
6996   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6997   return DAG.getNode(ISD::BITCAST, dl, VT, T);
6998 }
6999 
7000 // If this is a case we can't handle, return null and let the default
7001 // expansion code take care of it.  If we CAN select this case, and if it
7002 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7003 // this case more efficiently than a constant pool load, lower it to the
7004 // sequence of ops that should be used.
7005 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7006                                              SelectionDAG &DAG) const {
7007   SDLoc dl(Op);
7008   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7009   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7010 
7011   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7012     // We first build an i32 vector, load it into a QPX register,
7013     // then convert it to a floating-point vector and compare it
7014     // to a zero vector to get the boolean result.
7015     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7016     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7017     MachinePointerInfo PtrInfo =
7018         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7019     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7020     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7021 
7022     assert(BVN->getNumOperands() == 4 &&
7023       "BUILD_VECTOR for v4i1 does not have 4 operands");
7024 
7025     bool IsConst = true;
7026     for (unsigned i = 0; i < 4; ++i) {
7027       if (BVN->getOperand(i).isUndef()) continue;
7028       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7029         IsConst = false;
7030         break;
7031       }
7032     }
7033 
7034     if (IsConst) {
7035       Constant *One =
7036         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7037       Constant *NegOne =
7038         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7039 
7040       Constant *CV[4];
7041       for (unsigned i = 0; i < 4; ++i) {
7042         if (BVN->getOperand(i).isUndef())
7043           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7044         else if (isNullConstant(BVN->getOperand(i)))
7045           CV[i] = NegOne;
7046         else
7047           CV[i] = One;
7048       }
7049 
7050       Constant *CP = ConstantVector::get(CV);
7051       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7052                                           16 /* alignment */);
7053 
7054       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7055       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7056       return DAG.getMemIntrinsicNode(
7057           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7058           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7059     }
7060 
7061     SmallVector<SDValue, 4> Stores;
7062     for (unsigned i = 0; i < 4; ++i) {
7063       if (BVN->getOperand(i).isUndef()) continue;
7064 
7065       unsigned Offset = 4*i;
7066       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7067       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7068 
7069       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7070       if (StoreSize > 4) {
7071         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
7072                                            BVN->getOperand(i), Idx,
7073                                            PtrInfo.getWithOffset(Offset),
7074                                            MVT::i32, false, false, 0));
7075       } else {
7076         SDValue StoreValue = BVN->getOperand(i);
7077         if (StoreSize < 4)
7078           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7079 
7080         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
7081                                       StoreValue, Idx,
7082                                       PtrInfo.getWithOffset(Offset),
7083                                       false, false, 0));
7084       }
7085     }
7086 
7087     SDValue StoreChain;
7088     if (!Stores.empty())
7089       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7090     else
7091       StoreChain = DAG.getEntryNode();
7092 
7093     // Now load from v4i32 into the QPX register; this will extend it to
7094     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7095     // is typed as v4f64 because the QPX register integer states are not
7096     // explicitly represented.
7097 
7098     SDValue Ops[] = {StoreChain,
7099                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7100                      FIdx};
7101     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7102 
7103     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7104       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7105     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7106       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7107       LoadedVect);
7108 
7109     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7110 
7111     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7112   }
7113 
7114   // All other QPX vectors are handled by generic code.
7115   if (Subtarget.hasQPX())
7116     return SDValue();
7117 
7118   // Check if this is a splat of a constant value.
7119   APInt APSplatBits, APSplatUndef;
7120   unsigned SplatBitSize;
7121   bool HasAnyUndefs;
7122   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7123                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7124       SplatBitSize > 32)
7125     return SDValue();
7126 
7127   unsigned SplatBits = APSplatBits.getZExtValue();
7128   unsigned SplatUndef = APSplatUndef.getZExtValue();
7129   unsigned SplatSize = SplatBitSize / 8;
7130 
7131   // First, handle single instruction cases.
7132 
7133   // All zeros?
7134   if (SplatBits == 0) {
7135     // Canonicalize all zero vectors to be v4i32.
7136     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7137       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7138       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7139     }
7140     return Op;
7141   }
7142 
7143   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7144   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7145                     (32-SplatBitSize));
7146   if (SextVal >= -16 && SextVal <= 15)
7147     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7148 
7149   // Two instruction sequences.
7150 
7151   // If this value is in the range [-32,30] and is even, use:
7152   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7153   // If this value is in the range [17,31] and is odd, use:
7154   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7155   // If this value is in the range [-31,-17] and is odd, use:
7156   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7157   // Note the last two are three-instruction sequences.
7158   if (SextVal >= -32 && SextVal <= 31) {
7159     // To avoid having these optimizations undone by constant folding,
7160     // we convert to a pseudo that will be expanded later into one of
7161     // the above forms.
7162     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7163     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7164               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7165     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7166     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7167     if (VT == Op.getValueType())
7168       return RetVal;
7169     else
7170       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7171   }
7172 
7173   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7174   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7175   // for fneg/fabs.
7176   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7177     // Make -1 and vspltisw -1:
7178     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7179 
7180     // Make the VSLW intrinsic, computing 0x8000_0000.
7181     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7182                                    OnesV, DAG, dl);
7183 
7184     // xor by OnesV to invert it.
7185     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7186     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7187   }
7188 
7189   // Check to see if this is a wide variety of vsplti*, binop self cases.
7190   static const signed char SplatCsts[] = {
7191     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7192     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7193   };
7194 
7195   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7196     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7197     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7198     int i = SplatCsts[idx];
7199 
7200     // Figure out what shift amount will be used by altivec if shifted by i in
7201     // this splat size.
7202     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7203 
7204     // vsplti + shl self.
7205     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7206       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7207       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7208         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7209         Intrinsic::ppc_altivec_vslw
7210       };
7211       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7212       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7213     }
7214 
7215     // vsplti + srl self.
7216     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7217       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7218       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7219         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7220         Intrinsic::ppc_altivec_vsrw
7221       };
7222       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7223       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7224     }
7225 
7226     // vsplti + sra self.
7227     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7228       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7229       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7230         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7231         Intrinsic::ppc_altivec_vsraw
7232       };
7233       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7234       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7235     }
7236 
7237     // vsplti + rol self.
7238     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7239                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7240       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7241       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7242         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7243         Intrinsic::ppc_altivec_vrlw
7244       };
7245       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7246       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7247     }
7248 
7249     // t = vsplti c, result = vsldoi t, t, 1
7250     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7251       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7252       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7253       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7254     }
7255     // t = vsplti c, result = vsldoi t, t, 2
7256     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7257       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7258       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7259       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7260     }
7261     // t = vsplti c, result = vsldoi t, t, 3
7262     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7263       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7264       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7265       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7266     }
7267   }
7268 
7269   return SDValue();
7270 }
7271 
7272 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7273 /// the specified operations to build the shuffle.
7274 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7275                                       SDValue RHS, SelectionDAG &DAG,
7276                                       const SDLoc &dl) {
7277   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7278   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7279   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7280 
7281   enum {
7282     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7283     OP_VMRGHW,
7284     OP_VMRGLW,
7285     OP_VSPLTISW0,
7286     OP_VSPLTISW1,
7287     OP_VSPLTISW2,
7288     OP_VSPLTISW3,
7289     OP_VSLDOI4,
7290     OP_VSLDOI8,
7291     OP_VSLDOI12
7292   };
7293 
7294   if (OpNum == OP_COPY) {
7295     if (LHSID == (1*9+2)*9+3) return LHS;
7296     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7297     return RHS;
7298   }
7299 
7300   SDValue OpLHS, OpRHS;
7301   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7302   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7303 
7304   int ShufIdxs[16];
7305   switch (OpNum) {
7306   default: llvm_unreachable("Unknown i32 permute!");
7307   case OP_VMRGHW:
7308     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7309     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7310     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7311     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7312     break;
7313   case OP_VMRGLW:
7314     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7315     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7316     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7317     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7318     break;
7319   case OP_VSPLTISW0:
7320     for (unsigned i = 0; i != 16; ++i)
7321       ShufIdxs[i] = (i&3)+0;
7322     break;
7323   case OP_VSPLTISW1:
7324     for (unsigned i = 0; i != 16; ++i)
7325       ShufIdxs[i] = (i&3)+4;
7326     break;
7327   case OP_VSPLTISW2:
7328     for (unsigned i = 0; i != 16; ++i)
7329       ShufIdxs[i] = (i&3)+8;
7330     break;
7331   case OP_VSPLTISW3:
7332     for (unsigned i = 0; i != 16; ++i)
7333       ShufIdxs[i] = (i&3)+12;
7334     break;
7335   case OP_VSLDOI4:
7336     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7337   case OP_VSLDOI8:
7338     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7339   case OP_VSLDOI12:
7340     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7341   }
7342   EVT VT = OpLHS.getValueType();
7343   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7344   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7345   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7346   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7347 }
7348 
7349 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7350 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7351 /// return the code it can be lowered into.  Worst case, it can always be
7352 /// lowered into a vperm.
7353 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7354                                                SelectionDAG &DAG) const {
7355   SDLoc dl(Op);
7356   SDValue V1 = Op.getOperand(0);
7357   SDValue V2 = Op.getOperand(1);
7358   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7359   EVT VT = Op.getValueType();
7360   bool isLittleEndian = Subtarget.isLittleEndian();
7361 
7362   if (Subtarget.hasVSX()) {
7363     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7364       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7365       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7366       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7367                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
7368       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7369     }
7370   }
7371 
7372   if (Subtarget.hasQPX()) {
7373     if (VT.getVectorNumElements() != 4)
7374       return SDValue();
7375 
7376     if (V2.isUndef()) V2 = V1;
7377 
7378     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7379     if (AlignIdx != -1) {
7380       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7381                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7382     } else if (SVOp->isSplat()) {
7383       int SplatIdx = SVOp->getSplatIndex();
7384       if (SplatIdx >= 4) {
7385         std::swap(V1, V2);
7386         SplatIdx -= 4;
7387       }
7388 
7389       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7390                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7391     }
7392 
7393     // Lower this into a qvgpci/qvfperm pair.
7394 
7395     // Compute the qvgpci literal
7396     unsigned idx = 0;
7397     for (unsigned i = 0; i < 4; ++i) {
7398       int m = SVOp->getMaskElt(i);
7399       unsigned mm = m >= 0 ? (unsigned) m : i;
7400       idx |= mm << (3-i)*3;
7401     }
7402 
7403     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7404                              DAG.getConstant(idx, dl, MVT::i32));
7405     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7406   }
7407 
7408   // Cases that are handled by instructions that take permute immediates
7409   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7410   // selected by the instruction selector.
7411   if (V2.isUndef()) {
7412     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7413         PPC::isSplatShuffleMask(SVOp, 2) ||
7414         PPC::isSplatShuffleMask(SVOp, 4) ||
7415         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7416         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7417         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7418         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7419         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7420         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7421         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7422         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7423         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7424         (Subtarget.hasP8Altivec() && (
7425          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7426          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7427          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7428       return Op;
7429     }
7430   }
7431 
7432   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7433   // and produce a fixed permutation.  If any of these match, do not lower to
7434   // VPERM.
7435   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7436   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7437       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7438       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7439       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7440       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7441       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7442       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7443       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7444       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7445       (Subtarget.hasP8Altivec() && (
7446        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7447        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7448        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7449     return Op;
7450 
7451   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7452   // perfect shuffle table to emit an optimal matching sequence.
7453   ArrayRef<int> PermMask = SVOp->getMask();
7454 
7455   unsigned PFIndexes[4];
7456   bool isFourElementShuffle = true;
7457   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7458     unsigned EltNo = 8;   // Start out undef.
7459     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7460       if (PermMask[i*4+j] < 0)
7461         continue;   // Undef, ignore it.
7462 
7463       unsigned ByteSource = PermMask[i*4+j];
7464       if ((ByteSource & 3) != j) {
7465         isFourElementShuffle = false;
7466         break;
7467       }
7468 
7469       if (EltNo == 8) {
7470         EltNo = ByteSource/4;
7471       } else if (EltNo != ByteSource/4) {
7472         isFourElementShuffle = false;
7473         break;
7474       }
7475     }
7476     PFIndexes[i] = EltNo;
7477   }
7478 
7479   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7480   // perfect shuffle vector to determine if it is cost effective to do this as
7481   // discrete instructions, or whether we should use a vperm.
7482   // For now, we skip this for little endian until such time as we have a
7483   // little-endian perfect shuffle table.
7484   if (isFourElementShuffle && !isLittleEndian) {
7485     // Compute the index in the perfect shuffle table.
7486     unsigned PFTableIndex =
7487       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7488 
7489     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7490     unsigned Cost  = (PFEntry >> 30);
7491 
7492     // Determining when to avoid vperm is tricky.  Many things affect the cost
7493     // of vperm, particularly how many times the perm mask needs to be computed.
7494     // For example, if the perm mask can be hoisted out of a loop or is already
7495     // used (perhaps because there are multiple permutes with the same shuffle
7496     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7497     // the loop requires an extra register.
7498     //
7499     // As a compromise, we only emit discrete instructions if the shuffle can be
7500     // generated in 3 or fewer operations.  When we have loop information
7501     // available, if this block is within a loop, we should avoid using vperm
7502     // for 3-operation perms and use a constant pool load instead.
7503     if (Cost < 3)
7504       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7505   }
7506 
7507   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7508   // vector that will get spilled to the constant pool.
7509   if (V2.isUndef()) V2 = V1;
7510 
7511   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7512   // that it is in input element units, not in bytes.  Convert now.
7513 
7514   // For little endian, the order of the input vectors is reversed, and
7515   // the permutation mask is complemented with respect to 31.  This is
7516   // necessary to produce proper semantics with the big-endian-biased vperm
7517   // instruction.
7518   EVT EltVT = V1.getValueType().getVectorElementType();
7519   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7520 
7521   SmallVector<SDValue, 16> ResultMask;
7522   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7523     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7524 
7525     for (unsigned j = 0; j != BytesPerElement; ++j)
7526       if (isLittleEndian)
7527         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7528                                              dl, MVT::i32));
7529       else
7530         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7531                                              MVT::i32));
7532   }
7533 
7534   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
7535   if (isLittleEndian)
7536     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7537                        V2, V1, VPermMask);
7538   else
7539     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7540                        V1, V2, VPermMask);
7541 }
7542 
7543 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7544 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7545 /// information about the intrinsic.
7546 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7547                                  bool &isDot, const PPCSubtarget &Subtarget) {
7548   unsigned IntrinsicID =
7549     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7550   CompareOpc = -1;
7551   isDot = false;
7552   switch (IntrinsicID) {
7553   default: return false;
7554     // Comparison predicates.
7555   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7556   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7557   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7558   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7559   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7560   case Intrinsic::ppc_altivec_vcmpequd_p:
7561     if (Subtarget.hasP8Altivec()) {
7562       CompareOpc = 199;
7563       isDot = 1;
7564     } else
7565       return false;
7566 
7567     break;
7568   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7569   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7570   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7571   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7572   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7573   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7574     if (Subtarget.hasP8Altivec()) {
7575       CompareOpc = 967;
7576       isDot = 1;
7577     } else
7578       return false;
7579 
7580     break;
7581   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7582   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7583   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7584   case Intrinsic::ppc_altivec_vcmpgtud_p:
7585     if (Subtarget.hasP8Altivec()) {
7586       CompareOpc = 711;
7587       isDot = 1;
7588     } else
7589       return false;
7590 
7591     break;
7592     // VSX predicate comparisons use the same infrastructure
7593   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7594   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7595   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7596   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7597   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7598   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7599     if (Subtarget.hasVSX()) {
7600       switch (IntrinsicID) {
7601       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7602       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7603       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7604       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7605       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7606       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7607       }
7608       isDot = 1;
7609     }
7610     else
7611       return false;
7612 
7613     break;
7614 
7615     // Normal Comparisons.
7616   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7617   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7618   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7619   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7620   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7621   case Intrinsic::ppc_altivec_vcmpequd:
7622     if (Subtarget.hasP8Altivec()) {
7623       CompareOpc = 199;
7624       isDot = 0;
7625     } else
7626       return false;
7627 
7628     break;
7629   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7630   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7631   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7632   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7633   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7634   case Intrinsic::ppc_altivec_vcmpgtsd:
7635     if (Subtarget.hasP8Altivec()) {
7636       CompareOpc = 967;
7637       isDot = 0;
7638     } else
7639       return false;
7640 
7641     break;
7642   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7643   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7644   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7645   case Intrinsic::ppc_altivec_vcmpgtud:
7646     if (Subtarget.hasP8Altivec()) {
7647       CompareOpc = 711;
7648       isDot = 0;
7649     } else
7650       return false;
7651 
7652     break;
7653   }
7654   return true;
7655 }
7656 
7657 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7658 /// lower, do it, otherwise return null.
7659 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7660                                                    SelectionDAG &DAG) const {
7661   unsigned IntrinsicID =
7662     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7663 
7664   if (IntrinsicID == Intrinsic::thread_pointer) {
7665     // Reads the thread pointer register, used for __builtin_thread_pointer.
7666     bool is64bit = Subtarget.isPPC64();
7667     return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
7668                            is64bit ? MVT::i64 : MVT::i32);
7669   }
7670 
7671   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7672   // opcode number of the comparison.
7673   SDLoc dl(Op);
7674   int CompareOpc;
7675   bool isDot;
7676   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7677     return SDValue();    // Don't custom lower most intrinsics.
7678 
7679   // If this is a non-dot comparison, make the VCMP node and we are done.
7680   if (!isDot) {
7681     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7682                               Op.getOperand(1), Op.getOperand(2),
7683                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7684     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7685   }
7686 
7687   // Create the PPCISD altivec 'dot' comparison node.
7688   SDValue Ops[] = {
7689     Op.getOperand(2),  // LHS
7690     Op.getOperand(3),  // RHS
7691     DAG.getConstant(CompareOpc, dl, MVT::i32)
7692   };
7693   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7694   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7695 
7696   // Now that we have the comparison, emit a copy from the CR to a GPR.
7697   // This is flagged to the above dot comparison.
7698   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7699                                 DAG.getRegister(PPC::CR6, MVT::i32),
7700                                 CompNode.getValue(1));
7701 
7702   // Unpack the result based on how the target uses it.
7703   unsigned BitNo;   // Bit # of CR6.
7704   bool InvertBit;   // Invert result?
7705   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7706   default:  // Can't happen, don't crash on invalid number though.
7707   case 0:   // Return the value of the EQ bit of CR6.
7708     BitNo = 0; InvertBit = false;
7709     break;
7710   case 1:   // Return the inverted value of the EQ bit of CR6.
7711     BitNo = 0; InvertBit = true;
7712     break;
7713   case 2:   // Return the value of the LT bit of CR6.
7714     BitNo = 2; InvertBit = false;
7715     break;
7716   case 3:   // Return the inverted value of the LT bit of CR6.
7717     BitNo = 2; InvertBit = true;
7718     break;
7719   }
7720 
7721   // Shift the bit into the low position.
7722   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7723                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7724   // Isolate the bit.
7725   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7726                       DAG.getConstant(1, dl, MVT::i32));
7727 
7728   // If we are supposed to, toggle the bit.
7729   if (InvertBit)
7730     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7731                         DAG.getConstant(1, dl, MVT::i32));
7732   return Flags;
7733 }
7734 
7735 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7736                                                   SelectionDAG &DAG) const {
7737   SDLoc dl(Op);
7738   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7739   // instructions), but for smaller types, we need to first extend up to v2i32
7740   // before doing going farther.
7741   if (Op.getValueType() == MVT::v2i64) {
7742     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7743     if (ExtVT != MVT::v2i32) {
7744       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7745       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7746                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7747                                         ExtVT.getVectorElementType(), 4)));
7748       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7749       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7750                        DAG.getValueType(MVT::v2i32));
7751     }
7752 
7753     return Op;
7754   }
7755 
7756   return SDValue();
7757 }
7758 
7759 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7760                                                    SelectionDAG &DAG) const {
7761   SDLoc dl(Op);
7762   // Create a stack slot that is 16-byte aligned.
7763   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7764   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7765   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7766   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7767 
7768   // Store the input value into Value#0 of the stack slot.
7769   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7770                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7771                                false, false, 0);
7772   // Load it out.
7773   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7774                      false, false, false, 0);
7775 }
7776 
7777 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7778                                                    SelectionDAG &DAG) const {
7779   SDLoc dl(Op);
7780   SDNode *N = Op.getNode();
7781 
7782   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7783          "Unknown extract_vector_elt type");
7784 
7785   SDValue Value = N->getOperand(0);
7786 
7787   // The first part of this is like the store lowering except that we don't
7788   // need to track the chain.
7789 
7790   // The values are now known to be -1 (false) or 1 (true). To convert this
7791   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7792   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7793   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7794 
7795   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7796   // understand how to form the extending load.
7797   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7798 
7799   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7800 
7801   // Now convert to an integer and store.
7802   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7803     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7804     Value);
7805 
7806   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7807   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7808   MachinePointerInfo PtrInfo =
7809       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7810   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7811   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7812 
7813   SDValue StoreChain = DAG.getEntryNode();
7814   SDValue Ops[] = {StoreChain,
7815                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
7816                    Value, FIdx};
7817   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
7818 
7819   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7820     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7821 
7822   // Extract the value requested.
7823   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7824   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7825   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7826 
7827   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7828                                PtrInfo.getWithOffset(Offset),
7829                                false, false, false, 0);
7830 
7831   if (!Subtarget.useCRBits())
7832     return IntVal;
7833 
7834   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7835 }
7836 
7837 /// Lowering for QPX v4i1 loads
7838 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7839                                            SelectionDAG &DAG) const {
7840   SDLoc dl(Op);
7841   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7842   SDValue LoadChain = LN->getChain();
7843   SDValue BasePtr = LN->getBasePtr();
7844 
7845   if (Op.getValueType() == MVT::v4f64 ||
7846       Op.getValueType() == MVT::v4f32) {
7847     EVT MemVT = LN->getMemoryVT();
7848     unsigned Alignment = LN->getAlignment();
7849 
7850     // If this load is properly aligned, then it is legal.
7851     if (Alignment >= MemVT.getStoreSize())
7852       return Op;
7853 
7854     EVT ScalarVT = Op.getValueType().getScalarType(),
7855         ScalarMemVT = MemVT.getScalarType();
7856     unsigned Stride = ScalarMemVT.getStoreSize();
7857 
7858     SDValue Vals[4], LoadChains[4];
7859     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7860       SDValue Load;
7861       if (ScalarVT != ScalarMemVT)
7862         Load =
7863           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7864                          BasePtr,
7865                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7866                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7867                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7868                          LN->getAAInfo());
7869       else
7870         Load =
7871           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7872                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7873                        LN->isVolatile(), LN->isNonTemporal(),
7874                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7875                        LN->getAAInfo());
7876 
7877       if (Idx == 0 && LN->isIndexed()) {
7878         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7879                "Unknown addressing mode on vector load");
7880         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7881                                   LN->getAddressingMode());
7882       }
7883 
7884       Vals[Idx] = Load;
7885       LoadChains[Idx] = Load.getValue(1);
7886 
7887       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7888                             DAG.getConstant(Stride, dl,
7889                                             BasePtr.getValueType()));
7890     }
7891 
7892     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7893     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
7894 
7895     if (LN->isIndexed()) {
7896       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7897       return DAG.getMergeValues(RetOps, dl);
7898     }
7899 
7900     SDValue RetOps[] = { Value, TF };
7901     return DAG.getMergeValues(RetOps, dl);
7902   }
7903 
7904   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7905   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7906 
7907   // To lower v4i1 from a byte array, we load the byte elements of the
7908   // vector and then reuse the BUILD_VECTOR logic.
7909 
7910   SDValue VectElmts[4], VectElmtChains[4];
7911   for (unsigned i = 0; i < 4; ++i) {
7912     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7913     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7914 
7915     VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
7916                                   LN->getPointerInfo().getWithOffset(i),
7917                                   MVT::i8 /* memory type */, LN->isVolatile(),
7918                                   LN->isNonTemporal(), LN->isInvariant(),
7919                                   1 /* alignment */, LN->getAAInfo());
7920     VectElmtChains[i] = VectElmts[i].getValue(1);
7921   }
7922 
7923   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7924   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
7925 
7926   SDValue RVals[] = { Value, LoadChain };
7927   return DAG.getMergeValues(RVals, dl);
7928 }
7929 
7930 /// Lowering for QPX v4i1 stores
7931 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7932                                             SelectionDAG &DAG) const {
7933   SDLoc dl(Op);
7934   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7935   SDValue StoreChain = SN->getChain();
7936   SDValue BasePtr = SN->getBasePtr();
7937   SDValue Value = SN->getValue();
7938 
7939   if (Value.getValueType() == MVT::v4f64 ||
7940       Value.getValueType() == MVT::v4f32) {
7941     EVT MemVT = SN->getMemoryVT();
7942     unsigned Alignment = SN->getAlignment();
7943 
7944     // If this store is properly aligned, then it is legal.
7945     if (Alignment >= MemVT.getStoreSize())
7946       return Op;
7947 
7948     EVT ScalarVT = Value.getValueType().getScalarType(),
7949         ScalarMemVT = MemVT.getScalarType();
7950     unsigned Stride = ScalarMemVT.getStoreSize();
7951 
7952     SDValue Stores[4];
7953     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7954       SDValue Ex = DAG.getNode(
7955           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7956           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
7957       SDValue Store;
7958       if (ScalarVT != ScalarMemVT)
7959         Store =
7960           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7961                             SN->getPointerInfo().getWithOffset(Idx*Stride),
7962                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7963                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7964       else
7965         Store =
7966           DAG.getStore(StoreChain, dl, Ex, BasePtr,
7967                        SN->getPointerInfo().getWithOffset(Idx*Stride),
7968                        SN->isVolatile(), SN->isNonTemporal(),
7969                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7970 
7971       if (Idx == 0 && SN->isIndexed()) {
7972         assert(SN->getAddressingMode() == ISD::PRE_INC &&
7973                "Unknown addressing mode on vector store");
7974         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7975                                     SN->getAddressingMode());
7976       }
7977 
7978       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7979                             DAG.getConstant(Stride, dl,
7980                                             BasePtr.getValueType()));
7981       Stores[Idx] = Store;
7982     }
7983 
7984     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7985 
7986     if (SN->isIndexed()) {
7987       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7988       return DAG.getMergeValues(RetOps, dl);
7989     }
7990 
7991     return TF;
7992   }
7993 
7994   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7995   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7996 
7997   // The values are now known to be -1 (false) or 1 (true). To convert this
7998   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7999   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8000   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8001 
8002   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8003   // understand how to form the extending load.
8004   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8005 
8006   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8007 
8008   // Now convert to an integer and store.
8009   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8010     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8011     Value);
8012 
8013   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
8014   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
8015   MachinePointerInfo PtrInfo =
8016       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8017   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8018   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8019 
8020   SDValue Ops[] = {StoreChain,
8021                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8022                    Value, FIdx};
8023   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8024 
8025   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8026     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8027 
8028   // Move data into the byte array.
8029   SDValue Loads[4], LoadChains[4];
8030   for (unsigned i = 0; i < 4; ++i) {
8031     unsigned Offset = 4*i;
8032     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8033     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8034 
8035     Loads[i] =
8036         DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8037                     PtrInfo.getWithOffset(Offset), false, false, false, 0);
8038     LoadChains[i] = Loads[i].getValue(1);
8039   }
8040 
8041   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8042 
8043   SDValue Stores[4];
8044   for (unsigned i = 0; i < 4; ++i) {
8045     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8046     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8047 
8048     Stores[i] = DAG.getTruncStore(
8049         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8050         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
8051         1 /* alignment */, SN->getAAInfo());
8052   }
8053 
8054   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8055 
8056   return StoreChain;
8057 }
8058 
8059 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8060   SDLoc dl(Op);
8061   if (Op.getValueType() == MVT::v4i32) {
8062     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8063 
8064     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8065     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8066 
8067     SDValue RHSSwap =   // = vrlw RHS, 16
8068       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8069 
8070     // Shrinkify inputs to v8i16.
8071     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8072     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8073     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8074 
8075     // Low parts multiplied together, generating 32-bit results (we ignore the
8076     // top parts).
8077     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8078                                         LHS, RHS, DAG, dl, MVT::v4i32);
8079 
8080     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8081                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8082     // Shift the high parts up 16 bits.
8083     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8084                               Neg16, DAG, dl);
8085     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8086   } else if (Op.getValueType() == MVT::v8i16) {
8087     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8088 
8089     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8090 
8091     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8092                             LHS, RHS, Zero, DAG, dl);
8093   } else if (Op.getValueType() == MVT::v16i8) {
8094     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8095     bool isLittleEndian = Subtarget.isLittleEndian();
8096 
8097     // Multiply the even 8-bit parts, producing 16-bit sums.
8098     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8099                                            LHS, RHS, DAG, dl, MVT::v8i16);
8100     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8101 
8102     // Multiply the odd 8-bit parts, producing 16-bit sums.
8103     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8104                                           LHS, RHS, DAG, dl, MVT::v8i16);
8105     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8106 
8107     // Merge the results together.  Because vmuleub and vmuloub are
8108     // instructions with a big-endian bias, we must reverse the
8109     // element numbering and reverse the meaning of "odd" and "even"
8110     // when generating little endian code.
8111     int Ops[16];
8112     for (unsigned i = 0; i != 8; ++i) {
8113       if (isLittleEndian) {
8114         Ops[i*2  ] = 2*i;
8115         Ops[i*2+1] = 2*i+16;
8116       } else {
8117         Ops[i*2  ] = 2*i+1;
8118         Ops[i*2+1] = 2*i+1+16;
8119       }
8120     }
8121     if (isLittleEndian)
8122       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8123     else
8124       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8125   } else {
8126     llvm_unreachable("Unknown mul to lower!");
8127   }
8128 }
8129 
8130 /// LowerOperation - Provide custom lowering hooks for some operations.
8131 ///
8132 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8133   switch (Op.getOpcode()) {
8134   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8135   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8136   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8137   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8138   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8139   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8140   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8141   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8142   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8143   case ISD::VASTART:
8144     return LowerVASTART(Op, DAG, Subtarget);
8145 
8146   case ISD::VAARG:
8147     return LowerVAARG(Op, DAG, Subtarget);
8148 
8149   case ISD::VACOPY:
8150     return LowerVACOPY(Op, DAG, Subtarget);
8151 
8152   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
8153   case ISD::DYNAMIC_STACKALLOC:
8154     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
8155   case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget);
8156 
8157   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8158   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8159 
8160   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8161   case ISD::STORE:              return LowerSTORE(Op, DAG);
8162   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8163   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8164   case ISD::FP_TO_UINT:
8165   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8166                                                       SDLoc(Op));
8167   case ISD::UINT_TO_FP:
8168   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8169   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8170 
8171   // Lower 64-bit shifts.
8172   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
8173   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
8174   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
8175 
8176   // Vector-related lowering.
8177   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8178   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8179   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8180   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8181   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
8182   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8183   case ISD::MUL:                return LowerMUL(Op, DAG);
8184 
8185   // For counter-based loop handling.
8186   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8187 
8188   // Frame & Return address.
8189   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8190   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8191   }
8192 }
8193 
8194 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8195                                            SmallVectorImpl<SDValue>&Results,
8196                                            SelectionDAG &DAG) const {
8197   SDLoc dl(N);
8198   switch (N->getOpcode()) {
8199   default:
8200     llvm_unreachable("Do not know how to custom type legalize this operation!");
8201   case ISD::READCYCLECOUNTER: {
8202     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8203     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8204 
8205     Results.push_back(RTB);
8206     Results.push_back(RTB.getValue(1));
8207     Results.push_back(RTB.getValue(2));
8208     break;
8209   }
8210   case ISD::INTRINSIC_W_CHAIN: {
8211     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8212         Intrinsic::ppc_is_decremented_ctr_nonzero)
8213       break;
8214 
8215     assert(N->getValueType(0) == MVT::i1 &&
8216            "Unexpected result type for CTR decrement intrinsic");
8217     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8218                                  N->getValueType(0));
8219     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8220     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8221                                  N->getOperand(1));
8222 
8223     Results.push_back(NewInt);
8224     Results.push_back(NewInt.getValue(1));
8225     break;
8226   }
8227   case ISD::VAARG: {
8228     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8229       return;
8230 
8231     EVT VT = N->getValueType(0);
8232 
8233     if (VT == MVT::i64) {
8234       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
8235 
8236       Results.push_back(NewNode);
8237       Results.push_back(NewNode.getValue(1));
8238     }
8239     return;
8240   }
8241   case ISD::FP_ROUND_INREG: {
8242     assert(N->getValueType(0) == MVT::ppcf128);
8243     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8244     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8245                              MVT::f64, N->getOperand(0),
8246                              DAG.getIntPtrConstant(0, dl));
8247     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8248                              MVT::f64, N->getOperand(0),
8249                              DAG.getIntPtrConstant(1, dl));
8250 
8251     // Add the two halves of the long double in round-to-zero mode.
8252     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8253 
8254     // We know the low half is about to be thrown away, so just use something
8255     // convenient.
8256     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8257                                 FPreg, FPreg));
8258     return;
8259   }
8260   case ISD::FP_TO_SINT:
8261   case ISD::FP_TO_UINT:
8262     // LowerFP_TO_INT() can only handle f32 and f64.
8263     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8264       return;
8265     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8266     return;
8267   }
8268 }
8269 
8270 //===----------------------------------------------------------------------===//
8271 //  Other Lowering Code
8272 //===----------------------------------------------------------------------===//
8273 
8274 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8275   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8276   Function *Func = Intrinsic::getDeclaration(M, Id);
8277   return Builder.CreateCall(Func, {});
8278 }
8279 
8280 // The mappings for emitLeading/TrailingFence is taken from
8281 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8282 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8283                                          AtomicOrdering Ord, bool IsStore,
8284                                          bool IsLoad) const {
8285   if (Ord == AtomicOrdering::SequentiallyConsistent)
8286     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8287   if (isReleaseOrStronger(Ord))
8288     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8289   return nullptr;
8290 }
8291 
8292 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8293                                           AtomicOrdering Ord, bool IsStore,
8294                                           bool IsLoad) const {
8295   if (IsLoad && isAcquireOrStronger(Ord))
8296     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8297   // FIXME: this is too conservative, a dependent branch + isync is enough.
8298   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8299   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8300   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8301   return nullptr;
8302 }
8303 
8304 MachineBasicBlock *
8305 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8306                                     unsigned AtomicSize,
8307                                     unsigned BinOpcode) const {
8308   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8309   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8310 
8311   auto LoadMnemonic = PPC::LDARX;
8312   auto StoreMnemonic = PPC::STDCX;
8313   switch (AtomicSize) {
8314   default:
8315     llvm_unreachable("Unexpected size of atomic entity");
8316   case 1:
8317     LoadMnemonic = PPC::LBARX;
8318     StoreMnemonic = PPC::STBCX;
8319     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8320     break;
8321   case 2:
8322     LoadMnemonic = PPC::LHARX;
8323     StoreMnemonic = PPC::STHCX;
8324     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8325     break;
8326   case 4:
8327     LoadMnemonic = PPC::LWARX;
8328     StoreMnemonic = PPC::STWCX;
8329     break;
8330   case 8:
8331     LoadMnemonic = PPC::LDARX;
8332     StoreMnemonic = PPC::STDCX;
8333     break;
8334   }
8335 
8336   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8337   MachineFunction *F = BB->getParent();
8338   MachineFunction::iterator It = ++BB->getIterator();
8339 
8340   unsigned dest = MI->getOperand(0).getReg();
8341   unsigned ptrA = MI->getOperand(1).getReg();
8342   unsigned ptrB = MI->getOperand(2).getReg();
8343   unsigned incr = MI->getOperand(3).getReg();
8344   DebugLoc dl = MI->getDebugLoc();
8345 
8346   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8347   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8348   F->insert(It, loopMBB);
8349   F->insert(It, exitMBB);
8350   exitMBB->splice(exitMBB->begin(), BB,
8351                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8352   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8353 
8354   MachineRegisterInfo &RegInfo = F->getRegInfo();
8355   unsigned TmpReg = (!BinOpcode) ? incr :
8356     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8357                                            : &PPC::GPRCRegClass);
8358 
8359   //  thisMBB:
8360   //   ...
8361   //   fallthrough --> loopMBB
8362   BB->addSuccessor(loopMBB);
8363 
8364   //  loopMBB:
8365   //   l[wd]arx dest, ptr
8366   //   add r0, dest, incr
8367   //   st[wd]cx. r0, ptr
8368   //   bne- loopMBB
8369   //   fallthrough --> exitMBB
8370   BB = loopMBB;
8371   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8372     .addReg(ptrA).addReg(ptrB);
8373   if (BinOpcode)
8374     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8375   BuildMI(BB, dl, TII->get(StoreMnemonic))
8376     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8377   BuildMI(BB, dl, TII->get(PPC::BCC))
8378     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8379   BB->addSuccessor(loopMBB);
8380   BB->addSuccessor(exitMBB);
8381 
8382   //  exitMBB:
8383   //   ...
8384   BB = exitMBB;
8385   return BB;
8386 }
8387 
8388 MachineBasicBlock *
8389 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8390                                             MachineBasicBlock *BB,
8391                                             bool is8bit,    // operation
8392                                             unsigned BinOpcode) const {
8393   // If we support part-word atomic mnemonics, just use them
8394   if (Subtarget.hasPartwordAtomics())
8395     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8396 
8397   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8398   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8399   // In 64 bit mode we have to use 64 bits for addresses, even though the
8400   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8401   // registers without caring whether they're 32 or 64, but here we're
8402   // doing actual arithmetic on the addresses.
8403   bool is64bit = Subtarget.isPPC64();
8404   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8405 
8406   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8407   MachineFunction *F = BB->getParent();
8408   MachineFunction::iterator It = ++BB->getIterator();
8409 
8410   unsigned dest = MI->getOperand(0).getReg();
8411   unsigned ptrA = MI->getOperand(1).getReg();
8412   unsigned ptrB = MI->getOperand(2).getReg();
8413   unsigned incr = MI->getOperand(3).getReg();
8414   DebugLoc dl = MI->getDebugLoc();
8415 
8416   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8417   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8418   F->insert(It, loopMBB);
8419   F->insert(It, exitMBB);
8420   exitMBB->splice(exitMBB->begin(), BB,
8421                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8422   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8423 
8424   MachineRegisterInfo &RegInfo = F->getRegInfo();
8425   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8426                                           : &PPC::GPRCRegClass;
8427   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8428   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8429   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8430   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8431   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8432   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8433   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8434   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8435   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8436   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8437   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8438   unsigned Ptr1Reg;
8439   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8440 
8441   //  thisMBB:
8442   //   ...
8443   //   fallthrough --> loopMBB
8444   BB->addSuccessor(loopMBB);
8445 
8446   // The 4-byte load must be aligned, while a char or short may be
8447   // anywhere in the word.  Hence all this nasty bookkeeping code.
8448   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8449   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8450   //   xori shift, shift1, 24 [16]
8451   //   rlwinm ptr, ptr1, 0, 0, 29
8452   //   slw incr2, incr, shift
8453   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8454   //   slw mask, mask2, shift
8455   //  loopMBB:
8456   //   lwarx tmpDest, ptr
8457   //   add tmp, tmpDest, incr2
8458   //   andc tmp2, tmpDest, mask
8459   //   and tmp3, tmp, mask
8460   //   or tmp4, tmp3, tmp2
8461   //   stwcx. tmp4, ptr
8462   //   bne- loopMBB
8463   //   fallthrough --> exitMBB
8464   //   srw dest, tmpDest, shift
8465   if (ptrA != ZeroReg) {
8466     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8467     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8468       .addReg(ptrA).addReg(ptrB);
8469   } else {
8470     Ptr1Reg = ptrB;
8471   }
8472   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8473       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8474   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8475       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8476   if (is64bit)
8477     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8478       .addReg(Ptr1Reg).addImm(0).addImm(61);
8479   else
8480     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8481       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8482   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8483       .addReg(incr).addReg(ShiftReg);
8484   if (is8bit)
8485     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8486   else {
8487     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8488     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8489   }
8490   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8491       .addReg(Mask2Reg).addReg(ShiftReg);
8492 
8493   BB = loopMBB;
8494   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8495     .addReg(ZeroReg).addReg(PtrReg);
8496   if (BinOpcode)
8497     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8498       .addReg(Incr2Reg).addReg(TmpDestReg);
8499   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8500     .addReg(TmpDestReg).addReg(MaskReg);
8501   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8502     .addReg(TmpReg).addReg(MaskReg);
8503   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8504     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8505   BuildMI(BB, dl, TII->get(PPC::STWCX))
8506     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8507   BuildMI(BB, dl, TII->get(PPC::BCC))
8508     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8509   BB->addSuccessor(loopMBB);
8510   BB->addSuccessor(exitMBB);
8511 
8512   //  exitMBB:
8513   //   ...
8514   BB = exitMBB;
8515   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8516     .addReg(ShiftReg);
8517   return BB;
8518 }
8519 
8520 llvm::MachineBasicBlock*
8521 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8522                                     MachineBasicBlock *MBB) const {
8523   DebugLoc DL = MI->getDebugLoc();
8524   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8525 
8526   MachineFunction *MF = MBB->getParent();
8527   MachineRegisterInfo &MRI = MF->getRegInfo();
8528 
8529   const BasicBlock *BB = MBB->getBasicBlock();
8530   MachineFunction::iterator I = ++MBB->getIterator();
8531 
8532   // Memory Reference
8533   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8534   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8535 
8536   unsigned DstReg = MI->getOperand(0).getReg();
8537   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8538   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8539   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8540   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8541 
8542   MVT PVT = getPointerTy(MF->getDataLayout());
8543   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8544          "Invalid Pointer Size!");
8545   // For v = setjmp(buf), we generate
8546   //
8547   // thisMBB:
8548   //  SjLjSetup mainMBB
8549   //  bl mainMBB
8550   //  v_restore = 1
8551   //  b sinkMBB
8552   //
8553   // mainMBB:
8554   //  buf[LabelOffset] = LR
8555   //  v_main = 0
8556   //
8557   // sinkMBB:
8558   //  v = phi(main, restore)
8559   //
8560 
8561   MachineBasicBlock *thisMBB = MBB;
8562   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8563   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8564   MF->insert(I, mainMBB);
8565   MF->insert(I, sinkMBB);
8566 
8567   MachineInstrBuilder MIB;
8568 
8569   // Transfer the remainder of BB and its successor edges to sinkMBB.
8570   sinkMBB->splice(sinkMBB->begin(), MBB,
8571                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8572   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8573 
8574   // Note that the structure of the jmp_buf used here is not compatible
8575   // with that used by libc, and is not designed to be. Specifically, it
8576   // stores only those 'reserved' registers that LLVM does not otherwise
8577   // understand how to spill. Also, by convention, by the time this
8578   // intrinsic is called, Clang has already stored the frame address in the
8579   // first slot of the buffer and stack address in the third. Following the
8580   // X86 target code, we'll store the jump address in the second slot. We also
8581   // need to save the TOC pointer (R2) to handle jumps between shared
8582   // libraries, and that will be stored in the fourth slot. The thread
8583   // identifier (R13) is not affected.
8584 
8585   // thisMBB:
8586   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8587   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8588   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8589 
8590   // Prepare IP either in reg.
8591   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8592   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8593   unsigned BufReg = MI->getOperand(1).getReg();
8594 
8595   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8596     setUsesTOCBasePtr(*MBB->getParent());
8597     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8598             .addReg(PPC::X2)
8599             .addImm(TOCOffset)
8600             .addReg(BufReg);
8601     MIB.setMemRefs(MMOBegin, MMOEnd);
8602   }
8603 
8604   // Naked functions never have a base pointer, and so we use r1. For all
8605   // other functions, this decision must be delayed until during PEI.
8606   unsigned BaseReg;
8607   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8608     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8609   else
8610     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8611 
8612   MIB = BuildMI(*thisMBB, MI, DL,
8613                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8614             .addReg(BaseReg)
8615             .addImm(BPOffset)
8616             .addReg(BufReg);
8617   MIB.setMemRefs(MMOBegin, MMOEnd);
8618 
8619   // Setup
8620   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8621   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8622   MIB.addRegMask(TRI->getNoPreservedMask());
8623 
8624   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8625 
8626   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8627           .addMBB(mainMBB);
8628   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8629 
8630   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8631   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8632 
8633   // mainMBB:
8634   //  mainDstReg = 0
8635   MIB =
8636       BuildMI(mainMBB, DL,
8637               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8638 
8639   // Store IP
8640   if (Subtarget.isPPC64()) {
8641     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8642             .addReg(LabelReg)
8643             .addImm(LabelOffset)
8644             .addReg(BufReg);
8645   } else {
8646     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8647             .addReg(LabelReg)
8648             .addImm(LabelOffset)
8649             .addReg(BufReg);
8650   }
8651 
8652   MIB.setMemRefs(MMOBegin, MMOEnd);
8653 
8654   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8655   mainMBB->addSuccessor(sinkMBB);
8656 
8657   // sinkMBB:
8658   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8659           TII->get(PPC::PHI), DstReg)
8660     .addReg(mainDstReg).addMBB(mainMBB)
8661     .addReg(restoreDstReg).addMBB(thisMBB);
8662 
8663   MI->eraseFromParent();
8664   return sinkMBB;
8665 }
8666 
8667 MachineBasicBlock *
8668 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8669                                      MachineBasicBlock *MBB) const {
8670   DebugLoc DL = MI->getDebugLoc();
8671   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8672 
8673   MachineFunction *MF = MBB->getParent();
8674   MachineRegisterInfo &MRI = MF->getRegInfo();
8675 
8676   // Memory Reference
8677   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8678   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8679 
8680   MVT PVT = getPointerTy(MF->getDataLayout());
8681   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8682          "Invalid Pointer Size!");
8683 
8684   const TargetRegisterClass *RC =
8685     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8686   unsigned Tmp = MRI.createVirtualRegister(RC);
8687   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8688   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8689   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8690   unsigned BP =
8691       (PVT == MVT::i64)
8692           ? PPC::X30
8693           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
8694                                                               : PPC::R30);
8695 
8696   MachineInstrBuilder MIB;
8697 
8698   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8699   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8700   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8701   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8702 
8703   unsigned BufReg = MI->getOperand(0).getReg();
8704 
8705   // Reload FP (the jumped-to function may not have had a
8706   // frame pointer, and if so, then its r31 will be restored
8707   // as necessary).
8708   if (PVT == MVT::i64) {
8709     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8710             .addImm(0)
8711             .addReg(BufReg);
8712   } else {
8713     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8714             .addImm(0)
8715             .addReg(BufReg);
8716   }
8717   MIB.setMemRefs(MMOBegin, MMOEnd);
8718 
8719   // Reload IP
8720   if (PVT == MVT::i64) {
8721     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8722             .addImm(LabelOffset)
8723             .addReg(BufReg);
8724   } else {
8725     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8726             .addImm(LabelOffset)
8727             .addReg(BufReg);
8728   }
8729   MIB.setMemRefs(MMOBegin, MMOEnd);
8730 
8731   // Reload SP
8732   if (PVT == MVT::i64) {
8733     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8734             .addImm(SPOffset)
8735             .addReg(BufReg);
8736   } else {
8737     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8738             .addImm(SPOffset)
8739             .addReg(BufReg);
8740   }
8741   MIB.setMemRefs(MMOBegin, MMOEnd);
8742 
8743   // Reload BP
8744   if (PVT == MVT::i64) {
8745     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8746             .addImm(BPOffset)
8747             .addReg(BufReg);
8748   } else {
8749     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8750             .addImm(BPOffset)
8751             .addReg(BufReg);
8752   }
8753   MIB.setMemRefs(MMOBegin, MMOEnd);
8754 
8755   // Reload TOC
8756   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8757     setUsesTOCBasePtr(*MBB->getParent());
8758     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8759             .addImm(TOCOffset)
8760             .addReg(BufReg);
8761 
8762     MIB.setMemRefs(MMOBegin, MMOEnd);
8763   }
8764 
8765   // Jump
8766   BuildMI(*MBB, MI, DL,
8767           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8768   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8769 
8770   MI->eraseFromParent();
8771   return MBB;
8772 }
8773 
8774 MachineBasicBlock *
8775 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8776                                                MachineBasicBlock *BB) const {
8777   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8778       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8779     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8780         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8781       // Call lowering should have added an r2 operand to indicate a dependence
8782       // on the TOC base pointer value. It can't however, because there is no
8783       // way to mark the dependence as implicit there, and so the stackmap code
8784       // will confuse it with a regular operand. Instead, add the dependence
8785       // here.
8786       setUsesTOCBasePtr(*BB->getParent());
8787       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8788     }
8789 
8790     return emitPatchPoint(MI, BB);
8791   }
8792 
8793   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8794       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8795     return emitEHSjLjSetJmp(MI, BB);
8796   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8797              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8798     return emitEHSjLjLongJmp(MI, BB);
8799   }
8800 
8801   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8802 
8803   // To "insert" these instructions we actually have to insert their
8804   // control-flow patterns.
8805   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8806   MachineFunction::iterator It = ++BB->getIterator();
8807 
8808   MachineFunction *F = BB->getParent();
8809 
8810   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8811                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8812                               MI->getOpcode() == PPC::SELECT_I4 ||
8813                               MI->getOpcode() == PPC::SELECT_I8)) {
8814     SmallVector<MachineOperand, 2> Cond;
8815     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8816         MI->getOpcode() == PPC::SELECT_CC_I8)
8817       Cond.push_back(MI->getOperand(4));
8818     else
8819       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8820     Cond.push_back(MI->getOperand(1));
8821 
8822     DebugLoc dl = MI->getDebugLoc();
8823     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8824                       Cond, MI->getOperand(2).getReg(),
8825                       MI->getOperand(3).getReg());
8826   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8827              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8828              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8829              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8830              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8831              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8832              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8833              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8834              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8835              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8836              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8837              MI->getOpcode() == PPC::SELECT_I4 ||
8838              MI->getOpcode() == PPC::SELECT_I8 ||
8839              MI->getOpcode() == PPC::SELECT_F4 ||
8840              MI->getOpcode() == PPC::SELECT_F8 ||
8841              MI->getOpcode() == PPC::SELECT_QFRC ||
8842              MI->getOpcode() == PPC::SELECT_QSRC ||
8843              MI->getOpcode() == PPC::SELECT_QBRC ||
8844              MI->getOpcode() == PPC::SELECT_VRRC ||
8845              MI->getOpcode() == PPC::SELECT_VSFRC ||
8846              MI->getOpcode() == PPC::SELECT_VSSRC ||
8847              MI->getOpcode() == PPC::SELECT_VSRC) {
8848     // The incoming instruction knows the destination vreg to set, the
8849     // condition code register to branch on, the true/false values to
8850     // select between, and a branch opcode to use.
8851 
8852     //  thisMBB:
8853     //  ...
8854     //   TrueVal = ...
8855     //   cmpTY ccX, r1, r2
8856     //   bCC copy1MBB
8857     //   fallthrough --> copy0MBB
8858     MachineBasicBlock *thisMBB = BB;
8859     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8860     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8861     DebugLoc dl = MI->getDebugLoc();
8862     F->insert(It, copy0MBB);
8863     F->insert(It, sinkMBB);
8864 
8865     // Transfer the remainder of BB and its successor edges to sinkMBB.
8866     sinkMBB->splice(sinkMBB->begin(), BB,
8867                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8868     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8869 
8870     // Next, add the true and fallthrough blocks as its successors.
8871     BB->addSuccessor(copy0MBB);
8872     BB->addSuccessor(sinkMBB);
8873 
8874     if (MI->getOpcode() == PPC::SELECT_I4 ||
8875         MI->getOpcode() == PPC::SELECT_I8 ||
8876         MI->getOpcode() == PPC::SELECT_F4 ||
8877         MI->getOpcode() == PPC::SELECT_F8 ||
8878         MI->getOpcode() == PPC::SELECT_QFRC ||
8879         MI->getOpcode() == PPC::SELECT_QSRC ||
8880         MI->getOpcode() == PPC::SELECT_QBRC ||
8881         MI->getOpcode() == PPC::SELECT_VRRC ||
8882         MI->getOpcode() == PPC::SELECT_VSFRC ||
8883         MI->getOpcode() == PPC::SELECT_VSSRC ||
8884         MI->getOpcode() == PPC::SELECT_VSRC) {
8885       BuildMI(BB, dl, TII->get(PPC::BC))
8886         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8887     } else {
8888       unsigned SelectPred = MI->getOperand(4).getImm();
8889       BuildMI(BB, dl, TII->get(PPC::BCC))
8890         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8891     }
8892 
8893     //  copy0MBB:
8894     //   %FalseValue = ...
8895     //   # fallthrough to sinkMBB
8896     BB = copy0MBB;
8897 
8898     // Update machine-CFG edges
8899     BB->addSuccessor(sinkMBB);
8900 
8901     //  sinkMBB:
8902     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8903     //  ...
8904     BB = sinkMBB;
8905     BuildMI(*BB, BB->begin(), dl,
8906             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8907       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8908       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8909   } else if (MI->getOpcode() == PPC::ReadTB) {
8910     // To read the 64-bit time-base register on a 32-bit target, we read the
8911     // two halves. Should the counter have wrapped while it was being read, we
8912     // need to try again.
8913     // ...
8914     // readLoop:
8915     // mfspr Rx,TBU # load from TBU
8916     // mfspr Ry,TB  # load from TB
8917     // mfspr Rz,TBU # load from TBU
8918     // cmpw crX,Rx,Rz # check if 'old'='new'
8919     // bne readLoop   # branch if they're not equal
8920     // ...
8921 
8922     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8923     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8924     DebugLoc dl = MI->getDebugLoc();
8925     F->insert(It, readMBB);
8926     F->insert(It, sinkMBB);
8927 
8928     // Transfer the remainder of BB and its successor edges to sinkMBB.
8929     sinkMBB->splice(sinkMBB->begin(), BB,
8930                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8931     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8932 
8933     BB->addSuccessor(readMBB);
8934     BB = readMBB;
8935 
8936     MachineRegisterInfo &RegInfo = F->getRegInfo();
8937     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8938     unsigned LoReg = MI->getOperand(0).getReg();
8939     unsigned HiReg = MI->getOperand(1).getReg();
8940 
8941     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8942     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8943     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8944 
8945     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8946 
8947     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8948       .addReg(HiReg).addReg(ReadAgainReg);
8949     BuildMI(BB, dl, TII->get(PPC::BCC))
8950       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8951 
8952     BB->addSuccessor(readMBB);
8953     BB->addSuccessor(sinkMBB);
8954   }
8955   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8956     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8957   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8958     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8959   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8960     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8961   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8962     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8963 
8964   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8965     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8966   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8967     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8968   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8969     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8970   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8971     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8972 
8973   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8974     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8975   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8976     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8977   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8978     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8979   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8980     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8981 
8982   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8983     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8984   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8985     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8986   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8987     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8988   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8989     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8990 
8991   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8992     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8993   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8994     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8995   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8996     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8997   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8998     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8999 
9000   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9001     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9002   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9003     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9004   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9005     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9006   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9007     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9008 
9009   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
9010     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9011   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
9012     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9013   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
9014     BB = EmitAtomicBinary(MI, BB, 4, 0);
9015   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
9016     BB = EmitAtomicBinary(MI, BB, 8, 0);
9017 
9018   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9019            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9020            (Subtarget.hasPartwordAtomics() &&
9021             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9022            (Subtarget.hasPartwordAtomics() &&
9023             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9024     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9025 
9026     auto LoadMnemonic = PPC::LDARX;
9027     auto StoreMnemonic = PPC::STDCX;
9028     switch(MI->getOpcode()) {
9029     default:
9030       llvm_unreachable("Compare and swap of unknown size");
9031     case PPC::ATOMIC_CMP_SWAP_I8:
9032       LoadMnemonic = PPC::LBARX;
9033       StoreMnemonic = PPC::STBCX;
9034       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9035       break;
9036     case PPC::ATOMIC_CMP_SWAP_I16:
9037       LoadMnemonic = PPC::LHARX;
9038       StoreMnemonic = PPC::STHCX;
9039       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9040       break;
9041     case PPC::ATOMIC_CMP_SWAP_I32:
9042       LoadMnemonic = PPC::LWARX;
9043       StoreMnemonic = PPC::STWCX;
9044       break;
9045     case PPC::ATOMIC_CMP_SWAP_I64:
9046       LoadMnemonic = PPC::LDARX;
9047       StoreMnemonic = PPC::STDCX;
9048       break;
9049     }
9050     unsigned dest   = MI->getOperand(0).getReg();
9051     unsigned ptrA   = MI->getOperand(1).getReg();
9052     unsigned ptrB   = MI->getOperand(2).getReg();
9053     unsigned oldval = MI->getOperand(3).getReg();
9054     unsigned newval = MI->getOperand(4).getReg();
9055     DebugLoc dl     = MI->getDebugLoc();
9056 
9057     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9058     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9059     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9060     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9061     F->insert(It, loop1MBB);
9062     F->insert(It, loop2MBB);
9063     F->insert(It, midMBB);
9064     F->insert(It, exitMBB);
9065     exitMBB->splice(exitMBB->begin(), BB,
9066                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9067     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9068 
9069     //  thisMBB:
9070     //   ...
9071     //   fallthrough --> loopMBB
9072     BB->addSuccessor(loop1MBB);
9073 
9074     // loop1MBB:
9075     //   l[bhwd]arx dest, ptr
9076     //   cmp[wd] dest, oldval
9077     //   bne- midMBB
9078     // loop2MBB:
9079     //   st[bhwd]cx. newval, ptr
9080     //   bne- loopMBB
9081     //   b exitBB
9082     // midMBB:
9083     //   st[bhwd]cx. dest, ptr
9084     // exitBB:
9085     BB = loop1MBB;
9086     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9087       .addReg(ptrA).addReg(ptrB);
9088     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9089       .addReg(oldval).addReg(dest);
9090     BuildMI(BB, dl, TII->get(PPC::BCC))
9091       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9092     BB->addSuccessor(loop2MBB);
9093     BB->addSuccessor(midMBB);
9094 
9095     BB = loop2MBB;
9096     BuildMI(BB, dl, TII->get(StoreMnemonic))
9097       .addReg(newval).addReg(ptrA).addReg(ptrB);
9098     BuildMI(BB, dl, TII->get(PPC::BCC))
9099       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9100     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9101     BB->addSuccessor(loop1MBB);
9102     BB->addSuccessor(exitMBB);
9103 
9104     BB = midMBB;
9105     BuildMI(BB, dl, TII->get(StoreMnemonic))
9106       .addReg(dest).addReg(ptrA).addReg(ptrB);
9107     BB->addSuccessor(exitMBB);
9108 
9109     //  exitMBB:
9110     //   ...
9111     BB = exitMBB;
9112   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9113              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9114     // We must use 64-bit registers for addresses when targeting 64-bit,
9115     // since we're actually doing arithmetic on them.  Other registers
9116     // can be 32-bit.
9117     bool is64bit = Subtarget.isPPC64();
9118     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9119 
9120     unsigned dest   = MI->getOperand(0).getReg();
9121     unsigned ptrA   = MI->getOperand(1).getReg();
9122     unsigned ptrB   = MI->getOperand(2).getReg();
9123     unsigned oldval = MI->getOperand(3).getReg();
9124     unsigned newval = MI->getOperand(4).getReg();
9125     DebugLoc dl     = MI->getDebugLoc();
9126 
9127     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9128     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9129     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9130     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9131     F->insert(It, loop1MBB);
9132     F->insert(It, loop2MBB);
9133     F->insert(It, midMBB);
9134     F->insert(It, exitMBB);
9135     exitMBB->splice(exitMBB->begin(), BB,
9136                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9137     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9138 
9139     MachineRegisterInfo &RegInfo = F->getRegInfo();
9140     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9141                                             : &PPC::GPRCRegClass;
9142     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9143     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9144     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
9145     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9146     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9147     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9148     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9149     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9150     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9151     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9152     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9153     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9154     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9155     unsigned Ptr1Reg;
9156     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9157     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9158     //  thisMBB:
9159     //   ...
9160     //   fallthrough --> loopMBB
9161     BB->addSuccessor(loop1MBB);
9162 
9163     // The 4-byte load must be aligned, while a char or short may be
9164     // anywhere in the word.  Hence all this nasty bookkeeping code.
9165     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9166     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9167     //   xori shift, shift1, 24 [16]
9168     //   rlwinm ptr, ptr1, 0, 0, 29
9169     //   slw newval2, newval, shift
9170     //   slw oldval2, oldval,shift
9171     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9172     //   slw mask, mask2, shift
9173     //   and newval3, newval2, mask
9174     //   and oldval3, oldval2, mask
9175     // loop1MBB:
9176     //   lwarx tmpDest, ptr
9177     //   and tmp, tmpDest, mask
9178     //   cmpw tmp, oldval3
9179     //   bne- midMBB
9180     // loop2MBB:
9181     //   andc tmp2, tmpDest, mask
9182     //   or tmp4, tmp2, newval3
9183     //   stwcx. tmp4, ptr
9184     //   bne- loop1MBB
9185     //   b exitBB
9186     // midMBB:
9187     //   stwcx. tmpDest, ptr
9188     // exitBB:
9189     //   srw dest, tmpDest, shift
9190     if (ptrA != ZeroReg) {
9191       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9192       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9193         .addReg(ptrA).addReg(ptrB);
9194     } else {
9195       Ptr1Reg = ptrB;
9196     }
9197     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9198         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9199     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9200         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9201     if (is64bit)
9202       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9203         .addReg(Ptr1Reg).addImm(0).addImm(61);
9204     else
9205       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9206         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9207     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9208         .addReg(newval).addReg(ShiftReg);
9209     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9210         .addReg(oldval).addReg(ShiftReg);
9211     if (is8bit)
9212       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9213     else {
9214       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9215       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9216         .addReg(Mask3Reg).addImm(65535);
9217     }
9218     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9219         .addReg(Mask2Reg).addReg(ShiftReg);
9220     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9221         .addReg(NewVal2Reg).addReg(MaskReg);
9222     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9223         .addReg(OldVal2Reg).addReg(MaskReg);
9224 
9225     BB = loop1MBB;
9226     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9227         .addReg(ZeroReg).addReg(PtrReg);
9228     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9229         .addReg(TmpDestReg).addReg(MaskReg);
9230     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9231         .addReg(TmpReg).addReg(OldVal3Reg);
9232     BuildMI(BB, dl, TII->get(PPC::BCC))
9233         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9234     BB->addSuccessor(loop2MBB);
9235     BB->addSuccessor(midMBB);
9236 
9237     BB = loop2MBB;
9238     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9239         .addReg(TmpDestReg).addReg(MaskReg);
9240     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9241         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9242     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9243         .addReg(ZeroReg).addReg(PtrReg);
9244     BuildMI(BB, dl, TII->get(PPC::BCC))
9245       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9246     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9247     BB->addSuccessor(loop1MBB);
9248     BB->addSuccessor(exitMBB);
9249 
9250     BB = midMBB;
9251     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9252       .addReg(ZeroReg).addReg(PtrReg);
9253     BB->addSuccessor(exitMBB);
9254 
9255     //  exitMBB:
9256     //   ...
9257     BB = exitMBB;
9258     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9259       .addReg(ShiftReg);
9260   } else if (MI->getOpcode() == PPC::FADDrtz) {
9261     // This pseudo performs an FADD with rounding mode temporarily forced
9262     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9263     // is not modeled at the SelectionDAG level.
9264     unsigned Dest = MI->getOperand(0).getReg();
9265     unsigned Src1 = MI->getOperand(1).getReg();
9266     unsigned Src2 = MI->getOperand(2).getReg();
9267     DebugLoc dl   = MI->getDebugLoc();
9268 
9269     MachineRegisterInfo &RegInfo = F->getRegInfo();
9270     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9271 
9272     // Save FPSCR value.
9273     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9274 
9275     // Set rounding mode to round-to-zero.
9276     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9277     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9278 
9279     // Perform addition.
9280     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9281 
9282     // Restore FPSCR value.
9283     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9284   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9285              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9286              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9287              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9288     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9289                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9290                       PPC::ANDIo8 : PPC::ANDIo;
9291     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9292                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9293 
9294     MachineRegisterInfo &RegInfo = F->getRegInfo();
9295     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9296                                                   &PPC::GPRCRegClass :
9297                                                   &PPC::G8RCRegClass);
9298 
9299     DebugLoc dl   = MI->getDebugLoc();
9300     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9301       .addReg(MI->getOperand(1).getReg()).addImm(1);
9302     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9303             MI->getOperand(0).getReg())
9304       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9305   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9306     DebugLoc Dl = MI->getDebugLoc();
9307     MachineRegisterInfo &RegInfo = F->getRegInfo();
9308     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9309     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9310     return BB;
9311   } else {
9312     llvm_unreachable("Unexpected instr type to insert");
9313   }
9314 
9315   MI->eraseFromParent();   // The pseudo instruction is gone now.
9316   return BB;
9317 }
9318 
9319 //===----------------------------------------------------------------------===//
9320 // Target Optimization Hooks
9321 //===----------------------------------------------------------------------===//
9322 
9323 static std::string getRecipOp(const char *Base, EVT VT) {
9324   std::string RecipOp(Base);
9325   if (VT.getScalarType() == MVT::f64)
9326     RecipOp += "d";
9327   else
9328     RecipOp += "f";
9329 
9330   if (VT.isVector())
9331     RecipOp = "vec-" + RecipOp;
9332 
9333   return RecipOp;
9334 }
9335 
9336 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9337                                             DAGCombinerInfo &DCI,
9338                                             unsigned &RefinementSteps,
9339                                             bool &UseOneConstNR) const {
9340   EVT VT = Operand.getValueType();
9341   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9342       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9343       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9344       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9345       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9346       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9347     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9348     std::string RecipOp = getRecipOp("sqrt", VT);
9349     if (!Recips.isEnabled(RecipOp))
9350       return SDValue();
9351 
9352     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9353     UseOneConstNR = true;
9354     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9355   }
9356   return SDValue();
9357 }
9358 
9359 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9360                                             DAGCombinerInfo &DCI,
9361                                             unsigned &RefinementSteps) const {
9362   EVT VT = Operand.getValueType();
9363   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9364       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9365       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9366       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9367       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9368       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9369     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9370     std::string RecipOp = getRecipOp("div", VT);
9371     if (!Recips.isEnabled(RecipOp))
9372       return SDValue();
9373 
9374     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9375     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9376   }
9377   return SDValue();
9378 }
9379 
9380 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9381   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9382   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9383   // enabled for division), this functionality is redundant with the default
9384   // combiner logic (once the division -> reciprocal/multiply transformation
9385   // has taken place). As a result, this matters more for older cores than for
9386   // newer ones.
9387 
9388   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9389   // reciprocal if there are two or more FDIVs (for embedded cores with only
9390   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9391   switch (Subtarget.getDarwinDirective()) {
9392   default:
9393     return 3;
9394   case PPC::DIR_440:
9395   case PPC::DIR_A2:
9396   case PPC::DIR_E500mc:
9397   case PPC::DIR_E5500:
9398     return 2;
9399   }
9400 }
9401 
9402 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9403 // collapsed, and so we need to look through chains of them.
9404 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9405                                      int64_t& Offset, SelectionDAG &DAG) {
9406   if (DAG.isBaseWithConstantOffset(Loc)) {
9407     Base = Loc.getOperand(0);
9408     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9409 
9410     // The base might itself be a base plus an offset, and if so, accumulate
9411     // that as well.
9412     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9413   }
9414 }
9415 
9416 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9417                             unsigned Bytes, int Dist,
9418                             SelectionDAG &DAG) {
9419   if (VT.getSizeInBits() / 8 != Bytes)
9420     return false;
9421 
9422   SDValue BaseLoc = Base->getBasePtr();
9423   if (Loc.getOpcode() == ISD::FrameIndex) {
9424     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9425       return false;
9426     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9427     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9428     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9429     int FS  = MFI->getObjectSize(FI);
9430     int BFS = MFI->getObjectSize(BFI);
9431     if (FS != BFS || FS != (int)Bytes) return false;
9432     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9433   }
9434 
9435   SDValue Base1 = Loc, Base2 = BaseLoc;
9436   int64_t Offset1 = 0, Offset2 = 0;
9437   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9438   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9439   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9440     return true;
9441 
9442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9443   const GlobalValue *GV1 = nullptr;
9444   const GlobalValue *GV2 = nullptr;
9445   Offset1 = 0;
9446   Offset2 = 0;
9447   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9448   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9449   if (isGA1 && isGA2 && GV1 == GV2)
9450     return Offset1 == (Offset2 + Dist*Bytes);
9451   return false;
9452 }
9453 
9454 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9455 // not enforce equality of the chain operands.
9456 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9457                             unsigned Bytes, int Dist,
9458                             SelectionDAG &DAG) {
9459   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9460     EVT VT = LS->getMemoryVT();
9461     SDValue Loc = LS->getBasePtr();
9462     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9463   }
9464 
9465   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9466     EVT VT;
9467     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9468     default: return false;
9469     case Intrinsic::ppc_qpx_qvlfd:
9470     case Intrinsic::ppc_qpx_qvlfda:
9471       VT = MVT::v4f64;
9472       break;
9473     case Intrinsic::ppc_qpx_qvlfs:
9474     case Intrinsic::ppc_qpx_qvlfsa:
9475       VT = MVT::v4f32;
9476       break;
9477     case Intrinsic::ppc_qpx_qvlfcd:
9478     case Intrinsic::ppc_qpx_qvlfcda:
9479       VT = MVT::v2f64;
9480       break;
9481     case Intrinsic::ppc_qpx_qvlfcs:
9482     case Intrinsic::ppc_qpx_qvlfcsa:
9483       VT = MVT::v2f32;
9484       break;
9485     case Intrinsic::ppc_qpx_qvlfiwa:
9486     case Intrinsic::ppc_qpx_qvlfiwz:
9487     case Intrinsic::ppc_altivec_lvx:
9488     case Intrinsic::ppc_altivec_lvxl:
9489     case Intrinsic::ppc_vsx_lxvw4x:
9490       VT = MVT::v4i32;
9491       break;
9492     case Intrinsic::ppc_vsx_lxvd2x:
9493       VT = MVT::v2f64;
9494       break;
9495     case Intrinsic::ppc_altivec_lvebx:
9496       VT = MVT::i8;
9497       break;
9498     case Intrinsic::ppc_altivec_lvehx:
9499       VT = MVT::i16;
9500       break;
9501     case Intrinsic::ppc_altivec_lvewx:
9502       VT = MVT::i32;
9503       break;
9504     }
9505 
9506     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9507   }
9508 
9509   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9510     EVT VT;
9511     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9512     default: return false;
9513     case Intrinsic::ppc_qpx_qvstfd:
9514     case Intrinsic::ppc_qpx_qvstfda:
9515       VT = MVT::v4f64;
9516       break;
9517     case Intrinsic::ppc_qpx_qvstfs:
9518     case Intrinsic::ppc_qpx_qvstfsa:
9519       VT = MVT::v4f32;
9520       break;
9521     case Intrinsic::ppc_qpx_qvstfcd:
9522     case Intrinsic::ppc_qpx_qvstfcda:
9523       VT = MVT::v2f64;
9524       break;
9525     case Intrinsic::ppc_qpx_qvstfcs:
9526     case Intrinsic::ppc_qpx_qvstfcsa:
9527       VT = MVT::v2f32;
9528       break;
9529     case Intrinsic::ppc_qpx_qvstfiw:
9530     case Intrinsic::ppc_qpx_qvstfiwa:
9531     case Intrinsic::ppc_altivec_stvx:
9532     case Intrinsic::ppc_altivec_stvxl:
9533     case Intrinsic::ppc_vsx_stxvw4x:
9534       VT = MVT::v4i32;
9535       break;
9536     case Intrinsic::ppc_vsx_stxvd2x:
9537       VT = MVT::v2f64;
9538       break;
9539     case Intrinsic::ppc_altivec_stvebx:
9540       VT = MVT::i8;
9541       break;
9542     case Intrinsic::ppc_altivec_stvehx:
9543       VT = MVT::i16;
9544       break;
9545     case Intrinsic::ppc_altivec_stvewx:
9546       VT = MVT::i32;
9547       break;
9548     }
9549 
9550     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9551   }
9552 
9553   return false;
9554 }
9555 
9556 // Return true is there is a nearyby consecutive load to the one provided
9557 // (regardless of alignment). We search up and down the chain, looking though
9558 // token factors and other loads (but nothing else). As a result, a true result
9559 // indicates that it is safe to create a new consecutive load adjacent to the
9560 // load provided.
9561 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9562   SDValue Chain = LD->getChain();
9563   EVT VT = LD->getMemoryVT();
9564 
9565   SmallSet<SDNode *, 16> LoadRoots;
9566   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9567   SmallSet<SDNode *, 16> Visited;
9568 
9569   // First, search up the chain, branching to follow all token-factor operands.
9570   // If we find a consecutive load, then we're done, otherwise, record all
9571   // nodes just above the top-level loads and token factors.
9572   while (!Queue.empty()) {
9573     SDNode *ChainNext = Queue.pop_back_val();
9574     if (!Visited.insert(ChainNext).second)
9575       continue;
9576 
9577     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9578       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9579         return true;
9580 
9581       if (!Visited.count(ChainLD->getChain().getNode()))
9582         Queue.push_back(ChainLD->getChain().getNode());
9583     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9584       for (const SDUse &O : ChainNext->ops())
9585         if (!Visited.count(O.getNode()))
9586           Queue.push_back(O.getNode());
9587     } else
9588       LoadRoots.insert(ChainNext);
9589   }
9590 
9591   // Second, search down the chain, starting from the top-level nodes recorded
9592   // in the first phase. These top-level nodes are the nodes just above all
9593   // loads and token factors. Starting with their uses, recursively look though
9594   // all loads (just the chain uses) and token factors to find a consecutive
9595   // load.
9596   Visited.clear();
9597   Queue.clear();
9598 
9599   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9600        IE = LoadRoots.end(); I != IE; ++I) {
9601     Queue.push_back(*I);
9602 
9603     while (!Queue.empty()) {
9604       SDNode *LoadRoot = Queue.pop_back_val();
9605       if (!Visited.insert(LoadRoot).second)
9606         continue;
9607 
9608       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9609         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9610           return true;
9611 
9612       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9613            UE = LoadRoot->use_end(); UI != UE; ++UI)
9614         if (((isa<MemSDNode>(*UI) &&
9615             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9616             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9617           Queue.push_back(*UI);
9618     }
9619   }
9620 
9621   return false;
9622 }
9623 
9624 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9625                                                   DAGCombinerInfo &DCI) const {
9626   SelectionDAG &DAG = DCI.DAG;
9627   SDLoc dl(N);
9628 
9629   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9630   // If we're tracking CR bits, we need to be careful that we don't have:
9631   //   trunc(binary-ops(zext(x), zext(y)))
9632   // or
9633   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9634   // such that we're unnecessarily moving things into GPRs when it would be
9635   // better to keep them in CR bits.
9636 
9637   // Note that trunc here can be an actual i1 trunc, or can be the effective
9638   // truncation that comes from a setcc or select_cc.
9639   if (N->getOpcode() == ISD::TRUNCATE &&
9640       N->getValueType(0) != MVT::i1)
9641     return SDValue();
9642 
9643   if (N->getOperand(0).getValueType() != MVT::i32 &&
9644       N->getOperand(0).getValueType() != MVT::i64)
9645     return SDValue();
9646 
9647   if (N->getOpcode() == ISD::SETCC ||
9648       N->getOpcode() == ISD::SELECT_CC) {
9649     // If we're looking at a comparison, then we need to make sure that the
9650     // high bits (all except for the first) don't matter the result.
9651     ISD::CondCode CC =
9652       cast<CondCodeSDNode>(N->getOperand(
9653         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9654     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9655 
9656     if (ISD::isSignedIntSetCC(CC)) {
9657       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9658           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9659         return SDValue();
9660     } else if (ISD::isUnsignedIntSetCC(CC)) {
9661       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9662                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9663           !DAG.MaskedValueIsZero(N->getOperand(1),
9664                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9665         return SDValue();
9666     } else {
9667       // This is neither a signed nor an unsigned comparison, just make sure
9668       // that the high bits are equal.
9669       APInt Op1Zero, Op1One;
9670       APInt Op2Zero, Op2One;
9671       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9672       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9673 
9674       // We don't really care about what is known about the first bit (if
9675       // anything), so clear it in all masks prior to comparing them.
9676       Op1Zero.clearBit(0); Op1One.clearBit(0);
9677       Op2Zero.clearBit(0); Op2One.clearBit(0);
9678 
9679       if (Op1Zero != Op2Zero || Op1One != Op2One)
9680         return SDValue();
9681     }
9682   }
9683 
9684   // We now know that the higher-order bits are irrelevant, we just need to
9685   // make sure that all of the intermediate operations are bit operations, and
9686   // all inputs are extensions.
9687   if (N->getOperand(0).getOpcode() != ISD::AND &&
9688       N->getOperand(0).getOpcode() != ISD::OR  &&
9689       N->getOperand(0).getOpcode() != ISD::XOR &&
9690       N->getOperand(0).getOpcode() != ISD::SELECT &&
9691       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9692       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9693       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9694       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9695       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9696     return SDValue();
9697 
9698   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9699       N->getOperand(1).getOpcode() != ISD::AND &&
9700       N->getOperand(1).getOpcode() != ISD::OR  &&
9701       N->getOperand(1).getOpcode() != ISD::XOR &&
9702       N->getOperand(1).getOpcode() != ISD::SELECT &&
9703       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9704       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9705       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9706       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9707       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9708     return SDValue();
9709 
9710   SmallVector<SDValue, 4> Inputs;
9711   SmallVector<SDValue, 8> BinOps, PromOps;
9712   SmallPtrSet<SDNode *, 16> Visited;
9713 
9714   for (unsigned i = 0; i < 2; ++i) {
9715     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9716           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9717           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9718           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9719         isa<ConstantSDNode>(N->getOperand(i)))
9720       Inputs.push_back(N->getOperand(i));
9721     else
9722       BinOps.push_back(N->getOperand(i));
9723 
9724     if (N->getOpcode() == ISD::TRUNCATE)
9725       break;
9726   }
9727 
9728   // Visit all inputs, collect all binary operations (and, or, xor and
9729   // select) that are all fed by extensions.
9730   while (!BinOps.empty()) {
9731     SDValue BinOp = BinOps.back();
9732     BinOps.pop_back();
9733 
9734     if (!Visited.insert(BinOp.getNode()).second)
9735       continue;
9736 
9737     PromOps.push_back(BinOp);
9738 
9739     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9740       // The condition of the select is not promoted.
9741       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9742         continue;
9743       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9744         continue;
9745 
9746       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9747             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9748             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9749            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9750           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9751         Inputs.push_back(BinOp.getOperand(i));
9752       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9753                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9754                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9755                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9756                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9757                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9758                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9759                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9760                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9761         BinOps.push_back(BinOp.getOperand(i));
9762       } else {
9763         // We have an input that is not an extension or another binary
9764         // operation; we'll abort this transformation.
9765         return SDValue();
9766       }
9767     }
9768   }
9769 
9770   // Make sure that this is a self-contained cluster of operations (which
9771   // is not quite the same thing as saying that everything has only one
9772   // use).
9773   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9774     if (isa<ConstantSDNode>(Inputs[i]))
9775       continue;
9776 
9777     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9778                               UE = Inputs[i].getNode()->use_end();
9779          UI != UE; ++UI) {
9780       SDNode *User = *UI;
9781       if (User != N && !Visited.count(User))
9782         return SDValue();
9783 
9784       // Make sure that we're not going to promote the non-output-value
9785       // operand(s) or SELECT or SELECT_CC.
9786       // FIXME: Although we could sometimes handle this, and it does occur in
9787       // practice that one of the condition inputs to the select is also one of
9788       // the outputs, we currently can't deal with this.
9789       if (User->getOpcode() == ISD::SELECT) {
9790         if (User->getOperand(0) == Inputs[i])
9791           return SDValue();
9792       } else if (User->getOpcode() == ISD::SELECT_CC) {
9793         if (User->getOperand(0) == Inputs[i] ||
9794             User->getOperand(1) == Inputs[i])
9795           return SDValue();
9796       }
9797     }
9798   }
9799 
9800   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9801     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9802                               UE = PromOps[i].getNode()->use_end();
9803          UI != UE; ++UI) {
9804       SDNode *User = *UI;
9805       if (User != N && !Visited.count(User))
9806         return SDValue();
9807 
9808       // Make sure that we're not going to promote the non-output-value
9809       // operand(s) or SELECT or SELECT_CC.
9810       // FIXME: Although we could sometimes handle this, and it does occur in
9811       // practice that one of the condition inputs to the select is also one of
9812       // the outputs, we currently can't deal with this.
9813       if (User->getOpcode() == ISD::SELECT) {
9814         if (User->getOperand(0) == PromOps[i])
9815           return SDValue();
9816       } else if (User->getOpcode() == ISD::SELECT_CC) {
9817         if (User->getOperand(0) == PromOps[i] ||
9818             User->getOperand(1) == PromOps[i])
9819           return SDValue();
9820       }
9821     }
9822   }
9823 
9824   // Replace all inputs with the extension operand.
9825   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9826     // Constants may have users outside the cluster of to-be-promoted nodes,
9827     // and so we need to replace those as we do the promotions.
9828     if (isa<ConstantSDNode>(Inputs[i]))
9829       continue;
9830     else
9831       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9832   }
9833 
9834   std::list<HandleSDNode> PromOpHandles;
9835   for (auto &PromOp : PromOps)
9836     PromOpHandles.emplace_back(PromOp);
9837 
9838   // Replace all operations (these are all the same, but have a different
9839   // (i1) return type). DAG.getNode will validate that the types of
9840   // a binary operator match, so go through the list in reverse so that
9841   // we've likely promoted both operands first. Any intermediate truncations or
9842   // extensions disappear.
9843   while (!PromOpHandles.empty()) {
9844     SDValue PromOp = PromOpHandles.back().getValue();
9845     PromOpHandles.pop_back();
9846 
9847     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9848         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9849         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9850         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9851       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9852           PromOp.getOperand(0).getValueType() != MVT::i1) {
9853         // The operand is not yet ready (see comment below).
9854         PromOpHandles.emplace_front(PromOp);
9855         continue;
9856       }
9857 
9858       SDValue RepValue = PromOp.getOperand(0);
9859       if (isa<ConstantSDNode>(RepValue))
9860         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9861 
9862       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9863       continue;
9864     }
9865 
9866     unsigned C;
9867     switch (PromOp.getOpcode()) {
9868     default:             C = 0; break;
9869     case ISD::SELECT:    C = 1; break;
9870     case ISD::SELECT_CC: C = 2; break;
9871     }
9872 
9873     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9874          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9875         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9876          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9877       // The to-be-promoted operands of this node have not yet been
9878       // promoted (this should be rare because we're going through the
9879       // list backward, but if one of the operands has several users in
9880       // this cluster of to-be-promoted nodes, it is possible).
9881       PromOpHandles.emplace_front(PromOp);
9882       continue;
9883     }
9884 
9885     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9886                                 PromOp.getNode()->op_end());
9887 
9888     // If there are any constant inputs, make sure they're replaced now.
9889     for (unsigned i = 0; i < 2; ++i)
9890       if (isa<ConstantSDNode>(Ops[C+i]))
9891         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9892 
9893     DAG.ReplaceAllUsesOfValueWith(PromOp,
9894       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9895   }
9896 
9897   // Now we're left with the initial truncation itself.
9898   if (N->getOpcode() == ISD::TRUNCATE)
9899     return N->getOperand(0);
9900 
9901   // Otherwise, this is a comparison. The operands to be compared have just
9902   // changed type (to i1), but everything else is the same.
9903   return SDValue(N, 0);
9904 }
9905 
9906 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9907                                                   DAGCombinerInfo &DCI) const {
9908   SelectionDAG &DAG = DCI.DAG;
9909   SDLoc dl(N);
9910 
9911   // If we're tracking CR bits, we need to be careful that we don't have:
9912   //   zext(binary-ops(trunc(x), trunc(y)))
9913   // or
9914   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9915   // such that we're unnecessarily moving things into CR bits that can more
9916   // efficiently stay in GPRs. Note that if we're not certain that the high
9917   // bits are set as required by the final extension, we still may need to do
9918   // some masking to get the proper behavior.
9919 
9920   // This same functionality is important on PPC64 when dealing with
9921   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9922   // the return values of functions. Because it is so similar, it is handled
9923   // here as well.
9924 
9925   if (N->getValueType(0) != MVT::i32 &&
9926       N->getValueType(0) != MVT::i64)
9927     return SDValue();
9928 
9929   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9930         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9931     return SDValue();
9932 
9933   if (N->getOperand(0).getOpcode() != ISD::AND &&
9934       N->getOperand(0).getOpcode() != ISD::OR  &&
9935       N->getOperand(0).getOpcode() != ISD::XOR &&
9936       N->getOperand(0).getOpcode() != ISD::SELECT &&
9937       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9938     return SDValue();
9939 
9940   SmallVector<SDValue, 4> Inputs;
9941   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9942   SmallPtrSet<SDNode *, 16> Visited;
9943 
9944   // Visit all inputs, collect all binary operations (and, or, xor and
9945   // select) that are all fed by truncations.
9946   while (!BinOps.empty()) {
9947     SDValue BinOp = BinOps.back();
9948     BinOps.pop_back();
9949 
9950     if (!Visited.insert(BinOp.getNode()).second)
9951       continue;
9952 
9953     PromOps.push_back(BinOp);
9954 
9955     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9956       // The condition of the select is not promoted.
9957       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9958         continue;
9959       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9960         continue;
9961 
9962       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9963           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9964         Inputs.push_back(BinOp.getOperand(i));
9965       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9966                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9967                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9968                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9969                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9970         BinOps.push_back(BinOp.getOperand(i));
9971       } else {
9972         // We have an input that is not a truncation or another binary
9973         // operation; we'll abort this transformation.
9974         return SDValue();
9975       }
9976     }
9977   }
9978 
9979   // The operands of a select that must be truncated when the select is
9980   // promoted because the operand is actually part of the to-be-promoted set.
9981   DenseMap<SDNode *, EVT> SelectTruncOp[2];
9982 
9983   // Make sure that this is a self-contained cluster of operations (which
9984   // is not quite the same thing as saying that everything has only one
9985   // use).
9986   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9987     if (isa<ConstantSDNode>(Inputs[i]))
9988       continue;
9989 
9990     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9991                               UE = Inputs[i].getNode()->use_end();
9992          UI != UE; ++UI) {
9993       SDNode *User = *UI;
9994       if (User != N && !Visited.count(User))
9995         return SDValue();
9996 
9997       // If we're going to promote the non-output-value operand(s) or SELECT or
9998       // SELECT_CC, record them for truncation.
9999       if (User->getOpcode() == ISD::SELECT) {
10000         if (User->getOperand(0) == Inputs[i])
10001           SelectTruncOp[0].insert(std::make_pair(User,
10002                                     User->getOperand(0).getValueType()));
10003       } else if (User->getOpcode() == ISD::SELECT_CC) {
10004         if (User->getOperand(0) == Inputs[i])
10005           SelectTruncOp[0].insert(std::make_pair(User,
10006                                     User->getOperand(0).getValueType()));
10007         if (User->getOperand(1) == Inputs[i])
10008           SelectTruncOp[1].insert(std::make_pair(User,
10009                                     User->getOperand(1).getValueType()));
10010       }
10011     }
10012   }
10013 
10014   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10015     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10016                               UE = PromOps[i].getNode()->use_end();
10017          UI != UE; ++UI) {
10018       SDNode *User = *UI;
10019       if (User != N && !Visited.count(User))
10020         return SDValue();
10021 
10022       // If we're going to promote the non-output-value operand(s) or SELECT or
10023       // SELECT_CC, record them for truncation.
10024       if (User->getOpcode() == ISD::SELECT) {
10025         if (User->getOperand(0) == PromOps[i])
10026           SelectTruncOp[0].insert(std::make_pair(User,
10027                                     User->getOperand(0).getValueType()));
10028       } else if (User->getOpcode() == ISD::SELECT_CC) {
10029         if (User->getOperand(0) == PromOps[i])
10030           SelectTruncOp[0].insert(std::make_pair(User,
10031                                     User->getOperand(0).getValueType()));
10032         if (User->getOperand(1) == PromOps[i])
10033           SelectTruncOp[1].insert(std::make_pair(User,
10034                                     User->getOperand(1).getValueType()));
10035       }
10036     }
10037   }
10038 
10039   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10040   bool ReallyNeedsExt = false;
10041   if (N->getOpcode() != ISD::ANY_EXTEND) {
10042     // If all of the inputs are not already sign/zero extended, then
10043     // we'll still need to do that at the end.
10044     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10045       if (isa<ConstantSDNode>(Inputs[i]))
10046         continue;
10047 
10048       unsigned OpBits =
10049         Inputs[i].getOperand(0).getValueSizeInBits();
10050       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10051 
10052       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10053            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10054                                   APInt::getHighBitsSet(OpBits,
10055                                                         OpBits-PromBits))) ||
10056           (N->getOpcode() == ISD::SIGN_EXTEND &&
10057            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10058              (OpBits-(PromBits-1)))) {
10059         ReallyNeedsExt = true;
10060         break;
10061       }
10062     }
10063   }
10064 
10065   // Replace all inputs, either with the truncation operand, or a
10066   // truncation or extension to the final output type.
10067   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10068     // Constant inputs need to be replaced with the to-be-promoted nodes that
10069     // use them because they might have users outside of the cluster of
10070     // promoted nodes.
10071     if (isa<ConstantSDNode>(Inputs[i]))
10072       continue;
10073 
10074     SDValue InSrc = Inputs[i].getOperand(0);
10075     if (Inputs[i].getValueType() == N->getValueType(0))
10076       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10077     else if (N->getOpcode() == ISD::SIGN_EXTEND)
10078       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10079         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10080     else if (N->getOpcode() == ISD::ZERO_EXTEND)
10081       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10082         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10083     else
10084       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10085         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10086   }
10087 
10088   std::list<HandleSDNode> PromOpHandles;
10089   for (auto &PromOp : PromOps)
10090     PromOpHandles.emplace_back(PromOp);
10091 
10092   // Replace all operations (these are all the same, but have a different
10093   // (promoted) return type). DAG.getNode will validate that the types of
10094   // a binary operator match, so go through the list in reverse so that
10095   // we've likely promoted both operands first.
10096   while (!PromOpHandles.empty()) {
10097     SDValue PromOp = PromOpHandles.back().getValue();
10098     PromOpHandles.pop_back();
10099 
10100     unsigned C;
10101     switch (PromOp.getOpcode()) {
10102     default:             C = 0; break;
10103     case ISD::SELECT:    C = 1; break;
10104     case ISD::SELECT_CC: C = 2; break;
10105     }
10106 
10107     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10108          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10109         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10110          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10111       // The to-be-promoted operands of this node have not yet been
10112       // promoted (this should be rare because we're going through the
10113       // list backward, but if one of the operands has several users in
10114       // this cluster of to-be-promoted nodes, it is possible).
10115       PromOpHandles.emplace_front(PromOp);
10116       continue;
10117     }
10118 
10119     // For SELECT and SELECT_CC nodes, we do a similar check for any
10120     // to-be-promoted comparison inputs.
10121     if (PromOp.getOpcode() == ISD::SELECT ||
10122         PromOp.getOpcode() == ISD::SELECT_CC) {
10123       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10124            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10125           (SelectTruncOp[1].count(PromOp.getNode()) &&
10126            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10127         PromOpHandles.emplace_front(PromOp);
10128         continue;
10129       }
10130     }
10131 
10132     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10133                                 PromOp.getNode()->op_end());
10134 
10135     // If this node has constant inputs, then they'll need to be promoted here.
10136     for (unsigned i = 0; i < 2; ++i) {
10137       if (!isa<ConstantSDNode>(Ops[C+i]))
10138         continue;
10139       if (Ops[C+i].getValueType() == N->getValueType(0))
10140         continue;
10141 
10142       if (N->getOpcode() == ISD::SIGN_EXTEND)
10143         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10144       else if (N->getOpcode() == ISD::ZERO_EXTEND)
10145         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10146       else
10147         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10148     }
10149 
10150     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10151     // truncate them again to the original value type.
10152     if (PromOp.getOpcode() == ISD::SELECT ||
10153         PromOp.getOpcode() == ISD::SELECT_CC) {
10154       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10155       if (SI0 != SelectTruncOp[0].end())
10156         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10157       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10158       if (SI1 != SelectTruncOp[1].end())
10159         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10160     }
10161 
10162     DAG.ReplaceAllUsesOfValueWith(PromOp,
10163       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10164   }
10165 
10166   // Now we're left with the initial extension itself.
10167   if (!ReallyNeedsExt)
10168     return N->getOperand(0);
10169 
10170   // To zero extend, just mask off everything except for the first bit (in the
10171   // i1 case).
10172   if (N->getOpcode() == ISD::ZERO_EXTEND)
10173     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10174                        DAG.getConstant(APInt::getLowBitsSet(
10175                                          N->getValueSizeInBits(0), PromBits),
10176                                        dl, N->getValueType(0)));
10177 
10178   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10179          "Invalid extension type");
10180   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10181   SDValue ShiftCst =
10182       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10183   return DAG.getNode(
10184       ISD::SRA, dl, N->getValueType(0),
10185       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10186       ShiftCst);
10187 }
10188 
10189 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10190                                               DAGCombinerInfo &DCI) const {
10191   assert((N->getOpcode() == ISD::SINT_TO_FP ||
10192           N->getOpcode() == ISD::UINT_TO_FP) &&
10193          "Need an int -> FP conversion node here");
10194 
10195   if (!Subtarget.has64BitSupport())
10196     return SDValue();
10197 
10198   SelectionDAG &DAG = DCI.DAG;
10199   SDLoc dl(N);
10200   SDValue Op(N, 0);
10201 
10202   // Don't handle ppc_fp128 here or i1 conversions.
10203   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10204     return SDValue();
10205   if (Op.getOperand(0).getValueType() == MVT::i1)
10206     return SDValue();
10207 
10208   // For i32 intermediate values, unfortunately, the conversion functions
10209   // leave the upper 32 bits of the value are undefined. Within the set of
10210   // scalar instructions, we have no method for zero- or sign-extending the
10211   // value. Thus, we cannot handle i32 intermediate values here.
10212   if (Op.getOperand(0).getValueType() == MVT::i32)
10213     return SDValue();
10214 
10215   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10216          "UINT_TO_FP is supported only with FPCVT");
10217 
10218   // If we have FCFIDS, then use it when converting to single-precision.
10219   // Otherwise, convert to double-precision and then round.
10220   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10221                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10222                                                             : PPCISD::FCFIDS)
10223                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10224                                                             : PPCISD::FCFID);
10225   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10226                   ? MVT::f32
10227                   : MVT::f64;
10228 
10229   // If we're converting from a float, to an int, and back to a float again,
10230   // then we don't need the store/load pair at all.
10231   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10232        Subtarget.hasFPCVT()) ||
10233       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10234     SDValue Src = Op.getOperand(0).getOperand(0);
10235     if (Src.getValueType() == MVT::f32) {
10236       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10237       DCI.AddToWorklist(Src.getNode());
10238     } else if (Src.getValueType() != MVT::f64) {
10239       // Make sure that we don't pick up a ppc_fp128 source value.
10240       return SDValue();
10241     }
10242 
10243     unsigned FCTOp =
10244       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10245                                                         PPCISD::FCTIDUZ;
10246 
10247     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10248     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10249 
10250     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10251       FP = DAG.getNode(ISD::FP_ROUND, dl,
10252                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10253       DCI.AddToWorklist(FP.getNode());
10254     }
10255 
10256     return FP;
10257   }
10258 
10259   return SDValue();
10260 }
10261 
10262 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10263 // builtins) into loads with swaps.
10264 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10265                                               DAGCombinerInfo &DCI) const {
10266   SelectionDAG &DAG = DCI.DAG;
10267   SDLoc dl(N);
10268   SDValue Chain;
10269   SDValue Base;
10270   MachineMemOperand *MMO;
10271 
10272   switch (N->getOpcode()) {
10273   default:
10274     llvm_unreachable("Unexpected opcode for little endian VSX load");
10275   case ISD::LOAD: {
10276     LoadSDNode *LD = cast<LoadSDNode>(N);
10277     Chain = LD->getChain();
10278     Base = LD->getBasePtr();
10279     MMO = LD->getMemOperand();
10280     // If the MMO suggests this isn't a load of a full vector, leave
10281     // things alone.  For a built-in, we have to make the change for
10282     // correctness, so if there is a size problem that will be a bug.
10283     if (MMO->getSize() < 16)
10284       return SDValue();
10285     break;
10286   }
10287   case ISD::INTRINSIC_W_CHAIN: {
10288     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10289     Chain = Intrin->getChain();
10290     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10291     // us what we want. Get operand 2 instead.
10292     Base = Intrin->getOperand(2);
10293     MMO = Intrin->getMemOperand();
10294     break;
10295   }
10296   }
10297 
10298   MVT VecTy = N->getValueType(0).getSimpleVT();
10299   SDValue LoadOps[] = { Chain, Base };
10300   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10301                                          DAG.getVTList(MVT::v2f64, MVT::Other),
10302                                          LoadOps, MVT::v2f64, MMO);
10303 
10304   DCI.AddToWorklist(Load.getNode());
10305   Chain = Load.getValue(1);
10306   SDValue Swap = DAG.getNode(
10307       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
10308   DCI.AddToWorklist(Swap.getNode());
10309 
10310   // Add a bitcast if the resulting load type doesn't match v2f64.
10311   if (VecTy != MVT::v2f64) {
10312     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
10313     DCI.AddToWorklist(N.getNode());
10314     // Package {bitcast value, swap's chain} to match Load's shape.
10315     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
10316                        N, Swap.getValue(1));
10317   }
10318 
10319   return Swap;
10320 }
10321 
10322 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10323 // builtins) into stores with swaps.
10324 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10325                                                DAGCombinerInfo &DCI) const {
10326   SelectionDAG &DAG = DCI.DAG;
10327   SDLoc dl(N);
10328   SDValue Chain;
10329   SDValue Base;
10330   unsigned SrcOpnd;
10331   MachineMemOperand *MMO;
10332 
10333   switch (N->getOpcode()) {
10334   default:
10335     llvm_unreachable("Unexpected opcode for little endian VSX store");
10336   case ISD::STORE: {
10337     StoreSDNode *ST = cast<StoreSDNode>(N);
10338     Chain = ST->getChain();
10339     Base = ST->getBasePtr();
10340     MMO = ST->getMemOperand();
10341     SrcOpnd = 1;
10342     // If the MMO suggests this isn't a store of a full vector, leave
10343     // things alone.  For a built-in, we have to make the change for
10344     // correctness, so if there is a size problem that will be a bug.
10345     if (MMO->getSize() < 16)
10346       return SDValue();
10347     break;
10348   }
10349   case ISD::INTRINSIC_VOID: {
10350     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10351     Chain = Intrin->getChain();
10352     // Intrin->getBasePtr() oddly does not get what we want.
10353     Base = Intrin->getOperand(3);
10354     MMO = Intrin->getMemOperand();
10355     SrcOpnd = 2;
10356     break;
10357   }
10358   }
10359 
10360   SDValue Src = N->getOperand(SrcOpnd);
10361   MVT VecTy = Src.getValueType().getSimpleVT();
10362 
10363   // All stores are done as v2f64 and possible bit cast.
10364   if (VecTy != MVT::v2f64) {
10365     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
10366     DCI.AddToWorklist(Src.getNode());
10367   }
10368 
10369   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10370                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
10371   DCI.AddToWorklist(Swap.getNode());
10372   Chain = Swap.getValue(1);
10373   SDValue StoreOps[] = { Chain, Swap, Base };
10374   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10375                                           DAG.getVTList(MVT::Other),
10376                                           StoreOps, VecTy, MMO);
10377   DCI.AddToWorklist(Store.getNode());
10378   return Store;
10379 }
10380 
10381 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10382                                              DAGCombinerInfo &DCI) const {
10383   SelectionDAG &DAG = DCI.DAG;
10384   SDLoc dl(N);
10385   switch (N->getOpcode()) {
10386   default: break;
10387   case PPCISD::SHL:
10388     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10389         return N->getOperand(0);
10390     break;
10391   case PPCISD::SRL:
10392     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10393         return N->getOperand(0);
10394     break;
10395   case PPCISD::SRA:
10396     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10397       if (C->isNullValue() ||   //  0 >>s V -> 0.
10398           C->isAllOnesValue())    // -1 >>s V -> -1.
10399         return N->getOperand(0);
10400     }
10401     break;
10402   case ISD::SIGN_EXTEND:
10403   case ISD::ZERO_EXTEND:
10404   case ISD::ANY_EXTEND:
10405     return DAGCombineExtBoolTrunc(N, DCI);
10406   case ISD::TRUNCATE:
10407   case ISD::SETCC:
10408   case ISD::SELECT_CC:
10409     return DAGCombineTruncBoolExt(N, DCI);
10410   case ISD::SINT_TO_FP:
10411   case ISD::UINT_TO_FP:
10412     return combineFPToIntToFP(N, DCI);
10413   case ISD::STORE: {
10414     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10415     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10416         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10417         N->getOperand(1).getValueType() == MVT::i32 &&
10418         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10419       SDValue Val = N->getOperand(1).getOperand(0);
10420       if (Val.getValueType() == MVT::f32) {
10421         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10422         DCI.AddToWorklist(Val.getNode());
10423       }
10424       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10425       DCI.AddToWorklist(Val.getNode());
10426 
10427       SDValue Ops[] = {
10428         N->getOperand(0), Val, N->getOperand(2),
10429         DAG.getValueType(N->getOperand(1).getValueType())
10430       };
10431 
10432       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10433               DAG.getVTList(MVT::Other), Ops,
10434               cast<StoreSDNode>(N)->getMemoryVT(),
10435               cast<StoreSDNode>(N)->getMemOperand());
10436       DCI.AddToWorklist(Val.getNode());
10437       return Val;
10438     }
10439 
10440     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10441     if (cast<StoreSDNode>(N)->isUnindexed() &&
10442         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10443         N->getOperand(1).getNode()->hasOneUse() &&
10444         (N->getOperand(1).getValueType() == MVT::i32 ||
10445          N->getOperand(1).getValueType() == MVT::i16 ||
10446          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10447           N->getOperand(1).getValueType() == MVT::i64))) {
10448       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10449       // Do an any-extend to 32-bits if this is a half-word input.
10450       if (BSwapOp.getValueType() == MVT::i16)
10451         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10452 
10453       SDValue Ops[] = {
10454         N->getOperand(0), BSwapOp, N->getOperand(2),
10455         DAG.getValueType(N->getOperand(1).getValueType())
10456       };
10457       return
10458         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10459                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10460                                 cast<StoreSDNode>(N)->getMemOperand());
10461     }
10462 
10463     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10464     EVT VT = N->getOperand(1).getValueType();
10465     if (VT.isSimple()) {
10466       MVT StoreVT = VT.getSimpleVT();
10467       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10468           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10469            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10470         return expandVSXStoreForLE(N, DCI);
10471     }
10472     break;
10473   }
10474   case ISD::LOAD: {
10475     LoadSDNode *LD = cast<LoadSDNode>(N);
10476     EVT VT = LD->getValueType(0);
10477 
10478     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10479     if (VT.isSimple()) {
10480       MVT LoadVT = VT.getSimpleVT();
10481       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10482           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10483            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10484         return expandVSXLoadForLE(N, DCI);
10485     }
10486 
10487     // We sometimes end up with a 64-bit integer load, from which we extract
10488     // two single-precision floating-point numbers. This happens with
10489     // std::complex<float>, and other similar structures, because of the way we
10490     // canonicalize structure copies. However, if we lack direct moves,
10491     // then the final bitcasts from the extracted integer values to the
10492     // floating-point numbers turn into store/load pairs. Even with direct moves,
10493     // just loading the two floating-point numbers is likely better.
10494     auto ReplaceTwoFloatLoad = [&]() {
10495       if (VT != MVT::i64)
10496         return false;
10497 
10498       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
10499           LD->isVolatile())
10500         return false;
10501 
10502       //  We're looking for a sequence like this:
10503       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
10504       //      t16: i64 = srl t13, Constant:i32<32>
10505       //    t17: i32 = truncate t16
10506       //  t18: f32 = bitcast t17
10507       //    t19: i32 = truncate t13
10508       //  t20: f32 = bitcast t19
10509 
10510       if (!LD->hasNUsesOfValue(2, 0))
10511         return false;
10512 
10513       auto UI = LD->use_begin();
10514       while (UI.getUse().getResNo() != 0) ++UI;
10515       SDNode *Trunc = *UI++;
10516       while (UI.getUse().getResNo() != 0) ++UI;
10517       SDNode *RightShift = *UI;
10518       if (Trunc->getOpcode() != ISD::TRUNCATE)
10519         std::swap(Trunc, RightShift);
10520 
10521       if (Trunc->getOpcode() != ISD::TRUNCATE ||
10522           Trunc->getValueType(0) != MVT::i32 ||
10523           !Trunc->hasOneUse())
10524         return false;
10525       if (RightShift->getOpcode() != ISD::SRL ||
10526           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
10527           RightShift->getConstantOperandVal(1) != 32 ||
10528           !RightShift->hasOneUse())
10529         return false;
10530 
10531       SDNode *Trunc2 = *RightShift->use_begin();
10532       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
10533           Trunc2->getValueType(0) != MVT::i32 ||
10534           !Trunc2->hasOneUse())
10535         return false;
10536 
10537       SDNode *Bitcast = *Trunc->use_begin();
10538       SDNode *Bitcast2 = *Trunc2->use_begin();
10539 
10540       if (Bitcast->getOpcode() != ISD::BITCAST ||
10541           Bitcast->getValueType(0) != MVT::f32)
10542         return false;
10543       if (Bitcast2->getOpcode() != ISD::BITCAST ||
10544           Bitcast2->getValueType(0) != MVT::f32)
10545         return false;
10546 
10547       if (Subtarget.isLittleEndian())
10548         std::swap(Bitcast, Bitcast2);
10549 
10550       // Bitcast has the second float (in memory-layout order) and Bitcast2
10551       // has the first one.
10552 
10553       SDValue BasePtr = LD->getBasePtr();
10554       if (LD->isIndexed()) {
10555         assert(LD->getAddressingMode() == ISD::PRE_INC &&
10556                "Non-pre-inc AM on PPC?");
10557         BasePtr =
10558           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10559                       LD->getOffset());
10560       }
10561 
10562       SDValue FloatLoad =
10563         DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
10564                     LD->getPointerInfo(), false, LD->isNonTemporal(),
10565                     LD->isInvariant(), LD->getAlignment(), LD->getAAInfo());
10566       SDValue AddPtr =
10567         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
10568                     BasePtr, DAG.getIntPtrConstant(4, dl));
10569       SDValue FloatLoad2 =
10570         DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
10571                     LD->getPointerInfo().getWithOffset(4), false,
10572                     LD->isNonTemporal(), LD->isInvariant(),
10573                     MinAlign(LD->getAlignment(), 4), LD->getAAInfo());
10574 
10575       if (LD->isIndexed()) {
10576         // Note that DAGCombine should re-form any pre-increment load(s) from
10577         // what is produced here if that makes sense.
10578         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
10579       }
10580 
10581       DCI.CombineTo(Bitcast2, FloatLoad);
10582       DCI.CombineTo(Bitcast, FloatLoad2);
10583 
10584       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
10585                                     SDValue(FloatLoad2.getNode(), 1));
10586       return true;
10587     };
10588 
10589     if (ReplaceTwoFloatLoad())
10590       return SDValue(N, 0);
10591 
10592     EVT MemVT = LD->getMemoryVT();
10593     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10594     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10595     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10596     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10597     if (LD->isUnindexed() && VT.isVector() &&
10598         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10599           // P8 and later hardware should just use LOAD.
10600           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10601                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10602          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10603           LD->getAlignment() >= ScalarABIAlignment)) &&
10604         LD->getAlignment() < ABIAlignment) {
10605       // This is a type-legal unaligned Altivec or QPX load.
10606       SDValue Chain = LD->getChain();
10607       SDValue Ptr = LD->getBasePtr();
10608       bool isLittleEndian = Subtarget.isLittleEndian();
10609 
10610       // This implements the loading of unaligned vectors as described in
10611       // the venerable Apple Velocity Engine overview. Specifically:
10612       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10613       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10614       //
10615       // The general idea is to expand a sequence of one or more unaligned
10616       // loads into an alignment-based permutation-control instruction (lvsl
10617       // or lvsr), a series of regular vector loads (which always truncate
10618       // their input address to an aligned address), and a series of
10619       // permutations.  The results of these permutations are the requested
10620       // loaded values.  The trick is that the last "extra" load is not taken
10621       // from the address you might suspect (sizeof(vector) bytes after the
10622       // last requested load), but rather sizeof(vector) - 1 bytes after the
10623       // last requested vector. The point of this is to avoid a page fault if
10624       // the base address happened to be aligned. This works because if the
10625       // base address is aligned, then adding less than a full vector length
10626       // will cause the last vector in the sequence to be (re)loaded.
10627       // Otherwise, the next vector will be fetched as you might suspect was
10628       // necessary.
10629 
10630       // We might be able to reuse the permutation generation from
10631       // a different base address offset from this one by an aligned amount.
10632       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10633       // optimization later.
10634       Intrinsic::ID Intr, IntrLD, IntrPerm;
10635       MVT PermCntlTy, PermTy, LDTy;
10636       if (Subtarget.hasAltivec()) {
10637         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10638                                  Intrinsic::ppc_altivec_lvsl;
10639         IntrLD = Intrinsic::ppc_altivec_lvx;
10640         IntrPerm = Intrinsic::ppc_altivec_vperm;
10641         PermCntlTy = MVT::v16i8;
10642         PermTy = MVT::v4i32;
10643         LDTy = MVT::v4i32;
10644       } else {
10645         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10646                                        Intrinsic::ppc_qpx_qvlpcls;
10647         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10648                                        Intrinsic::ppc_qpx_qvlfs;
10649         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10650         PermCntlTy = MVT::v4f64;
10651         PermTy = MVT::v4f64;
10652         LDTy = MemVT.getSimpleVT();
10653       }
10654 
10655       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10656 
10657       // Create the new MMO for the new base load. It is like the original MMO,
10658       // but represents an area in memory almost twice the vector size centered
10659       // on the original address. If the address is unaligned, we might start
10660       // reading up to (sizeof(vector)-1) bytes below the address of the
10661       // original unaligned load.
10662       MachineFunction &MF = DAG.getMachineFunction();
10663       MachineMemOperand *BaseMMO =
10664         MF.getMachineMemOperand(LD->getMemOperand(),
10665                                 -(long)MemVT.getStoreSize()+1,
10666                                 2*MemVT.getStoreSize()-1);
10667 
10668       // Create the new base load.
10669       SDValue LDXIntID =
10670           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10671       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10672       SDValue BaseLoad =
10673         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10674                                 DAG.getVTList(PermTy, MVT::Other),
10675                                 BaseLoadOps, LDTy, BaseMMO);
10676 
10677       // Note that the value of IncOffset (which is provided to the next
10678       // load's pointer info offset value, and thus used to calculate the
10679       // alignment), and the value of IncValue (which is actually used to
10680       // increment the pointer value) are different! This is because we
10681       // require the next load to appear to be aligned, even though it
10682       // is actually offset from the base pointer by a lesser amount.
10683       int IncOffset = VT.getSizeInBits() / 8;
10684       int IncValue = IncOffset;
10685 
10686       // Walk (both up and down) the chain looking for another load at the real
10687       // (aligned) offset (the alignment of the other load does not matter in
10688       // this case). If found, then do not use the offset reduction trick, as
10689       // that will prevent the loads from being later combined (as they would
10690       // otherwise be duplicates).
10691       if (!findConsecutiveLoad(LD, DAG))
10692         --IncValue;
10693 
10694       SDValue Increment =
10695           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10696       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10697 
10698       MachineMemOperand *ExtraMMO =
10699         MF.getMachineMemOperand(LD->getMemOperand(),
10700                                 1, 2*MemVT.getStoreSize()-1);
10701       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10702       SDValue ExtraLoad =
10703         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10704                                 DAG.getVTList(PermTy, MVT::Other),
10705                                 ExtraLoadOps, LDTy, ExtraMMO);
10706 
10707       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10708         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10709 
10710       // Because vperm has a big-endian bias, we must reverse the order
10711       // of the input vectors and complement the permute control vector
10712       // when generating little endian code.  We have already handled the
10713       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10714       // and ExtraLoad here.
10715       SDValue Perm;
10716       if (isLittleEndian)
10717         Perm = BuildIntrinsicOp(IntrPerm,
10718                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10719       else
10720         Perm = BuildIntrinsicOp(IntrPerm,
10721                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10722 
10723       if (VT != PermTy)
10724         Perm = Subtarget.hasAltivec() ?
10725                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10726                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10727                                DAG.getTargetConstant(1, dl, MVT::i64));
10728                                // second argument is 1 because this rounding
10729                                // is always exact.
10730 
10731       // The output of the permutation is our loaded result, the TokenFactor is
10732       // our new chain.
10733       DCI.CombineTo(N, Perm, TF);
10734       return SDValue(N, 0);
10735     }
10736     }
10737     break;
10738     case ISD::INTRINSIC_WO_CHAIN: {
10739       bool isLittleEndian = Subtarget.isLittleEndian();
10740       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10741       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10742                                            : Intrinsic::ppc_altivec_lvsl);
10743       if ((IID == Intr ||
10744            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10745            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10746         N->getOperand(1)->getOpcode() == ISD::ADD) {
10747         SDValue Add = N->getOperand(1);
10748 
10749         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10750                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10751 
10752         if (DAG.MaskedValueIsZero(
10753                 Add->getOperand(1),
10754                 APInt::getAllOnesValue(Bits /* alignment */)
10755                     .zext(
10756                         Add.getValueType().getScalarType().getSizeInBits()))) {
10757           SDNode *BasePtr = Add->getOperand(0).getNode();
10758           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10759                                     UE = BasePtr->use_end();
10760                UI != UE; ++UI) {
10761             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10762                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10763               // We've found another LVSL/LVSR, and this address is an aligned
10764               // multiple of that one. The results will be the same, so use the
10765               // one we've just found instead.
10766 
10767               return SDValue(*UI, 0);
10768             }
10769           }
10770         }
10771 
10772         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10773           SDNode *BasePtr = Add->getOperand(0).getNode();
10774           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10775                UE = BasePtr->use_end(); UI != UE; ++UI) {
10776             if (UI->getOpcode() == ISD::ADD &&
10777                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10778                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10779                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10780                 (1ULL << Bits) == 0) {
10781               SDNode *OtherAdd = *UI;
10782               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10783                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10784                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10785                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10786                   return SDValue(*VI, 0);
10787                 }
10788               }
10789             }
10790           }
10791         }
10792       }
10793     }
10794 
10795     break;
10796   case ISD::INTRINSIC_W_CHAIN: {
10797     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10798     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10799       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10800       default:
10801         break;
10802       case Intrinsic::ppc_vsx_lxvw4x:
10803       case Intrinsic::ppc_vsx_lxvd2x:
10804         return expandVSXLoadForLE(N, DCI);
10805       }
10806     }
10807     break;
10808   }
10809   case ISD::INTRINSIC_VOID: {
10810     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10811     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10812       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10813       default:
10814         break;
10815       case Intrinsic::ppc_vsx_stxvw4x:
10816       case Intrinsic::ppc_vsx_stxvd2x:
10817         return expandVSXStoreForLE(N, DCI);
10818       }
10819     }
10820     break;
10821   }
10822   case ISD::BSWAP:
10823     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10824     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10825         N->getOperand(0).hasOneUse() &&
10826         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10827          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10828           N->getValueType(0) == MVT::i64))) {
10829       SDValue Load = N->getOperand(0);
10830       LoadSDNode *LD = cast<LoadSDNode>(Load);
10831       // Create the byte-swapping load.
10832       SDValue Ops[] = {
10833         LD->getChain(),    // Chain
10834         LD->getBasePtr(),  // Ptr
10835         DAG.getValueType(N->getValueType(0)) // VT
10836       };
10837       SDValue BSLoad =
10838         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10839                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10840                                               MVT::i64 : MVT::i32, MVT::Other),
10841                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10842 
10843       // If this is an i16 load, insert the truncate.
10844       SDValue ResVal = BSLoad;
10845       if (N->getValueType(0) == MVT::i16)
10846         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10847 
10848       // First, combine the bswap away.  This makes the value produced by the
10849       // load dead.
10850       DCI.CombineTo(N, ResVal);
10851 
10852       // Next, combine the load away, we give it a bogus result value but a real
10853       // chain result.  The result value is dead because the bswap is dead.
10854       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10855 
10856       // Return N so it doesn't get rechecked!
10857       return SDValue(N, 0);
10858     }
10859 
10860     break;
10861   case PPCISD::VCMP: {
10862     // If a VCMPo node already exists with exactly the same operands as this
10863     // node, use its result instead of this node (VCMPo computes both a CR6 and
10864     // a normal output).
10865     //
10866     if (!N->getOperand(0).hasOneUse() &&
10867         !N->getOperand(1).hasOneUse() &&
10868         !N->getOperand(2).hasOneUse()) {
10869 
10870       // Scan all of the users of the LHS, looking for VCMPo's that match.
10871       SDNode *VCMPoNode = nullptr;
10872 
10873       SDNode *LHSN = N->getOperand(0).getNode();
10874       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10875            UI != E; ++UI)
10876         if (UI->getOpcode() == PPCISD::VCMPo &&
10877             UI->getOperand(1) == N->getOperand(1) &&
10878             UI->getOperand(2) == N->getOperand(2) &&
10879             UI->getOperand(0) == N->getOperand(0)) {
10880           VCMPoNode = *UI;
10881           break;
10882         }
10883 
10884       // If there is no VCMPo node, or if the flag value has a single use, don't
10885       // transform this.
10886       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10887         break;
10888 
10889       // Look at the (necessarily single) use of the flag value.  If it has a
10890       // chain, this transformation is more complex.  Note that multiple things
10891       // could use the value result, which we should ignore.
10892       SDNode *FlagUser = nullptr;
10893       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10894            FlagUser == nullptr; ++UI) {
10895         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10896         SDNode *User = *UI;
10897         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10898           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10899             FlagUser = User;
10900             break;
10901           }
10902         }
10903       }
10904 
10905       // If the user is a MFOCRF instruction, we know this is safe.
10906       // Otherwise we give up for right now.
10907       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10908         return SDValue(VCMPoNode, 0);
10909     }
10910     break;
10911   }
10912   case ISD::BRCOND: {
10913     SDValue Cond = N->getOperand(1);
10914     SDValue Target = N->getOperand(2);
10915 
10916     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10917         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10918           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10919 
10920       // We now need to make the intrinsic dead (it cannot be instruction
10921       // selected).
10922       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10923       assert(Cond.getNode()->hasOneUse() &&
10924              "Counter decrement has more than one use");
10925 
10926       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10927                          N->getOperand(0), Target);
10928     }
10929   }
10930   break;
10931   case ISD::BR_CC: {
10932     // If this is a branch on an altivec predicate comparison, lower this so
10933     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10934     // lowering is done pre-legalize, because the legalizer lowers the predicate
10935     // compare down to code that is difficult to reassemble.
10936     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10937     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10938 
10939     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10940     // value. If so, pass-through the AND to get to the intrinsic.
10941     if (LHS.getOpcode() == ISD::AND &&
10942         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10943         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10944           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10945         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10946         !isNullConstant(LHS.getOperand(1)))
10947       LHS = LHS.getOperand(0);
10948 
10949     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10950         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10951           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10952         isa<ConstantSDNode>(RHS)) {
10953       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10954              "Counter decrement comparison is not EQ or NE");
10955 
10956       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10957       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10958                     (CC == ISD::SETNE && !Val);
10959 
10960       // We now need to make the intrinsic dead (it cannot be instruction
10961       // selected).
10962       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10963       assert(LHS.getNode()->hasOneUse() &&
10964              "Counter decrement has more than one use");
10965 
10966       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10967                          N->getOperand(0), N->getOperand(4));
10968     }
10969 
10970     int CompareOpc;
10971     bool isDot;
10972 
10973     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10974         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10975         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10976       assert(isDot && "Can't compare against a vector result!");
10977 
10978       // If this is a comparison against something other than 0/1, then we know
10979       // that the condition is never/always true.
10980       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10981       if (Val != 0 && Val != 1) {
10982         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10983           return N->getOperand(0);
10984         // Always !=, turn it into an unconditional branch.
10985         return DAG.getNode(ISD::BR, dl, MVT::Other,
10986                            N->getOperand(0), N->getOperand(4));
10987       }
10988 
10989       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10990 
10991       // Create the PPCISD altivec 'dot' comparison node.
10992       SDValue Ops[] = {
10993         LHS.getOperand(2),  // LHS of compare
10994         LHS.getOperand(3),  // RHS of compare
10995         DAG.getConstant(CompareOpc, dl, MVT::i32)
10996       };
10997       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10998       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10999 
11000       // Unpack the result based on how the target uses it.
11001       PPC::Predicate CompOpc;
11002       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11003       default:  // Can't happen, don't crash on invalid number though.
11004       case 0:   // Branch on the value of the EQ bit of CR6.
11005         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11006         break;
11007       case 1:   // Branch on the inverted value of the EQ bit of CR6.
11008         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11009         break;
11010       case 2:   // Branch on the value of the LT bit of CR6.
11011         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11012         break;
11013       case 3:   // Branch on the inverted value of the LT bit of CR6.
11014         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11015         break;
11016       }
11017 
11018       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11019                          DAG.getConstant(CompOpc, dl, MVT::i32),
11020                          DAG.getRegister(PPC::CR6, MVT::i32),
11021                          N->getOperand(4), CompNode.getValue(1));
11022     }
11023     break;
11024   }
11025   }
11026 
11027   return SDValue();
11028 }
11029 
11030 SDValue
11031 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11032                                   SelectionDAG &DAG,
11033                                   std::vector<SDNode *> *Created) const {
11034   // fold (sdiv X, pow2)
11035   EVT VT = N->getValueType(0);
11036   if (VT == MVT::i64 && !Subtarget.isPPC64())
11037     return SDValue();
11038   if ((VT != MVT::i32 && VT != MVT::i64) ||
11039       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11040     return SDValue();
11041 
11042   SDLoc DL(N);
11043   SDValue N0 = N->getOperand(0);
11044 
11045   bool IsNegPow2 = (-Divisor).isPowerOf2();
11046   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11047   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11048 
11049   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11050   if (Created)
11051     Created->push_back(Op.getNode());
11052 
11053   if (IsNegPow2) {
11054     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11055     if (Created)
11056       Created->push_back(Op.getNode());
11057   }
11058 
11059   return Op;
11060 }
11061 
11062 //===----------------------------------------------------------------------===//
11063 // Inline Assembly Support
11064 //===----------------------------------------------------------------------===//
11065 
11066 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11067                                                       APInt &KnownZero,
11068                                                       APInt &KnownOne,
11069                                                       const SelectionDAG &DAG,
11070                                                       unsigned Depth) const {
11071   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11072   switch (Op.getOpcode()) {
11073   default: break;
11074   case PPCISD::LBRX: {
11075     // lhbrx is known to have the top bits cleared out.
11076     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11077       KnownZero = 0xFFFF0000;
11078     break;
11079   }
11080   case ISD::INTRINSIC_WO_CHAIN: {
11081     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11082     default: break;
11083     case Intrinsic::ppc_altivec_vcmpbfp_p:
11084     case Intrinsic::ppc_altivec_vcmpeqfp_p:
11085     case Intrinsic::ppc_altivec_vcmpequb_p:
11086     case Intrinsic::ppc_altivec_vcmpequh_p:
11087     case Intrinsic::ppc_altivec_vcmpequw_p:
11088     case Intrinsic::ppc_altivec_vcmpequd_p:
11089     case Intrinsic::ppc_altivec_vcmpgefp_p:
11090     case Intrinsic::ppc_altivec_vcmpgtfp_p:
11091     case Intrinsic::ppc_altivec_vcmpgtsb_p:
11092     case Intrinsic::ppc_altivec_vcmpgtsh_p:
11093     case Intrinsic::ppc_altivec_vcmpgtsw_p:
11094     case Intrinsic::ppc_altivec_vcmpgtsd_p:
11095     case Intrinsic::ppc_altivec_vcmpgtub_p:
11096     case Intrinsic::ppc_altivec_vcmpgtuh_p:
11097     case Intrinsic::ppc_altivec_vcmpgtuw_p:
11098     case Intrinsic::ppc_altivec_vcmpgtud_p:
11099       KnownZero = ~1U;  // All bits but the low one are known to be zero.
11100       break;
11101     }
11102   }
11103   }
11104 }
11105 
11106 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11107   switch (Subtarget.getDarwinDirective()) {
11108   default: break;
11109   case PPC::DIR_970:
11110   case PPC::DIR_PWR4:
11111   case PPC::DIR_PWR5:
11112   case PPC::DIR_PWR5X:
11113   case PPC::DIR_PWR6:
11114   case PPC::DIR_PWR6X:
11115   case PPC::DIR_PWR7:
11116   case PPC::DIR_PWR8:
11117   case PPC::DIR_PWR9: {
11118     if (!ML)
11119       break;
11120 
11121     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11122 
11123     // For small loops (between 5 and 8 instructions), align to a 32-byte
11124     // boundary so that the entire loop fits in one instruction-cache line.
11125     uint64_t LoopSize = 0;
11126     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
11127       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
11128         LoopSize += TII->GetInstSizeInBytes(*J);
11129         if (LoopSize > 32)
11130           break;
11131       }
11132 
11133     if (LoopSize > 16 && LoopSize <= 32)
11134       return 5;
11135 
11136     break;
11137   }
11138   }
11139 
11140   return TargetLowering::getPrefLoopAlignment(ML);
11141 }
11142 
11143 /// getConstraintType - Given a constraint, return the type of
11144 /// constraint it is for this target.
11145 PPCTargetLowering::ConstraintType
11146 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
11147   if (Constraint.size() == 1) {
11148     switch (Constraint[0]) {
11149     default: break;
11150     case 'b':
11151     case 'r':
11152     case 'f':
11153     case 'd':
11154     case 'v':
11155     case 'y':
11156       return C_RegisterClass;
11157     case 'Z':
11158       // FIXME: While Z does indicate a memory constraint, it specifically
11159       // indicates an r+r address (used in conjunction with the 'y' modifier
11160       // in the replacement string). Currently, we're forcing the base
11161       // register to be r0 in the asm printer (which is interpreted as zero)
11162       // and forming the complete address in the second register. This is
11163       // suboptimal.
11164       return C_Memory;
11165     }
11166   } else if (Constraint == "wc") { // individual CR bits.
11167     return C_RegisterClass;
11168   } else if (Constraint == "wa" || Constraint == "wd" ||
11169              Constraint == "wf" || Constraint == "ws") {
11170     return C_RegisterClass; // VSX registers.
11171   }
11172   return TargetLowering::getConstraintType(Constraint);
11173 }
11174 
11175 /// Examine constraint type and operand type and determine a weight value.
11176 /// This object must already have been set up with the operand type
11177 /// and the current alternative constraint selected.
11178 TargetLowering::ConstraintWeight
11179 PPCTargetLowering::getSingleConstraintMatchWeight(
11180     AsmOperandInfo &info, const char *constraint) const {
11181   ConstraintWeight weight = CW_Invalid;
11182   Value *CallOperandVal = info.CallOperandVal;
11183     // If we don't have a value, we can't do a match,
11184     // but allow it at the lowest weight.
11185   if (!CallOperandVal)
11186     return CW_Default;
11187   Type *type = CallOperandVal->getType();
11188 
11189   // Look at the constraint type.
11190   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
11191     return CW_Register; // an individual CR bit.
11192   else if ((StringRef(constraint) == "wa" ||
11193             StringRef(constraint) == "wd" ||
11194             StringRef(constraint) == "wf") &&
11195            type->isVectorTy())
11196     return CW_Register;
11197   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
11198     return CW_Register;
11199 
11200   switch (*constraint) {
11201   default:
11202     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11203     break;
11204   case 'b':
11205     if (type->isIntegerTy())
11206       weight = CW_Register;
11207     break;
11208   case 'f':
11209     if (type->isFloatTy())
11210       weight = CW_Register;
11211     break;
11212   case 'd':
11213     if (type->isDoubleTy())
11214       weight = CW_Register;
11215     break;
11216   case 'v':
11217     if (type->isVectorTy())
11218       weight = CW_Register;
11219     break;
11220   case 'y':
11221     weight = CW_Register;
11222     break;
11223   case 'Z':
11224     weight = CW_Memory;
11225     break;
11226   }
11227   return weight;
11228 }
11229 
11230 std::pair<unsigned, const TargetRegisterClass *>
11231 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11232                                                 StringRef Constraint,
11233                                                 MVT VT) const {
11234   if (Constraint.size() == 1) {
11235     // GCC RS6000 Constraint Letters
11236     switch (Constraint[0]) {
11237     case 'b':   // R1-R31
11238       if (VT == MVT::i64 && Subtarget.isPPC64())
11239         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
11240       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
11241     case 'r':   // R0-R31
11242       if (VT == MVT::i64 && Subtarget.isPPC64())
11243         return std::make_pair(0U, &PPC::G8RCRegClass);
11244       return std::make_pair(0U, &PPC::GPRCRegClass);
11245     // 'd' and 'f' constraints are both defined to be "the floating point
11246     // registers", where one is for 32-bit and the other for 64-bit. We don't
11247     // really care overly much here so just give them all the same reg classes.
11248     case 'd':
11249     case 'f':
11250       if (VT == MVT::f32 || VT == MVT::i32)
11251         return std::make_pair(0U, &PPC::F4RCRegClass);
11252       if (VT == MVT::f64 || VT == MVT::i64)
11253         return std::make_pair(0U, &PPC::F8RCRegClass);
11254       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11255         return std::make_pair(0U, &PPC::QFRCRegClass);
11256       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11257         return std::make_pair(0U, &PPC::QSRCRegClass);
11258       break;
11259     case 'v':
11260       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11261         return std::make_pair(0U, &PPC::QFRCRegClass);
11262       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11263         return std::make_pair(0U, &PPC::QSRCRegClass);
11264       if (Subtarget.hasAltivec())
11265         return std::make_pair(0U, &PPC::VRRCRegClass);
11266     case 'y':   // crrc
11267       return std::make_pair(0U, &PPC::CRRCRegClass);
11268     }
11269   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
11270     // An individual CR bit.
11271     return std::make_pair(0U, &PPC::CRBITRCRegClass);
11272   } else if ((Constraint == "wa" || Constraint == "wd" ||
11273              Constraint == "wf") && Subtarget.hasVSX()) {
11274     return std::make_pair(0U, &PPC::VSRCRegClass);
11275   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
11276     if (VT == MVT::f32 && Subtarget.hasP8Vector())
11277       return std::make_pair(0U, &PPC::VSSRCRegClass);
11278     else
11279       return std::make_pair(0U, &PPC::VSFRCRegClass);
11280   }
11281 
11282   std::pair<unsigned, const TargetRegisterClass *> R =
11283       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11284 
11285   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
11286   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
11287   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
11288   // register.
11289   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
11290   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
11291   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
11292       PPC::GPRCRegClass.contains(R.first))
11293     return std::make_pair(TRI->getMatchingSuperReg(R.first,
11294                             PPC::sub_32, &PPC::G8RCRegClass),
11295                           &PPC::G8RCRegClass);
11296 
11297   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
11298   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
11299     R.first = PPC::CR0;
11300     R.second = &PPC::CRRCRegClass;
11301   }
11302 
11303   return R;
11304 }
11305 
11306 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11307 /// vector.  If it is invalid, don't add anything to Ops.
11308 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11309                                                      std::string &Constraint,
11310                                                      std::vector<SDValue>&Ops,
11311                                                      SelectionDAG &DAG) const {
11312   SDValue Result;
11313 
11314   // Only support length 1 constraints.
11315   if (Constraint.length() > 1) return;
11316 
11317   char Letter = Constraint[0];
11318   switch (Letter) {
11319   default: break;
11320   case 'I':
11321   case 'J':
11322   case 'K':
11323   case 'L':
11324   case 'M':
11325   case 'N':
11326   case 'O':
11327   case 'P': {
11328     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11329     if (!CST) return; // Must be an immediate to match.
11330     SDLoc dl(Op);
11331     int64_t Value = CST->getSExtValue();
11332     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11333                          // numbers are printed as such.
11334     switch (Letter) {
11335     default: llvm_unreachable("Unknown constraint letter!");
11336     case 'I':  // "I" is a signed 16-bit constant.
11337       if (isInt<16>(Value))
11338         Result = DAG.getTargetConstant(Value, dl, TCVT);
11339       break;
11340     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11341       if (isShiftedUInt<16, 16>(Value))
11342         Result = DAG.getTargetConstant(Value, dl, TCVT);
11343       break;
11344     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11345       if (isShiftedInt<16, 16>(Value))
11346         Result = DAG.getTargetConstant(Value, dl, TCVT);
11347       break;
11348     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11349       if (isUInt<16>(Value))
11350         Result = DAG.getTargetConstant(Value, dl, TCVT);
11351       break;
11352     case 'M':  // "M" is a constant that is greater than 31.
11353       if (Value > 31)
11354         Result = DAG.getTargetConstant(Value, dl, TCVT);
11355       break;
11356     case 'N':  // "N" is a positive constant that is an exact power of two.
11357       if (Value > 0 && isPowerOf2_64(Value))
11358         Result = DAG.getTargetConstant(Value, dl, TCVT);
11359       break;
11360     case 'O':  // "O" is the constant zero.
11361       if (Value == 0)
11362         Result = DAG.getTargetConstant(Value, dl, TCVT);
11363       break;
11364     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11365       if (isInt<16>(-Value))
11366         Result = DAG.getTargetConstant(Value, dl, TCVT);
11367       break;
11368     }
11369     break;
11370   }
11371   }
11372 
11373   if (Result.getNode()) {
11374     Ops.push_back(Result);
11375     return;
11376   }
11377 
11378   // Handle standard constraint letters.
11379   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11380 }
11381 
11382 // isLegalAddressingMode - Return true if the addressing mode represented
11383 // by AM is legal for this target, for a load/store of the specified type.
11384 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11385                                               const AddrMode &AM, Type *Ty,
11386                                               unsigned AS) const {
11387   // PPC does not allow r+i addressing modes for vectors!
11388   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11389     return false;
11390 
11391   // PPC allows a sign-extended 16-bit immediate field.
11392   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11393     return false;
11394 
11395   // No global is ever allowed as a base.
11396   if (AM.BaseGV)
11397     return false;
11398 
11399   // PPC only support r+r,
11400   switch (AM.Scale) {
11401   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11402     break;
11403   case 1:
11404     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11405       return false;
11406     // Otherwise we have r+r or r+i.
11407     break;
11408   case 2:
11409     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11410       return false;
11411     // Allow 2*r as r+r.
11412     break;
11413   default:
11414     // No other scales are supported.
11415     return false;
11416   }
11417 
11418   return true;
11419 }
11420 
11421 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11422                                            SelectionDAG &DAG) const {
11423   MachineFunction &MF = DAG.getMachineFunction();
11424   MachineFrameInfo *MFI = MF.getFrameInfo();
11425   MFI->setReturnAddressIsTaken(true);
11426 
11427   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11428     return SDValue();
11429 
11430   SDLoc dl(Op);
11431   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11432 
11433   // Make sure the function does not optimize away the store of the RA to
11434   // the stack.
11435   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11436   FuncInfo->setLRStoreRequired();
11437   bool isPPC64 = Subtarget.isPPC64();
11438   auto PtrVT = getPointerTy(MF.getDataLayout());
11439 
11440   if (Depth > 0) {
11441     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11442     SDValue Offset =
11443         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11444                         isPPC64 ? MVT::i64 : MVT::i32);
11445     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11446                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11447                        MachinePointerInfo(), false, false, false, 0);
11448   }
11449 
11450   // Just load the return address off the stack.
11451   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11452   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11453                      MachinePointerInfo(), false, false, false, 0);
11454 }
11455 
11456 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11457                                           SelectionDAG &DAG) const {
11458   SDLoc dl(Op);
11459   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11460 
11461   MachineFunction &MF = DAG.getMachineFunction();
11462   MachineFrameInfo *MFI = MF.getFrameInfo();
11463   MFI->setFrameAddressIsTaken(true);
11464 
11465   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11466   bool isPPC64 = PtrVT == MVT::i64;
11467 
11468   // Naked functions never have a frame pointer, and so we use r1. For all
11469   // other functions, this decision must be delayed until during PEI.
11470   unsigned FrameReg;
11471   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11472     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11473   else
11474     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11475 
11476   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11477                                          PtrVT);
11478   while (Depth--)
11479     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11480                             FrameAddr, MachinePointerInfo(), false, false,
11481                             false, 0);
11482   return FrameAddr;
11483 }
11484 
11485 // FIXME? Maybe this could be a TableGen attribute on some registers and
11486 // this table could be generated automatically from RegInfo.
11487 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11488                                               SelectionDAG &DAG) const {
11489   bool isPPC64 = Subtarget.isPPC64();
11490   bool isDarwinABI = Subtarget.isDarwinABI();
11491 
11492   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11493       (!isPPC64 && VT != MVT::i32))
11494     report_fatal_error("Invalid register global variable type");
11495 
11496   bool is64Bit = isPPC64 && VT == MVT::i64;
11497   unsigned Reg = StringSwitch<unsigned>(RegName)
11498                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11499                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11500                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11501                                   (is64Bit ? PPC::X13 : PPC::R13))
11502                    .Default(0);
11503 
11504   if (Reg)
11505     return Reg;
11506   report_fatal_error("Invalid register name global variable");
11507 }
11508 
11509 bool
11510 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11511   // The PowerPC target isn't yet aware of offsets.
11512   return false;
11513 }
11514 
11515 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11516                                            const CallInst &I,
11517                                            unsigned Intrinsic) const {
11518 
11519   switch (Intrinsic) {
11520   case Intrinsic::ppc_qpx_qvlfd:
11521   case Intrinsic::ppc_qpx_qvlfs:
11522   case Intrinsic::ppc_qpx_qvlfcd:
11523   case Intrinsic::ppc_qpx_qvlfcs:
11524   case Intrinsic::ppc_qpx_qvlfiwa:
11525   case Intrinsic::ppc_qpx_qvlfiwz:
11526   case Intrinsic::ppc_altivec_lvx:
11527   case Intrinsic::ppc_altivec_lvxl:
11528   case Intrinsic::ppc_altivec_lvebx:
11529   case Intrinsic::ppc_altivec_lvehx:
11530   case Intrinsic::ppc_altivec_lvewx:
11531   case Intrinsic::ppc_vsx_lxvd2x:
11532   case Intrinsic::ppc_vsx_lxvw4x: {
11533     EVT VT;
11534     switch (Intrinsic) {
11535     case Intrinsic::ppc_altivec_lvebx:
11536       VT = MVT::i8;
11537       break;
11538     case Intrinsic::ppc_altivec_lvehx:
11539       VT = MVT::i16;
11540       break;
11541     case Intrinsic::ppc_altivec_lvewx:
11542       VT = MVT::i32;
11543       break;
11544     case Intrinsic::ppc_vsx_lxvd2x:
11545       VT = MVT::v2f64;
11546       break;
11547     case Intrinsic::ppc_qpx_qvlfd:
11548       VT = MVT::v4f64;
11549       break;
11550     case Intrinsic::ppc_qpx_qvlfs:
11551       VT = MVT::v4f32;
11552       break;
11553     case Intrinsic::ppc_qpx_qvlfcd:
11554       VT = MVT::v2f64;
11555       break;
11556     case Intrinsic::ppc_qpx_qvlfcs:
11557       VT = MVT::v2f32;
11558       break;
11559     default:
11560       VT = MVT::v4i32;
11561       break;
11562     }
11563 
11564     Info.opc = ISD::INTRINSIC_W_CHAIN;
11565     Info.memVT = VT;
11566     Info.ptrVal = I.getArgOperand(0);
11567     Info.offset = -VT.getStoreSize()+1;
11568     Info.size = 2*VT.getStoreSize()-1;
11569     Info.align = 1;
11570     Info.vol = false;
11571     Info.readMem = true;
11572     Info.writeMem = false;
11573     return true;
11574   }
11575   case Intrinsic::ppc_qpx_qvlfda:
11576   case Intrinsic::ppc_qpx_qvlfsa:
11577   case Intrinsic::ppc_qpx_qvlfcda:
11578   case Intrinsic::ppc_qpx_qvlfcsa:
11579   case Intrinsic::ppc_qpx_qvlfiwaa:
11580   case Intrinsic::ppc_qpx_qvlfiwza: {
11581     EVT VT;
11582     switch (Intrinsic) {
11583     case Intrinsic::ppc_qpx_qvlfda:
11584       VT = MVT::v4f64;
11585       break;
11586     case Intrinsic::ppc_qpx_qvlfsa:
11587       VT = MVT::v4f32;
11588       break;
11589     case Intrinsic::ppc_qpx_qvlfcda:
11590       VT = MVT::v2f64;
11591       break;
11592     case Intrinsic::ppc_qpx_qvlfcsa:
11593       VT = MVT::v2f32;
11594       break;
11595     default:
11596       VT = MVT::v4i32;
11597       break;
11598     }
11599 
11600     Info.opc = ISD::INTRINSIC_W_CHAIN;
11601     Info.memVT = VT;
11602     Info.ptrVal = I.getArgOperand(0);
11603     Info.offset = 0;
11604     Info.size = VT.getStoreSize();
11605     Info.align = 1;
11606     Info.vol = false;
11607     Info.readMem = true;
11608     Info.writeMem = false;
11609     return true;
11610   }
11611   case Intrinsic::ppc_qpx_qvstfd:
11612   case Intrinsic::ppc_qpx_qvstfs:
11613   case Intrinsic::ppc_qpx_qvstfcd:
11614   case Intrinsic::ppc_qpx_qvstfcs:
11615   case Intrinsic::ppc_qpx_qvstfiw:
11616   case Intrinsic::ppc_altivec_stvx:
11617   case Intrinsic::ppc_altivec_stvxl:
11618   case Intrinsic::ppc_altivec_stvebx:
11619   case Intrinsic::ppc_altivec_stvehx:
11620   case Intrinsic::ppc_altivec_stvewx:
11621   case Intrinsic::ppc_vsx_stxvd2x:
11622   case Intrinsic::ppc_vsx_stxvw4x: {
11623     EVT VT;
11624     switch (Intrinsic) {
11625     case Intrinsic::ppc_altivec_stvebx:
11626       VT = MVT::i8;
11627       break;
11628     case Intrinsic::ppc_altivec_stvehx:
11629       VT = MVT::i16;
11630       break;
11631     case Intrinsic::ppc_altivec_stvewx:
11632       VT = MVT::i32;
11633       break;
11634     case Intrinsic::ppc_vsx_stxvd2x:
11635       VT = MVT::v2f64;
11636       break;
11637     case Intrinsic::ppc_qpx_qvstfd:
11638       VT = MVT::v4f64;
11639       break;
11640     case Intrinsic::ppc_qpx_qvstfs:
11641       VT = MVT::v4f32;
11642       break;
11643     case Intrinsic::ppc_qpx_qvstfcd:
11644       VT = MVT::v2f64;
11645       break;
11646     case Intrinsic::ppc_qpx_qvstfcs:
11647       VT = MVT::v2f32;
11648       break;
11649     default:
11650       VT = MVT::v4i32;
11651       break;
11652     }
11653 
11654     Info.opc = ISD::INTRINSIC_VOID;
11655     Info.memVT = VT;
11656     Info.ptrVal = I.getArgOperand(1);
11657     Info.offset = -VT.getStoreSize()+1;
11658     Info.size = 2*VT.getStoreSize()-1;
11659     Info.align = 1;
11660     Info.vol = false;
11661     Info.readMem = false;
11662     Info.writeMem = true;
11663     return true;
11664   }
11665   case Intrinsic::ppc_qpx_qvstfda:
11666   case Intrinsic::ppc_qpx_qvstfsa:
11667   case Intrinsic::ppc_qpx_qvstfcda:
11668   case Intrinsic::ppc_qpx_qvstfcsa:
11669   case Intrinsic::ppc_qpx_qvstfiwa: {
11670     EVT VT;
11671     switch (Intrinsic) {
11672     case Intrinsic::ppc_qpx_qvstfda:
11673       VT = MVT::v4f64;
11674       break;
11675     case Intrinsic::ppc_qpx_qvstfsa:
11676       VT = MVT::v4f32;
11677       break;
11678     case Intrinsic::ppc_qpx_qvstfcda:
11679       VT = MVT::v2f64;
11680       break;
11681     case Intrinsic::ppc_qpx_qvstfcsa:
11682       VT = MVT::v2f32;
11683       break;
11684     default:
11685       VT = MVT::v4i32;
11686       break;
11687     }
11688 
11689     Info.opc = ISD::INTRINSIC_VOID;
11690     Info.memVT = VT;
11691     Info.ptrVal = I.getArgOperand(1);
11692     Info.offset = 0;
11693     Info.size = VT.getStoreSize();
11694     Info.align = 1;
11695     Info.vol = false;
11696     Info.readMem = false;
11697     Info.writeMem = true;
11698     return true;
11699   }
11700   default:
11701     break;
11702   }
11703 
11704   return false;
11705 }
11706 
11707 /// getOptimalMemOpType - Returns the target specific optimal type for load
11708 /// and store operations as a result of memset, memcpy, and memmove
11709 /// lowering. If DstAlign is zero that means it's safe to destination
11710 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11711 /// means there isn't a need to check it against alignment requirement,
11712 /// probably because the source does not need to be loaded. If 'IsMemset' is
11713 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11714 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11715 /// source is constant so it does not need to be loaded.
11716 /// It returns EVT::Other if the type should be determined using generic
11717 /// target-independent logic.
11718 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11719                                            unsigned DstAlign, unsigned SrcAlign,
11720                                            bool IsMemset, bool ZeroMemset,
11721                                            bool MemcpyStrSrc,
11722                                            MachineFunction &MF) const {
11723   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11724     const Function *F = MF.getFunction();
11725     // When expanding a memset, require at least two QPX instructions to cover
11726     // the cost of loading the value to be stored from the constant pool.
11727     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11728        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11729         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11730       return MVT::v4f64;
11731     }
11732 
11733     // We should use Altivec/VSX loads and stores when available. For unaligned
11734     // addresses, unaligned VSX loads are only fast starting with the P8.
11735     if (Subtarget.hasAltivec() && Size >= 16 &&
11736         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11737          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11738       return MVT::v4i32;
11739   }
11740 
11741   if (Subtarget.isPPC64()) {
11742     return MVT::i64;
11743   }
11744 
11745   return MVT::i32;
11746 }
11747 
11748 /// \brief Returns true if it is beneficial to convert a load of a constant
11749 /// to just the constant itself.
11750 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11751                                                           Type *Ty) const {
11752   assert(Ty->isIntegerTy());
11753 
11754   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11755   return !(BitSize == 0 || BitSize > 64);
11756 }
11757 
11758 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11759   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11760     return false;
11761   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11762   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11763   return NumBits1 == 64 && NumBits2 == 32;
11764 }
11765 
11766 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11767   if (!VT1.isInteger() || !VT2.isInteger())
11768     return false;
11769   unsigned NumBits1 = VT1.getSizeInBits();
11770   unsigned NumBits2 = VT2.getSizeInBits();
11771   return NumBits1 == 64 && NumBits2 == 32;
11772 }
11773 
11774 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11775   // Generally speaking, zexts are not free, but they are free when they can be
11776   // folded with other operations.
11777   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11778     EVT MemVT = LD->getMemoryVT();
11779     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11780          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11781         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11782          LD->getExtensionType() == ISD::ZEXTLOAD))
11783       return true;
11784   }
11785 
11786   // FIXME: Add other cases...
11787   //  - 32-bit shifts with a zext to i64
11788   //  - zext after ctlz, bswap, etc.
11789   //  - zext after and by a constant mask
11790 
11791   return TargetLowering::isZExtFree(Val, VT2);
11792 }
11793 
11794 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11795   assert(VT.isFloatingPoint());
11796   return true;
11797 }
11798 
11799 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11800   return isInt<16>(Imm) || isUInt<16>(Imm);
11801 }
11802 
11803 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11804   return isInt<16>(Imm) || isUInt<16>(Imm);
11805 }
11806 
11807 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11808                                                        unsigned,
11809                                                        unsigned,
11810                                                        bool *Fast) const {
11811   if (DisablePPCUnaligned)
11812     return false;
11813 
11814   // PowerPC supports unaligned memory access for simple non-vector types.
11815   // Although accessing unaligned addresses is not as efficient as accessing
11816   // aligned addresses, it is generally more efficient than manual expansion,
11817   // and generally only traps for software emulation when crossing page
11818   // boundaries.
11819 
11820   if (!VT.isSimple())
11821     return false;
11822 
11823   if (VT.getSimpleVT().isVector()) {
11824     if (Subtarget.hasVSX()) {
11825       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11826           VT != MVT::v4f32 && VT != MVT::v4i32)
11827         return false;
11828     } else {
11829       return false;
11830     }
11831   }
11832 
11833   if (VT == MVT::ppcf128)
11834     return false;
11835 
11836   if (Fast)
11837     *Fast = true;
11838 
11839   return true;
11840 }
11841 
11842 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11843   VT = VT.getScalarType();
11844 
11845   if (!VT.isSimple())
11846     return false;
11847 
11848   switch (VT.getSimpleVT().SimpleTy) {
11849   case MVT::f32:
11850   case MVT::f64:
11851     return true;
11852   default:
11853     break;
11854   }
11855 
11856   return false;
11857 }
11858 
11859 const MCPhysReg *
11860 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11861   // LR is a callee-save register, but we must treat it as clobbered by any call
11862   // site. Hence we include LR in the scratch registers, which are in turn added
11863   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11864   // to CTR, which is used by any indirect call.
11865   static const MCPhysReg ScratchRegs[] = {
11866     PPC::X12, PPC::LR8, PPC::CTR8, 0
11867   };
11868 
11869   return ScratchRegs;
11870 }
11871 
11872 unsigned PPCTargetLowering::getExceptionPointerRegister(
11873     const Constant *PersonalityFn) const {
11874   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
11875 }
11876 
11877 unsigned PPCTargetLowering::getExceptionSelectorRegister(
11878     const Constant *PersonalityFn) const {
11879   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
11880 }
11881 
11882 bool
11883 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11884                      EVT VT , unsigned DefinedValues) const {
11885   if (VT == MVT::v2i64)
11886     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
11887 
11888   if (Subtarget.hasVSX() || Subtarget.hasQPX())
11889     return true;
11890 
11891   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11892 }
11893 
11894 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11895   if (DisableILPPref || Subtarget.enableMachineScheduler())
11896     return TargetLowering::getSchedulingPreference(N);
11897 
11898   return Sched::ILP;
11899 }
11900 
11901 // Create a fast isel object.
11902 FastISel *
11903 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11904                                   const TargetLibraryInfo *LibInfo) const {
11905   return PPC::createFastISel(FuncInfo, LibInfo);
11906 }
11907 
11908 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
11909   if (Subtarget.isDarwinABI()) return;
11910   if (!Subtarget.isPPC64()) return;
11911 
11912   // Update IsSplitCSR in PPCFunctionInfo
11913   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
11914   PFI->setIsSplitCSR(true);
11915 }
11916 
11917 void PPCTargetLowering::insertCopiesSplitCSR(
11918   MachineBasicBlock *Entry,
11919   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
11920   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11921   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
11922   if (!IStart)
11923     return;
11924 
11925   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11926   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
11927   MachineBasicBlock::iterator MBBI = Entry->begin();
11928   for (const MCPhysReg *I = IStart; *I; ++I) {
11929     const TargetRegisterClass *RC = nullptr;
11930     if (PPC::G8RCRegClass.contains(*I))
11931       RC = &PPC::G8RCRegClass;
11932     else if (PPC::F8RCRegClass.contains(*I))
11933       RC = &PPC::F8RCRegClass;
11934     else if (PPC::CRRCRegClass.contains(*I))
11935       RC = &PPC::CRRCRegClass;
11936     else if (PPC::VRRCRegClass.contains(*I))
11937       RC = &PPC::VRRCRegClass;
11938     else
11939       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
11940 
11941     unsigned NewVR = MRI->createVirtualRegister(RC);
11942     // Create copy from CSR to a virtual register.
11943     // FIXME: this currently does not emit CFI pseudo-instructions, it works
11944     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
11945     // nounwind. If we want to generalize this later, we may need to emit
11946     // CFI pseudo-instructions.
11947     assert(Entry->getParent()->getFunction()->hasFnAttribute(
11948              Attribute::NoUnwind) &&
11949            "Function should be nounwind in insertCopiesSplitCSR!");
11950     Entry->addLiveIn(*I);
11951     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
11952       .addReg(*I);
11953 
11954     // Insert the copy-back instructions right before the terminator
11955     for (auto *Exit : Exits)
11956       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
11957               TII->get(TargetOpcode::COPY), *I)
11958         .addReg(NewVR);
11959   }
11960 }
11961 
11962 // Override to enable LOAD_STACK_GUARD lowering on Linux.
11963 bool PPCTargetLowering::useLoadStackGuardNode() const {
11964   if (!Subtarget.isTargetLinux())
11965     return TargetLowering::useLoadStackGuardNode();
11966   return true;
11967 }
11968 
11969 // Override to disable global variable loading on Linux.
11970 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
11971   if (!Subtarget.isTargetLinux())
11972     return TargetLowering::insertSSPDeclarations(M);
11973 }
11974