1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "ppc-lowering" 50 51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 59 60 static cl::opt<bool> DisableSCO("disable-ppc-sco", 61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 62 63 STATISTIC(NumTailCalls, "Number of tail calls"); 64 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 65 66 // FIXME: Remove this once the bug has been fixed! 67 extern cl::opt<bool> ANDIGlueBug; 68 69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 70 const PPCSubtarget &STI) 71 : TargetLowering(TM), Subtarget(STI) { 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 bool isPPC64 = Subtarget.isPPC64(); 79 setMinStackArgumentAlignment(isPPC64 ? 8:4); 80 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 83 if (!Subtarget.useSoftFloat()) { 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 } 87 88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 89 for (MVT VT : MVT::integer_valuetypes()) { 90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 92 } 93 94 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 95 96 // PowerPC has pre-inc load and store's. 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 111 112 if (Subtarget.useCRBits()) { 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 114 115 if (isPPC64 || Subtarget.hasFPCVT()) { 116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 118 isPPC64 ? MVT::i64 : MVT::i32); 119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 121 isPPC64 ? MVT::i64 : MVT::i32); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 125 } 126 127 // PowerPC does not support direct load / store of condition registers 128 setOperationAction(ISD::LOAD, MVT::i1, Custom); 129 setOperationAction(ISD::STORE, MVT::i1, Custom); 130 131 // FIXME: Remove this once the ANDI glue bug is fixed: 132 if (ANDIGlueBug) 133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 134 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setTruncStoreAction(VT, MVT::i1, Expand); 139 } 140 141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 142 } 143 144 // This is used in the ppcf128->int sequence. Note it has different semantics 145 // from FP_ROUND: that rounds to nearest, this rounds to zero. 146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 147 148 // We do not currently implement these libm ops for PowerPC. 149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 155 156 // PowerPC has no SREM/UREM instructions 157 setOperationAction(ISD::SREM, MVT::i32, Expand); 158 setOperationAction(ISD::UREM, MVT::i32, Expand); 159 setOperationAction(ISD::SREM, MVT::i64, Expand); 160 setOperationAction(ISD::UREM, MVT::i64, Expand); 161 162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 171 172 // We don't support sin/cos/sqrt/fmod/pow 173 setOperationAction(ISD::FSIN , MVT::f64, Expand); 174 setOperationAction(ISD::FCOS , MVT::f64, Expand); 175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 176 setOperationAction(ISD::FREM , MVT::f64, Expand); 177 setOperationAction(ISD::FPOW , MVT::f64, Expand); 178 setOperationAction(ISD::FMA , MVT::f64, Legal); 179 setOperationAction(ISD::FSIN , MVT::f32, Expand); 180 setOperationAction(ISD::FCOS , MVT::f32, Expand); 181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 182 setOperationAction(ISD::FREM , MVT::f32, Expand); 183 setOperationAction(ISD::FPOW , MVT::f32, Expand); 184 setOperationAction(ISD::FMA , MVT::f32, Legal); 185 186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 187 188 // If we're enabling GP optimizations, use hardware square root 189 if (!Subtarget.hasFSQRT() && 190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 191 Subtarget.hasFRE())) 192 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 193 194 if (!Subtarget.hasFSQRT() && 195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 196 Subtarget.hasFRES())) 197 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 198 199 if (Subtarget.hasFCPSGN()) { 200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 202 } else { 203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 205 } 206 207 if (Subtarget.hasFPRND()) { 208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 209 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 211 setOperationAction(ISD::FROUND, MVT::f64, Legal); 212 213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 214 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 216 setOperationAction(ISD::FROUND, MVT::f32, Legal); 217 } 218 219 // PowerPC does not have BSWAP, CTPOP or CTTZ 220 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 221 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 223 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 224 225 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 226 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 227 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 228 } else { 229 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 230 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 231 } 232 233 // PowerPC does not have ROTR 234 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 235 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 236 237 if (!Subtarget.useCRBits()) { 238 // PowerPC does not have Select 239 setOperationAction(ISD::SELECT, MVT::i32, Expand); 240 setOperationAction(ISD::SELECT, MVT::i64, Expand); 241 setOperationAction(ISD::SELECT, MVT::f32, Expand); 242 setOperationAction(ISD::SELECT, MVT::f64, Expand); 243 } 244 245 // PowerPC wants to turn select_cc of FP into fsel when possible. 246 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 247 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 248 249 // PowerPC wants to optimize integer setcc a bit 250 if (!Subtarget.useCRBits()) 251 setOperationAction(ISD::SETCC, MVT::i32, Custom); 252 253 // PowerPC does not have BRCOND which requires SetCC 254 if (!Subtarget.useCRBits()) 255 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 256 257 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 258 259 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 261 262 // PowerPC does not have [U|S]INT_TO_FP 263 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 265 266 if (Subtarget.hasDirectMove() && isPPC64) { 267 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 268 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 269 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 270 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 271 } else { 272 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 273 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 274 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 275 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 276 } 277 278 // We cannot sextinreg(i1). Expand to shifts. 279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 280 281 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 282 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 283 // support continuation, user-level threading, and etc.. As a result, no 284 // other SjLj exception interfaces are implemented and please don't build 285 // your own exception handling based on them. 286 // LLVM/Clang supports zero-cost DWARF exception handling. 287 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 288 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 289 290 // We want to legalize GlobalAddress and ConstantPool nodes into the 291 // appropriate instructions to materialize the address. 292 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 294 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 296 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 297 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 298 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 299 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 300 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 301 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 302 303 // TRAP is legal. 304 setOperationAction(ISD::TRAP, MVT::Other, Legal); 305 306 // TRAMPOLINE is custom lowered. 307 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 308 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 309 310 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 311 setOperationAction(ISD::VASTART , MVT::Other, Custom); 312 313 if (Subtarget.isSVR4ABI()) { 314 if (isPPC64) { 315 // VAARG always uses double-word chunks, so promote anything smaller. 316 setOperationAction(ISD::VAARG, MVT::i1, Promote); 317 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 318 setOperationAction(ISD::VAARG, MVT::i8, Promote); 319 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 320 setOperationAction(ISD::VAARG, MVT::i16, Promote); 321 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 322 setOperationAction(ISD::VAARG, MVT::i32, Promote); 323 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 324 setOperationAction(ISD::VAARG, MVT::Other, Expand); 325 } else { 326 // VAARG is custom lowered with the 32-bit SVR4 ABI. 327 setOperationAction(ISD::VAARG, MVT::Other, Custom); 328 setOperationAction(ISD::VAARG, MVT::i64, Custom); 329 } 330 } else 331 setOperationAction(ISD::VAARG, MVT::Other, Expand); 332 333 if (Subtarget.isSVR4ABI() && !isPPC64) 334 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 335 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 336 else 337 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 338 339 // Use the default implementation. 340 setOperationAction(ISD::VAEND , MVT::Other, Expand); 341 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 342 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 344 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 345 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 346 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 347 348 // We want to custom lower some of our intrinsics. 349 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 350 351 // To handle counter-based loop conditions. 352 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 353 354 // Comparisons that require checking two conditions. 355 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 356 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 357 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 358 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 359 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 360 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 361 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 362 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 363 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 364 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 365 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 366 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 367 368 if (Subtarget.has64BitSupport()) { 369 // They also have instructions for converting between i64 and fp. 370 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 371 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 372 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 373 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 374 // This is just the low 32 bits of a (signed) fp->i64 conversion. 375 // We cannot do this with Promote because i64 is not a legal type. 376 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 377 378 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 379 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 380 } else { 381 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 383 } 384 385 // With the instructions enabled under FPCVT, we can do everything. 386 if (Subtarget.hasFPCVT()) { 387 if (Subtarget.has64BitSupport()) { 388 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 389 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 390 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 391 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 392 } 393 394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 395 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 398 } 399 400 if (Subtarget.use64BitRegs()) { 401 // 64-bit PowerPC implementations can support i64 types directly 402 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 403 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 404 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 405 // 64-bit PowerPC wants to expand i128 shifts itself. 406 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 407 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 408 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 409 } else { 410 // 32-bit PowerPC wants to expand i64 shifts itself. 411 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 412 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 413 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 414 } 415 416 if (Subtarget.hasAltivec()) { 417 // First set operation action for all vector types to expand. Then we 418 // will selectively turn on ones that can be effectively codegen'd. 419 for (MVT VT : MVT::vector_valuetypes()) { 420 // add/sub are legal for all supported vector VT's. 421 setOperationAction(ISD::ADD, VT, Legal); 422 setOperationAction(ISD::SUB, VT, Legal); 423 424 // Vector instructions introduced in P8 425 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 426 setOperationAction(ISD::CTPOP, VT, Legal); 427 setOperationAction(ISD::CTLZ, VT, Legal); 428 } 429 else { 430 setOperationAction(ISD::CTPOP, VT, Expand); 431 setOperationAction(ISD::CTLZ, VT, Expand); 432 } 433 434 // We promote all shuffles to v16i8. 435 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 436 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 437 438 // We promote all non-typed operations to v4i32. 439 setOperationAction(ISD::AND , VT, Promote); 440 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 441 setOperationAction(ISD::OR , VT, Promote); 442 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 443 setOperationAction(ISD::XOR , VT, Promote); 444 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 445 setOperationAction(ISD::LOAD , VT, Promote); 446 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 447 setOperationAction(ISD::SELECT, VT, Promote); 448 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 449 setOperationAction(ISD::SELECT_CC, VT, Promote); 450 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 451 setOperationAction(ISD::STORE, VT, Promote); 452 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 453 454 // No other operations are legal. 455 setOperationAction(ISD::MUL , VT, Expand); 456 setOperationAction(ISD::SDIV, VT, Expand); 457 setOperationAction(ISD::SREM, VT, Expand); 458 setOperationAction(ISD::UDIV, VT, Expand); 459 setOperationAction(ISD::UREM, VT, Expand); 460 setOperationAction(ISD::FDIV, VT, Expand); 461 setOperationAction(ISD::FREM, VT, Expand); 462 setOperationAction(ISD::FNEG, VT, Expand); 463 setOperationAction(ISD::FSQRT, VT, Expand); 464 setOperationAction(ISD::FLOG, VT, Expand); 465 setOperationAction(ISD::FLOG10, VT, Expand); 466 setOperationAction(ISD::FLOG2, VT, Expand); 467 setOperationAction(ISD::FEXP, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FSIN, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FABS, VT, Expand); 472 setOperationAction(ISD::FPOWI, VT, Expand); 473 setOperationAction(ISD::FFLOOR, VT, Expand); 474 setOperationAction(ISD::FCEIL, VT, Expand); 475 setOperationAction(ISD::FTRUNC, VT, Expand); 476 setOperationAction(ISD::FRINT, VT, Expand); 477 setOperationAction(ISD::FNEARBYINT, VT, Expand); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 479 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 480 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 481 setOperationAction(ISD::MULHU, VT, Expand); 482 setOperationAction(ISD::MULHS, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SDIVREM, VT, Expand); 487 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 488 setOperationAction(ISD::FPOW, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTTZ, VT, Expand); 491 setOperationAction(ISD::VSELECT, VT, Expand); 492 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 493 setOperationAction(ISD::ROTL, VT, Expand); 494 setOperationAction(ISD::ROTR, VT, Expand); 495 496 for (MVT InnerVT : MVT::vector_valuetypes()) { 497 setTruncStoreAction(VT, InnerVT, Expand); 498 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 499 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 500 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 501 } 502 } 503 504 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 505 // with merges, splats, etc. 506 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 507 508 setOperationAction(ISD::AND , MVT::v4i32, Legal); 509 setOperationAction(ISD::OR , MVT::v4i32, Legal); 510 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 511 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 512 setOperationAction(ISD::SELECT, MVT::v4i32, 513 Subtarget.useCRBits() ? Legal : Expand); 514 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 516 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 517 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 518 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 519 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 520 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 521 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 523 524 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 525 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 526 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 527 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 528 529 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 530 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 531 532 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 533 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 534 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 535 } 536 537 if (Subtarget.hasP8Altivec()) 538 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 539 else 540 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 541 542 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 543 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 544 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 547 548 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 549 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 550 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 551 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 552 553 // Altivec does not contain unordered floating-point compare instructions 554 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 556 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 557 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 558 559 if (Subtarget.hasVSX()) { 560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 if (Subtarget.hasP8Vector()) { 563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 565 } 566 if (Subtarget.hasDirectMove() && isPPC64) { 567 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 568 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 569 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 570 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 571 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 575 } 576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 579 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 580 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 581 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 582 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 583 584 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 585 586 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 587 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 588 589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 593 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 594 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 595 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 596 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 597 598 // Share the Altivec comparison restrictions. 599 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 600 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 601 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 602 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 603 604 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 605 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 606 607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 608 609 if (Subtarget.hasP8Vector()) 610 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 611 612 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 613 614 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 615 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 616 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 617 618 if (Subtarget.hasP8Altivec()) { 619 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 620 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 621 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 622 623 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 624 } 625 else { 626 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 627 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 628 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 629 630 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 631 632 // VSX v2i64 only supports non-arithmetic operations. 633 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 634 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 635 } 636 637 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 638 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 639 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 640 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 641 642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 643 644 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 645 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 646 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 647 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 648 649 // Vector operation legalization checks the result type of 650 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 651 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 652 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 653 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 654 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 655 656 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 657 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 658 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 659 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 660 661 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 662 } 663 664 if (Subtarget.hasP8Altivec()) { 665 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 666 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 667 } 668 } 669 670 if (Subtarget.hasQPX()) { 671 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 672 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 673 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 674 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 675 676 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 677 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 678 679 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 680 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 681 682 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 683 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 684 685 if (!Subtarget.useCRBits()) 686 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 687 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 688 689 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 690 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 691 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 692 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 693 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 695 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 696 697 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 698 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 699 700 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 701 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 702 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 703 704 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 705 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 706 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 707 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 708 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 709 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 710 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 711 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 712 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 713 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 714 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 715 716 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 717 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 718 719 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 720 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 721 722 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 723 724 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 725 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 726 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 727 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 728 729 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 730 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 731 732 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 733 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 734 735 if (!Subtarget.useCRBits()) 736 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 737 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 738 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 740 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 741 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 742 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 743 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 746 747 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 748 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 749 750 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 751 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 752 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 753 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 754 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 755 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 756 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 757 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 758 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 759 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 760 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 761 762 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 763 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 764 765 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 766 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 767 768 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 769 770 setOperationAction(ISD::AND , MVT::v4i1, Legal); 771 setOperationAction(ISD::OR , MVT::v4i1, Legal); 772 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 773 774 if (!Subtarget.useCRBits()) 775 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 776 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 777 778 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 779 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 780 781 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 782 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 783 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 784 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 785 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 786 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 787 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 788 789 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 790 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 791 792 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 793 794 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 795 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 796 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 797 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 798 799 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 800 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 801 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 802 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 803 804 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 805 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 806 807 // These need to set FE_INEXACT, and so cannot be vectorized here. 808 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 809 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 810 811 if (TM.Options.UnsafeFPMath) { 812 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 813 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 814 815 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 816 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 817 } else { 818 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 819 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 820 821 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 822 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 823 } 824 } 825 826 if (Subtarget.has64BitSupport()) 827 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 828 829 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 830 831 if (!isPPC64) { 832 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 833 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 834 } 835 836 setBooleanContents(ZeroOrOneBooleanContent); 837 838 if (Subtarget.hasAltivec()) { 839 // Altivec instructions set fields to all zeros or all ones. 840 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 841 } 842 843 if (!isPPC64) { 844 // These libcalls are not available in 32-bit. 845 setLibcallName(RTLIB::SHL_I128, nullptr); 846 setLibcallName(RTLIB::SRL_I128, nullptr); 847 setLibcallName(RTLIB::SRA_I128, nullptr); 848 } 849 850 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 851 852 // We have target-specific dag combine patterns for the following nodes: 853 setTargetDAGCombine(ISD::SINT_TO_FP); 854 if (Subtarget.hasFPCVT()) 855 setTargetDAGCombine(ISD::UINT_TO_FP); 856 setTargetDAGCombine(ISD::LOAD); 857 setTargetDAGCombine(ISD::STORE); 858 setTargetDAGCombine(ISD::BR_CC); 859 if (Subtarget.useCRBits()) 860 setTargetDAGCombine(ISD::BRCOND); 861 setTargetDAGCombine(ISD::BSWAP); 862 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 863 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 864 setTargetDAGCombine(ISD::INTRINSIC_VOID); 865 866 setTargetDAGCombine(ISD::SIGN_EXTEND); 867 setTargetDAGCombine(ISD::ZERO_EXTEND); 868 setTargetDAGCombine(ISD::ANY_EXTEND); 869 870 if (Subtarget.useCRBits()) { 871 setTargetDAGCombine(ISD::TRUNCATE); 872 setTargetDAGCombine(ISD::SETCC); 873 setTargetDAGCombine(ISD::SELECT_CC); 874 } 875 876 // Use reciprocal estimates. 877 if (TM.Options.UnsafeFPMath) { 878 setTargetDAGCombine(ISD::FDIV); 879 setTargetDAGCombine(ISD::FSQRT); 880 } 881 882 // Darwin long double math library functions have $LDBL128 appended. 883 if (Subtarget.isDarwin()) { 884 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 885 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 886 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 887 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 888 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 889 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 890 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 891 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 892 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 893 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 894 } 895 896 // With 32 condition bits, we don't need to sink (and duplicate) compares 897 // aggressively in CodeGenPrep. 898 if (Subtarget.useCRBits()) { 899 setHasMultipleConditionRegisters(); 900 setJumpIsExpensive(); 901 } 902 903 setMinFunctionAlignment(2); 904 if (Subtarget.isDarwin()) 905 setPrefFunctionAlignment(4); 906 907 switch (Subtarget.getDarwinDirective()) { 908 default: break; 909 case PPC::DIR_970: 910 case PPC::DIR_A2: 911 case PPC::DIR_E500mc: 912 case PPC::DIR_E5500: 913 case PPC::DIR_PWR4: 914 case PPC::DIR_PWR5: 915 case PPC::DIR_PWR5X: 916 case PPC::DIR_PWR6: 917 case PPC::DIR_PWR6X: 918 case PPC::DIR_PWR7: 919 case PPC::DIR_PWR8: 920 case PPC::DIR_PWR9: 921 setPrefFunctionAlignment(4); 922 setPrefLoopAlignment(4); 923 break; 924 } 925 926 if (Subtarget.enableMachineScheduler()) 927 setSchedulingPreference(Sched::Source); 928 else 929 setSchedulingPreference(Sched::Hybrid); 930 931 computeRegisterProperties(STI.getRegisterInfo()); 932 933 // The Freescale cores do better with aggressive inlining of memcpy and 934 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 935 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 936 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 937 MaxStoresPerMemset = 32; 938 MaxStoresPerMemsetOptSize = 16; 939 MaxStoresPerMemcpy = 32; 940 MaxStoresPerMemcpyOptSize = 8; 941 MaxStoresPerMemmove = 32; 942 MaxStoresPerMemmoveOptSize = 8; 943 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 944 // The A2 also benefits from (very) aggressive inlining of memcpy and 945 // friends. The overhead of a the function call, even when warm, can be 946 // over one hundred cycles. 947 MaxStoresPerMemset = 128; 948 MaxStoresPerMemcpy = 128; 949 MaxStoresPerMemmove = 128; 950 } 951 } 952 953 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 954 /// the desired ByVal argument alignment. 955 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 956 unsigned MaxMaxAlign) { 957 if (MaxAlign == MaxMaxAlign) 958 return; 959 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 960 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 961 MaxAlign = 32; 962 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 963 MaxAlign = 16; 964 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 965 unsigned EltAlign = 0; 966 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 967 if (EltAlign > MaxAlign) 968 MaxAlign = EltAlign; 969 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 970 for (auto *EltTy : STy->elements()) { 971 unsigned EltAlign = 0; 972 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 973 if (EltAlign > MaxAlign) 974 MaxAlign = EltAlign; 975 if (MaxAlign == MaxMaxAlign) 976 break; 977 } 978 } 979 } 980 981 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 982 /// function arguments in the caller parameter area. 983 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 984 const DataLayout &DL) const { 985 // Darwin passes everything on 4 byte boundary. 986 if (Subtarget.isDarwin()) 987 return 4; 988 989 // 16byte and wider vectors are passed on 16byte boundary. 990 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 991 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 992 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 993 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 994 return Align; 995 } 996 997 bool PPCTargetLowering::useSoftFloat() const { 998 return Subtarget.useSoftFloat(); 999 } 1000 1001 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1002 switch ((PPCISD::NodeType)Opcode) { 1003 case PPCISD::FIRST_NUMBER: break; 1004 case PPCISD::FSEL: return "PPCISD::FSEL"; 1005 case PPCISD::FCFID: return "PPCISD::FCFID"; 1006 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1007 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1008 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1009 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1010 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1011 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1012 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1013 case PPCISD::FRE: return "PPCISD::FRE"; 1014 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1015 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1016 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1017 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1018 case PPCISD::VPERM: return "PPCISD::VPERM"; 1019 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1020 case PPCISD::CMPB: return "PPCISD::CMPB"; 1021 case PPCISD::Hi: return "PPCISD::Hi"; 1022 case PPCISD::Lo: return "PPCISD::Lo"; 1023 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1024 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1025 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1026 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1027 case PPCISD::SRL: return "PPCISD::SRL"; 1028 case PPCISD::SRA: return "PPCISD::SRA"; 1029 case PPCISD::SHL: return "PPCISD::SHL"; 1030 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1031 case PPCISD::CALL: return "PPCISD::CALL"; 1032 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1033 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1034 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1035 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1036 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1037 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1038 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1039 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1040 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1041 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1042 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1043 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1044 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1045 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1046 case PPCISD::VCMP: return "PPCISD::VCMP"; 1047 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1048 case PPCISD::LBRX: return "PPCISD::LBRX"; 1049 case PPCISD::STBRX: return "PPCISD::STBRX"; 1050 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1051 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1052 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1053 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1054 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1055 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1056 case PPCISD::BDZ: return "PPCISD::BDZ"; 1057 case PPCISD::MFFS: return "PPCISD::MFFS"; 1058 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1059 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1060 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1061 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1062 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1063 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1064 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1065 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1066 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1067 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1068 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1069 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1070 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1071 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1072 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1073 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1074 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1075 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1076 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1077 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1078 case PPCISD::SC: return "PPCISD::SC"; 1079 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1080 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1081 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1082 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1083 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1084 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1085 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1086 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1087 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1088 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1089 } 1090 return nullptr; 1091 } 1092 1093 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1094 EVT VT) const { 1095 if (!VT.isVector()) 1096 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1097 1098 if (Subtarget.hasQPX()) 1099 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1100 1101 return VT.changeVectorElementTypeToInteger(); 1102 } 1103 1104 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1105 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1106 return true; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // Node matching predicates, for use by the tblgen matching code. 1111 //===----------------------------------------------------------------------===// 1112 1113 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1114 static bool isFloatingPointZero(SDValue Op) { 1115 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1116 return CFP->getValueAPF().isZero(); 1117 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1118 // Maybe this has already been legalized into the constant pool? 1119 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1120 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1121 return CFP->getValueAPF().isZero(); 1122 } 1123 return false; 1124 } 1125 1126 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1127 /// true if Op is undef or if it matches the specified value. 1128 static bool isConstantOrUndef(int Op, int Val) { 1129 return Op < 0 || Op == Val; 1130 } 1131 1132 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1133 /// VPKUHUM instruction. 1134 /// The ShuffleKind distinguishes between big-endian operations with 1135 /// two different inputs (0), either-endian operations with two identical 1136 /// inputs (1), and little-endian operations with two different inputs (2). 1137 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1138 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1139 SelectionDAG &DAG) { 1140 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1141 if (ShuffleKind == 0) { 1142 if (IsLE) 1143 return false; 1144 for (unsigned i = 0; i != 16; ++i) 1145 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1146 return false; 1147 } else if (ShuffleKind == 2) { 1148 if (!IsLE) 1149 return false; 1150 for (unsigned i = 0; i != 16; ++i) 1151 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1152 return false; 1153 } else if (ShuffleKind == 1) { 1154 unsigned j = IsLE ? 0 : 1; 1155 for (unsigned i = 0; i != 8; ++i) 1156 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1157 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1158 return false; 1159 } 1160 return true; 1161 } 1162 1163 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1164 /// VPKUWUM instruction. 1165 /// The ShuffleKind distinguishes between big-endian operations with 1166 /// two different inputs (0), either-endian operations with two identical 1167 /// inputs (1), and little-endian operations with two different inputs (2). 1168 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1169 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1170 SelectionDAG &DAG) { 1171 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1172 if (ShuffleKind == 0) { 1173 if (IsLE) 1174 return false; 1175 for (unsigned i = 0; i != 16; i += 2) 1176 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1177 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1178 return false; 1179 } else if (ShuffleKind == 2) { 1180 if (!IsLE) 1181 return false; 1182 for (unsigned i = 0; i != 16; i += 2) 1183 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1184 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1185 return false; 1186 } else if (ShuffleKind == 1) { 1187 unsigned j = IsLE ? 0 : 2; 1188 for (unsigned i = 0; i != 8; i += 2) 1189 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1190 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1191 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1192 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1193 return false; 1194 } 1195 return true; 1196 } 1197 1198 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1199 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1200 /// current subtarget. 1201 /// 1202 /// The ShuffleKind distinguishes between big-endian operations with 1203 /// two different inputs (0), either-endian operations with two identical 1204 /// inputs (1), and little-endian operations with two different inputs (2). 1205 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1206 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1207 SelectionDAG &DAG) { 1208 const PPCSubtarget& Subtarget = 1209 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1210 if (!Subtarget.hasP8Vector()) 1211 return false; 1212 1213 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1214 if (ShuffleKind == 0) { 1215 if (IsLE) 1216 return false; 1217 for (unsigned i = 0; i != 16; i += 4) 1218 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1219 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1220 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1221 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1222 return false; 1223 } else if (ShuffleKind == 2) { 1224 if (!IsLE) 1225 return false; 1226 for (unsigned i = 0; i != 16; i += 4) 1227 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1228 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1229 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1230 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1231 return false; 1232 } else if (ShuffleKind == 1) { 1233 unsigned j = IsLE ? 0 : 4; 1234 for (unsigned i = 0; i != 8; i += 4) 1235 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1236 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1237 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1238 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1239 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1240 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1241 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1242 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1243 return false; 1244 } 1245 return true; 1246 } 1247 1248 /// isVMerge - Common function, used to match vmrg* shuffles. 1249 /// 1250 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1251 unsigned LHSStart, unsigned RHSStart) { 1252 if (N->getValueType(0) != MVT::v16i8) 1253 return false; 1254 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1255 "Unsupported merge size!"); 1256 1257 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1258 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1259 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1260 LHSStart+j+i*UnitSize) || 1261 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1262 RHSStart+j+i*UnitSize)) 1263 return false; 1264 } 1265 return true; 1266 } 1267 1268 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1269 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1270 /// The ShuffleKind distinguishes between big-endian merges with two 1271 /// different inputs (0), either-endian merges with two identical inputs (1), 1272 /// and little-endian merges with two different inputs (2). For the latter, 1273 /// the input operands are swapped (see PPCInstrAltivec.td). 1274 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1275 unsigned ShuffleKind, SelectionDAG &DAG) { 1276 if (DAG.getDataLayout().isLittleEndian()) { 1277 if (ShuffleKind == 1) // unary 1278 return isVMerge(N, UnitSize, 0, 0); 1279 else if (ShuffleKind == 2) // swapped 1280 return isVMerge(N, UnitSize, 0, 16); 1281 else 1282 return false; 1283 } else { 1284 if (ShuffleKind == 1) // unary 1285 return isVMerge(N, UnitSize, 8, 8); 1286 else if (ShuffleKind == 0) // normal 1287 return isVMerge(N, UnitSize, 8, 24); 1288 else 1289 return false; 1290 } 1291 } 1292 1293 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1294 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1295 /// The ShuffleKind distinguishes between big-endian merges with two 1296 /// different inputs (0), either-endian merges with two identical inputs (1), 1297 /// and little-endian merges with two different inputs (2). For the latter, 1298 /// the input operands are swapped (see PPCInstrAltivec.td). 1299 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1300 unsigned ShuffleKind, SelectionDAG &DAG) { 1301 if (DAG.getDataLayout().isLittleEndian()) { 1302 if (ShuffleKind == 1) // unary 1303 return isVMerge(N, UnitSize, 8, 8); 1304 else if (ShuffleKind == 2) // swapped 1305 return isVMerge(N, UnitSize, 8, 24); 1306 else 1307 return false; 1308 } else { 1309 if (ShuffleKind == 1) // unary 1310 return isVMerge(N, UnitSize, 0, 0); 1311 else if (ShuffleKind == 0) // normal 1312 return isVMerge(N, UnitSize, 0, 16); 1313 else 1314 return false; 1315 } 1316 } 1317 1318 /** 1319 * \brief Common function used to match vmrgew and vmrgow shuffles 1320 * 1321 * The indexOffset determines whether to look for even or odd words in 1322 * the shuffle mask. This is based on the of the endianness of the target 1323 * machine. 1324 * - Little Endian: 1325 * - Use offset of 0 to check for odd elements 1326 * - Use offset of 4 to check for even elements 1327 * - Big Endian: 1328 * - Use offset of 0 to check for even elements 1329 * - Use offset of 4 to check for odd elements 1330 * A detailed description of the vector element ordering for little endian and 1331 * big endian can be found at 1332 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1333 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1334 * compiler differences mean to you 1335 * 1336 * The mask to the shuffle vector instruction specifies the indices of the 1337 * elements from the two input vectors to place in the result. The elements are 1338 * numbered in array-access order, starting with the first vector. These vectors 1339 * are always of type v16i8, thus each vector will contain 16 elements of size 1340 * 8. More info on the shuffle vector can be found in the 1341 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1342 * Language Reference. 1343 * 1344 * The RHSStartValue indicates whether the same input vectors are used (unary) 1345 * or two different input vectors are used, based on the following: 1346 * - If the instruction uses the same vector for both inputs, the range of the 1347 * indices will be 0 to 15. In this case, the RHSStart value passed should 1348 * be 0. 1349 * - If the instruction has two different vectors then the range of the 1350 * indices will be 0 to 31. In this case, the RHSStart value passed should 1351 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1352 * to 31 specify elements in the second vector). 1353 * 1354 * \param[in] N The shuffle vector SD Node to analyze 1355 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1356 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1357 * vector to the shuffle_vector instruction 1358 * \return true iff this shuffle vector represents an even or odd word merge 1359 */ 1360 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1361 unsigned RHSStartValue) { 1362 if (N->getValueType(0) != MVT::v16i8) 1363 return false; 1364 1365 for (unsigned i = 0; i < 2; ++i) 1366 for (unsigned j = 0; j < 4; ++j) 1367 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1368 i*RHSStartValue+j+IndexOffset) || 1369 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1370 i*RHSStartValue+j+IndexOffset+8)) 1371 return false; 1372 return true; 1373 } 1374 1375 /** 1376 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1377 * vmrgow instructions. 1378 * 1379 * \param[in] N The shuffle vector SD Node to analyze 1380 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1381 * \param[in] ShuffleKind Identify the type of merge: 1382 * - 0 = big-endian merge with two different inputs; 1383 * - 1 = either-endian merge with two identical inputs; 1384 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1385 * little-endian merges). 1386 * \param[in] DAG The current SelectionDAG 1387 * \return true iff this shuffle mask 1388 */ 1389 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1390 unsigned ShuffleKind, SelectionDAG &DAG) { 1391 if (DAG.getDataLayout().isLittleEndian()) { 1392 unsigned indexOffset = CheckEven ? 4 : 0; 1393 if (ShuffleKind == 1) // Unary 1394 return isVMerge(N, indexOffset, 0); 1395 else if (ShuffleKind == 2) // swapped 1396 return isVMerge(N, indexOffset, 16); 1397 else 1398 return false; 1399 } 1400 else { 1401 unsigned indexOffset = CheckEven ? 0 : 4; 1402 if (ShuffleKind == 1) // Unary 1403 return isVMerge(N, indexOffset, 0); 1404 else if (ShuffleKind == 0) // Normal 1405 return isVMerge(N, indexOffset, 16); 1406 else 1407 return false; 1408 } 1409 return false; 1410 } 1411 1412 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1413 /// amount, otherwise return -1. 1414 /// The ShuffleKind distinguishes between big-endian operations with two 1415 /// different inputs (0), either-endian operations with two identical inputs 1416 /// (1), and little-endian operations with two different inputs (2). For the 1417 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1418 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1419 SelectionDAG &DAG) { 1420 if (N->getValueType(0) != MVT::v16i8) 1421 return -1; 1422 1423 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1424 1425 // Find the first non-undef value in the shuffle mask. 1426 unsigned i; 1427 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1428 /*search*/; 1429 1430 if (i == 16) return -1; // all undef. 1431 1432 // Otherwise, check to see if the rest of the elements are consecutively 1433 // numbered from this value. 1434 unsigned ShiftAmt = SVOp->getMaskElt(i); 1435 if (ShiftAmt < i) return -1; 1436 1437 ShiftAmt -= i; 1438 bool isLE = DAG.getDataLayout().isLittleEndian(); 1439 1440 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1441 // Check the rest of the elements to see if they are consecutive. 1442 for (++i; i != 16; ++i) 1443 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1444 return -1; 1445 } else if (ShuffleKind == 1) { 1446 // Check the rest of the elements to see if they are consecutive. 1447 for (++i; i != 16; ++i) 1448 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1449 return -1; 1450 } else 1451 return -1; 1452 1453 if (isLE) 1454 ShiftAmt = 16 - ShiftAmt; 1455 1456 return ShiftAmt; 1457 } 1458 1459 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1460 /// specifies a splat of a single element that is suitable for input to 1461 /// VSPLTB/VSPLTH/VSPLTW. 1462 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1463 assert(N->getValueType(0) == MVT::v16i8 && 1464 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1465 1466 // The consecutive indices need to specify an element, not part of two 1467 // different elements. So abandon ship early if this isn't the case. 1468 if (N->getMaskElt(0) % EltSize != 0) 1469 return false; 1470 1471 // This is a splat operation if each element of the permute is the same, and 1472 // if the value doesn't reference the second vector. 1473 unsigned ElementBase = N->getMaskElt(0); 1474 1475 // FIXME: Handle UNDEF elements too! 1476 if (ElementBase >= 16) 1477 return false; 1478 1479 // Check that the indices are consecutive, in the case of a multi-byte element 1480 // splatted with a v16i8 mask. 1481 for (unsigned i = 1; i != EltSize; ++i) 1482 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1483 return false; 1484 1485 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1486 if (N->getMaskElt(i) < 0) continue; 1487 for (unsigned j = 0; j != EltSize; ++j) 1488 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1489 return false; 1490 } 1491 return true; 1492 } 1493 1494 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1495 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1496 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1497 SelectionDAG &DAG) { 1498 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1499 assert(isSplatShuffleMask(SVOp, EltSize)); 1500 if (DAG.getDataLayout().isLittleEndian()) 1501 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1502 else 1503 return SVOp->getMaskElt(0) / EltSize; 1504 } 1505 1506 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1507 /// by using a vspltis[bhw] instruction of the specified element size, return 1508 /// the constant being splatted. The ByteSize field indicates the number of 1509 /// bytes of each element [124] -> [bhw]. 1510 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1511 SDValue OpVal(nullptr, 0); 1512 1513 // If ByteSize of the splat is bigger than the element size of the 1514 // build_vector, then we have a case where we are checking for a splat where 1515 // multiple elements of the buildvector are folded together into a single 1516 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1517 unsigned EltSize = 16/N->getNumOperands(); 1518 if (EltSize < ByteSize) { 1519 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1520 SDValue UniquedVals[4]; 1521 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1522 1523 // See if all of the elements in the buildvector agree across. 1524 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1525 if (N->getOperand(i).isUndef()) continue; 1526 // If the element isn't a constant, bail fully out. 1527 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1528 1529 1530 if (!UniquedVals[i&(Multiple-1)].getNode()) 1531 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1532 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1533 return SDValue(); // no match. 1534 } 1535 1536 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1537 // either constant or undef values that are identical for each chunk. See 1538 // if these chunks can form into a larger vspltis*. 1539 1540 // Check to see if all of the leading entries are either 0 or -1. If 1541 // neither, then this won't fit into the immediate field. 1542 bool LeadingZero = true; 1543 bool LeadingOnes = true; 1544 for (unsigned i = 0; i != Multiple-1; ++i) { 1545 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1546 1547 LeadingZero &= isNullConstant(UniquedVals[i]); 1548 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1549 } 1550 // Finally, check the least significant entry. 1551 if (LeadingZero) { 1552 if (!UniquedVals[Multiple-1].getNode()) 1553 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1554 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1555 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1556 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1557 } 1558 if (LeadingOnes) { 1559 if (!UniquedVals[Multiple-1].getNode()) 1560 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1561 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1562 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1563 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1564 } 1565 1566 return SDValue(); 1567 } 1568 1569 // Check to see if this buildvec has a single non-undef value in its elements. 1570 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1571 if (N->getOperand(i).isUndef()) continue; 1572 if (!OpVal.getNode()) 1573 OpVal = N->getOperand(i); 1574 else if (OpVal != N->getOperand(i)) 1575 return SDValue(); 1576 } 1577 1578 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1579 1580 unsigned ValSizeInBytes = EltSize; 1581 uint64_t Value = 0; 1582 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1583 Value = CN->getZExtValue(); 1584 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1585 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1586 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1587 } 1588 1589 // If the splat value is larger than the element value, then we can never do 1590 // this splat. The only case that we could fit the replicated bits into our 1591 // immediate field for would be zero, and we prefer to use vxor for it. 1592 if (ValSizeInBytes < ByteSize) return SDValue(); 1593 1594 // If the element value is larger than the splat value, check if it consists 1595 // of a repeated bit pattern of size ByteSize. 1596 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1597 return SDValue(); 1598 1599 // Properly sign extend the value. 1600 int MaskVal = SignExtend32(Value, ByteSize * 8); 1601 1602 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1603 if (MaskVal == 0) return SDValue(); 1604 1605 // Finally, if this value fits in a 5 bit sext field, return it 1606 if (SignExtend32<5>(MaskVal) == MaskVal) 1607 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1608 return SDValue(); 1609 } 1610 1611 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1612 /// amount, otherwise return -1. 1613 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1614 EVT VT = N->getValueType(0); 1615 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1616 return -1; 1617 1618 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1619 1620 // Find the first non-undef value in the shuffle mask. 1621 unsigned i; 1622 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1623 /*search*/; 1624 1625 if (i == 4) return -1; // all undef. 1626 1627 // Otherwise, check to see if the rest of the elements are consecutively 1628 // numbered from this value. 1629 unsigned ShiftAmt = SVOp->getMaskElt(i); 1630 if (ShiftAmt < i) return -1; 1631 ShiftAmt -= i; 1632 1633 // Check the rest of the elements to see if they are consecutive. 1634 for (++i; i != 4; ++i) 1635 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1636 return -1; 1637 1638 return ShiftAmt; 1639 } 1640 1641 //===----------------------------------------------------------------------===// 1642 // Addressing Mode Selection 1643 //===----------------------------------------------------------------------===// 1644 1645 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1646 /// or 64-bit immediate, and if the value can be accurately represented as a 1647 /// sign extension from a 16-bit value. If so, this returns true and the 1648 /// immediate. 1649 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1650 if (!isa<ConstantSDNode>(N)) 1651 return false; 1652 1653 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1654 if (N->getValueType(0) == MVT::i32) 1655 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1656 else 1657 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1658 } 1659 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1660 return isIntS16Immediate(Op.getNode(), Imm); 1661 } 1662 1663 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1664 /// can be represented as an indexed [r+r] operation. Returns false if it 1665 /// can be more efficiently represented with [r+imm]. 1666 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1667 SDValue &Index, 1668 SelectionDAG &DAG) const { 1669 short imm = 0; 1670 if (N.getOpcode() == ISD::ADD) { 1671 if (isIntS16Immediate(N.getOperand(1), imm)) 1672 return false; // r+i 1673 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1674 return false; // r+i 1675 1676 Base = N.getOperand(0); 1677 Index = N.getOperand(1); 1678 return true; 1679 } else if (N.getOpcode() == ISD::OR) { 1680 if (isIntS16Immediate(N.getOperand(1), imm)) 1681 return false; // r+i can fold it if we can. 1682 1683 // If this is an or of disjoint bitfields, we can codegen this as an add 1684 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1685 // disjoint. 1686 APInt LHSKnownZero, LHSKnownOne; 1687 APInt RHSKnownZero, RHSKnownOne; 1688 DAG.computeKnownBits(N.getOperand(0), 1689 LHSKnownZero, LHSKnownOne); 1690 1691 if (LHSKnownZero.getBoolValue()) { 1692 DAG.computeKnownBits(N.getOperand(1), 1693 RHSKnownZero, RHSKnownOne); 1694 // If all of the bits are known zero on the LHS or RHS, the add won't 1695 // carry. 1696 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1697 Base = N.getOperand(0); 1698 Index = N.getOperand(1); 1699 return true; 1700 } 1701 } 1702 } 1703 1704 return false; 1705 } 1706 1707 // If we happen to be doing an i64 load or store into a stack slot that has 1708 // less than a 4-byte alignment, then the frame-index elimination may need to 1709 // use an indexed load or store instruction (because the offset may not be a 1710 // multiple of 4). The extra register needed to hold the offset comes from the 1711 // register scavenger, and it is possible that the scavenger will need to use 1712 // an emergency spill slot. As a result, we need to make sure that a spill slot 1713 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1714 // stack slot. 1715 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1716 // FIXME: This does not handle the LWA case. 1717 if (VT != MVT::i64) 1718 return; 1719 1720 // NOTE: We'll exclude negative FIs here, which come from argument 1721 // lowering, because there are no known test cases triggering this problem 1722 // using packed structures (or similar). We can remove this exclusion if 1723 // we find such a test case. The reason why this is so test-case driven is 1724 // because this entire 'fixup' is only to prevent crashes (from the 1725 // register scavenger) on not-really-valid inputs. For example, if we have: 1726 // %a = alloca i1 1727 // %b = bitcast i1* %a to i64* 1728 // store i64* a, i64 b 1729 // then the store should really be marked as 'align 1', but is not. If it 1730 // were marked as 'align 1' then the indexed form would have been 1731 // instruction-selected initially, and the problem this 'fixup' is preventing 1732 // won't happen regardless. 1733 if (FrameIdx < 0) 1734 return; 1735 1736 MachineFunction &MF = DAG.getMachineFunction(); 1737 MachineFrameInfo *MFI = MF.getFrameInfo(); 1738 1739 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1740 if (Align >= 4) 1741 return; 1742 1743 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1744 FuncInfo->setHasNonRISpills(); 1745 } 1746 1747 /// Returns true if the address N can be represented by a base register plus 1748 /// a signed 16-bit displacement [r+imm], and if it is not better 1749 /// represented as reg+reg. If Aligned is true, only accept displacements 1750 /// suitable for STD and friends, i.e. multiples of 4. 1751 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1752 SDValue &Base, 1753 SelectionDAG &DAG, 1754 bool Aligned) const { 1755 // FIXME dl should come from parent load or store, not from address 1756 SDLoc dl(N); 1757 // If this can be more profitably realized as r+r, fail. 1758 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1759 return false; 1760 1761 if (N.getOpcode() == ISD::ADD) { 1762 short imm = 0; 1763 if (isIntS16Immediate(N.getOperand(1), imm) && 1764 (!Aligned || (imm & 3) == 0)) { 1765 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1766 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1767 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1768 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1769 } else { 1770 Base = N.getOperand(0); 1771 } 1772 return true; // [r+i] 1773 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1774 // Match LOAD (ADD (X, Lo(G))). 1775 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1776 && "Cannot handle constant offsets yet!"); 1777 Disp = N.getOperand(1).getOperand(0); // The global address. 1778 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1779 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1780 Disp.getOpcode() == ISD::TargetConstantPool || 1781 Disp.getOpcode() == ISD::TargetJumpTable); 1782 Base = N.getOperand(0); 1783 return true; // [&g+r] 1784 } 1785 } else if (N.getOpcode() == ISD::OR) { 1786 short imm = 0; 1787 if (isIntS16Immediate(N.getOperand(1), imm) && 1788 (!Aligned || (imm & 3) == 0)) { 1789 // If this is an or of disjoint bitfields, we can codegen this as an add 1790 // (for better address arithmetic) if the LHS and RHS of the OR are 1791 // provably disjoint. 1792 APInt LHSKnownZero, LHSKnownOne; 1793 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1794 1795 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1796 // If all of the bits are known zero on the LHS or RHS, the add won't 1797 // carry. 1798 if (FrameIndexSDNode *FI = 1799 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1800 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1801 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1802 } else { 1803 Base = N.getOperand(0); 1804 } 1805 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1806 return true; 1807 } 1808 } 1809 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1810 // Loading from a constant address. 1811 1812 // If this address fits entirely in a 16-bit sext immediate field, codegen 1813 // this as "d, 0" 1814 short Imm; 1815 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1816 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1817 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1818 CN->getValueType(0)); 1819 return true; 1820 } 1821 1822 // Handle 32-bit sext immediates with LIS + addr mode. 1823 if ((CN->getValueType(0) == MVT::i32 || 1824 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1825 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1826 int Addr = (int)CN->getZExtValue(); 1827 1828 // Otherwise, break this down into an LIS + disp. 1829 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1830 1831 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1832 MVT::i32); 1833 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1834 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1835 return true; 1836 } 1837 } 1838 1839 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1840 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1841 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1842 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1843 } else 1844 Base = N; 1845 return true; // [r+0] 1846 } 1847 1848 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1849 /// represented as an indexed [r+r] operation. 1850 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1851 SDValue &Index, 1852 SelectionDAG &DAG) const { 1853 // Check to see if we can easily represent this as an [r+r] address. This 1854 // will fail if it thinks that the address is more profitably represented as 1855 // reg+imm, e.g. where imm = 0. 1856 if (SelectAddressRegReg(N, Base, Index, DAG)) 1857 return true; 1858 1859 // If the operand is an addition, always emit this as [r+r], since this is 1860 // better (for code size, and execution, as the memop does the add for free) 1861 // than emitting an explicit add. 1862 if (N.getOpcode() == ISD::ADD) { 1863 Base = N.getOperand(0); 1864 Index = N.getOperand(1); 1865 return true; 1866 } 1867 1868 // Otherwise, do it the hard way, using R0 as the base register. 1869 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1870 N.getValueType()); 1871 Index = N; 1872 return true; 1873 } 1874 1875 /// getPreIndexedAddressParts - returns true by value, base pointer and 1876 /// offset pointer and addressing mode by reference if the node's address 1877 /// can be legally represented as pre-indexed load / store address. 1878 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1879 SDValue &Offset, 1880 ISD::MemIndexedMode &AM, 1881 SelectionDAG &DAG) const { 1882 if (DisablePPCPreinc) return false; 1883 1884 bool isLoad = true; 1885 SDValue Ptr; 1886 EVT VT; 1887 unsigned Alignment; 1888 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1889 Ptr = LD->getBasePtr(); 1890 VT = LD->getMemoryVT(); 1891 Alignment = LD->getAlignment(); 1892 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1893 Ptr = ST->getBasePtr(); 1894 VT = ST->getMemoryVT(); 1895 Alignment = ST->getAlignment(); 1896 isLoad = false; 1897 } else 1898 return false; 1899 1900 // PowerPC doesn't have preinc load/store instructions for vectors (except 1901 // for QPX, which does have preinc r+r forms). 1902 if (VT.isVector()) { 1903 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1904 return false; 1905 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1906 AM = ISD::PRE_INC; 1907 return true; 1908 } 1909 } 1910 1911 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1912 1913 // Common code will reject creating a pre-inc form if the base pointer 1914 // is a frame index, or if N is a store and the base pointer is either 1915 // the same as or a predecessor of the value being stored. Check for 1916 // those situations here, and try with swapped Base/Offset instead. 1917 bool Swap = false; 1918 1919 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1920 Swap = true; 1921 else if (!isLoad) { 1922 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1923 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1924 Swap = true; 1925 } 1926 1927 if (Swap) 1928 std::swap(Base, Offset); 1929 1930 AM = ISD::PRE_INC; 1931 return true; 1932 } 1933 1934 // LDU/STU can only handle immediates that are a multiple of 4. 1935 if (VT != MVT::i64) { 1936 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1937 return false; 1938 } else { 1939 // LDU/STU need an address with at least 4-byte alignment. 1940 if (Alignment < 4) 1941 return false; 1942 1943 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1944 return false; 1945 } 1946 1947 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1948 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1949 // sext i32 to i64 when addr mode is r+i. 1950 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1951 LD->getExtensionType() == ISD::SEXTLOAD && 1952 isa<ConstantSDNode>(Offset)) 1953 return false; 1954 } 1955 1956 AM = ISD::PRE_INC; 1957 return true; 1958 } 1959 1960 //===----------------------------------------------------------------------===// 1961 // LowerOperation implementation 1962 //===----------------------------------------------------------------------===// 1963 1964 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 1965 /// and LoOpFlags to the target MO flags. 1966 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 1967 unsigned &HiOpFlags, unsigned &LoOpFlags, 1968 const GlobalValue *GV = nullptr) { 1969 HiOpFlags = PPCII::MO_HA; 1970 LoOpFlags = PPCII::MO_LO; 1971 1972 // Don't use the pic base if not in PIC relocation model. 1973 if (IsPIC) { 1974 HiOpFlags |= PPCII::MO_PIC_FLAG; 1975 LoOpFlags |= PPCII::MO_PIC_FLAG; 1976 } 1977 1978 // If this is a reference to a global value that requires a non-lazy-ptr, make 1979 // sure that instruction lowering adds it. 1980 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1981 HiOpFlags |= PPCII::MO_NLP_FLAG; 1982 LoOpFlags |= PPCII::MO_NLP_FLAG; 1983 1984 if (GV->hasHiddenVisibility()) { 1985 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1986 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1987 } 1988 } 1989 } 1990 1991 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1992 SelectionDAG &DAG) { 1993 SDLoc DL(HiPart); 1994 EVT PtrVT = HiPart.getValueType(); 1995 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1996 1997 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1998 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1999 2000 // With PIC, the first instruction is actually "GR+hi(&G)". 2001 if (isPIC) 2002 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2003 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2004 2005 // Generate non-pic code that has direct accesses to the constant pool. 2006 // The address of the global is just (hi(&g)+lo(&g)). 2007 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2008 } 2009 2010 static void setUsesTOCBasePtr(MachineFunction &MF) { 2011 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2012 FuncInfo->setUsesTOCBasePtr(); 2013 } 2014 2015 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2016 setUsesTOCBasePtr(DAG.getMachineFunction()); 2017 } 2018 2019 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2020 SDValue GA) { 2021 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2022 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2023 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2024 2025 SDValue Ops[] = { GA, Reg }; 2026 return DAG.getMemIntrinsicNode( 2027 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2028 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2029 false, 0); 2030 } 2031 2032 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2033 SelectionDAG &DAG) const { 2034 EVT PtrVT = Op.getValueType(); 2035 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2036 const Constant *C = CP->getConstVal(); 2037 2038 // 64-bit SVR4 ABI code is always position-independent. 2039 // The actual address of the GlobalValue is stored in the TOC. 2040 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2041 setUsesTOCBasePtr(DAG); 2042 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2043 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2044 } 2045 2046 unsigned MOHiFlag, MOLoFlag; 2047 bool IsPIC = isPositionIndependent(); 2048 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2049 2050 if (IsPIC && Subtarget.isSVR4ABI()) { 2051 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2052 PPCII::MO_PIC_FLAG); 2053 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2054 } 2055 2056 SDValue CPIHi = 2057 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2058 SDValue CPILo = 2059 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2060 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2061 } 2062 2063 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2064 EVT PtrVT = Op.getValueType(); 2065 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2066 2067 // 64-bit SVR4 ABI code is always position-independent. 2068 // The actual address of the GlobalValue is stored in the TOC. 2069 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2070 setUsesTOCBasePtr(DAG); 2071 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2072 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2073 } 2074 2075 unsigned MOHiFlag, MOLoFlag; 2076 bool IsPIC = isPositionIndependent(); 2077 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2078 2079 if (IsPIC && Subtarget.isSVR4ABI()) { 2080 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2081 PPCII::MO_PIC_FLAG); 2082 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2083 } 2084 2085 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2086 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2087 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2088 } 2089 2090 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2091 SelectionDAG &DAG) const { 2092 EVT PtrVT = Op.getValueType(); 2093 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2094 const BlockAddress *BA = BASDN->getBlockAddress(); 2095 2096 // 64-bit SVR4 ABI code is always position-independent. 2097 // The actual BlockAddress is stored in the TOC. 2098 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2099 setUsesTOCBasePtr(DAG); 2100 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2101 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2102 } 2103 2104 unsigned MOHiFlag, MOLoFlag; 2105 bool IsPIC = isPositionIndependent(); 2106 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2107 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2108 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2109 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2110 } 2111 2112 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2113 SelectionDAG &DAG) const { 2114 2115 // FIXME: TLS addresses currently use medium model code sequences, 2116 // which is the most useful form. Eventually support for small and 2117 // large models could be added if users need it, at the cost of 2118 // additional complexity. 2119 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2120 if (DAG.getTarget().Options.EmulatedTLS) 2121 return LowerToTLSEmulatedModel(GA, DAG); 2122 2123 SDLoc dl(GA); 2124 const GlobalValue *GV = GA->getGlobal(); 2125 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2126 bool is64bit = Subtarget.isPPC64(); 2127 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2128 PICLevel::Level picLevel = M->getPICLevel(); 2129 2130 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2131 2132 if (Model == TLSModel::LocalExec) { 2133 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2134 PPCII::MO_TPREL_HA); 2135 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2136 PPCII::MO_TPREL_LO); 2137 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2138 is64bit ? MVT::i64 : MVT::i32); 2139 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2140 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2141 } 2142 2143 if (Model == TLSModel::InitialExec) { 2144 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2145 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2146 PPCII::MO_TLS); 2147 SDValue GOTPtr; 2148 if (is64bit) { 2149 setUsesTOCBasePtr(DAG); 2150 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2151 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2152 PtrVT, GOTReg, TGA); 2153 } else 2154 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2155 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2156 PtrVT, TGA, GOTPtr); 2157 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2158 } 2159 2160 if (Model == TLSModel::GeneralDynamic) { 2161 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2162 SDValue GOTPtr; 2163 if (is64bit) { 2164 setUsesTOCBasePtr(DAG); 2165 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2166 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2167 GOTReg, TGA); 2168 } else { 2169 if (picLevel == PICLevel::SmallPIC) 2170 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2171 else 2172 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2173 } 2174 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2175 GOTPtr, TGA, TGA); 2176 } 2177 2178 if (Model == TLSModel::LocalDynamic) { 2179 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2180 SDValue GOTPtr; 2181 if (is64bit) { 2182 setUsesTOCBasePtr(DAG); 2183 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2184 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2185 GOTReg, TGA); 2186 } else { 2187 if (picLevel == PICLevel::SmallPIC) 2188 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2189 else 2190 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2191 } 2192 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2193 PtrVT, GOTPtr, TGA, TGA); 2194 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2195 PtrVT, TLSAddr, TGA); 2196 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2197 } 2198 2199 llvm_unreachable("Unknown TLS model!"); 2200 } 2201 2202 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2203 SelectionDAG &DAG) const { 2204 EVT PtrVT = Op.getValueType(); 2205 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2206 SDLoc DL(GSDN); 2207 const GlobalValue *GV = GSDN->getGlobal(); 2208 2209 // 64-bit SVR4 ABI code is always position-independent. 2210 // The actual address of the GlobalValue is stored in the TOC. 2211 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2212 setUsesTOCBasePtr(DAG); 2213 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2214 return getTOCEntry(DAG, DL, true, GA); 2215 } 2216 2217 unsigned MOHiFlag, MOLoFlag; 2218 bool IsPIC = isPositionIndependent(); 2219 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2220 2221 if (IsPIC && Subtarget.isSVR4ABI()) { 2222 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2223 GSDN->getOffset(), 2224 PPCII::MO_PIC_FLAG); 2225 return getTOCEntry(DAG, DL, false, GA); 2226 } 2227 2228 SDValue GAHi = 2229 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2230 SDValue GALo = 2231 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2232 2233 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2234 2235 // If the global reference is actually to a non-lazy-pointer, we have to do an 2236 // extra load to get the address of the global. 2237 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2238 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2239 false, false, false, 0); 2240 return Ptr; 2241 } 2242 2243 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2244 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2245 SDLoc dl(Op); 2246 2247 if (Op.getValueType() == MVT::v2i64) { 2248 // When the operands themselves are v2i64 values, we need to do something 2249 // special because VSX has no underlying comparison operations for these. 2250 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2251 // Equality can be handled by casting to the legal type for Altivec 2252 // comparisons, everything else needs to be expanded. 2253 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2254 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2255 DAG.getSetCC(dl, MVT::v4i32, 2256 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2257 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2258 CC)); 2259 } 2260 2261 return SDValue(); 2262 } 2263 2264 // We handle most of these in the usual way. 2265 return Op; 2266 } 2267 2268 // If we're comparing for equality to zero, expose the fact that this is 2269 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2270 // fold the new nodes. 2271 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2272 if (C->isNullValue() && CC == ISD::SETEQ) { 2273 EVT VT = Op.getOperand(0).getValueType(); 2274 SDValue Zext = Op.getOperand(0); 2275 if (VT.bitsLT(MVT::i32)) { 2276 VT = MVT::i32; 2277 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2278 } 2279 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2280 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2281 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2282 DAG.getConstant(Log2b, dl, MVT::i32)); 2283 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2284 } 2285 // Leave comparisons against 0 and -1 alone for now, since they're usually 2286 // optimized. FIXME: revisit this when we can custom lower all setcc 2287 // optimizations. 2288 if (C->isAllOnesValue() || C->isNullValue()) 2289 return SDValue(); 2290 } 2291 2292 // If we have an integer seteq/setne, turn it into a compare against zero 2293 // by xor'ing the rhs with the lhs, which is faster than setting a 2294 // condition register, reading it back out, and masking the correct bit. The 2295 // normal approach here uses sub to do this instead of xor. Using xor exposes 2296 // the result to other bit-twiddling opportunities. 2297 EVT LHSVT = Op.getOperand(0).getValueType(); 2298 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2299 EVT VT = Op.getValueType(); 2300 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2301 Op.getOperand(1)); 2302 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2303 } 2304 return SDValue(); 2305 } 2306 2307 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2308 const PPCSubtarget &Subtarget) const { 2309 SDNode *Node = Op.getNode(); 2310 EVT VT = Node->getValueType(0); 2311 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2312 SDValue InChain = Node->getOperand(0); 2313 SDValue VAListPtr = Node->getOperand(1); 2314 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2315 SDLoc dl(Node); 2316 2317 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2318 2319 // gpr_index 2320 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2321 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2322 false, false, false, 0); 2323 InChain = GprIndex.getValue(1); 2324 2325 if (VT == MVT::i64) { 2326 // Check if GprIndex is even 2327 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2328 DAG.getConstant(1, dl, MVT::i32)); 2329 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2330 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2331 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2332 DAG.getConstant(1, dl, MVT::i32)); 2333 // Align GprIndex to be even if it isn't 2334 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2335 GprIndex); 2336 } 2337 2338 // fpr index is 1 byte after gpr 2339 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2340 DAG.getConstant(1, dl, MVT::i32)); 2341 2342 // fpr 2343 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2344 FprPtr, MachinePointerInfo(SV), MVT::i8, 2345 false, false, false, 0); 2346 InChain = FprIndex.getValue(1); 2347 2348 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2349 DAG.getConstant(8, dl, MVT::i32)); 2350 2351 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2352 DAG.getConstant(4, dl, MVT::i32)); 2353 2354 // areas 2355 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2356 MachinePointerInfo(), false, false, 2357 false, 0); 2358 InChain = OverflowArea.getValue(1); 2359 2360 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2361 MachinePointerInfo(), false, false, 2362 false, 0); 2363 InChain = RegSaveArea.getValue(1); 2364 2365 // select overflow_area if index > 8 2366 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2367 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2368 2369 // adjustment constant gpr_index * 4/8 2370 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2371 VT.isInteger() ? GprIndex : FprIndex, 2372 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2373 MVT::i32)); 2374 2375 // OurReg = RegSaveArea + RegConstant 2376 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2377 RegConstant); 2378 2379 // Floating types are 32 bytes into RegSaveArea 2380 if (VT.isFloatingPoint()) 2381 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2382 DAG.getConstant(32, dl, MVT::i32)); 2383 2384 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2385 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2386 VT.isInteger() ? GprIndex : FprIndex, 2387 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2388 MVT::i32)); 2389 2390 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2391 VT.isInteger() ? VAListPtr : FprPtr, 2392 MachinePointerInfo(SV), 2393 MVT::i8, false, false, 0); 2394 2395 // determine if we should load from reg_save_area or overflow_area 2396 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2397 2398 // increase overflow_area by 4/8 if gpr/fpr > 8 2399 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2400 DAG.getConstant(VT.isInteger() ? 4 : 8, 2401 dl, MVT::i32)); 2402 2403 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2404 OverflowAreaPlusN); 2405 2406 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2407 OverflowAreaPtr, 2408 MachinePointerInfo(), 2409 MVT::i32, false, false, 0); 2410 2411 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2412 false, false, false, 0); 2413 } 2414 2415 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2416 const PPCSubtarget &Subtarget) const { 2417 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2418 2419 // We have to copy the entire va_list struct: 2420 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2421 return DAG.getMemcpy(Op.getOperand(0), Op, 2422 Op.getOperand(1), Op.getOperand(2), 2423 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2424 false, MachinePointerInfo(), MachinePointerInfo()); 2425 } 2426 2427 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2428 SelectionDAG &DAG) const { 2429 return Op.getOperand(0); 2430 } 2431 2432 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2433 SelectionDAG &DAG) const { 2434 SDValue Chain = Op.getOperand(0); 2435 SDValue Trmp = Op.getOperand(1); // trampoline 2436 SDValue FPtr = Op.getOperand(2); // nested function 2437 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2438 SDLoc dl(Op); 2439 2440 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2441 bool isPPC64 = (PtrVT == MVT::i64); 2442 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2443 2444 TargetLowering::ArgListTy Args; 2445 TargetLowering::ArgListEntry Entry; 2446 2447 Entry.Ty = IntPtrTy; 2448 Entry.Node = Trmp; Args.push_back(Entry); 2449 2450 // TrampSize == (isPPC64 ? 48 : 40); 2451 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2452 isPPC64 ? MVT::i64 : MVT::i32); 2453 Args.push_back(Entry); 2454 2455 Entry.Node = FPtr; Args.push_back(Entry); 2456 Entry.Node = Nest; Args.push_back(Entry); 2457 2458 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2459 TargetLowering::CallLoweringInfo CLI(DAG); 2460 CLI.setDebugLoc(dl).setChain(Chain) 2461 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2462 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2463 std::move(Args)); 2464 2465 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2466 return CallResult.second; 2467 } 2468 2469 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2470 const PPCSubtarget &Subtarget) const { 2471 MachineFunction &MF = DAG.getMachineFunction(); 2472 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2473 2474 SDLoc dl(Op); 2475 2476 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2477 // vastart just stores the address of the VarArgsFrameIndex slot into the 2478 // memory location argument. 2479 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2480 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2481 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2482 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2483 MachinePointerInfo(SV), 2484 false, false, 0); 2485 } 2486 2487 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2488 // We suppose the given va_list is already allocated. 2489 // 2490 // typedef struct { 2491 // char gpr; /* index into the array of 8 GPRs 2492 // * stored in the register save area 2493 // * gpr=0 corresponds to r3, 2494 // * gpr=1 to r4, etc. 2495 // */ 2496 // char fpr; /* index into the array of 8 FPRs 2497 // * stored in the register save area 2498 // * fpr=0 corresponds to f1, 2499 // * fpr=1 to f2, etc. 2500 // */ 2501 // char *overflow_arg_area; 2502 // /* location on stack that holds 2503 // * the next overflow argument 2504 // */ 2505 // char *reg_save_area; 2506 // /* where r3:r10 and f1:f8 (if saved) 2507 // * are stored 2508 // */ 2509 // } va_list[1]; 2510 2511 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2512 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2513 2514 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2515 2516 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2517 PtrVT); 2518 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2519 PtrVT); 2520 2521 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2522 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2523 2524 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2525 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2526 2527 uint64_t FPROffset = 1; 2528 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2529 2530 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2531 2532 // Store first byte : number of int regs 2533 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2534 Op.getOperand(1), 2535 MachinePointerInfo(SV), 2536 MVT::i8, false, false, 0); 2537 uint64_t nextOffset = FPROffset; 2538 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2539 ConstFPROffset); 2540 2541 // Store second byte : number of float regs 2542 SDValue secondStore = 2543 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2544 MachinePointerInfo(SV, nextOffset), MVT::i8, 2545 false, false, 0); 2546 nextOffset += StackOffset; 2547 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2548 2549 // Store second word : arguments given on stack 2550 SDValue thirdStore = 2551 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2552 MachinePointerInfo(SV, nextOffset), 2553 false, false, 0); 2554 nextOffset += FrameOffset; 2555 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2556 2557 // Store third word : arguments given in registers 2558 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2559 MachinePointerInfo(SV, nextOffset), 2560 false, false, 0); 2561 2562 } 2563 2564 #include "PPCGenCallingConv.inc" 2565 2566 // Function whose sole purpose is to kill compiler warnings 2567 // stemming from unused functions included from PPCGenCallingConv.inc. 2568 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2569 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2570 } 2571 2572 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2573 CCValAssign::LocInfo &LocInfo, 2574 ISD::ArgFlagsTy &ArgFlags, 2575 CCState &State) { 2576 return true; 2577 } 2578 2579 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2580 MVT &LocVT, 2581 CCValAssign::LocInfo &LocInfo, 2582 ISD::ArgFlagsTy &ArgFlags, 2583 CCState &State) { 2584 static const MCPhysReg ArgRegs[] = { 2585 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2586 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2587 }; 2588 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2589 2590 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2591 2592 // Skip one register if the first unallocated register has an even register 2593 // number and there are still argument registers available which have not been 2594 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2595 // need to skip a register if RegNum is odd. 2596 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2597 State.AllocateReg(ArgRegs[RegNum]); 2598 } 2599 2600 // Always return false here, as this function only makes sure that the first 2601 // unallocated register has an odd register number and does not actually 2602 // allocate a register for the current argument. 2603 return false; 2604 } 2605 2606 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2607 MVT &LocVT, 2608 CCValAssign::LocInfo &LocInfo, 2609 ISD::ArgFlagsTy &ArgFlags, 2610 CCState &State) { 2611 static const MCPhysReg ArgRegs[] = { 2612 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2613 PPC::F8 2614 }; 2615 2616 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2617 2618 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2619 2620 // If there is only one Floating-point register left we need to put both f64 2621 // values of a split ppc_fp128 value on the stack. 2622 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2623 State.AllocateReg(ArgRegs[RegNum]); 2624 } 2625 2626 // Always return false here, as this function only makes sure that the two f64 2627 // values a ppc_fp128 value is split into are both passed in registers or both 2628 // passed on the stack and does not actually allocate a register for the 2629 // current argument. 2630 return false; 2631 } 2632 2633 /// FPR - The set of FP registers that should be allocated for arguments, 2634 /// on Darwin. 2635 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2636 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2637 PPC::F11, PPC::F12, PPC::F13}; 2638 2639 /// QFPR - The set of QPX registers that should be allocated for arguments. 2640 static const MCPhysReg QFPR[] = { 2641 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2642 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2643 2644 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2645 /// the stack. 2646 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2647 unsigned PtrByteSize) { 2648 unsigned ArgSize = ArgVT.getStoreSize(); 2649 if (Flags.isByVal()) 2650 ArgSize = Flags.getByValSize(); 2651 2652 // Round up to multiples of the pointer size, except for array members, 2653 // which are always packed. 2654 if (!Flags.isInConsecutiveRegs()) 2655 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2656 2657 return ArgSize; 2658 } 2659 2660 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2661 /// on the stack. 2662 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2663 ISD::ArgFlagsTy Flags, 2664 unsigned PtrByteSize) { 2665 unsigned Align = PtrByteSize; 2666 2667 // Altivec parameters are padded to a 16 byte boundary. 2668 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2669 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2670 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2671 ArgVT == MVT::v1i128) 2672 Align = 16; 2673 // QPX vector types stored in double-precision are padded to a 32 byte 2674 // boundary. 2675 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2676 Align = 32; 2677 2678 // ByVal parameters are aligned as requested. 2679 if (Flags.isByVal()) { 2680 unsigned BVAlign = Flags.getByValAlign(); 2681 if (BVAlign > PtrByteSize) { 2682 if (BVAlign % PtrByteSize != 0) 2683 llvm_unreachable( 2684 "ByVal alignment is not a multiple of the pointer size"); 2685 2686 Align = BVAlign; 2687 } 2688 } 2689 2690 // Array members are always packed to their original alignment. 2691 if (Flags.isInConsecutiveRegs()) { 2692 // If the array member was split into multiple registers, the first 2693 // needs to be aligned to the size of the full type. (Except for 2694 // ppcf128, which is only aligned as its f64 components.) 2695 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2696 Align = OrigVT.getStoreSize(); 2697 else 2698 Align = ArgVT.getStoreSize(); 2699 } 2700 2701 return Align; 2702 } 2703 2704 /// CalculateStackSlotUsed - Return whether this argument will use its 2705 /// stack slot (instead of being passed in registers). ArgOffset, 2706 /// AvailableFPRs, and AvailableVRs must hold the current argument 2707 /// position, and will be updated to account for this argument. 2708 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2709 ISD::ArgFlagsTy Flags, 2710 unsigned PtrByteSize, 2711 unsigned LinkageSize, 2712 unsigned ParamAreaSize, 2713 unsigned &ArgOffset, 2714 unsigned &AvailableFPRs, 2715 unsigned &AvailableVRs, bool HasQPX) { 2716 bool UseMemory = false; 2717 2718 // Respect alignment of argument on the stack. 2719 unsigned Align = 2720 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2721 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2722 // If there's no space left in the argument save area, we must 2723 // use memory (this check also catches zero-sized arguments). 2724 if (ArgOffset >= LinkageSize + ParamAreaSize) 2725 UseMemory = true; 2726 2727 // Allocate argument on the stack. 2728 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2729 if (Flags.isInConsecutiveRegsLast()) 2730 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2731 // If we overran the argument save area, we must use memory 2732 // (this check catches arguments passed partially in memory) 2733 if (ArgOffset > LinkageSize + ParamAreaSize) 2734 UseMemory = true; 2735 2736 // However, if the argument is actually passed in an FPR or a VR, 2737 // we don't use memory after all. 2738 if (!Flags.isByVal()) { 2739 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2740 // QPX registers overlap with the scalar FP registers. 2741 (HasQPX && (ArgVT == MVT::v4f32 || 2742 ArgVT == MVT::v4f64 || 2743 ArgVT == MVT::v4i1))) 2744 if (AvailableFPRs > 0) { 2745 --AvailableFPRs; 2746 return false; 2747 } 2748 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2749 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2750 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2751 ArgVT == MVT::v1i128) 2752 if (AvailableVRs > 0) { 2753 --AvailableVRs; 2754 return false; 2755 } 2756 } 2757 2758 return UseMemory; 2759 } 2760 2761 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2762 /// ensure minimum alignment required for target. 2763 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2764 unsigned NumBytes) { 2765 unsigned TargetAlign = Lowering->getStackAlignment(); 2766 unsigned AlignMask = TargetAlign - 1; 2767 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2768 return NumBytes; 2769 } 2770 2771 SDValue PPCTargetLowering::LowerFormalArguments( 2772 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2773 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2774 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2775 if (Subtarget.isSVR4ABI()) { 2776 if (Subtarget.isPPC64()) 2777 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2778 dl, DAG, InVals); 2779 else 2780 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2781 dl, DAG, InVals); 2782 } else { 2783 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2784 dl, DAG, InVals); 2785 } 2786 } 2787 2788 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2789 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2790 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2791 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2792 2793 // 32-bit SVR4 ABI Stack Frame Layout: 2794 // +-----------------------------------+ 2795 // +--> | Back chain | 2796 // | +-----------------------------------+ 2797 // | | Floating-point register save area | 2798 // | +-----------------------------------+ 2799 // | | General register save area | 2800 // | +-----------------------------------+ 2801 // | | CR save word | 2802 // | +-----------------------------------+ 2803 // | | VRSAVE save word | 2804 // | +-----------------------------------+ 2805 // | | Alignment padding | 2806 // | +-----------------------------------+ 2807 // | | Vector register save area | 2808 // | +-----------------------------------+ 2809 // | | Local variable space | 2810 // | +-----------------------------------+ 2811 // | | Parameter list area | 2812 // | +-----------------------------------+ 2813 // | | LR save word | 2814 // | +-----------------------------------+ 2815 // SP--> +--- | Back chain | 2816 // +-----------------------------------+ 2817 // 2818 // Specifications: 2819 // System V Application Binary Interface PowerPC Processor Supplement 2820 // AltiVec Technology Programming Interface Manual 2821 2822 MachineFunction &MF = DAG.getMachineFunction(); 2823 MachineFrameInfo *MFI = MF.getFrameInfo(); 2824 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2825 2826 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2827 // Potential tail calls could cause overwriting of argument stack slots. 2828 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2829 (CallConv == CallingConv::Fast)); 2830 unsigned PtrByteSize = 4; 2831 2832 // Assign locations to all of the incoming arguments. 2833 SmallVector<CCValAssign, 16> ArgLocs; 2834 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2835 *DAG.getContext()); 2836 2837 // Reserve space for the linkage area on the stack. 2838 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2839 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2840 if (Subtarget.useSoftFloat()) 2841 CCInfo.PreAnalyzeFormalArguments(Ins); 2842 2843 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2844 CCInfo.clearWasPPCF128(); 2845 2846 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2847 CCValAssign &VA = ArgLocs[i]; 2848 2849 // Arguments stored in registers. 2850 if (VA.isRegLoc()) { 2851 const TargetRegisterClass *RC; 2852 EVT ValVT = VA.getValVT(); 2853 2854 switch (ValVT.getSimpleVT().SimpleTy) { 2855 default: 2856 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2857 case MVT::i1: 2858 case MVT::i32: 2859 RC = &PPC::GPRCRegClass; 2860 break; 2861 case MVT::f32: 2862 if (Subtarget.hasP8Vector()) 2863 RC = &PPC::VSSRCRegClass; 2864 else 2865 RC = &PPC::F4RCRegClass; 2866 break; 2867 case MVT::f64: 2868 if (Subtarget.hasVSX()) 2869 RC = &PPC::VSFRCRegClass; 2870 else 2871 RC = &PPC::F8RCRegClass; 2872 break; 2873 case MVT::v16i8: 2874 case MVT::v8i16: 2875 case MVT::v4i32: 2876 RC = &PPC::VRRCRegClass; 2877 break; 2878 case MVT::v4f32: 2879 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2880 break; 2881 case MVT::v2f64: 2882 case MVT::v2i64: 2883 RC = &PPC::VSHRCRegClass; 2884 break; 2885 case MVT::v4f64: 2886 RC = &PPC::QFRCRegClass; 2887 break; 2888 case MVT::v4i1: 2889 RC = &PPC::QBRCRegClass; 2890 break; 2891 } 2892 2893 // Transform the arguments stored in physical registers into virtual ones. 2894 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2895 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2896 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2897 2898 if (ValVT == MVT::i1) 2899 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2900 2901 InVals.push_back(ArgValue); 2902 } else { 2903 // Argument stored in memory. 2904 assert(VA.isMemLoc()); 2905 2906 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2907 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2908 isImmutable); 2909 2910 // Create load nodes to retrieve arguments from the stack. 2911 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2912 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2913 MachinePointerInfo(), 2914 false, false, false, 0)); 2915 } 2916 } 2917 2918 // Assign locations to all of the incoming aggregate by value arguments. 2919 // Aggregates passed by value are stored in the local variable space of the 2920 // caller's stack frame, right above the parameter list area. 2921 SmallVector<CCValAssign, 16> ByValArgLocs; 2922 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2923 ByValArgLocs, *DAG.getContext()); 2924 2925 // Reserve stack space for the allocations in CCInfo. 2926 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2927 2928 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2929 2930 // Area that is at least reserved in the caller of this function. 2931 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2932 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2933 2934 // Set the size that is at least reserved in caller of this function. Tail 2935 // call optimized function's reserved stack space needs to be aligned so that 2936 // taking the difference between two stack areas will result in an aligned 2937 // stack. 2938 MinReservedArea = 2939 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2940 FuncInfo->setMinReservedArea(MinReservedArea); 2941 2942 SmallVector<SDValue, 8> MemOps; 2943 2944 // If the function takes variable number of arguments, make a frame index for 2945 // the start of the first vararg value... for expansion of llvm.va_start. 2946 if (isVarArg) { 2947 static const MCPhysReg GPArgRegs[] = { 2948 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2949 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2950 }; 2951 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2952 2953 static const MCPhysReg FPArgRegs[] = { 2954 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2955 PPC::F8 2956 }; 2957 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2958 2959 if (Subtarget.useSoftFloat()) 2960 NumFPArgRegs = 0; 2961 2962 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2963 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2964 2965 // Make room for NumGPArgRegs and NumFPArgRegs. 2966 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2967 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2968 2969 FuncInfo->setVarArgsStackOffset( 2970 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2971 CCInfo.getNextStackOffset(), true)); 2972 2973 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2974 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2975 2976 // The fixed integer arguments of a variadic function are stored to the 2977 // VarArgsFrameIndex on the stack so that they may be loaded by 2978 // dereferencing the result of va_next. 2979 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2980 // Get an existing live-in vreg, or add a new one. 2981 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2982 if (!VReg) 2983 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2984 2985 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2986 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2987 MachinePointerInfo(), false, false, 0); 2988 MemOps.push_back(Store); 2989 // Increment the address by four for the next argument to store 2990 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2991 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2992 } 2993 2994 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2995 // is set. 2996 // The double arguments are stored to the VarArgsFrameIndex 2997 // on the stack. 2998 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2999 // Get an existing live-in vreg, or add a new one. 3000 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3001 if (!VReg) 3002 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3003 3004 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3005 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3006 MachinePointerInfo(), false, false, 0); 3007 MemOps.push_back(Store); 3008 // Increment the address by eight for the next argument to store 3009 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3010 PtrVT); 3011 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3012 } 3013 } 3014 3015 if (!MemOps.empty()) 3016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3017 3018 return Chain; 3019 } 3020 3021 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3022 // value to MVT::i64 and then truncate to the correct register size. 3023 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3024 EVT ObjectVT, SelectionDAG &DAG, 3025 SDValue ArgVal, 3026 const SDLoc &dl) const { 3027 if (Flags.isSExt()) 3028 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3029 DAG.getValueType(ObjectVT)); 3030 else if (Flags.isZExt()) 3031 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3032 DAG.getValueType(ObjectVT)); 3033 3034 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3035 } 3036 3037 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3038 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3039 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3040 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3041 // TODO: add description of PPC stack frame format, or at least some docs. 3042 // 3043 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3044 bool isLittleEndian = Subtarget.isLittleEndian(); 3045 MachineFunction &MF = DAG.getMachineFunction(); 3046 MachineFrameInfo *MFI = MF.getFrameInfo(); 3047 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3048 3049 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3050 "fastcc not supported on varargs functions"); 3051 3052 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3053 // Potential tail calls could cause overwriting of argument stack slots. 3054 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3055 (CallConv == CallingConv::Fast)); 3056 unsigned PtrByteSize = 8; 3057 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3058 3059 static const MCPhysReg GPR[] = { 3060 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3061 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3062 }; 3063 static const MCPhysReg VR[] = { 3064 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3065 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3066 }; 3067 static const MCPhysReg VSRH[] = { 3068 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3069 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3070 }; 3071 3072 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3073 const unsigned Num_FPR_Regs = 13; 3074 const unsigned Num_VR_Regs = array_lengthof(VR); 3075 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3076 3077 // Do a first pass over the arguments to determine whether the ABI 3078 // guarantees that our caller has allocated the parameter save area 3079 // on its stack frame. In the ELFv1 ABI, this is always the case; 3080 // in the ELFv2 ABI, it is true if this is a vararg function or if 3081 // any parameter is located in a stack slot. 3082 3083 bool HasParameterArea = !isELFv2ABI || isVarArg; 3084 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3085 unsigned NumBytes = LinkageSize; 3086 unsigned AvailableFPRs = Num_FPR_Regs; 3087 unsigned AvailableVRs = Num_VR_Regs; 3088 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3089 if (Ins[i].Flags.isNest()) 3090 continue; 3091 3092 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3093 PtrByteSize, LinkageSize, ParamAreaSize, 3094 NumBytes, AvailableFPRs, AvailableVRs, 3095 Subtarget.hasQPX())) 3096 HasParameterArea = true; 3097 } 3098 3099 // Add DAG nodes to load the arguments or copy them out of registers. On 3100 // entry to a function on PPC, the arguments start after the linkage area, 3101 // although the first ones are often in registers. 3102 3103 unsigned ArgOffset = LinkageSize; 3104 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3105 unsigned &QFPR_idx = FPR_idx; 3106 SmallVector<SDValue, 8> MemOps; 3107 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3108 unsigned CurArgIdx = 0; 3109 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3110 SDValue ArgVal; 3111 bool needsLoad = false; 3112 EVT ObjectVT = Ins[ArgNo].VT; 3113 EVT OrigVT = Ins[ArgNo].ArgVT; 3114 unsigned ObjSize = ObjectVT.getStoreSize(); 3115 unsigned ArgSize = ObjSize; 3116 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3117 if (Ins[ArgNo].isOrigArg()) { 3118 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3119 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3120 } 3121 // We re-align the argument offset for each argument, except when using the 3122 // fast calling convention, when we need to make sure we do that only when 3123 // we'll actually use a stack slot. 3124 unsigned CurArgOffset, Align; 3125 auto ComputeArgOffset = [&]() { 3126 /* Respect alignment of argument on the stack. */ 3127 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3128 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3129 CurArgOffset = ArgOffset; 3130 }; 3131 3132 if (CallConv != CallingConv::Fast) { 3133 ComputeArgOffset(); 3134 3135 /* Compute GPR index associated with argument offset. */ 3136 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3137 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3138 } 3139 3140 // FIXME the codegen can be much improved in some cases. 3141 // We do not have to keep everything in memory. 3142 if (Flags.isByVal()) { 3143 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3144 3145 if (CallConv == CallingConv::Fast) 3146 ComputeArgOffset(); 3147 3148 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3149 ObjSize = Flags.getByValSize(); 3150 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3151 // Empty aggregate parameters do not take up registers. Examples: 3152 // struct { } a; 3153 // union { } b; 3154 // int c[0]; 3155 // etc. However, we have to provide a place-holder in InVals, so 3156 // pretend we have an 8-byte item at the current address for that 3157 // purpose. 3158 if (!ObjSize) { 3159 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3160 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3161 InVals.push_back(FIN); 3162 continue; 3163 } 3164 3165 // Create a stack object covering all stack doublewords occupied 3166 // by the argument. If the argument is (fully or partially) on 3167 // the stack, or if the argument is fully in registers but the 3168 // caller has allocated the parameter save anyway, we can refer 3169 // directly to the caller's stack frame. Otherwise, create a 3170 // local copy in our own frame. 3171 int FI; 3172 if (HasParameterArea || 3173 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3174 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3175 else 3176 FI = MFI->CreateStackObject(ArgSize, Align, false); 3177 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3178 3179 // Handle aggregates smaller than 8 bytes. 3180 if (ObjSize < PtrByteSize) { 3181 // The value of the object is its address, which differs from the 3182 // address of the enclosing doubleword on big-endian systems. 3183 SDValue Arg = FIN; 3184 if (!isLittleEndian) { 3185 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3186 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3187 } 3188 InVals.push_back(Arg); 3189 3190 if (GPR_idx != Num_GPR_Regs) { 3191 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3192 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3193 SDValue Store; 3194 3195 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3196 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3197 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3198 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3199 MachinePointerInfo(&*FuncArg), ObjType, 3200 false, false, 0); 3201 } else { 3202 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3203 // store the whole register as-is to the parameter save area 3204 // slot. 3205 Store = 3206 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3207 MachinePointerInfo(&*FuncArg), false, false, 0); 3208 } 3209 3210 MemOps.push_back(Store); 3211 } 3212 // Whether we copied from a register or not, advance the offset 3213 // into the parameter save area by a full doubleword. 3214 ArgOffset += PtrByteSize; 3215 continue; 3216 } 3217 3218 // The value of the object is its address, which is the address of 3219 // its first stack doubleword. 3220 InVals.push_back(FIN); 3221 3222 // Store whatever pieces of the object are in registers to memory. 3223 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3224 if (GPR_idx == Num_GPR_Regs) 3225 break; 3226 3227 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3228 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3229 SDValue Addr = FIN; 3230 if (j) { 3231 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3232 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3233 } 3234 SDValue Store = 3235 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3236 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3237 MemOps.push_back(Store); 3238 ++GPR_idx; 3239 } 3240 ArgOffset += ArgSize; 3241 continue; 3242 } 3243 3244 switch (ObjectVT.getSimpleVT().SimpleTy) { 3245 default: llvm_unreachable("Unhandled argument type!"); 3246 case MVT::i1: 3247 case MVT::i32: 3248 case MVT::i64: 3249 if (Flags.isNest()) { 3250 // The 'nest' parameter, if any, is passed in R11. 3251 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3252 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3253 3254 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3255 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3256 3257 break; 3258 } 3259 3260 // These can be scalar arguments or elements of an integer array type 3261 // passed directly. Clang may use those instead of "byval" aggregate 3262 // types to avoid forcing arguments to memory unnecessarily. 3263 if (GPR_idx != Num_GPR_Regs) { 3264 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3265 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3266 3267 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3268 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3269 // value to MVT::i64 and then truncate to the correct register size. 3270 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3271 } else { 3272 if (CallConv == CallingConv::Fast) 3273 ComputeArgOffset(); 3274 3275 needsLoad = true; 3276 ArgSize = PtrByteSize; 3277 } 3278 if (CallConv != CallingConv::Fast || needsLoad) 3279 ArgOffset += 8; 3280 break; 3281 3282 case MVT::f32: 3283 case MVT::f64: 3284 // These can be scalar arguments or elements of a float array type 3285 // passed directly. The latter are used to implement ELFv2 homogenous 3286 // float aggregates. 3287 if (FPR_idx != Num_FPR_Regs) { 3288 unsigned VReg; 3289 3290 if (ObjectVT == MVT::f32) 3291 VReg = MF.addLiveIn(FPR[FPR_idx], 3292 Subtarget.hasP8Vector() 3293 ? &PPC::VSSRCRegClass 3294 : &PPC::F4RCRegClass); 3295 else 3296 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3297 ? &PPC::VSFRCRegClass 3298 : &PPC::F8RCRegClass); 3299 3300 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3301 ++FPR_idx; 3302 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3303 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3304 // once we support fp <-> gpr moves. 3305 3306 // This can only ever happen in the presence of f32 array types, 3307 // since otherwise we never run out of FPRs before running out 3308 // of GPRs. 3309 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3310 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3311 3312 if (ObjectVT == MVT::f32) { 3313 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3314 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3315 DAG.getConstant(32, dl, MVT::i32)); 3316 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3317 } 3318 3319 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3320 } else { 3321 if (CallConv == CallingConv::Fast) 3322 ComputeArgOffset(); 3323 3324 needsLoad = true; 3325 } 3326 3327 // When passing an array of floats, the array occupies consecutive 3328 // space in the argument area; only round up to the next doubleword 3329 // at the end of the array. Otherwise, each float takes 8 bytes. 3330 if (CallConv != CallingConv::Fast || needsLoad) { 3331 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3332 ArgOffset += ArgSize; 3333 if (Flags.isInConsecutiveRegsLast()) 3334 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3335 } 3336 break; 3337 case MVT::v4f32: 3338 case MVT::v4i32: 3339 case MVT::v8i16: 3340 case MVT::v16i8: 3341 case MVT::v2f64: 3342 case MVT::v2i64: 3343 case MVT::v1i128: 3344 if (!Subtarget.hasQPX()) { 3345 // These can be scalar arguments or elements of a vector array type 3346 // passed directly. The latter are used to implement ELFv2 homogenous 3347 // vector aggregates. 3348 if (VR_idx != Num_VR_Regs) { 3349 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3350 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3351 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3352 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3353 ++VR_idx; 3354 } else { 3355 if (CallConv == CallingConv::Fast) 3356 ComputeArgOffset(); 3357 3358 needsLoad = true; 3359 } 3360 if (CallConv != CallingConv::Fast || needsLoad) 3361 ArgOffset += 16; 3362 break; 3363 } // not QPX 3364 3365 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3366 "Invalid QPX parameter type"); 3367 /* fall through */ 3368 3369 case MVT::v4f64: 3370 case MVT::v4i1: 3371 // QPX vectors are treated like their scalar floating-point subregisters 3372 // (except that they're larger). 3373 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3374 if (QFPR_idx != Num_QFPR_Regs) { 3375 const TargetRegisterClass *RC; 3376 switch (ObjectVT.getSimpleVT().SimpleTy) { 3377 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3378 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3379 default: RC = &PPC::QBRCRegClass; break; 3380 } 3381 3382 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3383 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3384 ++QFPR_idx; 3385 } else { 3386 if (CallConv == CallingConv::Fast) 3387 ComputeArgOffset(); 3388 needsLoad = true; 3389 } 3390 if (CallConv != CallingConv::Fast || needsLoad) 3391 ArgOffset += Sz; 3392 break; 3393 } 3394 3395 // We need to load the argument to a virtual register if we determined 3396 // above that we ran out of physical registers of the appropriate type. 3397 if (needsLoad) { 3398 if (ObjSize < ArgSize && !isLittleEndian) 3399 CurArgOffset += ArgSize - ObjSize; 3400 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3401 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3402 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3403 false, false, false, 0); 3404 } 3405 3406 InVals.push_back(ArgVal); 3407 } 3408 3409 // Area that is at least reserved in the caller of this function. 3410 unsigned MinReservedArea; 3411 if (HasParameterArea) 3412 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3413 else 3414 MinReservedArea = LinkageSize; 3415 3416 // Set the size that is at least reserved in caller of this function. Tail 3417 // call optimized functions' reserved stack space needs to be aligned so that 3418 // taking the difference between two stack areas will result in an aligned 3419 // stack. 3420 MinReservedArea = 3421 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3422 FuncInfo->setMinReservedArea(MinReservedArea); 3423 3424 // If the function takes variable number of arguments, make a frame index for 3425 // the start of the first vararg value... for expansion of llvm.va_start. 3426 if (isVarArg) { 3427 int Depth = ArgOffset; 3428 3429 FuncInfo->setVarArgsFrameIndex( 3430 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3431 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3432 3433 // If this function is vararg, store any remaining integer argument regs 3434 // to their spots on the stack so that they may be loaded by dereferencing 3435 // the result of va_next. 3436 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3437 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3438 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3439 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3440 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3441 MachinePointerInfo(), false, false, 0); 3442 MemOps.push_back(Store); 3443 // Increment the address by four for the next argument to store 3444 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3445 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3446 } 3447 } 3448 3449 if (!MemOps.empty()) 3450 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3451 3452 return Chain; 3453 } 3454 3455 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3456 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3457 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3458 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3459 // TODO: add description of PPC stack frame format, or at least some docs. 3460 // 3461 MachineFunction &MF = DAG.getMachineFunction(); 3462 MachineFrameInfo *MFI = MF.getFrameInfo(); 3463 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3464 3465 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3466 bool isPPC64 = PtrVT == MVT::i64; 3467 // Potential tail calls could cause overwriting of argument stack slots. 3468 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3469 (CallConv == CallingConv::Fast)); 3470 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3471 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3472 unsigned ArgOffset = LinkageSize; 3473 // Area that is at least reserved in caller of this function. 3474 unsigned MinReservedArea = ArgOffset; 3475 3476 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3477 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3478 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3479 }; 3480 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3481 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3482 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3483 }; 3484 static const MCPhysReg VR[] = { 3485 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3486 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3487 }; 3488 3489 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3490 const unsigned Num_FPR_Regs = 13; 3491 const unsigned Num_VR_Regs = array_lengthof( VR); 3492 3493 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3494 3495 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3496 3497 // In 32-bit non-varargs functions, the stack space for vectors is after the 3498 // stack space for non-vectors. We do not use this space unless we have 3499 // too many vectors to fit in registers, something that only occurs in 3500 // constructed examples:), but we have to walk the arglist to figure 3501 // that out...for the pathological case, compute VecArgOffset as the 3502 // start of the vector parameter area. Computing VecArgOffset is the 3503 // entire point of the following loop. 3504 unsigned VecArgOffset = ArgOffset; 3505 if (!isVarArg && !isPPC64) { 3506 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3507 ++ArgNo) { 3508 EVT ObjectVT = Ins[ArgNo].VT; 3509 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3510 3511 if (Flags.isByVal()) { 3512 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3513 unsigned ObjSize = Flags.getByValSize(); 3514 unsigned ArgSize = 3515 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3516 VecArgOffset += ArgSize; 3517 continue; 3518 } 3519 3520 switch(ObjectVT.getSimpleVT().SimpleTy) { 3521 default: llvm_unreachable("Unhandled argument type!"); 3522 case MVT::i1: 3523 case MVT::i32: 3524 case MVT::f32: 3525 VecArgOffset += 4; 3526 break; 3527 case MVT::i64: // PPC64 3528 case MVT::f64: 3529 // FIXME: We are guaranteed to be !isPPC64 at this point. 3530 // Does MVT::i64 apply? 3531 VecArgOffset += 8; 3532 break; 3533 case MVT::v4f32: 3534 case MVT::v4i32: 3535 case MVT::v8i16: 3536 case MVT::v16i8: 3537 // Nothing to do, we're only looking at Nonvector args here. 3538 break; 3539 } 3540 } 3541 } 3542 // We've found where the vector parameter area in memory is. Skip the 3543 // first 12 parameters; these don't use that memory. 3544 VecArgOffset = ((VecArgOffset+15)/16)*16; 3545 VecArgOffset += 12*16; 3546 3547 // Add DAG nodes to load the arguments or copy them out of registers. On 3548 // entry to a function on PPC, the arguments start after the linkage area, 3549 // although the first ones are often in registers. 3550 3551 SmallVector<SDValue, 8> MemOps; 3552 unsigned nAltivecParamsAtEnd = 0; 3553 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3554 unsigned CurArgIdx = 0; 3555 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3556 SDValue ArgVal; 3557 bool needsLoad = false; 3558 EVT ObjectVT = Ins[ArgNo].VT; 3559 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3560 unsigned ArgSize = ObjSize; 3561 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3562 if (Ins[ArgNo].isOrigArg()) { 3563 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3564 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3565 } 3566 unsigned CurArgOffset = ArgOffset; 3567 3568 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3569 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3570 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3571 if (isVarArg || isPPC64) { 3572 MinReservedArea = ((MinReservedArea+15)/16)*16; 3573 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3574 Flags, 3575 PtrByteSize); 3576 } else nAltivecParamsAtEnd++; 3577 } else 3578 // Calculate min reserved area. 3579 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3580 Flags, 3581 PtrByteSize); 3582 3583 // FIXME the codegen can be much improved in some cases. 3584 // We do not have to keep everything in memory. 3585 if (Flags.isByVal()) { 3586 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3587 3588 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3589 ObjSize = Flags.getByValSize(); 3590 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3591 // Objects of size 1 and 2 are right justified, everything else is 3592 // left justified. This means the memory address is adjusted forwards. 3593 if (ObjSize==1 || ObjSize==2) { 3594 CurArgOffset = CurArgOffset + (4 - ObjSize); 3595 } 3596 // The value of the object is its address. 3597 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3598 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3599 InVals.push_back(FIN); 3600 if (ObjSize==1 || ObjSize==2) { 3601 if (GPR_idx != Num_GPR_Regs) { 3602 unsigned VReg; 3603 if (isPPC64) 3604 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3605 else 3606 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3607 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3608 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3609 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3610 MachinePointerInfo(&*FuncArg), 3611 ObjType, false, false, 0); 3612 MemOps.push_back(Store); 3613 ++GPR_idx; 3614 } 3615 3616 ArgOffset += PtrByteSize; 3617 3618 continue; 3619 } 3620 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3621 // Store whatever pieces of the object are in registers 3622 // to memory. ArgOffset will be the address of the beginning 3623 // of the object. 3624 if (GPR_idx != Num_GPR_Regs) { 3625 unsigned VReg; 3626 if (isPPC64) 3627 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3628 else 3629 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3630 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3631 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3632 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3633 SDValue Store = 3634 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3635 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3636 MemOps.push_back(Store); 3637 ++GPR_idx; 3638 ArgOffset += PtrByteSize; 3639 } else { 3640 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3641 break; 3642 } 3643 } 3644 continue; 3645 } 3646 3647 switch (ObjectVT.getSimpleVT().SimpleTy) { 3648 default: llvm_unreachable("Unhandled argument type!"); 3649 case MVT::i1: 3650 case MVT::i32: 3651 if (!isPPC64) { 3652 if (GPR_idx != Num_GPR_Regs) { 3653 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3654 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3655 3656 if (ObjectVT == MVT::i1) 3657 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3658 3659 ++GPR_idx; 3660 } else { 3661 needsLoad = true; 3662 ArgSize = PtrByteSize; 3663 } 3664 // All int arguments reserve stack space in the Darwin ABI. 3665 ArgOffset += PtrByteSize; 3666 break; 3667 } 3668 // FALLTHROUGH 3669 case MVT::i64: // PPC64 3670 if (GPR_idx != Num_GPR_Regs) { 3671 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3672 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3673 3674 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3675 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3676 // value to MVT::i64 and then truncate to the correct register size. 3677 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3678 3679 ++GPR_idx; 3680 } else { 3681 needsLoad = true; 3682 ArgSize = PtrByteSize; 3683 } 3684 // All int arguments reserve stack space in the Darwin ABI. 3685 ArgOffset += 8; 3686 break; 3687 3688 case MVT::f32: 3689 case MVT::f64: 3690 // Every 4 bytes of argument space consumes one of the GPRs available for 3691 // argument passing. 3692 if (GPR_idx != Num_GPR_Regs) { 3693 ++GPR_idx; 3694 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3695 ++GPR_idx; 3696 } 3697 if (FPR_idx != Num_FPR_Regs) { 3698 unsigned VReg; 3699 3700 if (ObjectVT == MVT::f32) 3701 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3702 else 3703 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3704 3705 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3706 ++FPR_idx; 3707 } else { 3708 needsLoad = true; 3709 } 3710 3711 // All FP arguments reserve stack space in the Darwin ABI. 3712 ArgOffset += isPPC64 ? 8 : ObjSize; 3713 break; 3714 case MVT::v4f32: 3715 case MVT::v4i32: 3716 case MVT::v8i16: 3717 case MVT::v16i8: 3718 // Note that vector arguments in registers don't reserve stack space, 3719 // except in varargs functions. 3720 if (VR_idx != Num_VR_Regs) { 3721 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3722 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3723 if (isVarArg) { 3724 while ((ArgOffset % 16) != 0) { 3725 ArgOffset += PtrByteSize; 3726 if (GPR_idx != Num_GPR_Regs) 3727 GPR_idx++; 3728 } 3729 ArgOffset += 16; 3730 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3731 } 3732 ++VR_idx; 3733 } else { 3734 if (!isVarArg && !isPPC64) { 3735 // Vectors go after all the nonvectors. 3736 CurArgOffset = VecArgOffset; 3737 VecArgOffset += 16; 3738 } else { 3739 // Vectors are aligned. 3740 ArgOffset = ((ArgOffset+15)/16)*16; 3741 CurArgOffset = ArgOffset; 3742 ArgOffset += 16; 3743 } 3744 needsLoad = true; 3745 } 3746 break; 3747 } 3748 3749 // We need to load the argument to a virtual register if we determined above 3750 // that we ran out of physical registers of the appropriate type. 3751 if (needsLoad) { 3752 int FI = MFI->CreateFixedObject(ObjSize, 3753 CurArgOffset + (ArgSize - ObjSize), 3754 isImmutable); 3755 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3756 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3757 false, false, false, 0); 3758 } 3759 3760 InVals.push_back(ArgVal); 3761 } 3762 3763 // Allow for Altivec parameters at the end, if needed. 3764 if (nAltivecParamsAtEnd) { 3765 MinReservedArea = ((MinReservedArea+15)/16)*16; 3766 MinReservedArea += 16*nAltivecParamsAtEnd; 3767 } 3768 3769 // Area that is at least reserved in the caller of this function. 3770 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3771 3772 // Set the size that is at least reserved in caller of this function. Tail 3773 // call optimized functions' reserved stack space needs to be aligned so that 3774 // taking the difference between two stack areas will result in an aligned 3775 // stack. 3776 MinReservedArea = 3777 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3778 FuncInfo->setMinReservedArea(MinReservedArea); 3779 3780 // If the function takes variable number of arguments, make a frame index for 3781 // the start of the first vararg value... for expansion of llvm.va_start. 3782 if (isVarArg) { 3783 int Depth = ArgOffset; 3784 3785 FuncInfo->setVarArgsFrameIndex( 3786 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3787 Depth, true)); 3788 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3789 3790 // If this function is vararg, store any remaining integer argument regs 3791 // to their spots on the stack so that they may be loaded by dereferencing 3792 // the result of va_next. 3793 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3794 unsigned VReg; 3795 3796 if (isPPC64) 3797 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3798 else 3799 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3800 3801 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3802 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3803 MachinePointerInfo(), false, false, 0); 3804 MemOps.push_back(Store); 3805 // Increment the address by four for the next argument to store 3806 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3807 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3808 } 3809 } 3810 3811 if (!MemOps.empty()) 3812 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3813 3814 return Chain; 3815 } 3816 3817 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3818 /// adjusted to accommodate the arguments for the tailcall. 3819 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3820 unsigned ParamSize) { 3821 3822 if (!isTailCall) return 0; 3823 3824 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3825 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3826 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3827 // Remember only if the new adjustement is bigger. 3828 if (SPDiff < FI->getTailCallSPDelta()) 3829 FI->setTailCallSPDelta(SPDiff); 3830 3831 return SPDiff; 3832 } 3833 3834 static bool isFunctionGlobalAddress(SDValue Callee); 3835 3836 static bool 3837 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3838 // If !G, Callee can be an external symbol. 3839 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3840 if (!G) return false; 3841 3842 const GlobalValue *GV = G->getGlobal(); 3843 3844 if (GV->isDeclaration()) return false; 3845 3846 switch(GV->getLinkage()) { 3847 default: llvm_unreachable("unknow linkage type"); 3848 case GlobalValue::AvailableExternallyLinkage: 3849 case GlobalValue::ExternalWeakLinkage: 3850 return false; 3851 3852 // Callee with weak linkage is allowed if it has hidden or protected 3853 // visibility 3854 case GlobalValue::LinkOnceAnyLinkage: 3855 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 3856 case GlobalValue::WeakAnyLinkage: 3857 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 3858 if (GV->hasDefaultVisibility()) 3859 return false; 3860 3861 case GlobalValue::ExternalLinkage: 3862 case GlobalValue::InternalLinkage: 3863 case GlobalValue::PrivateLinkage: 3864 break; 3865 } 3866 3867 // With '-fPIC', calling default visiblity function need insert 'nop' after 3868 // function call, no matter that function resides in same module or not, so 3869 // we treat it as in different module. 3870 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 3871 return false; 3872 3873 return true; 3874 } 3875 3876 static bool 3877 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 3878 const SmallVectorImpl<ISD::OutputArg> &Outs) { 3879 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 3880 3881 const unsigned PtrByteSize = 8; 3882 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3883 3884 static const MCPhysReg GPR[] = { 3885 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3886 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3887 }; 3888 static const MCPhysReg VR[] = { 3889 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3890 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3891 }; 3892 3893 const unsigned NumGPRs = array_lengthof(GPR); 3894 const unsigned NumFPRs = 13; 3895 const unsigned NumVRs = array_lengthof(VR); 3896 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 3897 3898 unsigned NumBytes = LinkageSize; 3899 unsigned AvailableFPRs = NumFPRs; 3900 unsigned AvailableVRs = NumVRs; 3901 3902 for (const ISD::OutputArg& Param : Outs) { 3903 if (Param.Flags.isNest()) continue; 3904 3905 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 3906 PtrByteSize, LinkageSize, ParamAreaSize, 3907 NumBytes, AvailableFPRs, AvailableVRs, 3908 Subtarget.hasQPX())) 3909 return true; 3910 } 3911 return false; 3912 } 3913 3914 static bool 3915 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 3916 if (CS->arg_size() != CallerFn->getArgumentList().size()) 3917 return false; 3918 3919 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 3920 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 3921 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 3922 3923 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 3924 const Value* CalleeArg = *CalleeArgIter; 3925 const Value* CallerArg = &(*CallerArgIter); 3926 if (CalleeArg == CallerArg) 3927 continue; 3928 3929 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 3930 // tail call @callee([4 x i64] undef, [4 x i64] %b) 3931 // } 3932 // 1st argument of callee is undef and has the same type as caller. 3933 if (CalleeArg->getType() == CallerArg->getType() && 3934 isa<UndefValue>(CalleeArg)) 3935 continue; 3936 3937 return false; 3938 } 3939 3940 return true; 3941 } 3942 3943 bool 3944 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 3945 SDValue Callee, 3946 CallingConv::ID CalleeCC, 3947 ImmutableCallSite *CS, 3948 bool isVarArg, 3949 const SmallVectorImpl<ISD::OutputArg> &Outs, 3950 const SmallVectorImpl<ISD::InputArg> &Ins, 3951 SelectionDAG& DAG) const { 3952 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 3953 3954 if (DisableSCO && !TailCallOpt) return false; 3955 3956 // Variadic argument functions are not supported. 3957 if (isVarArg) return false; 3958 3959 MachineFunction &MF = DAG.getMachineFunction(); 3960 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3961 3962 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 3963 // the same calling convention 3964 if (CallerCC != CalleeCC) return false; 3965 3966 // SCO support C calling convention 3967 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 3968 return false; 3969 3970 // Functions containing by val parameters are not supported. 3971 if (std::any_of(Ins.begin(), Ins.end(), 3972 [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); })) 3973 return false; 3974 3975 // No TCO/SCO on indirect call because Caller have to restore its TOC 3976 if (!isFunctionGlobalAddress(Callee) && 3977 !isa<ExternalSymbolSDNode>(Callee)) 3978 return false; 3979 3980 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 3981 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 3982 // module. 3983 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 3984 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 3985 return false; 3986 3987 // TCO allows altering callee ABI, so we don't have to check further. 3988 if (CalleeCC == CallingConv::Fast && TailCallOpt) 3989 return true; 3990 3991 if (DisableSCO) return false; 3992 3993 // If callee use the same argument list that caller is using, then we can 3994 // apply SCO on this case. If it is not, then we need to check if callee needs 3995 // stack for passing arguments. 3996 if (!hasSameArgumentList(MF.getFunction(), CS) && 3997 needStackSlotPassParameters(Subtarget, Outs)) { 3998 return false; 3999 } 4000 4001 return true; 4002 } 4003 4004 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4005 /// for tail call optimization. Targets which want to do tail call 4006 /// optimization should implement this function. 4007 bool 4008 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4009 CallingConv::ID CalleeCC, 4010 bool isVarArg, 4011 const SmallVectorImpl<ISD::InputArg> &Ins, 4012 SelectionDAG& DAG) const { 4013 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4014 return false; 4015 4016 // Variable argument functions are not supported. 4017 if (isVarArg) 4018 return false; 4019 4020 MachineFunction &MF = DAG.getMachineFunction(); 4021 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4022 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4023 // Functions containing by val parameters are not supported. 4024 for (unsigned i = 0; i != Ins.size(); i++) { 4025 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4026 if (Flags.isByVal()) return false; 4027 } 4028 4029 // Non-PIC/GOT tail calls are supported. 4030 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4031 return true; 4032 4033 // At the moment we can only do local tail calls (in same module, hidden 4034 // or protected) if we are generating PIC. 4035 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4036 return G->getGlobal()->hasHiddenVisibility() 4037 || G->getGlobal()->hasProtectedVisibility(); 4038 } 4039 4040 return false; 4041 } 4042 4043 /// isCallCompatibleAddress - Return the immediate to use if the specified 4044 /// 32-bit value is representable in the immediate field of a BxA instruction. 4045 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4046 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4047 if (!C) return nullptr; 4048 4049 int Addr = C->getZExtValue(); 4050 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4051 SignExtend32<26>(Addr) != Addr) 4052 return nullptr; // Top 6 bits have to be sext of immediate. 4053 4054 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 4055 DAG.getTargetLoweringInfo().getPointerTy( 4056 DAG.getDataLayout())).getNode(); 4057 } 4058 4059 namespace { 4060 4061 struct TailCallArgumentInfo { 4062 SDValue Arg; 4063 SDValue FrameIdxOp; 4064 int FrameIdx; 4065 4066 TailCallArgumentInfo() : FrameIdx(0) {} 4067 }; 4068 } 4069 4070 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4071 static void StoreTailCallArgumentsToStackSlot( 4072 SelectionDAG &DAG, SDValue Chain, 4073 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4074 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4075 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4076 SDValue Arg = TailCallArgs[i].Arg; 4077 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4078 int FI = TailCallArgs[i].FrameIdx; 4079 // Store relative to framepointer. 4080 MemOpChains.push_back(DAG.getStore( 4081 Chain, dl, Arg, FIN, 4082 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 4083 false, 0)); 4084 } 4085 } 4086 4087 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4088 /// the appropriate stack slot for the tail call optimized function call. 4089 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 4090 MachineFunction &MF, SDValue Chain, 4091 SDValue OldRetAddr, SDValue OldFP, 4092 int SPDiff, bool isPPC64, 4093 bool isDarwinABI, 4094 const SDLoc &dl) { 4095 if (SPDiff) { 4096 // Calculate the new stack slot for the return address. 4097 int SlotSize = isPPC64 ? 8 : 4; 4098 const PPCFrameLowering *FL = 4099 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 4100 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4101 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 4102 NewRetAddrLoc, true); 4103 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4104 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4105 Chain = DAG.getStore( 4106 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4107 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 4108 false, false, 0); 4109 4110 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4111 // slot as the FP is never overwritten. 4112 if (isDarwinABI) { 4113 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4114 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 4115 true); 4116 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4117 Chain = DAG.getStore( 4118 Chain, dl, OldFP, NewFramePtrIdx, 4119 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 4120 false, false, 0); 4121 } 4122 } 4123 return Chain; 4124 } 4125 4126 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4127 /// the position of the argument. 4128 static void 4129 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4130 SDValue Arg, int SPDiff, unsigned ArgOffset, 4131 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4132 int Offset = ArgOffset + SPDiff; 4133 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 4134 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 4135 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4136 SDValue FIN = DAG.getFrameIndex(FI, VT); 4137 TailCallArgumentInfo Info; 4138 Info.Arg = Arg; 4139 Info.FrameIdxOp = FIN; 4140 Info.FrameIdx = FI; 4141 TailCallArguments.push_back(Info); 4142 } 4143 4144 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4145 /// stack slot. Returns the chain as result and the loaded frame pointers in 4146 /// LROpOut/FPOpout. Used when tail calling. 4147 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4148 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4149 SDValue &FPOpOut, bool isDarwinABI, const SDLoc &dl) const { 4150 if (SPDiff) { 4151 // Load the LR and FP stack slot for later adjusting. 4152 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4153 LROpOut = getReturnAddrFrameIndex(DAG); 4154 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 4155 false, false, false, 0); 4156 Chain = SDValue(LROpOut.getNode(), 1); 4157 4158 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4159 // slot as the FP is never overwritten. 4160 if (isDarwinABI) { 4161 FPOpOut = getFramePointerFrameIndex(DAG); 4162 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4163 false, false, false, 0); 4164 Chain = SDValue(FPOpOut.getNode(), 1); 4165 } 4166 } 4167 return Chain; 4168 } 4169 4170 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4171 /// by "Src" to address "Dst" of size "Size". Alignment information is 4172 /// specified by the specific parameter attribute. The copy will be passed as 4173 /// a byval function parameter. 4174 /// Sometimes what we are copying is the end of a larger object, the part that 4175 /// does not fit in registers. 4176 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4177 SDValue Chain, ISD::ArgFlagsTy Flags, 4178 SelectionDAG &DAG, const SDLoc &dl) { 4179 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4180 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4181 false, false, false, MachinePointerInfo(), 4182 MachinePointerInfo()); 4183 } 4184 4185 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4186 /// tail calls. 4187 static void LowerMemOpCallTo( 4188 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4189 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4190 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4191 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4192 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4193 if (!isTailCall) { 4194 if (isVector) { 4195 SDValue StackPtr; 4196 if (isPPC64) 4197 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4198 else 4199 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4200 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4201 DAG.getConstant(ArgOffset, dl, PtrVT)); 4202 } 4203 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4204 MachinePointerInfo(), false, false, 0)); 4205 // Calculate and remember argument location. 4206 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4207 TailCallArguments); 4208 } 4209 4210 static void 4211 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4212 const SDLoc &dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4213 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4214 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4215 MachineFunction &MF = DAG.getMachineFunction(); 4216 4217 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4218 // might overwrite each other in case of tail call optimization. 4219 SmallVector<SDValue, 8> MemOpChains2; 4220 // Do not flag preceding copytoreg stuff together with the following stuff. 4221 InFlag = SDValue(); 4222 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4223 MemOpChains2, dl); 4224 if (!MemOpChains2.empty()) 4225 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4226 4227 // Store the return address to the appropriate stack slot. 4228 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4229 isPPC64, isDarwinABI, dl); 4230 4231 // Emit callseq_end just before tailcall node. 4232 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4233 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4234 InFlag = Chain.getValue(1); 4235 } 4236 4237 // Is this global address that of a function that can be called by name? (as 4238 // opposed to something that must hold a descriptor for an indirect call). 4239 static bool isFunctionGlobalAddress(SDValue Callee) { 4240 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4241 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4242 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4243 return false; 4244 4245 return G->getGlobal()->getValueType()->isFunctionTy(); 4246 } 4247 4248 return false; 4249 } 4250 4251 static unsigned 4252 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4253 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4254 bool IsPatchPoint, bool hasNest, 4255 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4256 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4257 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4258 4259 bool isPPC64 = Subtarget.isPPC64(); 4260 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4261 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4262 4263 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4264 NodeTys.push_back(MVT::Other); // Returns a chain 4265 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4266 4267 unsigned CallOpc = PPCISD::CALL; 4268 4269 bool needIndirectCall = true; 4270 if (!isSVR4ABI || !isPPC64) 4271 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4272 // If this is an absolute destination address, use the munged value. 4273 Callee = SDValue(Dest, 0); 4274 needIndirectCall = false; 4275 } 4276 4277 // PC-relative references to external symbols should go through $stub, unless 4278 // we're building with the leopard linker or later, which automatically 4279 // synthesizes these stubs. 4280 const TargetMachine &TM = DAG.getTarget(); 4281 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4282 const GlobalValue *GV = nullptr; 4283 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4284 GV = G->getGlobal(); 4285 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4286 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4287 4288 if (isFunctionGlobalAddress(Callee)) { 4289 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4290 // A call to a TLS address is actually an indirect call to a 4291 // thread-specific pointer. 4292 unsigned OpFlags = 0; 4293 if (UsePlt) 4294 OpFlags = PPCII::MO_PLT; 4295 4296 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4297 // every direct call is) turn it into a TargetGlobalAddress / 4298 // TargetExternalSymbol node so that legalize doesn't hack it. 4299 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4300 Callee.getValueType(), 0, OpFlags); 4301 needIndirectCall = false; 4302 } 4303 4304 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4305 unsigned char OpFlags = 0; 4306 4307 if (UsePlt) 4308 OpFlags = PPCII::MO_PLT; 4309 4310 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4311 OpFlags); 4312 needIndirectCall = false; 4313 } 4314 4315 if (IsPatchPoint) { 4316 // We'll form an invalid direct call when lowering a patchpoint; the full 4317 // sequence for an indirect call is complicated, and many of the 4318 // instructions introduced might have side effects (and, thus, can't be 4319 // removed later). The call itself will be removed as soon as the 4320 // argument/return lowering is complete, so the fact that it has the wrong 4321 // kind of operands should not really matter. 4322 needIndirectCall = false; 4323 } 4324 4325 if (needIndirectCall) { 4326 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4327 // to do the call, we can't use PPCISD::CALL. 4328 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4329 4330 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4331 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4332 // entry point, but to the function descriptor (the function entry point 4333 // address is part of the function descriptor though). 4334 // The function descriptor is a three doubleword structure with the 4335 // following fields: function entry point, TOC base address and 4336 // environment pointer. 4337 // Thus for a call through a function pointer, the following actions need 4338 // to be performed: 4339 // 1. Save the TOC of the caller in the TOC save area of its stack 4340 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4341 // 2. Load the address of the function entry point from the function 4342 // descriptor. 4343 // 3. Load the TOC of the callee from the function descriptor into r2. 4344 // 4. Load the environment pointer from the function descriptor into 4345 // r11. 4346 // 5. Branch to the function entry point address. 4347 // 6. On return of the callee, the TOC of the caller needs to be 4348 // restored (this is done in FinishCall()). 4349 // 4350 // The loads are scheduled at the beginning of the call sequence, and the 4351 // register copies are flagged together to ensure that no other 4352 // operations can be scheduled in between. E.g. without flagging the 4353 // copies together, a TOC access in the caller could be scheduled between 4354 // the assignment of the callee TOC and the branch to the callee, which 4355 // results in the TOC access going through the TOC of the callee instead 4356 // of going through the TOC of the caller, which leads to incorrect code. 4357 4358 // Load the address of the function entry point from the function 4359 // descriptor. 4360 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4361 if (LDChain.getValueType() == MVT::Glue) 4362 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4363 4364 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4365 4366 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4367 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4368 false, false, LoadsInv, 8); 4369 4370 // Load environment pointer into r11. 4371 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4372 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4373 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4374 MPI.getWithOffset(16), false, false, 4375 LoadsInv, 8); 4376 4377 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4378 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4379 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4380 MPI.getWithOffset(8), false, false, 4381 LoadsInv, 8); 4382 4383 setUsesTOCBasePtr(DAG); 4384 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4385 InFlag); 4386 Chain = TOCVal.getValue(0); 4387 InFlag = TOCVal.getValue(1); 4388 4389 // If the function call has an explicit 'nest' parameter, it takes the 4390 // place of the environment pointer. 4391 if (!hasNest) { 4392 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4393 InFlag); 4394 4395 Chain = EnvVal.getValue(0); 4396 InFlag = EnvVal.getValue(1); 4397 } 4398 4399 MTCTROps[0] = Chain; 4400 MTCTROps[1] = LoadFuncPtr; 4401 MTCTROps[2] = InFlag; 4402 } 4403 4404 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4405 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4406 InFlag = Chain.getValue(1); 4407 4408 NodeTys.clear(); 4409 NodeTys.push_back(MVT::Other); 4410 NodeTys.push_back(MVT::Glue); 4411 Ops.push_back(Chain); 4412 CallOpc = PPCISD::BCTRL; 4413 Callee.setNode(nullptr); 4414 // Add use of X11 (holding environment pointer) 4415 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4416 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4417 // Add CTR register as callee so a bctr can be emitted later. 4418 if (isTailCall) 4419 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4420 } 4421 4422 // If this is a direct call, pass the chain and the callee. 4423 if (Callee.getNode()) { 4424 Ops.push_back(Chain); 4425 Ops.push_back(Callee); 4426 } 4427 // If this is a tail call add stack pointer delta. 4428 if (isTailCall) 4429 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4430 4431 // Add argument registers to the end of the list so that they are known live 4432 // into the call. 4433 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4434 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4435 RegsToPass[i].second.getValueType())); 4436 4437 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4438 // into the call. 4439 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4440 setUsesTOCBasePtr(DAG); 4441 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4442 } 4443 4444 return CallOpc; 4445 } 4446 4447 static 4448 bool isLocalCall(const SDValue &Callee) 4449 { 4450 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4451 return G->getGlobal()->isStrongDefinitionForLinker(); 4452 return false; 4453 } 4454 4455 SDValue PPCTargetLowering::LowerCallResult( 4456 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4457 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4458 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4459 4460 SmallVector<CCValAssign, 16> RVLocs; 4461 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4462 *DAG.getContext()); 4463 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4464 4465 // Copy all of the result registers out of their specified physreg. 4466 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4467 CCValAssign &VA = RVLocs[i]; 4468 assert(VA.isRegLoc() && "Can only return in registers!"); 4469 4470 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4471 VA.getLocReg(), VA.getLocVT(), InFlag); 4472 Chain = Val.getValue(1); 4473 InFlag = Val.getValue(2); 4474 4475 switch (VA.getLocInfo()) { 4476 default: llvm_unreachable("Unknown loc info!"); 4477 case CCValAssign::Full: break; 4478 case CCValAssign::AExt: 4479 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4480 break; 4481 case CCValAssign::ZExt: 4482 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4483 DAG.getValueType(VA.getValVT())); 4484 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4485 break; 4486 case CCValAssign::SExt: 4487 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4488 DAG.getValueType(VA.getValVT())); 4489 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4490 break; 4491 } 4492 4493 InVals.push_back(Val); 4494 } 4495 4496 return Chain; 4497 } 4498 4499 SDValue PPCTargetLowering::FinishCall( 4500 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4501 bool IsPatchPoint, bool hasNest, SelectionDAG &DAG, 4502 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4503 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4504 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4505 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4506 4507 std::vector<EVT> NodeTys; 4508 SmallVector<SDValue, 8> Ops; 4509 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4510 SPDiff, isTailCall, IsPatchPoint, hasNest, 4511 RegsToPass, Ops, NodeTys, CS, Subtarget); 4512 4513 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4514 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4515 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4516 4517 // When performing tail call optimization the callee pops its arguments off 4518 // the stack. Account for this here so these bytes can be pushed back on in 4519 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4520 int BytesCalleePops = 4521 (CallConv == CallingConv::Fast && 4522 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4523 4524 // Add a register mask operand representing the call-preserved registers. 4525 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4526 const uint32_t *Mask = 4527 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4528 assert(Mask && "Missing call preserved mask for calling convention"); 4529 Ops.push_back(DAG.getRegisterMask(Mask)); 4530 4531 if (InFlag.getNode()) 4532 Ops.push_back(InFlag); 4533 4534 // Emit tail call. 4535 if (isTailCall) { 4536 assert(((Callee.getOpcode() == ISD::Register && 4537 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4538 Callee.getOpcode() == ISD::TargetExternalSymbol || 4539 Callee.getOpcode() == ISD::TargetGlobalAddress || 4540 isa<ConstantSDNode>(Callee)) && 4541 "Expecting an global address, external symbol, absolute value or register"); 4542 4543 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4544 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4545 } 4546 4547 // Add a NOP immediately after the branch instruction when using the 64-bit 4548 // SVR4 ABI. At link time, if caller and callee are in a different module and 4549 // thus have a different TOC, the call will be replaced with a call to a stub 4550 // function which saves the current TOC, loads the TOC of the callee and 4551 // branches to the callee. The NOP will be replaced with a load instruction 4552 // which restores the TOC of the caller from the TOC save slot of the current 4553 // stack frame. If caller and callee belong to the same module (and have the 4554 // same TOC), the NOP will remain unchanged. 4555 4556 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4557 !IsPatchPoint) { 4558 if (CallOpc == PPCISD::BCTRL) { 4559 // This is a call through a function pointer. 4560 // Restore the caller TOC from the save area into R2. 4561 // See PrepareCall() for more information about calls through function 4562 // pointers in the 64-bit SVR4 ABI. 4563 // We are using a target-specific load with r2 hard coded, because the 4564 // result of a target-independent load would never go directly into r2, 4565 // since r2 is a reserved register (which prevents the register allocator 4566 // from allocating it), resulting in an additional register being 4567 // allocated and an unnecessary move instruction being generated. 4568 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4569 4570 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4571 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4572 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4573 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4574 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4575 4576 // The address needs to go after the chain input but before the flag (or 4577 // any other variadic arguments). 4578 Ops.insert(std::next(Ops.begin()), AddTOC); 4579 } else if ((CallOpc == PPCISD::CALL) && 4580 (!isLocalCall(Callee) || 4581 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4582 // Otherwise insert NOP for non-local calls. 4583 CallOpc = PPCISD::CALL_NOP; 4584 } 4585 4586 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4587 InFlag = Chain.getValue(1); 4588 4589 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4590 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4591 InFlag, dl); 4592 if (!Ins.empty()) 4593 InFlag = Chain.getValue(1); 4594 4595 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4596 Ins, dl, DAG, InVals); 4597 } 4598 4599 SDValue 4600 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4601 SmallVectorImpl<SDValue> &InVals) const { 4602 SelectionDAG &DAG = CLI.DAG; 4603 SDLoc &dl = CLI.DL; 4604 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4605 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4606 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4607 SDValue Chain = CLI.Chain; 4608 SDValue Callee = CLI.Callee; 4609 bool &isTailCall = CLI.IsTailCall; 4610 CallingConv::ID CallConv = CLI.CallConv; 4611 bool isVarArg = CLI.IsVarArg; 4612 bool IsPatchPoint = CLI.IsPatchPoint; 4613 ImmutableCallSite *CS = CLI.CS; 4614 4615 if (isTailCall) { 4616 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4617 isTailCall = 4618 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4619 isVarArg, Outs, Ins, DAG); 4620 else 4621 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4622 Ins, DAG); 4623 if (isTailCall) { 4624 ++NumTailCalls; 4625 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4626 ++NumSiblingCalls; 4627 4628 assert(isa<GlobalAddressSDNode>(Callee) && 4629 "Callee should be an llvm::Function object."); 4630 DEBUG( 4631 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4632 const unsigned Width = 80 - strlen("TCO caller: ") 4633 - strlen(", callee linkage: 0, 0"); 4634 dbgs() << "TCO caller: " 4635 << left_justify(DAG.getMachineFunction().getName(), Width) 4636 << ", callee linkage: " 4637 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4638 ); 4639 } 4640 } 4641 4642 if (!isTailCall && CS && CS->isMustTailCall()) 4643 report_fatal_error("failed to perform tail call elimination on a call " 4644 "site marked musttail"); 4645 4646 if (Subtarget.isSVR4ABI()) { 4647 if (Subtarget.isPPC64()) 4648 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4649 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4650 dl, DAG, InVals, CS); 4651 else 4652 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4653 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4654 dl, DAG, InVals, CS); 4655 } 4656 4657 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4658 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4659 dl, DAG, InVals, CS); 4660 } 4661 4662 SDValue PPCTargetLowering::LowerCall_32SVR4( 4663 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4664 bool isTailCall, bool IsPatchPoint, 4665 const SmallVectorImpl<ISD::OutputArg> &Outs, 4666 const SmallVectorImpl<SDValue> &OutVals, 4667 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4668 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4669 ImmutableCallSite *CS) const { 4670 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4671 // of the 32-bit SVR4 ABI stack frame layout. 4672 4673 assert((CallConv == CallingConv::C || 4674 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4675 4676 unsigned PtrByteSize = 4; 4677 4678 MachineFunction &MF = DAG.getMachineFunction(); 4679 4680 // Mark this function as potentially containing a function that contains a 4681 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4682 // and restoring the callers stack pointer in this functions epilog. This is 4683 // done because by tail calling the called function might overwrite the value 4684 // in this function's (MF) stack pointer stack slot 0(SP). 4685 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4686 CallConv == CallingConv::Fast) 4687 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4688 4689 // Count how many bytes are to be pushed on the stack, including the linkage 4690 // area, parameter list area and the part of the local variable space which 4691 // contains copies of aggregates which are passed by value. 4692 4693 // Assign locations to all of the outgoing arguments. 4694 SmallVector<CCValAssign, 16> ArgLocs; 4695 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4696 *DAG.getContext()); 4697 4698 // Reserve space for the linkage area on the stack. 4699 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4700 PtrByteSize); 4701 if (Subtarget.useSoftFloat()) 4702 CCInfo.PreAnalyzeCallOperands(Outs); 4703 4704 if (isVarArg) { 4705 // Handle fixed and variable vector arguments differently. 4706 // Fixed vector arguments go into registers as long as registers are 4707 // available. Variable vector arguments always go into memory. 4708 unsigned NumArgs = Outs.size(); 4709 4710 for (unsigned i = 0; i != NumArgs; ++i) { 4711 MVT ArgVT = Outs[i].VT; 4712 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4713 bool Result; 4714 4715 if (Outs[i].IsFixed) { 4716 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4717 CCInfo); 4718 } else { 4719 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4720 ArgFlags, CCInfo); 4721 } 4722 4723 if (Result) { 4724 #ifndef NDEBUG 4725 errs() << "Call operand #" << i << " has unhandled type " 4726 << EVT(ArgVT).getEVTString() << "\n"; 4727 #endif 4728 llvm_unreachable(nullptr); 4729 } 4730 } 4731 } else { 4732 // All arguments are treated the same. 4733 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4734 } 4735 CCInfo.clearWasPPCF128(); 4736 4737 // Assign locations to all of the outgoing aggregate by value arguments. 4738 SmallVector<CCValAssign, 16> ByValArgLocs; 4739 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4740 ByValArgLocs, *DAG.getContext()); 4741 4742 // Reserve stack space for the allocations in CCInfo. 4743 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4744 4745 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4746 4747 // Size of the linkage area, parameter list area and the part of the local 4748 // space variable where copies of aggregates which are passed by value are 4749 // stored. 4750 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4751 4752 // Calculate by how many bytes the stack has to be adjusted in case of tail 4753 // call optimization. 4754 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4755 4756 // Adjust the stack pointer for the new arguments... 4757 // These operations are automatically eliminated by the prolog/epilog pass 4758 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4759 dl); 4760 SDValue CallSeqStart = Chain; 4761 4762 // Load the return address and frame pointer so it can be moved somewhere else 4763 // later. 4764 SDValue LROp, FPOp; 4765 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4766 dl); 4767 4768 // Set up a copy of the stack pointer for use loading and storing any 4769 // arguments that may not fit in the registers available for argument 4770 // passing. 4771 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4772 4773 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4774 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4775 SmallVector<SDValue, 8> MemOpChains; 4776 4777 bool seenFloatArg = false; 4778 // Walk the register/memloc assignments, inserting copies/loads. 4779 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4780 i != e; 4781 ++i) { 4782 CCValAssign &VA = ArgLocs[i]; 4783 SDValue Arg = OutVals[i]; 4784 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4785 4786 if (Flags.isByVal()) { 4787 // Argument is an aggregate which is passed by value, thus we need to 4788 // create a copy of it in the local variable space of the current stack 4789 // frame (which is the stack frame of the caller) and pass the address of 4790 // this copy to the callee. 4791 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4792 CCValAssign &ByValVA = ByValArgLocs[j++]; 4793 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4794 4795 // Memory reserved in the local variable space of the callers stack frame. 4796 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4797 4798 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4799 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4800 StackPtr, PtrOff); 4801 4802 // Create a copy of the argument in the local area of the current 4803 // stack frame. 4804 SDValue MemcpyCall = 4805 CreateCopyOfByValArgument(Arg, PtrOff, 4806 CallSeqStart.getNode()->getOperand(0), 4807 Flags, DAG, dl); 4808 4809 // This must go outside the CALLSEQ_START..END. 4810 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4811 CallSeqStart.getNode()->getOperand(1), 4812 SDLoc(MemcpyCall)); 4813 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4814 NewCallSeqStart.getNode()); 4815 Chain = CallSeqStart = NewCallSeqStart; 4816 4817 // Pass the address of the aggregate copy on the stack either in a 4818 // physical register or in the parameter list area of the current stack 4819 // frame to the callee. 4820 Arg = PtrOff; 4821 } 4822 4823 if (VA.isRegLoc()) { 4824 if (Arg.getValueType() == MVT::i1) 4825 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4826 4827 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4828 // Put argument in a physical register. 4829 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4830 } else { 4831 // Put argument in the parameter list area of the current stack frame. 4832 assert(VA.isMemLoc()); 4833 unsigned LocMemOffset = VA.getLocMemOffset(); 4834 4835 if (!isTailCall) { 4836 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4837 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4838 StackPtr, PtrOff); 4839 4840 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4841 MachinePointerInfo(), 4842 false, false, 0)); 4843 } else { 4844 // Calculate and remember argument location. 4845 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4846 TailCallArguments); 4847 } 4848 } 4849 } 4850 4851 if (!MemOpChains.empty()) 4852 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4853 4854 // Build a sequence of copy-to-reg nodes chained together with token chain 4855 // and flag operands which copy the outgoing args into the appropriate regs. 4856 SDValue InFlag; 4857 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4858 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4859 RegsToPass[i].second, InFlag); 4860 InFlag = Chain.getValue(1); 4861 } 4862 4863 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4864 // registers. 4865 if (isVarArg) { 4866 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4867 SDValue Ops[] = { Chain, InFlag }; 4868 4869 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4870 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4871 4872 InFlag = Chain.getValue(1); 4873 } 4874 4875 if (isTailCall) 4876 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4877 false, TailCallArguments); 4878 4879 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4880 /* unused except on PPC64 ELFv1 */ false, DAG, 4881 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4882 NumBytes, Ins, InVals, CS); 4883 } 4884 4885 // Copy an argument into memory, being careful to do this outside the 4886 // call sequence for the call to which the argument belongs. 4887 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 4888 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 4889 SelectionDAG &DAG, const SDLoc &dl) const { 4890 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4891 CallSeqStart.getNode()->getOperand(0), 4892 Flags, DAG, dl); 4893 // The MEMCPY must go outside the CALLSEQ_START..END. 4894 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4895 CallSeqStart.getNode()->getOperand(1), 4896 SDLoc(MemcpyCall)); 4897 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4898 NewCallSeqStart.getNode()); 4899 return NewCallSeqStart; 4900 } 4901 4902 SDValue PPCTargetLowering::LowerCall_64SVR4( 4903 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4904 bool isTailCall, bool IsPatchPoint, 4905 const SmallVectorImpl<ISD::OutputArg> &Outs, 4906 const SmallVectorImpl<SDValue> &OutVals, 4907 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4908 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4909 ImmutableCallSite *CS) const { 4910 4911 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4912 bool isLittleEndian = Subtarget.isLittleEndian(); 4913 unsigned NumOps = Outs.size(); 4914 bool hasNest = false; 4915 bool IsSibCall = false; 4916 4917 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4918 unsigned PtrByteSize = 8; 4919 4920 MachineFunction &MF = DAG.getMachineFunction(); 4921 4922 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 4923 IsSibCall = true; 4924 4925 // Mark this function as potentially containing a function that contains a 4926 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4927 // and restoring the callers stack pointer in this functions epilog. This is 4928 // done because by tail calling the called function might overwrite the value 4929 // in this function's (MF) stack pointer stack slot 0(SP). 4930 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4931 CallConv == CallingConv::Fast) 4932 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4933 4934 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4935 "fastcc not supported on varargs functions"); 4936 4937 // Count how many bytes are to be pushed on the stack, including the linkage 4938 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4939 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4940 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4941 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4942 unsigned NumBytes = LinkageSize; 4943 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4944 unsigned &QFPR_idx = FPR_idx; 4945 4946 static const MCPhysReg GPR[] = { 4947 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4948 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4949 }; 4950 static const MCPhysReg VR[] = { 4951 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4952 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4953 }; 4954 static const MCPhysReg VSRH[] = { 4955 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4956 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4957 }; 4958 4959 const unsigned NumGPRs = array_lengthof(GPR); 4960 const unsigned NumFPRs = 13; 4961 const unsigned NumVRs = array_lengthof(VR); 4962 const unsigned NumQFPRs = NumFPRs; 4963 4964 // When using the fast calling convention, we don't provide backing for 4965 // arguments that will be in registers. 4966 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4967 4968 // Add up all the space actually used. 4969 for (unsigned i = 0; i != NumOps; ++i) { 4970 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4971 EVT ArgVT = Outs[i].VT; 4972 EVT OrigVT = Outs[i].ArgVT; 4973 4974 if (Flags.isNest()) 4975 continue; 4976 4977 if (CallConv == CallingConv::Fast) { 4978 if (Flags.isByVal()) 4979 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4980 else 4981 switch (ArgVT.getSimpleVT().SimpleTy) { 4982 default: llvm_unreachable("Unexpected ValueType for argument!"); 4983 case MVT::i1: 4984 case MVT::i32: 4985 case MVT::i64: 4986 if (++NumGPRsUsed <= NumGPRs) 4987 continue; 4988 break; 4989 case MVT::v4i32: 4990 case MVT::v8i16: 4991 case MVT::v16i8: 4992 case MVT::v2f64: 4993 case MVT::v2i64: 4994 case MVT::v1i128: 4995 if (++NumVRsUsed <= NumVRs) 4996 continue; 4997 break; 4998 case MVT::v4f32: 4999 // When using QPX, this is handled like a FP register, otherwise, it 5000 // is an Altivec register. 5001 if (Subtarget.hasQPX()) { 5002 if (++NumFPRsUsed <= NumFPRs) 5003 continue; 5004 } else { 5005 if (++NumVRsUsed <= NumVRs) 5006 continue; 5007 } 5008 break; 5009 case MVT::f32: 5010 case MVT::f64: 5011 case MVT::v4f64: // QPX 5012 case MVT::v4i1: // QPX 5013 if (++NumFPRsUsed <= NumFPRs) 5014 continue; 5015 break; 5016 } 5017 } 5018 5019 /* Respect alignment of argument on the stack. */ 5020 unsigned Align = 5021 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5022 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5023 5024 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5025 if (Flags.isInConsecutiveRegsLast()) 5026 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5027 } 5028 5029 unsigned NumBytesActuallyUsed = NumBytes; 5030 5031 // The prolog code of the callee may store up to 8 GPR argument registers to 5032 // the stack, allowing va_start to index over them in memory if its varargs. 5033 // Because we cannot tell if this is needed on the caller side, we have to 5034 // conservatively assume that it is needed. As such, make sure we have at 5035 // least enough stack space for the caller to store the 8 GPRs. 5036 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5037 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5038 5039 // Tail call needs the stack to be aligned. 5040 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5041 CallConv == CallingConv::Fast) 5042 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5043 5044 int SPDiff = 0; 5045 5046 // Calculate by how many bytes the stack has to be adjusted in case of tail 5047 // call optimization. 5048 if (!IsSibCall) 5049 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5050 5051 // To protect arguments on the stack from being clobbered in a tail call, 5052 // force all the loads to happen before doing any other lowering. 5053 if (isTailCall) 5054 Chain = DAG.getStackArgumentTokenFactor(Chain); 5055 5056 // Adjust the stack pointer for the new arguments... 5057 // These operations are automatically eliminated by the prolog/epilog pass 5058 if (!IsSibCall) 5059 Chain = DAG.getCALLSEQ_START(Chain, 5060 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5061 SDValue CallSeqStart = Chain; 5062 5063 // Load the return address and frame pointer so it can be move somewhere else 5064 // later. 5065 SDValue LROp, FPOp; 5066 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5067 dl); 5068 5069 // Set up a copy of the stack pointer for use loading and storing any 5070 // arguments that may not fit in the registers available for argument 5071 // passing. 5072 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5073 5074 // Figure out which arguments are going to go in registers, and which in 5075 // memory. Also, if this is a vararg function, floating point operations 5076 // must be stored to our stack, and loaded into integer regs as well, if 5077 // any integer regs are available for argument passing. 5078 unsigned ArgOffset = LinkageSize; 5079 5080 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5081 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5082 5083 SmallVector<SDValue, 8> MemOpChains; 5084 for (unsigned i = 0; i != NumOps; ++i) { 5085 SDValue Arg = OutVals[i]; 5086 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5087 EVT ArgVT = Outs[i].VT; 5088 EVT OrigVT = Outs[i].ArgVT; 5089 5090 // PtrOff will be used to store the current argument to the stack if a 5091 // register cannot be found for it. 5092 SDValue PtrOff; 5093 5094 // We re-align the argument offset for each argument, except when using the 5095 // fast calling convention, when we need to make sure we do that only when 5096 // we'll actually use a stack slot. 5097 auto ComputePtrOff = [&]() { 5098 /* Respect alignment of argument on the stack. */ 5099 unsigned Align = 5100 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5101 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5102 5103 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5104 5105 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5106 }; 5107 5108 if (CallConv != CallingConv::Fast) { 5109 ComputePtrOff(); 5110 5111 /* Compute GPR index associated with argument offset. */ 5112 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5113 GPR_idx = std::min(GPR_idx, NumGPRs); 5114 } 5115 5116 // Promote integers to 64-bit values. 5117 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5118 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5119 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5120 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5121 } 5122 5123 // FIXME memcpy is used way more than necessary. Correctness first. 5124 // Note: "by value" is code for passing a structure by value, not 5125 // basic types. 5126 if (Flags.isByVal()) { 5127 // Note: Size includes alignment padding, so 5128 // struct x { short a; char b; } 5129 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5130 // These are the proper values we need for right-justifying the 5131 // aggregate in a parameter register. 5132 unsigned Size = Flags.getByValSize(); 5133 5134 // An empty aggregate parameter takes up no storage and no 5135 // registers. 5136 if (Size == 0) 5137 continue; 5138 5139 if (CallConv == CallingConv::Fast) 5140 ComputePtrOff(); 5141 5142 // All aggregates smaller than 8 bytes must be passed right-justified. 5143 if (Size==1 || Size==2 || Size==4) { 5144 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5145 if (GPR_idx != NumGPRs) { 5146 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5147 MachinePointerInfo(), VT, 5148 false, false, false, 0); 5149 MemOpChains.push_back(Load.getValue(1)); 5150 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5151 5152 ArgOffset += PtrByteSize; 5153 continue; 5154 } 5155 } 5156 5157 if (GPR_idx == NumGPRs && Size < 8) { 5158 SDValue AddPtr = PtrOff; 5159 if (!isLittleEndian) { 5160 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5161 PtrOff.getValueType()); 5162 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5163 } 5164 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5165 CallSeqStart, 5166 Flags, DAG, dl); 5167 ArgOffset += PtrByteSize; 5168 continue; 5169 } 5170 // Copy entire object into memory. There are cases where gcc-generated 5171 // code assumes it is there, even if it could be put entirely into 5172 // registers. (This is not what the doc says.) 5173 5174 // FIXME: The above statement is likely due to a misunderstanding of the 5175 // documents. All arguments must be copied into the parameter area BY 5176 // THE CALLEE in the event that the callee takes the address of any 5177 // formal argument. That has not yet been implemented. However, it is 5178 // reasonable to use the stack area as a staging area for the register 5179 // load. 5180 5181 // Skip this for small aggregates, as we will use the same slot for a 5182 // right-justified copy, below. 5183 if (Size >= 8) 5184 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5185 CallSeqStart, 5186 Flags, DAG, dl); 5187 5188 // When a register is available, pass a small aggregate right-justified. 5189 if (Size < 8 && GPR_idx != NumGPRs) { 5190 // The easiest way to get this right-justified in a register 5191 // is to copy the structure into the rightmost portion of a 5192 // local variable slot, then load the whole slot into the 5193 // register. 5194 // FIXME: The memcpy seems to produce pretty awful code for 5195 // small aggregates, particularly for packed ones. 5196 // FIXME: It would be preferable to use the slot in the 5197 // parameter save area instead of a new local variable. 5198 SDValue AddPtr = PtrOff; 5199 if (!isLittleEndian) { 5200 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5201 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5202 } 5203 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5204 CallSeqStart, 5205 Flags, DAG, dl); 5206 5207 // Load the slot into the register. 5208 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5209 MachinePointerInfo(), 5210 false, false, false, 0); 5211 MemOpChains.push_back(Load.getValue(1)); 5212 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5213 5214 // Done with this argument. 5215 ArgOffset += PtrByteSize; 5216 continue; 5217 } 5218 5219 // For aggregates larger than PtrByteSize, copy the pieces of the 5220 // object that fit into registers from the parameter save area. 5221 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5222 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5223 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5224 if (GPR_idx != NumGPRs) { 5225 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5226 MachinePointerInfo(), 5227 false, false, false, 0); 5228 MemOpChains.push_back(Load.getValue(1)); 5229 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5230 ArgOffset += PtrByteSize; 5231 } else { 5232 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5233 break; 5234 } 5235 } 5236 continue; 5237 } 5238 5239 switch (Arg.getSimpleValueType().SimpleTy) { 5240 default: llvm_unreachable("Unexpected ValueType for argument!"); 5241 case MVT::i1: 5242 case MVT::i32: 5243 case MVT::i64: 5244 if (Flags.isNest()) { 5245 // The 'nest' parameter, if any, is passed in R11. 5246 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5247 hasNest = true; 5248 break; 5249 } 5250 5251 // These can be scalar arguments or elements of an integer array type 5252 // passed directly. Clang may use those instead of "byval" aggregate 5253 // types to avoid forcing arguments to memory unnecessarily. 5254 if (GPR_idx != NumGPRs) { 5255 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5256 } else { 5257 if (CallConv == CallingConv::Fast) 5258 ComputePtrOff(); 5259 5260 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5261 true, isTailCall, false, MemOpChains, 5262 TailCallArguments, dl); 5263 if (CallConv == CallingConv::Fast) 5264 ArgOffset += PtrByteSize; 5265 } 5266 if (CallConv != CallingConv::Fast) 5267 ArgOffset += PtrByteSize; 5268 break; 5269 case MVT::f32: 5270 case MVT::f64: { 5271 // These can be scalar arguments or elements of a float array type 5272 // passed directly. The latter are used to implement ELFv2 homogenous 5273 // float aggregates. 5274 5275 // Named arguments go into FPRs first, and once they overflow, the 5276 // remaining arguments go into GPRs and then the parameter save area. 5277 // Unnamed arguments for vararg functions always go to GPRs and 5278 // then the parameter save area. For now, put all arguments to vararg 5279 // routines always in both locations (FPR *and* GPR or stack slot). 5280 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5281 bool NeededLoad = false; 5282 5283 // First load the argument into the next available FPR. 5284 if (FPR_idx != NumFPRs) 5285 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5286 5287 // Next, load the argument into GPR or stack slot if needed. 5288 if (!NeedGPROrStack) 5289 ; 5290 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5291 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5292 // once we support fp <-> gpr moves. 5293 5294 // In the non-vararg case, this can only ever happen in the 5295 // presence of f32 array types, since otherwise we never run 5296 // out of FPRs before running out of GPRs. 5297 SDValue ArgVal; 5298 5299 // Double values are always passed in a single GPR. 5300 if (Arg.getValueType() != MVT::f32) { 5301 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5302 5303 // Non-array float values are extended and passed in a GPR. 5304 } else if (!Flags.isInConsecutiveRegs()) { 5305 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5306 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5307 5308 // If we have an array of floats, we collect every odd element 5309 // together with its predecessor into one GPR. 5310 } else if (ArgOffset % PtrByteSize != 0) { 5311 SDValue Lo, Hi; 5312 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5313 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5314 if (!isLittleEndian) 5315 std::swap(Lo, Hi); 5316 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5317 5318 // The final element, if even, goes into the first half of a GPR. 5319 } else if (Flags.isInConsecutiveRegsLast()) { 5320 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5321 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5322 if (!isLittleEndian) 5323 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5324 DAG.getConstant(32, dl, MVT::i32)); 5325 5326 // Non-final even elements are skipped; they will be handled 5327 // together the with subsequent argument on the next go-around. 5328 } else 5329 ArgVal = SDValue(); 5330 5331 if (ArgVal.getNode()) 5332 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5333 } else { 5334 if (CallConv == CallingConv::Fast) 5335 ComputePtrOff(); 5336 5337 // Single-precision floating-point values are mapped to the 5338 // second (rightmost) word of the stack doubleword. 5339 if (Arg.getValueType() == MVT::f32 && 5340 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5341 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5342 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5343 } 5344 5345 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5346 true, isTailCall, false, MemOpChains, 5347 TailCallArguments, dl); 5348 5349 NeededLoad = true; 5350 } 5351 // When passing an array of floats, the array occupies consecutive 5352 // space in the argument area; only round up to the next doubleword 5353 // at the end of the array. Otherwise, each float takes 8 bytes. 5354 if (CallConv != CallingConv::Fast || NeededLoad) { 5355 ArgOffset += (Arg.getValueType() == MVT::f32 && 5356 Flags.isInConsecutiveRegs()) ? 4 : 8; 5357 if (Flags.isInConsecutiveRegsLast()) 5358 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5359 } 5360 break; 5361 } 5362 case MVT::v4f32: 5363 case MVT::v4i32: 5364 case MVT::v8i16: 5365 case MVT::v16i8: 5366 case MVT::v2f64: 5367 case MVT::v2i64: 5368 case MVT::v1i128: 5369 if (!Subtarget.hasQPX()) { 5370 // These can be scalar arguments or elements of a vector array type 5371 // passed directly. The latter are used to implement ELFv2 homogenous 5372 // vector aggregates. 5373 5374 // For a varargs call, named arguments go into VRs or on the stack as 5375 // usual; unnamed arguments always go to the stack or the corresponding 5376 // GPRs when within range. For now, we always put the value in both 5377 // locations (or even all three). 5378 if (isVarArg) { 5379 // We could elide this store in the case where the object fits 5380 // entirely in R registers. Maybe later. 5381 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5382 MachinePointerInfo(), false, false, 0); 5383 MemOpChains.push_back(Store); 5384 if (VR_idx != NumVRs) { 5385 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5386 MachinePointerInfo(), 5387 false, false, false, 0); 5388 MemOpChains.push_back(Load.getValue(1)); 5389 5390 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5391 Arg.getSimpleValueType() == MVT::v2i64) ? 5392 VSRH[VR_idx] : VR[VR_idx]; 5393 ++VR_idx; 5394 5395 RegsToPass.push_back(std::make_pair(VReg, Load)); 5396 } 5397 ArgOffset += 16; 5398 for (unsigned i=0; i<16; i+=PtrByteSize) { 5399 if (GPR_idx == NumGPRs) 5400 break; 5401 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5402 DAG.getConstant(i, dl, PtrVT)); 5403 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5404 false, false, false, 0); 5405 MemOpChains.push_back(Load.getValue(1)); 5406 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5407 } 5408 break; 5409 } 5410 5411 // Non-varargs Altivec params go into VRs or on the stack. 5412 if (VR_idx != NumVRs) { 5413 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5414 Arg.getSimpleValueType() == MVT::v2i64) ? 5415 VSRH[VR_idx] : VR[VR_idx]; 5416 ++VR_idx; 5417 5418 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5419 } else { 5420 if (CallConv == CallingConv::Fast) 5421 ComputePtrOff(); 5422 5423 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5424 true, isTailCall, true, MemOpChains, 5425 TailCallArguments, dl); 5426 if (CallConv == CallingConv::Fast) 5427 ArgOffset += 16; 5428 } 5429 5430 if (CallConv != CallingConv::Fast) 5431 ArgOffset += 16; 5432 break; 5433 } // not QPX 5434 5435 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5436 "Invalid QPX parameter type"); 5437 5438 /* fall through */ 5439 case MVT::v4f64: 5440 case MVT::v4i1: { 5441 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5442 if (isVarArg) { 5443 // We could elide this store in the case where the object fits 5444 // entirely in R registers. Maybe later. 5445 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5446 MachinePointerInfo(), false, false, 0); 5447 MemOpChains.push_back(Store); 5448 if (QFPR_idx != NumQFPRs) { 5449 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5450 Store, PtrOff, MachinePointerInfo(), 5451 false, false, false, 0); 5452 MemOpChains.push_back(Load.getValue(1)); 5453 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5454 } 5455 ArgOffset += (IsF32 ? 16 : 32); 5456 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5457 if (GPR_idx == NumGPRs) 5458 break; 5459 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5460 DAG.getConstant(i, dl, PtrVT)); 5461 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5462 false, false, false, 0); 5463 MemOpChains.push_back(Load.getValue(1)); 5464 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5465 } 5466 break; 5467 } 5468 5469 // Non-varargs QPX params go into registers or on the stack. 5470 if (QFPR_idx != NumQFPRs) { 5471 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5472 } else { 5473 if (CallConv == CallingConv::Fast) 5474 ComputePtrOff(); 5475 5476 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5477 true, isTailCall, true, MemOpChains, 5478 TailCallArguments, dl); 5479 if (CallConv == CallingConv::Fast) 5480 ArgOffset += (IsF32 ? 16 : 32); 5481 } 5482 5483 if (CallConv != CallingConv::Fast) 5484 ArgOffset += (IsF32 ? 16 : 32); 5485 break; 5486 } 5487 } 5488 } 5489 5490 assert(NumBytesActuallyUsed == ArgOffset); 5491 (void)NumBytesActuallyUsed; 5492 5493 if (!MemOpChains.empty()) 5494 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5495 5496 // Check if this is an indirect call (MTCTR/BCTRL). 5497 // See PrepareCall() for more information about calls through function 5498 // pointers in the 64-bit SVR4 ABI. 5499 if (!isTailCall && !IsPatchPoint && 5500 !isFunctionGlobalAddress(Callee) && 5501 !isa<ExternalSymbolSDNode>(Callee)) { 5502 // Load r2 into a virtual register and store it to the TOC save area. 5503 setUsesTOCBasePtr(DAG); 5504 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5505 // TOC save area offset. 5506 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5507 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5508 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5509 Chain = DAG.getStore( 5510 Val.getValue(1), dl, Val, AddPtr, 5511 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5512 false, false, 0); 5513 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5514 // This does not mean the MTCTR instruction must use R12; it's easier 5515 // to model this as an extra parameter, so do that. 5516 if (isELFv2ABI && !IsPatchPoint) 5517 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5518 } 5519 5520 // Build a sequence of copy-to-reg nodes chained together with token chain 5521 // and flag operands which copy the outgoing args into the appropriate regs. 5522 SDValue InFlag; 5523 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5524 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5525 RegsToPass[i].second, InFlag); 5526 InFlag = Chain.getValue(1); 5527 } 5528 5529 if (isTailCall && !IsSibCall) 5530 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5531 FPOp, true, TailCallArguments); 5532 5533 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5534 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5535 SPDiff, NumBytes, Ins, InVals, CS); 5536 } 5537 5538 SDValue PPCTargetLowering::LowerCall_Darwin( 5539 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5540 bool isTailCall, bool IsPatchPoint, 5541 const SmallVectorImpl<ISD::OutputArg> &Outs, 5542 const SmallVectorImpl<SDValue> &OutVals, 5543 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5544 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5545 ImmutableCallSite *CS) const { 5546 5547 unsigned NumOps = Outs.size(); 5548 5549 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5550 bool isPPC64 = PtrVT == MVT::i64; 5551 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5552 5553 MachineFunction &MF = DAG.getMachineFunction(); 5554 5555 // Mark this function as potentially containing a function that contains a 5556 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5557 // and restoring the callers stack pointer in this functions epilog. This is 5558 // done because by tail calling the called function might overwrite the value 5559 // in this function's (MF) stack pointer stack slot 0(SP). 5560 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5561 CallConv == CallingConv::Fast) 5562 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5563 5564 // Count how many bytes are to be pushed on the stack, including the linkage 5565 // area, and parameter passing area. We start with 24/48 bytes, which is 5566 // prereserved space for [SP][CR][LR][3 x unused]. 5567 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5568 unsigned NumBytes = LinkageSize; 5569 5570 // Add up all the space actually used. 5571 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5572 // they all go in registers, but we must reserve stack space for them for 5573 // possible use by the caller. In varargs or 64-bit calls, parameters are 5574 // assigned stack space in order, with padding so Altivec parameters are 5575 // 16-byte aligned. 5576 unsigned nAltivecParamsAtEnd = 0; 5577 for (unsigned i = 0; i != NumOps; ++i) { 5578 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5579 EVT ArgVT = Outs[i].VT; 5580 // Varargs Altivec parameters are padded to a 16 byte boundary. 5581 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5582 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5583 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5584 if (!isVarArg && !isPPC64) { 5585 // Non-varargs Altivec parameters go after all the non-Altivec 5586 // parameters; handle those later so we know how much padding we need. 5587 nAltivecParamsAtEnd++; 5588 continue; 5589 } 5590 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5591 NumBytes = ((NumBytes+15)/16)*16; 5592 } 5593 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5594 } 5595 5596 // Allow for Altivec parameters at the end, if needed. 5597 if (nAltivecParamsAtEnd) { 5598 NumBytes = ((NumBytes+15)/16)*16; 5599 NumBytes += 16*nAltivecParamsAtEnd; 5600 } 5601 5602 // The prolog code of the callee may store up to 8 GPR argument registers to 5603 // the stack, allowing va_start to index over them in memory if its varargs. 5604 // Because we cannot tell if this is needed on the caller side, we have to 5605 // conservatively assume that it is needed. As such, make sure we have at 5606 // least enough stack space for the caller to store the 8 GPRs. 5607 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5608 5609 // Tail call needs the stack to be aligned. 5610 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5611 CallConv == CallingConv::Fast) 5612 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5613 5614 // Calculate by how many bytes the stack has to be adjusted in case of tail 5615 // call optimization. 5616 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5617 5618 // To protect arguments on the stack from being clobbered in a tail call, 5619 // force all the loads to happen before doing any other lowering. 5620 if (isTailCall) 5621 Chain = DAG.getStackArgumentTokenFactor(Chain); 5622 5623 // Adjust the stack pointer for the new arguments... 5624 // These operations are automatically eliminated by the prolog/epilog pass 5625 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5626 dl); 5627 SDValue CallSeqStart = Chain; 5628 5629 // Load the return address and frame pointer so it can be move somewhere else 5630 // later. 5631 SDValue LROp, FPOp; 5632 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5633 dl); 5634 5635 // Set up a copy of the stack pointer for use loading and storing any 5636 // arguments that may not fit in the registers available for argument 5637 // passing. 5638 SDValue StackPtr; 5639 if (isPPC64) 5640 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5641 else 5642 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5643 5644 // Figure out which arguments are going to go in registers, and which in 5645 // memory. Also, if this is a vararg function, floating point operations 5646 // must be stored to our stack, and loaded into integer regs as well, if 5647 // any integer regs are available for argument passing. 5648 unsigned ArgOffset = LinkageSize; 5649 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5650 5651 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5652 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5653 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5654 }; 5655 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5656 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5657 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5658 }; 5659 static const MCPhysReg VR[] = { 5660 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5661 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5662 }; 5663 const unsigned NumGPRs = array_lengthof(GPR_32); 5664 const unsigned NumFPRs = 13; 5665 const unsigned NumVRs = array_lengthof(VR); 5666 5667 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5668 5669 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5670 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5671 5672 SmallVector<SDValue, 8> MemOpChains; 5673 for (unsigned i = 0; i != NumOps; ++i) { 5674 SDValue Arg = OutVals[i]; 5675 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5676 5677 // PtrOff will be used to store the current argument to the stack if a 5678 // register cannot be found for it. 5679 SDValue PtrOff; 5680 5681 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5682 5683 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5684 5685 // On PPC64, promote integers to 64-bit values. 5686 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5687 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5688 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5689 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5690 } 5691 5692 // FIXME memcpy is used way more than necessary. Correctness first. 5693 // Note: "by value" is code for passing a structure by value, not 5694 // basic types. 5695 if (Flags.isByVal()) { 5696 unsigned Size = Flags.getByValSize(); 5697 // Very small objects are passed right-justified. Everything else is 5698 // passed left-justified. 5699 if (Size==1 || Size==2) { 5700 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5701 if (GPR_idx != NumGPRs) { 5702 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5703 MachinePointerInfo(), VT, 5704 false, false, false, 0); 5705 MemOpChains.push_back(Load.getValue(1)); 5706 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5707 5708 ArgOffset += PtrByteSize; 5709 } else { 5710 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5711 PtrOff.getValueType()); 5712 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5713 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5714 CallSeqStart, 5715 Flags, DAG, dl); 5716 ArgOffset += PtrByteSize; 5717 } 5718 continue; 5719 } 5720 // Copy entire object into memory. There are cases where gcc-generated 5721 // code assumes it is there, even if it could be put entirely into 5722 // registers. (This is not what the doc says.) 5723 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5724 CallSeqStart, 5725 Flags, DAG, dl); 5726 5727 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5728 // copy the pieces of the object that fit into registers from the 5729 // parameter save area. 5730 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5731 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5732 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5733 if (GPR_idx != NumGPRs) { 5734 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5735 MachinePointerInfo(), 5736 false, false, false, 0); 5737 MemOpChains.push_back(Load.getValue(1)); 5738 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5739 ArgOffset += PtrByteSize; 5740 } else { 5741 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5742 break; 5743 } 5744 } 5745 continue; 5746 } 5747 5748 switch (Arg.getSimpleValueType().SimpleTy) { 5749 default: llvm_unreachable("Unexpected ValueType for argument!"); 5750 case MVT::i1: 5751 case MVT::i32: 5752 case MVT::i64: 5753 if (GPR_idx != NumGPRs) { 5754 if (Arg.getValueType() == MVT::i1) 5755 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5756 5757 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5758 } else { 5759 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5760 isPPC64, isTailCall, false, MemOpChains, 5761 TailCallArguments, dl); 5762 } 5763 ArgOffset += PtrByteSize; 5764 break; 5765 case MVT::f32: 5766 case MVT::f64: 5767 if (FPR_idx != NumFPRs) { 5768 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5769 5770 if (isVarArg) { 5771 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5772 MachinePointerInfo(), false, false, 0); 5773 MemOpChains.push_back(Store); 5774 5775 // Float varargs are always shadowed in available integer registers 5776 if (GPR_idx != NumGPRs) { 5777 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5778 MachinePointerInfo(), false, false, 5779 false, 0); 5780 MemOpChains.push_back(Load.getValue(1)); 5781 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5782 } 5783 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5784 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5785 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5786 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5787 MachinePointerInfo(), 5788 false, false, false, 0); 5789 MemOpChains.push_back(Load.getValue(1)); 5790 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5791 } 5792 } else { 5793 // If we have any FPRs remaining, we may also have GPRs remaining. 5794 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5795 // GPRs. 5796 if (GPR_idx != NumGPRs) 5797 ++GPR_idx; 5798 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5799 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5800 ++GPR_idx; 5801 } 5802 } else 5803 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5804 isPPC64, isTailCall, false, MemOpChains, 5805 TailCallArguments, dl); 5806 if (isPPC64) 5807 ArgOffset += 8; 5808 else 5809 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5810 break; 5811 case MVT::v4f32: 5812 case MVT::v4i32: 5813 case MVT::v8i16: 5814 case MVT::v16i8: 5815 if (isVarArg) { 5816 // These go aligned on the stack, or in the corresponding R registers 5817 // when within range. The Darwin PPC ABI doc claims they also go in 5818 // V registers; in fact gcc does this only for arguments that are 5819 // prototyped, not for those that match the ... We do it for all 5820 // arguments, seems to work. 5821 while (ArgOffset % 16 !=0) { 5822 ArgOffset += PtrByteSize; 5823 if (GPR_idx != NumGPRs) 5824 GPR_idx++; 5825 } 5826 // We could elide this store in the case where the object fits 5827 // entirely in R registers. Maybe later. 5828 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5829 DAG.getConstant(ArgOffset, dl, PtrVT)); 5830 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5831 MachinePointerInfo(), false, false, 0); 5832 MemOpChains.push_back(Store); 5833 if (VR_idx != NumVRs) { 5834 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5835 MachinePointerInfo(), 5836 false, false, false, 0); 5837 MemOpChains.push_back(Load.getValue(1)); 5838 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5839 } 5840 ArgOffset += 16; 5841 for (unsigned i=0; i<16; i+=PtrByteSize) { 5842 if (GPR_idx == NumGPRs) 5843 break; 5844 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5845 DAG.getConstant(i, dl, PtrVT)); 5846 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5847 false, false, false, 0); 5848 MemOpChains.push_back(Load.getValue(1)); 5849 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5850 } 5851 break; 5852 } 5853 5854 // Non-varargs Altivec params generally go in registers, but have 5855 // stack space allocated at the end. 5856 if (VR_idx != NumVRs) { 5857 // Doesn't have GPR space allocated. 5858 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5859 } else if (nAltivecParamsAtEnd==0) { 5860 // We are emitting Altivec params in order. 5861 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5862 isPPC64, isTailCall, true, MemOpChains, 5863 TailCallArguments, dl); 5864 ArgOffset += 16; 5865 } 5866 break; 5867 } 5868 } 5869 // If all Altivec parameters fit in registers, as they usually do, 5870 // they get stack space following the non-Altivec parameters. We 5871 // don't track this here because nobody below needs it. 5872 // If there are more Altivec parameters than fit in registers emit 5873 // the stores here. 5874 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5875 unsigned j = 0; 5876 // Offset is aligned; skip 1st 12 params which go in V registers. 5877 ArgOffset = ((ArgOffset+15)/16)*16; 5878 ArgOffset += 12*16; 5879 for (unsigned i = 0; i != NumOps; ++i) { 5880 SDValue Arg = OutVals[i]; 5881 EVT ArgType = Outs[i].VT; 5882 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5883 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5884 if (++j > NumVRs) { 5885 SDValue PtrOff; 5886 // We are emitting Altivec params in order. 5887 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5888 isPPC64, isTailCall, true, MemOpChains, 5889 TailCallArguments, dl); 5890 ArgOffset += 16; 5891 } 5892 } 5893 } 5894 } 5895 5896 if (!MemOpChains.empty()) 5897 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5898 5899 // On Darwin, R12 must contain the address of an indirect callee. This does 5900 // not mean the MTCTR instruction must use R12; it's easier to model this as 5901 // an extra parameter, so do that. 5902 if (!isTailCall && 5903 !isFunctionGlobalAddress(Callee) && 5904 !isa<ExternalSymbolSDNode>(Callee) && 5905 !isBLACompatibleAddress(Callee, DAG)) 5906 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5907 PPC::R12), Callee)); 5908 5909 // Build a sequence of copy-to-reg nodes chained together with token chain 5910 // and flag operands which copy the outgoing args into the appropriate regs. 5911 SDValue InFlag; 5912 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5913 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5914 RegsToPass[i].second, InFlag); 5915 InFlag = Chain.getValue(1); 5916 } 5917 5918 if (isTailCall) 5919 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5920 FPOp, true, TailCallArguments); 5921 5922 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5923 /* unused except on PPC64 ELFv1 */ false, DAG, 5924 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5925 NumBytes, Ins, InVals, CS); 5926 } 5927 5928 bool 5929 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5930 MachineFunction &MF, bool isVarArg, 5931 const SmallVectorImpl<ISD::OutputArg> &Outs, 5932 LLVMContext &Context) const { 5933 SmallVector<CCValAssign, 16> RVLocs; 5934 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5935 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5936 } 5937 5938 SDValue 5939 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 5940 bool isVarArg, 5941 const SmallVectorImpl<ISD::OutputArg> &Outs, 5942 const SmallVectorImpl<SDValue> &OutVals, 5943 const SDLoc &dl, SelectionDAG &DAG) const { 5944 5945 SmallVector<CCValAssign, 16> RVLocs; 5946 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5947 *DAG.getContext()); 5948 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5949 5950 SDValue Flag; 5951 SmallVector<SDValue, 4> RetOps(1, Chain); 5952 5953 // Copy the result values into the output registers. 5954 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5955 CCValAssign &VA = RVLocs[i]; 5956 assert(VA.isRegLoc() && "Can only return in registers!"); 5957 5958 SDValue Arg = OutVals[i]; 5959 5960 switch (VA.getLocInfo()) { 5961 default: llvm_unreachable("Unknown loc info!"); 5962 case CCValAssign::Full: break; 5963 case CCValAssign::AExt: 5964 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5965 break; 5966 case CCValAssign::ZExt: 5967 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5968 break; 5969 case CCValAssign::SExt: 5970 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5971 break; 5972 } 5973 5974 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5975 Flag = Chain.getValue(1); 5976 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5977 } 5978 5979 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5980 const MCPhysReg *I = 5981 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 5982 if (I) { 5983 for (; *I; ++I) { 5984 5985 if (PPC::G8RCRegClass.contains(*I)) 5986 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 5987 else if (PPC::F8RCRegClass.contains(*I)) 5988 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 5989 else if (PPC::CRRCRegClass.contains(*I)) 5990 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 5991 else if (PPC::VRRCRegClass.contains(*I)) 5992 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 5993 else 5994 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 5995 } 5996 } 5997 5998 RetOps[0] = Chain; // Update chain. 5999 6000 // Add the flag if we have it. 6001 if (Flag.getNode()) 6002 RetOps.push_back(Flag); 6003 6004 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6005 } 6006 6007 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET( 6008 SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { 6009 SDLoc dl(Op); 6010 6011 // Get the corect type for integers. 6012 EVT IntVT = Op.getValueType(); 6013 6014 // Get the inputs. 6015 SDValue Chain = Op.getOperand(0); 6016 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6017 // Build a DYNAREAOFFSET node. 6018 SDValue Ops[2] = {Chain, FPSIdx}; 6019 SDVTList VTs = DAG.getVTList(IntVT); 6020 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6021 } 6022 6023 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 6024 const PPCSubtarget &Subtarget) const { 6025 // When we pop the dynamic allocation we need to restore the SP link. 6026 SDLoc dl(Op); 6027 6028 // Get the corect type for pointers. 6029 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6030 6031 // Construct the stack pointer operand. 6032 bool isPPC64 = Subtarget.isPPC64(); 6033 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6034 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6035 6036 // Get the operands for the STACKRESTORE. 6037 SDValue Chain = Op.getOperand(0); 6038 SDValue SaveSP = Op.getOperand(1); 6039 6040 // Load the old link SP. 6041 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 6042 MachinePointerInfo(), 6043 false, false, false, 0); 6044 6045 // Restore the stack pointer. 6046 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6047 6048 // Store the old link SP. 6049 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 6050 false, false, 0); 6051 } 6052 6053 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6054 MachineFunction &MF = DAG.getMachineFunction(); 6055 bool isPPC64 = Subtarget.isPPC64(); 6056 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6057 6058 // Get current frame pointer save index. The users of this index will be 6059 // primarily DYNALLOC instructions. 6060 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6061 int RASI = FI->getReturnAddrSaveIndex(); 6062 6063 // If the frame pointer save index hasn't been defined yet. 6064 if (!RASI) { 6065 // Find out what the fix offset of the frame pointer save area. 6066 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6067 // Allocate the frame index for frame pointer save area. 6068 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6069 // Save the result. 6070 FI->setReturnAddrSaveIndex(RASI); 6071 } 6072 return DAG.getFrameIndex(RASI, PtrVT); 6073 } 6074 6075 SDValue 6076 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6077 MachineFunction &MF = DAG.getMachineFunction(); 6078 bool isPPC64 = Subtarget.isPPC64(); 6079 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6080 6081 // Get current frame pointer save index. The users of this index will be 6082 // primarily DYNALLOC instructions. 6083 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6084 int FPSI = FI->getFramePointerSaveIndex(); 6085 6086 // If the frame pointer save index hasn't been defined yet. 6087 if (!FPSI) { 6088 // Find out what the fix offset of the frame pointer save area. 6089 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6090 // Allocate the frame index for frame pointer save area. 6091 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6092 // Save the result. 6093 FI->setFramePointerSaveIndex(FPSI); 6094 } 6095 return DAG.getFrameIndex(FPSI, PtrVT); 6096 } 6097 6098 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6099 SelectionDAG &DAG, 6100 const PPCSubtarget &Subtarget) const { 6101 // Get the inputs. 6102 SDValue Chain = Op.getOperand(0); 6103 SDValue Size = Op.getOperand(1); 6104 SDLoc dl(Op); 6105 6106 // Get the corect type for pointers. 6107 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6108 // Negate the size. 6109 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6110 DAG.getConstant(0, dl, PtrVT), Size); 6111 // Construct a node for the frame pointer save index. 6112 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6113 // Build a DYNALLOC node. 6114 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6115 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6116 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6117 } 6118 6119 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6120 SelectionDAG &DAG) const { 6121 SDLoc DL(Op); 6122 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6123 DAG.getVTList(MVT::i32, MVT::Other), 6124 Op.getOperand(0), Op.getOperand(1)); 6125 } 6126 6127 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6128 SelectionDAG &DAG) const { 6129 SDLoc DL(Op); 6130 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6131 Op.getOperand(0), Op.getOperand(1)); 6132 } 6133 6134 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6135 if (Op.getValueType().isVector()) 6136 return LowerVectorLoad(Op, DAG); 6137 6138 assert(Op.getValueType() == MVT::i1 && 6139 "Custom lowering only for i1 loads"); 6140 6141 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6142 6143 SDLoc dl(Op); 6144 LoadSDNode *LD = cast<LoadSDNode>(Op); 6145 6146 SDValue Chain = LD->getChain(); 6147 SDValue BasePtr = LD->getBasePtr(); 6148 MachineMemOperand *MMO = LD->getMemOperand(); 6149 6150 SDValue NewLD = 6151 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6152 BasePtr, MVT::i8, MMO); 6153 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6154 6155 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6156 return DAG.getMergeValues(Ops, dl); 6157 } 6158 6159 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6160 if (Op.getOperand(1).getValueType().isVector()) 6161 return LowerVectorStore(Op, DAG); 6162 6163 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6164 "Custom lowering only for i1 stores"); 6165 6166 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6167 6168 SDLoc dl(Op); 6169 StoreSDNode *ST = cast<StoreSDNode>(Op); 6170 6171 SDValue Chain = ST->getChain(); 6172 SDValue BasePtr = ST->getBasePtr(); 6173 SDValue Value = ST->getValue(); 6174 MachineMemOperand *MMO = ST->getMemOperand(); 6175 6176 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6177 Value); 6178 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6179 } 6180 6181 // FIXME: Remove this once the ANDI glue bug is fixed: 6182 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6183 assert(Op.getValueType() == MVT::i1 && 6184 "Custom lowering only for i1 results"); 6185 6186 SDLoc DL(Op); 6187 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6188 Op.getOperand(0)); 6189 } 6190 6191 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6192 /// possible. 6193 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6194 // Not FP? Not a fsel. 6195 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6196 !Op.getOperand(2).getValueType().isFloatingPoint()) 6197 return Op; 6198 6199 // We might be able to do better than this under some circumstances, but in 6200 // general, fsel-based lowering of select is a finite-math-only optimization. 6201 // For more information, see section F.3 of the 2.06 ISA specification. 6202 if (!DAG.getTarget().Options.NoInfsFPMath || 6203 !DAG.getTarget().Options.NoNaNsFPMath) 6204 return Op; 6205 // TODO: Propagate flags from the select rather than global settings. 6206 SDNodeFlags Flags; 6207 Flags.setNoInfs(true); 6208 Flags.setNoNaNs(true); 6209 6210 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6211 6212 EVT ResVT = Op.getValueType(); 6213 EVT CmpVT = Op.getOperand(0).getValueType(); 6214 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6215 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6216 SDLoc dl(Op); 6217 6218 // If the RHS of the comparison is a 0.0, we don't need to do the 6219 // subtraction at all. 6220 SDValue Sel1; 6221 if (isFloatingPointZero(RHS)) 6222 switch (CC) { 6223 default: break; // SETUO etc aren't handled by fsel. 6224 case ISD::SETNE: 6225 std::swap(TV, FV); 6226 case ISD::SETEQ: 6227 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6228 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6229 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6230 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6231 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6232 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6233 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6234 case ISD::SETULT: 6235 case ISD::SETLT: 6236 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6237 case ISD::SETOGE: 6238 case ISD::SETGE: 6239 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6240 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6241 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6242 case ISD::SETUGT: 6243 case ISD::SETGT: 6244 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6245 case ISD::SETOLE: 6246 case ISD::SETLE: 6247 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6248 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6249 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6250 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6251 } 6252 6253 SDValue Cmp; 6254 switch (CC) { 6255 default: break; // SETUO etc aren't handled by fsel. 6256 case ISD::SETNE: 6257 std::swap(TV, FV); 6258 case ISD::SETEQ: 6259 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6260 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6261 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6262 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6263 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6264 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6265 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6266 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6267 case ISD::SETULT: 6268 case ISD::SETLT: 6269 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6270 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6271 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6272 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6273 case ISD::SETOGE: 6274 case ISD::SETGE: 6275 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6276 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6277 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6278 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6279 case ISD::SETUGT: 6280 case ISD::SETGT: 6281 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6282 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6283 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6284 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6285 case ISD::SETOLE: 6286 case ISD::SETLE: 6287 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6288 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6289 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6290 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6291 } 6292 return Op; 6293 } 6294 6295 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6296 SelectionDAG &DAG, 6297 const SDLoc &dl) const { 6298 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6299 SDValue Src = Op.getOperand(0); 6300 if (Src.getValueType() == MVT::f32) 6301 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6302 6303 SDValue Tmp; 6304 switch (Op.getSimpleValueType().SimpleTy) { 6305 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6306 case MVT::i32: 6307 Tmp = DAG.getNode( 6308 Op.getOpcode() == ISD::FP_TO_SINT 6309 ? PPCISD::FCTIWZ 6310 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6311 dl, MVT::f64, Src); 6312 break; 6313 case MVT::i64: 6314 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6315 "i64 FP_TO_UINT is supported only with FPCVT"); 6316 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6317 PPCISD::FCTIDUZ, 6318 dl, MVT::f64, Src); 6319 break; 6320 } 6321 6322 // Convert the FP value to an int value through memory. 6323 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6324 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6325 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6326 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6327 MachinePointerInfo MPI = 6328 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6329 6330 // Emit a store to the stack slot. 6331 SDValue Chain; 6332 if (i32Stack) { 6333 MachineFunction &MF = DAG.getMachineFunction(); 6334 MachineMemOperand *MMO = 6335 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6336 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6337 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6338 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6339 } else 6340 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6341 MPI, false, false, 0); 6342 6343 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6344 // add in a bias on big endian. 6345 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6346 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6347 DAG.getConstant(4, dl, FIPtr.getValueType())); 6348 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6349 } 6350 6351 RLI.Chain = Chain; 6352 RLI.Ptr = FIPtr; 6353 RLI.MPI = MPI; 6354 } 6355 6356 /// \brief Custom lowers floating point to integer conversions to use 6357 /// the direct move instructions available in ISA 2.07 to avoid the 6358 /// need for load/store combinations. 6359 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6360 SelectionDAG &DAG, 6361 const SDLoc &dl) const { 6362 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6363 SDValue Src = Op.getOperand(0); 6364 6365 if (Src.getValueType() == MVT::f32) 6366 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6367 6368 SDValue Tmp; 6369 switch (Op.getSimpleValueType().SimpleTy) { 6370 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6371 case MVT::i32: 6372 Tmp = DAG.getNode( 6373 Op.getOpcode() == ISD::FP_TO_SINT 6374 ? PPCISD::FCTIWZ 6375 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6376 dl, MVT::f64, Src); 6377 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6378 break; 6379 case MVT::i64: 6380 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6381 "i64 FP_TO_UINT is supported only with FPCVT"); 6382 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6383 PPCISD::FCTIDUZ, 6384 dl, MVT::f64, Src); 6385 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6386 break; 6387 } 6388 return Tmp; 6389 } 6390 6391 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6392 const SDLoc &dl) const { 6393 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6394 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6395 6396 ReuseLoadInfo RLI; 6397 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6398 6399 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6400 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6401 RLI.Ranges); 6402 } 6403 6404 // We're trying to insert a regular store, S, and then a load, L. If the 6405 // incoming value, O, is a load, we might just be able to have our load use the 6406 // address used by O. However, we don't know if anything else will store to 6407 // that address before we can load from it. To prevent this situation, we need 6408 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6409 // the same chain operand as O, we create a token factor from the chain results 6410 // of O and L, and we replace all uses of O's chain result with that token 6411 // factor (see spliceIntoChain below for this last part). 6412 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6413 ReuseLoadInfo &RLI, 6414 SelectionDAG &DAG, 6415 ISD::LoadExtType ET) const { 6416 SDLoc dl(Op); 6417 if (ET == ISD::NON_EXTLOAD && 6418 (Op.getOpcode() == ISD::FP_TO_UINT || 6419 Op.getOpcode() == ISD::FP_TO_SINT) && 6420 isOperationLegalOrCustom(Op.getOpcode(), 6421 Op.getOperand(0).getValueType())) { 6422 6423 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6424 return true; 6425 } 6426 6427 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6428 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6429 LD->isNonTemporal()) 6430 return false; 6431 if (LD->getMemoryVT() != MemVT) 6432 return false; 6433 6434 RLI.Ptr = LD->getBasePtr(); 6435 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6436 assert(LD->getAddressingMode() == ISD::PRE_INC && 6437 "Non-pre-inc AM on PPC?"); 6438 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6439 LD->getOffset()); 6440 } 6441 6442 RLI.Chain = LD->getChain(); 6443 RLI.MPI = LD->getPointerInfo(); 6444 RLI.IsInvariant = LD->isInvariant(); 6445 RLI.Alignment = LD->getAlignment(); 6446 RLI.AAInfo = LD->getAAInfo(); 6447 RLI.Ranges = LD->getRanges(); 6448 6449 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6450 return true; 6451 } 6452 6453 // Given the head of the old chain, ResChain, insert a token factor containing 6454 // it and NewResChain, and make users of ResChain now be users of that token 6455 // factor. 6456 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6457 SDValue NewResChain, 6458 SelectionDAG &DAG) const { 6459 if (!ResChain) 6460 return; 6461 6462 SDLoc dl(NewResChain); 6463 6464 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6465 NewResChain, DAG.getUNDEF(MVT::Other)); 6466 assert(TF.getNode() != NewResChain.getNode() && 6467 "A new TF really is required here"); 6468 6469 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6470 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6471 } 6472 6473 /// \brief Analyze profitability of direct move 6474 /// prefer float load to int load plus direct move 6475 /// when there is no integer use of int load 6476 static bool directMoveIsProfitable(const SDValue &Op) { 6477 SDNode *Origin = Op.getOperand(0).getNode(); 6478 if (Origin->getOpcode() != ISD::LOAD) 6479 return true; 6480 6481 for (SDNode::use_iterator UI = Origin->use_begin(), 6482 UE = Origin->use_end(); 6483 UI != UE; ++UI) { 6484 6485 // Only look at the users of the loaded value. 6486 if (UI.getUse().get().getResNo() != 0) 6487 continue; 6488 6489 if (UI->getOpcode() != ISD::SINT_TO_FP && 6490 UI->getOpcode() != ISD::UINT_TO_FP) 6491 return true; 6492 } 6493 6494 return false; 6495 } 6496 6497 /// \brief Custom lowers integer to floating point conversions to use 6498 /// the direct move instructions available in ISA 2.07 to avoid the 6499 /// need for load/store combinations. 6500 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6501 SelectionDAG &DAG, 6502 const SDLoc &dl) const { 6503 assert((Op.getValueType() == MVT::f32 || 6504 Op.getValueType() == MVT::f64) && 6505 "Invalid floating point type as target of conversion"); 6506 assert(Subtarget.hasFPCVT() && 6507 "Int to FP conversions with direct moves require FPCVT"); 6508 SDValue FP; 6509 SDValue Src = Op.getOperand(0); 6510 bool SinglePrec = Op.getValueType() == MVT::f32; 6511 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6512 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6513 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6514 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6515 6516 if (WordInt) { 6517 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6518 dl, MVT::f64, Src); 6519 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6520 } 6521 else { 6522 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6523 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6524 } 6525 6526 return FP; 6527 } 6528 6529 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6530 SelectionDAG &DAG) const { 6531 SDLoc dl(Op); 6532 6533 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6534 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6535 return SDValue(); 6536 6537 SDValue Value = Op.getOperand(0); 6538 // The values are now known to be -1 (false) or 1 (true). To convert this 6539 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6540 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6541 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6542 6543 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6544 6545 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6546 6547 if (Op.getValueType() != MVT::v4f64) 6548 Value = DAG.getNode(ISD::FP_ROUND, dl, 6549 Op.getValueType(), Value, 6550 DAG.getIntPtrConstant(1, dl)); 6551 return Value; 6552 } 6553 6554 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6555 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6556 return SDValue(); 6557 6558 if (Op.getOperand(0).getValueType() == MVT::i1) 6559 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6560 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6561 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6562 6563 // If we have direct moves, we can do all the conversion, skip the store/load 6564 // however, without FPCVT we can't do most conversions. 6565 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6566 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6567 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6568 6569 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6570 "UINT_TO_FP is supported only with FPCVT"); 6571 6572 // If we have FCFIDS, then use it when converting to single-precision. 6573 // Otherwise, convert to double-precision and then round. 6574 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6575 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6576 : PPCISD::FCFIDS) 6577 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6578 : PPCISD::FCFID); 6579 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6580 ? MVT::f32 6581 : MVT::f64; 6582 6583 if (Op.getOperand(0).getValueType() == MVT::i64) { 6584 SDValue SINT = Op.getOperand(0); 6585 // When converting to single-precision, we actually need to convert 6586 // to double-precision first and then round to single-precision. 6587 // To avoid double-rounding effects during that operation, we have 6588 // to prepare the input operand. Bits that might be truncated when 6589 // converting to double-precision are replaced by a bit that won't 6590 // be lost at this stage, but is below the single-precision rounding 6591 // position. 6592 // 6593 // However, if -enable-unsafe-fp-math is in effect, accept double 6594 // rounding to avoid the extra overhead. 6595 if (Op.getValueType() == MVT::f32 && 6596 !Subtarget.hasFPCVT() && 6597 !DAG.getTarget().Options.UnsafeFPMath) { 6598 6599 // Twiddle input to make sure the low 11 bits are zero. (If this 6600 // is the case, we are guaranteed the value will fit into the 53 bit 6601 // mantissa of an IEEE double-precision value without rounding.) 6602 // If any of those low 11 bits were not zero originally, make sure 6603 // bit 12 (value 2048) is set instead, so that the final rounding 6604 // to single-precision gets the correct result. 6605 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6606 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6607 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6608 Round, DAG.getConstant(2047, dl, MVT::i64)); 6609 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6610 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6611 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6612 6613 // However, we cannot use that value unconditionally: if the magnitude 6614 // of the input value is small, the bit-twiddling we did above might 6615 // end up visibly changing the output. Fortunately, in that case, we 6616 // don't need to twiddle bits since the original input will convert 6617 // exactly to double-precision floating-point already. Therefore, 6618 // construct a conditional to use the original value if the top 11 6619 // bits are all sign-bit copies, and use the rounded value computed 6620 // above otherwise. 6621 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6622 SINT, DAG.getConstant(53, dl, MVT::i32)); 6623 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6624 Cond, DAG.getConstant(1, dl, MVT::i64)); 6625 Cond = DAG.getSetCC(dl, MVT::i32, 6626 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6627 6628 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6629 } 6630 6631 ReuseLoadInfo RLI; 6632 SDValue Bits; 6633 6634 MachineFunction &MF = DAG.getMachineFunction(); 6635 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6636 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6637 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6638 RLI.Ranges); 6639 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6640 } else if (Subtarget.hasLFIWAX() && 6641 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6642 MachineMemOperand *MMO = 6643 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6644 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6645 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6646 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6647 DAG.getVTList(MVT::f64, MVT::Other), 6648 Ops, MVT::i32, MMO); 6649 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6650 } else if (Subtarget.hasFPCVT() && 6651 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6652 MachineMemOperand *MMO = 6653 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6654 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6655 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6656 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6657 DAG.getVTList(MVT::f64, MVT::Other), 6658 Ops, MVT::i32, MMO); 6659 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6660 } else if (((Subtarget.hasLFIWAX() && 6661 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6662 (Subtarget.hasFPCVT() && 6663 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6664 SINT.getOperand(0).getValueType() == MVT::i32) { 6665 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6666 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6667 6668 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6669 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6670 6671 SDValue Store = DAG.getStore( 6672 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6673 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6674 false, false, 0); 6675 6676 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6677 "Expected an i32 store"); 6678 6679 RLI.Ptr = FIdx; 6680 RLI.Chain = Store; 6681 RLI.MPI = 6682 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6683 RLI.Alignment = 4; 6684 6685 MachineMemOperand *MMO = 6686 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6687 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6688 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6689 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6690 PPCISD::LFIWZX : PPCISD::LFIWAX, 6691 dl, DAG.getVTList(MVT::f64, MVT::Other), 6692 Ops, MVT::i32, MMO); 6693 } else 6694 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6695 6696 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6697 6698 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6699 FP = DAG.getNode(ISD::FP_ROUND, dl, 6700 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6701 return FP; 6702 } 6703 6704 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6705 "Unhandled INT_TO_FP type in custom expander!"); 6706 // Since we only generate this in 64-bit mode, we can take advantage of 6707 // 64-bit registers. In particular, sign extend the input value into the 6708 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6709 // then lfd it and fcfid it. 6710 MachineFunction &MF = DAG.getMachineFunction(); 6711 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6712 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6713 6714 SDValue Ld; 6715 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6716 ReuseLoadInfo RLI; 6717 bool ReusingLoad; 6718 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6719 DAG))) { 6720 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6721 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6722 6723 SDValue Store = DAG.getStore( 6724 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6725 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6726 false, false, 0); 6727 6728 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6729 "Expected an i32 store"); 6730 6731 RLI.Ptr = FIdx; 6732 RLI.Chain = Store; 6733 RLI.MPI = 6734 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6735 RLI.Alignment = 4; 6736 } 6737 6738 MachineMemOperand *MMO = 6739 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6740 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6741 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6742 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6743 PPCISD::LFIWZX : PPCISD::LFIWAX, 6744 dl, DAG.getVTList(MVT::f64, MVT::Other), 6745 Ops, MVT::i32, MMO); 6746 if (ReusingLoad) 6747 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6748 } else { 6749 assert(Subtarget.isPPC64() && 6750 "i32->FP without LFIWAX supported only on PPC64"); 6751 6752 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6753 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6754 6755 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6756 Op.getOperand(0)); 6757 6758 // STD the extended value into the stack slot. 6759 SDValue Store = DAG.getStore( 6760 DAG.getEntryNode(), dl, Ext64, FIdx, 6761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6762 false, false, 0); 6763 6764 // Load the value as a double. 6765 Ld = DAG.getLoad( 6766 MVT::f64, dl, Store, FIdx, 6767 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6768 false, false, false, 0); 6769 } 6770 6771 // FCFID it and return it. 6772 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6773 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6774 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6775 DAG.getIntPtrConstant(0, dl)); 6776 return FP; 6777 } 6778 6779 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6780 SelectionDAG &DAG) const { 6781 SDLoc dl(Op); 6782 /* 6783 The rounding mode is in bits 30:31 of FPSR, and has the following 6784 settings: 6785 00 Round to nearest 6786 01 Round to 0 6787 10 Round to +inf 6788 11 Round to -inf 6789 6790 FLT_ROUNDS, on the other hand, expects the following: 6791 -1 Undefined 6792 0 Round to 0 6793 1 Round to nearest 6794 2 Round to +inf 6795 3 Round to -inf 6796 6797 To perform the conversion, we do: 6798 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6799 */ 6800 6801 MachineFunction &MF = DAG.getMachineFunction(); 6802 EVT VT = Op.getValueType(); 6803 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6804 6805 // Save FP Control Word to register 6806 EVT NodeTys[] = { 6807 MVT::f64, // return register 6808 MVT::Glue // unused in this context 6809 }; 6810 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6811 6812 // Save FP register to stack slot 6813 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6814 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6815 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6816 StackSlot, MachinePointerInfo(), false, false,0); 6817 6818 // Load FP Control Word from low 32 bits of stack slot. 6819 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6820 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6821 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6822 false, false, false, 0); 6823 6824 // Transform as necessary 6825 SDValue CWD1 = 6826 DAG.getNode(ISD::AND, dl, MVT::i32, 6827 CWD, DAG.getConstant(3, dl, MVT::i32)); 6828 SDValue CWD2 = 6829 DAG.getNode(ISD::SRL, dl, MVT::i32, 6830 DAG.getNode(ISD::AND, dl, MVT::i32, 6831 DAG.getNode(ISD::XOR, dl, MVT::i32, 6832 CWD, DAG.getConstant(3, dl, MVT::i32)), 6833 DAG.getConstant(3, dl, MVT::i32)), 6834 DAG.getConstant(1, dl, MVT::i32)); 6835 6836 SDValue RetVal = 6837 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6838 6839 return DAG.getNode((VT.getSizeInBits() < 16 ? 6840 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6841 } 6842 6843 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6844 EVT VT = Op.getValueType(); 6845 unsigned BitWidth = VT.getSizeInBits(); 6846 SDLoc dl(Op); 6847 assert(Op.getNumOperands() == 3 && 6848 VT == Op.getOperand(1).getValueType() && 6849 "Unexpected SHL!"); 6850 6851 // Expand into a bunch of logical ops. Note that these ops 6852 // depend on the PPC behavior for oversized shift amounts. 6853 SDValue Lo = Op.getOperand(0); 6854 SDValue Hi = Op.getOperand(1); 6855 SDValue Amt = Op.getOperand(2); 6856 EVT AmtVT = Amt.getValueType(); 6857 6858 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6859 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6860 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6861 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6862 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6863 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6864 DAG.getConstant(-BitWidth, dl, AmtVT)); 6865 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6866 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6867 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6868 SDValue OutOps[] = { OutLo, OutHi }; 6869 return DAG.getMergeValues(OutOps, dl); 6870 } 6871 6872 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6873 EVT VT = Op.getValueType(); 6874 SDLoc dl(Op); 6875 unsigned BitWidth = VT.getSizeInBits(); 6876 assert(Op.getNumOperands() == 3 && 6877 VT == Op.getOperand(1).getValueType() && 6878 "Unexpected SRL!"); 6879 6880 // Expand into a bunch of logical ops. Note that these ops 6881 // depend on the PPC behavior for oversized shift amounts. 6882 SDValue Lo = Op.getOperand(0); 6883 SDValue Hi = Op.getOperand(1); 6884 SDValue Amt = Op.getOperand(2); 6885 EVT AmtVT = Amt.getValueType(); 6886 6887 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6888 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6889 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6890 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6891 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6892 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6893 DAG.getConstant(-BitWidth, dl, AmtVT)); 6894 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6895 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6896 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6897 SDValue OutOps[] = { OutLo, OutHi }; 6898 return DAG.getMergeValues(OutOps, dl); 6899 } 6900 6901 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6902 SDLoc dl(Op); 6903 EVT VT = Op.getValueType(); 6904 unsigned BitWidth = VT.getSizeInBits(); 6905 assert(Op.getNumOperands() == 3 && 6906 VT == Op.getOperand(1).getValueType() && 6907 "Unexpected SRA!"); 6908 6909 // Expand into a bunch of logical ops, followed by a select_cc. 6910 SDValue Lo = Op.getOperand(0); 6911 SDValue Hi = Op.getOperand(1); 6912 SDValue Amt = Op.getOperand(2); 6913 EVT AmtVT = Amt.getValueType(); 6914 6915 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6916 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6917 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6918 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6919 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6920 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6921 DAG.getConstant(-BitWidth, dl, AmtVT)); 6922 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6923 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6924 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6925 Tmp4, Tmp6, ISD::SETLE); 6926 SDValue OutOps[] = { OutLo, OutHi }; 6927 return DAG.getMergeValues(OutOps, dl); 6928 } 6929 6930 //===----------------------------------------------------------------------===// 6931 // Vector related lowering. 6932 // 6933 6934 /// BuildSplatI - Build a canonical splati of Val with an element size of 6935 /// SplatSize. Cast the result to VT. 6936 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6937 SelectionDAG &DAG, const SDLoc &dl) { 6938 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6939 6940 static const MVT VTys[] = { // canonical VT to use for each size. 6941 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6942 }; 6943 6944 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6945 6946 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6947 if (Val == -1) 6948 SplatSize = 1; 6949 6950 EVT CanonicalVT = VTys[SplatSize-1]; 6951 6952 // Build a canonical splat for this value. 6953 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 6954 } 6955 6956 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6957 /// specified intrinsic ID. 6958 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 6959 const SDLoc &dl, EVT DestVT = MVT::Other) { 6960 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6961 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6962 DAG.getConstant(IID, dl, MVT::i32), Op); 6963 } 6964 6965 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6966 /// specified intrinsic ID. 6967 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6968 SelectionDAG &DAG, const SDLoc &dl, 6969 EVT DestVT = MVT::Other) { 6970 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6971 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6972 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6973 } 6974 6975 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6976 /// specified intrinsic ID. 6977 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6978 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 6979 EVT DestVT = MVT::Other) { 6980 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6981 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6982 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6983 } 6984 6985 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6986 /// amount. The result has the specified value type. 6987 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 6988 SelectionDAG &DAG, const SDLoc &dl) { 6989 // Force LHS/RHS to be the right type. 6990 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6991 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6992 6993 int Ops[16]; 6994 for (unsigned i = 0; i != 16; ++i) 6995 Ops[i] = i + Amt; 6996 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6997 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6998 } 6999 7000 // If this is a case we can't handle, return null and let the default 7001 // expansion code take care of it. If we CAN select this case, and if it 7002 // selects to a single instruction, return Op. Otherwise, if we can codegen 7003 // this case more efficiently than a constant pool load, lower it to the 7004 // sequence of ops that should be used. 7005 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7006 SelectionDAG &DAG) const { 7007 SDLoc dl(Op); 7008 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7009 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7010 7011 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7012 // We first build an i32 vector, load it into a QPX register, 7013 // then convert it to a floating-point vector and compare it 7014 // to a zero vector to get the boolean result. 7015 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7016 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7017 MachinePointerInfo PtrInfo = 7018 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7019 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7020 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7021 7022 assert(BVN->getNumOperands() == 4 && 7023 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7024 7025 bool IsConst = true; 7026 for (unsigned i = 0; i < 4; ++i) { 7027 if (BVN->getOperand(i).isUndef()) continue; 7028 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7029 IsConst = false; 7030 break; 7031 } 7032 } 7033 7034 if (IsConst) { 7035 Constant *One = 7036 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7037 Constant *NegOne = 7038 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7039 7040 Constant *CV[4]; 7041 for (unsigned i = 0; i < 4; ++i) { 7042 if (BVN->getOperand(i).isUndef()) 7043 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7044 else if (isNullConstant(BVN->getOperand(i))) 7045 CV[i] = NegOne; 7046 else 7047 CV[i] = One; 7048 } 7049 7050 Constant *CP = ConstantVector::get(CV); 7051 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7052 16 /* alignment */); 7053 7054 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7055 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7056 return DAG.getMemIntrinsicNode( 7057 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7058 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7059 } 7060 7061 SmallVector<SDValue, 4> Stores; 7062 for (unsigned i = 0; i < 4; ++i) { 7063 if (BVN->getOperand(i).isUndef()) continue; 7064 7065 unsigned Offset = 4*i; 7066 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7067 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7068 7069 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7070 if (StoreSize > 4) { 7071 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 7072 BVN->getOperand(i), Idx, 7073 PtrInfo.getWithOffset(Offset), 7074 MVT::i32, false, false, 0)); 7075 } else { 7076 SDValue StoreValue = BVN->getOperand(i); 7077 if (StoreSize < 4) 7078 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7079 7080 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 7081 StoreValue, Idx, 7082 PtrInfo.getWithOffset(Offset), 7083 false, false, 0)); 7084 } 7085 } 7086 7087 SDValue StoreChain; 7088 if (!Stores.empty()) 7089 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7090 else 7091 StoreChain = DAG.getEntryNode(); 7092 7093 // Now load from v4i32 into the QPX register; this will extend it to 7094 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7095 // is typed as v4f64 because the QPX register integer states are not 7096 // explicitly represented. 7097 7098 SDValue Ops[] = {StoreChain, 7099 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7100 FIdx}; 7101 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7102 7103 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7104 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7105 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7106 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7107 LoadedVect); 7108 7109 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7110 7111 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7112 } 7113 7114 // All other QPX vectors are handled by generic code. 7115 if (Subtarget.hasQPX()) 7116 return SDValue(); 7117 7118 // Check if this is a splat of a constant value. 7119 APInt APSplatBits, APSplatUndef; 7120 unsigned SplatBitSize; 7121 bool HasAnyUndefs; 7122 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7123 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7124 SplatBitSize > 32) 7125 return SDValue(); 7126 7127 unsigned SplatBits = APSplatBits.getZExtValue(); 7128 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7129 unsigned SplatSize = SplatBitSize / 8; 7130 7131 // First, handle single instruction cases. 7132 7133 // All zeros? 7134 if (SplatBits == 0) { 7135 // Canonicalize all zero vectors to be v4i32. 7136 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7137 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7138 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7139 } 7140 return Op; 7141 } 7142 7143 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7144 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7145 (32-SplatBitSize)); 7146 if (SextVal >= -16 && SextVal <= 15) 7147 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7148 7149 // Two instruction sequences. 7150 7151 // If this value is in the range [-32,30] and is even, use: 7152 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7153 // If this value is in the range [17,31] and is odd, use: 7154 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7155 // If this value is in the range [-31,-17] and is odd, use: 7156 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7157 // Note the last two are three-instruction sequences. 7158 if (SextVal >= -32 && SextVal <= 31) { 7159 // To avoid having these optimizations undone by constant folding, 7160 // we convert to a pseudo that will be expanded later into one of 7161 // the above forms. 7162 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7163 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7164 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7165 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7166 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7167 if (VT == Op.getValueType()) 7168 return RetVal; 7169 else 7170 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7171 } 7172 7173 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7174 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7175 // for fneg/fabs. 7176 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7177 // Make -1 and vspltisw -1: 7178 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7179 7180 // Make the VSLW intrinsic, computing 0x8000_0000. 7181 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7182 OnesV, DAG, dl); 7183 7184 // xor by OnesV to invert it. 7185 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7186 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7187 } 7188 7189 // Check to see if this is a wide variety of vsplti*, binop self cases. 7190 static const signed char SplatCsts[] = { 7191 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7192 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7193 }; 7194 7195 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7196 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7197 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7198 int i = SplatCsts[idx]; 7199 7200 // Figure out what shift amount will be used by altivec if shifted by i in 7201 // this splat size. 7202 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7203 7204 // vsplti + shl self. 7205 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7206 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7207 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7208 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7209 Intrinsic::ppc_altivec_vslw 7210 }; 7211 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7212 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7213 } 7214 7215 // vsplti + srl self. 7216 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7217 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7218 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7219 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7220 Intrinsic::ppc_altivec_vsrw 7221 }; 7222 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7223 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7224 } 7225 7226 // vsplti + sra self. 7227 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7228 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7229 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7230 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7231 Intrinsic::ppc_altivec_vsraw 7232 }; 7233 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7234 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7235 } 7236 7237 // vsplti + rol self. 7238 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7239 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7240 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7241 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7242 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7243 Intrinsic::ppc_altivec_vrlw 7244 }; 7245 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7246 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7247 } 7248 7249 // t = vsplti c, result = vsldoi t, t, 1 7250 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7251 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7252 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7253 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7254 } 7255 // t = vsplti c, result = vsldoi t, t, 2 7256 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7257 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7258 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7259 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7260 } 7261 // t = vsplti c, result = vsldoi t, t, 3 7262 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7263 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7264 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7265 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7266 } 7267 } 7268 7269 return SDValue(); 7270 } 7271 7272 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7273 /// the specified operations to build the shuffle. 7274 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7275 SDValue RHS, SelectionDAG &DAG, 7276 const SDLoc &dl) { 7277 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7278 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7279 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7280 7281 enum { 7282 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7283 OP_VMRGHW, 7284 OP_VMRGLW, 7285 OP_VSPLTISW0, 7286 OP_VSPLTISW1, 7287 OP_VSPLTISW2, 7288 OP_VSPLTISW3, 7289 OP_VSLDOI4, 7290 OP_VSLDOI8, 7291 OP_VSLDOI12 7292 }; 7293 7294 if (OpNum == OP_COPY) { 7295 if (LHSID == (1*9+2)*9+3) return LHS; 7296 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7297 return RHS; 7298 } 7299 7300 SDValue OpLHS, OpRHS; 7301 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7302 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7303 7304 int ShufIdxs[16]; 7305 switch (OpNum) { 7306 default: llvm_unreachable("Unknown i32 permute!"); 7307 case OP_VMRGHW: 7308 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7309 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7310 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7311 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7312 break; 7313 case OP_VMRGLW: 7314 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7315 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7316 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7317 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7318 break; 7319 case OP_VSPLTISW0: 7320 for (unsigned i = 0; i != 16; ++i) 7321 ShufIdxs[i] = (i&3)+0; 7322 break; 7323 case OP_VSPLTISW1: 7324 for (unsigned i = 0; i != 16; ++i) 7325 ShufIdxs[i] = (i&3)+4; 7326 break; 7327 case OP_VSPLTISW2: 7328 for (unsigned i = 0; i != 16; ++i) 7329 ShufIdxs[i] = (i&3)+8; 7330 break; 7331 case OP_VSPLTISW3: 7332 for (unsigned i = 0; i != 16; ++i) 7333 ShufIdxs[i] = (i&3)+12; 7334 break; 7335 case OP_VSLDOI4: 7336 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7337 case OP_VSLDOI8: 7338 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7339 case OP_VSLDOI12: 7340 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7341 } 7342 EVT VT = OpLHS.getValueType(); 7343 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7344 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7345 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7346 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7347 } 7348 7349 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7350 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7351 /// return the code it can be lowered into. Worst case, it can always be 7352 /// lowered into a vperm. 7353 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7354 SelectionDAG &DAG) const { 7355 SDLoc dl(Op); 7356 SDValue V1 = Op.getOperand(0); 7357 SDValue V2 = Op.getOperand(1); 7358 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7359 EVT VT = Op.getValueType(); 7360 bool isLittleEndian = Subtarget.isLittleEndian(); 7361 7362 if (Subtarget.hasVSX()) { 7363 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7364 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7365 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7366 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7367 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7368 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7369 } 7370 } 7371 7372 if (Subtarget.hasQPX()) { 7373 if (VT.getVectorNumElements() != 4) 7374 return SDValue(); 7375 7376 if (V2.isUndef()) V2 = V1; 7377 7378 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7379 if (AlignIdx != -1) { 7380 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7381 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7382 } else if (SVOp->isSplat()) { 7383 int SplatIdx = SVOp->getSplatIndex(); 7384 if (SplatIdx >= 4) { 7385 std::swap(V1, V2); 7386 SplatIdx -= 4; 7387 } 7388 7389 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7390 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7391 } 7392 7393 // Lower this into a qvgpci/qvfperm pair. 7394 7395 // Compute the qvgpci literal 7396 unsigned idx = 0; 7397 for (unsigned i = 0; i < 4; ++i) { 7398 int m = SVOp->getMaskElt(i); 7399 unsigned mm = m >= 0 ? (unsigned) m : i; 7400 idx |= mm << (3-i)*3; 7401 } 7402 7403 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7404 DAG.getConstant(idx, dl, MVT::i32)); 7405 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7406 } 7407 7408 // Cases that are handled by instructions that take permute immediates 7409 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7410 // selected by the instruction selector. 7411 if (V2.isUndef()) { 7412 if (PPC::isSplatShuffleMask(SVOp, 1) || 7413 PPC::isSplatShuffleMask(SVOp, 2) || 7414 PPC::isSplatShuffleMask(SVOp, 4) || 7415 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7416 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7417 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7418 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7419 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7420 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7421 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7422 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7423 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7424 (Subtarget.hasP8Altivec() && ( 7425 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7426 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7427 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7428 return Op; 7429 } 7430 } 7431 7432 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7433 // and produce a fixed permutation. If any of these match, do not lower to 7434 // VPERM. 7435 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7436 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7437 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7438 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7439 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7440 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7441 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7442 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7443 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7444 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7445 (Subtarget.hasP8Altivec() && ( 7446 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7447 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7448 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7449 return Op; 7450 7451 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7452 // perfect shuffle table to emit an optimal matching sequence. 7453 ArrayRef<int> PermMask = SVOp->getMask(); 7454 7455 unsigned PFIndexes[4]; 7456 bool isFourElementShuffle = true; 7457 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7458 unsigned EltNo = 8; // Start out undef. 7459 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7460 if (PermMask[i*4+j] < 0) 7461 continue; // Undef, ignore it. 7462 7463 unsigned ByteSource = PermMask[i*4+j]; 7464 if ((ByteSource & 3) != j) { 7465 isFourElementShuffle = false; 7466 break; 7467 } 7468 7469 if (EltNo == 8) { 7470 EltNo = ByteSource/4; 7471 } else if (EltNo != ByteSource/4) { 7472 isFourElementShuffle = false; 7473 break; 7474 } 7475 } 7476 PFIndexes[i] = EltNo; 7477 } 7478 7479 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7480 // perfect shuffle vector to determine if it is cost effective to do this as 7481 // discrete instructions, or whether we should use a vperm. 7482 // For now, we skip this for little endian until such time as we have a 7483 // little-endian perfect shuffle table. 7484 if (isFourElementShuffle && !isLittleEndian) { 7485 // Compute the index in the perfect shuffle table. 7486 unsigned PFTableIndex = 7487 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7488 7489 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7490 unsigned Cost = (PFEntry >> 30); 7491 7492 // Determining when to avoid vperm is tricky. Many things affect the cost 7493 // of vperm, particularly how many times the perm mask needs to be computed. 7494 // For example, if the perm mask can be hoisted out of a loop or is already 7495 // used (perhaps because there are multiple permutes with the same shuffle 7496 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7497 // the loop requires an extra register. 7498 // 7499 // As a compromise, we only emit discrete instructions if the shuffle can be 7500 // generated in 3 or fewer operations. When we have loop information 7501 // available, if this block is within a loop, we should avoid using vperm 7502 // for 3-operation perms and use a constant pool load instead. 7503 if (Cost < 3) 7504 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7505 } 7506 7507 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7508 // vector that will get spilled to the constant pool. 7509 if (V2.isUndef()) V2 = V1; 7510 7511 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7512 // that it is in input element units, not in bytes. Convert now. 7513 7514 // For little endian, the order of the input vectors is reversed, and 7515 // the permutation mask is complemented with respect to 31. This is 7516 // necessary to produce proper semantics with the big-endian-biased vperm 7517 // instruction. 7518 EVT EltVT = V1.getValueType().getVectorElementType(); 7519 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7520 7521 SmallVector<SDValue, 16> ResultMask; 7522 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7523 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7524 7525 for (unsigned j = 0; j != BytesPerElement; ++j) 7526 if (isLittleEndian) 7527 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7528 dl, MVT::i32)); 7529 else 7530 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7531 MVT::i32)); 7532 } 7533 7534 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7535 if (isLittleEndian) 7536 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7537 V2, V1, VPermMask); 7538 else 7539 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7540 V1, V2, VPermMask); 7541 } 7542 7543 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7544 /// vector comparison. If it is, return true and fill in Opc/isDot with 7545 /// information about the intrinsic. 7546 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7547 bool &isDot, const PPCSubtarget &Subtarget) { 7548 unsigned IntrinsicID = 7549 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7550 CompareOpc = -1; 7551 isDot = false; 7552 switch (IntrinsicID) { 7553 default: return false; 7554 // Comparison predicates. 7555 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7556 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7557 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7558 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7559 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7560 case Intrinsic::ppc_altivec_vcmpequd_p: 7561 if (Subtarget.hasP8Altivec()) { 7562 CompareOpc = 199; 7563 isDot = 1; 7564 } else 7565 return false; 7566 7567 break; 7568 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7569 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7570 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7571 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7572 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7573 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7574 if (Subtarget.hasP8Altivec()) { 7575 CompareOpc = 967; 7576 isDot = 1; 7577 } else 7578 return false; 7579 7580 break; 7581 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7582 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7583 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7584 case Intrinsic::ppc_altivec_vcmpgtud_p: 7585 if (Subtarget.hasP8Altivec()) { 7586 CompareOpc = 711; 7587 isDot = 1; 7588 } else 7589 return false; 7590 7591 break; 7592 // VSX predicate comparisons use the same infrastructure 7593 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7594 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7595 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7596 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7597 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7598 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7599 if (Subtarget.hasVSX()) { 7600 switch (IntrinsicID) { 7601 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7602 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7603 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7604 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7605 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7606 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7607 } 7608 isDot = 1; 7609 } 7610 else 7611 return false; 7612 7613 break; 7614 7615 // Normal Comparisons. 7616 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7617 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7618 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7619 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7620 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7621 case Intrinsic::ppc_altivec_vcmpequd: 7622 if (Subtarget.hasP8Altivec()) { 7623 CompareOpc = 199; 7624 isDot = 0; 7625 } else 7626 return false; 7627 7628 break; 7629 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7630 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7631 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7632 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7633 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7634 case Intrinsic::ppc_altivec_vcmpgtsd: 7635 if (Subtarget.hasP8Altivec()) { 7636 CompareOpc = 967; 7637 isDot = 0; 7638 } else 7639 return false; 7640 7641 break; 7642 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7643 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7644 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7645 case Intrinsic::ppc_altivec_vcmpgtud: 7646 if (Subtarget.hasP8Altivec()) { 7647 CompareOpc = 711; 7648 isDot = 0; 7649 } else 7650 return false; 7651 7652 break; 7653 } 7654 return true; 7655 } 7656 7657 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7658 /// lower, do it, otherwise return null. 7659 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7660 SelectionDAG &DAG) const { 7661 unsigned IntrinsicID = 7662 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7663 7664 if (IntrinsicID == Intrinsic::thread_pointer) { 7665 // Reads the thread pointer register, used for __builtin_thread_pointer. 7666 bool is64bit = Subtarget.isPPC64(); 7667 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7668 is64bit ? MVT::i64 : MVT::i32); 7669 } 7670 7671 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7672 // opcode number of the comparison. 7673 SDLoc dl(Op); 7674 int CompareOpc; 7675 bool isDot; 7676 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7677 return SDValue(); // Don't custom lower most intrinsics. 7678 7679 // If this is a non-dot comparison, make the VCMP node and we are done. 7680 if (!isDot) { 7681 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7682 Op.getOperand(1), Op.getOperand(2), 7683 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7684 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7685 } 7686 7687 // Create the PPCISD altivec 'dot' comparison node. 7688 SDValue Ops[] = { 7689 Op.getOperand(2), // LHS 7690 Op.getOperand(3), // RHS 7691 DAG.getConstant(CompareOpc, dl, MVT::i32) 7692 }; 7693 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7694 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7695 7696 // Now that we have the comparison, emit a copy from the CR to a GPR. 7697 // This is flagged to the above dot comparison. 7698 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7699 DAG.getRegister(PPC::CR6, MVT::i32), 7700 CompNode.getValue(1)); 7701 7702 // Unpack the result based on how the target uses it. 7703 unsigned BitNo; // Bit # of CR6. 7704 bool InvertBit; // Invert result? 7705 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7706 default: // Can't happen, don't crash on invalid number though. 7707 case 0: // Return the value of the EQ bit of CR6. 7708 BitNo = 0; InvertBit = false; 7709 break; 7710 case 1: // Return the inverted value of the EQ bit of CR6. 7711 BitNo = 0; InvertBit = true; 7712 break; 7713 case 2: // Return the value of the LT bit of CR6. 7714 BitNo = 2; InvertBit = false; 7715 break; 7716 case 3: // Return the inverted value of the LT bit of CR6. 7717 BitNo = 2; InvertBit = true; 7718 break; 7719 } 7720 7721 // Shift the bit into the low position. 7722 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7723 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7724 // Isolate the bit. 7725 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7726 DAG.getConstant(1, dl, MVT::i32)); 7727 7728 // If we are supposed to, toggle the bit. 7729 if (InvertBit) 7730 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7731 DAG.getConstant(1, dl, MVT::i32)); 7732 return Flags; 7733 } 7734 7735 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7736 SelectionDAG &DAG) const { 7737 SDLoc dl(Op); 7738 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7739 // instructions), but for smaller types, we need to first extend up to v2i32 7740 // before doing going farther. 7741 if (Op.getValueType() == MVT::v2i64) { 7742 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7743 if (ExtVT != MVT::v2i32) { 7744 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7745 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7746 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7747 ExtVT.getVectorElementType(), 4))); 7748 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7749 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7750 DAG.getValueType(MVT::v2i32)); 7751 } 7752 7753 return Op; 7754 } 7755 7756 return SDValue(); 7757 } 7758 7759 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7760 SelectionDAG &DAG) const { 7761 SDLoc dl(Op); 7762 // Create a stack slot that is 16-byte aligned. 7763 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7764 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7765 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7766 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7767 7768 // Store the input value into Value#0 of the stack slot. 7769 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7770 Op.getOperand(0), FIdx, MachinePointerInfo(), 7771 false, false, 0); 7772 // Load it out. 7773 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7774 false, false, false, 0); 7775 } 7776 7777 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7778 SelectionDAG &DAG) const { 7779 SDLoc dl(Op); 7780 SDNode *N = Op.getNode(); 7781 7782 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7783 "Unknown extract_vector_elt type"); 7784 7785 SDValue Value = N->getOperand(0); 7786 7787 // The first part of this is like the store lowering except that we don't 7788 // need to track the chain. 7789 7790 // The values are now known to be -1 (false) or 1 (true). To convert this 7791 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7792 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7793 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7794 7795 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7796 // understand how to form the extending load. 7797 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7798 7799 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7800 7801 // Now convert to an integer and store. 7802 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7803 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7804 Value); 7805 7806 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7807 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7808 MachinePointerInfo PtrInfo = 7809 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7810 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7811 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7812 7813 SDValue StoreChain = DAG.getEntryNode(); 7814 SDValue Ops[] = {StoreChain, 7815 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 7816 Value, FIdx}; 7817 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 7818 7819 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7820 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7821 7822 // Extract the value requested. 7823 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7824 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7825 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7826 7827 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7828 PtrInfo.getWithOffset(Offset), 7829 false, false, false, 0); 7830 7831 if (!Subtarget.useCRBits()) 7832 return IntVal; 7833 7834 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7835 } 7836 7837 /// Lowering for QPX v4i1 loads 7838 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7839 SelectionDAG &DAG) const { 7840 SDLoc dl(Op); 7841 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7842 SDValue LoadChain = LN->getChain(); 7843 SDValue BasePtr = LN->getBasePtr(); 7844 7845 if (Op.getValueType() == MVT::v4f64 || 7846 Op.getValueType() == MVT::v4f32) { 7847 EVT MemVT = LN->getMemoryVT(); 7848 unsigned Alignment = LN->getAlignment(); 7849 7850 // If this load is properly aligned, then it is legal. 7851 if (Alignment >= MemVT.getStoreSize()) 7852 return Op; 7853 7854 EVT ScalarVT = Op.getValueType().getScalarType(), 7855 ScalarMemVT = MemVT.getScalarType(); 7856 unsigned Stride = ScalarMemVT.getStoreSize(); 7857 7858 SDValue Vals[4], LoadChains[4]; 7859 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7860 SDValue Load; 7861 if (ScalarVT != ScalarMemVT) 7862 Load = 7863 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7864 BasePtr, 7865 LN->getPointerInfo().getWithOffset(Idx*Stride), 7866 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7867 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7868 LN->getAAInfo()); 7869 else 7870 Load = 7871 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7872 LN->getPointerInfo().getWithOffset(Idx*Stride), 7873 LN->isVolatile(), LN->isNonTemporal(), 7874 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7875 LN->getAAInfo()); 7876 7877 if (Idx == 0 && LN->isIndexed()) { 7878 assert(LN->getAddressingMode() == ISD::PRE_INC && 7879 "Unknown addressing mode on vector load"); 7880 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7881 LN->getAddressingMode()); 7882 } 7883 7884 Vals[Idx] = Load; 7885 LoadChains[Idx] = Load.getValue(1); 7886 7887 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7888 DAG.getConstant(Stride, dl, 7889 BasePtr.getValueType())); 7890 } 7891 7892 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7893 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 7894 7895 if (LN->isIndexed()) { 7896 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7897 return DAG.getMergeValues(RetOps, dl); 7898 } 7899 7900 SDValue RetOps[] = { Value, TF }; 7901 return DAG.getMergeValues(RetOps, dl); 7902 } 7903 7904 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7905 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7906 7907 // To lower v4i1 from a byte array, we load the byte elements of the 7908 // vector and then reuse the BUILD_VECTOR logic. 7909 7910 SDValue VectElmts[4], VectElmtChains[4]; 7911 for (unsigned i = 0; i < 4; ++i) { 7912 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7913 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7914 7915 VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 7916 LN->getPointerInfo().getWithOffset(i), 7917 MVT::i8 /* memory type */, LN->isVolatile(), 7918 LN->isNonTemporal(), LN->isInvariant(), 7919 1 /* alignment */, LN->getAAInfo()); 7920 VectElmtChains[i] = VectElmts[i].getValue(1); 7921 } 7922 7923 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7924 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 7925 7926 SDValue RVals[] = { Value, LoadChain }; 7927 return DAG.getMergeValues(RVals, dl); 7928 } 7929 7930 /// Lowering for QPX v4i1 stores 7931 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7932 SelectionDAG &DAG) const { 7933 SDLoc dl(Op); 7934 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7935 SDValue StoreChain = SN->getChain(); 7936 SDValue BasePtr = SN->getBasePtr(); 7937 SDValue Value = SN->getValue(); 7938 7939 if (Value.getValueType() == MVT::v4f64 || 7940 Value.getValueType() == MVT::v4f32) { 7941 EVT MemVT = SN->getMemoryVT(); 7942 unsigned Alignment = SN->getAlignment(); 7943 7944 // If this store is properly aligned, then it is legal. 7945 if (Alignment >= MemVT.getStoreSize()) 7946 return Op; 7947 7948 EVT ScalarVT = Value.getValueType().getScalarType(), 7949 ScalarMemVT = MemVT.getScalarType(); 7950 unsigned Stride = ScalarMemVT.getStoreSize(); 7951 7952 SDValue Stores[4]; 7953 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7954 SDValue Ex = DAG.getNode( 7955 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7956 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7957 SDValue Store; 7958 if (ScalarVT != ScalarMemVT) 7959 Store = 7960 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7961 SN->getPointerInfo().getWithOffset(Idx*Stride), 7962 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7963 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7964 else 7965 Store = 7966 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7967 SN->getPointerInfo().getWithOffset(Idx*Stride), 7968 SN->isVolatile(), SN->isNonTemporal(), 7969 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7970 7971 if (Idx == 0 && SN->isIndexed()) { 7972 assert(SN->getAddressingMode() == ISD::PRE_INC && 7973 "Unknown addressing mode on vector store"); 7974 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7975 SN->getAddressingMode()); 7976 } 7977 7978 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7979 DAG.getConstant(Stride, dl, 7980 BasePtr.getValueType())); 7981 Stores[Idx] = Store; 7982 } 7983 7984 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7985 7986 if (SN->isIndexed()) { 7987 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7988 return DAG.getMergeValues(RetOps, dl); 7989 } 7990 7991 return TF; 7992 } 7993 7994 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7995 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7996 7997 // The values are now known to be -1 (false) or 1 (true). To convert this 7998 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7999 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8000 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8001 8002 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8003 // understand how to form the extending load. 8004 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8005 8006 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8007 8008 // Now convert to an integer and store. 8009 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8010 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8011 Value); 8012 8013 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 8014 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 8015 MachinePointerInfo PtrInfo = 8016 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8017 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8018 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8019 8020 SDValue Ops[] = {StoreChain, 8021 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8022 Value, FIdx}; 8023 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8024 8025 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8026 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8027 8028 // Move data into the byte array. 8029 SDValue Loads[4], LoadChains[4]; 8030 for (unsigned i = 0; i < 4; ++i) { 8031 unsigned Offset = 4*i; 8032 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8033 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8034 8035 Loads[i] = 8036 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8037 PtrInfo.getWithOffset(Offset), false, false, false, 0); 8038 LoadChains[i] = Loads[i].getValue(1); 8039 } 8040 8041 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8042 8043 SDValue Stores[4]; 8044 for (unsigned i = 0; i < 4; ++i) { 8045 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8046 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8047 8048 Stores[i] = DAG.getTruncStore( 8049 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8050 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 8051 1 /* alignment */, SN->getAAInfo()); 8052 } 8053 8054 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8055 8056 return StoreChain; 8057 } 8058 8059 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8060 SDLoc dl(Op); 8061 if (Op.getValueType() == MVT::v4i32) { 8062 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8063 8064 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8065 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8066 8067 SDValue RHSSwap = // = vrlw RHS, 16 8068 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8069 8070 // Shrinkify inputs to v8i16. 8071 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8072 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8073 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8074 8075 // Low parts multiplied together, generating 32-bit results (we ignore the 8076 // top parts). 8077 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8078 LHS, RHS, DAG, dl, MVT::v4i32); 8079 8080 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8081 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8082 // Shift the high parts up 16 bits. 8083 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8084 Neg16, DAG, dl); 8085 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8086 } else if (Op.getValueType() == MVT::v8i16) { 8087 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8088 8089 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8090 8091 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8092 LHS, RHS, Zero, DAG, dl); 8093 } else if (Op.getValueType() == MVT::v16i8) { 8094 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8095 bool isLittleEndian = Subtarget.isLittleEndian(); 8096 8097 // Multiply the even 8-bit parts, producing 16-bit sums. 8098 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8099 LHS, RHS, DAG, dl, MVT::v8i16); 8100 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8101 8102 // Multiply the odd 8-bit parts, producing 16-bit sums. 8103 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8104 LHS, RHS, DAG, dl, MVT::v8i16); 8105 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8106 8107 // Merge the results together. Because vmuleub and vmuloub are 8108 // instructions with a big-endian bias, we must reverse the 8109 // element numbering and reverse the meaning of "odd" and "even" 8110 // when generating little endian code. 8111 int Ops[16]; 8112 for (unsigned i = 0; i != 8; ++i) { 8113 if (isLittleEndian) { 8114 Ops[i*2 ] = 2*i; 8115 Ops[i*2+1] = 2*i+16; 8116 } else { 8117 Ops[i*2 ] = 2*i+1; 8118 Ops[i*2+1] = 2*i+1+16; 8119 } 8120 } 8121 if (isLittleEndian) 8122 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8123 else 8124 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8125 } else { 8126 llvm_unreachable("Unknown mul to lower!"); 8127 } 8128 } 8129 8130 /// LowerOperation - Provide custom lowering hooks for some operations. 8131 /// 8132 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8133 switch (Op.getOpcode()) { 8134 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8135 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8136 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8137 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8138 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8139 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8140 case ISD::SETCC: return LowerSETCC(Op, DAG); 8141 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8142 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8143 case ISD::VASTART: 8144 return LowerVASTART(Op, DAG, Subtarget); 8145 8146 case ISD::VAARG: 8147 return LowerVAARG(Op, DAG, Subtarget); 8148 8149 case ISD::VACOPY: 8150 return LowerVACOPY(Op, DAG, Subtarget); 8151 8152 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 8153 case ISD::DYNAMIC_STACKALLOC: 8154 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 8155 case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget); 8156 8157 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8158 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8159 8160 case ISD::LOAD: return LowerLOAD(Op, DAG); 8161 case ISD::STORE: return LowerSTORE(Op, DAG); 8162 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8163 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8164 case ISD::FP_TO_UINT: 8165 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8166 SDLoc(Op)); 8167 case ISD::UINT_TO_FP: 8168 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8169 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8170 8171 // Lower 64-bit shifts. 8172 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8173 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8174 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8175 8176 // Vector-related lowering. 8177 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8178 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8179 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8180 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8181 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8182 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8183 case ISD::MUL: return LowerMUL(Op, DAG); 8184 8185 // For counter-based loop handling. 8186 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8187 8188 // Frame & Return address. 8189 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8190 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8191 } 8192 } 8193 8194 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8195 SmallVectorImpl<SDValue>&Results, 8196 SelectionDAG &DAG) const { 8197 SDLoc dl(N); 8198 switch (N->getOpcode()) { 8199 default: 8200 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8201 case ISD::READCYCLECOUNTER: { 8202 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8203 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8204 8205 Results.push_back(RTB); 8206 Results.push_back(RTB.getValue(1)); 8207 Results.push_back(RTB.getValue(2)); 8208 break; 8209 } 8210 case ISD::INTRINSIC_W_CHAIN: { 8211 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8212 Intrinsic::ppc_is_decremented_ctr_nonzero) 8213 break; 8214 8215 assert(N->getValueType(0) == MVT::i1 && 8216 "Unexpected result type for CTR decrement intrinsic"); 8217 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8218 N->getValueType(0)); 8219 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8220 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8221 N->getOperand(1)); 8222 8223 Results.push_back(NewInt); 8224 Results.push_back(NewInt.getValue(1)); 8225 break; 8226 } 8227 case ISD::VAARG: { 8228 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8229 return; 8230 8231 EVT VT = N->getValueType(0); 8232 8233 if (VT == MVT::i64) { 8234 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8235 8236 Results.push_back(NewNode); 8237 Results.push_back(NewNode.getValue(1)); 8238 } 8239 return; 8240 } 8241 case ISD::FP_ROUND_INREG: { 8242 assert(N->getValueType(0) == MVT::ppcf128); 8243 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8244 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8245 MVT::f64, N->getOperand(0), 8246 DAG.getIntPtrConstant(0, dl)); 8247 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8248 MVT::f64, N->getOperand(0), 8249 DAG.getIntPtrConstant(1, dl)); 8250 8251 // Add the two halves of the long double in round-to-zero mode. 8252 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8253 8254 // We know the low half is about to be thrown away, so just use something 8255 // convenient. 8256 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8257 FPreg, FPreg)); 8258 return; 8259 } 8260 case ISD::FP_TO_SINT: 8261 case ISD::FP_TO_UINT: 8262 // LowerFP_TO_INT() can only handle f32 and f64. 8263 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8264 return; 8265 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8266 return; 8267 } 8268 } 8269 8270 //===----------------------------------------------------------------------===// 8271 // Other Lowering Code 8272 //===----------------------------------------------------------------------===// 8273 8274 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8275 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8276 Function *Func = Intrinsic::getDeclaration(M, Id); 8277 return Builder.CreateCall(Func, {}); 8278 } 8279 8280 // The mappings for emitLeading/TrailingFence is taken from 8281 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8282 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8283 AtomicOrdering Ord, bool IsStore, 8284 bool IsLoad) const { 8285 if (Ord == AtomicOrdering::SequentiallyConsistent) 8286 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8287 if (isReleaseOrStronger(Ord)) 8288 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8289 return nullptr; 8290 } 8291 8292 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8293 AtomicOrdering Ord, bool IsStore, 8294 bool IsLoad) const { 8295 if (IsLoad && isAcquireOrStronger(Ord)) 8296 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8297 // FIXME: this is too conservative, a dependent branch + isync is enough. 8298 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8299 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8300 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8301 return nullptr; 8302 } 8303 8304 MachineBasicBlock * 8305 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8306 unsigned AtomicSize, 8307 unsigned BinOpcode) const { 8308 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8309 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8310 8311 auto LoadMnemonic = PPC::LDARX; 8312 auto StoreMnemonic = PPC::STDCX; 8313 switch (AtomicSize) { 8314 default: 8315 llvm_unreachable("Unexpected size of atomic entity"); 8316 case 1: 8317 LoadMnemonic = PPC::LBARX; 8318 StoreMnemonic = PPC::STBCX; 8319 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8320 break; 8321 case 2: 8322 LoadMnemonic = PPC::LHARX; 8323 StoreMnemonic = PPC::STHCX; 8324 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8325 break; 8326 case 4: 8327 LoadMnemonic = PPC::LWARX; 8328 StoreMnemonic = PPC::STWCX; 8329 break; 8330 case 8: 8331 LoadMnemonic = PPC::LDARX; 8332 StoreMnemonic = PPC::STDCX; 8333 break; 8334 } 8335 8336 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8337 MachineFunction *F = BB->getParent(); 8338 MachineFunction::iterator It = ++BB->getIterator(); 8339 8340 unsigned dest = MI->getOperand(0).getReg(); 8341 unsigned ptrA = MI->getOperand(1).getReg(); 8342 unsigned ptrB = MI->getOperand(2).getReg(); 8343 unsigned incr = MI->getOperand(3).getReg(); 8344 DebugLoc dl = MI->getDebugLoc(); 8345 8346 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8347 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8348 F->insert(It, loopMBB); 8349 F->insert(It, exitMBB); 8350 exitMBB->splice(exitMBB->begin(), BB, 8351 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8352 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8353 8354 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8355 unsigned TmpReg = (!BinOpcode) ? incr : 8356 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8357 : &PPC::GPRCRegClass); 8358 8359 // thisMBB: 8360 // ... 8361 // fallthrough --> loopMBB 8362 BB->addSuccessor(loopMBB); 8363 8364 // loopMBB: 8365 // l[wd]arx dest, ptr 8366 // add r0, dest, incr 8367 // st[wd]cx. r0, ptr 8368 // bne- loopMBB 8369 // fallthrough --> exitMBB 8370 BB = loopMBB; 8371 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8372 .addReg(ptrA).addReg(ptrB); 8373 if (BinOpcode) 8374 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8375 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8376 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8377 BuildMI(BB, dl, TII->get(PPC::BCC)) 8378 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8379 BB->addSuccessor(loopMBB); 8380 BB->addSuccessor(exitMBB); 8381 8382 // exitMBB: 8383 // ... 8384 BB = exitMBB; 8385 return BB; 8386 } 8387 8388 MachineBasicBlock * 8389 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8390 MachineBasicBlock *BB, 8391 bool is8bit, // operation 8392 unsigned BinOpcode) const { 8393 // If we support part-word atomic mnemonics, just use them 8394 if (Subtarget.hasPartwordAtomics()) 8395 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8396 8397 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8398 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8399 // In 64 bit mode we have to use 64 bits for addresses, even though the 8400 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8401 // registers without caring whether they're 32 or 64, but here we're 8402 // doing actual arithmetic on the addresses. 8403 bool is64bit = Subtarget.isPPC64(); 8404 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8405 8406 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8407 MachineFunction *F = BB->getParent(); 8408 MachineFunction::iterator It = ++BB->getIterator(); 8409 8410 unsigned dest = MI->getOperand(0).getReg(); 8411 unsigned ptrA = MI->getOperand(1).getReg(); 8412 unsigned ptrB = MI->getOperand(2).getReg(); 8413 unsigned incr = MI->getOperand(3).getReg(); 8414 DebugLoc dl = MI->getDebugLoc(); 8415 8416 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8417 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8418 F->insert(It, loopMBB); 8419 F->insert(It, exitMBB); 8420 exitMBB->splice(exitMBB->begin(), BB, 8421 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8422 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8423 8424 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8425 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8426 : &PPC::GPRCRegClass; 8427 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8428 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8429 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8430 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8431 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8432 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8433 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8434 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8435 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8436 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8437 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8438 unsigned Ptr1Reg; 8439 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8440 8441 // thisMBB: 8442 // ... 8443 // fallthrough --> loopMBB 8444 BB->addSuccessor(loopMBB); 8445 8446 // The 4-byte load must be aligned, while a char or short may be 8447 // anywhere in the word. Hence all this nasty bookkeeping code. 8448 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8449 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8450 // xori shift, shift1, 24 [16] 8451 // rlwinm ptr, ptr1, 0, 0, 29 8452 // slw incr2, incr, shift 8453 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8454 // slw mask, mask2, shift 8455 // loopMBB: 8456 // lwarx tmpDest, ptr 8457 // add tmp, tmpDest, incr2 8458 // andc tmp2, tmpDest, mask 8459 // and tmp3, tmp, mask 8460 // or tmp4, tmp3, tmp2 8461 // stwcx. tmp4, ptr 8462 // bne- loopMBB 8463 // fallthrough --> exitMBB 8464 // srw dest, tmpDest, shift 8465 if (ptrA != ZeroReg) { 8466 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8467 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8468 .addReg(ptrA).addReg(ptrB); 8469 } else { 8470 Ptr1Reg = ptrB; 8471 } 8472 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8473 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8474 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8475 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8476 if (is64bit) 8477 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8478 .addReg(Ptr1Reg).addImm(0).addImm(61); 8479 else 8480 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8481 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8482 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8483 .addReg(incr).addReg(ShiftReg); 8484 if (is8bit) 8485 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8486 else { 8487 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8488 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8489 } 8490 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8491 .addReg(Mask2Reg).addReg(ShiftReg); 8492 8493 BB = loopMBB; 8494 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8495 .addReg(ZeroReg).addReg(PtrReg); 8496 if (BinOpcode) 8497 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8498 .addReg(Incr2Reg).addReg(TmpDestReg); 8499 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8500 .addReg(TmpDestReg).addReg(MaskReg); 8501 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8502 .addReg(TmpReg).addReg(MaskReg); 8503 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8504 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8505 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8506 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8507 BuildMI(BB, dl, TII->get(PPC::BCC)) 8508 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8509 BB->addSuccessor(loopMBB); 8510 BB->addSuccessor(exitMBB); 8511 8512 // exitMBB: 8513 // ... 8514 BB = exitMBB; 8515 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8516 .addReg(ShiftReg); 8517 return BB; 8518 } 8519 8520 llvm::MachineBasicBlock* 8521 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8522 MachineBasicBlock *MBB) const { 8523 DebugLoc DL = MI->getDebugLoc(); 8524 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8525 8526 MachineFunction *MF = MBB->getParent(); 8527 MachineRegisterInfo &MRI = MF->getRegInfo(); 8528 8529 const BasicBlock *BB = MBB->getBasicBlock(); 8530 MachineFunction::iterator I = ++MBB->getIterator(); 8531 8532 // Memory Reference 8533 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8534 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8535 8536 unsigned DstReg = MI->getOperand(0).getReg(); 8537 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8538 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8539 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8540 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8541 8542 MVT PVT = getPointerTy(MF->getDataLayout()); 8543 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8544 "Invalid Pointer Size!"); 8545 // For v = setjmp(buf), we generate 8546 // 8547 // thisMBB: 8548 // SjLjSetup mainMBB 8549 // bl mainMBB 8550 // v_restore = 1 8551 // b sinkMBB 8552 // 8553 // mainMBB: 8554 // buf[LabelOffset] = LR 8555 // v_main = 0 8556 // 8557 // sinkMBB: 8558 // v = phi(main, restore) 8559 // 8560 8561 MachineBasicBlock *thisMBB = MBB; 8562 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8563 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8564 MF->insert(I, mainMBB); 8565 MF->insert(I, sinkMBB); 8566 8567 MachineInstrBuilder MIB; 8568 8569 // Transfer the remainder of BB and its successor edges to sinkMBB. 8570 sinkMBB->splice(sinkMBB->begin(), MBB, 8571 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8572 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8573 8574 // Note that the structure of the jmp_buf used here is not compatible 8575 // with that used by libc, and is not designed to be. Specifically, it 8576 // stores only those 'reserved' registers that LLVM does not otherwise 8577 // understand how to spill. Also, by convention, by the time this 8578 // intrinsic is called, Clang has already stored the frame address in the 8579 // first slot of the buffer and stack address in the third. Following the 8580 // X86 target code, we'll store the jump address in the second slot. We also 8581 // need to save the TOC pointer (R2) to handle jumps between shared 8582 // libraries, and that will be stored in the fourth slot. The thread 8583 // identifier (R13) is not affected. 8584 8585 // thisMBB: 8586 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8587 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8588 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8589 8590 // Prepare IP either in reg. 8591 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8592 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8593 unsigned BufReg = MI->getOperand(1).getReg(); 8594 8595 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8596 setUsesTOCBasePtr(*MBB->getParent()); 8597 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8598 .addReg(PPC::X2) 8599 .addImm(TOCOffset) 8600 .addReg(BufReg); 8601 MIB.setMemRefs(MMOBegin, MMOEnd); 8602 } 8603 8604 // Naked functions never have a base pointer, and so we use r1. For all 8605 // other functions, this decision must be delayed until during PEI. 8606 unsigned BaseReg; 8607 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8608 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8609 else 8610 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8611 8612 MIB = BuildMI(*thisMBB, MI, DL, 8613 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8614 .addReg(BaseReg) 8615 .addImm(BPOffset) 8616 .addReg(BufReg); 8617 MIB.setMemRefs(MMOBegin, MMOEnd); 8618 8619 // Setup 8620 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8621 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8622 MIB.addRegMask(TRI->getNoPreservedMask()); 8623 8624 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8625 8626 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8627 .addMBB(mainMBB); 8628 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8629 8630 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8631 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8632 8633 // mainMBB: 8634 // mainDstReg = 0 8635 MIB = 8636 BuildMI(mainMBB, DL, 8637 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8638 8639 // Store IP 8640 if (Subtarget.isPPC64()) { 8641 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8642 .addReg(LabelReg) 8643 .addImm(LabelOffset) 8644 .addReg(BufReg); 8645 } else { 8646 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8647 .addReg(LabelReg) 8648 .addImm(LabelOffset) 8649 .addReg(BufReg); 8650 } 8651 8652 MIB.setMemRefs(MMOBegin, MMOEnd); 8653 8654 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8655 mainMBB->addSuccessor(sinkMBB); 8656 8657 // sinkMBB: 8658 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8659 TII->get(PPC::PHI), DstReg) 8660 .addReg(mainDstReg).addMBB(mainMBB) 8661 .addReg(restoreDstReg).addMBB(thisMBB); 8662 8663 MI->eraseFromParent(); 8664 return sinkMBB; 8665 } 8666 8667 MachineBasicBlock * 8668 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8669 MachineBasicBlock *MBB) const { 8670 DebugLoc DL = MI->getDebugLoc(); 8671 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8672 8673 MachineFunction *MF = MBB->getParent(); 8674 MachineRegisterInfo &MRI = MF->getRegInfo(); 8675 8676 // Memory Reference 8677 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8678 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8679 8680 MVT PVT = getPointerTy(MF->getDataLayout()); 8681 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8682 "Invalid Pointer Size!"); 8683 8684 const TargetRegisterClass *RC = 8685 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8686 unsigned Tmp = MRI.createVirtualRegister(RC); 8687 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8688 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8689 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8690 unsigned BP = 8691 (PVT == MVT::i64) 8692 ? PPC::X30 8693 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 8694 : PPC::R30); 8695 8696 MachineInstrBuilder MIB; 8697 8698 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8699 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8700 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8701 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8702 8703 unsigned BufReg = MI->getOperand(0).getReg(); 8704 8705 // Reload FP (the jumped-to function may not have had a 8706 // frame pointer, and if so, then its r31 will be restored 8707 // as necessary). 8708 if (PVT == MVT::i64) { 8709 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8710 .addImm(0) 8711 .addReg(BufReg); 8712 } else { 8713 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8714 .addImm(0) 8715 .addReg(BufReg); 8716 } 8717 MIB.setMemRefs(MMOBegin, MMOEnd); 8718 8719 // Reload IP 8720 if (PVT == MVT::i64) { 8721 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8722 .addImm(LabelOffset) 8723 .addReg(BufReg); 8724 } else { 8725 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8726 .addImm(LabelOffset) 8727 .addReg(BufReg); 8728 } 8729 MIB.setMemRefs(MMOBegin, MMOEnd); 8730 8731 // Reload SP 8732 if (PVT == MVT::i64) { 8733 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8734 .addImm(SPOffset) 8735 .addReg(BufReg); 8736 } else { 8737 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8738 .addImm(SPOffset) 8739 .addReg(BufReg); 8740 } 8741 MIB.setMemRefs(MMOBegin, MMOEnd); 8742 8743 // Reload BP 8744 if (PVT == MVT::i64) { 8745 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8746 .addImm(BPOffset) 8747 .addReg(BufReg); 8748 } else { 8749 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8750 .addImm(BPOffset) 8751 .addReg(BufReg); 8752 } 8753 MIB.setMemRefs(MMOBegin, MMOEnd); 8754 8755 // Reload TOC 8756 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8757 setUsesTOCBasePtr(*MBB->getParent()); 8758 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8759 .addImm(TOCOffset) 8760 .addReg(BufReg); 8761 8762 MIB.setMemRefs(MMOBegin, MMOEnd); 8763 } 8764 8765 // Jump 8766 BuildMI(*MBB, MI, DL, 8767 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8768 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8769 8770 MI->eraseFromParent(); 8771 return MBB; 8772 } 8773 8774 MachineBasicBlock * 8775 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8776 MachineBasicBlock *BB) const { 8777 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8778 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8779 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8780 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8781 // Call lowering should have added an r2 operand to indicate a dependence 8782 // on the TOC base pointer value. It can't however, because there is no 8783 // way to mark the dependence as implicit there, and so the stackmap code 8784 // will confuse it with a regular operand. Instead, add the dependence 8785 // here. 8786 setUsesTOCBasePtr(*BB->getParent()); 8787 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8788 } 8789 8790 return emitPatchPoint(MI, BB); 8791 } 8792 8793 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8794 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8795 return emitEHSjLjSetJmp(MI, BB); 8796 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8797 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8798 return emitEHSjLjLongJmp(MI, BB); 8799 } 8800 8801 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8802 8803 // To "insert" these instructions we actually have to insert their 8804 // control-flow patterns. 8805 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8806 MachineFunction::iterator It = ++BB->getIterator(); 8807 8808 MachineFunction *F = BB->getParent(); 8809 8810 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8811 MI->getOpcode() == PPC::SELECT_CC_I8 || 8812 MI->getOpcode() == PPC::SELECT_I4 || 8813 MI->getOpcode() == PPC::SELECT_I8)) { 8814 SmallVector<MachineOperand, 2> Cond; 8815 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8816 MI->getOpcode() == PPC::SELECT_CC_I8) 8817 Cond.push_back(MI->getOperand(4)); 8818 else 8819 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8820 Cond.push_back(MI->getOperand(1)); 8821 8822 DebugLoc dl = MI->getDebugLoc(); 8823 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8824 Cond, MI->getOperand(2).getReg(), 8825 MI->getOperand(3).getReg()); 8826 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8827 MI->getOpcode() == PPC::SELECT_CC_I8 || 8828 MI->getOpcode() == PPC::SELECT_CC_F4 || 8829 MI->getOpcode() == PPC::SELECT_CC_F8 || 8830 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8831 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8832 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8833 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8834 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8835 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8836 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8837 MI->getOpcode() == PPC::SELECT_I4 || 8838 MI->getOpcode() == PPC::SELECT_I8 || 8839 MI->getOpcode() == PPC::SELECT_F4 || 8840 MI->getOpcode() == PPC::SELECT_F8 || 8841 MI->getOpcode() == PPC::SELECT_QFRC || 8842 MI->getOpcode() == PPC::SELECT_QSRC || 8843 MI->getOpcode() == PPC::SELECT_QBRC || 8844 MI->getOpcode() == PPC::SELECT_VRRC || 8845 MI->getOpcode() == PPC::SELECT_VSFRC || 8846 MI->getOpcode() == PPC::SELECT_VSSRC || 8847 MI->getOpcode() == PPC::SELECT_VSRC) { 8848 // The incoming instruction knows the destination vreg to set, the 8849 // condition code register to branch on, the true/false values to 8850 // select between, and a branch opcode to use. 8851 8852 // thisMBB: 8853 // ... 8854 // TrueVal = ... 8855 // cmpTY ccX, r1, r2 8856 // bCC copy1MBB 8857 // fallthrough --> copy0MBB 8858 MachineBasicBlock *thisMBB = BB; 8859 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8860 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8861 DebugLoc dl = MI->getDebugLoc(); 8862 F->insert(It, copy0MBB); 8863 F->insert(It, sinkMBB); 8864 8865 // Transfer the remainder of BB and its successor edges to sinkMBB. 8866 sinkMBB->splice(sinkMBB->begin(), BB, 8867 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8868 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8869 8870 // Next, add the true and fallthrough blocks as its successors. 8871 BB->addSuccessor(copy0MBB); 8872 BB->addSuccessor(sinkMBB); 8873 8874 if (MI->getOpcode() == PPC::SELECT_I4 || 8875 MI->getOpcode() == PPC::SELECT_I8 || 8876 MI->getOpcode() == PPC::SELECT_F4 || 8877 MI->getOpcode() == PPC::SELECT_F8 || 8878 MI->getOpcode() == PPC::SELECT_QFRC || 8879 MI->getOpcode() == PPC::SELECT_QSRC || 8880 MI->getOpcode() == PPC::SELECT_QBRC || 8881 MI->getOpcode() == PPC::SELECT_VRRC || 8882 MI->getOpcode() == PPC::SELECT_VSFRC || 8883 MI->getOpcode() == PPC::SELECT_VSSRC || 8884 MI->getOpcode() == PPC::SELECT_VSRC) { 8885 BuildMI(BB, dl, TII->get(PPC::BC)) 8886 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8887 } else { 8888 unsigned SelectPred = MI->getOperand(4).getImm(); 8889 BuildMI(BB, dl, TII->get(PPC::BCC)) 8890 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8891 } 8892 8893 // copy0MBB: 8894 // %FalseValue = ... 8895 // # fallthrough to sinkMBB 8896 BB = copy0MBB; 8897 8898 // Update machine-CFG edges 8899 BB->addSuccessor(sinkMBB); 8900 8901 // sinkMBB: 8902 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8903 // ... 8904 BB = sinkMBB; 8905 BuildMI(*BB, BB->begin(), dl, 8906 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8907 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8908 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8909 } else if (MI->getOpcode() == PPC::ReadTB) { 8910 // To read the 64-bit time-base register on a 32-bit target, we read the 8911 // two halves. Should the counter have wrapped while it was being read, we 8912 // need to try again. 8913 // ... 8914 // readLoop: 8915 // mfspr Rx,TBU # load from TBU 8916 // mfspr Ry,TB # load from TB 8917 // mfspr Rz,TBU # load from TBU 8918 // cmpw crX,Rx,Rz # check if 'old'='new' 8919 // bne readLoop # branch if they're not equal 8920 // ... 8921 8922 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8923 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8924 DebugLoc dl = MI->getDebugLoc(); 8925 F->insert(It, readMBB); 8926 F->insert(It, sinkMBB); 8927 8928 // Transfer the remainder of BB and its successor edges to sinkMBB. 8929 sinkMBB->splice(sinkMBB->begin(), BB, 8930 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8931 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8932 8933 BB->addSuccessor(readMBB); 8934 BB = readMBB; 8935 8936 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8937 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8938 unsigned LoReg = MI->getOperand(0).getReg(); 8939 unsigned HiReg = MI->getOperand(1).getReg(); 8940 8941 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8942 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8943 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8944 8945 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8946 8947 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8948 .addReg(HiReg).addReg(ReadAgainReg); 8949 BuildMI(BB, dl, TII->get(PPC::BCC)) 8950 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8951 8952 BB->addSuccessor(readMBB); 8953 BB->addSuccessor(sinkMBB); 8954 } 8955 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8956 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8957 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8958 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8959 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8960 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8961 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8962 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8963 8964 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8965 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8966 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8967 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8968 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8969 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8970 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8971 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8972 8973 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8974 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8975 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8976 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8977 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8978 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8979 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8980 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8981 8982 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8983 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8984 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8985 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8986 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8987 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8988 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8989 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8990 8991 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8992 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8993 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8994 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8995 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8996 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8997 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8998 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8999 9000 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9001 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9002 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9003 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9004 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9005 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9006 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9007 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9008 9009 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 9010 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9011 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 9012 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9013 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 9014 BB = EmitAtomicBinary(MI, BB, 4, 0); 9015 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 9016 BB = EmitAtomicBinary(MI, BB, 8, 0); 9017 9018 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9019 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9020 (Subtarget.hasPartwordAtomics() && 9021 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9022 (Subtarget.hasPartwordAtomics() && 9023 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9024 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9025 9026 auto LoadMnemonic = PPC::LDARX; 9027 auto StoreMnemonic = PPC::STDCX; 9028 switch(MI->getOpcode()) { 9029 default: 9030 llvm_unreachable("Compare and swap of unknown size"); 9031 case PPC::ATOMIC_CMP_SWAP_I8: 9032 LoadMnemonic = PPC::LBARX; 9033 StoreMnemonic = PPC::STBCX; 9034 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9035 break; 9036 case PPC::ATOMIC_CMP_SWAP_I16: 9037 LoadMnemonic = PPC::LHARX; 9038 StoreMnemonic = PPC::STHCX; 9039 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9040 break; 9041 case PPC::ATOMIC_CMP_SWAP_I32: 9042 LoadMnemonic = PPC::LWARX; 9043 StoreMnemonic = PPC::STWCX; 9044 break; 9045 case PPC::ATOMIC_CMP_SWAP_I64: 9046 LoadMnemonic = PPC::LDARX; 9047 StoreMnemonic = PPC::STDCX; 9048 break; 9049 } 9050 unsigned dest = MI->getOperand(0).getReg(); 9051 unsigned ptrA = MI->getOperand(1).getReg(); 9052 unsigned ptrB = MI->getOperand(2).getReg(); 9053 unsigned oldval = MI->getOperand(3).getReg(); 9054 unsigned newval = MI->getOperand(4).getReg(); 9055 DebugLoc dl = MI->getDebugLoc(); 9056 9057 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9058 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9059 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9060 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9061 F->insert(It, loop1MBB); 9062 F->insert(It, loop2MBB); 9063 F->insert(It, midMBB); 9064 F->insert(It, exitMBB); 9065 exitMBB->splice(exitMBB->begin(), BB, 9066 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9067 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9068 9069 // thisMBB: 9070 // ... 9071 // fallthrough --> loopMBB 9072 BB->addSuccessor(loop1MBB); 9073 9074 // loop1MBB: 9075 // l[bhwd]arx dest, ptr 9076 // cmp[wd] dest, oldval 9077 // bne- midMBB 9078 // loop2MBB: 9079 // st[bhwd]cx. newval, ptr 9080 // bne- loopMBB 9081 // b exitBB 9082 // midMBB: 9083 // st[bhwd]cx. dest, ptr 9084 // exitBB: 9085 BB = loop1MBB; 9086 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9087 .addReg(ptrA).addReg(ptrB); 9088 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9089 .addReg(oldval).addReg(dest); 9090 BuildMI(BB, dl, TII->get(PPC::BCC)) 9091 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9092 BB->addSuccessor(loop2MBB); 9093 BB->addSuccessor(midMBB); 9094 9095 BB = loop2MBB; 9096 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9097 .addReg(newval).addReg(ptrA).addReg(ptrB); 9098 BuildMI(BB, dl, TII->get(PPC::BCC)) 9099 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9100 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9101 BB->addSuccessor(loop1MBB); 9102 BB->addSuccessor(exitMBB); 9103 9104 BB = midMBB; 9105 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9106 .addReg(dest).addReg(ptrA).addReg(ptrB); 9107 BB->addSuccessor(exitMBB); 9108 9109 // exitMBB: 9110 // ... 9111 BB = exitMBB; 9112 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9113 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9114 // We must use 64-bit registers for addresses when targeting 64-bit, 9115 // since we're actually doing arithmetic on them. Other registers 9116 // can be 32-bit. 9117 bool is64bit = Subtarget.isPPC64(); 9118 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9119 9120 unsigned dest = MI->getOperand(0).getReg(); 9121 unsigned ptrA = MI->getOperand(1).getReg(); 9122 unsigned ptrB = MI->getOperand(2).getReg(); 9123 unsigned oldval = MI->getOperand(3).getReg(); 9124 unsigned newval = MI->getOperand(4).getReg(); 9125 DebugLoc dl = MI->getDebugLoc(); 9126 9127 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9128 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9129 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9130 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9131 F->insert(It, loop1MBB); 9132 F->insert(It, loop2MBB); 9133 F->insert(It, midMBB); 9134 F->insert(It, exitMBB); 9135 exitMBB->splice(exitMBB->begin(), BB, 9136 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9137 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9138 9139 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9140 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9141 : &PPC::GPRCRegClass; 9142 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9143 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9144 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 9145 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9146 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9147 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9148 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9149 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9150 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9151 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9152 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9153 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9154 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9155 unsigned Ptr1Reg; 9156 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9157 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9158 // thisMBB: 9159 // ... 9160 // fallthrough --> loopMBB 9161 BB->addSuccessor(loop1MBB); 9162 9163 // The 4-byte load must be aligned, while a char or short may be 9164 // anywhere in the word. Hence all this nasty bookkeeping code. 9165 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9166 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9167 // xori shift, shift1, 24 [16] 9168 // rlwinm ptr, ptr1, 0, 0, 29 9169 // slw newval2, newval, shift 9170 // slw oldval2, oldval,shift 9171 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9172 // slw mask, mask2, shift 9173 // and newval3, newval2, mask 9174 // and oldval3, oldval2, mask 9175 // loop1MBB: 9176 // lwarx tmpDest, ptr 9177 // and tmp, tmpDest, mask 9178 // cmpw tmp, oldval3 9179 // bne- midMBB 9180 // loop2MBB: 9181 // andc tmp2, tmpDest, mask 9182 // or tmp4, tmp2, newval3 9183 // stwcx. tmp4, ptr 9184 // bne- loop1MBB 9185 // b exitBB 9186 // midMBB: 9187 // stwcx. tmpDest, ptr 9188 // exitBB: 9189 // srw dest, tmpDest, shift 9190 if (ptrA != ZeroReg) { 9191 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9192 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9193 .addReg(ptrA).addReg(ptrB); 9194 } else { 9195 Ptr1Reg = ptrB; 9196 } 9197 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9198 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9199 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9200 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9201 if (is64bit) 9202 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9203 .addReg(Ptr1Reg).addImm(0).addImm(61); 9204 else 9205 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9206 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9207 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9208 .addReg(newval).addReg(ShiftReg); 9209 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9210 .addReg(oldval).addReg(ShiftReg); 9211 if (is8bit) 9212 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9213 else { 9214 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9215 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9216 .addReg(Mask3Reg).addImm(65535); 9217 } 9218 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9219 .addReg(Mask2Reg).addReg(ShiftReg); 9220 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9221 .addReg(NewVal2Reg).addReg(MaskReg); 9222 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9223 .addReg(OldVal2Reg).addReg(MaskReg); 9224 9225 BB = loop1MBB; 9226 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9227 .addReg(ZeroReg).addReg(PtrReg); 9228 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9229 .addReg(TmpDestReg).addReg(MaskReg); 9230 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9231 .addReg(TmpReg).addReg(OldVal3Reg); 9232 BuildMI(BB, dl, TII->get(PPC::BCC)) 9233 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9234 BB->addSuccessor(loop2MBB); 9235 BB->addSuccessor(midMBB); 9236 9237 BB = loop2MBB; 9238 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9239 .addReg(TmpDestReg).addReg(MaskReg); 9240 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9241 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9242 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9243 .addReg(ZeroReg).addReg(PtrReg); 9244 BuildMI(BB, dl, TII->get(PPC::BCC)) 9245 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9246 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9247 BB->addSuccessor(loop1MBB); 9248 BB->addSuccessor(exitMBB); 9249 9250 BB = midMBB; 9251 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9252 .addReg(ZeroReg).addReg(PtrReg); 9253 BB->addSuccessor(exitMBB); 9254 9255 // exitMBB: 9256 // ... 9257 BB = exitMBB; 9258 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9259 .addReg(ShiftReg); 9260 } else if (MI->getOpcode() == PPC::FADDrtz) { 9261 // This pseudo performs an FADD with rounding mode temporarily forced 9262 // to round-to-zero. We emit this via custom inserter since the FPSCR 9263 // is not modeled at the SelectionDAG level. 9264 unsigned Dest = MI->getOperand(0).getReg(); 9265 unsigned Src1 = MI->getOperand(1).getReg(); 9266 unsigned Src2 = MI->getOperand(2).getReg(); 9267 DebugLoc dl = MI->getDebugLoc(); 9268 9269 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9270 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9271 9272 // Save FPSCR value. 9273 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9274 9275 // Set rounding mode to round-to-zero. 9276 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9277 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9278 9279 // Perform addition. 9280 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9281 9282 // Restore FPSCR value. 9283 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9284 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9285 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9286 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9287 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9288 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9289 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9290 PPC::ANDIo8 : PPC::ANDIo; 9291 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9292 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9293 9294 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9295 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9296 &PPC::GPRCRegClass : 9297 &PPC::G8RCRegClass); 9298 9299 DebugLoc dl = MI->getDebugLoc(); 9300 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9301 .addReg(MI->getOperand(1).getReg()).addImm(1); 9302 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9303 MI->getOperand(0).getReg()) 9304 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9305 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9306 DebugLoc Dl = MI->getDebugLoc(); 9307 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9308 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9309 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9310 return BB; 9311 } else { 9312 llvm_unreachable("Unexpected instr type to insert"); 9313 } 9314 9315 MI->eraseFromParent(); // The pseudo instruction is gone now. 9316 return BB; 9317 } 9318 9319 //===----------------------------------------------------------------------===// 9320 // Target Optimization Hooks 9321 //===----------------------------------------------------------------------===// 9322 9323 static std::string getRecipOp(const char *Base, EVT VT) { 9324 std::string RecipOp(Base); 9325 if (VT.getScalarType() == MVT::f64) 9326 RecipOp += "d"; 9327 else 9328 RecipOp += "f"; 9329 9330 if (VT.isVector()) 9331 RecipOp = "vec-" + RecipOp; 9332 9333 return RecipOp; 9334 } 9335 9336 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9337 DAGCombinerInfo &DCI, 9338 unsigned &RefinementSteps, 9339 bool &UseOneConstNR) const { 9340 EVT VT = Operand.getValueType(); 9341 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9342 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9343 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9344 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9345 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9346 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9347 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9348 std::string RecipOp = getRecipOp("sqrt", VT); 9349 if (!Recips.isEnabled(RecipOp)) 9350 return SDValue(); 9351 9352 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9353 UseOneConstNR = true; 9354 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9355 } 9356 return SDValue(); 9357 } 9358 9359 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9360 DAGCombinerInfo &DCI, 9361 unsigned &RefinementSteps) const { 9362 EVT VT = Operand.getValueType(); 9363 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9364 (VT == MVT::f64 && Subtarget.hasFRE()) || 9365 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9366 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9367 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9368 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9369 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9370 std::string RecipOp = getRecipOp("div", VT); 9371 if (!Recips.isEnabled(RecipOp)) 9372 return SDValue(); 9373 9374 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9375 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9376 } 9377 return SDValue(); 9378 } 9379 9380 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9381 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9382 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9383 // enabled for division), this functionality is redundant with the default 9384 // combiner logic (once the division -> reciprocal/multiply transformation 9385 // has taken place). As a result, this matters more for older cores than for 9386 // newer ones. 9387 9388 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9389 // reciprocal if there are two or more FDIVs (for embedded cores with only 9390 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9391 switch (Subtarget.getDarwinDirective()) { 9392 default: 9393 return 3; 9394 case PPC::DIR_440: 9395 case PPC::DIR_A2: 9396 case PPC::DIR_E500mc: 9397 case PPC::DIR_E5500: 9398 return 2; 9399 } 9400 } 9401 9402 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9403 // collapsed, and so we need to look through chains of them. 9404 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9405 int64_t& Offset, SelectionDAG &DAG) { 9406 if (DAG.isBaseWithConstantOffset(Loc)) { 9407 Base = Loc.getOperand(0); 9408 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9409 9410 // The base might itself be a base plus an offset, and if so, accumulate 9411 // that as well. 9412 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9413 } 9414 } 9415 9416 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9417 unsigned Bytes, int Dist, 9418 SelectionDAG &DAG) { 9419 if (VT.getSizeInBits() / 8 != Bytes) 9420 return false; 9421 9422 SDValue BaseLoc = Base->getBasePtr(); 9423 if (Loc.getOpcode() == ISD::FrameIndex) { 9424 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9425 return false; 9426 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9427 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9428 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9429 int FS = MFI->getObjectSize(FI); 9430 int BFS = MFI->getObjectSize(BFI); 9431 if (FS != BFS || FS != (int)Bytes) return false; 9432 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9433 } 9434 9435 SDValue Base1 = Loc, Base2 = BaseLoc; 9436 int64_t Offset1 = 0, Offset2 = 0; 9437 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9438 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9439 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9440 return true; 9441 9442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9443 const GlobalValue *GV1 = nullptr; 9444 const GlobalValue *GV2 = nullptr; 9445 Offset1 = 0; 9446 Offset2 = 0; 9447 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9448 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9449 if (isGA1 && isGA2 && GV1 == GV2) 9450 return Offset1 == (Offset2 + Dist*Bytes); 9451 return false; 9452 } 9453 9454 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9455 // not enforce equality of the chain operands. 9456 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9457 unsigned Bytes, int Dist, 9458 SelectionDAG &DAG) { 9459 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9460 EVT VT = LS->getMemoryVT(); 9461 SDValue Loc = LS->getBasePtr(); 9462 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9463 } 9464 9465 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9466 EVT VT; 9467 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9468 default: return false; 9469 case Intrinsic::ppc_qpx_qvlfd: 9470 case Intrinsic::ppc_qpx_qvlfda: 9471 VT = MVT::v4f64; 9472 break; 9473 case Intrinsic::ppc_qpx_qvlfs: 9474 case Intrinsic::ppc_qpx_qvlfsa: 9475 VT = MVT::v4f32; 9476 break; 9477 case Intrinsic::ppc_qpx_qvlfcd: 9478 case Intrinsic::ppc_qpx_qvlfcda: 9479 VT = MVT::v2f64; 9480 break; 9481 case Intrinsic::ppc_qpx_qvlfcs: 9482 case Intrinsic::ppc_qpx_qvlfcsa: 9483 VT = MVT::v2f32; 9484 break; 9485 case Intrinsic::ppc_qpx_qvlfiwa: 9486 case Intrinsic::ppc_qpx_qvlfiwz: 9487 case Intrinsic::ppc_altivec_lvx: 9488 case Intrinsic::ppc_altivec_lvxl: 9489 case Intrinsic::ppc_vsx_lxvw4x: 9490 VT = MVT::v4i32; 9491 break; 9492 case Intrinsic::ppc_vsx_lxvd2x: 9493 VT = MVT::v2f64; 9494 break; 9495 case Intrinsic::ppc_altivec_lvebx: 9496 VT = MVT::i8; 9497 break; 9498 case Intrinsic::ppc_altivec_lvehx: 9499 VT = MVT::i16; 9500 break; 9501 case Intrinsic::ppc_altivec_lvewx: 9502 VT = MVT::i32; 9503 break; 9504 } 9505 9506 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9507 } 9508 9509 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9510 EVT VT; 9511 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9512 default: return false; 9513 case Intrinsic::ppc_qpx_qvstfd: 9514 case Intrinsic::ppc_qpx_qvstfda: 9515 VT = MVT::v4f64; 9516 break; 9517 case Intrinsic::ppc_qpx_qvstfs: 9518 case Intrinsic::ppc_qpx_qvstfsa: 9519 VT = MVT::v4f32; 9520 break; 9521 case Intrinsic::ppc_qpx_qvstfcd: 9522 case Intrinsic::ppc_qpx_qvstfcda: 9523 VT = MVT::v2f64; 9524 break; 9525 case Intrinsic::ppc_qpx_qvstfcs: 9526 case Intrinsic::ppc_qpx_qvstfcsa: 9527 VT = MVT::v2f32; 9528 break; 9529 case Intrinsic::ppc_qpx_qvstfiw: 9530 case Intrinsic::ppc_qpx_qvstfiwa: 9531 case Intrinsic::ppc_altivec_stvx: 9532 case Intrinsic::ppc_altivec_stvxl: 9533 case Intrinsic::ppc_vsx_stxvw4x: 9534 VT = MVT::v4i32; 9535 break; 9536 case Intrinsic::ppc_vsx_stxvd2x: 9537 VT = MVT::v2f64; 9538 break; 9539 case Intrinsic::ppc_altivec_stvebx: 9540 VT = MVT::i8; 9541 break; 9542 case Intrinsic::ppc_altivec_stvehx: 9543 VT = MVT::i16; 9544 break; 9545 case Intrinsic::ppc_altivec_stvewx: 9546 VT = MVT::i32; 9547 break; 9548 } 9549 9550 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9551 } 9552 9553 return false; 9554 } 9555 9556 // Return true is there is a nearyby consecutive load to the one provided 9557 // (regardless of alignment). We search up and down the chain, looking though 9558 // token factors and other loads (but nothing else). As a result, a true result 9559 // indicates that it is safe to create a new consecutive load adjacent to the 9560 // load provided. 9561 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9562 SDValue Chain = LD->getChain(); 9563 EVT VT = LD->getMemoryVT(); 9564 9565 SmallSet<SDNode *, 16> LoadRoots; 9566 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9567 SmallSet<SDNode *, 16> Visited; 9568 9569 // First, search up the chain, branching to follow all token-factor operands. 9570 // If we find a consecutive load, then we're done, otherwise, record all 9571 // nodes just above the top-level loads and token factors. 9572 while (!Queue.empty()) { 9573 SDNode *ChainNext = Queue.pop_back_val(); 9574 if (!Visited.insert(ChainNext).second) 9575 continue; 9576 9577 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9578 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9579 return true; 9580 9581 if (!Visited.count(ChainLD->getChain().getNode())) 9582 Queue.push_back(ChainLD->getChain().getNode()); 9583 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9584 for (const SDUse &O : ChainNext->ops()) 9585 if (!Visited.count(O.getNode())) 9586 Queue.push_back(O.getNode()); 9587 } else 9588 LoadRoots.insert(ChainNext); 9589 } 9590 9591 // Second, search down the chain, starting from the top-level nodes recorded 9592 // in the first phase. These top-level nodes are the nodes just above all 9593 // loads and token factors. Starting with their uses, recursively look though 9594 // all loads (just the chain uses) and token factors to find a consecutive 9595 // load. 9596 Visited.clear(); 9597 Queue.clear(); 9598 9599 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9600 IE = LoadRoots.end(); I != IE; ++I) { 9601 Queue.push_back(*I); 9602 9603 while (!Queue.empty()) { 9604 SDNode *LoadRoot = Queue.pop_back_val(); 9605 if (!Visited.insert(LoadRoot).second) 9606 continue; 9607 9608 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9609 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9610 return true; 9611 9612 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9613 UE = LoadRoot->use_end(); UI != UE; ++UI) 9614 if (((isa<MemSDNode>(*UI) && 9615 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9616 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9617 Queue.push_back(*UI); 9618 } 9619 } 9620 9621 return false; 9622 } 9623 9624 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9625 DAGCombinerInfo &DCI) const { 9626 SelectionDAG &DAG = DCI.DAG; 9627 SDLoc dl(N); 9628 9629 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9630 // If we're tracking CR bits, we need to be careful that we don't have: 9631 // trunc(binary-ops(zext(x), zext(y))) 9632 // or 9633 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9634 // such that we're unnecessarily moving things into GPRs when it would be 9635 // better to keep them in CR bits. 9636 9637 // Note that trunc here can be an actual i1 trunc, or can be the effective 9638 // truncation that comes from a setcc or select_cc. 9639 if (N->getOpcode() == ISD::TRUNCATE && 9640 N->getValueType(0) != MVT::i1) 9641 return SDValue(); 9642 9643 if (N->getOperand(0).getValueType() != MVT::i32 && 9644 N->getOperand(0).getValueType() != MVT::i64) 9645 return SDValue(); 9646 9647 if (N->getOpcode() == ISD::SETCC || 9648 N->getOpcode() == ISD::SELECT_CC) { 9649 // If we're looking at a comparison, then we need to make sure that the 9650 // high bits (all except for the first) don't matter the result. 9651 ISD::CondCode CC = 9652 cast<CondCodeSDNode>(N->getOperand( 9653 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9654 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9655 9656 if (ISD::isSignedIntSetCC(CC)) { 9657 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9658 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9659 return SDValue(); 9660 } else if (ISD::isUnsignedIntSetCC(CC)) { 9661 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9662 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9663 !DAG.MaskedValueIsZero(N->getOperand(1), 9664 APInt::getHighBitsSet(OpBits, OpBits-1))) 9665 return SDValue(); 9666 } else { 9667 // This is neither a signed nor an unsigned comparison, just make sure 9668 // that the high bits are equal. 9669 APInt Op1Zero, Op1One; 9670 APInt Op2Zero, Op2One; 9671 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9672 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9673 9674 // We don't really care about what is known about the first bit (if 9675 // anything), so clear it in all masks prior to comparing them. 9676 Op1Zero.clearBit(0); Op1One.clearBit(0); 9677 Op2Zero.clearBit(0); Op2One.clearBit(0); 9678 9679 if (Op1Zero != Op2Zero || Op1One != Op2One) 9680 return SDValue(); 9681 } 9682 } 9683 9684 // We now know that the higher-order bits are irrelevant, we just need to 9685 // make sure that all of the intermediate operations are bit operations, and 9686 // all inputs are extensions. 9687 if (N->getOperand(0).getOpcode() != ISD::AND && 9688 N->getOperand(0).getOpcode() != ISD::OR && 9689 N->getOperand(0).getOpcode() != ISD::XOR && 9690 N->getOperand(0).getOpcode() != ISD::SELECT && 9691 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9692 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9693 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9694 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9695 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9696 return SDValue(); 9697 9698 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9699 N->getOperand(1).getOpcode() != ISD::AND && 9700 N->getOperand(1).getOpcode() != ISD::OR && 9701 N->getOperand(1).getOpcode() != ISD::XOR && 9702 N->getOperand(1).getOpcode() != ISD::SELECT && 9703 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9704 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9705 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9706 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9707 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9708 return SDValue(); 9709 9710 SmallVector<SDValue, 4> Inputs; 9711 SmallVector<SDValue, 8> BinOps, PromOps; 9712 SmallPtrSet<SDNode *, 16> Visited; 9713 9714 for (unsigned i = 0; i < 2; ++i) { 9715 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9716 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9717 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9718 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9719 isa<ConstantSDNode>(N->getOperand(i))) 9720 Inputs.push_back(N->getOperand(i)); 9721 else 9722 BinOps.push_back(N->getOperand(i)); 9723 9724 if (N->getOpcode() == ISD::TRUNCATE) 9725 break; 9726 } 9727 9728 // Visit all inputs, collect all binary operations (and, or, xor and 9729 // select) that are all fed by extensions. 9730 while (!BinOps.empty()) { 9731 SDValue BinOp = BinOps.back(); 9732 BinOps.pop_back(); 9733 9734 if (!Visited.insert(BinOp.getNode()).second) 9735 continue; 9736 9737 PromOps.push_back(BinOp); 9738 9739 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9740 // The condition of the select is not promoted. 9741 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9742 continue; 9743 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9744 continue; 9745 9746 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9747 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9748 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9749 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9750 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9751 Inputs.push_back(BinOp.getOperand(i)); 9752 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9753 BinOp.getOperand(i).getOpcode() == ISD::OR || 9754 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9755 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9756 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9757 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9758 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9759 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9760 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9761 BinOps.push_back(BinOp.getOperand(i)); 9762 } else { 9763 // We have an input that is not an extension or another binary 9764 // operation; we'll abort this transformation. 9765 return SDValue(); 9766 } 9767 } 9768 } 9769 9770 // Make sure that this is a self-contained cluster of operations (which 9771 // is not quite the same thing as saying that everything has only one 9772 // use). 9773 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9774 if (isa<ConstantSDNode>(Inputs[i])) 9775 continue; 9776 9777 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9778 UE = Inputs[i].getNode()->use_end(); 9779 UI != UE; ++UI) { 9780 SDNode *User = *UI; 9781 if (User != N && !Visited.count(User)) 9782 return SDValue(); 9783 9784 // Make sure that we're not going to promote the non-output-value 9785 // operand(s) or SELECT or SELECT_CC. 9786 // FIXME: Although we could sometimes handle this, and it does occur in 9787 // practice that one of the condition inputs to the select is also one of 9788 // the outputs, we currently can't deal with this. 9789 if (User->getOpcode() == ISD::SELECT) { 9790 if (User->getOperand(0) == Inputs[i]) 9791 return SDValue(); 9792 } else if (User->getOpcode() == ISD::SELECT_CC) { 9793 if (User->getOperand(0) == Inputs[i] || 9794 User->getOperand(1) == Inputs[i]) 9795 return SDValue(); 9796 } 9797 } 9798 } 9799 9800 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9801 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9802 UE = PromOps[i].getNode()->use_end(); 9803 UI != UE; ++UI) { 9804 SDNode *User = *UI; 9805 if (User != N && !Visited.count(User)) 9806 return SDValue(); 9807 9808 // Make sure that we're not going to promote the non-output-value 9809 // operand(s) or SELECT or SELECT_CC. 9810 // FIXME: Although we could sometimes handle this, and it does occur in 9811 // practice that one of the condition inputs to the select is also one of 9812 // the outputs, we currently can't deal with this. 9813 if (User->getOpcode() == ISD::SELECT) { 9814 if (User->getOperand(0) == PromOps[i]) 9815 return SDValue(); 9816 } else if (User->getOpcode() == ISD::SELECT_CC) { 9817 if (User->getOperand(0) == PromOps[i] || 9818 User->getOperand(1) == PromOps[i]) 9819 return SDValue(); 9820 } 9821 } 9822 } 9823 9824 // Replace all inputs with the extension operand. 9825 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9826 // Constants may have users outside the cluster of to-be-promoted nodes, 9827 // and so we need to replace those as we do the promotions. 9828 if (isa<ConstantSDNode>(Inputs[i])) 9829 continue; 9830 else 9831 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9832 } 9833 9834 std::list<HandleSDNode> PromOpHandles; 9835 for (auto &PromOp : PromOps) 9836 PromOpHandles.emplace_back(PromOp); 9837 9838 // Replace all operations (these are all the same, but have a different 9839 // (i1) return type). DAG.getNode will validate that the types of 9840 // a binary operator match, so go through the list in reverse so that 9841 // we've likely promoted both operands first. Any intermediate truncations or 9842 // extensions disappear. 9843 while (!PromOpHandles.empty()) { 9844 SDValue PromOp = PromOpHandles.back().getValue(); 9845 PromOpHandles.pop_back(); 9846 9847 if (PromOp.getOpcode() == ISD::TRUNCATE || 9848 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9849 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9850 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9851 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9852 PromOp.getOperand(0).getValueType() != MVT::i1) { 9853 // The operand is not yet ready (see comment below). 9854 PromOpHandles.emplace_front(PromOp); 9855 continue; 9856 } 9857 9858 SDValue RepValue = PromOp.getOperand(0); 9859 if (isa<ConstantSDNode>(RepValue)) 9860 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9861 9862 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9863 continue; 9864 } 9865 9866 unsigned C; 9867 switch (PromOp.getOpcode()) { 9868 default: C = 0; break; 9869 case ISD::SELECT: C = 1; break; 9870 case ISD::SELECT_CC: C = 2; break; 9871 } 9872 9873 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9874 PromOp.getOperand(C).getValueType() != MVT::i1) || 9875 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9876 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9877 // The to-be-promoted operands of this node have not yet been 9878 // promoted (this should be rare because we're going through the 9879 // list backward, but if one of the operands has several users in 9880 // this cluster of to-be-promoted nodes, it is possible). 9881 PromOpHandles.emplace_front(PromOp); 9882 continue; 9883 } 9884 9885 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9886 PromOp.getNode()->op_end()); 9887 9888 // If there are any constant inputs, make sure they're replaced now. 9889 for (unsigned i = 0; i < 2; ++i) 9890 if (isa<ConstantSDNode>(Ops[C+i])) 9891 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9892 9893 DAG.ReplaceAllUsesOfValueWith(PromOp, 9894 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9895 } 9896 9897 // Now we're left with the initial truncation itself. 9898 if (N->getOpcode() == ISD::TRUNCATE) 9899 return N->getOperand(0); 9900 9901 // Otherwise, this is a comparison. The operands to be compared have just 9902 // changed type (to i1), but everything else is the same. 9903 return SDValue(N, 0); 9904 } 9905 9906 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9907 DAGCombinerInfo &DCI) const { 9908 SelectionDAG &DAG = DCI.DAG; 9909 SDLoc dl(N); 9910 9911 // If we're tracking CR bits, we need to be careful that we don't have: 9912 // zext(binary-ops(trunc(x), trunc(y))) 9913 // or 9914 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9915 // such that we're unnecessarily moving things into CR bits that can more 9916 // efficiently stay in GPRs. Note that if we're not certain that the high 9917 // bits are set as required by the final extension, we still may need to do 9918 // some masking to get the proper behavior. 9919 9920 // This same functionality is important on PPC64 when dealing with 9921 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9922 // the return values of functions. Because it is so similar, it is handled 9923 // here as well. 9924 9925 if (N->getValueType(0) != MVT::i32 && 9926 N->getValueType(0) != MVT::i64) 9927 return SDValue(); 9928 9929 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9930 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9931 return SDValue(); 9932 9933 if (N->getOperand(0).getOpcode() != ISD::AND && 9934 N->getOperand(0).getOpcode() != ISD::OR && 9935 N->getOperand(0).getOpcode() != ISD::XOR && 9936 N->getOperand(0).getOpcode() != ISD::SELECT && 9937 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9938 return SDValue(); 9939 9940 SmallVector<SDValue, 4> Inputs; 9941 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9942 SmallPtrSet<SDNode *, 16> Visited; 9943 9944 // Visit all inputs, collect all binary operations (and, or, xor and 9945 // select) that are all fed by truncations. 9946 while (!BinOps.empty()) { 9947 SDValue BinOp = BinOps.back(); 9948 BinOps.pop_back(); 9949 9950 if (!Visited.insert(BinOp.getNode()).second) 9951 continue; 9952 9953 PromOps.push_back(BinOp); 9954 9955 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9956 // The condition of the select is not promoted. 9957 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9958 continue; 9959 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9960 continue; 9961 9962 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9963 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9964 Inputs.push_back(BinOp.getOperand(i)); 9965 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9966 BinOp.getOperand(i).getOpcode() == ISD::OR || 9967 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9968 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9969 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9970 BinOps.push_back(BinOp.getOperand(i)); 9971 } else { 9972 // We have an input that is not a truncation or another binary 9973 // operation; we'll abort this transformation. 9974 return SDValue(); 9975 } 9976 } 9977 } 9978 9979 // The operands of a select that must be truncated when the select is 9980 // promoted because the operand is actually part of the to-be-promoted set. 9981 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9982 9983 // Make sure that this is a self-contained cluster of operations (which 9984 // is not quite the same thing as saying that everything has only one 9985 // use). 9986 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9987 if (isa<ConstantSDNode>(Inputs[i])) 9988 continue; 9989 9990 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9991 UE = Inputs[i].getNode()->use_end(); 9992 UI != UE; ++UI) { 9993 SDNode *User = *UI; 9994 if (User != N && !Visited.count(User)) 9995 return SDValue(); 9996 9997 // If we're going to promote the non-output-value operand(s) or SELECT or 9998 // SELECT_CC, record them for truncation. 9999 if (User->getOpcode() == ISD::SELECT) { 10000 if (User->getOperand(0) == Inputs[i]) 10001 SelectTruncOp[0].insert(std::make_pair(User, 10002 User->getOperand(0).getValueType())); 10003 } else if (User->getOpcode() == ISD::SELECT_CC) { 10004 if (User->getOperand(0) == Inputs[i]) 10005 SelectTruncOp[0].insert(std::make_pair(User, 10006 User->getOperand(0).getValueType())); 10007 if (User->getOperand(1) == Inputs[i]) 10008 SelectTruncOp[1].insert(std::make_pair(User, 10009 User->getOperand(1).getValueType())); 10010 } 10011 } 10012 } 10013 10014 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10015 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10016 UE = PromOps[i].getNode()->use_end(); 10017 UI != UE; ++UI) { 10018 SDNode *User = *UI; 10019 if (User != N && !Visited.count(User)) 10020 return SDValue(); 10021 10022 // If we're going to promote the non-output-value operand(s) or SELECT or 10023 // SELECT_CC, record them for truncation. 10024 if (User->getOpcode() == ISD::SELECT) { 10025 if (User->getOperand(0) == PromOps[i]) 10026 SelectTruncOp[0].insert(std::make_pair(User, 10027 User->getOperand(0).getValueType())); 10028 } else if (User->getOpcode() == ISD::SELECT_CC) { 10029 if (User->getOperand(0) == PromOps[i]) 10030 SelectTruncOp[0].insert(std::make_pair(User, 10031 User->getOperand(0).getValueType())); 10032 if (User->getOperand(1) == PromOps[i]) 10033 SelectTruncOp[1].insert(std::make_pair(User, 10034 User->getOperand(1).getValueType())); 10035 } 10036 } 10037 } 10038 10039 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10040 bool ReallyNeedsExt = false; 10041 if (N->getOpcode() != ISD::ANY_EXTEND) { 10042 // If all of the inputs are not already sign/zero extended, then 10043 // we'll still need to do that at the end. 10044 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10045 if (isa<ConstantSDNode>(Inputs[i])) 10046 continue; 10047 10048 unsigned OpBits = 10049 Inputs[i].getOperand(0).getValueSizeInBits(); 10050 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10051 10052 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10053 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10054 APInt::getHighBitsSet(OpBits, 10055 OpBits-PromBits))) || 10056 (N->getOpcode() == ISD::SIGN_EXTEND && 10057 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10058 (OpBits-(PromBits-1)))) { 10059 ReallyNeedsExt = true; 10060 break; 10061 } 10062 } 10063 } 10064 10065 // Replace all inputs, either with the truncation operand, or a 10066 // truncation or extension to the final output type. 10067 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10068 // Constant inputs need to be replaced with the to-be-promoted nodes that 10069 // use them because they might have users outside of the cluster of 10070 // promoted nodes. 10071 if (isa<ConstantSDNode>(Inputs[i])) 10072 continue; 10073 10074 SDValue InSrc = Inputs[i].getOperand(0); 10075 if (Inputs[i].getValueType() == N->getValueType(0)) 10076 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10077 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10078 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10079 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10080 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10081 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10082 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10083 else 10084 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10085 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10086 } 10087 10088 std::list<HandleSDNode> PromOpHandles; 10089 for (auto &PromOp : PromOps) 10090 PromOpHandles.emplace_back(PromOp); 10091 10092 // Replace all operations (these are all the same, but have a different 10093 // (promoted) return type). DAG.getNode will validate that the types of 10094 // a binary operator match, so go through the list in reverse so that 10095 // we've likely promoted both operands first. 10096 while (!PromOpHandles.empty()) { 10097 SDValue PromOp = PromOpHandles.back().getValue(); 10098 PromOpHandles.pop_back(); 10099 10100 unsigned C; 10101 switch (PromOp.getOpcode()) { 10102 default: C = 0; break; 10103 case ISD::SELECT: C = 1; break; 10104 case ISD::SELECT_CC: C = 2; break; 10105 } 10106 10107 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10108 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10109 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10110 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10111 // The to-be-promoted operands of this node have not yet been 10112 // promoted (this should be rare because we're going through the 10113 // list backward, but if one of the operands has several users in 10114 // this cluster of to-be-promoted nodes, it is possible). 10115 PromOpHandles.emplace_front(PromOp); 10116 continue; 10117 } 10118 10119 // For SELECT and SELECT_CC nodes, we do a similar check for any 10120 // to-be-promoted comparison inputs. 10121 if (PromOp.getOpcode() == ISD::SELECT || 10122 PromOp.getOpcode() == ISD::SELECT_CC) { 10123 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10124 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10125 (SelectTruncOp[1].count(PromOp.getNode()) && 10126 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10127 PromOpHandles.emplace_front(PromOp); 10128 continue; 10129 } 10130 } 10131 10132 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10133 PromOp.getNode()->op_end()); 10134 10135 // If this node has constant inputs, then they'll need to be promoted here. 10136 for (unsigned i = 0; i < 2; ++i) { 10137 if (!isa<ConstantSDNode>(Ops[C+i])) 10138 continue; 10139 if (Ops[C+i].getValueType() == N->getValueType(0)) 10140 continue; 10141 10142 if (N->getOpcode() == ISD::SIGN_EXTEND) 10143 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10144 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10145 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10146 else 10147 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10148 } 10149 10150 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10151 // truncate them again to the original value type. 10152 if (PromOp.getOpcode() == ISD::SELECT || 10153 PromOp.getOpcode() == ISD::SELECT_CC) { 10154 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10155 if (SI0 != SelectTruncOp[0].end()) 10156 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10157 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10158 if (SI1 != SelectTruncOp[1].end()) 10159 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10160 } 10161 10162 DAG.ReplaceAllUsesOfValueWith(PromOp, 10163 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10164 } 10165 10166 // Now we're left with the initial extension itself. 10167 if (!ReallyNeedsExt) 10168 return N->getOperand(0); 10169 10170 // To zero extend, just mask off everything except for the first bit (in the 10171 // i1 case). 10172 if (N->getOpcode() == ISD::ZERO_EXTEND) 10173 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10174 DAG.getConstant(APInt::getLowBitsSet( 10175 N->getValueSizeInBits(0), PromBits), 10176 dl, N->getValueType(0))); 10177 10178 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10179 "Invalid extension type"); 10180 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10181 SDValue ShiftCst = 10182 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10183 return DAG.getNode( 10184 ISD::SRA, dl, N->getValueType(0), 10185 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10186 ShiftCst); 10187 } 10188 10189 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10190 DAGCombinerInfo &DCI) const { 10191 assert((N->getOpcode() == ISD::SINT_TO_FP || 10192 N->getOpcode() == ISD::UINT_TO_FP) && 10193 "Need an int -> FP conversion node here"); 10194 10195 if (!Subtarget.has64BitSupport()) 10196 return SDValue(); 10197 10198 SelectionDAG &DAG = DCI.DAG; 10199 SDLoc dl(N); 10200 SDValue Op(N, 0); 10201 10202 // Don't handle ppc_fp128 here or i1 conversions. 10203 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10204 return SDValue(); 10205 if (Op.getOperand(0).getValueType() == MVT::i1) 10206 return SDValue(); 10207 10208 // For i32 intermediate values, unfortunately, the conversion functions 10209 // leave the upper 32 bits of the value are undefined. Within the set of 10210 // scalar instructions, we have no method for zero- or sign-extending the 10211 // value. Thus, we cannot handle i32 intermediate values here. 10212 if (Op.getOperand(0).getValueType() == MVT::i32) 10213 return SDValue(); 10214 10215 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10216 "UINT_TO_FP is supported only with FPCVT"); 10217 10218 // If we have FCFIDS, then use it when converting to single-precision. 10219 // Otherwise, convert to double-precision and then round. 10220 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10221 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10222 : PPCISD::FCFIDS) 10223 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10224 : PPCISD::FCFID); 10225 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10226 ? MVT::f32 10227 : MVT::f64; 10228 10229 // If we're converting from a float, to an int, and back to a float again, 10230 // then we don't need the store/load pair at all. 10231 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10232 Subtarget.hasFPCVT()) || 10233 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10234 SDValue Src = Op.getOperand(0).getOperand(0); 10235 if (Src.getValueType() == MVT::f32) { 10236 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10237 DCI.AddToWorklist(Src.getNode()); 10238 } else if (Src.getValueType() != MVT::f64) { 10239 // Make sure that we don't pick up a ppc_fp128 source value. 10240 return SDValue(); 10241 } 10242 10243 unsigned FCTOp = 10244 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10245 PPCISD::FCTIDUZ; 10246 10247 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10248 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10249 10250 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10251 FP = DAG.getNode(ISD::FP_ROUND, dl, 10252 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10253 DCI.AddToWorklist(FP.getNode()); 10254 } 10255 10256 return FP; 10257 } 10258 10259 return SDValue(); 10260 } 10261 10262 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10263 // builtins) into loads with swaps. 10264 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10265 DAGCombinerInfo &DCI) const { 10266 SelectionDAG &DAG = DCI.DAG; 10267 SDLoc dl(N); 10268 SDValue Chain; 10269 SDValue Base; 10270 MachineMemOperand *MMO; 10271 10272 switch (N->getOpcode()) { 10273 default: 10274 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10275 case ISD::LOAD: { 10276 LoadSDNode *LD = cast<LoadSDNode>(N); 10277 Chain = LD->getChain(); 10278 Base = LD->getBasePtr(); 10279 MMO = LD->getMemOperand(); 10280 // If the MMO suggests this isn't a load of a full vector, leave 10281 // things alone. For a built-in, we have to make the change for 10282 // correctness, so if there is a size problem that will be a bug. 10283 if (MMO->getSize() < 16) 10284 return SDValue(); 10285 break; 10286 } 10287 case ISD::INTRINSIC_W_CHAIN: { 10288 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10289 Chain = Intrin->getChain(); 10290 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10291 // us what we want. Get operand 2 instead. 10292 Base = Intrin->getOperand(2); 10293 MMO = Intrin->getMemOperand(); 10294 break; 10295 } 10296 } 10297 10298 MVT VecTy = N->getValueType(0).getSimpleVT(); 10299 SDValue LoadOps[] = { Chain, Base }; 10300 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10301 DAG.getVTList(MVT::v2f64, MVT::Other), 10302 LoadOps, MVT::v2f64, MMO); 10303 10304 DCI.AddToWorklist(Load.getNode()); 10305 Chain = Load.getValue(1); 10306 SDValue Swap = DAG.getNode( 10307 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10308 DCI.AddToWorklist(Swap.getNode()); 10309 10310 // Add a bitcast if the resulting load type doesn't match v2f64. 10311 if (VecTy != MVT::v2f64) { 10312 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10313 DCI.AddToWorklist(N.getNode()); 10314 // Package {bitcast value, swap's chain} to match Load's shape. 10315 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10316 N, Swap.getValue(1)); 10317 } 10318 10319 return Swap; 10320 } 10321 10322 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10323 // builtins) into stores with swaps. 10324 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10325 DAGCombinerInfo &DCI) const { 10326 SelectionDAG &DAG = DCI.DAG; 10327 SDLoc dl(N); 10328 SDValue Chain; 10329 SDValue Base; 10330 unsigned SrcOpnd; 10331 MachineMemOperand *MMO; 10332 10333 switch (N->getOpcode()) { 10334 default: 10335 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10336 case ISD::STORE: { 10337 StoreSDNode *ST = cast<StoreSDNode>(N); 10338 Chain = ST->getChain(); 10339 Base = ST->getBasePtr(); 10340 MMO = ST->getMemOperand(); 10341 SrcOpnd = 1; 10342 // If the MMO suggests this isn't a store of a full vector, leave 10343 // things alone. For a built-in, we have to make the change for 10344 // correctness, so if there is a size problem that will be a bug. 10345 if (MMO->getSize() < 16) 10346 return SDValue(); 10347 break; 10348 } 10349 case ISD::INTRINSIC_VOID: { 10350 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10351 Chain = Intrin->getChain(); 10352 // Intrin->getBasePtr() oddly does not get what we want. 10353 Base = Intrin->getOperand(3); 10354 MMO = Intrin->getMemOperand(); 10355 SrcOpnd = 2; 10356 break; 10357 } 10358 } 10359 10360 SDValue Src = N->getOperand(SrcOpnd); 10361 MVT VecTy = Src.getValueType().getSimpleVT(); 10362 10363 // All stores are done as v2f64 and possible bit cast. 10364 if (VecTy != MVT::v2f64) { 10365 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10366 DCI.AddToWorklist(Src.getNode()); 10367 } 10368 10369 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10370 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10371 DCI.AddToWorklist(Swap.getNode()); 10372 Chain = Swap.getValue(1); 10373 SDValue StoreOps[] = { Chain, Swap, Base }; 10374 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10375 DAG.getVTList(MVT::Other), 10376 StoreOps, VecTy, MMO); 10377 DCI.AddToWorklist(Store.getNode()); 10378 return Store; 10379 } 10380 10381 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10382 DAGCombinerInfo &DCI) const { 10383 SelectionDAG &DAG = DCI.DAG; 10384 SDLoc dl(N); 10385 switch (N->getOpcode()) { 10386 default: break; 10387 case PPCISD::SHL: 10388 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10389 return N->getOperand(0); 10390 break; 10391 case PPCISD::SRL: 10392 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10393 return N->getOperand(0); 10394 break; 10395 case PPCISD::SRA: 10396 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10397 if (C->isNullValue() || // 0 >>s V -> 0. 10398 C->isAllOnesValue()) // -1 >>s V -> -1. 10399 return N->getOperand(0); 10400 } 10401 break; 10402 case ISD::SIGN_EXTEND: 10403 case ISD::ZERO_EXTEND: 10404 case ISD::ANY_EXTEND: 10405 return DAGCombineExtBoolTrunc(N, DCI); 10406 case ISD::TRUNCATE: 10407 case ISD::SETCC: 10408 case ISD::SELECT_CC: 10409 return DAGCombineTruncBoolExt(N, DCI); 10410 case ISD::SINT_TO_FP: 10411 case ISD::UINT_TO_FP: 10412 return combineFPToIntToFP(N, DCI); 10413 case ISD::STORE: { 10414 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10415 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10416 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10417 N->getOperand(1).getValueType() == MVT::i32 && 10418 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10419 SDValue Val = N->getOperand(1).getOperand(0); 10420 if (Val.getValueType() == MVT::f32) { 10421 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10422 DCI.AddToWorklist(Val.getNode()); 10423 } 10424 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10425 DCI.AddToWorklist(Val.getNode()); 10426 10427 SDValue Ops[] = { 10428 N->getOperand(0), Val, N->getOperand(2), 10429 DAG.getValueType(N->getOperand(1).getValueType()) 10430 }; 10431 10432 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10433 DAG.getVTList(MVT::Other), Ops, 10434 cast<StoreSDNode>(N)->getMemoryVT(), 10435 cast<StoreSDNode>(N)->getMemOperand()); 10436 DCI.AddToWorklist(Val.getNode()); 10437 return Val; 10438 } 10439 10440 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10441 if (cast<StoreSDNode>(N)->isUnindexed() && 10442 N->getOperand(1).getOpcode() == ISD::BSWAP && 10443 N->getOperand(1).getNode()->hasOneUse() && 10444 (N->getOperand(1).getValueType() == MVT::i32 || 10445 N->getOperand(1).getValueType() == MVT::i16 || 10446 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10447 N->getOperand(1).getValueType() == MVT::i64))) { 10448 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10449 // Do an any-extend to 32-bits if this is a half-word input. 10450 if (BSwapOp.getValueType() == MVT::i16) 10451 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10452 10453 SDValue Ops[] = { 10454 N->getOperand(0), BSwapOp, N->getOperand(2), 10455 DAG.getValueType(N->getOperand(1).getValueType()) 10456 }; 10457 return 10458 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10459 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10460 cast<StoreSDNode>(N)->getMemOperand()); 10461 } 10462 10463 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10464 EVT VT = N->getOperand(1).getValueType(); 10465 if (VT.isSimple()) { 10466 MVT StoreVT = VT.getSimpleVT(); 10467 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10468 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10469 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10470 return expandVSXStoreForLE(N, DCI); 10471 } 10472 break; 10473 } 10474 case ISD::LOAD: { 10475 LoadSDNode *LD = cast<LoadSDNode>(N); 10476 EVT VT = LD->getValueType(0); 10477 10478 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10479 if (VT.isSimple()) { 10480 MVT LoadVT = VT.getSimpleVT(); 10481 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10482 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10483 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10484 return expandVSXLoadForLE(N, DCI); 10485 } 10486 10487 // We sometimes end up with a 64-bit integer load, from which we extract 10488 // two single-precision floating-point numbers. This happens with 10489 // std::complex<float>, and other similar structures, because of the way we 10490 // canonicalize structure copies. However, if we lack direct moves, 10491 // then the final bitcasts from the extracted integer values to the 10492 // floating-point numbers turn into store/load pairs. Even with direct moves, 10493 // just loading the two floating-point numbers is likely better. 10494 auto ReplaceTwoFloatLoad = [&]() { 10495 if (VT != MVT::i64) 10496 return false; 10497 10498 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10499 LD->isVolatile()) 10500 return false; 10501 10502 // We're looking for a sequence like this: 10503 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10504 // t16: i64 = srl t13, Constant:i32<32> 10505 // t17: i32 = truncate t16 10506 // t18: f32 = bitcast t17 10507 // t19: i32 = truncate t13 10508 // t20: f32 = bitcast t19 10509 10510 if (!LD->hasNUsesOfValue(2, 0)) 10511 return false; 10512 10513 auto UI = LD->use_begin(); 10514 while (UI.getUse().getResNo() != 0) ++UI; 10515 SDNode *Trunc = *UI++; 10516 while (UI.getUse().getResNo() != 0) ++UI; 10517 SDNode *RightShift = *UI; 10518 if (Trunc->getOpcode() != ISD::TRUNCATE) 10519 std::swap(Trunc, RightShift); 10520 10521 if (Trunc->getOpcode() != ISD::TRUNCATE || 10522 Trunc->getValueType(0) != MVT::i32 || 10523 !Trunc->hasOneUse()) 10524 return false; 10525 if (RightShift->getOpcode() != ISD::SRL || 10526 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10527 RightShift->getConstantOperandVal(1) != 32 || 10528 !RightShift->hasOneUse()) 10529 return false; 10530 10531 SDNode *Trunc2 = *RightShift->use_begin(); 10532 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10533 Trunc2->getValueType(0) != MVT::i32 || 10534 !Trunc2->hasOneUse()) 10535 return false; 10536 10537 SDNode *Bitcast = *Trunc->use_begin(); 10538 SDNode *Bitcast2 = *Trunc2->use_begin(); 10539 10540 if (Bitcast->getOpcode() != ISD::BITCAST || 10541 Bitcast->getValueType(0) != MVT::f32) 10542 return false; 10543 if (Bitcast2->getOpcode() != ISD::BITCAST || 10544 Bitcast2->getValueType(0) != MVT::f32) 10545 return false; 10546 10547 if (Subtarget.isLittleEndian()) 10548 std::swap(Bitcast, Bitcast2); 10549 10550 // Bitcast has the second float (in memory-layout order) and Bitcast2 10551 // has the first one. 10552 10553 SDValue BasePtr = LD->getBasePtr(); 10554 if (LD->isIndexed()) { 10555 assert(LD->getAddressingMode() == ISD::PRE_INC && 10556 "Non-pre-inc AM on PPC?"); 10557 BasePtr = 10558 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10559 LD->getOffset()); 10560 } 10561 10562 SDValue FloatLoad = 10563 DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 10564 LD->getPointerInfo(), false, LD->isNonTemporal(), 10565 LD->isInvariant(), LD->getAlignment(), LD->getAAInfo()); 10566 SDValue AddPtr = 10567 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 10568 BasePtr, DAG.getIntPtrConstant(4, dl)); 10569 SDValue FloatLoad2 = 10570 DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 10571 LD->getPointerInfo().getWithOffset(4), false, 10572 LD->isNonTemporal(), LD->isInvariant(), 10573 MinAlign(LD->getAlignment(), 4), LD->getAAInfo()); 10574 10575 if (LD->isIndexed()) { 10576 // Note that DAGCombine should re-form any pre-increment load(s) from 10577 // what is produced here if that makes sense. 10578 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 10579 } 10580 10581 DCI.CombineTo(Bitcast2, FloatLoad); 10582 DCI.CombineTo(Bitcast, FloatLoad2); 10583 10584 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 10585 SDValue(FloatLoad2.getNode(), 1)); 10586 return true; 10587 }; 10588 10589 if (ReplaceTwoFloatLoad()) 10590 return SDValue(N, 0); 10591 10592 EVT MemVT = LD->getMemoryVT(); 10593 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10594 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10595 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10596 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10597 if (LD->isUnindexed() && VT.isVector() && 10598 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10599 // P8 and later hardware should just use LOAD. 10600 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10601 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10602 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10603 LD->getAlignment() >= ScalarABIAlignment)) && 10604 LD->getAlignment() < ABIAlignment) { 10605 // This is a type-legal unaligned Altivec or QPX load. 10606 SDValue Chain = LD->getChain(); 10607 SDValue Ptr = LD->getBasePtr(); 10608 bool isLittleEndian = Subtarget.isLittleEndian(); 10609 10610 // This implements the loading of unaligned vectors as described in 10611 // the venerable Apple Velocity Engine overview. Specifically: 10612 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10613 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10614 // 10615 // The general idea is to expand a sequence of one or more unaligned 10616 // loads into an alignment-based permutation-control instruction (lvsl 10617 // or lvsr), a series of regular vector loads (which always truncate 10618 // their input address to an aligned address), and a series of 10619 // permutations. The results of these permutations are the requested 10620 // loaded values. The trick is that the last "extra" load is not taken 10621 // from the address you might suspect (sizeof(vector) bytes after the 10622 // last requested load), but rather sizeof(vector) - 1 bytes after the 10623 // last requested vector. The point of this is to avoid a page fault if 10624 // the base address happened to be aligned. This works because if the 10625 // base address is aligned, then adding less than a full vector length 10626 // will cause the last vector in the sequence to be (re)loaded. 10627 // Otherwise, the next vector will be fetched as you might suspect was 10628 // necessary. 10629 10630 // We might be able to reuse the permutation generation from 10631 // a different base address offset from this one by an aligned amount. 10632 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10633 // optimization later. 10634 Intrinsic::ID Intr, IntrLD, IntrPerm; 10635 MVT PermCntlTy, PermTy, LDTy; 10636 if (Subtarget.hasAltivec()) { 10637 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10638 Intrinsic::ppc_altivec_lvsl; 10639 IntrLD = Intrinsic::ppc_altivec_lvx; 10640 IntrPerm = Intrinsic::ppc_altivec_vperm; 10641 PermCntlTy = MVT::v16i8; 10642 PermTy = MVT::v4i32; 10643 LDTy = MVT::v4i32; 10644 } else { 10645 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10646 Intrinsic::ppc_qpx_qvlpcls; 10647 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10648 Intrinsic::ppc_qpx_qvlfs; 10649 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10650 PermCntlTy = MVT::v4f64; 10651 PermTy = MVT::v4f64; 10652 LDTy = MemVT.getSimpleVT(); 10653 } 10654 10655 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10656 10657 // Create the new MMO for the new base load. It is like the original MMO, 10658 // but represents an area in memory almost twice the vector size centered 10659 // on the original address. If the address is unaligned, we might start 10660 // reading up to (sizeof(vector)-1) bytes below the address of the 10661 // original unaligned load. 10662 MachineFunction &MF = DAG.getMachineFunction(); 10663 MachineMemOperand *BaseMMO = 10664 MF.getMachineMemOperand(LD->getMemOperand(), 10665 -(long)MemVT.getStoreSize()+1, 10666 2*MemVT.getStoreSize()-1); 10667 10668 // Create the new base load. 10669 SDValue LDXIntID = 10670 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10671 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10672 SDValue BaseLoad = 10673 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10674 DAG.getVTList(PermTy, MVT::Other), 10675 BaseLoadOps, LDTy, BaseMMO); 10676 10677 // Note that the value of IncOffset (which is provided to the next 10678 // load's pointer info offset value, and thus used to calculate the 10679 // alignment), and the value of IncValue (which is actually used to 10680 // increment the pointer value) are different! This is because we 10681 // require the next load to appear to be aligned, even though it 10682 // is actually offset from the base pointer by a lesser amount. 10683 int IncOffset = VT.getSizeInBits() / 8; 10684 int IncValue = IncOffset; 10685 10686 // Walk (both up and down) the chain looking for another load at the real 10687 // (aligned) offset (the alignment of the other load does not matter in 10688 // this case). If found, then do not use the offset reduction trick, as 10689 // that will prevent the loads from being later combined (as they would 10690 // otherwise be duplicates). 10691 if (!findConsecutiveLoad(LD, DAG)) 10692 --IncValue; 10693 10694 SDValue Increment = 10695 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10696 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10697 10698 MachineMemOperand *ExtraMMO = 10699 MF.getMachineMemOperand(LD->getMemOperand(), 10700 1, 2*MemVT.getStoreSize()-1); 10701 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10702 SDValue ExtraLoad = 10703 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10704 DAG.getVTList(PermTy, MVT::Other), 10705 ExtraLoadOps, LDTy, ExtraMMO); 10706 10707 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10708 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10709 10710 // Because vperm has a big-endian bias, we must reverse the order 10711 // of the input vectors and complement the permute control vector 10712 // when generating little endian code. We have already handled the 10713 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10714 // and ExtraLoad here. 10715 SDValue Perm; 10716 if (isLittleEndian) 10717 Perm = BuildIntrinsicOp(IntrPerm, 10718 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10719 else 10720 Perm = BuildIntrinsicOp(IntrPerm, 10721 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10722 10723 if (VT != PermTy) 10724 Perm = Subtarget.hasAltivec() ? 10725 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10726 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10727 DAG.getTargetConstant(1, dl, MVT::i64)); 10728 // second argument is 1 because this rounding 10729 // is always exact. 10730 10731 // The output of the permutation is our loaded result, the TokenFactor is 10732 // our new chain. 10733 DCI.CombineTo(N, Perm, TF); 10734 return SDValue(N, 0); 10735 } 10736 } 10737 break; 10738 case ISD::INTRINSIC_WO_CHAIN: { 10739 bool isLittleEndian = Subtarget.isLittleEndian(); 10740 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10741 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10742 : Intrinsic::ppc_altivec_lvsl); 10743 if ((IID == Intr || 10744 IID == Intrinsic::ppc_qpx_qvlpcld || 10745 IID == Intrinsic::ppc_qpx_qvlpcls) && 10746 N->getOperand(1)->getOpcode() == ISD::ADD) { 10747 SDValue Add = N->getOperand(1); 10748 10749 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10750 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10751 10752 if (DAG.MaskedValueIsZero( 10753 Add->getOperand(1), 10754 APInt::getAllOnesValue(Bits /* alignment */) 10755 .zext( 10756 Add.getValueType().getScalarType().getSizeInBits()))) { 10757 SDNode *BasePtr = Add->getOperand(0).getNode(); 10758 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10759 UE = BasePtr->use_end(); 10760 UI != UE; ++UI) { 10761 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10762 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10763 // We've found another LVSL/LVSR, and this address is an aligned 10764 // multiple of that one. The results will be the same, so use the 10765 // one we've just found instead. 10766 10767 return SDValue(*UI, 0); 10768 } 10769 } 10770 } 10771 10772 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10773 SDNode *BasePtr = Add->getOperand(0).getNode(); 10774 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10775 UE = BasePtr->use_end(); UI != UE; ++UI) { 10776 if (UI->getOpcode() == ISD::ADD && 10777 isa<ConstantSDNode>(UI->getOperand(1)) && 10778 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10779 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10780 (1ULL << Bits) == 0) { 10781 SDNode *OtherAdd = *UI; 10782 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10783 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10784 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10785 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10786 return SDValue(*VI, 0); 10787 } 10788 } 10789 } 10790 } 10791 } 10792 } 10793 } 10794 10795 break; 10796 case ISD::INTRINSIC_W_CHAIN: { 10797 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10798 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10799 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10800 default: 10801 break; 10802 case Intrinsic::ppc_vsx_lxvw4x: 10803 case Intrinsic::ppc_vsx_lxvd2x: 10804 return expandVSXLoadForLE(N, DCI); 10805 } 10806 } 10807 break; 10808 } 10809 case ISD::INTRINSIC_VOID: { 10810 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10811 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10812 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10813 default: 10814 break; 10815 case Intrinsic::ppc_vsx_stxvw4x: 10816 case Intrinsic::ppc_vsx_stxvd2x: 10817 return expandVSXStoreForLE(N, DCI); 10818 } 10819 } 10820 break; 10821 } 10822 case ISD::BSWAP: 10823 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10824 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10825 N->getOperand(0).hasOneUse() && 10826 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10827 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10828 N->getValueType(0) == MVT::i64))) { 10829 SDValue Load = N->getOperand(0); 10830 LoadSDNode *LD = cast<LoadSDNode>(Load); 10831 // Create the byte-swapping load. 10832 SDValue Ops[] = { 10833 LD->getChain(), // Chain 10834 LD->getBasePtr(), // Ptr 10835 DAG.getValueType(N->getValueType(0)) // VT 10836 }; 10837 SDValue BSLoad = 10838 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10839 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10840 MVT::i64 : MVT::i32, MVT::Other), 10841 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10842 10843 // If this is an i16 load, insert the truncate. 10844 SDValue ResVal = BSLoad; 10845 if (N->getValueType(0) == MVT::i16) 10846 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10847 10848 // First, combine the bswap away. This makes the value produced by the 10849 // load dead. 10850 DCI.CombineTo(N, ResVal); 10851 10852 // Next, combine the load away, we give it a bogus result value but a real 10853 // chain result. The result value is dead because the bswap is dead. 10854 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10855 10856 // Return N so it doesn't get rechecked! 10857 return SDValue(N, 0); 10858 } 10859 10860 break; 10861 case PPCISD::VCMP: { 10862 // If a VCMPo node already exists with exactly the same operands as this 10863 // node, use its result instead of this node (VCMPo computes both a CR6 and 10864 // a normal output). 10865 // 10866 if (!N->getOperand(0).hasOneUse() && 10867 !N->getOperand(1).hasOneUse() && 10868 !N->getOperand(2).hasOneUse()) { 10869 10870 // Scan all of the users of the LHS, looking for VCMPo's that match. 10871 SDNode *VCMPoNode = nullptr; 10872 10873 SDNode *LHSN = N->getOperand(0).getNode(); 10874 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10875 UI != E; ++UI) 10876 if (UI->getOpcode() == PPCISD::VCMPo && 10877 UI->getOperand(1) == N->getOperand(1) && 10878 UI->getOperand(2) == N->getOperand(2) && 10879 UI->getOperand(0) == N->getOperand(0)) { 10880 VCMPoNode = *UI; 10881 break; 10882 } 10883 10884 // If there is no VCMPo node, or if the flag value has a single use, don't 10885 // transform this. 10886 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10887 break; 10888 10889 // Look at the (necessarily single) use of the flag value. If it has a 10890 // chain, this transformation is more complex. Note that multiple things 10891 // could use the value result, which we should ignore. 10892 SDNode *FlagUser = nullptr; 10893 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10894 FlagUser == nullptr; ++UI) { 10895 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10896 SDNode *User = *UI; 10897 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10898 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10899 FlagUser = User; 10900 break; 10901 } 10902 } 10903 } 10904 10905 // If the user is a MFOCRF instruction, we know this is safe. 10906 // Otherwise we give up for right now. 10907 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10908 return SDValue(VCMPoNode, 0); 10909 } 10910 break; 10911 } 10912 case ISD::BRCOND: { 10913 SDValue Cond = N->getOperand(1); 10914 SDValue Target = N->getOperand(2); 10915 10916 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10917 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10918 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10919 10920 // We now need to make the intrinsic dead (it cannot be instruction 10921 // selected). 10922 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10923 assert(Cond.getNode()->hasOneUse() && 10924 "Counter decrement has more than one use"); 10925 10926 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10927 N->getOperand(0), Target); 10928 } 10929 } 10930 break; 10931 case ISD::BR_CC: { 10932 // If this is a branch on an altivec predicate comparison, lower this so 10933 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10934 // lowering is done pre-legalize, because the legalizer lowers the predicate 10935 // compare down to code that is difficult to reassemble. 10936 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10937 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10938 10939 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10940 // value. If so, pass-through the AND to get to the intrinsic. 10941 if (LHS.getOpcode() == ISD::AND && 10942 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10943 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10944 Intrinsic::ppc_is_decremented_ctr_nonzero && 10945 isa<ConstantSDNode>(LHS.getOperand(1)) && 10946 !isNullConstant(LHS.getOperand(1))) 10947 LHS = LHS.getOperand(0); 10948 10949 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10950 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10951 Intrinsic::ppc_is_decremented_ctr_nonzero && 10952 isa<ConstantSDNode>(RHS)) { 10953 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10954 "Counter decrement comparison is not EQ or NE"); 10955 10956 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10957 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10958 (CC == ISD::SETNE && !Val); 10959 10960 // We now need to make the intrinsic dead (it cannot be instruction 10961 // selected). 10962 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10963 assert(LHS.getNode()->hasOneUse() && 10964 "Counter decrement has more than one use"); 10965 10966 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10967 N->getOperand(0), N->getOperand(4)); 10968 } 10969 10970 int CompareOpc; 10971 bool isDot; 10972 10973 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10974 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10975 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10976 assert(isDot && "Can't compare against a vector result!"); 10977 10978 // If this is a comparison against something other than 0/1, then we know 10979 // that the condition is never/always true. 10980 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10981 if (Val != 0 && Val != 1) { 10982 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10983 return N->getOperand(0); 10984 // Always !=, turn it into an unconditional branch. 10985 return DAG.getNode(ISD::BR, dl, MVT::Other, 10986 N->getOperand(0), N->getOperand(4)); 10987 } 10988 10989 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10990 10991 // Create the PPCISD altivec 'dot' comparison node. 10992 SDValue Ops[] = { 10993 LHS.getOperand(2), // LHS of compare 10994 LHS.getOperand(3), // RHS of compare 10995 DAG.getConstant(CompareOpc, dl, MVT::i32) 10996 }; 10997 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10998 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10999 11000 // Unpack the result based on how the target uses it. 11001 PPC::Predicate CompOpc; 11002 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11003 default: // Can't happen, don't crash on invalid number though. 11004 case 0: // Branch on the value of the EQ bit of CR6. 11005 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11006 break; 11007 case 1: // Branch on the inverted value of the EQ bit of CR6. 11008 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11009 break; 11010 case 2: // Branch on the value of the LT bit of CR6. 11011 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11012 break; 11013 case 3: // Branch on the inverted value of the LT bit of CR6. 11014 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11015 break; 11016 } 11017 11018 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11019 DAG.getConstant(CompOpc, dl, MVT::i32), 11020 DAG.getRegister(PPC::CR6, MVT::i32), 11021 N->getOperand(4), CompNode.getValue(1)); 11022 } 11023 break; 11024 } 11025 } 11026 11027 return SDValue(); 11028 } 11029 11030 SDValue 11031 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11032 SelectionDAG &DAG, 11033 std::vector<SDNode *> *Created) const { 11034 // fold (sdiv X, pow2) 11035 EVT VT = N->getValueType(0); 11036 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11037 return SDValue(); 11038 if ((VT != MVT::i32 && VT != MVT::i64) || 11039 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11040 return SDValue(); 11041 11042 SDLoc DL(N); 11043 SDValue N0 = N->getOperand(0); 11044 11045 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11046 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11047 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11048 11049 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11050 if (Created) 11051 Created->push_back(Op.getNode()); 11052 11053 if (IsNegPow2) { 11054 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11055 if (Created) 11056 Created->push_back(Op.getNode()); 11057 } 11058 11059 return Op; 11060 } 11061 11062 //===----------------------------------------------------------------------===// 11063 // Inline Assembly Support 11064 //===----------------------------------------------------------------------===// 11065 11066 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11067 APInt &KnownZero, 11068 APInt &KnownOne, 11069 const SelectionDAG &DAG, 11070 unsigned Depth) const { 11071 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11072 switch (Op.getOpcode()) { 11073 default: break; 11074 case PPCISD::LBRX: { 11075 // lhbrx is known to have the top bits cleared out. 11076 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11077 KnownZero = 0xFFFF0000; 11078 break; 11079 } 11080 case ISD::INTRINSIC_WO_CHAIN: { 11081 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11082 default: break; 11083 case Intrinsic::ppc_altivec_vcmpbfp_p: 11084 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11085 case Intrinsic::ppc_altivec_vcmpequb_p: 11086 case Intrinsic::ppc_altivec_vcmpequh_p: 11087 case Intrinsic::ppc_altivec_vcmpequw_p: 11088 case Intrinsic::ppc_altivec_vcmpequd_p: 11089 case Intrinsic::ppc_altivec_vcmpgefp_p: 11090 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11091 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11092 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11093 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11094 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11095 case Intrinsic::ppc_altivec_vcmpgtub_p: 11096 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11097 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11098 case Intrinsic::ppc_altivec_vcmpgtud_p: 11099 KnownZero = ~1U; // All bits but the low one are known to be zero. 11100 break; 11101 } 11102 } 11103 } 11104 } 11105 11106 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11107 switch (Subtarget.getDarwinDirective()) { 11108 default: break; 11109 case PPC::DIR_970: 11110 case PPC::DIR_PWR4: 11111 case PPC::DIR_PWR5: 11112 case PPC::DIR_PWR5X: 11113 case PPC::DIR_PWR6: 11114 case PPC::DIR_PWR6X: 11115 case PPC::DIR_PWR7: 11116 case PPC::DIR_PWR8: 11117 case PPC::DIR_PWR9: { 11118 if (!ML) 11119 break; 11120 11121 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11122 11123 // For small loops (between 5 and 8 instructions), align to a 32-byte 11124 // boundary so that the entire loop fits in one instruction-cache line. 11125 uint64_t LoopSize = 0; 11126 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11127 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11128 LoopSize += TII->GetInstSizeInBytes(*J); 11129 if (LoopSize > 32) 11130 break; 11131 } 11132 11133 if (LoopSize > 16 && LoopSize <= 32) 11134 return 5; 11135 11136 break; 11137 } 11138 } 11139 11140 return TargetLowering::getPrefLoopAlignment(ML); 11141 } 11142 11143 /// getConstraintType - Given a constraint, return the type of 11144 /// constraint it is for this target. 11145 PPCTargetLowering::ConstraintType 11146 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11147 if (Constraint.size() == 1) { 11148 switch (Constraint[0]) { 11149 default: break; 11150 case 'b': 11151 case 'r': 11152 case 'f': 11153 case 'd': 11154 case 'v': 11155 case 'y': 11156 return C_RegisterClass; 11157 case 'Z': 11158 // FIXME: While Z does indicate a memory constraint, it specifically 11159 // indicates an r+r address (used in conjunction with the 'y' modifier 11160 // in the replacement string). Currently, we're forcing the base 11161 // register to be r0 in the asm printer (which is interpreted as zero) 11162 // and forming the complete address in the second register. This is 11163 // suboptimal. 11164 return C_Memory; 11165 } 11166 } else if (Constraint == "wc") { // individual CR bits. 11167 return C_RegisterClass; 11168 } else if (Constraint == "wa" || Constraint == "wd" || 11169 Constraint == "wf" || Constraint == "ws") { 11170 return C_RegisterClass; // VSX registers. 11171 } 11172 return TargetLowering::getConstraintType(Constraint); 11173 } 11174 11175 /// Examine constraint type and operand type and determine a weight value. 11176 /// This object must already have been set up with the operand type 11177 /// and the current alternative constraint selected. 11178 TargetLowering::ConstraintWeight 11179 PPCTargetLowering::getSingleConstraintMatchWeight( 11180 AsmOperandInfo &info, const char *constraint) const { 11181 ConstraintWeight weight = CW_Invalid; 11182 Value *CallOperandVal = info.CallOperandVal; 11183 // If we don't have a value, we can't do a match, 11184 // but allow it at the lowest weight. 11185 if (!CallOperandVal) 11186 return CW_Default; 11187 Type *type = CallOperandVal->getType(); 11188 11189 // Look at the constraint type. 11190 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11191 return CW_Register; // an individual CR bit. 11192 else if ((StringRef(constraint) == "wa" || 11193 StringRef(constraint) == "wd" || 11194 StringRef(constraint) == "wf") && 11195 type->isVectorTy()) 11196 return CW_Register; 11197 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11198 return CW_Register; 11199 11200 switch (*constraint) { 11201 default: 11202 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11203 break; 11204 case 'b': 11205 if (type->isIntegerTy()) 11206 weight = CW_Register; 11207 break; 11208 case 'f': 11209 if (type->isFloatTy()) 11210 weight = CW_Register; 11211 break; 11212 case 'd': 11213 if (type->isDoubleTy()) 11214 weight = CW_Register; 11215 break; 11216 case 'v': 11217 if (type->isVectorTy()) 11218 weight = CW_Register; 11219 break; 11220 case 'y': 11221 weight = CW_Register; 11222 break; 11223 case 'Z': 11224 weight = CW_Memory; 11225 break; 11226 } 11227 return weight; 11228 } 11229 11230 std::pair<unsigned, const TargetRegisterClass *> 11231 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11232 StringRef Constraint, 11233 MVT VT) const { 11234 if (Constraint.size() == 1) { 11235 // GCC RS6000 Constraint Letters 11236 switch (Constraint[0]) { 11237 case 'b': // R1-R31 11238 if (VT == MVT::i64 && Subtarget.isPPC64()) 11239 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11240 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11241 case 'r': // R0-R31 11242 if (VT == MVT::i64 && Subtarget.isPPC64()) 11243 return std::make_pair(0U, &PPC::G8RCRegClass); 11244 return std::make_pair(0U, &PPC::GPRCRegClass); 11245 // 'd' and 'f' constraints are both defined to be "the floating point 11246 // registers", where one is for 32-bit and the other for 64-bit. We don't 11247 // really care overly much here so just give them all the same reg classes. 11248 case 'd': 11249 case 'f': 11250 if (VT == MVT::f32 || VT == MVT::i32) 11251 return std::make_pair(0U, &PPC::F4RCRegClass); 11252 if (VT == MVT::f64 || VT == MVT::i64) 11253 return std::make_pair(0U, &PPC::F8RCRegClass); 11254 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11255 return std::make_pair(0U, &PPC::QFRCRegClass); 11256 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11257 return std::make_pair(0U, &PPC::QSRCRegClass); 11258 break; 11259 case 'v': 11260 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11261 return std::make_pair(0U, &PPC::QFRCRegClass); 11262 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11263 return std::make_pair(0U, &PPC::QSRCRegClass); 11264 if (Subtarget.hasAltivec()) 11265 return std::make_pair(0U, &PPC::VRRCRegClass); 11266 case 'y': // crrc 11267 return std::make_pair(0U, &PPC::CRRCRegClass); 11268 } 11269 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11270 // An individual CR bit. 11271 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11272 } else if ((Constraint == "wa" || Constraint == "wd" || 11273 Constraint == "wf") && Subtarget.hasVSX()) { 11274 return std::make_pair(0U, &PPC::VSRCRegClass); 11275 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11276 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11277 return std::make_pair(0U, &PPC::VSSRCRegClass); 11278 else 11279 return std::make_pair(0U, &PPC::VSFRCRegClass); 11280 } 11281 11282 std::pair<unsigned, const TargetRegisterClass *> R = 11283 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11284 11285 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11286 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11287 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11288 // register. 11289 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11290 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11291 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11292 PPC::GPRCRegClass.contains(R.first)) 11293 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11294 PPC::sub_32, &PPC::G8RCRegClass), 11295 &PPC::G8RCRegClass); 11296 11297 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11298 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11299 R.first = PPC::CR0; 11300 R.second = &PPC::CRRCRegClass; 11301 } 11302 11303 return R; 11304 } 11305 11306 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11307 /// vector. If it is invalid, don't add anything to Ops. 11308 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11309 std::string &Constraint, 11310 std::vector<SDValue>&Ops, 11311 SelectionDAG &DAG) const { 11312 SDValue Result; 11313 11314 // Only support length 1 constraints. 11315 if (Constraint.length() > 1) return; 11316 11317 char Letter = Constraint[0]; 11318 switch (Letter) { 11319 default: break; 11320 case 'I': 11321 case 'J': 11322 case 'K': 11323 case 'L': 11324 case 'M': 11325 case 'N': 11326 case 'O': 11327 case 'P': { 11328 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11329 if (!CST) return; // Must be an immediate to match. 11330 SDLoc dl(Op); 11331 int64_t Value = CST->getSExtValue(); 11332 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11333 // numbers are printed as such. 11334 switch (Letter) { 11335 default: llvm_unreachable("Unknown constraint letter!"); 11336 case 'I': // "I" is a signed 16-bit constant. 11337 if (isInt<16>(Value)) 11338 Result = DAG.getTargetConstant(Value, dl, TCVT); 11339 break; 11340 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11341 if (isShiftedUInt<16, 16>(Value)) 11342 Result = DAG.getTargetConstant(Value, dl, TCVT); 11343 break; 11344 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11345 if (isShiftedInt<16, 16>(Value)) 11346 Result = DAG.getTargetConstant(Value, dl, TCVT); 11347 break; 11348 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11349 if (isUInt<16>(Value)) 11350 Result = DAG.getTargetConstant(Value, dl, TCVT); 11351 break; 11352 case 'M': // "M" is a constant that is greater than 31. 11353 if (Value > 31) 11354 Result = DAG.getTargetConstant(Value, dl, TCVT); 11355 break; 11356 case 'N': // "N" is a positive constant that is an exact power of two. 11357 if (Value > 0 && isPowerOf2_64(Value)) 11358 Result = DAG.getTargetConstant(Value, dl, TCVT); 11359 break; 11360 case 'O': // "O" is the constant zero. 11361 if (Value == 0) 11362 Result = DAG.getTargetConstant(Value, dl, TCVT); 11363 break; 11364 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11365 if (isInt<16>(-Value)) 11366 Result = DAG.getTargetConstant(Value, dl, TCVT); 11367 break; 11368 } 11369 break; 11370 } 11371 } 11372 11373 if (Result.getNode()) { 11374 Ops.push_back(Result); 11375 return; 11376 } 11377 11378 // Handle standard constraint letters. 11379 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11380 } 11381 11382 // isLegalAddressingMode - Return true if the addressing mode represented 11383 // by AM is legal for this target, for a load/store of the specified type. 11384 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11385 const AddrMode &AM, Type *Ty, 11386 unsigned AS) const { 11387 // PPC does not allow r+i addressing modes for vectors! 11388 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11389 return false; 11390 11391 // PPC allows a sign-extended 16-bit immediate field. 11392 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11393 return false; 11394 11395 // No global is ever allowed as a base. 11396 if (AM.BaseGV) 11397 return false; 11398 11399 // PPC only support r+r, 11400 switch (AM.Scale) { 11401 case 0: // "r+i" or just "i", depending on HasBaseReg. 11402 break; 11403 case 1: 11404 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11405 return false; 11406 // Otherwise we have r+r or r+i. 11407 break; 11408 case 2: 11409 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11410 return false; 11411 // Allow 2*r as r+r. 11412 break; 11413 default: 11414 // No other scales are supported. 11415 return false; 11416 } 11417 11418 return true; 11419 } 11420 11421 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11422 SelectionDAG &DAG) const { 11423 MachineFunction &MF = DAG.getMachineFunction(); 11424 MachineFrameInfo *MFI = MF.getFrameInfo(); 11425 MFI->setReturnAddressIsTaken(true); 11426 11427 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11428 return SDValue(); 11429 11430 SDLoc dl(Op); 11431 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11432 11433 // Make sure the function does not optimize away the store of the RA to 11434 // the stack. 11435 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11436 FuncInfo->setLRStoreRequired(); 11437 bool isPPC64 = Subtarget.isPPC64(); 11438 auto PtrVT = getPointerTy(MF.getDataLayout()); 11439 11440 if (Depth > 0) { 11441 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11442 SDValue Offset = 11443 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11444 isPPC64 ? MVT::i64 : MVT::i32); 11445 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11446 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11447 MachinePointerInfo(), false, false, false, 0); 11448 } 11449 11450 // Just load the return address off the stack. 11451 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11452 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11453 MachinePointerInfo(), false, false, false, 0); 11454 } 11455 11456 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11457 SelectionDAG &DAG) const { 11458 SDLoc dl(Op); 11459 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11460 11461 MachineFunction &MF = DAG.getMachineFunction(); 11462 MachineFrameInfo *MFI = MF.getFrameInfo(); 11463 MFI->setFrameAddressIsTaken(true); 11464 11465 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11466 bool isPPC64 = PtrVT == MVT::i64; 11467 11468 // Naked functions never have a frame pointer, and so we use r1. For all 11469 // other functions, this decision must be delayed until during PEI. 11470 unsigned FrameReg; 11471 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11472 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11473 else 11474 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11475 11476 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11477 PtrVT); 11478 while (Depth--) 11479 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11480 FrameAddr, MachinePointerInfo(), false, false, 11481 false, 0); 11482 return FrameAddr; 11483 } 11484 11485 // FIXME? Maybe this could be a TableGen attribute on some registers and 11486 // this table could be generated automatically from RegInfo. 11487 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11488 SelectionDAG &DAG) const { 11489 bool isPPC64 = Subtarget.isPPC64(); 11490 bool isDarwinABI = Subtarget.isDarwinABI(); 11491 11492 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11493 (!isPPC64 && VT != MVT::i32)) 11494 report_fatal_error("Invalid register global variable type"); 11495 11496 bool is64Bit = isPPC64 && VT == MVT::i64; 11497 unsigned Reg = StringSwitch<unsigned>(RegName) 11498 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11499 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11500 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11501 (is64Bit ? PPC::X13 : PPC::R13)) 11502 .Default(0); 11503 11504 if (Reg) 11505 return Reg; 11506 report_fatal_error("Invalid register name global variable"); 11507 } 11508 11509 bool 11510 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11511 // The PowerPC target isn't yet aware of offsets. 11512 return false; 11513 } 11514 11515 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11516 const CallInst &I, 11517 unsigned Intrinsic) const { 11518 11519 switch (Intrinsic) { 11520 case Intrinsic::ppc_qpx_qvlfd: 11521 case Intrinsic::ppc_qpx_qvlfs: 11522 case Intrinsic::ppc_qpx_qvlfcd: 11523 case Intrinsic::ppc_qpx_qvlfcs: 11524 case Intrinsic::ppc_qpx_qvlfiwa: 11525 case Intrinsic::ppc_qpx_qvlfiwz: 11526 case Intrinsic::ppc_altivec_lvx: 11527 case Intrinsic::ppc_altivec_lvxl: 11528 case Intrinsic::ppc_altivec_lvebx: 11529 case Intrinsic::ppc_altivec_lvehx: 11530 case Intrinsic::ppc_altivec_lvewx: 11531 case Intrinsic::ppc_vsx_lxvd2x: 11532 case Intrinsic::ppc_vsx_lxvw4x: { 11533 EVT VT; 11534 switch (Intrinsic) { 11535 case Intrinsic::ppc_altivec_lvebx: 11536 VT = MVT::i8; 11537 break; 11538 case Intrinsic::ppc_altivec_lvehx: 11539 VT = MVT::i16; 11540 break; 11541 case Intrinsic::ppc_altivec_lvewx: 11542 VT = MVT::i32; 11543 break; 11544 case Intrinsic::ppc_vsx_lxvd2x: 11545 VT = MVT::v2f64; 11546 break; 11547 case Intrinsic::ppc_qpx_qvlfd: 11548 VT = MVT::v4f64; 11549 break; 11550 case Intrinsic::ppc_qpx_qvlfs: 11551 VT = MVT::v4f32; 11552 break; 11553 case Intrinsic::ppc_qpx_qvlfcd: 11554 VT = MVT::v2f64; 11555 break; 11556 case Intrinsic::ppc_qpx_qvlfcs: 11557 VT = MVT::v2f32; 11558 break; 11559 default: 11560 VT = MVT::v4i32; 11561 break; 11562 } 11563 11564 Info.opc = ISD::INTRINSIC_W_CHAIN; 11565 Info.memVT = VT; 11566 Info.ptrVal = I.getArgOperand(0); 11567 Info.offset = -VT.getStoreSize()+1; 11568 Info.size = 2*VT.getStoreSize()-1; 11569 Info.align = 1; 11570 Info.vol = false; 11571 Info.readMem = true; 11572 Info.writeMem = false; 11573 return true; 11574 } 11575 case Intrinsic::ppc_qpx_qvlfda: 11576 case Intrinsic::ppc_qpx_qvlfsa: 11577 case Intrinsic::ppc_qpx_qvlfcda: 11578 case Intrinsic::ppc_qpx_qvlfcsa: 11579 case Intrinsic::ppc_qpx_qvlfiwaa: 11580 case Intrinsic::ppc_qpx_qvlfiwza: { 11581 EVT VT; 11582 switch (Intrinsic) { 11583 case Intrinsic::ppc_qpx_qvlfda: 11584 VT = MVT::v4f64; 11585 break; 11586 case Intrinsic::ppc_qpx_qvlfsa: 11587 VT = MVT::v4f32; 11588 break; 11589 case Intrinsic::ppc_qpx_qvlfcda: 11590 VT = MVT::v2f64; 11591 break; 11592 case Intrinsic::ppc_qpx_qvlfcsa: 11593 VT = MVT::v2f32; 11594 break; 11595 default: 11596 VT = MVT::v4i32; 11597 break; 11598 } 11599 11600 Info.opc = ISD::INTRINSIC_W_CHAIN; 11601 Info.memVT = VT; 11602 Info.ptrVal = I.getArgOperand(0); 11603 Info.offset = 0; 11604 Info.size = VT.getStoreSize(); 11605 Info.align = 1; 11606 Info.vol = false; 11607 Info.readMem = true; 11608 Info.writeMem = false; 11609 return true; 11610 } 11611 case Intrinsic::ppc_qpx_qvstfd: 11612 case Intrinsic::ppc_qpx_qvstfs: 11613 case Intrinsic::ppc_qpx_qvstfcd: 11614 case Intrinsic::ppc_qpx_qvstfcs: 11615 case Intrinsic::ppc_qpx_qvstfiw: 11616 case Intrinsic::ppc_altivec_stvx: 11617 case Intrinsic::ppc_altivec_stvxl: 11618 case Intrinsic::ppc_altivec_stvebx: 11619 case Intrinsic::ppc_altivec_stvehx: 11620 case Intrinsic::ppc_altivec_stvewx: 11621 case Intrinsic::ppc_vsx_stxvd2x: 11622 case Intrinsic::ppc_vsx_stxvw4x: { 11623 EVT VT; 11624 switch (Intrinsic) { 11625 case Intrinsic::ppc_altivec_stvebx: 11626 VT = MVT::i8; 11627 break; 11628 case Intrinsic::ppc_altivec_stvehx: 11629 VT = MVT::i16; 11630 break; 11631 case Intrinsic::ppc_altivec_stvewx: 11632 VT = MVT::i32; 11633 break; 11634 case Intrinsic::ppc_vsx_stxvd2x: 11635 VT = MVT::v2f64; 11636 break; 11637 case Intrinsic::ppc_qpx_qvstfd: 11638 VT = MVT::v4f64; 11639 break; 11640 case Intrinsic::ppc_qpx_qvstfs: 11641 VT = MVT::v4f32; 11642 break; 11643 case Intrinsic::ppc_qpx_qvstfcd: 11644 VT = MVT::v2f64; 11645 break; 11646 case Intrinsic::ppc_qpx_qvstfcs: 11647 VT = MVT::v2f32; 11648 break; 11649 default: 11650 VT = MVT::v4i32; 11651 break; 11652 } 11653 11654 Info.opc = ISD::INTRINSIC_VOID; 11655 Info.memVT = VT; 11656 Info.ptrVal = I.getArgOperand(1); 11657 Info.offset = -VT.getStoreSize()+1; 11658 Info.size = 2*VT.getStoreSize()-1; 11659 Info.align = 1; 11660 Info.vol = false; 11661 Info.readMem = false; 11662 Info.writeMem = true; 11663 return true; 11664 } 11665 case Intrinsic::ppc_qpx_qvstfda: 11666 case Intrinsic::ppc_qpx_qvstfsa: 11667 case Intrinsic::ppc_qpx_qvstfcda: 11668 case Intrinsic::ppc_qpx_qvstfcsa: 11669 case Intrinsic::ppc_qpx_qvstfiwa: { 11670 EVT VT; 11671 switch (Intrinsic) { 11672 case Intrinsic::ppc_qpx_qvstfda: 11673 VT = MVT::v4f64; 11674 break; 11675 case Intrinsic::ppc_qpx_qvstfsa: 11676 VT = MVT::v4f32; 11677 break; 11678 case Intrinsic::ppc_qpx_qvstfcda: 11679 VT = MVT::v2f64; 11680 break; 11681 case Intrinsic::ppc_qpx_qvstfcsa: 11682 VT = MVT::v2f32; 11683 break; 11684 default: 11685 VT = MVT::v4i32; 11686 break; 11687 } 11688 11689 Info.opc = ISD::INTRINSIC_VOID; 11690 Info.memVT = VT; 11691 Info.ptrVal = I.getArgOperand(1); 11692 Info.offset = 0; 11693 Info.size = VT.getStoreSize(); 11694 Info.align = 1; 11695 Info.vol = false; 11696 Info.readMem = false; 11697 Info.writeMem = true; 11698 return true; 11699 } 11700 default: 11701 break; 11702 } 11703 11704 return false; 11705 } 11706 11707 /// getOptimalMemOpType - Returns the target specific optimal type for load 11708 /// and store operations as a result of memset, memcpy, and memmove 11709 /// lowering. If DstAlign is zero that means it's safe to destination 11710 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11711 /// means there isn't a need to check it against alignment requirement, 11712 /// probably because the source does not need to be loaded. If 'IsMemset' is 11713 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11714 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11715 /// source is constant so it does not need to be loaded. 11716 /// It returns EVT::Other if the type should be determined using generic 11717 /// target-independent logic. 11718 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11719 unsigned DstAlign, unsigned SrcAlign, 11720 bool IsMemset, bool ZeroMemset, 11721 bool MemcpyStrSrc, 11722 MachineFunction &MF) const { 11723 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11724 const Function *F = MF.getFunction(); 11725 // When expanding a memset, require at least two QPX instructions to cover 11726 // the cost of loading the value to be stored from the constant pool. 11727 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11728 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11729 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11730 return MVT::v4f64; 11731 } 11732 11733 // We should use Altivec/VSX loads and stores when available. For unaligned 11734 // addresses, unaligned VSX loads are only fast starting with the P8. 11735 if (Subtarget.hasAltivec() && Size >= 16 && 11736 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11737 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11738 return MVT::v4i32; 11739 } 11740 11741 if (Subtarget.isPPC64()) { 11742 return MVT::i64; 11743 } 11744 11745 return MVT::i32; 11746 } 11747 11748 /// \brief Returns true if it is beneficial to convert a load of a constant 11749 /// to just the constant itself. 11750 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11751 Type *Ty) const { 11752 assert(Ty->isIntegerTy()); 11753 11754 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11755 return !(BitSize == 0 || BitSize > 64); 11756 } 11757 11758 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11759 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11760 return false; 11761 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11762 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11763 return NumBits1 == 64 && NumBits2 == 32; 11764 } 11765 11766 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11767 if (!VT1.isInteger() || !VT2.isInteger()) 11768 return false; 11769 unsigned NumBits1 = VT1.getSizeInBits(); 11770 unsigned NumBits2 = VT2.getSizeInBits(); 11771 return NumBits1 == 64 && NumBits2 == 32; 11772 } 11773 11774 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11775 // Generally speaking, zexts are not free, but they are free when they can be 11776 // folded with other operations. 11777 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11778 EVT MemVT = LD->getMemoryVT(); 11779 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11780 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11781 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11782 LD->getExtensionType() == ISD::ZEXTLOAD)) 11783 return true; 11784 } 11785 11786 // FIXME: Add other cases... 11787 // - 32-bit shifts with a zext to i64 11788 // - zext after ctlz, bswap, etc. 11789 // - zext after and by a constant mask 11790 11791 return TargetLowering::isZExtFree(Val, VT2); 11792 } 11793 11794 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11795 assert(VT.isFloatingPoint()); 11796 return true; 11797 } 11798 11799 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11800 return isInt<16>(Imm) || isUInt<16>(Imm); 11801 } 11802 11803 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11804 return isInt<16>(Imm) || isUInt<16>(Imm); 11805 } 11806 11807 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11808 unsigned, 11809 unsigned, 11810 bool *Fast) const { 11811 if (DisablePPCUnaligned) 11812 return false; 11813 11814 // PowerPC supports unaligned memory access for simple non-vector types. 11815 // Although accessing unaligned addresses is not as efficient as accessing 11816 // aligned addresses, it is generally more efficient than manual expansion, 11817 // and generally only traps for software emulation when crossing page 11818 // boundaries. 11819 11820 if (!VT.isSimple()) 11821 return false; 11822 11823 if (VT.getSimpleVT().isVector()) { 11824 if (Subtarget.hasVSX()) { 11825 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11826 VT != MVT::v4f32 && VT != MVT::v4i32) 11827 return false; 11828 } else { 11829 return false; 11830 } 11831 } 11832 11833 if (VT == MVT::ppcf128) 11834 return false; 11835 11836 if (Fast) 11837 *Fast = true; 11838 11839 return true; 11840 } 11841 11842 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11843 VT = VT.getScalarType(); 11844 11845 if (!VT.isSimple()) 11846 return false; 11847 11848 switch (VT.getSimpleVT().SimpleTy) { 11849 case MVT::f32: 11850 case MVT::f64: 11851 return true; 11852 default: 11853 break; 11854 } 11855 11856 return false; 11857 } 11858 11859 const MCPhysReg * 11860 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11861 // LR is a callee-save register, but we must treat it as clobbered by any call 11862 // site. Hence we include LR in the scratch registers, which are in turn added 11863 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11864 // to CTR, which is used by any indirect call. 11865 static const MCPhysReg ScratchRegs[] = { 11866 PPC::X12, PPC::LR8, PPC::CTR8, 0 11867 }; 11868 11869 return ScratchRegs; 11870 } 11871 11872 unsigned PPCTargetLowering::getExceptionPointerRegister( 11873 const Constant *PersonalityFn) const { 11874 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11875 } 11876 11877 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11878 const Constant *PersonalityFn) const { 11879 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11880 } 11881 11882 bool 11883 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11884 EVT VT , unsigned DefinedValues) const { 11885 if (VT == MVT::v2i64) 11886 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11887 11888 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 11889 return true; 11890 11891 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11892 } 11893 11894 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11895 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11896 return TargetLowering::getSchedulingPreference(N); 11897 11898 return Sched::ILP; 11899 } 11900 11901 // Create a fast isel object. 11902 FastISel * 11903 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11904 const TargetLibraryInfo *LibInfo) const { 11905 return PPC::createFastISel(FuncInfo, LibInfo); 11906 } 11907 11908 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 11909 if (Subtarget.isDarwinABI()) return; 11910 if (!Subtarget.isPPC64()) return; 11911 11912 // Update IsSplitCSR in PPCFunctionInfo 11913 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 11914 PFI->setIsSplitCSR(true); 11915 } 11916 11917 void PPCTargetLowering::insertCopiesSplitCSR( 11918 MachineBasicBlock *Entry, 11919 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 11920 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11921 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 11922 if (!IStart) 11923 return; 11924 11925 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11926 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 11927 MachineBasicBlock::iterator MBBI = Entry->begin(); 11928 for (const MCPhysReg *I = IStart; *I; ++I) { 11929 const TargetRegisterClass *RC = nullptr; 11930 if (PPC::G8RCRegClass.contains(*I)) 11931 RC = &PPC::G8RCRegClass; 11932 else if (PPC::F8RCRegClass.contains(*I)) 11933 RC = &PPC::F8RCRegClass; 11934 else if (PPC::CRRCRegClass.contains(*I)) 11935 RC = &PPC::CRRCRegClass; 11936 else if (PPC::VRRCRegClass.contains(*I)) 11937 RC = &PPC::VRRCRegClass; 11938 else 11939 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 11940 11941 unsigned NewVR = MRI->createVirtualRegister(RC); 11942 // Create copy from CSR to a virtual register. 11943 // FIXME: this currently does not emit CFI pseudo-instructions, it works 11944 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 11945 // nounwind. If we want to generalize this later, we may need to emit 11946 // CFI pseudo-instructions. 11947 assert(Entry->getParent()->getFunction()->hasFnAttribute( 11948 Attribute::NoUnwind) && 11949 "Function should be nounwind in insertCopiesSplitCSR!"); 11950 Entry->addLiveIn(*I); 11951 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 11952 .addReg(*I); 11953 11954 // Insert the copy-back instructions right before the terminator 11955 for (auto *Exit : Exits) 11956 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 11957 TII->get(TargetOpcode::COPY), *I) 11958 .addReg(NewVR); 11959 } 11960 } 11961 11962 // Override to enable LOAD_STACK_GUARD lowering on Linux. 11963 bool PPCTargetLowering::useLoadStackGuardNode() const { 11964 if (!Subtarget.isTargetLinux()) 11965 return TargetLowering::useLoadStackGuardNode(); 11966 return true; 11967 } 11968 11969 // Override to disable global variable loading on Linux. 11970 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 11971 if (!Subtarget.isTargetLinux()) 11972 return TargetLowering::insertSSPDeclarations(M); 11973 } 11974