1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 STATISTIC(NumTailCalls, "Number of tail calls");
125 STATISTIC(NumSiblingCalls, "Number of sibling calls");
126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
128 
129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
130 
131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
132 
133 // FIXME: Remove this once the bug has been fixed!
134 extern cl::opt<bool> ANDIGlueBug;
135 
136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
137                                      const PPCSubtarget &STI)
138     : TargetLowering(TM), Subtarget(STI) {
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   if (Subtarget.isISA3_0()) {
170     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
171     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
172     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
174   } else {
175     // No extending loads from f16 or HW conversions back and forth.
176     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
177     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
178     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
179     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
180     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
181     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
182     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
183     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
184   }
185 
186   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
187 
188   // PowerPC has pre-inc load and store's.
189   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
194   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
199   if (!Subtarget.hasSPE()) {
200     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
202     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
204   }
205 
206   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
207   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
208   for (MVT VT : ScalarIntVTs) {
209     setOperationAction(ISD::ADDC, VT, Legal);
210     setOperationAction(ISD::ADDE, VT, Legal);
211     setOperationAction(ISD::SUBC, VT, Legal);
212     setOperationAction(ISD::SUBE, VT, Legal);
213   }
214 
215   if (Subtarget.useCRBits()) {
216     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
217 
218     if (isPPC64 || Subtarget.hasFPCVT()) {
219       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
220       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
221                          isPPC64 ? MVT::i64 : MVT::i32);
222       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
223       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
224                         isPPC64 ? MVT::i64 : MVT::i32);
225     } else {
226       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
227       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
228     }
229 
230     // PowerPC does not support direct load/store of condition registers.
231     setOperationAction(ISD::LOAD, MVT::i1, Custom);
232     setOperationAction(ISD::STORE, MVT::i1, Custom);
233 
234     // FIXME: Remove this once the ANDI glue bug is fixed:
235     if (ANDIGlueBug)
236       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
237 
238     for (MVT VT : MVT::integer_valuetypes()) {
239       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
240       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
241       setTruncStoreAction(VT, MVT::i1, Expand);
242     }
243 
244     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
245   }
246 
247   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
248   // PPC (the libcall is not available).
249   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
250   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
251 
252   // We do not currently implement these libm ops for PowerPC.
253   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
254   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
255   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
256   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
257   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
258   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
259 
260   // PowerPC has no SREM/UREM instructions unless we are on P9
261   // On P9 we may use a hardware instruction to compute the remainder.
262   // When the result of both the remainder and the division is required it is
263   // more efficient to compute the remainder from the result of the division
264   // rather than use the remainder instruction. The instructions are legalized
265   // directly because the DivRemPairsPass performs the transformation at the IR
266   // level.
267   if (Subtarget.isISA3_0()) {
268     setOperationAction(ISD::SREM, MVT::i32, Legal);
269     setOperationAction(ISD::UREM, MVT::i32, Legal);
270     setOperationAction(ISD::SREM, MVT::i64, Legal);
271     setOperationAction(ISD::UREM, MVT::i64, Legal);
272   } else {
273     setOperationAction(ISD::SREM, MVT::i32, Expand);
274     setOperationAction(ISD::UREM, MVT::i32, Expand);
275     setOperationAction(ISD::SREM, MVT::i64, Expand);
276     setOperationAction(ISD::UREM, MVT::i64, Expand);
277   }
278 
279   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
280   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
282   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
284   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
286   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
288 
289   // Handle constrained floating-point operations of scalar.
290   // TODO: Handle SPE specific operation.
291   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
294   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
295   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
296   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
297 
298   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
299   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
300   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
301   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
302   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
303   if (Subtarget.hasVSX())
304     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
305 
306   if (Subtarget.hasFSQRT()) {
307     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
308     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
314     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
315     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
316 
317     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
318     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
319     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
320     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
321   }
322 
323   // We don't support sin/cos/sqrt/fmod/pow
324   setOperationAction(ISD::FSIN , MVT::f64, Expand);
325   setOperationAction(ISD::FCOS , MVT::f64, Expand);
326   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
327   setOperationAction(ISD::FREM , MVT::f64, Expand);
328   setOperationAction(ISD::FPOW , MVT::f64, Expand);
329   setOperationAction(ISD::FSIN , MVT::f32, Expand);
330   setOperationAction(ISD::FCOS , MVT::f32, Expand);
331   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
332   setOperationAction(ISD::FREM , MVT::f32, Expand);
333   setOperationAction(ISD::FPOW , MVT::f32, Expand);
334   if (Subtarget.hasSPE()) {
335     setOperationAction(ISD::FMA  , MVT::f64, Expand);
336     setOperationAction(ISD::FMA  , MVT::f32, Expand);
337   } else {
338     setOperationAction(ISD::FMA  , MVT::f64, Legal);
339     setOperationAction(ISD::FMA  , MVT::f32, Legal);
340   }
341 
342   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
343 
344   // If we're enabling GP optimizations, use hardware square root
345   if (!Subtarget.hasFSQRT() &&
346       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
347         Subtarget.hasFRE()))
348     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
349 
350   if (!Subtarget.hasFSQRT() &&
351       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
352         Subtarget.hasFRES()))
353     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
354 
355   if (Subtarget.hasFCPSGN()) {
356     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
357     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
358   } else {
359     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
360     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
361   }
362 
363   if (Subtarget.hasFPRND()) {
364     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
365     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
366     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
367     setOperationAction(ISD::FROUND, MVT::f64, Legal);
368 
369     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
370     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
371     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
372     setOperationAction(ISD::FROUND, MVT::f32, Legal);
373   }
374 
375   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
376   // to speed up scalar BSWAP64.
377   // CTPOP or CTTZ were introduced in P8/P9 respectively
378   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
379   if (Subtarget.hasP9Vector())
380     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
381   else
382     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
383   if (Subtarget.isISA3_0()) {
384     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
385     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
386   } else {
387     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
388     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
389   }
390 
391   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
392     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
393     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
394   } else {
395     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
396     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
397   }
398 
399   // PowerPC does not have ROTR
400   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
401   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
402 
403   if (!Subtarget.useCRBits()) {
404     // PowerPC does not have Select
405     setOperationAction(ISD::SELECT, MVT::i32, Expand);
406     setOperationAction(ISD::SELECT, MVT::i64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT, MVT::f64, Expand);
409   }
410 
411   // PowerPC wants to turn select_cc of FP into fsel when possible.
412   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
413   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
414 
415   // PowerPC wants to optimize integer setcc a bit
416   if (!Subtarget.useCRBits())
417     setOperationAction(ISD::SETCC, MVT::i32, Custom);
418 
419   // PowerPC does not have BRCOND which requires SetCC
420   if (!Subtarget.useCRBits())
421     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
422 
423   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
424 
425   if (Subtarget.hasSPE()) {
426     // SPE has built-in conversions
427     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
428     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
429     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
430     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
431     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
432     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
433   } else {
434     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
435     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
436 
437     // PowerPC does not have [U|S]INT_TO_FP
438     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
439     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
440   }
441 
442   if (Subtarget.hasDirectMove() && isPPC64) {
443     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
444     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
445     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
446     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
447     if (TM.Options.UnsafeFPMath) {
448       setOperationAction(ISD::LRINT, MVT::f64, Legal);
449       setOperationAction(ISD::LRINT, MVT::f32, Legal);
450       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
451       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
452       setOperationAction(ISD::LROUND, MVT::f64, Legal);
453       setOperationAction(ISD::LROUND, MVT::f32, Legal);
454       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
455       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
456     }
457   } else {
458     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
459     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
460     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
461     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
462   }
463 
464   // We cannot sextinreg(i1).  Expand to shifts.
465   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
466 
467   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
468   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
469   // support continuation, user-level threading, and etc.. As a result, no
470   // other SjLj exception interfaces are implemented and please don't build
471   // your own exception handling based on them.
472   // LLVM/Clang supports zero-cost DWARF exception handling.
473   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
474   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
475 
476   // We want to legalize GlobalAddress and ConstantPool nodes into the
477   // appropriate instructions to materialize the address.
478   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
479   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
480   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
481   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
482   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
483   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
484   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
485   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
486   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
487   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
488 
489   // TRAP is legal.
490   setOperationAction(ISD::TRAP, MVT::Other, Legal);
491 
492   // TRAMPOLINE is custom lowered.
493   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
494   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
495 
496   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
497   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
498 
499   if (Subtarget.is64BitELFABI()) {
500     // VAARG always uses double-word chunks, so promote anything smaller.
501     setOperationAction(ISD::VAARG, MVT::i1, Promote);
502     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
503     setOperationAction(ISD::VAARG, MVT::i8, Promote);
504     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
505     setOperationAction(ISD::VAARG, MVT::i16, Promote);
506     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
507     setOperationAction(ISD::VAARG, MVT::i32, Promote);
508     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
509     setOperationAction(ISD::VAARG, MVT::Other, Expand);
510   } else if (Subtarget.is32BitELFABI()) {
511     // VAARG is custom lowered with the 32-bit SVR4 ABI.
512     setOperationAction(ISD::VAARG, MVT::Other, Custom);
513     setOperationAction(ISD::VAARG, MVT::i64, Custom);
514   } else
515     setOperationAction(ISD::VAARG, MVT::Other, Expand);
516 
517   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
518   if (Subtarget.is32BitELFABI())
519     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
520   else
521     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
522 
523   // Use the default implementation.
524   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
525   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
526   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
527   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
528   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
529   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
530   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
531   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
532   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
533 
534   // We want to custom lower some of our intrinsics.
535   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
536 
537   // To handle counter-based loop conditions.
538   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
539 
540   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
541   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
542   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
543   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
544 
545   // Comparisons that require checking two conditions.
546   if (Subtarget.hasSPE()) {
547     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
548     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
549     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
550     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
551   }
552   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
553   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
554   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
555   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
556   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
557   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
558   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
559   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
560   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
561   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
562   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
563   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
564 
565   if (Subtarget.has64BitSupport()) {
566     // They also have instructions for converting between i64 and fp.
567     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
568     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
569     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
570     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
571     // This is just the low 32 bits of a (signed) fp->i64 conversion.
572     // We cannot do this with Promote because i64 is not a legal type.
573     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
574 
575     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
576       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
577   } else {
578     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
579     if (Subtarget.hasSPE()) {
580       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
581       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
582     } else
583       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
584   }
585 
586   // With the instructions enabled under FPCVT, we can do everything.
587   if (Subtarget.hasFPCVT()) {
588     if (Subtarget.has64BitSupport()) {
589       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
590       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
591       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
592       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
593     }
594 
595     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
596     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
597     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
598     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
599   }
600 
601   if (Subtarget.use64BitRegs()) {
602     // 64-bit PowerPC implementations can support i64 types directly
603     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
604     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
605     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
606     // 64-bit PowerPC wants to expand i128 shifts itself.
607     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
608     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
609     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
610   } else {
611     // 32-bit PowerPC wants to expand i64 shifts itself.
612     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
613     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
614     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
615   }
616 
617   if (Subtarget.hasVSX()) {
618     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
619     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
620     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
621     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
622   }
623 
624   if (Subtarget.hasAltivec()) {
625     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
626       setOperationAction(ISD::SADDSAT, VT, Legal);
627       setOperationAction(ISD::SSUBSAT, VT, Legal);
628       setOperationAction(ISD::UADDSAT, VT, Legal);
629       setOperationAction(ISD::USUBSAT, VT, Legal);
630     }
631     // First set operation action for all vector types to expand. Then we
632     // will selectively turn on ones that can be effectively codegen'd.
633     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
634       // add/sub are legal for all supported vector VT's.
635       setOperationAction(ISD::ADD, VT, Legal);
636       setOperationAction(ISD::SUB, VT, Legal);
637 
638       // For v2i64, these are only valid with P8Vector. This is corrected after
639       // the loop.
640       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
641         setOperationAction(ISD::SMAX, VT, Legal);
642         setOperationAction(ISD::SMIN, VT, Legal);
643         setOperationAction(ISD::UMAX, VT, Legal);
644         setOperationAction(ISD::UMIN, VT, Legal);
645       }
646       else {
647         setOperationAction(ISD::SMAX, VT, Expand);
648         setOperationAction(ISD::SMIN, VT, Expand);
649         setOperationAction(ISD::UMAX, VT, Expand);
650         setOperationAction(ISD::UMIN, VT, Expand);
651       }
652 
653       if (Subtarget.hasVSX()) {
654         setOperationAction(ISD::FMAXNUM, VT, Legal);
655         setOperationAction(ISD::FMINNUM, VT, Legal);
656       }
657 
658       // Vector instructions introduced in P8
659       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
660         setOperationAction(ISD::CTPOP, VT, Legal);
661         setOperationAction(ISD::CTLZ, VT, Legal);
662       }
663       else {
664         setOperationAction(ISD::CTPOP, VT, Expand);
665         setOperationAction(ISD::CTLZ, VT, Expand);
666       }
667 
668       // Vector instructions introduced in P9
669       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
670         setOperationAction(ISD::CTTZ, VT, Legal);
671       else
672         setOperationAction(ISD::CTTZ, VT, Expand);
673 
674       // We promote all shuffles to v16i8.
675       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
676       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
677 
678       // We promote all non-typed operations to v4i32.
679       setOperationAction(ISD::AND   , VT, Promote);
680       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
681       setOperationAction(ISD::OR    , VT, Promote);
682       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
683       setOperationAction(ISD::XOR   , VT, Promote);
684       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
685       setOperationAction(ISD::LOAD  , VT, Promote);
686       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
687       setOperationAction(ISD::SELECT, VT, Promote);
688       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
689       setOperationAction(ISD::VSELECT, VT, Legal);
690       setOperationAction(ISD::SELECT_CC, VT, Promote);
691       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
692       setOperationAction(ISD::STORE, VT, Promote);
693       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
694 
695       // No other operations are legal.
696       setOperationAction(ISD::MUL , VT, Expand);
697       setOperationAction(ISD::SDIV, VT, Expand);
698       setOperationAction(ISD::SREM, VT, Expand);
699       setOperationAction(ISD::UDIV, VT, Expand);
700       setOperationAction(ISD::UREM, VT, Expand);
701       setOperationAction(ISD::FDIV, VT, Expand);
702       setOperationAction(ISD::FREM, VT, Expand);
703       setOperationAction(ISD::FNEG, VT, Expand);
704       setOperationAction(ISD::FSQRT, VT, Expand);
705       setOperationAction(ISD::FLOG, VT, Expand);
706       setOperationAction(ISD::FLOG10, VT, Expand);
707       setOperationAction(ISD::FLOG2, VT, Expand);
708       setOperationAction(ISD::FEXP, VT, Expand);
709       setOperationAction(ISD::FEXP2, VT, Expand);
710       setOperationAction(ISD::FSIN, VT, Expand);
711       setOperationAction(ISD::FCOS, VT, Expand);
712       setOperationAction(ISD::FABS, VT, Expand);
713       setOperationAction(ISD::FFLOOR, VT, Expand);
714       setOperationAction(ISD::FCEIL,  VT, Expand);
715       setOperationAction(ISD::FTRUNC, VT, Expand);
716       setOperationAction(ISD::FRINT,  VT, Expand);
717       setOperationAction(ISD::FNEARBYINT, VT, Expand);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
719       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
720       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
721       setOperationAction(ISD::MULHU, VT, Expand);
722       setOperationAction(ISD::MULHS, VT, Expand);
723       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
724       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
725       setOperationAction(ISD::UDIVREM, VT, Expand);
726       setOperationAction(ISD::SDIVREM, VT, Expand);
727       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
728       setOperationAction(ISD::FPOW, VT, Expand);
729       setOperationAction(ISD::BSWAP, VT, Expand);
730       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
731       setOperationAction(ISD::ROTL, VT, Expand);
732       setOperationAction(ISD::ROTR, VT, Expand);
733 
734       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
735         setTruncStoreAction(VT, InnerVT, Expand);
736         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
737         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
738         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
739       }
740     }
741     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
742     if (!Subtarget.hasP8Vector()) {
743       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
744       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
745       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
746       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
747     }
748 
749     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
750       setOperationAction(ISD::ABS, VT, Custom);
751 
752     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
753     // with merges, splats, etc.
754     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
755 
756     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
757     // are cheap, so handle them before they get expanded to scalar.
758     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
759     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
760     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
761     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
762     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
763 
764     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
765     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
766     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
767     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
768     setOperationAction(ISD::SELECT, MVT::v4i32,
769                        Subtarget.useCRBits() ? Legal : Expand);
770     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
771     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
772     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
773     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
774     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
775     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
776     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
777     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
778     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
779 
780     // Without hasP8Altivec set, v2i64 SMAX isn't available.
781     // But ABS custom lowering requires SMAX support.
782     if (!Subtarget.hasP8Altivec())
783       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
784 
785     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
786     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
787     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
788     if (Subtarget.hasAltivec())
789       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
790         setOperationAction(ISD::ROTL, VT, Legal);
791     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
792     if (Subtarget.hasP8Altivec())
793       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
794 
795     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
796     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
797     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
798     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
799 
800     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
801     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
802 
803     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
804       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
805       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
806     }
807 
808     if (Subtarget.hasP8Altivec())
809       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
810     else
811       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
812 
813     if (Subtarget.isISA3_1()) {
814       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
815       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
816       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
817       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
818       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
819       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
820       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
821       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
822       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
823       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
824       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
825       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
826       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
827     }
828 
829     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
830     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
831 
832     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
833     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
834 
835     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
836     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
837     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
838     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
839 
840     // Altivec does not contain unordered floating-point compare instructions
841     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
842     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
843     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
844     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
845 
846     if (Subtarget.hasVSX()) {
847       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
848       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
849       if (Subtarget.hasP8Vector()) {
850         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
851         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
852       }
853       if (Subtarget.hasDirectMove() && isPPC64) {
854         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
855         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
856         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
857         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
858         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
859         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
860         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
861         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862       }
863       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
864 
865       // The nearbyint variants are not allowed to raise the inexact exception
866       // so we can only code-gen them with unsafe math.
867       if (TM.Options.UnsafeFPMath) {
868         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
869         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
870       }
871 
872       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
873       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
874       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
875       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
876       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
877       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
878       setOperationAction(ISD::FROUND, MVT::f64, Legal);
879       setOperationAction(ISD::FRINT, MVT::f64, Legal);
880 
881       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
882       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
883       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
884       setOperationAction(ISD::FROUND, MVT::f32, Legal);
885       setOperationAction(ISD::FRINT, MVT::f32, Legal);
886 
887       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
888       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
889 
890       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
891       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
892 
893       // Share the Altivec comparison restrictions.
894       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
895       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
896       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
897       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
898 
899       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
900       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
901 
902       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
903 
904       if (Subtarget.hasP8Vector())
905         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
906 
907       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
908 
909       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
910       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
911       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
912 
913       if (Subtarget.hasP8Altivec()) {
914         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
915         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
916         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
917 
918         // 128 bit shifts can be accomplished via 3 instructions for SHL and
919         // SRL, but not for SRA because of the instructions available:
920         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
921         // doing
922         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
923         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
924         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
925 
926         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
927       }
928       else {
929         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
930         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
931         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
932 
933         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
934 
935         // VSX v2i64 only supports non-arithmetic operations.
936         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
937         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
938       }
939 
940       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
941 
942       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
943       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
944       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
945       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
946 
947       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
948 
949       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
950       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
951       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
952       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
953 
954       // Custom handling for partial vectors of integers converted to
955       // floating point. We already have optimal handling for v2i32 through
956       // the DAG combine, so those aren't necessary.
957       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
958       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
959       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
960       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
961       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
962       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
963       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
964       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
965 
966       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
967       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
968       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
969       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
970       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
971       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
972 
973       if (Subtarget.hasDirectMove())
974         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
975       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
976 
977       // Handle constrained floating-point operations of vector.
978       // The predictor is `hasVSX` because altivec instruction has
979       // no exception but VSX vector instruction has.
980       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
981       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
982       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
983       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
984       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
985       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
986       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
987       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
988       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
989       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
990       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
991       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
992       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
993 
994       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
995       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
996       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
997       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
998       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
999       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1000       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1001       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1002       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
1003       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1004       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1005       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1006       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1007 
1008       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1009     }
1010 
1011     if (Subtarget.hasP8Altivec()) {
1012       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1013       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1014     }
1015 
1016     if (Subtarget.hasP9Vector()) {
1017       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1018       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1019 
1020       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1021       // SRL, but not for SRA because of the instructions available:
1022       // VS{RL} and VS{RL}O.
1023       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1024       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1025       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1026 
1027       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1028       setOperationAction(ISD::FADD, MVT::f128, Legal);
1029       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1030       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1031       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1032       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1033       // No extending loads to f128 on PPC.
1034       for (MVT FPT : MVT::fp_valuetypes())
1035         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1036       setOperationAction(ISD::FMA, MVT::f128, Legal);
1037       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1038       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1039       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1040       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1041       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1042       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1043 
1044       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1045       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1046       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1047       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1048       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1049       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1050 
1051       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1052       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1053       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1054       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1055       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1056       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1057       // No implementation for these ops for PowerPC.
1058       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1059       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1060       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1061       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1062       setOperationAction(ISD::FREM, MVT::f128, Expand);
1063 
1064       // Handle constrained floating-point operations of fp128
1065       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1066       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1067       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1068       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1069       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1070       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1071       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1072       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1073       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1074       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1075       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1076       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1077       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1078       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1079       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1080       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1081       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1082       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1083       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1084       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1085     }
1086 
1087     if (Subtarget.hasP9Altivec()) {
1088       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1089       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1090 
1091       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1092       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1093       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1094       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1095       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1096       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1097       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1098     }
1099   }
1100 
1101   if (Subtarget.has64BitSupport())
1102     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1103 
1104   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1105 
1106   if (!isPPC64) {
1107     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1108     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1109   }
1110 
1111   setBooleanContents(ZeroOrOneBooleanContent);
1112 
1113   if (Subtarget.hasAltivec()) {
1114     // Altivec instructions set fields to all zeros or all ones.
1115     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1116   }
1117 
1118   if (!isPPC64) {
1119     // These libcalls are not available in 32-bit.
1120     setLibcallName(RTLIB::SHL_I128, nullptr);
1121     setLibcallName(RTLIB::SRL_I128, nullptr);
1122     setLibcallName(RTLIB::SRA_I128, nullptr);
1123   }
1124 
1125   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1126 
1127   // We have target-specific dag combine patterns for the following nodes:
1128   setTargetDAGCombine(ISD::ADD);
1129   setTargetDAGCombine(ISD::SHL);
1130   setTargetDAGCombine(ISD::SRA);
1131   setTargetDAGCombine(ISD::SRL);
1132   setTargetDAGCombine(ISD::MUL);
1133   setTargetDAGCombine(ISD::FMA);
1134   setTargetDAGCombine(ISD::SINT_TO_FP);
1135   setTargetDAGCombine(ISD::BUILD_VECTOR);
1136   if (Subtarget.hasFPCVT())
1137     setTargetDAGCombine(ISD::UINT_TO_FP);
1138   setTargetDAGCombine(ISD::LOAD);
1139   setTargetDAGCombine(ISD::STORE);
1140   setTargetDAGCombine(ISD::BR_CC);
1141   if (Subtarget.useCRBits())
1142     setTargetDAGCombine(ISD::BRCOND);
1143   setTargetDAGCombine(ISD::BSWAP);
1144   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1145   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1146   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1147 
1148   setTargetDAGCombine(ISD::SIGN_EXTEND);
1149   setTargetDAGCombine(ISD::ZERO_EXTEND);
1150   setTargetDAGCombine(ISD::ANY_EXTEND);
1151 
1152   setTargetDAGCombine(ISD::TRUNCATE);
1153   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1154 
1155 
1156   if (Subtarget.useCRBits()) {
1157     setTargetDAGCombine(ISD::TRUNCATE);
1158     setTargetDAGCombine(ISD::SETCC);
1159     setTargetDAGCombine(ISD::SELECT_CC);
1160   }
1161 
1162   // Use reciprocal estimates.
1163   if (TM.Options.UnsafeFPMath) {
1164     setTargetDAGCombine(ISD::FDIV);
1165     setTargetDAGCombine(ISD::FSQRT);
1166   }
1167 
1168   if (Subtarget.hasP9Altivec()) {
1169     setTargetDAGCombine(ISD::ABS);
1170     setTargetDAGCombine(ISD::VSELECT);
1171   }
1172 
1173   setLibcallName(RTLIB::LOG_F128, "logf128");
1174   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1175   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1176   setLibcallName(RTLIB::EXP_F128, "expf128");
1177   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1178   setLibcallName(RTLIB::SIN_F128, "sinf128");
1179   setLibcallName(RTLIB::COS_F128, "cosf128");
1180   setLibcallName(RTLIB::POW_F128, "powf128");
1181   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1182   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1183   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1184   setLibcallName(RTLIB::REM_F128, "fmodf128");
1185 
1186   // With 32 condition bits, we don't need to sink (and duplicate) compares
1187   // aggressively in CodeGenPrep.
1188   if (Subtarget.useCRBits()) {
1189     setHasMultipleConditionRegisters();
1190     setJumpIsExpensive();
1191   }
1192 
1193   setMinFunctionAlignment(Align(4));
1194 
1195   switch (Subtarget.getCPUDirective()) {
1196   default: break;
1197   case PPC::DIR_970:
1198   case PPC::DIR_A2:
1199   case PPC::DIR_E500:
1200   case PPC::DIR_E500mc:
1201   case PPC::DIR_E5500:
1202   case PPC::DIR_PWR4:
1203   case PPC::DIR_PWR5:
1204   case PPC::DIR_PWR5X:
1205   case PPC::DIR_PWR6:
1206   case PPC::DIR_PWR6X:
1207   case PPC::DIR_PWR7:
1208   case PPC::DIR_PWR8:
1209   case PPC::DIR_PWR9:
1210   case PPC::DIR_PWR10:
1211   case PPC::DIR_PWR_FUTURE:
1212     setPrefLoopAlignment(Align(16));
1213     setPrefFunctionAlignment(Align(16));
1214     break;
1215   }
1216 
1217   if (Subtarget.enableMachineScheduler())
1218     setSchedulingPreference(Sched::Source);
1219   else
1220     setSchedulingPreference(Sched::Hybrid);
1221 
1222   computeRegisterProperties(STI.getRegisterInfo());
1223 
1224   // The Freescale cores do better with aggressive inlining of memcpy and
1225   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1226   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1227       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1228     MaxStoresPerMemset = 32;
1229     MaxStoresPerMemsetOptSize = 16;
1230     MaxStoresPerMemcpy = 32;
1231     MaxStoresPerMemcpyOptSize = 8;
1232     MaxStoresPerMemmove = 32;
1233     MaxStoresPerMemmoveOptSize = 8;
1234   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1235     // The A2 also benefits from (very) aggressive inlining of memcpy and
1236     // friends. The overhead of a the function call, even when warm, can be
1237     // over one hundred cycles.
1238     MaxStoresPerMemset = 128;
1239     MaxStoresPerMemcpy = 128;
1240     MaxStoresPerMemmove = 128;
1241     MaxLoadsPerMemcmp = 128;
1242   } else {
1243     MaxLoadsPerMemcmp = 8;
1244     MaxLoadsPerMemcmpOptSize = 4;
1245   }
1246 
1247   // Let the subtarget (CPU) decide if a predictable select is more expensive
1248   // than the corresponding branch. This information is used in CGP to decide
1249   // when to convert selects into branches.
1250   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1251 }
1252 
1253 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1254 /// the desired ByVal argument alignment.
1255 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1256   if (MaxAlign == MaxMaxAlign)
1257     return;
1258   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1259     if (MaxMaxAlign >= 32 &&
1260         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1261       MaxAlign = Align(32);
1262     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1263              MaxAlign < 16)
1264       MaxAlign = Align(16);
1265   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1266     Align EltAlign;
1267     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1268     if (EltAlign > MaxAlign)
1269       MaxAlign = EltAlign;
1270   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1271     for (auto *EltTy : STy->elements()) {
1272       Align EltAlign;
1273       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1274       if (EltAlign > MaxAlign)
1275         MaxAlign = EltAlign;
1276       if (MaxAlign == MaxMaxAlign)
1277         break;
1278     }
1279   }
1280 }
1281 
1282 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283 /// function arguments in the caller parameter area.
1284 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1285                                                   const DataLayout &DL) const {
1286   // 16byte and wider vectors are passed on 16byte boundary.
1287   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1288   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1289   if (Subtarget.hasAltivec())
1290     getMaxByValAlign(Ty, Alignment, Align(16));
1291   return Alignment.value();
1292 }
1293 
1294 bool PPCTargetLowering::useSoftFloat() const {
1295   return Subtarget.useSoftFloat();
1296 }
1297 
1298 bool PPCTargetLowering::hasSPE() const {
1299   return Subtarget.hasSPE();
1300 }
1301 
1302 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1303   return VT.isScalarInteger();
1304 }
1305 
1306 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1307 /// type is cheaper than a multiply followed by a shift.
1308 /// This is true for words and doublewords on 64-bit PowerPC.
1309 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1310   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1311                               isOperationLegal(ISD::MULHU, Type)))
1312     return true;
1313   return TargetLowering::isMulhCheaperThanMulShift(Type);
1314 }
1315 
1316 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1317   switch ((PPCISD::NodeType)Opcode) {
1318   case PPCISD::FIRST_NUMBER:    break;
1319   case PPCISD::FSEL:            return "PPCISD::FSEL";
1320   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1321   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1322   case PPCISD::FCFID:           return "PPCISD::FCFID";
1323   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1324   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1325   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1326   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1327   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1328   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1329   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1330   case PPCISD::FP_TO_UINT_IN_VSR:
1331                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1332   case PPCISD::FP_TO_SINT_IN_VSR:
1333                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1334   case PPCISD::FRE:             return "PPCISD::FRE";
1335   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1336   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1337   case PPCISD::VPERM:           return "PPCISD::VPERM";
1338   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1339   case PPCISD::XXSPLTI_SP_TO_DP:
1340     return "PPCISD::XXSPLTI_SP_TO_DP";
1341   case PPCISD::XXSPLTI32DX:
1342     return "PPCISD::XXSPLTI32DX";
1343   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1344   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1345   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1346   case PPCISD::CMPB:            return "PPCISD::CMPB";
1347   case PPCISD::Hi:              return "PPCISD::Hi";
1348   case PPCISD::Lo:              return "PPCISD::Lo";
1349   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1350   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1351   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1352   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1353   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1354   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1355   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1356   case PPCISD::SRL:             return "PPCISD::SRL";
1357   case PPCISD::SRA:             return "PPCISD::SRA";
1358   case PPCISD::SHL:             return "PPCISD::SHL";
1359   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1360   case PPCISD::CALL:            return "PPCISD::CALL";
1361   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1362   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1363   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1364   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1365   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1366   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1367   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1368   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1369   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1370   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1371   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1372   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1373   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1374   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1375   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1376   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1377     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1378   case PPCISD::ANDI_rec_1_EQ_BIT:
1379     return "PPCISD::ANDI_rec_1_EQ_BIT";
1380   case PPCISD::ANDI_rec_1_GT_BIT:
1381     return "PPCISD::ANDI_rec_1_GT_BIT";
1382   case PPCISD::VCMP:            return "PPCISD::VCMP";
1383   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1384   case PPCISD::LBRX:            return "PPCISD::LBRX";
1385   case PPCISD::STBRX:           return "PPCISD::STBRX";
1386   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1387   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1388   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1389   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1390   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1391   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1392   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1393   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1394   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1395   case PPCISD::ST_VSR_SCAL_INT:
1396                                 return "PPCISD::ST_VSR_SCAL_INT";
1397   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1398   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1399   case PPCISD::BDZ:             return "PPCISD::BDZ";
1400   case PPCISD::MFFS:            return "PPCISD::MFFS";
1401   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1402   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1403   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1404   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1405   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1406   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1407   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1408   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1409   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1410   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1411   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1412   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1413   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1414   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1415   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1416   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1417   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1418   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1419   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1420   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1421   case PPCISD::SC:              return "PPCISD::SC";
1422   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1423   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1424   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1425   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1426   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1427   case PPCISD::VABSD:           return "PPCISD::VABSD";
1428   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1429   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1430   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1431   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1432   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1433   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1434   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1435   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1436   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1437   }
1438   return nullptr;
1439 }
1440 
1441 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1442                                           EVT VT) const {
1443   if (!VT.isVector())
1444     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1445 
1446   return VT.changeVectorElementTypeToInteger();
1447 }
1448 
1449 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1450   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1451   return true;
1452 }
1453 
1454 //===----------------------------------------------------------------------===//
1455 // Node matching predicates, for use by the tblgen matching code.
1456 //===----------------------------------------------------------------------===//
1457 
1458 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1459 static bool isFloatingPointZero(SDValue Op) {
1460   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1461     return CFP->getValueAPF().isZero();
1462   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1463     // Maybe this has already been legalized into the constant pool?
1464     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1465       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1466         return CFP->getValueAPF().isZero();
1467   }
1468   return false;
1469 }
1470 
1471 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1472 /// true if Op is undef or if it matches the specified value.
1473 static bool isConstantOrUndef(int Op, int Val) {
1474   return Op < 0 || Op == Val;
1475 }
1476 
1477 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1478 /// VPKUHUM instruction.
1479 /// The ShuffleKind distinguishes between big-endian operations with
1480 /// two different inputs (0), either-endian operations with two identical
1481 /// inputs (1), and little-endian operations with two different inputs (2).
1482 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1483 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1484                                SelectionDAG &DAG) {
1485   bool IsLE = DAG.getDataLayout().isLittleEndian();
1486   if (ShuffleKind == 0) {
1487     if (IsLE)
1488       return false;
1489     for (unsigned i = 0; i != 16; ++i)
1490       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1491         return false;
1492   } else if (ShuffleKind == 2) {
1493     if (!IsLE)
1494       return false;
1495     for (unsigned i = 0; i != 16; ++i)
1496       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1497         return false;
1498   } else if (ShuffleKind == 1) {
1499     unsigned j = IsLE ? 0 : 1;
1500     for (unsigned i = 0; i != 8; ++i)
1501       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1502           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1503         return false;
1504   }
1505   return true;
1506 }
1507 
1508 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1509 /// VPKUWUM instruction.
1510 /// The ShuffleKind distinguishes between big-endian operations with
1511 /// two different inputs (0), either-endian operations with two identical
1512 /// inputs (1), and little-endian operations with two different inputs (2).
1513 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1514 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1515                                SelectionDAG &DAG) {
1516   bool IsLE = DAG.getDataLayout().isLittleEndian();
1517   if (ShuffleKind == 0) {
1518     if (IsLE)
1519       return false;
1520     for (unsigned i = 0; i != 16; i += 2)
1521       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1522           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1523         return false;
1524   } else if (ShuffleKind == 2) {
1525     if (!IsLE)
1526       return false;
1527     for (unsigned i = 0; i != 16; i += 2)
1528       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1529           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1530         return false;
1531   } else if (ShuffleKind == 1) {
1532     unsigned j = IsLE ? 0 : 2;
1533     for (unsigned i = 0; i != 8; i += 2)
1534       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1535           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1536           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1537           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1538         return false;
1539   }
1540   return true;
1541 }
1542 
1543 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1544 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1545 /// current subtarget.
1546 ///
1547 /// The ShuffleKind distinguishes between big-endian operations with
1548 /// two different inputs (0), either-endian operations with two identical
1549 /// inputs (1), and little-endian operations with two different inputs (2).
1550 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1551 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1552                                SelectionDAG &DAG) {
1553   const PPCSubtarget& Subtarget =
1554       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1555   if (!Subtarget.hasP8Vector())
1556     return false;
1557 
1558   bool IsLE = DAG.getDataLayout().isLittleEndian();
1559   if (ShuffleKind == 0) {
1560     if (IsLE)
1561       return false;
1562     for (unsigned i = 0; i != 16; i += 4)
1563       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1564           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1565           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1566           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1567         return false;
1568   } else if (ShuffleKind == 2) {
1569     if (!IsLE)
1570       return false;
1571     for (unsigned i = 0; i != 16; i += 4)
1572       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1573           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1574           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1575           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1576         return false;
1577   } else if (ShuffleKind == 1) {
1578     unsigned j = IsLE ? 0 : 4;
1579     for (unsigned i = 0; i != 8; i += 4)
1580       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1581           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1582           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1583           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1584           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1585           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1586           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1587           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1588         return false;
1589   }
1590   return true;
1591 }
1592 
1593 /// isVMerge - Common function, used to match vmrg* shuffles.
1594 ///
1595 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1596                      unsigned LHSStart, unsigned RHSStart) {
1597   if (N->getValueType(0) != MVT::v16i8)
1598     return false;
1599   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1600          "Unsupported merge size!");
1601 
1602   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1603     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1604       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1605                              LHSStart+j+i*UnitSize) ||
1606           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1607                              RHSStart+j+i*UnitSize))
1608         return false;
1609     }
1610   return true;
1611 }
1612 
1613 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1614 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1615 /// The ShuffleKind distinguishes between big-endian merges with two
1616 /// different inputs (0), either-endian merges with two identical inputs (1),
1617 /// and little-endian merges with two different inputs (2).  For the latter,
1618 /// the input operands are swapped (see PPCInstrAltivec.td).
1619 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1620                              unsigned ShuffleKind, SelectionDAG &DAG) {
1621   if (DAG.getDataLayout().isLittleEndian()) {
1622     if (ShuffleKind == 1) // unary
1623       return isVMerge(N, UnitSize, 0, 0);
1624     else if (ShuffleKind == 2) // swapped
1625       return isVMerge(N, UnitSize, 0, 16);
1626     else
1627       return false;
1628   } else {
1629     if (ShuffleKind == 1) // unary
1630       return isVMerge(N, UnitSize, 8, 8);
1631     else if (ShuffleKind == 0) // normal
1632       return isVMerge(N, UnitSize, 8, 24);
1633     else
1634       return false;
1635   }
1636 }
1637 
1638 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1639 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1640 /// The ShuffleKind distinguishes between big-endian merges with two
1641 /// different inputs (0), either-endian merges with two identical inputs (1),
1642 /// and little-endian merges with two different inputs (2).  For the latter,
1643 /// the input operands are swapped (see PPCInstrAltivec.td).
1644 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1645                              unsigned ShuffleKind, SelectionDAG &DAG) {
1646   if (DAG.getDataLayout().isLittleEndian()) {
1647     if (ShuffleKind == 1) // unary
1648       return isVMerge(N, UnitSize, 8, 8);
1649     else if (ShuffleKind == 2) // swapped
1650       return isVMerge(N, UnitSize, 8, 24);
1651     else
1652       return false;
1653   } else {
1654     if (ShuffleKind == 1) // unary
1655       return isVMerge(N, UnitSize, 0, 0);
1656     else if (ShuffleKind == 0) // normal
1657       return isVMerge(N, UnitSize, 0, 16);
1658     else
1659       return false;
1660   }
1661 }
1662 
1663 /**
1664  * Common function used to match vmrgew and vmrgow shuffles
1665  *
1666  * The indexOffset determines whether to look for even or odd words in
1667  * the shuffle mask. This is based on the of the endianness of the target
1668  * machine.
1669  *   - Little Endian:
1670  *     - Use offset of 0 to check for odd elements
1671  *     - Use offset of 4 to check for even elements
1672  *   - Big Endian:
1673  *     - Use offset of 0 to check for even elements
1674  *     - Use offset of 4 to check for odd elements
1675  * A detailed description of the vector element ordering for little endian and
1676  * big endian can be found at
1677  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1678  * Targeting your applications - what little endian and big endian IBM XL C/C++
1679  * compiler differences mean to you
1680  *
1681  * The mask to the shuffle vector instruction specifies the indices of the
1682  * elements from the two input vectors to place in the result. The elements are
1683  * numbered in array-access order, starting with the first vector. These vectors
1684  * are always of type v16i8, thus each vector will contain 16 elements of size
1685  * 8. More info on the shuffle vector can be found in the
1686  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1687  * Language Reference.
1688  *
1689  * The RHSStartValue indicates whether the same input vectors are used (unary)
1690  * or two different input vectors are used, based on the following:
1691  *   - If the instruction uses the same vector for both inputs, the range of the
1692  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1693  *     be 0.
1694  *   - If the instruction has two different vectors then the range of the
1695  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1696  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1697  *     to 31 specify elements in the second vector).
1698  *
1699  * \param[in] N The shuffle vector SD Node to analyze
1700  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1701  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1702  * vector to the shuffle_vector instruction
1703  * \return true iff this shuffle vector represents an even or odd word merge
1704  */
1705 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1706                      unsigned RHSStartValue) {
1707   if (N->getValueType(0) != MVT::v16i8)
1708     return false;
1709 
1710   for (unsigned i = 0; i < 2; ++i)
1711     for (unsigned j = 0; j < 4; ++j)
1712       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1713                              i*RHSStartValue+j+IndexOffset) ||
1714           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1715                              i*RHSStartValue+j+IndexOffset+8))
1716         return false;
1717   return true;
1718 }
1719 
1720 /**
1721  * Determine if the specified shuffle mask is suitable for the vmrgew or
1722  * vmrgow instructions.
1723  *
1724  * \param[in] N The shuffle vector SD Node to analyze
1725  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1726  * \param[in] ShuffleKind Identify the type of merge:
1727  *   - 0 = big-endian merge with two different inputs;
1728  *   - 1 = either-endian merge with two identical inputs;
1729  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1730  *     little-endian merges).
1731  * \param[in] DAG The current SelectionDAG
1732  * \return true iff this shuffle mask
1733  */
1734 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1735                               unsigned ShuffleKind, SelectionDAG &DAG) {
1736   if (DAG.getDataLayout().isLittleEndian()) {
1737     unsigned indexOffset = CheckEven ? 4 : 0;
1738     if (ShuffleKind == 1) // Unary
1739       return isVMerge(N, indexOffset, 0);
1740     else if (ShuffleKind == 2) // swapped
1741       return isVMerge(N, indexOffset, 16);
1742     else
1743       return false;
1744   }
1745   else {
1746     unsigned indexOffset = CheckEven ? 0 : 4;
1747     if (ShuffleKind == 1) // Unary
1748       return isVMerge(N, indexOffset, 0);
1749     else if (ShuffleKind == 0) // Normal
1750       return isVMerge(N, indexOffset, 16);
1751     else
1752       return false;
1753   }
1754   return false;
1755 }
1756 
1757 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1758 /// amount, otherwise return -1.
1759 /// The ShuffleKind distinguishes between big-endian operations with two
1760 /// different inputs (0), either-endian operations with two identical inputs
1761 /// (1), and little-endian operations with two different inputs (2).  For the
1762 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1763 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1764                              SelectionDAG &DAG) {
1765   if (N->getValueType(0) != MVT::v16i8)
1766     return -1;
1767 
1768   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1769 
1770   // Find the first non-undef value in the shuffle mask.
1771   unsigned i;
1772   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1773     /*search*/;
1774 
1775   if (i == 16) return -1;  // all undef.
1776 
1777   // Otherwise, check to see if the rest of the elements are consecutively
1778   // numbered from this value.
1779   unsigned ShiftAmt = SVOp->getMaskElt(i);
1780   if (ShiftAmt < i) return -1;
1781 
1782   ShiftAmt -= i;
1783   bool isLE = DAG.getDataLayout().isLittleEndian();
1784 
1785   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1786     // Check the rest of the elements to see if they are consecutive.
1787     for (++i; i != 16; ++i)
1788       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1789         return -1;
1790   } else if (ShuffleKind == 1) {
1791     // Check the rest of the elements to see if they are consecutive.
1792     for (++i; i != 16; ++i)
1793       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1794         return -1;
1795   } else
1796     return -1;
1797 
1798   if (isLE)
1799     ShiftAmt = 16 - ShiftAmt;
1800 
1801   return ShiftAmt;
1802 }
1803 
1804 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1805 /// specifies a splat of a single element that is suitable for input to
1806 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1807 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1808   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1809          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1810 
1811   // The consecutive indices need to specify an element, not part of two
1812   // different elements.  So abandon ship early if this isn't the case.
1813   if (N->getMaskElt(0) % EltSize != 0)
1814     return false;
1815 
1816   // This is a splat operation if each element of the permute is the same, and
1817   // if the value doesn't reference the second vector.
1818   unsigned ElementBase = N->getMaskElt(0);
1819 
1820   // FIXME: Handle UNDEF elements too!
1821   if (ElementBase >= 16)
1822     return false;
1823 
1824   // Check that the indices are consecutive, in the case of a multi-byte element
1825   // splatted with a v16i8 mask.
1826   for (unsigned i = 1; i != EltSize; ++i)
1827     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1828       return false;
1829 
1830   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1831     if (N->getMaskElt(i) < 0) continue;
1832     for (unsigned j = 0; j != EltSize; ++j)
1833       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1834         return false;
1835   }
1836   return true;
1837 }
1838 
1839 /// Check that the mask is shuffling N byte elements. Within each N byte
1840 /// element of the mask, the indices could be either in increasing or
1841 /// decreasing order as long as they are consecutive.
1842 /// \param[in] N the shuffle vector SD Node to analyze
1843 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1844 /// Word/DoubleWord/QuadWord).
1845 /// \param[in] StepLen the delta indices number among the N byte element, if
1846 /// the mask is in increasing/decreasing order then it is 1/-1.
1847 /// \return true iff the mask is shuffling N byte elements.
1848 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1849                                    int StepLen) {
1850   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1851          "Unexpected element width.");
1852   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1853 
1854   unsigned NumOfElem = 16 / Width;
1855   unsigned MaskVal[16]; //  Width is never greater than 16
1856   for (unsigned i = 0; i < NumOfElem; ++i) {
1857     MaskVal[0] = N->getMaskElt(i * Width);
1858     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1859       return false;
1860     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1861       return false;
1862     }
1863 
1864     for (unsigned int j = 1; j < Width; ++j) {
1865       MaskVal[j] = N->getMaskElt(i * Width + j);
1866       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1867         return false;
1868       }
1869     }
1870   }
1871 
1872   return true;
1873 }
1874 
1875 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1876                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1877   if (!isNByteElemShuffleMask(N, 4, 1))
1878     return false;
1879 
1880   // Now we look at mask elements 0,4,8,12
1881   unsigned M0 = N->getMaskElt(0) / 4;
1882   unsigned M1 = N->getMaskElt(4) / 4;
1883   unsigned M2 = N->getMaskElt(8) / 4;
1884   unsigned M3 = N->getMaskElt(12) / 4;
1885   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1886   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1887 
1888   // Below, let H and L be arbitrary elements of the shuffle mask
1889   // where H is in the range [4,7] and L is in the range [0,3].
1890   // H, 1, 2, 3 or L, 5, 6, 7
1891   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1892       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1893     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1894     InsertAtByte = IsLE ? 12 : 0;
1895     Swap = M0 < 4;
1896     return true;
1897   }
1898   // 0, H, 2, 3 or 4, L, 6, 7
1899   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1900       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1901     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1902     InsertAtByte = IsLE ? 8 : 4;
1903     Swap = M1 < 4;
1904     return true;
1905   }
1906   // 0, 1, H, 3 or 4, 5, L, 7
1907   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1908       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1909     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1910     InsertAtByte = IsLE ? 4 : 8;
1911     Swap = M2 < 4;
1912     return true;
1913   }
1914   // 0, 1, 2, H or 4, 5, 6, L
1915   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1916       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1917     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1918     InsertAtByte = IsLE ? 0 : 12;
1919     Swap = M3 < 4;
1920     return true;
1921   }
1922 
1923   // If both vector operands for the shuffle are the same vector, the mask will
1924   // contain only elements from the first one and the second one will be undef.
1925   if (N->getOperand(1).isUndef()) {
1926     ShiftElts = 0;
1927     Swap = true;
1928     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1929     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1930       InsertAtByte = IsLE ? 12 : 0;
1931       return true;
1932     }
1933     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1934       InsertAtByte = IsLE ? 8 : 4;
1935       return true;
1936     }
1937     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1938       InsertAtByte = IsLE ? 4 : 8;
1939       return true;
1940     }
1941     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1942       InsertAtByte = IsLE ? 0 : 12;
1943       return true;
1944     }
1945   }
1946 
1947   return false;
1948 }
1949 
1950 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1951                                bool &Swap, bool IsLE) {
1952   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1953   // Ensure each byte index of the word is consecutive.
1954   if (!isNByteElemShuffleMask(N, 4, 1))
1955     return false;
1956 
1957   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1958   unsigned M0 = N->getMaskElt(0) / 4;
1959   unsigned M1 = N->getMaskElt(4) / 4;
1960   unsigned M2 = N->getMaskElt(8) / 4;
1961   unsigned M3 = N->getMaskElt(12) / 4;
1962 
1963   // If both vector operands for the shuffle are the same vector, the mask will
1964   // contain only elements from the first one and the second one will be undef.
1965   if (N->getOperand(1).isUndef()) {
1966     assert(M0 < 4 && "Indexing into an undef vector?");
1967     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1968       return false;
1969 
1970     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1971     Swap = false;
1972     return true;
1973   }
1974 
1975   // Ensure each word index of the ShuffleVector Mask is consecutive.
1976   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1977     return false;
1978 
1979   if (IsLE) {
1980     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1981       // Input vectors don't need to be swapped if the leading element
1982       // of the result is one of the 3 left elements of the second vector
1983       // (or if there is no shift to be done at all).
1984       Swap = false;
1985       ShiftElts = (8 - M0) % 8;
1986     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1987       // Input vectors need to be swapped if the leading element
1988       // of the result is one of the 3 left elements of the first vector
1989       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1990       Swap = true;
1991       ShiftElts = (4 - M0) % 4;
1992     }
1993 
1994     return true;
1995   } else {                                          // BE
1996     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1997       // Input vectors don't need to be swapped if the leading element
1998       // of the result is one of the 4 elements of the first vector.
1999       Swap = false;
2000       ShiftElts = M0;
2001     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2002       // Input vectors need to be swapped if the leading element
2003       // of the result is one of the 4 elements of the right vector.
2004       Swap = true;
2005       ShiftElts = M0 - 4;
2006     }
2007 
2008     return true;
2009   }
2010 }
2011 
2012 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2013   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2014 
2015   if (!isNByteElemShuffleMask(N, Width, -1))
2016     return false;
2017 
2018   for (int i = 0; i < 16; i += Width)
2019     if (N->getMaskElt(i) != i + Width - 1)
2020       return false;
2021 
2022   return true;
2023 }
2024 
2025 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2026   return isXXBRShuffleMaskHelper(N, 2);
2027 }
2028 
2029 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2030   return isXXBRShuffleMaskHelper(N, 4);
2031 }
2032 
2033 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2034   return isXXBRShuffleMaskHelper(N, 8);
2035 }
2036 
2037 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2038   return isXXBRShuffleMaskHelper(N, 16);
2039 }
2040 
2041 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2042 /// if the inputs to the instruction should be swapped and set \p DM to the
2043 /// value for the immediate.
2044 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2045 /// AND element 0 of the result comes from the first input (LE) or second input
2046 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2047 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2048 /// mask.
2049 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2050                                bool &Swap, bool IsLE) {
2051   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2052 
2053   // Ensure each byte index of the double word is consecutive.
2054   if (!isNByteElemShuffleMask(N, 8, 1))
2055     return false;
2056 
2057   unsigned M0 = N->getMaskElt(0) / 8;
2058   unsigned M1 = N->getMaskElt(8) / 8;
2059   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2060 
2061   // If both vector operands for the shuffle are the same vector, the mask will
2062   // contain only elements from the first one and the second one will be undef.
2063   if (N->getOperand(1).isUndef()) {
2064     if ((M0 | M1) < 2) {
2065       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2066       Swap = false;
2067       return true;
2068     } else
2069       return false;
2070   }
2071 
2072   if (IsLE) {
2073     if (M0 > 1 && M1 < 2) {
2074       Swap = false;
2075     } else if (M0 < 2 && M1 > 1) {
2076       M0 = (M0 + 2) % 4;
2077       M1 = (M1 + 2) % 4;
2078       Swap = true;
2079     } else
2080       return false;
2081 
2082     // Note: if control flow comes here that means Swap is already set above
2083     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2084     return true;
2085   } else { // BE
2086     if (M0 < 2 && M1 > 1) {
2087       Swap = false;
2088     } else if (M0 > 1 && M1 < 2) {
2089       M0 = (M0 + 2) % 4;
2090       M1 = (M1 + 2) % 4;
2091       Swap = true;
2092     } else
2093       return false;
2094 
2095     // Note: if control flow comes here that means Swap is already set above
2096     DM = (M0 << 1) + (M1 & 1);
2097     return true;
2098   }
2099 }
2100 
2101 
2102 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2103 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2104 /// elements are counted from the left of the vector register).
2105 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2106                                          SelectionDAG &DAG) {
2107   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2108   assert(isSplatShuffleMask(SVOp, EltSize));
2109   if (DAG.getDataLayout().isLittleEndian())
2110     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2111   else
2112     return SVOp->getMaskElt(0) / EltSize;
2113 }
2114 
2115 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2116 /// by using a vspltis[bhw] instruction of the specified element size, return
2117 /// the constant being splatted.  The ByteSize field indicates the number of
2118 /// bytes of each element [124] -> [bhw].
2119 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2120   SDValue OpVal(nullptr, 0);
2121 
2122   // If ByteSize of the splat is bigger than the element size of the
2123   // build_vector, then we have a case where we are checking for a splat where
2124   // multiple elements of the buildvector are folded together into a single
2125   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2126   unsigned EltSize = 16/N->getNumOperands();
2127   if (EltSize < ByteSize) {
2128     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2129     SDValue UniquedVals[4];
2130     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2131 
2132     // See if all of the elements in the buildvector agree across.
2133     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2134       if (N->getOperand(i).isUndef()) continue;
2135       // If the element isn't a constant, bail fully out.
2136       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2137 
2138       if (!UniquedVals[i&(Multiple-1)].getNode())
2139         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2140       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2141         return SDValue();  // no match.
2142     }
2143 
2144     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2145     // either constant or undef values that are identical for each chunk.  See
2146     // if these chunks can form into a larger vspltis*.
2147 
2148     // Check to see if all of the leading entries are either 0 or -1.  If
2149     // neither, then this won't fit into the immediate field.
2150     bool LeadingZero = true;
2151     bool LeadingOnes = true;
2152     for (unsigned i = 0; i != Multiple-1; ++i) {
2153       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2154 
2155       LeadingZero &= isNullConstant(UniquedVals[i]);
2156       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2157     }
2158     // Finally, check the least significant entry.
2159     if (LeadingZero) {
2160       if (!UniquedVals[Multiple-1].getNode())
2161         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2162       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2163       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2164         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2165     }
2166     if (LeadingOnes) {
2167       if (!UniquedVals[Multiple-1].getNode())
2168         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2169       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2170       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2171         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2172     }
2173 
2174     return SDValue();
2175   }
2176 
2177   // Check to see if this buildvec has a single non-undef value in its elements.
2178   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2179     if (N->getOperand(i).isUndef()) continue;
2180     if (!OpVal.getNode())
2181       OpVal = N->getOperand(i);
2182     else if (OpVal != N->getOperand(i))
2183       return SDValue();
2184   }
2185 
2186   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2187 
2188   unsigned ValSizeInBytes = EltSize;
2189   uint64_t Value = 0;
2190   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2191     Value = CN->getZExtValue();
2192   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2193     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2194     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2195   }
2196 
2197   // If the splat value is larger than the element value, then we can never do
2198   // this splat.  The only case that we could fit the replicated bits into our
2199   // immediate field for would be zero, and we prefer to use vxor for it.
2200   if (ValSizeInBytes < ByteSize) return SDValue();
2201 
2202   // If the element value is larger than the splat value, check if it consists
2203   // of a repeated bit pattern of size ByteSize.
2204   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2205     return SDValue();
2206 
2207   // Properly sign extend the value.
2208   int MaskVal = SignExtend32(Value, ByteSize * 8);
2209 
2210   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2211   if (MaskVal == 0) return SDValue();
2212 
2213   // Finally, if this value fits in a 5 bit sext field, return it
2214   if (SignExtend32<5>(MaskVal) == MaskVal)
2215     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2216   return SDValue();
2217 }
2218 
2219 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2220 /// amount, otherwise return -1.
2221 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2222   EVT VT = N->getValueType(0);
2223   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2224     return -1;
2225 
2226   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2227 
2228   // Find the first non-undef value in the shuffle mask.
2229   unsigned i;
2230   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2231     /*search*/;
2232 
2233   if (i == 4) return -1;  // all undef.
2234 
2235   // Otherwise, check to see if the rest of the elements are consecutively
2236   // numbered from this value.
2237   unsigned ShiftAmt = SVOp->getMaskElt(i);
2238   if (ShiftAmt < i) return -1;
2239   ShiftAmt -= i;
2240 
2241   // Check the rest of the elements to see if they are consecutive.
2242   for (++i; i != 4; ++i)
2243     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2244       return -1;
2245 
2246   return ShiftAmt;
2247 }
2248 
2249 //===----------------------------------------------------------------------===//
2250 //  Addressing Mode Selection
2251 //===----------------------------------------------------------------------===//
2252 
2253 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2254 /// or 64-bit immediate, and if the value can be accurately represented as a
2255 /// sign extension from a 16-bit value.  If so, this returns true and the
2256 /// immediate.
2257 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2258   if (!isa<ConstantSDNode>(N))
2259     return false;
2260 
2261   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2262   if (N->getValueType(0) == MVT::i32)
2263     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2264   else
2265     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2266 }
2267 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2268   return isIntS16Immediate(Op.getNode(), Imm);
2269 }
2270 
2271 
2272 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2273 /// be represented as an indexed [r+r] operation.
2274 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2275                                                SDValue &Index,
2276                                                SelectionDAG &DAG) const {
2277   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2278       UI != E; ++UI) {
2279     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2280       if (Memop->getMemoryVT() == MVT::f64) {
2281           Base = N.getOperand(0);
2282           Index = N.getOperand(1);
2283           return true;
2284       }
2285     }
2286   }
2287   return false;
2288 }
2289 
2290 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2291 /// can be represented as an indexed [r+r] operation.  Returns false if it
2292 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2293 /// non-zero and N can be represented by a base register plus a signed 16-bit
2294 /// displacement, make a more precise judgement by checking (displacement % \p
2295 /// EncodingAlignment).
2296 bool PPCTargetLowering::SelectAddressRegReg(
2297     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2298     MaybeAlign EncodingAlignment) const {
2299   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2300   // a [pc+imm].
2301   if (SelectAddressPCRel(N, Base))
2302     return false;
2303 
2304   int16_t Imm = 0;
2305   if (N.getOpcode() == ISD::ADD) {
2306     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2307     // SPE load/store can only handle 8-bit offsets.
2308     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2309         return true;
2310     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2311         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2312       return false; // r+i
2313     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2314       return false;    // r+i
2315 
2316     Base = N.getOperand(0);
2317     Index = N.getOperand(1);
2318     return true;
2319   } else if (N.getOpcode() == ISD::OR) {
2320     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2321         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2322       return false; // r+i can fold it if we can.
2323 
2324     // If this is an or of disjoint bitfields, we can codegen this as an add
2325     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2326     // disjoint.
2327     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2328 
2329     if (LHSKnown.Zero.getBoolValue()) {
2330       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2331       // If all of the bits are known zero on the LHS or RHS, the add won't
2332       // carry.
2333       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2334         Base = N.getOperand(0);
2335         Index = N.getOperand(1);
2336         return true;
2337       }
2338     }
2339   }
2340 
2341   return false;
2342 }
2343 
2344 // If we happen to be doing an i64 load or store into a stack slot that has
2345 // less than a 4-byte alignment, then the frame-index elimination may need to
2346 // use an indexed load or store instruction (because the offset may not be a
2347 // multiple of 4). The extra register needed to hold the offset comes from the
2348 // register scavenger, and it is possible that the scavenger will need to use
2349 // an emergency spill slot. As a result, we need to make sure that a spill slot
2350 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2351 // stack slot.
2352 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2353   // FIXME: This does not handle the LWA case.
2354   if (VT != MVT::i64)
2355     return;
2356 
2357   // NOTE: We'll exclude negative FIs here, which come from argument
2358   // lowering, because there are no known test cases triggering this problem
2359   // using packed structures (or similar). We can remove this exclusion if
2360   // we find such a test case. The reason why this is so test-case driven is
2361   // because this entire 'fixup' is only to prevent crashes (from the
2362   // register scavenger) on not-really-valid inputs. For example, if we have:
2363   //   %a = alloca i1
2364   //   %b = bitcast i1* %a to i64*
2365   //   store i64* a, i64 b
2366   // then the store should really be marked as 'align 1', but is not. If it
2367   // were marked as 'align 1' then the indexed form would have been
2368   // instruction-selected initially, and the problem this 'fixup' is preventing
2369   // won't happen regardless.
2370   if (FrameIdx < 0)
2371     return;
2372 
2373   MachineFunction &MF = DAG.getMachineFunction();
2374   MachineFrameInfo &MFI = MF.getFrameInfo();
2375 
2376   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2377     return;
2378 
2379   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2380   FuncInfo->setHasNonRISpills();
2381 }
2382 
2383 /// Returns true if the address N can be represented by a base register plus
2384 /// a signed 16-bit displacement [r+imm], and if it is not better
2385 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2386 /// displacements that are multiples of that value.
2387 bool PPCTargetLowering::SelectAddressRegImm(
2388     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2389     MaybeAlign EncodingAlignment) const {
2390   // FIXME dl should come from parent load or store, not from address
2391   SDLoc dl(N);
2392 
2393   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2394   // a [pc+imm].
2395   if (SelectAddressPCRel(N, Base))
2396     return false;
2397 
2398   // If this can be more profitably realized as r+r, fail.
2399   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2400     return false;
2401 
2402   if (N.getOpcode() == ISD::ADD) {
2403     int16_t imm = 0;
2404     if (isIntS16Immediate(N.getOperand(1), imm) &&
2405         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2406       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2407       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2408         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2409         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2410       } else {
2411         Base = N.getOperand(0);
2412       }
2413       return true; // [r+i]
2414     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2415       // Match LOAD (ADD (X, Lo(G))).
2416       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2417              && "Cannot handle constant offsets yet!");
2418       Disp = N.getOperand(1).getOperand(0);  // The global address.
2419       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2420              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2421              Disp.getOpcode() == ISD::TargetConstantPool ||
2422              Disp.getOpcode() == ISD::TargetJumpTable);
2423       Base = N.getOperand(0);
2424       return true;  // [&g+r]
2425     }
2426   } else if (N.getOpcode() == ISD::OR) {
2427     int16_t imm = 0;
2428     if (isIntS16Immediate(N.getOperand(1), imm) &&
2429         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2430       // If this is an or of disjoint bitfields, we can codegen this as an add
2431       // (for better address arithmetic) if the LHS and RHS of the OR are
2432       // provably disjoint.
2433       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2434 
2435       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2436         // If all of the bits are known zero on the LHS or RHS, the add won't
2437         // carry.
2438         if (FrameIndexSDNode *FI =
2439               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2440           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2441           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2442         } else {
2443           Base = N.getOperand(0);
2444         }
2445         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2446         return true;
2447       }
2448     }
2449   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2450     // Loading from a constant address.
2451 
2452     // If this address fits entirely in a 16-bit sext immediate field, codegen
2453     // this as "d, 0"
2454     int16_t Imm;
2455     if (isIntS16Immediate(CN, Imm) &&
2456         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2457       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2458       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2459                              CN->getValueType(0));
2460       return true;
2461     }
2462 
2463     // Handle 32-bit sext immediates with LIS + addr mode.
2464     if ((CN->getValueType(0) == MVT::i32 ||
2465          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2466         (!EncodingAlignment ||
2467          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2468       int Addr = (int)CN->getZExtValue();
2469 
2470       // Otherwise, break this down into an LIS + disp.
2471       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2472 
2473       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2474                                    MVT::i32);
2475       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2476       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2477       return true;
2478     }
2479   }
2480 
2481   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2482   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2483     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2484     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2485   } else
2486     Base = N;
2487   return true;      // [r+0]
2488 }
2489 
2490 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2491 /// represented as an indexed [r+r] operation.
2492 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2493                                                 SDValue &Index,
2494                                                 SelectionDAG &DAG) const {
2495   // Check to see if we can easily represent this as an [r+r] address.  This
2496   // will fail if it thinks that the address is more profitably represented as
2497   // reg+imm, e.g. where imm = 0.
2498   if (SelectAddressRegReg(N, Base, Index, DAG))
2499     return true;
2500 
2501   // If the address is the result of an add, we will utilize the fact that the
2502   // address calculation includes an implicit add.  However, we can reduce
2503   // register pressure if we do not materialize a constant just for use as the
2504   // index register.  We only get rid of the add if it is not an add of a
2505   // value and a 16-bit signed constant and both have a single use.
2506   int16_t imm = 0;
2507   if (N.getOpcode() == ISD::ADD &&
2508       (!isIntS16Immediate(N.getOperand(1), imm) ||
2509        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2510     Base = N.getOperand(0);
2511     Index = N.getOperand(1);
2512     return true;
2513   }
2514 
2515   // Otherwise, do it the hard way, using R0 as the base register.
2516   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2517                          N.getValueType());
2518   Index = N;
2519   return true;
2520 }
2521 
2522 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2523   Ty *PCRelCand = dyn_cast<Ty>(N);
2524   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2525 }
2526 
2527 /// Returns true if this address is a PC Relative address.
2528 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2529 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2530 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2531   // This is a materialize PC Relative node. Always select this as PC Relative.
2532   Base = N;
2533   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2534     return true;
2535   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2536       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2537       isValidPCRelNode<JumpTableSDNode>(N) ||
2538       isValidPCRelNode<BlockAddressSDNode>(N))
2539     return true;
2540   return false;
2541 }
2542 
2543 /// Returns true if we should use a direct load into vector instruction
2544 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2545 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2546 
2547   // If there are any other uses other than scalar to vector, then we should
2548   // keep it as a scalar load -> direct move pattern to prevent multiple
2549   // loads.
2550   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2551   if (!LD)
2552     return false;
2553 
2554   EVT MemVT = LD->getMemoryVT();
2555   if (!MemVT.isSimple())
2556     return false;
2557   switch(MemVT.getSimpleVT().SimpleTy) {
2558   case MVT::i64:
2559     break;
2560   case MVT::i32:
2561     if (!ST.hasP8Vector())
2562       return false;
2563     break;
2564   case MVT::i16:
2565   case MVT::i8:
2566     if (!ST.hasP9Vector())
2567       return false;
2568     break;
2569   default:
2570     return false;
2571   }
2572 
2573   SDValue LoadedVal(N, 0);
2574   if (!LoadedVal.hasOneUse())
2575     return false;
2576 
2577   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2578        UI != UE; ++UI)
2579     if (UI.getUse().get().getResNo() == 0 &&
2580         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2581         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2582       return false;
2583 
2584   return true;
2585 }
2586 
2587 /// getPreIndexedAddressParts - returns true by value, base pointer and
2588 /// offset pointer and addressing mode by reference if the node's address
2589 /// can be legally represented as pre-indexed load / store address.
2590 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2591                                                   SDValue &Offset,
2592                                                   ISD::MemIndexedMode &AM,
2593                                                   SelectionDAG &DAG) const {
2594   if (DisablePPCPreinc) return false;
2595 
2596   bool isLoad = true;
2597   SDValue Ptr;
2598   EVT VT;
2599   unsigned Alignment;
2600   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2601     Ptr = LD->getBasePtr();
2602     VT = LD->getMemoryVT();
2603     Alignment = LD->getAlignment();
2604   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2605     Ptr = ST->getBasePtr();
2606     VT  = ST->getMemoryVT();
2607     Alignment = ST->getAlignment();
2608     isLoad = false;
2609   } else
2610     return false;
2611 
2612   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2613   // instructions because we can fold these into a more efficient instruction
2614   // instead, (such as LXSD).
2615   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2616     return false;
2617   }
2618 
2619   // PowerPC doesn't have preinc load/store instructions for vectors
2620   if (VT.isVector())
2621     return false;
2622 
2623   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2624     // Common code will reject creating a pre-inc form if the base pointer
2625     // is a frame index, or if N is a store and the base pointer is either
2626     // the same as or a predecessor of the value being stored.  Check for
2627     // those situations here, and try with swapped Base/Offset instead.
2628     bool Swap = false;
2629 
2630     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2631       Swap = true;
2632     else if (!isLoad) {
2633       SDValue Val = cast<StoreSDNode>(N)->getValue();
2634       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2635         Swap = true;
2636     }
2637 
2638     if (Swap)
2639       std::swap(Base, Offset);
2640 
2641     AM = ISD::PRE_INC;
2642     return true;
2643   }
2644 
2645   // LDU/STU can only handle immediates that are a multiple of 4.
2646   if (VT != MVT::i64) {
2647     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2648       return false;
2649   } else {
2650     // LDU/STU need an address with at least 4-byte alignment.
2651     if (Alignment < 4)
2652       return false;
2653 
2654     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2655       return false;
2656   }
2657 
2658   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2659     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2660     // sext i32 to i64 when addr mode is r+i.
2661     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2662         LD->getExtensionType() == ISD::SEXTLOAD &&
2663         isa<ConstantSDNode>(Offset))
2664       return false;
2665   }
2666 
2667   AM = ISD::PRE_INC;
2668   return true;
2669 }
2670 
2671 //===----------------------------------------------------------------------===//
2672 //  LowerOperation implementation
2673 //===----------------------------------------------------------------------===//
2674 
2675 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2676 /// and LoOpFlags to the target MO flags.
2677 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2678                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2679                                const GlobalValue *GV = nullptr) {
2680   HiOpFlags = PPCII::MO_HA;
2681   LoOpFlags = PPCII::MO_LO;
2682 
2683   // Don't use the pic base if not in PIC relocation model.
2684   if (IsPIC) {
2685     HiOpFlags |= PPCII::MO_PIC_FLAG;
2686     LoOpFlags |= PPCII::MO_PIC_FLAG;
2687   }
2688 }
2689 
2690 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2691                              SelectionDAG &DAG) {
2692   SDLoc DL(HiPart);
2693   EVT PtrVT = HiPart.getValueType();
2694   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2695 
2696   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2697   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2698 
2699   // With PIC, the first instruction is actually "GR+hi(&G)".
2700   if (isPIC)
2701     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2702                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2703 
2704   // Generate non-pic code that has direct accesses to the constant pool.
2705   // The address of the global is just (hi(&g)+lo(&g)).
2706   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2707 }
2708 
2709 static void setUsesTOCBasePtr(MachineFunction &MF) {
2710   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2711   FuncInfo->setUsesTOCBasePtr();
2712 }
2713 
2714 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2715   setUsesTOCBasePtr(DAG.getMachineFunction());
2716 }
2717 
2718 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2719                                        SDValue GA) const {
2720   const bool Is64Bit = Subtarget.isPPC64();
2721   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2722   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2723                         : Subtarget.isAIXABI()
2724                               ? DAG.getRegister(PPC::R2, VT)
2725                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2726   SDValue Ops[] = { GA, Reg };
2727   return DAG.getMemIntrinsicNode(
2728       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2729       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2730       MachineMemOperand::MOLoad);
2731 }
2732 
2733 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2734                                              SelectionDAG &DAG) const {
2735   EVT PtrVT = Op.getValueType();
2736   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2737   const Constant *C = CP->getConstVal();
2738 
2739   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2740   // The actual address of the GlobalValue is stored in the TOC.
2741   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2742     if (Subtarget.isUsingPCRelativeCalls()) {
2743       SDLoc DL(CP);
2744       EVT Ty = getPointerTy(DAG.getDataLayout());
2745       SDValue ConstPool = DAG.getTargetConstantPool(
2746           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2747       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2748     }
2749     setUsesTOCBasePtr(DAG);
2750     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2751     return getTOCEntry(DAG, SDLoc(CP), GA);
2752   }
2753 
2754   unsigned MOHiFlag, MOLoFlag;
2755   bool IsPIC = isPositionIndependent();
2756   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2757 
2758   if (IsPIC && Subtarget.isSVR4ABI()) {
2759     SDValue GA =
2760         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2761     return getTOCEntry(DAG, SDLoc(CP), GA);
2762   }
2763 
2764   SDValue CPIHi =
2765       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2766   SDValue CPILo =
2767       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2768   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2769 }
2770 
2771 // For 64-bit PowerPC, prefer the more compact relative encodings.
2772 // This trades 32 bits per jump table entry for one or two instructions
2773 // on the jump site.
2774 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2775   if (isJumpTableRelative())
2776     return MachineJumpTableInfo::EK_LabelDifference32;
2777 
2778   return TargetLowering::getJumpTableEncoding();
2779 }
2780 
2781 bool PPCTargetLowering::isJumpTableRelative() const {
2782   if (UseAbsoluteJumpTables)
2783     return false;
2784   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2785     return true;
2786   return TargetLowering::isJumpTableRelative();
2787 }
2788 
2789 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2790                                                     SelectionDAG &DAG) const {
2791   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2792     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2793 
2794   switch (getTargetMachine().getCodeModel()) {
2795   case CodeModel::Small:
2796   case CodeModel::Medium:
2797     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2798   default:
2799     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2800                        getPointerTy(DAG.getDataLayout()));
2801   }
2802 }
2803 
2804 const MCExpr *
2805 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2806                                                 unsigned JTI,
2807                                                 MCContext &Ctx) const {
2808   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2809     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2810 
2811   switch (getTargetMachine().getCodeModel()) {
2812   case CodeModel::Small:
2813   case CodeModel::Medium:
2814     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2815   default:
2816     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2817   }
2818 }
2819 
2820 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2821   EVT PtrVT = Op.getValueType();
2822   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2823 
2824   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2825   if (Subtarget.isUsingPCRelativeCalls()) {
2826     SDLoc DL(JT);
2827     EVT Ty = getPointerTy(DAG.getDataLayout());
2828     SDValue GA =
2829         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2830     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2831     return MatAddr;
2832   }
2833 
2834   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2835   // The actual address of the GlobalValue is stored in the TOC.
2836   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2837     setUsesTOCBasePtr(DAG);
2838     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2839     return getTOCEntry(DAG, SDLoc(JT), GA);
2840   }
2841 
2842   unsigned MOHiFlag, MOLoFlag;
2843   bool IsPIC = isPositionIndependent();
2844   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2845 
2846   if (IsPIC && Subtarget.isSVR4ABI()) {
2847     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2848                                         PPCII::MO_PIC_FLAG);
2849     return getTOCEntry(DAG, SDLoc(GA), GA);
2850   }
2851 
2852   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2853   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2854   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2855 }
2856 
2857 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2858                                              SelectionDAG &DAG) const {
2859   EVT PtrVT = Op.getValueType();
2860   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2861   const BlockAddress *BA = BASDN->getBlockAddress();
2862 
2863   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2864   if (Subtarget.isUsingPCRelativeCalls()) {
2865     SDLoc DL(BASDN);
2866     EVT Ty = getPointerTy(DAG.getDataLayout());
2867     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2868                                            PPCII::MO_PCREL_FLAG);
2869     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2870     return MatAddr;
2871   }
2872 
2873   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2874   // The actual BlockAddress is stored in the TOC.
2875   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2876     setUsesTOCBasePtr(DAG);
2877     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2878     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2879   }
2880 
2881   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2882   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2883     return getTOCEntry(
2884         DAG, SDLoc(BASDN),
2885         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2886 
2887   unsigned MOHiFlag, MOLoFlag;
2888   bool IsPIC = isPositionIndependent();
2889   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2890   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2891   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2892   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2893 }
2894 
2895 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2896                                               SelectionDAG &DAG) const {
2897   // FIXME: TLS addresses currently use medium model code sequences,
2898   // which is the most useful form.  Eventually support for small and
2899   // large models could be added if users need it, at the cost of
2900   // additional complexity.
2901   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2902   if (DAG.getTarget().useEmulatedTLS())
2903     return LowerToTLSEmulatedModel(GA, DAG);
2904 
2905   SDLoc dl(GA);
2906   const GlobalValue *GV = GA->getGlobal();
2907   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2908   bool is64bit = Subtarget.isPPC64();
2909   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2910   PICLevel::Level picLevel = M->getPICLevel();
2911 
2912   const TargetMachine &TM = getTargetMachine();
2913   TLSModel::Model Model = TM.getTLSModel(GV);
2914 
2915   if (Model == TLSModel::LocalExec) {
2916     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2917                                                PPCII::MO_TPREL_HA);
2918     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2919                                                PPCII::MO_TPREL_LO);
2920     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2921                              : DAG.getRegister(PPC::R2, MVT::i32);
2922 
2923     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2924     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2925   }
2926 
2927   if (Model == TLSModel::InitialExec) {
2928     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2929     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2930                                                 PPCII::MO_TLS);
2931     SDValue GOTPtr;
2932     if (is64bit) {
2933       setUsesTOCBasePtr(DAG);
2934       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2935       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2936                            PtrVT, GOTReg, TGA);
2937     } else {
2938       if (!TM.isPositionIndependent())
2939         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2940       else if (picLevel == PICLevel::SmallPIC)
2941         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2942       else
2943         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2944     }
2945     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2946                                    PtrVT, TGA, GOTPtr);
2947     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2948   }
2949 
2950   if (Model == TLSModel::GeneralDynamic) {
2951     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2952     SDValue GOTPtr;
2953     if (is64bit) {
2954       setUsesTOCBasePtr(DAG);
2955       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2956       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2957                                    GOTReg, TGA);
2958     } else {
2959       if (picLevel == PICLevel::SmallPIC)
2960         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2961       else
2962         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2963     }
2964     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2965                        GOTPtr, TGA, TGA);
2966   }
2967 
2968   if (Model == TLSModel::LocalDynamic) {
2969     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2970     SDValue GOTPtr;
2971     if (is64bit) {
2972       setUsesTOCBasePtr(DAG);
2973       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2974       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2975                            GOTReg, TGA);
2976     } else {
2977       if (picLevel == PICLevel::SmallPIC)
2978         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2979       else
2980         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2981     }
2982     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2983                                   PtrVT, GOTPtr, TGA, TGA);
2984     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2985                                       PtrVT, TLSAddr, TGA);
2986     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2987   }
2988 
2989   llvm_unreachable("Unknown TLS model!");
2990 }
2991 
2992 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2993                                               SelectionDAG &DAG) const {
2994   EVT PtrVT = Op.getValueType();
2995   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2996   SDLoc DL(GSDN);
2997   const GlobalValue *GV = GSDN->getGlobal();
2998 
2999   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3000   // The actual address of the GlobalValue is stored in the TOC.
3001   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3002     if (Subtarget.isUsingPCRelativeCalls()) {
3003       EVT Ty = getPointerTy(DAG.getDataLayout());
3004       if (isAccessedAsGotIndirect(Op)) {
3005         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3006                                                 PPCII::MO_PCREL_FLAG |
3007                                                     PPCII::MO_GOT_FLAG);
3008         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3009         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3010                                    MachinePointerInfo());
3011         return Load;
3012       } else {
3013         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3014                                                 PPCII::MO_PCREL_FLAG);
3015         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3016       }
3017     }
3018     setUsesTOCBasePtr(DAG);
3019     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3020     return getTOCEntry(DAG, DL, GA);
3021   }
3022 
3023   unsigned MOHiFlag, MOLoFlag;
3024   bool IsPIC = isPositionIndependent();
3025   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3026 
3027   if (IsPIC && Subtarget.isSVR4ABI()) {
3028     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3029                                             GSDN->getOffset(),
3030                                             PPCII::MO_PIC_FLAG);
3031     return getTOCEntry(DAG, DL, GA);
3032   }
3033 
3034   SDValue GAHi =
3035     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3036   SDValue GALo =
3037     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3038 
3039   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3040 }
3041 
3042 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3043   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3044   SDLoc dl(Op);
3045 
3046   if (Op.getValueType() == MVT::v2i64) {
3047     // When the operands themselves are v2i64 values, we need to do something
3048     // special because VSX has no underlying comparison operations for these.
3049     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3050       // Equality can be handled by casting to the legal type for Altivec
3051       // comparisons, everything else needs to be expanded.
3052       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3053         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3054                  DAG.getSetCC(dl, MVT::v4i32,
3055                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3056                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3057                    CC));
3058       }
3059 
3060       return SDValue();
3061     }
3062 
3063     // We handle most of these in the usual way.
3064     return Op;
3065   }
3066 
3067   // If we're comparing for equality to zero, expose the fact that this is
3068   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3069   // fold the new nodes.
3070   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3071     return V;
3072 
3073   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3074     // Leave comparisons against 0 and -1 alone for now, since they're usually
3075     // optimized.  FIXME: revisit this when we can custom lower all setcc
3076     // optimizations.
3077     if (C->isAllOnesValue() || C->isNullValue())
3078       return SDValue();
3079   }
3080 
3081   // If we have an integer seteq/setne, turn it into a compare against zero
3082   // by xor'ing the rhs with the lhs, which is faster than setting a
3083   // condition register, reading it back out, and masking the correct bit.  The
3084   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3085   // the result to other bit-twiddling opportunities.
3086   EVT LHSVT = Op.getOperand(0).getValueType();
3087   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3088     EVT VT = Op.getValueType();
3089     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3090                                 Op.getOperand(1));
3091     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3092   }
3093   return SDValue();
3094 }
3095 
3096 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3097   SDNode *Node = Op.getNode();
3098   EVT VT = Node->getValueType(0);
3099   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3100   SDValue InChain = Node->getOperand(0);
3101   SDValue VAListPtr = Node->getOperand(1);
3102   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3103   SDLoc dl(Node);
3104 
3105   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3106 
3107   // gpr_index
3108   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3109                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3110   InChain = GprIndex.getValue(1);
3111 
3112   if (VT == MVT::i64) {
3113     // Check if GprIndex is even
3114     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3115                                  DAG.getConstant(1, dl, MVT::i32));
3116     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3117                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3118     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3119                                           DAG.getConstant(1, dl, MVT::i32));
3120     // Align GprIndex to be even if it isn't
3121     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3122                            GprIndex);
3123   }
3124 
3125   // fpr index is 1 byte after gpr
3126   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3127                                DAG.getConstant(1, dl, MVT::i32));
3128 
3129   // fpr
3130   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3131                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3132   InChain = FprIndex.getValue(1);
3133 
3134   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3135                                        DAG.getConstant(8, dl, MVT::i32));
3136 
3137   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3138                                         DAG.getConstant(4, dl, MVT::i32));
3139 
3140   // areas
3141   SDValue OverflowArea =
3142       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3143   InChain = OverflowArea.getValue(1);
3144 
3145   SDValue RegSaveArea =
3146       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3147   InChain = RegSaveArea.getValue(1);
3148 
3149   // select overflow_area if index > 8
3150   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3151                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3152 
3153   // adjustment constant gpr_index * 4/8
3154   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3155                                     VT.isInteger() ? GprIndex : FprIndex,
3156                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3157                                                     MVT::i32));
3158 
3159   // OurReg = RegSaveArea + RegConstant
3160   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3161                                RegConstant);
3162 
3163   // Floating types are 32 bytes into RegSaveArea
3164   if (VT.isFloatingPoint())
3165     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3166                          DAG.getConstant(32, dl, MVT::i32));
3167 
3168   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3169   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3170                                    VT.isInteger() ? GprIndex : FprIndex,
3171                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3172                                                    MVT::i32));
3173 
3174   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3175                               VT.isInteger() ? VAListPtr : FprPtr,
3176                               MachinePointerInfo(SV), MVT::i8);
3177 
3178   // determine if we should load from reg_save_area or overflow_area
3179   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3180 
3181   // increase overflow_area by 4/8 if gpr/fpr > 8
3182   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3183                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3184                                           dl, MVT::i32));
3185 
3186   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3187                              OverflowAreaPlusN);
3188 
3189   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3190                               MachinePointerInfo(), MVT::i32);
3191 
3192   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3193 }
3194 
3195 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3196   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3197 
3198   // We have to copy the entire va_list struct:
3199   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3200   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3201                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3202                        false, true, false, MachinePointerInfo(),
3203                        MachinePointerInfo());
3204 }
3205 
3206 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3207                                                   SelectionDAG &DAG) const {
3208   if (Subtarget.isAIXABI())
3209     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3210 
3211   return Op.getOperand(0);
3212 }
3213 
3214 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3215                                                 SelectionDAG &DAG) const {
3216   if (Subtarget.isAIXABI())
3217     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3218 
3219   SDValue Chain = Op.getOperand(0);
3220   SDValue Trmp = Op.getOperand(1); // trampoline
3221   SDValue FPtr = Op.getOperand(2); // nested function
3222   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3223   SDLoc dl(Op);
3224 
3225   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3226   bool isPPC64 = (PtrVT == MVT::i64);
3227   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3228 
3229   TargetLowering::ArgListTy Args;
3230   TargetLowering::ArgListEntry Entry;
3231 
3232   Entry.Ty = IntPtrTy;
3233   Entry.Node = Trmp; Args.push_back(Entry);
3234 
3235   // TrampSize == (isPPC64 ? 48 : 40);
3236   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3237                                isPPC64 ? MVT::i64 : MVT::i32);
3238   Args.push_back(Entry);
3239 
3240   Entry.Node = FPtr; Args.push_back(Entry);
3241   Entry.Node = Nest; Args.push_back(Entry);
3242 
3243   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3244   TargetLowering::CallLoweringInfo CLI(DAG);
3245   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3246       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3247       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3248 
3249   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3250   return CallResult.second;
3251 }
3252 
3253 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3254   MachineFunction &MF = DAG.getMachineFunction();
3255   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3256   EVT PtrVT = getPointerTy(MF.getDataLayout());
3257 
3258   SDLoc dl(Op);
3259 
3260   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3261     // vastart just stores the address of the VarArgsFrameIndex slot into the
3262     // memory location argument.
3263     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3264     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3265     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3266                         MachinePointerInfo(SV));
3267   }
3268 
3269   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3270   // We suppose the given va_list is already allocated.
3271   //
3272   // typedef struct {
3273   //  char gpr;     /* index into the array of 8 GPRs
3274   //                 * stored in the register save area
3275   //                 * gpr=0 corresponds to r3,
3276   //                 * gpr=1 to r4, etc.
3277   //                 */
3278   //  char fpr;     /* index into the array of 8 FPRs
3279   //                 * stored in the register save area
3280   //                 * fpr=0 corresponds to f1,
3281   //                 * fpr=1 to f2, etc.
3282   //                 */
3283   //  char *overflow_arg_area;
3284   //                /* location on stack that holds
3285   //                 * the next overflow argument
3286   //                 */
3287   //  char *reg_save_area;
3288   //               /* where r3:r10 and f1:f8 (if saved)
3289   //                * are stored
3290   //                */
3291   // } va_list[1];
3292 
3293   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3294   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3295   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3296                                             PtrVT);
3297   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3298                                  PtrVT);
3299 
3300   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3301   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3302 
3303   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3304   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3305 
3306   uint64_t FPROffset = 1;
3307   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3308 
3309   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3310 
3311   // Store first byte : number of int regs
3312   SDValue firstStore =
3313       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3314                         MachinePointerInfo(SV), MVT::i8);
3315   uint64_t nextOffset = FPROffset;
3316   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3317                                   ConstFPROffset);
3318 
3319   // Store second byte : number of float regs
3320   SDValue secondStore =
3321       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3322                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3323   nextOffset += StackOffset;
3324   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3325 
3326   // Store second word : arguments given on stack
3327   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3328                                     MachinePointerInfo(SV, nextOffset));
3329   nextOffset += FrameOffset;
3330   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3331 
3332   // Store third word : arguments given in registers
3333   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3334                       MachinePointerInfo(SV, nextOffset));
3335 }
3336 
3337 /// FPR - The set of FP registers that should be allocated for arguments
3338 /// on Darwin and AIX.
3339 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3340                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3341                                 PPC::F11, PPC::F12, PPC::F13};
3342 
3343 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3344 /// the stack.
3345 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3346                                        unsigned PtrByteSize) {
3347   unsigned ArgSize = ArgVT.getStoreSize();
3348   if (Flags.isByVal())
3349     ArgSize = Flags.getByValSize();
3350 
3351   // Round up to multiples of the pointer size, except for array members,
3352   // which are always packed.
3353   if (!Flags.isInConsecutiveRegs())
3354     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3355 
3356   return ArgSize;
3357 }
3358 
3359 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3360 /// on the stack.
3361 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3362                                          ISD::ArgFlagsTy Flags,
3363                                          unsigned PtrByteSize) {
3364   Align Alignment(PtrByteSize);
3365 
3366   // Altivec parameters are padded to a 16 byte boundary.
3367   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3368       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3369       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3370       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3371     Alignment = Align(16);
3372 
3373   // ByVal parameters are aligned as requested.
3374   if (Flags.isByVal()) {
3375     auto BVAlign = Flags.getNonZeroByValAlign();
3376     if (BVAlign > PtrByteSize) {
3377       if (BVAlign.value() % PtrByteSize != 0)
3378         llvm_unreachable(
3379             "ByVal alignment is not a multiple of the pointer size");
3380 
3381       Alignment = BVAlign;
3382     }
3383   }
3384 
3385   // Array members are always packed to their original alignment.
3386   if (Flags.isInConsecutiveRegs()) {
3387     // If the array member was split into multiple registers, the first
3388     // needs to be aligned to the size of the full type.  (Except for
3389     // ppcf128, which is only aligned as its f64 components.)
3390     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3391       Alignment = Align(OrigVT.getStoreSize());
3392     else
3393       Alignment = Align(ArgVT.getStoreSize());
3394   }
3395 
3396   return Alignment;
3397 }
3398 
3399 /// CalculateStackSlotUsed - Return whether this argument will use its
3400 /// stack slot (instead of being passed in registers).  ArgOffset,
3401 /// AvailableFPRs, and AvailableVRs must hold the current argument
3402 /// position, and will be updated to account for this argument.
3403 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3404                                    unsigned PtrByteSize, unsigned LinkageSize,
3405                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3406                                    unsigned &AvailableFPRs,
3407                                    unsigned &AvailableVRs) {
3408   bool UseMemory = false;
3409 
3410   // Respect alignment of argument on the stack.
3411   Align Alignment =
3412       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3413   ArgOffset = alignTo(ArgOffset, Alignment);
3414   // If there's no space left in the argument save area, we must
3415   // use memory (this check also catches zero-sized arguments).
3416   if (ArgOffset >= LinkageSize + ParamAreaSize)
3417     UseMemory = true;
3418 
3419   // Allocate argument on the stack.
3420   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3421   if (Flags.isInConsecutiveRegsLast())
3422     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3423   // If we overran the argument save area, we must use memory
3424   // (this check catches arguments passed partially in memory)
3425   if (ArgOffset > LinkageSize + ParamAreaSize)
3426     UseMemory = true;
3427 
3428   // However, if the argument is actually passed in an FPR or a VR,
3429   // we don't use memory after all.
3430   if (!Flags.isByVal()) {
3431     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3432       if (AvailableFPRs > 0) {
3433         --AvailableFPRs;
3434         return false;
3435       }
3436     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3437         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3438         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3439         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3440       if (AvailableVRs > 0) {
3441         --AvailableVRs;
3442         return false;
3443       }
3444   }
3445 
3446   return UseMemory;
3447 }
3448 
3449 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3450 /// ensure minimum alignment required for target.
3451 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3452                                      unsigned NumBytes) {
3453   return alignTo(NumBytes, Lowering->getStackAlign());
3454 }
3455 
3456 SDValue PPCTargetLowering::LowerFormalArguments(
3457     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3458     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3459     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3460   if (Subtarget.isAIXABI())
3461     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3462                                     InVals);
3463   if (Subtarget.is64BitELFABI())
3464     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3465                                        InVals);
3466   if (Subtarget.is32BitELFABI())
3467     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3468                                        InVals);
3469 
3470   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3471                                      InVals);
3472 }
3473 
3474 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3475     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3476     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3477     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3478 
3479   // 32-bit SVR4 ABI Stack Frame Layout:
3480   //              +-----------------------------------+
3481   //        +-->  |            Back chain             |
3482   //        |     +-----------------------------------+
3483   //        |     | Floating-point register save area |
3484   //        |     +-----------------------------------+
3485   //        |     |    General register save area     |
3486   //        |     +-----------------------------------+
3487   //        |     |          CR save word             |
3488   //        |     +-----------------------------------+
3489   //        |     |         VRSAVE save word          |
3490   //        |     +-----------------------------------+
3491   //        |     |         Alignment padding         |
3492   //        |     +-----------------------------------+
3493   //        |     |     Vector register save area     |
3494   //        |     +-----------------------------------+
3495   //        |     |       Local variable space        |
3496   //        |     +-----------------------------------+
3497   //        |     |        Parameter list area        |
3498   //        |     +-----------------------------------+
3499   //        |     |           LR save word            |
3500   //        |     +-----------------------------------+
3501   // SP-->  +---  |            Back chain             |
3502   //              +-----------------------------------+
3503   //
3504   // Specifications:
3505   //   System V Application Binary Interface PowerPC Processor Supplement
3506   //   AltiVec Technology Programming Interface Manual
3507 
3508   MachineFunction &MF = DAG.getMachineFunction();
3509   MachineFrameInfo &MFI = MF.getFrameInfo();
3510   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3511 
3512   EVT PtrVT = getPointerTy(MF.getDataLayout());
3513   // Potential tail calls could cause overwriting of argument stack slots.
3514   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3515                        (CallConv == CallingConv::Fast));
3516   const Align PtrAlign(4);
3517 
3518   // Assign locations to all of the incoming arguments.
3519   SmallVector<CCValAssign, 16> ArgLocs;
3520   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3521                  *DAG.getContext());
3522 
3523   // Reserve space for the linkage area on the stack.
3524   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3525   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3526   if (useSoftFloat())
3527     CCInfo.PreAnalyzeFormalArguments(Ins);
3528 
3529   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3530   CCInfo.clearWasPPCF128();
3531 
3532   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3533     CCValAssign &VA = ArgLocs[i];
3534 
3535     // Arguments stored in registers.
3536     if (VA.isRegLoc()) {
3537       const TargetRegisterClass *RC;
3538       EVT ValVT = VA.getValVT();
3539 
3540       switch (ValVT.getSimpleVT().SimpleTy) {
3541         default:
3542           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3543         case MVT::i1:
3544         case MVT::i32:
3545           RC = &PPC::GPRCRegClass;
3546           break;
3547         case MVT::f32:
3548           if (Subtarget.hasP8Vector())
3549             RC = &PPC::VSSRCRegClass;
3550           else if (Subtarget.hasSPE())
3551             RC = &PPC::GPRCRegClass;
3552           else
3553             RC = &PPC::F4RCRegClass;
3554           break;
3555         case MVT::f64:
3556           if (Subtarget.hasVSX())
3557             RC = &PPC::VSFRCRegClass;
3558           else if (Subtarget.hasSPE())
3559             // SPE passes doubles in GPR pairs.
3560             RC = &PPC::GPRCRegClass;
3561           else
3562             RC = &PPC::F8RCRegClass;
3563           break;
3564         case MVT::v16i8:
3565         case MVT::v8i16:
3566         case MVT::v4i32:
3567           RC = &PPC::VRRCRegClass;
3568           break;
3569         case MVT::v4f32:
3570           RC = &PPC::VRRCRegClass;
3571           break;
3572         case MVT::v2f64:
3573         case MVT::v2i64:
3574           RC = &PPC::VRRCRegClass;
3575           break;
3576       }
3577 
3578       SDValue ArgValue;
3579       // Transform the arguments stored in physical registers into
3580       // virtual ones.
3581       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3582         assert(i + 1 < e && "No second half of double precision argument");
3583         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3584         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3585         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3586         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3587         if (!Subtarget.isLittleEndian())
3588           std::swap (ArgValueLo, ArgValueHi);
3589         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3590                                ArgValueHi);
3591       } else {
3592         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3593         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3594                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3595         if (ValVT == MVT::i1)
3596           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3597       }
3598 
3599       InVals.push_back(ArgValue);
3600     } else {
3601       // Argument stored in memory.
3602       assert(VA.isMemLoc());
3603 
3604       // Get the extended size of the argument type in stack
3605       unsigned ArgSize = VA.getLocVT().getStoreSize();
3606       // Get the actual size of the argument type
3607       unsigned ObjSize = VA.getValVT().getStoreSize();
3608       unsigned ArgOffset = VA.getLocMemOffset();
3609       // Stack objects in PPC32 are right justified.
3610       ArgOffset += ArgSize - ObjSize;
3611       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3612 
3613       // Create load nodes to retrieve arguments from the stack.
3614       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3615       InVals.push_back(
3616           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3617     }
3618   }
3619 
3620   // Assign locations to all of the incoming aggregate by value arguments.
3621   // Aggregates passed by value are stored in the local variable space of the
3622   // caller's stack frame, right above the parameter list area.
3623   SmallVector<CCValAssign, 16> ByValArgLocs;
3624   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3625                       ByValArgLocs, *DAG.getContext());
3626 
3627   // Reserve stack space for the allocations in CCInfo.
3628   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3629 
3630   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3631 
3632   // Area that is at least reserved in the caller of this function.
3633   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3634   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3635 
3636   // Set the size that is at least reserved in caller of this function.  Tail
3637   // call optimized function's reserved stack space needs to be aligned so that
3638   // taking the difference between two stack areas will result in an aligned
3639   // stack.
3640   MinReservedArea =
3641       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3642   FuncInfo->setMinReservedArea(MinReservedArea);
3643 
3644   SmallVector<SDValue, 8> MemOps;
3645 
3646   // If the function takes variable number of arguments, make a frame index for
3647   // the start of the first vararg value... for expansion of llvm.va_start.
3648   if (isVarArg) {
3649     static const MCPhysReg GPArgRegs[] = {
3650       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3651       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3652     };
3653     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3654 
3655     static const MCPhysReg FPArgRegs[] = {
3656       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3657       PPC::F8
3658     };
3659     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3660 
3661     if (useSoftFloat() || hasSPE())
3662        NumFPArgRegs = 0;
3663 
3664     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3665     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3666 
3667     // Make room for NumGPArgRegs and NumFPArgRegs.
3668     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3669                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3670 
3671     FuncInfo->setVarArgsStackOffset(
3672       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3673                             CCInfo.getNextStackOffset(), true));
3674 
3675     FuncInfo->setVarArgsFrameIndex(
3676         MFI.CreateStackObject(Depth, Align(8), false));
3677     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3678 
3679     // The fixed integer arguments of a variadic function are stored to the
3680     // VarArgsFrameIndex on the stack so that they may be loaded by
3681     // dereferencing the result of va_next.
3682     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3683       // Get an existing live-in vreg, or add a new one.
3684       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3685       if (!VReg)
3686         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3687 
3688       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3689       SDValue Store =
3690           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3691       MemOps.push_back(Store);
3692       // Increment the address by four for the next argument to store
3693       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3694       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3695     }
3696 
3697     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3698     // is set.
3699     // The double arguments are stored to the VarArgsFrameIndex
3700     // on the stack.
3701     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3702       // Get an existing live-in vreg, or add a new one.
3703       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3704       if (!VReg)
3705         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3706 
3707       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3708       SDValue Store =
3709           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3710       MemOps.push_back(Store);
3711       // Increment the address by eight for the next argument to store
3712       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3713                                          PtrVT);
3714       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3715     }
3716   }
3717 
3718   if (!MemOps.empty())
3719     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3720 
3721   return Chain;
3722 }
3723 
3724 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3725 // value to MVT::i64 and then truncate to the correct register size.
3726 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3727                                              EVT ObjectVT, SelectionDAG &DAG,
3728                                              SDValue ArgVal,
3729                                              const SDLoc &dl) const {
3730   if (Flags.isSExt())
3731     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3732                          DAG.getValueType(ObjectVT));
3733   else if (Flags.isZExt())
3734     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3735                          DAG.getValueType(ObjectVT));
3736 
3737   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3738 }
3739 
3740 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3741     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3742     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3743     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3744   // TODO: add description of PPC stack frame format, or at least some docs.
3745   //
3746   bool isELFv2ABI = Subtarget.isELFv2ABI();
3747   bool isLittleEndian = Subtarget.isLittleEndian();
3748   MachineFunction &MF = DAG.getMachineFunction();
3749   MachineFrameInfo &MFI = MF.getFrameInfo();
3750   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3751 
3752   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3753          "fastcc not supported on varargs functions");
3754 
3755   EVT PtrVT = getPointerTy(MF.getDataLayout());
3756   // Potential tail calls could cause overwriting of argument stack slots.
3757   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3758                        (CallConv == CallingConv::Fast));
3759   unsigned PtrByteSize = 8;
3760   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3761 
3762   static const MCPhysReg GPR[] = {
3763     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3764     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3765   };
3766   static const MCPhysReg VR[] = {
3767     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3768     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3769   };
3770 
3771   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3772   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3773   const unsigned Num_VR_Regs  = array_lengthof(VR);
3774 
3775   // Do a first pass over the arguments to determine whether the ABI
3776   // guarantees that our caller has allocated the parameter save area
3777   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3778   // in the ELFv2 ABI, it is true if this is a vararg function or if
3779   // any parameter is located in a stack slot.
3780 
3781   bool HasParameterArea = !isELFv2ABI || isVarArg;
3782   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3783   unsigned NumBytes = LinkageSize;
3784   unsigned AvailableFPRs = Num_FPR_Regs;
3785   unsigned AvailableVRs = Num_VR_Regs;
3786   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3787     if (Ins[i].Flags.isNest())
3788       continue;
3789 
3790     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3791                                PtrByteSize, LinkageSize, ParamAreaSize,
3792                                NumBytes, AvailableFPRs, AvailableVRs))
3793       HasParameterArea = true;
3794   }
3795 
3796   // Add DAG nodes to load the arguments or copy them out of registers.  On
3797   // entry to a function on PPC, the arguments start after the linkage area,
3798   // although the first ones are often in registers.
3799 
3800   unsigned ArgOffset = LinkageSize;
3801   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3802   SmallVector<SDValue, 8> MemOps;
3803   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3804   unsigned CurArgIdx = 0;
3805   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3806     SDValue ArgVal;
3807     bool needsLoad = false;
3808     EVT ObjectVT = Ins[ArgNo].VT;
3809     EVT OrigVT = Ins[ArgNo].ArgVT;
3810     unsigned ObjSize = ObjectVT.getStoreSize();
3811     unsigned ArgSize = ObjSize;
3812     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3813     if (Ins[ArgNo].isOrigArg()) {
3814       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3815       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3816     }
3817     // We re-align the argument offset for each argument, except when using the
3818     // fast calling convention, when we need to make sure we do that only when
3819     // we'll actually use a stack slot.
3820     unsigned CurArgOffset;
3821     Align Alignment;
3822     auto ComputeArgOffset = [&]() {
3823       /* Respect alignment of argument on the stack.  */
3824       Alignment =
3825           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3826       ArgOffset = alignTo(ArgOffset, Alignment);
3827       CurArgOffset = ArgOffset;
3828     };
3829 
3830     if (CallConv != CallingConv::Fast) {
3831       ComputeArgOffset();
3832 
3833       /* Compute GPR index associated with argument offset.  */
3834       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3835       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3836     }
3837 
3838     // FIXME the codegen can be much improved in some cases.
3839     // We do not have to keep everything in memory.
3840     if (Flags.isByVal()) {
3841       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3842 
3843       if (CallConv == CallingConv::Fast)
3844         ComputeArgOffset();
3845 
3846       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3847       ObjSize = Flags.getByValSize();
3848       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3849       // Empty aggregate parameters do not take up registers.  Examples:
3850       //   struct { } a;
3851       //   union  { } b;
3852       //   int c[0];
3853       // etc.  However, we have to provide a place-holder in InVals, so
3854       // pretend we have an 8-byte item at the current address for that
3855       // purpose.
3856       if (!ObjSize) {
3857         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3858         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3859         InVals.push_back(FIN);
3860         continue;
3861       }
3862 
3863       // Create a stack object covering all stack doublewords occupied
3864       // by the argument.  If the argument is (fully or partially) on
3865       // the stack, or if the argument is fully in registers but the
3866       // caller has allocated the parameter save anyway, we can refer
3867       // directly to the caller's stack frame.  Otherwise, create a
3868       // local copy in our own frame.
3869       int FI;
3870       if (HasParameterArea ||
3871           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3872         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3873       else
3874         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3875       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3876 
3877       // Handle aggregates smaller than 8 bytes.
3878       if (ObjSize < PtrByteSize) {
3879         // The value of the object is its address, which differs from the
3880         // address of the enclosing doubleword on big-endian systems.
3881         SDValue Arg = FIN;
3882         if (!isLittleEndian) {
3883           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3884           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3885         }
3886         InVals.push_back(Arg);
3887 
3888         if (GPR_idx != Num_GPR_Regs) {
3889           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3890           FuncInfo->addLiveInAttr(VReg, Flags);
3891           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3892           SDValue Store;
3893 
3894           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3895             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3896                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3897             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3898                                       MachinePointerInfo(&*FuncArg), ObjType);
3899           } else {
3900             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3901             // store the whole register as-is to the parameter save area
3902             // slot.
3903             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3904                                  MachinePointerInfo(&*FuncArg));
3905           }
3906 
3907           MemOps.push_back(Store);
3908         }
3909         // Whether we copied from a register or not, advance the offset
3910         // into the parameter save area by a full doubleword.
3911         ArgOffset += PtrByteSize;
3912         continue;
3913       }
3914 
3915       // The value of the object is its address, which is the address of
3916       // its first stack doubleword.
3917       InVals.push_back(FIN);
3918 
3919       // Store whatever pieces of the object are in registers to memory.
3920       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3921         if (GPR_idx == Num_GPR_Regs)
3922           break;
3923 
3924         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3925         FuncInfo->addLiveInAttr(VReg, Flags);
3926         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3927         SDValue Addr = FIN;
3928         if (j) {
3929           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3930           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3931         }
3932         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3933                                      MachinePointerInfo(&*FuncArg, j));
3934         MemOps.push_back(Store);
3935         ++GPR_idx;
3936       }
3937       ArgOffset += ArgSize;
3938       continue;
3939     }
3940 
3941     switch (ObjectVT.getSimpleVT().SimpleTy) {
3942     default: llvm_unreachable("Unhandled argument type!");
3943     case MVT::i1:
3944     case MVT::i32:
3945     case MVT::i64:
3946       if (Flags.isNest()) {
3947         // The 'nest' parameter, if any, is passed in R11.
3948         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3949         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3950 
3951         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3952           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3953 
3954         break;
3955       }
3956 
3957       // These can be scalar arguments or elements of an integer array type
3958       // passed directly.  Clang may use those instead of "byval" aggregate
3959       // types to avoid forcing arguments to memory unnecessarily.
3960       if (GPR_idx != Num_GPR_Regs) {
3961         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3962         FuncInfo->addLiveInAttr(VReg, Flags);
3963         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3964 
3965         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3966           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3967           // value to MVT::i64 and then truncate to the correct register size.
3968           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3969       } else {
3970         if (CallConv == CallingConv::Fast)
3971           ComputeArgOffset();
3972 
3973         needsLoad = true;
3974         ArgSize = PtrByteSize;
3975       }
3976       if (CallConv != CallingConv::Fast || needsLoad)
3977         ArgOffset += 8;
3978       break;
3979 
3980     case MVT::f32:
3981     case MVT::f64:
3982       // These can be scalar arguments or elements of a float array type
3983       // passed directly.  The latter are used to implement ELFv2 homogenous
3984       // float aggregates.
3985       if (FPR_idx != Num_FPR_Regs) {
3986         unsigned VReg;
3987 
3988         if (ObjectVT == MVT::f32)
3989           VReg = MF.addLiveIn(FPR[FPR_idx],
3990                               Subtarget.hasP8Vector()
3991                                   ? &PPC::VSSRCRegClass
3992                                   : &PPC::F4RCRegClass);
3993         else
3994           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3995                                                 ? &PPC::VSFRCRegClass
3996                                                 : &PPC::F8RCRegClass);
3997 
3998         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3999         ++FPR_idx;
4000       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4001         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4002         // once we support fp <-> gpr moves.
4003 
4004         // This can only ever happen in the presence of f32 array types,
4005         // since otherwise we never run out of FPRs before running out
4006         // of GPRs.
4007         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4008         FuncInfo->addLiveInAttr(VReg, Flags);
4009         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4010 
4011         if (ObjectVT == MVT::f32) {
4012           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4013             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4014                                  DAG.getConstant(32, dl, MVT::i32));
4015           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4016         }
4017 
4018         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4019       } else {
4020         if (CallConv == CallingConv::Fast)
4021           ComputeArgOffset();
4022 
4023         needsLoad = true;
4024       }
4025 
4026       // When passing an array of floats, the array occupies consecutive
4027       // space in the argument area; only round up to the next doubleword
4028       // at the end of the array.  Otherwise, each float takes 8 bytes.
4029       if (CallConv != CallingConv::Fast || needsLoad) {
4030         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4031         ArgOffset += ArgSize;
4032         if (Flags.isInConsecutiveRegsLast())
4033           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4034       }
4035       break;
4036     case MVT::v4f32:
4037     case MVT::v4i32:
4038     case MVT::v8i16:
4039     case MVT::v16i8:
4040     case MVT::v2f64:
4041     case MVT::v2i64:
4042     case MVT::v1i128:
4043     case MVT::f128:
4044       // These can be scalar arguments or elements of a vector array type
4045       // passed directly.  The latter are used to implement ELFv2 homogenous
4046       // vector aggregates.
4047       if (VR_idx != Num_VR_Regs) {
4048         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4049         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4050         ++VR_idx;
4051       } else {
4052         if (CallConv == CallingConv::Fast)
4053           ComputeArgOffset();
4054         needsLoad = true;
4055       }
4056       if (CallConv != CallingConv::Fast || needsLoad)
4057         ArgOffset += 16;
4058       break;
4059     }
4060 
4061     // We need to load the argument to a virtual register if we determined
4062     // above that we ran out of physical registers of the appropriate type.
4063     if (needsLoad) {
4064       if (ObjSize < ArgSize && !isLittleEndian)
4065         CurArgOffset += ArgSize - ObjSize;
4066       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4067       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4068       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4069     }
4070 
4071     InVals.push_back(ArgVal);
4072   }
4073 
4074   // Area that is at least reserved in the caller of this function.
4075   unsigned MinReservedArea;
4076   if (HasParameterArea)
4077     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4078   else
4079     MinReservedArea = LinkageSize;
4080 
4081   // Set the size that is at least reserved in caller of this function.  Tail
4082   // call optimized functions' reserved stack space needs to be aligned so that
4083   // taking the difference between two stack areas will result in an aligned
4084   // stack.
4085   MinReservedArea =
4086       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4087   FuncInfo->setMinReservedArea(MinReservedArea);
4088 
4089   // If the function takes variable number of arguments, make a frame index for
4090   // the start of the first vararg value... for expansion of llvm.va_start.
4091   // On ELFv2ABI spec, it writes:
4092   // C programs that are intended to be *portable* across different compilers
4093   // and architectures must use the header file <stdarg.h> to deal with variable
4094   // argument lists.
4095   if (isVarArg && MFI.hasVAStart()) {
4096     int Depth = ArgOffset;
4097 
4098     FuncInfo->setVarArgsFrameIndex(
4099       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4100     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4101 
4102     // If this function is vararg, store any remaining integer argument regs
4103     // to their spots on the stack so that they may be loaded by dereferencing
4104     // the result of va_next.
4105     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4106          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4107       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4108       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4109       SDValue Store =
4110           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4111       MemOps.push_back(Store);
4112       // Increment the address by four for the next argument to store
4113       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4114       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4115     }
4116   }
4117 
4118   if (!MemOps.empty())
4119     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4120 
4121   return Chain;
4122 }
4123 
4124 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4125     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4126     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4127     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4128   // TODO: add description of PPC stack frame format, or at least some docs.
4129   //
4130   MachineFunction &MF = DAG.getMachineFunction();
4131   MachineFrameInfo &MFI = MF.getFrameInfo();
4132   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4133 
4134   EVT PtrVT = getPointerTy(MF.getDataLayout());
4135   bool isPPC64 = PtrVT == MVT::i64;
4136   // Potential tail calls could cause overwriting of argument stack slots.
4137   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4138                        (CallConv == CallingConv::Fast));
4139   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4140   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4141   unsigned ArgOffset = LinkageSize;
4142   // Area that is at least reserved in caller of this function.
4143   unsigned MinReservedArea = ArgOffset;
4144 
4145   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4146     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4147     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4148   };
4149   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4150     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4151     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4152   };
4153   static const MCPhysReg VR[] = {
4154     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4155     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4156   };
4157 
4158   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4159   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4160   const unsigned Num_VR_Regs  = array_lengthof( VR);
4161 
4162   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4163 
4164   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4165 
4166   // In 32-bit non-varargs functions, the stack space for vectors is after the
4167   // stack space for non-vectors.  We do not use this space unless we have
4168   // too many vectors to fit in registers, something that only occurs in
4169   // constructed examples:), but we have to walk the arglist to figure
4170   // that out...for the pathological case, compute VecArgOffset as the
4171   // start of the vector parameter area.  Computing VecArgOffset is the
4172   // entire point of the following loop.
4173   unsigned VecArgOffset = ArgOffset;
4174   if (!isVarArg && !isPPC64) {
4175     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4176          ++ArgNo) {
4177       EVT ObjectVT = Ins[ArgNo].VT;
4178       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4179 
4180       if (Flags.isByVal()) {
4181         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4182         unsigned ObjSize = Flags.getByValSize();
4183         unsigned ArgSize =
4184                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4185         VecArgOffset += ArgSize;
4186         continue;
4187       }
4188 
4189       switch(ObjectVT.getSimpleVT().SimpleTy) {
4190       default: llvm_unreachable("Unhandled argument type!");
4191       case MVT::i1:
4192       case MVT::i32:
4193       case MVT::f32:
4194         VecArgOffset += 4;
4195         break;
4196       case MVT::i64:  // PPC64
4197       case MVT::f64:
4198         // FIXME: We are guaranteed to be !isPPC64 at this point.
4199         // Does MVT::i64 apply?
4200         VecArgOffset += 8;
4201         break;
4202       case MVT::v4f32:
4203       case MVT::v4i32:
4204       case MVT::v8i16:
4205       case MVT::v16i8:
4206         // Nothing to do, we're only looking at Nonvector args here.
4207         break;
4208       }
4209     }
4210   }
4211   // We've found where the vector parameter area in memory is.  Skip the
4212   // first 12 parameters; these don't use that memory.
4213   VecArgOffset = ((VecArgOffset+15)/16)*16;
4214   VecArgOffset += 12*16;
4215 
4216   // Add DAG nodes to load the arguments or copy them out of registers.  On
4217   // entry to a function on PPC, the arguments start after the linkage area,
4218   // although the first ones are often in registers.
4219 
4220   SmallVector<SDValue, 8> MemOps;
4221   unsigned nAltivecParamsAtEnd = 0;
4222   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4223   unsigned CurArgIdx = 0;
4224   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4225     SDValue ArgVal;
4226     bool needsLoad = false;
4227     EVT ObjectVT = Ins[ArgNo].VT;
4228     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4229     unsigned ArgSize = ObjSize;
4230     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4231     if (Ins[ArgNo].isOrigArg()) {
4232       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4233       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4234     }
4235     unsigned CurArgOffset = ArgOffset;
4236 
4237     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4238     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4239         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4240       if (isVarArg || isPPC64) {
4241         MinReservedArea = ((MinReservedArea+15)/16)*16;
4242         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4243                                                   Flags,
4244                                                   PtrByteSize);
4245       } else  nAltivecParamsAtEnd++;
4246     } else
4247       // Calculate min reserved area.
4248       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4249                                                 Flags,
4250                                                 PtrByteSize);
4251 
4252     // FIXME the codegen can be much improved in some cases.
4253     // We do not have to keep everything in memory.
4254     if (Flags.isByVal()) {
4255       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4256 
4257       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4258       ObjSize = Flags.getByValSize();
4259       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4260       // Objects of size 1 and 2 are right justified, everything else is
4261       // left justified.  This means the memory address is adjusted forwards.
4262       if (ObjSize==1 || ObjSize==2) {
4263         CurArgOffset = CurArgOffset + (4 - ObjSize);
4264       }
4265       // The value of the object is its address.
4266       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4267       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4268       InVals.push_back(FIN);
4269       if (ObjSize==1 || ObjSize==2) {
4270         if (GPR_idx != Num_GPR_Regs) {
4271           unsigned VReg;
4272           if (isPPC64)
4273             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4274           else
4275             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4276           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4277           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4278           SDValue Store =
4279               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4280                                 MachinePointerInfo(&*FuncArg), ObjType);
4281           MemOps.push_back(Store);
4282           ++GPR_idx;
4283         }
4284 
4285         ArgOffset += PtrByteSize;
4286 
4287         continue;
4288       }
4289       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4290         // Store whatever pieces of the object are in registers
4291         // to memory.  ArgOffset will be the address of the beginning
4292         // of the object.
4293         if (GPR_idx != Num_GPR_Regs) {
4294           unsigned VReg;
4295           if (isPPC64)
4296             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4297           else
4298             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4299           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4300           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4301           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4302           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4303                                        MachinePointerInfo(&*FuncArg, j));
4304           MemOps.push_back(Store);
4305           ++GPR_idx;
4306           ArgOffset += PtrByteSize;
4307         } else {
4308           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4309           break;
4310         }
4311       }
4312       continue;
4313     }
4314 
4315     switch (ObjectVT.getSimpleVT().SimpleTy) {
4316     default: llvm_unreachable("Unhandled argument type!");
4317     case MVT::i1:
4318     case MVT::i32:
4319       if (!isPPC64) {
4320         if (GPR_idx != Num_GPR_Regs) {
4321           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4322           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4323 
4324           if (ObjectVT == MVT::i1)
4325             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4326 
4327           ++GPR_idx;
4328         } else {
4329           needsLoad = true;
4330           ArgSize = PtrByteSize;
4331         }
4332         // All int arguments reserve stack space in the Darwin ABI.
4333         ArgOffset += PtrByteSize;
4334         break;
4335       }
4336       LLVM_FALLTHROUGH;
4337     case MVT::i64:  // PPC64
4338       if (GPR_idx != Num_GPR_Regs) {
4339         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4340         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4341 
4342         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4343           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4344           // value to MVT::i64 and then truncate to the correct register size.
4345           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4346 
4347         ++GPR_idx;
4348       } else {
4349         needsLoad = true;
4350         ArgSize = PtrByteSize;
4351       }
4352       // All int arguments reserve stack space in the Darwin ABI.
4353       ArgOffset += 8;
4354       break;
4355 
4356     case MVT::f32:
4357     case MVT::f64:
4358       // Every 4 bytes of argument space consumes one of the GPRs available for
4359       // argument passing.
4360       if (GPR_idx != Num_GPR_Regs) {
4361         ++GPR_idx;
4362         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4363           ++GPR_idx;
4364       }
4365       if (FPR_idx != Num_FPR_Regs) {
4366         unsigned VReg;
4367 
4368         if (ObjectVT == MVT::f32)
4369           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4370         else
4371           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4372 
4373         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4374         ++FPR_idx;
4375       } else {
4376         needsLoad = true;
4377       }
4378 
4379       // All FP arguments reserve stack space in the Darwin ABI.
4380       ArgOffset += isPPC64 ? 8 : ObjSize;
4381       break;
4382     case MVT::v4f32:
4383     case MVT::v4i32:
4384     case MVT::v8i16:
4385     case MVT::v16i8:
4386       // Note that vector arguments in registers don't reserve stack space,
4387       // except in varargs functions.
4388       if (VR_idx != Num_VR_Regs) {
4389         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4390         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4391         if (isVarArg) {
4392           while ((ArgOffset % 16) != 0) {
4393             ArgOffset += PtrByteSize;
4394             if (GPR_idx != Num_GPR_Regs)
4395               GPR_idx++;
4396           }
4397           ArgOffset += 16;
4398           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4399         }
4400         ++VR_idx;
4401       } else {
4402         if (!isVarArg && !isPPC64) {
4403           // Vectors go after all the nonvectors.
4404           CurArgOffset = VecArgOffset;
4405           VecArgOffset += 16;
4406         } else {
4407           // Vectors are aligned.
4408           ArgOffset = ((ArgOffset+15)/16)*16;
4409           CurArgOffset = ArgOffset;
4410           ArgOffset += 16;
4411         }
4412         needsLoad = true;
4413       }
4414       break;
4415     }
4416 
4417     // We need to load the argument to a virtual register if we determined above
4418     // that we ran out of physical registers of the appropriate type.
4419     if (needsLoad) {
4420       int FI = MFI.CreateFixedObject(ObjSize,
4421                                      CurArgOffset + (ArgSize - ObjSize),
4422                                      isImmutable);
4423       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4424       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4425     }
4426 
4427     InVals.push_back(ArgVal);
4428   }
4429 
4430   // Allow for Altivec parameters at the end, if needed.
4431   if (nAltivecParamsAtEnd) {
4432     MinReservedArea = ((MinReservedArea+15)/16)*16;
4433     MinReservedArea += 16*nAltivecParamsAtEnd;
4434   }
4435 
4436   // Area that is at least reserved in the caller of this function.
4437   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4438 
4439   // Set the size that is at least reserved in caller of this function.  Tail
4440   // call optimized functions' reserved stack space needs to be aligned so that
4441   // taking the difference between two stack areas will result in an aligned
4442   // stack.
4443   MinReservedArea =
4444       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4445   FuncInfo->setMinReservedArea(MinReservedArea);
4446 
4447   // If the function takes variable number of arguments, make a frame index for
4448   // the start of the first vararg value... for expansion of llvm.va_start.
4449   if (isVarArg) {
4450     int Depth = ArgOffset;
4451 
4452     FuncInfo->setVarArgsFrameIndex(
4453       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4454                             Depth, true));
4455     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4456 
4457     // If this function is vararg, store any remaining integer argument regs
4458     // to their spots on the stack so that they may be loaded by dereferencing
4459     // the result of va_next.
4460     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4461       unsigned VReg;
4462 
4463       if (isPPC64)
4464         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4465       else
4466         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4467 
4468       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4469       SDValue Store =
4470           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4471       MemOps.push_back(Store);
4472       // Increment the address by four for the next argument to store
4473       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4474       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4475     }
4476   }
4477 
4478   if (!MemOps.empty())
4479     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4480 
4481   return Chain;
4482 }
4483 
4484 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4485 /// adjusted to accommodate the arguments for the tailcall.
4486 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4487                                    unsigned ParamSize) {
4488 
4489   if (!isTailCall) return 0;
4490 
4491   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4492   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4493   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4494   // Remember only if the new adjustment is bigger.
4495   if (SPDiff < FI->getTailCallSPDelta())
4496     FI->setTailCallSPDelta(SPDiff);
4497 
4498   return SPDiff;
4499 }
4500 
4501 static bool isFunctionGlobalAddress(SDValue Callee);
4502 
4503 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4504                               const TargetMachine &TM) {
4505   // It does not make sense to call callsShareTOCBase() with a caller that
4506   // is PC Relative since PC Relative callers do not have a TOC.
4507 #ifndef NDEBUG
4508   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4509   assert(!STICaller->isUsingPCRelativeCalls() &&
4510          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4511 #endif
4512 
4513   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4514   // don't have enough information to determine if the caller and callee share
4515   // the same  TOC base, so we have to pessimistically assume they don't for
4516   // correctness.
4517   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4518   if (!G)
4519     return false;
4520 
4521   const GlobalValue *GV = G->getGlobal();
4522 
4523   // If the callee is preemptable, then the static linker will use a plt-stub
4524   // which saves the toc to the stack, and needs a nop after the call
4525   // instruction to convert to a toc-restore.
4526   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4527     return false;
4528 
4529   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4530   // We may need a TOC restore in the situation where the caller requires a
4531   // valid TOC but the callee is PC Relative and does not.
4532   const Function *F = dyn_cast<Function>(GV);
4533   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4534 
4535   // If we have an Alias we can try to get the function from there.
4536   if (Alias) {
4537     const GlobalObject *GlobalObj = Alias->getBaseObject();
4538     F = dyn_cast<Function>(GlobalObj);
4539   }
4540 
4541   // If we still have no valid function pointer we do not have enough
4542   // information to determine if the callee uses PC Relative calls so we must
4543   // assume that it does.
4544   if (!F)
4545     return false;
4546 
4547   // If the callee uses PC Relative we cannot guarantee that the callee won't
4548   // clobber the TOC of the caller and so we must assume that the two
4549   // functions do not share a TOC base.
4550   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4551   if (STICallee->isUsingPCRelativeCalls())
4552     return false;
4553 
4554   // The medium and large code models are expected to provide a sufficiently
4555   // large TOC to provide all data addressing needs of a module with a
4556   // single TOC.
4557   if (CodeModel::Medium == TM.getCodeModel() ||
4558       CodeModel::Large == TM.getCodeModel())
4559     return true;
4560 
4561   // Otherwise we need to ensure callee and caller are in the same section,
4562   // since the linker may allocate multiple TOCs, and we don't know which
4563   // sections will belong to the same TOC base.
4564   if (!GV->isStrongDefinitionForLinker())
4565     return false;
4566 
4567   // Any explicitly-specified sections and section prefixes must also match.
4568   // Also, if we're using -ffunction-sections, then each function is always in
4569   // a different section (the same is true for COMDAT functions).
4570   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4571       GV->getSection() != Caller->getSection())
4572     return false;
4573   if (const auto *F = dyn_cast<Function>(GV)) {
4574     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4575       return false;
4576   }
4577 
4578   return true;
4579 }
4580 
4581 static bool
4582 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4583                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4584   assert(Subtarget.is64BitELFABI());
4585 
4586   const unsigned PtrByteSize = 8;
4587   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4588 
4589   static const MCPhysReg GPR[] = {
4590     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4591     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4592   };
4593   static const MCPhysReg VR[] = {
4594     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4595     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4596   };
4597 
4598   const unsigned NumGPRs = array_lengthof(GPR);
4599   const unsigned NumFPRs = 13;
4600   const unsigned NumVRs = array_lengthof(VR);
4601   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4602 
4603   unsigned NumBytes = LinkageSize;
4604   unsigned AvailableFPRs = NumFPRs;
4605   unsigned AvailableVRs = NumVRs;
4606 
4607   for (const ISD::OutputArg& Param : Outs) {
4608     if (Param.Flags.isNest()) continue;
4609 
4610     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4611                                LinkageSize, ParamAreaSize, NumBytes,
4612                                AvailableFPRs, AvailableVRs))
4613       return true;
4614   }
4615   return false;
4616 }
4617 
4618 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4619   if (CB.arg_size() != CallerFn->arg_size())
4620     return false;
4621 
4622   auto CalleeArgIter = CB.arg_begin();
4623   auto CalleeArgEnd = CB.arg_end();
4624   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4625 
4626   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4627     const Value* CalleeArg = *CalleeArgIter;
4628     const Value* CallerArg = &(*CallerArgIter);
4629     if (CalleeArg == CallerArg)
4630       continue;
4631 
4632     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4633     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4634     //      }
4635     // 1st argument of callee is undef and has the same type as caller.
4636     if (CalleeArg->getType() == CallerArg->getType() &&
4637         isa<UndefValue>(CalleeArg))
4638       continue;
4639 
4640     return false;
4641   }
4642 
4643   return true;
4644 }
4645 
4646 // Returns true if TCO is possible between the callers and callees
4647 // calling conventions.
4648 static bool
4649 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4650                                     CallingConv::ID CalleeCC) {
4651   // Tail calls are possible with fastcc and ccc.
4652   auto isTailCallableCC  = [] (CallingConv::ID CC){
4653       return  CC == CallingConv::C || CC == CallingConv::Fast;
4654   };
4655   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4656     return false;
4657 
4658   // We can safely tail call both fastcc and ccc callees from a c calling
4659   // convention caller. If the caller is fastcc, we may have less stack space
4660   // than a non-fastcc caller with the same signature so disable tail-calls in
4661   // that case.
4662   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4663 }
4664 
4665 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4666     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4667     const SmallVectorImpl<ISD::OutputArg> &Outs,
4668     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4669   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4670 
4671   if (DisableSCO && !TailCallOpt) return false;
4672 
4673   // Variadic argument functions are not supported.
4674   if (isVarArg) return false;
4675 
4676   auto &Caller = DAG.getMachineFunction().getFunction();
4677   // Check that the calling conventions are compatible for tco.
4678   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4679     return false;
4680 
4681   // Caller contains any byval parameter is not supported.
4682   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4683     return false;
4684 
4685   // Callee contains any byval parameter is not supported, too.
4686   // Note: This is a quick work around, because in some cases, e.g.
4687   // caller's stack size > callee's stack size, we are still able to apply
4688   // sibling call optimization. For example, gcc is able to do SCO for caller1
4689   // in the following example, but not for caller2.
4690   //   struct test {
4691   //     long int a;
4692   //     char ary[56];
4693   //   } gTest;
4694   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4695   //     b->a = v.a;
4696   //     return 0;
4697   //   }
4698   //   void caller1(struct test a, struct test c, struct test *b) {
4699   //     callee(gTest, b); }
4700   //   void caller2(struct test *b) { callee(gTest, b); }
4701   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4702     return false;
4703 
4704   // If callee and caller use different calling conventions, we cannot pass
4705   // parameters on stack since offsets for the parameter area may be different.
4706   if (Caller.getCallingConv() != CalleeCC &&
4707       needStackSlotPassParameters(Subtarget, Outs))
4708     return false;
4709 
4710   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4711   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4712   // callee potentially have different TOC bases then we cannot tail call since
4713   // we need to restore the TOC pointer after the call.
4714   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4715   // We cannot guarantee this for indirect calls or calls to external functions.
4716   // When PC-Relative addressing is used, the concept of the TOC is no longer
4717   // applicable so this check is not required.
4718   // Check first for indirect calls.
4719   if (!Subtarget.isUsingPCRelativeCalls() &&
4720       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4721     return false;
4722 
4723   // Check if we share the TOC base.
4724   if (!Subtarget.isUsingPCRelativeCalls() &&
4725       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4726     return false;
4727 
4728   // TCO allows altering callee ABI, so we don't have to check further.
4729   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4730     return true;
4731 
4732   if (DisableSCO) return false;
4733 
4734   // If callee use the same argument list that caller is using, then we can
4735   // apply SCO on this case. If it is not, then we need to check if callee needs
4736   // stack for passing arguments.
4737   // PC Relative tail calls may not have a CallBase.
4738   // If there is no CallBase we cannot verify if we have the same argument
4739   // list so assume that we don't have the same argument list.
4740   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4741       needStackSlotPassParameters(Subtarget, Outs))
4742     return false;
4743   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4744     return false;
4745 
4746   return true;
4747 }
4748 
4749 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4750 /// for tail call optimization. Targets which want to do tail call
4751 /// optimization should implement this function.
4752 bool
4753 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4754                                                      CallingConv::ID CalleeCC,
4755                                                      bool isVarArg,
4756                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4757                                                      SelectionDAG& DAG) const {
4758   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4759     return false;
4760 
4761   // Variable argument functions are not supported.
4762   if (isVarArg)
4763     return false;
4764 
4765   MachineFunction &MF = DAG.getMachineFunction();
4766   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4767   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4768     // Functions containing by val parameters are not supported.
4769     for (unsigned i = 0; i != Ins.size(); i++) {
4770        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4771        if (Flags.isByVal()) return false;
4772     }
4773 
4774     // Non-PIC/GOT tail calls are supported.
4775     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4776       return true;
4777 
4778     // At the moment we can only do local tail calls (in same module, hidden
4779     // or protected) if we are generating PIC.
4780     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4781       return G->getGlobal()->hasHiddenVisibility()
4782           || G->getGlobal()->hasProtectedVisibility();
4783   }
4784 
4785   return false;
4786 }
4787 
4788 /// isCallCompatibleAddress - Return the immediate to use if the specified
4789 /// 32-bit value is representable in the immediate field of a BxA instruction.
4790 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4791   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4792   if (!C) return nullptr;
4793 
4794   int Addr = C->getZExtValue();
4795   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4796       SignExtend32<26>(Addr) != Addr)
4797     return nullptr;  // Top 6 bits have to be sext of immediate.
4798 
4799   return DAG
4800       .getConstant(
4801           (int)C->getZExtValue() >> 2, SDLoc(Op),
4802           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4803       .getNode();
4804 }
4805 
4806 namespace {
4807 
4808 struct TailCallArgumentInfo {
4809   SDValue Arg;
4810   SDValue FrameIdxOp;
4811   int FrameIdx = 0;
4812 
4813   TailCallArgumentInfo() = default;
4814 };
4815 
4816 } // end anonymous namespace
4817 
4818 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4819 static void StoreTailCallArgumentsToStackSlot(
4820     SelectionDAG &DAG, SDValue Chain,
4821     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4822     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4823   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4824     SDValue Arg = TailCallArgs[i].Arg;
4825     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4826     int FI = TailCallArgs[i].FrameIdx;
4827     // Store relative to framepointer.
4828     MemOpChains.push_back(DAG.getStore(
4829         Chain, dl, Arg, FIN,
4830         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4831   }
4832 }
4833 
4834 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4835 /// the appropriate stack slot for the tail call optimized function call.
4836 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4837                                              SDValue OldRetAddr, SDValue OldFP,
4838                                              int SPDiff, const SDLoc &dl) {
4839   if (SPDiff) {
4840     // Calculate the new stack slot for the return address.
4841     MachineFunction &MF = DAG.getMachineFunction();
4842     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4843     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4844     bool isPPC64 = Subtarget.isPPC64();
4845     int SlotSize = isPPC64 ? 8 : 4;
4846     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4847     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4848                                                          NewRetAddrLoc, true);
4849     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4850     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4851     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4852                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4853   }
4854   return Chain;
4855 }
4856 
4857 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4858 /// the position of the argument.
4859 static void
4860 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4861                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4862                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4863   int Offset = ArgOffset + SPDiff;
4864   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4865   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4866   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4867   SDValue FIN = DAG.getFrameIndex(FI, VT);
4868   TailCallArgumentInfo Info;
4869   Info.Arg = Arg;
4870   Info.FrameIdxOp = FIN;
4871   Info.FrameIdx = FI;
4872   TailCallArguments.push_back(Info);
4873 }
4874 
4875 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4876 /// stack slot. Returns the chain as result and the loaded frame pointers in
4877 /// LROpOut/FPOpout. Used when tail calling.
4878 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4879     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4880     SDValue &FPOpOut, const SDLoc &dl) const {
4881   if (SPDiff) {
4882     // Load the LR and FP stack slot for later adjusting.
4883     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4884     LROpOut = getReturnAddrFrameIndex(DAG);
4885     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4886     Chain = SDValue(LROpOut.getNode(), 1);
4887   }
4888   return Chain;
4889 }
4890 
4891 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4892 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4893 /// specified by the specific parameter attribute. The copy will be passed as
4894 /// a byval function parameter.
4895 /// Sometimes what we are copying is the end of a larger object, the part that
4896 /// does not fit in registers.
4897 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4898                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4899                                          SelectionDAG &DAG, const SDLoc &dl) {
4900   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4901   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4902                        Flags.getNonZeroByValAlign(), false, false, false,
4903                        MachinePointerInfo(), MachinePointerInfo());
4904 }
4905 
4906 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4907 /// tail calls.
4908 static void LowerMemOpCallTo(
4909     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4910     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4911     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4912     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4913   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4914   if (!isTailCall) {
4915     if (isVector) {
4916       SDValue StackPtr;
4917       if (isPPC64)
4918         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4919       else
4920         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4921       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4922                            DAG.getConstant(ArgOffset, dl, PtrVT));
4923     }
4924     MemOpChains.push_back(
4925         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4926     // Calculate and remember argument location.
4927   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4928                                   TailCallArguments);
4929 }
4930 
4931 static void
4932 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4933                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4934                 SDValue FPOp,
4935                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4936   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4937   // might overwrite each other in case of tail call optimization.
4938   SmallVector<SDValue, 8> MemOpChains2;
4939   // Do not flag preceding copytoreg stuff together with the following stuff.
4940   InFlag = SDValue();
4941   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4942                                     MemOpChains2, dl);
4943   if (!MemOpChains2.empty())
4944     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4945 
4946   // Store the return address to the appropriate stack slot.
4947   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4948 
4949   // Emit callseq_end just before tailcall node.
4950   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4951                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4952   InFlag = Chain.getValue(1);
4953 }
4954 
4955 // Is this global address that of a function that can be called by name? (as
4956 // opposed to something that must hold a descriptor for an indirect call).
4957 static bool isFunctionGlobalAddress(SDValue Callee) {
4958   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4959     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4960         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4961       return false;
4962 
4963     return G->getGlobal()->getValueType()->isFunctionTy();
4964   }
4965 
4966   return false;
4967 }
4968 
4969 SDValue PPCTargetLowering::LowerCallResult(
4970     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4971     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4972     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4973   SmallVector<CCValAssign, 16> RVLocs;
4974   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4975                     *DAG.getContext());
4976 
4977   CCRetInfo.AnalyzeCallResult(
4978       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4979                ? RetCC_PPC_Cold
4980                : RetCC_PPC);
4981 
4982   // Copy all of the result registers out of their specified physreg.
4983   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4984     CCValAssign &VA = RVLocs[i];
4985     assert(VA.isRegLoc() && "Can only return in registers!");
4986 
4987     SDValue Val;
4988 
4989     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4990       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4991                                       InFlag);
4992       Chain = Lo.getValue(1);
4993       InFlag = Lo.getValue(2);
4994       VA = RVLocs[++i]; // skip ahead to next loc
4995       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4996                                       InFlag);
4997       Chain = Hi.getValue(1);
4998       InFlag = Hi.getValue(2);
4999       if (!Subtarget.isLittleEndian())
5000         std::swap (Lo, Hi);
5001       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5002     } else {
5003       Val = DAG.getCopyFromReg(Chain, dl,
5004                                VA.getLocReg(), VA.getLocVT(), InFlag);
5005       Chain = Val.getValue(1);
5006       InFlag = Val.getValue(2);
5007     }
5008 
5009     switch (VA.getLocInfo()) {
5010     default: llvm_unreachable("Unknown loc info!");
5011     case CCValAssign::Full: break;
5012     case CCValAssign::AExt:
5013       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5014       break;
5015     case CCValAssign::ZExt:
5016       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5017                         DAG.getValueType(VA.getValVT()));
5018       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5019       break;
5020     case CCValAssign::SExt:
5021       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5022                         DAG.getValueType(VA.getValVT()));
5023       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5024       break;
5025     }
5026 
5027     InVals.push_back(Val);
5028   }
5029 
5030   return Chain;
5031 }
5032 
5033 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5034                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5035   // PatchPoint calls are not indirect.
5036   if (isPatchPoint)
5037     return false;
5038 
5039   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5040     return false;
5041 
5042   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5043   // becuase the immediate function pointer points to a descriptor instead of
5044   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5045   // pointer immediate points to the global entry point, while the BLA would
5046   // need to jump to the local entry point (see rL211174).
5047   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5048       isBLACompatibleAddress(Callee, DAG))
5049     return false;
5050 
5051   return true;
5052 }
5053 
5054 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5055 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5056   return Subtarget.isAIXABI() ||
5057          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5058 }
5059 
5060 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5061                               const Function &Caller,
5062                               const SDValue &Callee,
5063                               const PPCSubtarget &Subtarget,
5064                               const TargetMachine &TM) {
5065   if (CFlags.IsTailCall)
5066     return PPCISD::TC_RETURN;
5067 
5068   // This is a call through a function pointer.
5069   if (CFlags.IsIndirect) {
5070     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5071     // indirect calls. The save of the caller's TOC pointer to the stack will be
5072     // inserted into the DAG as part of call lowering. The restore of the TOC
5073     // pointer is modeled by using a pseudo instruction for the call opcode that
5074     // represents the 2 instruction sequence of an indirect branch and link,
5075     // immediately followed by a load of the TOC pointer from the the stack save
5076     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5077     // as it is not saved or used.
5078     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5079                                                : PPCISD::BCTRL;
5080   }
5081 
5082   if (Subtarget.isUsingPCRelativeCalls()) {
5083     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5084     return PPCISD::CALL_NOTOC;
5085   }
5086 
5087   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5088   // immediately following the call instruction if the caller and callee may
5089   // have different TOC bases. At link time if the linker determines the calls
5090   // may not share a TOC base, the call is redirected to a trampoline inserted
5091   // by the linker. The trampoline will (among other things) save the callers
5092   // TOC pointer at an ABI designated offset in the linkage area and the linker
5093   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5094   // into gpr2.
5095   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5096     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5097                                                   : PPCISD::CALL_NOP;
5098 
5099   return PPCISD::CALL;
5100 }
5101 
5102 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5103                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5104   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5105     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5106       return SDValue(Dest, 0);
5107 
5108   // Returns true if the callee is local, and false otherwise.
5109   auto isLocalCallee = [&]() {
5110     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5111     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5112     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5113 
5114     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5115            !dyn_cast_or_null<GlobalIFunc>(GV);
5116   };
5117 
5118   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5119   // a static relocation model causes some versions of GNU LD (2.17.50, at
5120   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5121   // built with secure-PLT.
5122   bool UsePlt =
5123       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5124       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5125 
5126   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5127     const TargetMachine &TM = Subtarget.getTargetMachine();
5128     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5129     MCSymbolXCOFF *S =
5130         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5131 
5132     if (GV->isDeclaration() && !S->hasRepresentedCsectSet()) {
5133       // On AIX, an undefined symbol needs to be associated with a
5134       // MCSectionXCOFF to get the correct storage mapping class.
5135       // In this case, XCOFF::XMC_PR.
5136       const XCOFF::StorageClass SC =
5137           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV);
5138       auto &Context = DAG.getMachineFunction().getMMI().getContext();
5139       MCSectionXCOFF *Sec = Context.getXCOFFSection(
5140           S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5141           SectionKind::getMetadata());
5142       S->setRepresentedCsect(Sec);
5143     }
5144 
5145     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5146     return DAG.getMCSymbol(S, PtrVT);
5147   };
5148 
5149   if (isFunctionGlobalAddress(Callee)) {
5150     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5151 
5152     if (Subtarget.isAIXABI()) {
5153       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5154       return getAIXFuncEntryPointSymbolSDNode(GV);
5155     }
5156     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5157                                       UsePlt ? PPCII::MO_PLT : 0);
5158   }
5159 
5160   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5161     const char *SymName = S->getSymbol();
5162     if (Subtarget.isAIXABI()) {
5163       // If there exists a user-declared function whose name is the same as the
5164       // ExternalSymbol's, then we pick up the user-declared version.
5165       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5166       if (const Function *F =
5167               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5168         return getAIXFuncEntryPointSymbolSDNode(F);
5169 
5170       // On AIX, direct function calls reference the symbol for the function's
5171       // entry point, which is named by prepending a "." before the function's
5172       // C-linkage name.
5173       const auto getFunctionEntryPointSymbol = [&](StringRef SymName) {
5174         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5175         return cast<MCSymbolXCOFF>(
5176             Context.getOrCreateSymbol(Twine(".") + Twine(SymName)));
5177       };
5178 
5179       SymName = getFunctionEntryPointSymbol(SymName)->getName().data();
5180     }
5181     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5182                                        UsePlt ? PPCII::MO_PLT : 0);
5183   }
5184 
5185   // No transformation needed.
5186   assert(Callee.getNode() && "What no callee?");
5187   return Callee;
5188 }
5189 
5190 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5191   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5192          "Expected a CALLSEQ_STARTSDNode.");
5193 
5194   // The last operand is the chain, except when the node has glue. If the node
5195   // has glue, then the last operand is the glue, and the chain is the second
5196   // last operand.
5197   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5198   if (LastValue.getValueType() != MVT::Glue)
5199     return LastValue;
5200 
5201   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5202 }
5203 
5204 // Creates the node that moves a functions address into the count register
5205 // to prepare for an indirect call instruction.
5206 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5207                                 SDValue &Glue, SDValue &Chain,
5208                                 const SDLoc &dl) {
5209   SDValue MTCTROps[] = {Chain, Callee, Glue};
5210   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5211   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5212                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5213   // The glue is the second value produced.
5214   Glue = Chain.getValue(1);
5215 }
5216 
5217 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5218                                           SDValue &Glue, SDValue &Chain,
5219                                           SDValue CallSeqStart,
5220                                           const CallBase *CB, const SDLoc &dl,
5221                                           bool hasNest,
5222                                           const PPCSubtarget &Subtarget) {
5223   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5224   // entry point, but to the function descriptor (the function entry point
5225   // address is part of the function descriptor though).
5226   // The function descriptor is a three doubleword structure with the
5227   // following fields: function entry point, TOC base address and
5228   // environment pointer.
5229   // Thus for a call through a function pointer, the following actions need
5230   // to be performed:
5231   //   1. Save the TOC of the caller in the TOC save area of its stack
5232   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5233   //   2. Load the address of the function entry point from the function
5234   //      descriptor.
5235   //   3. Load the TOC of the callee from the function descriptor into r2.
5236   //   4. Load the environment pointer from the function descriptor into
5237   //      r11.
5238   //   5. Branch to the function entry point address.
5239   //   6. On return of the callee, the TOC of the caller needs to be
5240   //      restored (this is done in FinishCall()).
5241   //
5242   // The loads are scheduled at the beginning of the call sequence, and the
5243   // register copies are flagged together to ensure that no other
5244   // operations can be scheduled in between. E.g. without flagging the
5245   // copies together, a TOC access in the caller could be scheduled between
5246   // the assignment of the callee TOC and the branch to the callee, which leads
5247   // to incorrect code.
5248 
5249   // Start by loading the function address from the descriptor.
5250   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5251   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5252                       ? (MachineMemOperand::MODereferenceable |
5253                          MachineMemOperand::MOInvariant)
5254                       : MachineMemOperand::MONone;
5255 
5256   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5257 
5258   // Registers used in building the DAG.
5259   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5260   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5261 
5262   // Offsets of descriptor members.
5263   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5264   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5265 
5266   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5267   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5268 
5269   // One load for the functions entry point address.
5270   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5271                                     Alignment, MMOFlags);
5272 
5273   // One for loading the TOC anchor for the module that contains the called
5274   // function.
5275   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5276   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5277   SDValue TOCPtr =
5278       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5279                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5280 
5281   // One for loading the environment pointer.
5282   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5283   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5284   SDValue LoadEnvPtr =
5285       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5286                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5287 
5288 
5289   // Then copy the newly loaded TOC anchor to the TOC pointer.
5290   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5291   Chain = TOCVal.getValue(0);
5292   Glue = TOCVal.getValue(1);
5293 
5294   // If the function call has an explicit 'nest' parameter, it takes the
5295   // place of the environment pointer.
5296   assert((!hasNest || !Subtarget.isAIXABI()) &&
5297          "Nest parameter is not supported on AIX.");
5298   if (!hasNest) {
5299     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5300     Chain = EnvVal.getValue(0);
5301     Glue = EnvVal.getValue(1);
5302   }
5303 
5304   // The rest of the indirect call sequence is the same as the non-descriptor
5305   // DAG.
5306   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5307 }
5308 
5309 static void
5310 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5311                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5312                   SelectionDAG &DAG,
5313                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5314                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5315                   const PPCSubtarget &Subtarget) {
5316   const bool IsPPC64 = Subtarget.isPPC64();
5317   // MVT for a general purpose register.
5318   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5319 
5320   // First operand is always the chain.
5321   Ops.push_back(Chain);
5322 
5323   // If it's a direct call pass the callee as the second operand.
5324   if (!CFlags.IsIndirect)
5325     Ops.push_back(Callee);
5326   else {
5327     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5328 
5329     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5330     // on the stack (this would have been done in `LowerCall_64SVR4` or
5331     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5332     // represents both the indirect branch and a load that restores the TOC
5333     // pointer from the linkage area. The operand for the TOC restore is an add
5334     // of the TOC save offset to the stack pointer. This must be the second
5335     // operand: after the chain input but before any other variadic arguments.
5336     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5337     // saved or used.
5338     if (isTOCSaveRestoreRequired(Subtarget)) {
5339       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5340 
5341       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5342       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5343       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5344       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5345       Ops.push_back(AddTOC);
5346     }
5347 
5348     // Add the register used for the environment pointer.
5349     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5350       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5351                                     RegVT));
5352 
5353 
5354     // Add CTR register as callee so a bctr can be emitted later.
5355     if (CFlags.IsTailCall)
5356       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5357   }
5358 
5359   // If this is a tail call add stack pointer delta.
5360   if (CFlags.IsTailCall)
5361     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5362 
5363   // Add argument registers to the end of the list so that they are known live
5364   // into the call.
5365   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5366     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5367                                   RegsToPass[i].second.getValueType()));
5368 
5369   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5370   // no way to mark dependencies as implicit here.
5371   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5372   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5373        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5374     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5375 
5376   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5377   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5378     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5379 
5380   // Add a register mask operand representing the call-preserved registers.
5381   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5382   const uint32_t *Mask =
5383       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5384   assert(Mask && "Missing call preserved mask for calling convention");
5385   Ops.push_back(DAG.getRegisterMask(Mask));
5386 
5387   // If the glue is valid, it is the last operand.
5388   if (Glue.getNode())
5389     Ops.push_back(Glue);
5390 }
5391 
5392 SDValue PPCTargetLowering::FinishCall(
5393     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5394     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5395     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5396     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5397     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5398 
5399   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5400       Subtarget.isAIXABI())
5401     setUsesTOCBasePtr(DAG);
5402 
5403   unsigned CallOpc =
5404       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5405                     Subtarget, DAG.getTarget());
5406 
5407   if (!CFlags.IsIndirect)
5408     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5409   else if (Subtarget.usesFunctionDescriptors())
5410     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5411                                   dl, CFlags.HasNest, Subtarget);
5412   else
5413     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5414 
5415   // Build the operand list for the call instruction.
5416   SmallVector<SDValue, 8> Ops;
5417   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5418                     SPDiff, Subtarget);
5419 
5420   // Emit tail call.
5421   if (CFlags.IsTailCall) {
5422     // Indirect tail call when using PC Relative calls do not have the same
5423     // constraints.
5424     assert(((Callee.getOpcode() == ISD::Register &&
5425              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5426             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5427             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5428             isa<ConstantSDNode>(Callee) ||
5429             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5430            "Expecting a global address, external symbol, absolute value, "
5431            "register or an indirect tail call when PC Relative calls are "
5432            "used.");
5433     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5434     assert(CallOpc == PPCISD::TC_RETURN &&
5435            "Unexpected call opcode for a tail call.");
5436     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5437     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5438   }
5439 
5440   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5441   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5442   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5443   Glue = Chain.getValue(1);
5444 
5445   // When performing tail call optimization the callee pops its arguments off
5446   // the stack. Account for this here so these bytes can be pushed back on in
5447   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5448   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5449                          getTargetMachine().Options.GuaranteedTailCallOpt)
5450                             ? NumBytes
5451                             : 0;
5452 
5453   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5454                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5455                              Glue, dl);
5456   Glue = Chain.getValue(1);
5457 
5458   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5459                          DAG, InVals);
5460 }
5461 
5462 SDValue
5463 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5464                              SmallVectorImpl<SDValue> &InVals) const {
5465   SelectionDAG &DAG                     = CLI.DAG;
5466   SDLoc &dl                             = CLI.DL;
5467   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5468   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5469   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5470   SDValue Chain                         = CLI.Chain;
5471   SDValue Callee                        = CLI.Callee;
5472   bool &isTailCall                      = CLI.IsTailCall;
5473   CallingConv::ID CallConv              = CLI.CallConv;
5474   bool isVarArg                         = CLI.IsVarArg;
5475   bool isPatchPoint                     = CLI.IsPatchPoint;
5476   const CallBase *CB                    = CLI.CB;
5477 
5478   if (isTailCall) {
5479     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5480       isTailCall = false;
5481     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5482       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5483           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5484     else
5485       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5486                                                      Ins, DAG);
5487     if (isTailCall) {
5488       ++NumTailCalls;
5489       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5490         ++NumSiblingCalls;
5491 
5492       // PC Relative calls no longer guarantee that the callee is a Global
5493       // Address Node. The callee could be an indirect tail call in which
5494       // case the SDValue for the callee could be a load (to load the address
5495       // of a function pointer) or it may be a register copy (to move the
5496       // address of the callee from a function parameter into a virtual
5497       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5498       assert((Subtarget.isUsingPCRelativeCalls() ||
5499               isa<GlobalAddressSDNode>(Callee)) &&
5500              "Callee should be an llvm::Function object.");
5501 
5502       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5503                         << "\nTCO callee: ");
5504       LLVM_DEBUG(Callee.dump());
5505     }
5506   }
5507 
5508   if (!isTailCall && CB && CB->isMustTailCall())
5509     report_fatal_error("failed to perform tail call elimination on a call "
5510                        "site marked musttail");
5511 
5512   // When long calls (i.e. indirect calls) are always used, calls are always
5513   // made via function pointer. If we have a function name, first translate it
5514   // into a pointer.
5515   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5516       !isTailCall)
5517     Callee = LowerGlobalAddress(Callee, DAG);
5518 
5519   CallFlags CFlags(
5520       CallConv, isTailCall, isVarArg, isPatchPoint,
5521       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5522       // hasNest
5523       Subtarget.is64BitELFABI() &&
5524           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5525       CLI.NoMerge);
5526 
5527   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5528     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5529                             InVals, CB);
5530 
5531   if (Subtarget.isSVR4ABI())
5532     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5533                             InVals, CB);
5534 
5535   if (Subtarget.isAIXABI())
5536     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5537                          InVals, CB);
5538 
5539   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5540                           InVals, CB);
5541 }
5542 
5543 SDValue PPCTargetLowering::LowerCall_32SVR4(
5544     SDValue Chain, SDValue Callee, CallFlags CFlags,
5545     const SmallVectorImpl<ISD::OutputArg> &Outs,
5546     const SmallVectorImpl<SDValue> &OutVals,
5547     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5548     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5549     const CallBase *CB) const {
5550   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5551   // of the 32-bit SVR4 ABI stack frame layout.
5552 
5553   const CallingConv::ID CallConv = CFlags.CallConv;
5554   const bool IsVarArg = CFlags.IsVarArg;
5555   const bool IsTailCall = CFlags.IsTailCall;
5556 
5557   assert((CallConv == CallingConv::C ||
5558           CallConv == CallingConv::Cold ||
5559           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5560 
5561   const Align PtrAlign(4);
5562 
5563   MachineFunction &MF = DAG.getMachineFunction();
5564 
5565   // Mark this function as potentially containing a function that contains a
5566   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5567   // and restoring the callers stack pointer in this functions epilog. This is
5568   // done because by tail calling the called function might overwrite the value
5569   // in this function's (MF) stack pointer stack slot 0(SP).
5570   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5571       CallConv == CallingConv::Fast)
5572     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5573 
5574   // Count how many bytes are to be pushed on the stack, including the linkage
5575   // area, parameter list area and the part of the local variable space which
5576   // contains copies of aggregates which are passed by value.
5577 
5578   // Assign locations to all of the outgoing arguments.
5579   SmallVector<CCValAssign, 16> ArgLocs;
5580   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5581 
5582   // Reserve space for the linkage area on the stack.
5583   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5584                        PtrAlign);
5585   if (useSoftFloat())
5586     CCInfo.PreAnalyzeCallOperands(Outs);
5587 
5588   if (IsVarArg) {
5589     // Handle fixed and variable vector arguments differently.
5590     // Fixed vector arguments go into registers as long as registers are
5591     // available. Variable vector arguments always go into memory.
5592     unsigned NumArgs = Outs.size();
5593 
5594     for (unsigned i = 0; i != NumArgs; ++i) {
5595       MVT ArgVT = Outs[i].VT;
5596       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5597       bool Result;
5598 
5599       if (Outs[i].IsFixed) {
5600         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5601                                CCInfo);
5602       } else {
5603         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5604                                       ArgFlags, CCInfo);
5605       }
5606 
5607       if (Result) {
5608 #ifndef NDEBUG
5609         errs() << "Call operand #" << i << " has unhandled type "
5610              << EVT(ArgVT).getEVTString() << "\n";
5611 #endif
5612         llvm_unreachable(nullptr);
5613       }
5614     }
5615   } else {
5616     // All arguments are treated the same.
5617     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5618   }
5619   CCInfo.clearWasPPCF128();
5620 
5621   // Assign locations to all of the outgoing aggregate by value arguments.
5622   SmallVector<CCValAssign, 16> ByValArgLocs;
5623   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5624 
5625   // Reserve stack space for the allocations in CCInfo.
5626   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5627 
5628   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5629 
5630   // Size of the linkage area, parameter list area and the part of the local
5631   // space variable where copies of aggregates which are passed by value are
5632   // stored.
5633   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5634 
5635   // Calculate by how many bytes the stack has to be adjusted in case of tail
5636   // call optimization.
5637   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5638 
5639   // Adjust the stack pointer for the new arguments...
5640   // These operations are automatically eliminated by the prolog/epilog pass
5641   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5642   SDValue CallSeqStart = Chain;
5643 
5644   // Load the return address and frame pointer so it can be moved somewhere else
5645   // later.
5646   SDValue LROp, FPOp;
5647   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5648 
5649   // Set up a copy of the stack pointer for use loading and storing any
5650   // arguments that may not fit in the registers available for argument
5651   // passing.
5652   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5653 
5654   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5655   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5656   SmallVector<SDValue, 8> MemOpChains;
5657 
5658   bool seenFloatArg = false;
5659   // Walk the register/memloc assignments, inserting copies/loads.
5660   // i - Tracks the index into the list of registers allocated for the call
5661   // RealArgIdx - Tracks the index into the list of actual function arguments
5662   // j - Tracks the index into the list of byval arguments
5663   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5664        i != e;
5665        ++i, ++RealArgIdx) {
5666     CCValAssign &VA = ArgLocs[i];
5667     SDValue Arg = OutVals[RealArgIdx];
5668     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5669 
5670     if (Flags.isByVal()) {
5671       // Argument is an aggregate which is passed by value, thus we need to
5672       // create a copy of it in the local variable space of the current stack
5673       // frame (which is the stack frame of the caller) and pass the address of
5674       // this copy to the callee.
5675       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5676       CCValAssign &ByValVA = ByValArgLocs[j++];
5677       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5678 
5679       // Memory reserved in the local variable space of the callers stack frame.
5680       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5681 
5682       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5683       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5684                            StackPtr, PtrOff);
5685 
5686       // Create a copy of the argument in the local area of the current
5687       // stack frame.
5688       SDValue MemcpyCall =
5689         CreateCopyOfByValArgument(Arg, PtrOff,
5690                                   CallSeqStart.getNode()->getOperand(0),
5691                                   Flags, DAG, dl);
5692 
5693       // This must go outside the CALLSEQ_START..END.
5694       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5695                                                      SDLoc(MemcpyCall));
5696       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5697                              NewCallSeqStart.getNode());
5698       Chain = CallSeqStart = NewCallSeqStart;
5699 
5700       // Pass the address of the aggregate copy on the stack either in a
5701       // physical register or in the parameter list area of the current stack
5702       // frame to the callee.
5703       Arg = PtrOff;
5704     }
5705 
5706     // When useCRBits() is true, there can be i1 arguments.
5707     // It is because getRegisterType(MVT::i1) => MVT::i1,
5708     // and for other integer types getRegisterType() => MVT::i32.
5709     // Extend i1 and ensure callee will get i32.
5710     if (Arg.getValueType() == MVT::i1)
5711       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5712                         dl, MVT::i32, Arg);
5713 
5714     if (VA.isRegLoc()) {
5715       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5716       // Put argument in a physical register.
5717       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5718         bool IsLE = Subtarget.isLittleEndian();
5719         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5720                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5721         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5722         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5723                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5724         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5725                              SVal.getValue(0)));
5726       } else
5727         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5728     } else {
5729       // Put argument in the parameter list area of the current stack frame.
5730       assert(VA.isMemLoc());
5731       unsigned LocMemOffset = VA.getLocMemOffset();
5732 
5733       if (!IsTailCall) {
5734         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5735         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5736                              StackPtr, PtrOff);
5737 
5738         MemOpChains.push_back(
5739             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5740       } else {
5741         // Calculate and remember argument location.
5742         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5743                                  TailCallArguments);
5744       }
5745     }
5746   }
5747 
5748   if (!MemOpChains.empty())
5749     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5750 
5751   // Build a sequence of copy-to-reg nodes chained together with token chain
5752   // and flag operands which copy the outgoing args into the appropriate regs.
5753   SDValue InFlag;
5754   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5755     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5756                              RegsToPass[i].second, InFlag);
5757     InFlag = Chain.getValue(1);
5758   }
5759 
5760   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5761   // registers.
5762   if (IsVarArg) {
5763     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5764     SDValue Ops[] = { Chain, InFlag };
5765 
5766     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5767                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5768 
5769     InFlag = Chain.getValue(1);
5770   }
5771 
5772   if (IsTailCall)
5773     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5774                     TailCallArguments);
5775 
5776   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5777                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5778 }
5779 
5780 // Copy an argument into memory, being careful to do this outside the
5781 // call sequence for the call to which the argument belongs.
5782 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5783     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5784     SelectionDAG &DAG, const SDLoc &dl) const {
5785   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5786                         CallSeqStart.getNode()->getOperand(0),
5787                         Flags, DAG, dl);
5788   // The MEMCPY must go outside the CALLSEQ_START..END.
5789   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5790   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5791                                                  SDLoc(MemcpyCall));
5792   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5793                          NewCallSeqStart.getNode());
5794   return NewCallSeqStart;
5795 }
5796 
5797 SDValue PPCTargetLowering::LowerCall_64SVR4(
5798     SDValue Chain, SDValue Callee, CallFlags CFlags,
5799     const SmallVectorImpl<ISD::OutputArg> &Outs,
5800     const SmallVectorImpl<SDValue> &OutVals,
5801     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5802     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5803     const CallBase *CB) const {
5804   bool isELFv2ABI = Subtarget.isELFv2ABI();
5805   bool isLittleEndian = Subtarget.isLittleEndian();
5806   unsigned NumOps = Outs.size();
5807   bool IsSibCall = false;
5808   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5809 
5810   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5811   unsigned PtrByteSize = 8;
5812 
5813   MachineFunction &MF = DAG.getMachineFunction();
5814 
5815   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5816     IsSibCall = true;
5817 
5818   // Mark this function as potentially containing a function that contains a
5819   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5820   // and restoring the callers stack pointer in this functions epilog. This is
5821   // done because by tail calling the called function might overwrite the value
5822   // in this function's (MF) stack pointer stack slot 0(SP).
5823   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5824     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5825 
5826   assert(!(IsFastCall && CFlags.IsVarArg) &&
5827          "fastcc not supported on varargs functions");
5828 
5829   // Count how many bytes are to be pushed on the stack, including the linkage
5830   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5831   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5832   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5833   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5834   unsigned NumBytes = LinkageSize;
5835   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5836 
5837   static const MCPhysReg GPR[] = {
5838     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5839     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5840   };
5841   static const MCPhysReg VR[] = {
5842     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5843     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5844   };
5845 
5846   const unsigned NumGPRs = array_lengthof(GPR);
5847   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5848   const unsigned NumVRs  = array_lengthof(VR);
5849 
5850   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5851   // can be passed to the callee in registers.
5852   // For the fast calling convention, there is another check below.
5853   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5854   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5855   if (!HasParameterArea) {
5856     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5857     unsigned AvailableFPRs = NumFPRs;
5858     unsigned AvailableVRs = NumVRs;
5859     unsigned NumBytesTmp = NumBytes;
5860     for (unsigned i = 0; i != NumOps; ++i) {
5861       if (Outs[i].Flags.isNest()) continue;
5862       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5863                                  PtrByteSize, LinkageSize, ParamAreaSize,
5864                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5865         HasParameterArea = true;
5866     }
5867   }
5868 
5869   // When using the fast calling convention, we don't provide backing for
5870   // arguments that will be in registers.
5871   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5872 
5873   // Avoid allocating parameter area for fastcc functions if all the arguments
5874   // can be passed in the registers.
5875   if (IsFastCall)
5876     HasParameterArea = false;
5877 
5878   // Add up all the space actually used.
5879   for (unsigned i = 0; i != NumOps; ++i) {
5880     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5881     EVT ArgVT = Outs[i].VT;
5882     EVT OrigVT = Outs[i].ArgVT;
5883 
5884     if (Flags.isNest())
5885       continue;
5886 
5887     if (IsFastCall) {
5888       if (Flags.isByVal()) {
5889         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5890         if (NumGPRsUsed > NumGPRs)
5891           HasParameterArea = true;
5892       } else {
5893         switch (ArgVT.getSimpleVT().SimpleTy) {
5894         default: llvm_unreachable("Unexpected ValueType for argument!");
5895         case MVT::i1:
5896         case MVT::i32:
5897         case MVT::i64:
5898           if (++NumGPRsUsed <= NumGPRs)
5899             continue;
5900           break;
5901         case MVT::v4i32:
5902         case MVT::v8i16:
5903         case MVT::v16i8:
5904         case MVT::v2f64:
5905         case MVT::v2i64:
5906         case MVT::v1i128:
5907         case MVT::f128:
5908           if (++NumVRsUsed <= NumVRs)
5909             continue;
5910           break;
5911         case MVT::v4f32:
5912           if (++NumVRsUsed <= NumVRs)
5913             continue;
5914           break;
5915         case MVT::f32:
5916         case MVT::f64:
5917           if (++NumFPRsUsed <= NumFPRs)
5918             continue;
5919           break;
5920         }
5921         HasParameterArea = true;
5922       }
5923     }
5924 
5925     /* Respect alignment of argument on the stack.  */
5926     auto Alignement =
5927         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5928     NumBytes = alignTo(NumBytes, Alignement);
5929 
5930     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5931     if (Flags.isInConsecutiveRegsLast())
5932       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5933   }
5934 
5935   unsigned NumBytesActuallyUsed = NumBytes;
5936 
5937   // In the old ELFv1 ABI,
5938   // the prolog code of the callee may store up to 8 GPR argument registers to
5939   // the stack, allowing va_start to index over them in memory if its varargs.
5940   // Because we cannot tell if this is needed on the caller side, we have to
5941   // conservatively assume that it is needed.  As such, make sure we have at
5942   // least enough stack space for the caller to store the 8 GPRs.
5943   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5944   // really requires memory operands, e.g. a vararg function.
5945   if (HasParameterArea)
5946     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5947   else
5948     NumBytes = LinkageSize;
5949 
5950   // Tail call needs the stack to be aligned.
5951   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5952     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5953 
5954   int SPDiff = 0;
5955 
5956   // Calculate by how many bytes the stack has to be adjusted in case of tail
5957   // call optimization.
5958   if (!IsSibCall)
5959     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5960 
5961   // To protect arguments on the stack from being clobbered in a tail call,
5962   // force all the loads to happen before doing any other lowering.
5963   if (CFlags.IsTailCall)
5964     Chain = DAG.getStackArgumentTokenFactor(Chain);
5965 
5966   // Adjust the stack pointer for the new arguments...
5967   // These operations are automatically eliminated by the prolog/epilog pass
5968   if (!IsSibCall)
5969     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5970   SDValue CallSeqStart = Chain;
5971 
5972   // Load the return address and frame pointer so it can be move somewhere else
5973   // later.
5974   SDValue LROp, FPOp;
5975   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5976 
5977   // Set up a copy of the stack pointer for use loading and storing any
5978   // arguments that may not fit in the registers available for argument
5979   // passing.
5980   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5981 
5982   // Figure out which arguments are going to go in registers, and which in
5983   // memory.  Also, if this is a vararg function, floating point operations
5984   // must be stored to our stack, and loaded into integer regs as well, if
5985   // any integer regs are available for argument passing.
5986   unsigned ArgOffset = LinkageSize;
5987 
5988   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5989   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5990 
5991   SmallVector<SDValue, 8> MemOpChains;
5992   for (unsigned i = 0; i != NumOps; ++i) {
5993     SDValue Arg = OutVals[i];
5994     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5995     EVT ArgVT = Outs[i].VT;
5996     EVT OrigVT = Outs[i].ArgVT;
5997 
5998     // PtrOff will be used to store the current argument to the stack if a
5999     // register cannot be found for it.
6000     SDValue PtrOff;
6001 
6002     // We re-align the argument offset for each argument, except when using the
6003     // fast calling convention, when we need to make sure we do that only when
6004     // we'll actually use a stack slot.
6005     auto ComputePtrOff = [&]() {
6006       /* Respect alignment of argument on the stack.  */
6007       auto Alignment =
6008           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6009       ArgOffset = alignTo(ArgOffset, Alignment);
6010 
6011       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6012 
6013       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6014     };
6015 
6016     if (!IsFastCall) {
6017       ComputePtrOff();
6018 
6019       /* Compute GPR index associated with argument offset.  */
6020       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6021       GPR_idx = std::min(GPR_idx, NumGPRs);
6022     }
6023 
6024     // Promote integers to 64-bit values.
6025     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6026       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6027       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6028       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6029     }
6030 
6031     // FIXME memcpy is used way more than necessary.  Correctness first.
6032     // Note: "by value" is code for passing a structure by value, not
6033     // basic types.
6034     if (Flags.isByVal()) {
6035       // Note: Size includes alignment padding, so
6036       //   struct x { short a; char b; }
6037       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6038       // These are the proper values we need for right-justifying the
6039       // aggregate in a parameter register.
6040       unsigned Size = Flags.getByValSize();
6041 
6042       // An empty aggregate parameter takes up no storage and no
6043       // registers.
6044       if (Size == 0)
6045         continue;
6046 
6047       if (IsFastCall)
6048         ComputePtrOff();
6049 
6050       // All aggregates smaller than 8 bytes must be passed right-justified.
6051       if (Size==1 || Size==2 || Size==4) {
6052         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6053         if (GPR_idx != NumGPRs) {
6054           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6055                                         MachinePointerInfo(), VT);
6056           MemOpChains.push_back(Load.getValue(1));
6057           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6058 
6059           ArgOffset += PtrByteSize;
6060           continue;
6061         }
6062       }
6063 
6064       if (GPR_idx == NumGPRs && Size < 8) {
6065         SDValue AddPtr = PtrOff;
6066         if (!isLittleEndian) {
6067           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6068                                           PtrOff.getValueType());
6069           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6070         }
6071         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6072                                                           CallSeqStart,
6073                                                           Flags, DAG, dl);
6074         ArgOffset += PtrByteSize;
6075         continue;
6076       }
6077       // Copy entire object into memory.  There are cases where gcc-generated
6078       // code assumes it is there, even if it could be put entirely into
6079       // registers.  (This is not what the doc says.)
6080 
6081       // FIXME: The above statement is likely due to a misunderstanding of the
6082       // documents.  All arguments must be copied into the parameter area BY
6083       // THE CALLEE in the event that the callee takes the address of any
6084       // formal argument.  That has not yet been implemented.  However, it is
6085       // reasonable to use the stack area as a staging area for the register
6086       // load.
6087 
6088       // Skip this for small aggregates, as we will use the same slot for a
6089       // right-justified copy, below.
6090       if (Size >= 8)
6091         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6092                                                           CallSeqStart,
6093                                                           Flags, DAG, dl);
6094 
6095       // When a register is available, pass a small aggregate right-justified.
6096       if (Size < 8 && GPR_idx != NumGPRs) {
6097         // The easiest way to get this right-justified in a register
6098         // is to copy the structure into the rightmost portion of a
6099         // local variable slot, then load the whole slot into the
6100         // register.
6101         // FIXME: The memcpy seems to produce pretty awful code for
6102         // small aggregates, particularly for packed ones.
6103         // FIXME: It would be preferable to use the slot in the
6104         // parameter save area instead of a new local variable.
6105         SDValue AddPtr = PtrOff;
6106         if (!isLittleEndian) {
6107           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6108           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6109         }
6110         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6111                                                           CallSeqStart,
6112                                                           Flags, DAG, dl);
6113 
6114         // Load the slot into the register.
6115         SDValue Load =
6116             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6117         MemOpChains.push_back(Load.getValue(1));
6118         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6119 
6120         // Done with this argument.
6121         ArgOffset += PtrByteSize;
6122         continue;
6123       }
6124 
6125       // For aggregates larger than PtrByteSize, copy the pieces of the
6126       // object that fit into registers from the parameter save area.
6127       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6128         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6129         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6130         if (GPR_idx != NumGPRs) {
6131           SDValue Load =
6132               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6133           MemOpChains.push_back(Load.getValue(1));
6134           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6135           ArgOffset += PtrByteSize;
6136         } else {
6137           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6138           break;
6139         }
6140       }
6141       continue;
6142     }
6143 
6144     switch (Arg.getSimpleValueType().SimpleTy) {
6145     default: llvm_unreachable("Unexpected ValueType for argument!");
6146     case MVT::i1:
6147     case MVT::i32:
6148     case MVT::i64:
6149       if (Flags.isNest()) {
6150         // The 'nest' parameter, if any, is passed in R11.
6151         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6152         break;
6153       }
6154 
6155       // These can be scalar arguments or elements of an integer array type
6156       // passed directly.  Clang may use those instead of "byval" aggregate
6157       // types to avoid forcing arguments to memory unnecessarily.
6158       if (GPR_idx != NumGPRs) {
6159         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6160       } else {
6161         if (IsFastCall)
6162           ComputePtrOff();
6163 
6164         assert(HasParameterArea &&
6165                "Parameter area must exist to pass an argument in memory.");
6166         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6167                          true, CFlags.IsTailCall, false, MemOpChains,
6168                          TailCallArguments, dl);
6169         if (IsFastCall)
6170           ArgOffset += PtrByteSize;
6171       }
6172       if (!IsFastCall)
6173         ArgOffset += PtrByteSize;
6174       break;
6175     case MVT::f32:
6176     case MVT::f64: {
6177       // These can be scalar arguments or elements of a float array type
6178       // passed directly.  The latter are used to implement ELFv2 homogenous
6179       // float aggregates.
6180 
6181       // Named arguments go into FPRs first, and once they overflow, the
6182       // remaining arguments go into GPRs and then the parameter save area.
6183       // Unnamed arguments for vararg functions always go to GPRs and
6184       // then the parameter save area.  For now, put all arguments to vararg
6185       // routines always in both locations (FPR *and* GPR or stack slot).
6186       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6187       bool NeededLoad = false;
6188 
6189       // First load the argument into the next available FPR.
6190       if (FPR_idx != NumFPRs)
6191         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6192 
6193       // Next, load the argument into GPR or stack slot if needed.
6194       if (!NeedGPROrStack)
6195         ;
6196       else if (GPR_idx != NumGPRs && !IsFastCall) {
6197         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6198         // once we support fp <-> gpr moves.
6199 
6200         // In the non-vararg case, this can only ever happen in the
6201         // presence of f32 array types, since otherwise we never run
6202         // out of FPRs before running out of GPRs.
6203         SDValue ArgVal;
6204 
6205         // Double values are always passed in a single GPR.
6206         if (Arg.getValueType() != MVT::f32) {
6207           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6208 
6209         // Non-array float values are extended and passed in a GPR.
6210         } else if (!Flags.isInConsecutiveRegs()) {
6211           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6212           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6213 
6214         // If we have an array of floats, we collect every odd element
6215         // together with its predecessor into one GPR.
6216         } else if (ArgOffset % PtrByteSize != 0) {
6217           SDValue Lo, Hi;
6218           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6219           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6220           if (!isLittleEndian)
6221             std::swap(Lo, Hi);
6222           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6223 
6224         // The final element, if even, goes into the first half of a GPR.
6225         } else if (Flags.isInConsecutiveRegsLast()) {
6226           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6227           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6228           if (!isLittleEndian)
6229             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6230                                  DAG.getConstant(32, dl, MVT::i32));
6231 
6232         // Non-final even elements are skipped; they will be handled
6233         // together the with subsequent argument on the next go-around.
6234         } else
6235           ArgVal = SDValue();
6236 
6237         if (ArgVal.getNode())
6238           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6239       } else {
6240         if (IsFastCall)
6241           ComputePtrOff();
6242 
6243         // Single-precision floating-point values are mapped to the
6244         // second (rightmost) word of the stack doubleword.
6245         if (Arg.getValueType() == MVT::f32 &&
6246             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6247           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6248           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6249         }
6250 
6251         assert(HasParameterArea &&
6252                "Parameter area must exist to pass an argument in memory.");
6253         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6254                          true, CFlags.IsTailCall, false, MemOpChains,
6255                          TailCallArguments, dl);
6256 
6257         NeededLoad = true;
6258       }
6259       // When passing an array of floats, the array occupies consecutive
6260       // space in the argument area; only round up to the next doubleword
6261       // at the end of the array.  Otherwise, each float takes 8 bytes.
6262       if (!IsFastCall || NeededLoad) {
6263         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6264                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6265         if (Flags.isInConsecutiveRegsLast())
6266           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6267       }
6268       break;
6269     }
6270     case MVT::v4f32:
6271     case MVT::v4i32:
6272     case MVT::v8i16:
6273     case MVT::v16i8:
6274     case MVT::v2f64:
6275     case MVT::v2i64:
6276     case MVT::v1i128:
6277     case MVT::f128:
6278       // These can be scalar arguments or elements of a vector array type
6279       // passed directly.  The latter are used to implement ELFv2 homogenous
6280       // vector aggregates.
6281 
6282       // For a varargs call, named arguments go into VRs or on the stack as
6283       // usual; unnamed arguments always go to the stack or the corresponding
6284       // GPRs when within range.  For now, we always put the value in both
6285       // locations (or even all three).
6286       if (CFlags.IsVarArg) {
6287         assert(HasParameterArea &&
6288                "Parameter area must exist if we have a varargs call.");
6289         // We could elide this store in the case where the object fits
6290         // entirely in R registers.  Maybe later.
6291         SDValue Store =
6292             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6293         MemOpChains.push_back(Store);
6294         if (VR_idx != NumVRs) {
6295           SDValue Load =
6296               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6297           MemOpChains.push_back(Load.getValue(1));
6298           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6299         }
6300         ArgOffset += 16;
6301         for (unsigned i=0; i<16; i+=PtrByteSize) {
6302           if (GPR_idx == NumGPRs)
6303             break;
6304           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6305                                    DAG.getConstant(i, dl, PtrVT));
6306           SDValue Load =
6307               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6308           MemOpChains.push_back(Load.getValue(1));
6309           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6310         }
6311         break;
6312       }
6313 
6314       // Non-varargs Altivec params go into VRs or on the stack.
6315       if (VR_idx != NumVRs) {
6316         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6317       } else {
6318         if (IsFastCall)
6319           ComputePtrOff();
6320 
6321         assert(HasParameterArea &&
6322                "Parameter area must exist to pass an argument in memory.");
6323         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6324                          true, CFlags.IsTailCall, true, MemOpChains,
6325                          TailCallArguments, dl);
6326         if (IsFastCall)
6327           ArgOffset += 16;
6328       }
6329 
6330       if (!IsFastCall)
6331         ArgOffset += 16;
6332       break;
6333     }
6334   }
6335 
6336   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6337          "mismatch in size of parameter area");
6338   (void)NumBytesActuallyUsed;
6339 
6340   if (!MemOpChains.empty())
6341     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6342 
6343   // Check if this is an indirect call (MTCTR/BCTRL).
6344   // See prepareDescriptorIndirectCall and buildCallOperands for more
6345   // information about calls through function pointers in the 64-bit SVR4 ABI.
6346   if (CFlags.IsIndirect) {
6347     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6348     // caller in the TOC save area.
6349     if (isTOCSaveRestoreRequired(Subtarget)) {
6350       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6351       // Load r2 into a virtual register and store it to the TOC save area.
6352       setUsesTOCBasePtr(DAG);
6353       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6354       // TOC save area offset.
6355       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6356       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6357       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6358       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6359                            MachinePointerInfo::getStack(
6360                                DAG.getMachineFunction(), TOCSaveOffset));
6361     }
6362     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6363     // This does not mean the MTCTR instruction must use R12; it's easier
6364     // to model this as an extra parameter, so do that.
6365     if (isELFv2ABI && !CFlags.IsPatchPoint)
6366       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6367   }
6368 
6369   // Build a sequence of copy-to-reg nodes chained together with token chain
6370   // and flag operands which copy the outgoing args into the appropriate regs.
6371   SDValue InFlag;
6372   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6373     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6374                              RegsToPass[i].second, InFlag);
6375     InFlag = Chain.getValue(1);
6376   }
6377 
6378   if (CFlags.IsTailCall && !IsSibCall)
6379     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6380                     TailCallArguments);
6381 
6382   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6383                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6384 }
6385 
6386 SDValue PPCTargetLowering::LowerCall_Darwin(
6387     SDValue Chain, SDValue Callee, CallFlags CFlags,
6388     const SmallVectorImpl<ISD::OutputArg> &Outs,
6389     const SmallVectorImpl<SDValue> &OutVals,
6390     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6391     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6392     const CallBase *CB) const {
6393   unsigned NumOps = Outs.size();
6394 
6395   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6396   bool isPPC64 = PtrVT == MVT::i64;
6397   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6398 
6399   MachineFunction &MF = DAG.getMachineFunction();
6400 
6401   // Mark this function as potentially containing a function that contains a
6402   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6403   // and restoring the callers stack pointer in this functions epilog. This is
6404   // done because by tail calling the called function might overwrite the value
6405   // in this function's (MF) stack pointer stack slot 0(SP).
6406   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6407       CFlags.CallConv == CallingConv::Fast)
6408     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6409 
6410   // Count how many bytes are to be pushed on the stack, including the linkage
6411   // area, and parameter passing area.  We start with 24/48 bytes, which is
6412   // prereserved space for [SP][CR][LR][3 x unused].
6413   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6414   unsigned NumBytes = LinkageSize;
6415 
6416   // Add up all the space actually used.
6417   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6418   // they all go in registers, but we must reserve stack space for them for
6419   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6420   // assigned stack space in order, with padding so Altivec parameters are
6421   // 16-byte aligned.
6422   unsigned nAltivecParamsAtEnd = 0;
6423   for (unsigned i = 0; i != NumOps; ++i) {
6424     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6425     EVT ArgVT = Outs[i].VT;
6426     // Varargs Altivec parameters are padded to a 16 byte boundary.
6427     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6428         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6429         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6430       if (!CFlags.IsVarArg && !isPPC64) {
6431         // Non-varargs Altivec parameters go after all the non-Altivec
6432         // parameters; handle those later so we know how much padding we need.
6433         nAltivecParamsAtEnd++;
6434         continue;
6435       }
6436       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6437       NumBytes = ((NumBytes+15)/16)*16;
6438     }
6439     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6440   }
6441 
6442   // Allow for Altivec parameters at the end, if needed.
6443   if (nAltivecParamsAtEnd) {
6444     NumBytes = ((NumBytes+15)/16)*16;
6445     NumBytes += 16*nAltivecParamsAtEnd;
6446   }
6447 
6448   // The prolog code of the callee may store up to 8 GPR argument registers to
6449   // the stack, allowing va_start to index over them in memory if its varargs.
6450   // Because we cannot tell if this is needed on the caller side, we have to
6451   // conservatively assume that it is needed.  As such, make sure we have at
6452   // least enough stack space for the caller to store the 8 GPRs.
6453   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6454 
6455   // Tail call needs the stack to be aligned.
6456   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6457       CFlags.CallConv == CallingConv::Fast)
6458     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6459 
6460   // Calculate by how many bytes the stack has to be adjusted in case of tail
6461   // call optimization.
6462   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6463 
6464   // To protect arguments on the stack from being clobbered in a tail call,
6465   // force all the loads to happen before doing any other lowering.
6466   if (CFlags.IsTailCall)
6467     Chain = DAG.getStackArgumentTokenFactor(Chain);
6468 
6469   // Adjust the stack pointer for the new arguments...
6470   // These operations are automatically eliminated by the prolog/epilog pass
6471   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6472   SDValue CallSeqStart = Chain;
6473 
6474   // Load the return address and frame pointer so it can be move somewhere else
6475   // later.
6476   SDValue LROp, FPOp;
6477   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6478 
6479   // Set up a copy of the stack pointer for use loading and storing any
6480   // arguments that may not fit in the registers available for argument
6481   // passing.
6482   SDValue StackPtr;
6483   if (isPPC64)
6484     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6485   else
6486     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6487 
6488   // Figure out which arguments are going to go in registers, and which in
6489   // memory.  Also, if this is a vararg function, floating point operations
6490   // must be stored to our stack, and loaded into integer regs as well, if
6491   // any integer regs are available for argument passing.
6492   unsigned ArgOffset = LinkageSize;
6493   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6494 
6495   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6496     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6497     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6498   };
6499   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6500     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6501     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6502   };
6503   static const MCPhysReg VR[] = {
6504     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6505     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6506   };
6507   const unsigned NumGPRs = array_lengthof(GPR_32);
6508   const unsigned NumFPRs = 13;
6509   const unsigned NumVRs  = array_lengthof(VR);
6510 
6511   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6512 
6513   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6514   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6515 
6516   SmallVector<SDValue, 8> MemOpChains;
6517   for (unsigned i = 0; i != NumOps; ++i) {
6518     SDValue Arg = OutVals[i];
6519     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6520 
6521     // PtrOff will be used to store the current argument to the stack if a
6522     // register cannot be found for it.
6523     SDValue PtrOff;
6524 
6525     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6526 
6527     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6528 
6529     // On PPC64, promote integers to 64-bit values.
6530     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6531       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6532       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6533       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6534     }
6535 
6536     // FIXME memcpy is used way more than necessary.  Correctness first.
6537     // Note: "by value" is code for passing a structure by value, not
6538     // basic types.
6539     if (Flags.isByVal()) {
6540       unsigned Size = Flags.getByValSize();
6541       // Very small objects are passed right-justified.  Everything else is
6542       // passed left-justified.
6543       if (Size==1 || Size==2) {
6544         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6545         if (GPR_idx != NumGPRs) {
6546           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6547                                         MachinePointerInfo(), VT);
6548           MemOpChains.push_back(Load.getValue(1));
6549           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6550 
6551           ArgOffset += PtrByteSize;
6552         } else {
6553           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6554                                           PtrOff.getValueType());
6555           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6556           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6557                                                             CallSeqStart,
6558                                                             Flags, DAG, dl);
6559           ArgOffset += PtrByteSize;
6560         }
6561         continue;
6562       }
6563       // Copy entire object into memory.  There are cases where gcc-generated
6564       // code assumes it is there, even if it could be put entirely into
6565       // registers.  (This is not what the doc says.)
6566       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6567                                                         CallSeqStart,
6568                                                         Flags, DAG, dl);
6569 
6570       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6571       // copy the pieces of the object that fit into registers from the
6572       // parameter save area.
6573       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6574         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6575         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6576         if (GPR_idx != NumGPRs) {
6577           SDValue Load =
6578               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6579           MemOpChains.push_back(Load.getValue(1));
6580           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6581           ArgOffset += PtrByteSize;
6582         } else {
6583           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6584           break;
6585         }
6586       }
6587       continue;
6588     }
6589 
6590     switch (Arg.getSimpleValueType().SimpleTy) {
6591     default: llvm_unreachable("Unexpected ValueType for argument!");
6592     case MVT::i1:
6593     case MVT::i32:
6594     case MVT::i64:
6595       if (GPR_idx != NumGPRs) {
6596         if (Arg.getValueType() == MVT::i1)
6597           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6598 
6599         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6600       } else {
6601         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6602                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6603                          TailCallArguments, dl);
6604       }
6605       ArgOffset += PtrByteSize;
6606       break;
6607     case MVT::f32:
6608     case MVT::f64:
6609       if (FPR_idx != NumFPRs) {
6610         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6611 
6612         if (CFlags.IsVarArg) {
6613           SDValue Store =
6614               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6615           MemOpChains.push_back(Store);
6616 
6617           // Float varargs are always shadowed in available integer registers
6618           if (GPR_idx != NumGPRs) {
6619             SDValue Load =
6620                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6621             MemOpChains.push_back(Load.getValue(1));
6622             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6623           }
6624           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6625             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6626             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6627             SDValue Load =
6628                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6629             MemOpChains.push_back(Load.getValue(1));
6630             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6631           }
6632         } else {
6633           // If we have any FPRs remaining, we may also have GPRs remaining.
6634           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6635           // GPRs.
6636           if (GPR_idx != NumGPRs)
6637             ++GPR_idx;
6638           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6639               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6640             ++GPR_idx;
6641         }
6642       } else
6643         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6644                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6645                          TailCallArguments, dl);
6646       if (isPPC64)
6647         ArgOffset += 8;
6648       else
6649         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6650       break;
6651     case MVT::v4f32:
6652     case MVT::v4i32:
6653     case MVT::v8i16:
6654     case MVT::v16i8:
6655       if (CFlags.IsVarArg) {
6656         // These go aligned on the stack, or in the corresponding R registers
6657         // when within range.  The Darwin PPC ABI doc claims they also go in
6658         // V registers; in fact gcc does this only for arguments that are
6659         // prototyped, not for those that match the ...  We do it for all
6660         // arguments, seems to work.
6661         while (ArgOffset % 16 !=0) {
6662           ArgOffset += PtrByteSize;
6663           if (GPR_idx != NumGPRs)
6664             GPR_idx++;
6665         }
6666         // We could elide this store in the case where the object fits
6667         // entirely in R registers.  Maybe later.
6668         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6669                              DAG.getConstant(ArgOffset, dl, PtrVT));
6670         SDValue Store =
6671             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6672         MemOpChains.push_back(Store);
6673         if (VR_idx != NumVRs) {
6674           SDValue Load =
6675               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6676           MemOpChains.push_back(Load.getValue(1));
6677           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6678         }
6679         ArgOffset += 16;
6680         for (unsigned i=0; i<16; i+=PtrByteSize) {
6681           if (GPR_idx == NumGPRs)
6682             break;
6683           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6684                                    DAG.getConstant(i, dl, PtrVT));
6685           SDValue Load =
6686               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6687           MemOpChains.push_back(Load.getValue(1));
6688           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6689         }
6690         break;
6691       }
6692 
6693       // Non-varargs Altivec params generally go in registers, but have
6694       // stack space allocated at the end.
6695       if (VR_idx != NumVRs) {
6696         // Doesn't have GPR space allocated.
6697         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6698       } else if (nAltivecParamsAtEnd==0) {
6699         // We are emitting Altivec params in order.
6700         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6701                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6702                          TailCallArguments, dl);
6703         ArgOffset += 16;
6704       }
6705       break;
6706     }
6707   }
6708   // If all Altivec parameters fit in registers, as they usually do,
6709   // they get stack space following the non-Altivec parameters.  We
6710   // don't track this here because nobody below needs it.
6711   // If there are more Altivec parameters than fit in registers emit
6712   // the stores here.
6713   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6714     unsigned j = 0;
6715     // Offset is aligned; skip 1st 12 params which go in V registers.
6716     ArgOffset = ((ArgOffset+15)/16)*16;
6717     ArgOffset += 12*16;
6718     for (unsigned i = 0; i != NumOps; ++i) {
6719       SDValue Arg = OutVals[i];
6720       EVT ArgType = Outs[i].VT;
6721       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6722           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6723         if (++j > NumVRs) {
6724           SDValue PtrOff;
6725           // We are emitting Altivec params in order.
6726           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6727                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6728                            TailCallArguments, dl);
6729           ArgOffset += 16;
6730         }
6731       }
6732     }
6733   }
6734 
6735   if (!MemOpChains.empty())
6736     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6737 
6738   // On Darwin, R12 must contain the address of an indirect callee.  This does
6739   // not mean the MTCTR instruction must use R12; it's easier to model this as
6740   // an extra parameter, so do that.
6741   if (CFlags.IsIndirect) {
6742     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6743     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6744                                                    PPC::R12), Callee));
6745   }
6746 
6747   // Build a sequence of copy-to-reg nodes chained together with token chain
6748   // and flag operands which copy the outgoing args into the appropriate regs.
6749   SDValue InFlag;
6750   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6751     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6752                              RegsToPass[i].second, InFlag);
6753     InFlag = Chain.getValue(1);
6754   }
6755 
6756   if (CFlags.IsTailCall)
6757     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6758                     TailCallArguments);
6759 
6760   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6761                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6762 }
6763 
6764 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6765                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6766                    CCState &State) {
6767 
6768   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6769       State.getMachineFunction().getSubtarget());
6770   const bool IsPPC64 = Subtarget.isPPC64();
6771   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6772   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6773 
6774   assert((!ValVT.isInteger() ||
6775           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6776          "Integer argument exceeds register size: should have been legalized");
6777 
6778   if (ValVT == MVT::f128)
6779     report_fatal_error("f128 is unimplemented on AIX.");
6780 
6781   if (ArgFlags.isNest())
6782     report_fatal_error("Nest arguments are unimplemented.");
6783 
6784   if (ValVT.isVector() || LocVT.isVector())
6785     report_fatal_error("Vector arguments are unimplemented on AIX.");
6786 
6787   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6788                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6789                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6790   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6791                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6792                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6793 
6794   if (ArgFlags.isByVal()) {
6795     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6796       report_fatal_error("Pass-by-value arguments with alignment greater than "
6797                          "register width are not supported.");
6798 
6799     const unsigned ByValSize = ArgFlags.getByValSize();
6800 
6801     // An empty aggregate parameter takes up no storage and no registers,
6802     // but needs a MemLoc for a stack slot for the formal arguments side.
6803     if (ByValSize == 0) {
6804       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6805                                        State.getNextStackOffset(), RegVT,
6806                                        LocInfo));
6807       return false;
6808     }
6809 
6810     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6811     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6812     for (const unsigned E = Offset + StackSize; Offset < E;
6813          Offset += PtrAlign.value()) {
6814       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6815         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6816       else {
6817         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6818                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6819                                          LocInfo));
6820         break;
6821       }
6822     }
6823     return false;
6824   }
6825 
6826   // Arguments always reserve parameter save area.
6827   switch (ValVT.SimpleTy) {
6828   default:
6829     report_fatal_error("Unhandled value type for argument.");
6830   case MVT::i64:
6831     // i64 arguments should have been split to i32 for PPC32.
6832     assert(IsPPC64 && "PPC32 should have split i64 values.");
6833     LLVM_FALLTHROUGH;
6834   case MVT::i1:
6835   case MVT::i32: {
6836     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6837     // AIX integer arguments are always passed in register width.
6838     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6839       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6840                                   : CCValAssign::LocInfo::ZExt;
6841     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6842       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6843     else
6844       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6845 
6846     return false;
6847   }
6848   case MVT::f32:
6849   case MVT::f64: {
6850     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6851     const unsigned StoreSize = LocVT.getStoreSize();
6852     // Floats are always 4-byte aligned in the PSA on AIX.
6853     // This includes f64 in 64-bit mode for ABI compatibility.
6854     const unsigned Offset =
6855         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6856     unsigned FReg = State.AllocateReg(FPR);
6857     if (FReg)
6858       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6859 
6860     // Reserve and initialize GPRs or initialize the PSA as required.
6861     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6862       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6863         assert(FReg && "An FPR should be available when a GPR is reserved.");
6864         if (State.isVarArg()) {
6865           // Successfully reserved GPRs are only initialized for vararg calls.
6866           // Custom handling is required for:
6867           //   f64 in PPC32 needs to be split into 2 GPRs.
6868           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6869           State.addLoc(
6870               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6871         }
6872       } else {
6873         // If there are insufficient GPRs, the PSA needs to be initialized.
6874         // Initialization occurs even if an FPR was initialized for
6875         // compatibility with the AIX XL compiler. The full memory for the
6876         // argument will be initialized even if a prior word is saved in GPR.
6877         // A custom memLoc is used when the argument also passes in FPR so
6878         // that the callee handling can skip over it easily.
6879         State.addLoc(
6880             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6881                                              LocInfo)
6882                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6883         break;
6884       }
6885     }
6886 
6887     return false;
6888   }
6889   }
6890   return true;
6891 }
6892 
6893 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6894                                                     bool IsPPC64) {
6895   assert((IsPPC64 || SVT != MVT::i64) &&
6896          "i64 should have been split for 32-bit codegen.");
6897 
6898   switch (SVT) {
6899   default:
6900     report_fatal_error("Unexpected value type for formal argument");
6901   case MVT::i1:
6902   case MVT::i32:
6903   case MVT::i64:
6904     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6905   case MVT::f32:
6906     return &PPC::F4RCRegClass;
6907   case MVT::f64:
6908     return &PPC::F8RCRegClass;
6909   }
6910 }
6911 
6912 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6913                                         SelectionDAG &DAG, SDValue ArgValue,
6914                                         MVT LocVT, const SDLoc &dl) {
6915   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6916   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6917 
6918   if (Flags.isSExt())
6919     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6920                            DAG.getValueType(ValVT));
6921   else if (Flags.isZExt())
6922     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6923                            DAG.getValueType(ValVT));
6924 
6925   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6926 }
6927 
6928 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6929   const unsigned LASize = FL->getLinkageSize();
6930 
6931   if (PPC::GPRCRegClass.contains(Reg)) {
6932     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6933            "Reg must be a valid argument register!");
6934     return LASize + 4 * (Reg - PPC::R3);
6935   }
6936 
6937   if (PPC::G8RCRegClass.contains(Reg)) {
6938     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6939            "Reg must be a valid argument register!");
6940     return LASize + 8 * (Reg - PPC::X3);
6941   }
6942 
6943   llvm_unreachable("Only general purpose registers expected.");
6944 }
6945 
6946 //   AIX ABI Stack Frame Layout:
6947 //
6948 //   Low Memory +--------------------------------------------+
6949 //   SP   +---> | Back chain                                 | ---+
6950 //        |     +--------------------------------------------+    |
6951 //        |     | Saved Condition Register                   |    |
6952 //        |     +--------------------------------------------+    |
6953 //        |     | Saved Linkage Register                     |    |
6954 //        |     +--------------------------------------------+    | Linkage Area
6955 //        |     | Reserved for compilers                     |    |
6956 //        |     +--------------------------------------------+    |
6957 //        |     | Reserved for binders                       |    |
6958 //        |     +--------------------------------------------+    |
6959 //        |     | Saved TOC pointer                          | ---+
6960 //        |     +--------------------------------------------+
6961 //        |     | Parameter save area                        |
6962 //        |     +--------------------------------------------+
6963 //        |     | Alloca space                               |
6964 //        |     +--------------------------------------------+
6965 //        |     | Local variable space                       |
6966 //        |     +--------------------------------------------+
6967 //        |     | Float/int conversion temporary             |
6968 //        |     +--------------------------------------------+
6969 //        |     | Save area for AltiVec registers            |
6970 //        |     +--------------------------------------------+
6971 //        |     | AltiVec alignment padding                  |
6972 //        |     +--------------------------------------------+
6973 //        |     | Save area for VRSAVE register              |
6974 //        |     +--------------------------------------------+
6975 //        |     | Save area for General Purpose registers    |
6976 //        |     +--------------------------------------------+
6977 //        |     | Save area for Floating Point registers     |
6978 //        |     +--------------------------------------------+
6979 //        +---- | Back chain                                 |
6980 // High Memory  +--------------------------------------------+
6981 //
6982 //  Specifications:
6983 //  AIX 7.2 Assembler Language Reference
6984 //  Subroutine linkage convention
6985 
6986 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6987     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6988     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6989     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6990 
6991   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6992           CallConv == CallingConv::Fast) &&
6993          "Unexpected calling convention!");
6994 
6995   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6996     report_fatal_error("Tail call support is unimplemented on AIX.");
6997 
6998   if (useSoftFloat())
6999     report_fatal_error("Soft float support is unimplemented on AIX.");
7000 
7001   const PPCSubtarget &Subtarget =
7002       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7003 
7004   const bool IsPPC64 = Subtarget.isPPC64();
7005   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7006 
7007   // Assign locations to all of the incoming arguments.
7008   SmallVector<CCValAssign, 16> ArgLocs;
7009   MachineFunction &MF = DAG.getMachineFunction();
7010   MachineFrameInfo &MFI = MF.getFrameInfo();
7011   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7012 
7013   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7014   // Reserve space for the linkage area on the stack.
7015   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7016   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7017   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7018 
7019   SmallVector<SDValue, 8> MemOps;
7020 
7021   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7022     CCValAssign &VA = ArgLocs[I++];
7023     MVT LocVT = VA.getLocVT();
7024     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7025 
7026     // For compatibility with the AIX XL compiler, the float args in the
7027     // parameter save area are initialized even if the argument is available
7028     // in register.  The caller is required to initialize both the register
7029     // and memory, however, the callee can choose to expect it in either.
7030     // The memloc is dismissed here because the argument is retrieved from
7031     // the register.
7032     if (VA.isMemLoc() && VA.needsCustom())
7033       continue;
7034 
7035     if (Flags.isByVal() && VA.isMemLoc()) {
7036       const unsigned Size =
7037           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7038                   PtrByteSize);
7039       const int FI = MF.getFrameInfo().CreateFixedObject(
7040           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7041           /* IsAliased */ true);
7042       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7043       InVals.push_back(FIN);
7044 
7045       continue;
7046     }
7047 
7048     if (Flags.isByVal()) {
7049       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7050 
7051       const MCPhysReg ArgReg = VA.getLocReg();
7052       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7053 
7054       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7055         report_fatal_error("Over aligned byvals not supported yet.");
7056 
7057       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7058       const int FI = MF.getFrameInfo().CreateFixedObject(
7059           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7060           /* IsAliased */ true);
7061       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7062       InVals.push_back(FIN);
7063 
7064       // Add live ins for all the RegLocs for the same ByVal.
7065       const TargetRegisterClass *RegClass =
7066           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7067 
7068       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7069                                                unsigned Offset) {
7070         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7071         // Since the callers side has left justified the aggregate in the
7072         // register, we can simply store the entire register into the stack
7073         // slot.
7074         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7075         // The store to the fixedstack object is needed becuase accessing a
7076         // field of the ByVal will use a gep and load. Ideally we will optimize
7077         // to extracting the value from the register directly, and elide the
7078         // stores when the arguments address is not taken, but that will need to
7079         // be future work.
7080         SDValue Store =
7081             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7082                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7083                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7084 
7085         MemOps.push_back(Store);
7086       };
7087 
7088       unsigned Offset = 0;
7089       HandleRegLoc(VA.getLocReg(), Offset);
7090       Offset += PtrByteSize;
7091       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7092            Offset += PtrByteSize) {
7093         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7094                "RegLocs should be for ByVal argument.");
7095 
7096         const CCValAssign RL = ArgLocs[I++];
7097         HandleRegLoc(RL.getLocReg(), Offset);
7098       }
7099 
7100       if (Offset != StackSize) {
7101         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7102                "Expected MemLoc for remaining bytes.");
7103         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7104         // Consume the MemLoc.The InVal has already been emitted, so nothing
7105         // more needs to be done.
7106         ++I;
7107       }
7108 
7109       continue;
7110     }
7111 
7112     EVT ValVT = VA.getValVT();
7113     if (VA.isRegLoc() && !VA.needsCustom()) {
7114       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7115       unsigned VReg =
7116           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7117       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7118       if (ValVT.isScalarInteger() &&
7119           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7120         ArgValue =
7121             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7122       }
7123       InVals.push_back(ArgValue);
7124       continue;
7125     }
7126     if (VA.isMemLoc()) {
7127       const unsigned LocSize = LocVT.getStoreSize();
7128       const unsigned ValSize = ValVT.getStoreSize();
7129       assert((ValSize <= LocSize) &&
7130              "Object size is larger than size of MemLoc");
7131       int CurArgOffset = VA.getLocMemOffset();
7132       // Objects are right-justified because AIX is big-endian.
7133       if (LocSize > ValSize)
7134         CurArgOffset += LocSize - ValSize;
7135       // Potential tail calls could cause overwriting of argument stack slots.
7136       const bool IsImmutable =
7137           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7138             (CallConv == CallingConv::Fast));
7139       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7140       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7141       SDValue ArgValue =
7142           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7143       InVals.push_back(ArgValue);
7144       continue;
7145     }
7146   }
7147 
7148   // On AIX a minimum of 8 words is saved to the parameter save area.
7149   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7150   // Area that is at least reserved in the caller of this function.
7151   unsigned CallerReservedArea =
7152       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7153 
7154   // Set the size that is at least reserved in caller of this function. Tail
7155   // call optimized function's reserved stack space needs to be aligned so
7156   // that taking the difference between two stack areas will result in an
7157   // aligned stack.
7158   CallerReservedArea =
7159       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7160   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7161   FuncInfo->setMinReservedArea(CallerReservedArea);
7162 
7163   if (isVarArg) {
7164     FuncInfo->setVarArgsFrameIndex(
7165         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7166     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7167 
7168     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7169                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7170 
7171     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7172                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7173     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7174 
7175     // The fixed integer arguments of a variadic function are stored to the
7176     // VarArgsFrameIndex on the stack so that they may be loaded by
7177     // dereferencing the result of va_next.
7178     for (unsigned GPRIndex =
7179              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7180          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7181 
7182       const unsigned VReg =
7183           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7184                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7185 
7186       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7187       SDValue Store =
7188           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7189       MemOps.push_back(Store);
7190       // Increment the address for the next argument to store.
7191       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7192       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7193     }
7194   }
7195 
7196   if (!MemOps.empty())
7197     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7198 
7199   return Chain;
7200 }
7201 
7202 SDValue PPCTargetLowering::LowerCall_AIX(
7203     SDValue Chain, SDValue Callee, CallFlags CFlags,
7204     const SmallVectorImpl<ISD::OutputArg> &Outs,
7205     const SmallVectorImpl<SDValue> &OutVals,
7206     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7207     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7208     const CallBase *CB) const {
7209   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7210   // AIX ABI stack frame layout.
7211 
7212   assert((CFlags.CallConv == CallingConv::C ||
7213           CFlags.CallConv == CallingConv::Cold ||
7214           CFlags.CallConv == CallingConv::Fast) &&
7215          "Unexpected calling convention!");
7216 
7217   if (CFlags.IsPatchPoint)
7218     report_fatal_error("This call type is unimplemented on AIX.");
7219 
7220   const PPCSubtarget& Subtarget =
7221       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7222   if (Subtarget.hasAltivec())
7223     report_fatal_error("Altivec support is unimplemented on AIX.");
7224 
7225   MachineFunction &MF = DAG.getMachineFunction();
7226   SmallVector<CCValAssign, 16> ArgLocs;
7227   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7228                  *DAG.getContext());
7229 
7230   // Reserve space for the linkage save area (LSA) on the stack.
7231   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7232   //   [SP][CR][LR][2 x reserved][TOC].
7233   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7234   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7235   const bool IsPPC64 = Subtarget.isPPC64();
7236   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7237   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7238   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7239   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7240 
7241   // The prolog code of the callee may store up to 8 GPR argument registers to
7242   // the stack, allowing va_start to index over them in memory if the callee
7243   // is variadic.
7244   // Because we cannot tell if this is needed on the caller side, we have to
7245   // conservatively assume that it is needed.  As such, make sure we have at
7246   // least enough stack space for the caller to store the 8 GPRs.
7247   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7248   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7249                                      CCInfo.getNextStackOffset());
7250 
7251   // Adjust the stack pointer for the new arguments...
7252   // These operations are automatically eliminated by the prolog/epilog pass.
7253   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7254   SDValue CallSeqStart = Chain;
7255 
7256   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7257   SmallVector<SDValue, 8> MemOpChains;
7258 
7259   // Set up a copy of the stack pointer for loading and storing any
7260   // arguments that may not fit in the registers available for argument
7261   // passing.
7262   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7263                                    : DAG.getRegister(PPC::R1, MVT::i32);
7264 
7265   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7266     const unsigned ValNo = ArgLocs[I].getValNo();
7267     SDValue Arg = OutVals[ValNo];
7268     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7269 
7270     if (Flags.isByVal()) {
7271       const unsigned ByValSize = Flags.getByValSize();
7272 
7273       // Nothing to do for zero-sized ByVals on the caller side.
7274       if (!ByValSize) {
7275         ++I;
7276         continue;
7277       }
7278 
7279       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7280         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7281                               (LoadOffset != 0)
7282                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7283                                   : Arg,
7284                               MachinePointerInfo(), VT);
7285       };
7286 
7287       unsigned LoadOffset = 0;
7288 
7289       // Initialize registers, which are fully occupied by the by-val argument.
7290       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7291         SDValue Load = GetLoad(PtrVT, LoadOffset);
7292         MemOpChains.push_back(Load.getValue(1));
7293         LoadOffset += PtrByteSize;
7294         const CCValAssign &ByValVA = ArgLocs[I++];
7295         assert(ByValVA.getValNo() == ValNo &&
7296                "Unexpected location for pass-by-value argument.");
7297         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7298       }
7299 
7300       if (LoadOffset == ByValSize)
7301         continue;
7302 
7303       // There must be one more loc to handle the remainder.
7304       assert(ArgLocs[I].getValNo() == ValNo &&
7305              "Expected additional location for by-value argument.");
7306 
7307       if (ArgLocs[I].isMemLoc()) {
7308         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7309         const CCValAssign &ByValVA = ArgLocs[I++];
7310         ISD::ArgFlagsTy MemcpyFlags = Flags;
7311         // Only memcpy the bytes that don't pass in register.
7312         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7313         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7314             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7315                               : Arg,
7316             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7317             CallSeqStart, MemcpyFlags, DAG, dl);
7318         continue;
7319       }
7320 
7321       // Initialize the final register residue.
7322       // Any residue that occupies the final by-val arg register must be
7323       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7324       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7325       // 2 and 1 byte loads.
7326       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7327       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7328              "Unexpected register residue for by-value argument.");
7329       SDValue ResidueVal;
7330       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7331         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7332         const MVT VT =
7333             N == 1 ? MVT::i8
7334                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7335         SDValue Load = GetLoad(VT, LoadOffset);
7336         MemOpChains.push_back(Load.getValue(1));
7337         LoadOffset += N;
7338         Bytes += N;
7339 
7340         // By-val arguments are passed left-justfied in register.
7341         // Every load here needs to be shifted, otherwise a full register load
7342         // should have been used.
7343         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7344                "Unexpected load emitted during handling of pass-by-value "
7345                "argument.");
7346         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7347         EVT ShiftAmountTy =
7348             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7349         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7350         SDValue ShiftedLoad =
7351             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7352         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7353                                               ShiftedLoad)
7354                                 : ShiftedLoad;
7355       }
7356 
7357       const CCValAssign &ByValVA = ArgLocs[I++];
7358       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7359       continue;
7360     }
7361 
7362     CCValAssign &VA = ArgLocs[I++];
7363     const MVT LocVT = VA.getLocVT();
7364     const MVT ValVT = VA.getValVT();
7365 
7366     switch (VA.getLocInfo()) {
7367     default:
7368       report_fatal_error("Unexpected argument extension type.");
7369     case CCValAssign::Full:
7370       break;
7371     case CCValAssign::ZExt:
7372       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7373       break;
7374     case CCValAssign::SExt:
7375       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7376       break;
7377     }
7378 
7379     if (VA.isRegLoc() && !VA.needsCustom()) {
7380       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7381       continue;
7382     }
7383 
7384     if (VA.isMemLoc()) {
7385       SDValue PtrOff =
7386           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7387       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7388       MemOpChains.push_back(
7389           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7390 
7391       continue;
7392     }
7393 
7394     // Custom handling is used for GPR initializations for vararg float
7395     // arguments.
7396     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7397            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7398            "Unexpected register handling for calling convention.");
7399 
7400     SDValue ArgAsInt =
7401         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7402 
7403     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7404       // f32 in 32-bit GPR
7405       // f64 in 64-bit GPR
7406       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7407     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7408       // f32 in 64-bit GPR.
7409       RegsToPass.push_back(std::make_pair(
7410           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7411     else {
7412       // f64 in two 32-bit GPRs
7413       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7414       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7415              "Unexpected custom register for argument!");
7416       CCValAssign &GPR1 = VA;
7417       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7418                                      DAG.getConstant(32, dl, MVT::i8));
7419       RegsToPass.push_back(std::make_pair(
7420           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7421 
7422       if (I != E) {
7423         // If only 1 GPR was available, there will only be one custom GPR and
7424         // the argument will also pass in memory.
7425         CCValAssign &PeekArg = ArgLocs[I];
7426         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7427           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7428           CCValAssign &GPR2 = ArgLocs[I++];
7429           RegsToPass.push_back(std::make_pair(
7430               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7431         }
7432       }
7433     }
7434   }
7435 
7436   if (!MemOpChains.empty())
7437     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7438 
7439   // For indirect calls, we need to save the TOC base to the stack for
7440   // restoration after the call.
7441   if (CFlags.IsIndirect) {
7442     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7443     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7444     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7445     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7446     const unsigned TOCSaveOffset =
7447         Subtarget.getFrameLowering()->getTOCSaveOffset();
7448 
7449     setUsesTOCBasePtr(DAG);
7450     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7451     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7452     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7453     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7454     Chain = DAG.getStore(
7455         Val.getValue(1), dl, Val, AddPtr,
7456         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7457   }
7458 
7459   // Build a sequence of copy-to-reg nodes chained together with token chain
7460   // and flag operands which copy the outgoing args into the appropriate regs.
7461   SDValue InFlag;
7462   for (auto Reg : RegsToPass) {
7463     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7464     InFlag = Chain.getValue(1);
7465   }
7466 
7467   const int SPDiff = 0;
7468   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7469                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7470 }
7471 
7472 bool
7473 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7474                                   MachineFunction &MF, bool isVarArg,
7475                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7476                                   LLVMContext &Context) const {
7477   SmallVector<CCValAssign, 16> RVLocs;
7478   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7479   return CCInfo.CheckReturn(
7480       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7481                 ? RetCC_PPC_Cold
7482                 : RetCC_PPC);
7483 }
7484 
7485 SDValue
7486 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7487                                bool isVarArg,
7488                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7489                                const SmallVectorImpl<SDValue> &OutVals,
7490                                const SDLoc &dl, SelectionDAG &DAG) const {
7491   SmallVector<CCValAssign, 16> RVLocs;
7492   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7493                  *DAG.getContext());
7494   CCInfo.AnalyzeReturn(Outs,
7495                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7496                            ? RetCC_PPC_Cold
7497                            : RetCC_PPC);
7498 
7499   SDValue Flag;
7500   SmallVector<SDValue, 4> RetOps(1, Chain);
7501 
7502   // Copy the result values into the output registers.
7503   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7504     CCValAssign &VA = RVLocs[i];
7505     assert(VA.isRegLoc() && "Can only return in registers!");
7506 
7507     SDValue Arg = OutVals[RealResIdx];
7508 
7509     switch (VA.getLocInfo()) {
7510     default: llvm_unreachable("Unknown loc info!");
7511     case CCValAssign::Full: break;
7512     case CCValAssign::AExt:
7513       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7514       break;
7515     case CCValAssign::ZExt:
7516       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7517       break;
7518     case CCValAssign::SExt:
7519       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7520       break;
7521     }
7522     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7523       bool isLittleEndian = Subtarget.isLittleEndian();
7524       // Legalize ret f64 -> ret 2 x i32.
7525       SDValue SVal =
7526           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7527                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7528       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7529       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7530       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7531                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7532       Flag = Chain.getValue(1);
7533       VA = RVLocs[++i]; // skip ahead to next loc
7534       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7535     } else
7536       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7537     Flag = Chain.getValue(1);
7538     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7539   }
7540 
7541   RetOps[0] = Chain;  // Update chain.
7542 
7543   // Add the flag if we have it.
7544   if (Flag.getNode())
7545     RetOps.push_back(Flag);
7546 
7547   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7548 }
7549 
7550 SDValue
7551 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7552                                                 SelectionDAG &DAG) const {
7553   SDLoc dl(Op);
7554 
7555   // Get the correct type for integers.
7556   EVT IntVT = Op.getValueType();
7557 
7558   // Get the inputs.
7559   SDValue Chain = Op.getOperand(0);
7560   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7561   // Build a DYNAREAOFFSET node.
7562   SDValue Ops[2] = {Chain, FPSIdx};
7563   SDVTList VTs = DAG.getVTList(IntVT);
7564   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7565 }
7566 
7567 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7568                                              SelectionDAG &DAG) const {
7569   // When we pop the dynamic allocation we need to restore the SP link.
7570   SDLoc dl(Op);
7571 
7572   // Get the correct type for pointers.
7573   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7574 
7575   // Construct the stack pointer operand.
7576   bool isPPC64 = Subtarget.isPPC64();
7577   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7578   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7579 
7580   // Get the operands for the STACKRESTORE.
7581   SDValue Chain = Op.getOperand(0);
7582   SDValue SaveSP = Op.getOperand(1);
7583 
7584   // Load the old link SP.
7585   SDValue LoadLinkSP =
7586       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7587 
7588   // Restore the stack pointer.
7589   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7590 
7591   // Store the old link SP.
7592   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7593 }
7594 
7595 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7596   MachineFunction &MF = DAG.getMachineFunction();
7597   bool isPPC64 = Subtarget.isPPC64();
7598   EVT PtrVT = getPointerTy(MF.getDataLayout());
7599 
7600   // Get current frame pointer save index.  The users of this index will be
7601   // primarily DYNALLOC instructions.
7602   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7603   int RASI = FI->getReturnAddrSaveIndex();
7604 
7605   // If the frame pointer save index hasn't been defined yet.
7606   if (!RASI) {
7607     // Find out what the fix offset of the frame pointer save area.
7608     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7609     // Allocate the frame index for frame pointer save area.
7610     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7611     // Save the result.
7612     FI->setReturnAddrSaveIndex(RASI);
7613   }
7614   return DAG.getFrameIndex(RASI, PtrVT);
7615 }
7616 
7617 SDValue
7618 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7619   MachineFunction &MF = DAG.getMachineFunction();
7620   bool isPPC64 = Subtarget.isPPC64();
7621   EVT PtrVT = getPointerTy(MF.getDataLayout());
7622 
7623   // Get current frame pointer save index.  The users of this index will be
7624   // primarily DYNALLOC instructions.
7625   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7626   int FPSI = FI->getFramePointerSaveIndex();
7627 
7628   // If the frame pointer save index hasn't been defined yet.
7629   if (!FPSI) {
7630     // Find out what the fix offset of the frame pointer save area.
7631     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7632     // Allocate the frame index for frame pointer save area.
7633     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7634     // Save the result.
7635     FI->setFramePointerSaveIndex(FPSI);
7636   }
7637   return DAG.getFrameIndex(FPSI, PtrVT);
7638 }
7639 
7640 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7641                                                    SelectionDAG &DAG) const {
7642   MachineFunction &MF = DAG.getMachineFunction();
7643   // Get the inputs.
7644   SDValue Chain = Op.getOperand(0);
7645   SDValue Size  = Op.getOperand(1);
7646   SDLoc dl(Op);
7647 
7648   // Get the correct type for pointers.
7649   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7650   // Negate the size.
7651   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7652                                 DAG.getConstant(0, dl, PtrVT), Size);
7653   // Construct a node for the frame pointer save index.
7654   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7655   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7656   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7657   if (hasInlineStackProbe(MF))
7658     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7659   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7660 }
7661 
7662 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7663                                                      SelectionDAG &DAG) const {
7664   MachineFunction &MF = DAG.getMachineFunction();
7665 
7666   bool isPPC64 = Subtarget.isPPC64();
7667   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7668 
7669   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7670   return DAG.getFrameIndex(FI, PtrVT);
7671 }
7672 
7673 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7674                                                SelectionDAG &DAG) const {
7675   SDLoc DL(Op);
7676   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7677                      DAG.getVTList(MVT::i32, MVT::Other),
7678                      Op.getOperand(0), Op.getOperand(1));
7679 }
7680 
7681 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7682                                                 SelectionDAG &DAG) const {
7683   SDLoc DL(Op);
7684   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7685                      Op.getOperand(0), Op.getOperand(1));
7686 }
7687 
7688 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7689 
7690   assert(Op.getValueType() == MVT::i1 &&
7691          "Custom lowering only for i1 loads");
7692 
7693   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7694 
7695   SDLoc dl(Op);
7696   LoadSDNode *LD = cast<LoadSDNode>(Op);
7697 
7698   SDValue Chain = LD->getChain();
7699   SDValue BasePtr = LD->getBasePtr();
7700   MachineMemOperand *MMO = LD->getMemOperand();
7701 
7702   SDValue NewLD =
7703       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7704                      BasePtr, MVT::i8, MMO);
7705   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7706 
7707   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7708   return DAG.getMergeValues(Ops, dl);
7709 }
7710 
7711 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7712   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7713          "Custom lowering only for i1 stores");
7714 
7715   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7716 
7717   SDLoc dl(Op);
7718   StoreSDNode *ST = cast<StoreSDNode>(Op);
7719 
7720   SDValue Chain = ST->getChain();
7721   SDValue BasePtr = ST->getBasePtr();
7722   SDValue Value = ST->getValue();
7723   MachineMemOperand *MMO = ST->getMemOperand();
7724 
7725   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7726                       Value);
7727   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7728 }
7729 
7730 // FIXME: Remove this once the ANDI glue bug is fixed:
7731 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7732   assert(Op.getValueType() == MVT::i1 &&
7733          "Custom lowering only for i1 results");
7734 
7735   SDLoc DL(Op);
7736   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7737 }
7738 
7739 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7740                                                SelectionDAG &DAG) const {
7741 
7742   // Implements a vector truncate that fits in a vector register as a shuffle.
7743   // We want to legalize vector truncates down to where the source fits in
7744   // a vector register (and target is therefore smaller than vector register
7745   // size).  At that point legalization will try to custom lower the sub-legal
7746   // result and get here - where we can contain the truncate as a single target
7747   // operation.
7748 
7749   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7750   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7751   //
7752   // We will implement it for big-endian ordering as this (where x denotes
7753   // undefined):
7754   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7755   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7756   //
7757   // The same operation in little-endian ordering will be:
7758   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7759   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7760 
7761   assert(Op.getValueType().isVector() && "Vector type expected.");
7762 
7763   SDLoc DL(Op);
7764   SDValue N1 = Op.getOperand(0);
7765   unsigned SrcSize = N1.getValueType().getSizeInBits();
7766   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7767   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7768 
7769   EVT TrgVT = Op.getValueType();
7770   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7771   EVT EltVT = TrgVT.getVectorElementType();
7772   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7773   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7774 
7775   // First list the elements we want to keep.
7776   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7777   SmallVector<int, 16> ShuffV;
7778   if (Subtarget.isLittleEndian())
7779     for (unsigned i = 0; i < TrgNumElts; ++i)
7780       ShuffV.push_back(i * SizeMult);
7781   else
7782     for (unsigned i = 1; i <= TrgNumElts; ++i)
7783       ShuffV.push_back(i * SizeMult - 1);
7784 
7785   // Populate the remaining elements with undefs.
7786   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7787     // ShuffV.push_back(i + WideNumElts);
7788     ShuffV.push_back(WideNumElts + 1);
7789 
7790   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7791   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7792 }
7793 
7794 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7795 /// possible.
7796 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7797   // Not FP? Not a fsel.
7798   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7799       !Op.getOperand(2).getValueType().isFloatingPoint())
7800     return Op;
7801 
7802   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7803 
7804   EVT ResVT = Op.getValueType();
7805   EVT CmpVT = Op.getOperand(0).getValueType();
7806   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7807   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7808   SDLoc dl(Op);
7809   SDNodeFlags Flags = Op.getNode()->getFlags();
7810 
7811   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7812   // presence of infinities.
7813   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7814     switch (CC) {
7815     default:
7816       break;
7817     case ISD::SETOGT:
7818     case ISD::SETGT:
7819       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7820     case ISD::SETOLT:
7821     case ISD::SETLT:
7822       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7823     }
7824   }
7825 
7826   // We might be able to do better than this under some circumstances, but in
7827   // general, fsel-based lowering of select is a finite-math-only optimization.
7828   // For more information, see section F.3 of the 2.06 ISA specification.
7829   // With ISA 3.0
7830   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7831       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7832     return Op;
7833 
7834   // If the RHS of the comparison is a 0.0, we don't need to do the
7835   // subtraction at all.
7836   SDValue Sel1;
7837   if (isFloatingPointZero(RHS))
7838     switch (CC) {
7839     default: break;       // SETUO etc aren't handled by fsel.
7840     case ISD::SETNE:
7841       std::swap(TV, FV);
7842       LLVM_FALLTHROUGH;
7843     case ISD::SETEQ:
7844       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7845         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7846       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7847       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7848         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7849       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7850                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7851     case ISD::SETULT:
7852     case ISD::SETLT:
7853       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7854       LLVM_FALLTHROUGH;
7855     case ISD::SETOGE:
7856     case ISD::SETGE:
7857       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7858         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7859       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7860     case ISD::SETUGT:
7861     case ISD::SETGT:
7862       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7863       LLVM_FALLTHROUGH;
7864     case ISD::SETOLE:
7865     case ISD::SETLE:
7866       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7867         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7868       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7869                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7870     }
7871 
7872   SDValue Cmp;
7873   switch (CC) {
7874   default: break;       // SETUO etc aren't handled by fsel.
7875   case ISD::SETNE:
7876     std::swap(TV, FV);
7877     LLVM_FALLTHROUGH;
7878   case ISD::SETEQ:
7879     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7880     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7881       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7882     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7883     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7884       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7885     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7886                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7887   case ISD::SETULT:
7888   case ISD::SETLT:
7889     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7890     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7891       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7892     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7893   case ISD::SETOGE:
7894   case ISD::SETGE:
7895     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7896     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7897       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7898     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7899   case ISD::SETUGT:
7900   case ISD::SETGT:
7901     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7902     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7903       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7904     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7905   case ISD::SETOLE:
7906   case ISD::SETLE:
7907     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7908     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7909       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7910     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7911   }
7912   return Op;
7913 }
7914 
7915 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7916                                                SelectionDAG &DAG,
7917                                                const SDLoc &dl) const {
7918   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7919   SDValue Src = Op.getOperand(0);
7920   if (Src.getValueType() == MVT::f32)
7921     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7922 
7923   SDValue Tmp;
7924   switch (Op.getSimpleValueType().SimpleTy) {
7925   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7926   case MVT::i32:
7927     Tmp = DAG.getNode(
7928         Op.getOpcode() == ISD::FP_TO_SINT
7929             ? PPCISD::FCTIWZ
7930             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7931         dl, MVT::f64, Src);
7932     break;
7933   case MVT::i64:
7934     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7935            "i64 FP_TO_UINT is supported only with FPCVT");
7936     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7937                                                         PPCISD::FCTIDUZ,
7938                       dl, MVT::f64, Src);
7939     break;
7940   }
7941 
7942   // Convert the FP value to an int value through memory.
7943   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7944     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7945   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7946   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7947   MachinePointerInfo MPI =
7948       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7949 
7950   // Emit a store to the stack slot.
7951   SDValue Chain;
7952   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
7953   if (i32Stack) {
7954     MachineFunction &MF = DAG.getMachineFunction();
7955     Alignment = Align(4);
7956     MachineMemOperand *MMO =
7957         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7958     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7959     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7960               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7961   } else
7962     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
7963 
7964   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7965   // add in a bias on big endian.
7966   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7967     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7968                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7969     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7970   }
7971 
7972   RLI.Chain = Chain;
7973   RLI.Ptr = FIPtr;
7974   RLI.MPI = MPI;
7975   RLI.Alignment = Alignment;
7976 }
7977 
7978 /// Custom lowers floating point to integer conversions to use
7979 /// the direct move instructions available in ISA 2.07 to avoid the
7980 /// need for load/store combinations.
7981 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7982                                                     SelectionDAG &DAG,
7983                                                     const SDLoc &dl) const {
7984   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7985   SDValue Src = Op.getOperand(0);
7986 
7987   if (Src.getValueType() == MVT::f32)
7988     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7989 
7990   SDValue Tmp;
7991   switch (Op.getSimpleValueType().SimpleTy) {
7992   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7993   case MVT::i32:
7994     Tmp = DAG.getNode(
7995         Op.getOpcode() == ISD::FP_TO_SINT
7996             ? PPCISD::FCTIWZ
7997             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7998         dl, MVT::f64, Src);
7999     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8000     break;
8001   case MVT::i64:
8002     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8003            "i64 FP_TO_UINT is supported only with FPCVT");
8004     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8005                                                         PPCISD::FCTIDUZ,
8006                       dl, MVT::f64, Src);
8007     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8008     break;
8009   }
8010   return Tmp;
8011 }
8012 
8013 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8014                                           const SDLoc &dl) const {
8015 
8016   // FP to INT conversions are legal for f128.
8017   if (Op->getOperand(0).getValueType() == MVT::f128)
8018     return Op;
8019 
8020   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8021   // PPC (the libcall is not available).
8022   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8023     if (Op.getValueType() == MVT::i32) {
8024       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8025         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8026                                  MVT::f64, Op.getOperand(0),
8027                                  DAG.getIntPtrConstant(0, dl));
8028         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8029                                  MVT::f64, Op.getOperand(0),
8030                                  DAG.getIntPtrConstant(1, dl));
8031 
8032         // Add the two halves of the long double in round-to-zero mode.
8033         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8034 
8035         // Now use a smaller FP_TO_SINT.
8036         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8037       }
8038       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8039         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8040         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8041         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8042         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8043         // FIXME: generated code sucks.
8044         // TODO: Are there fast-math-flags to propagate to this FSUB?
8045         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8046                                    Op.getOperand(0), Tmp);
8047         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8048         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8049                            DAG.getConstant(0x80000000, dl, MVT::i32));
8050         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8051                                     Op.getOperand(0));
8052         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8053                                ISD::SETGE);
8054       }
8055     }
8056 
8057     return SDValue();
8058   }
8059 
8060   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8061     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8062 
8063   ReuseLoadInfo RLI;
8064   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8065 
8066   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8067                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8068 }
8069 
8070 // We're trying to insert a regular store, S, and then a load, L. If the
8071 // incoming value, O, is a load, we might just be able to have our load use the
8072 // address used by O. However, we don't know if anything else will store to
8073 // that address before we can load from it. To prevent this situation, we need
8074 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8075 // the same chain operand as O, we create a token factor from the chain results
8076 // of O and L, and we replace all uses of O's chain result with that token
8077 // factor (see spliceIntoChain below for this last part).
8078 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8079                                             ReuseLoadInfo &RLI,
8080                                             SelectionDAG &DAG,
8081                                             ISD::LoadExtType ET) const {
8082   SDLoc dl(Op);
8083   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8084                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8085   if (ET == ISD::NON_EXTLOAD &&
8086       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8087       isOperationLegalOrCustom(Op.getOpcode(),
8088                                Op.getOperand(0).getValueType())) {
8089 
8090     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8091     return true;
8092   }
8093 
8094   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8095   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8096       LD->isNonTemporal())
8097     return false;
8098   if (LD->getMemoryVT() != MemVT)
8099     return false;
8100 
8101   RLI.Ptr = LD->getBasePtr();
8102   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8103     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8104            "Non-pre-inc AM on PPC?");
8105     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8106                           LD->getOffset());
8107   }
8108 
8109   RLI.Chain = LD->getChain();
8110   RLI.MPI = LD->getPointerInfo();
8111   RLI.IsDereferenceable = LD->isDereferenceable();
8112   RLI.IsInvariant = LD->isInvariant();
8113   RLI.Alignment = LD->getAlign();
8114   RLI.AAInfo = LD->getAAInfo();
8115   RLI.Ranges = LD->getRanges();
8116 
8117   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8118   return true;
8119 }
8120 
8121 // Given the head of the old chain, ResChain, insert a token factor containing
8122 // it and NewResChain, and make users of ResChain now be users of that token
8123 // factor.
8124 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8125 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8126                                         SDValue NewResChain,
8127                                         SelectionDAG &DAG) const {
8128   if (!ResChain)
8129     return;
8130 
8131   SDLoc dl(NewResChain);
8132 
8133   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8134                            NewResChain, DAG.getUNDEF(MVT::Other));
8135   assert(TF.getNode() != NewResChain.getNode() &&
8136          "A new TF really is required here");
8137 
8138   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8139   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8140 }
8141 
8142 /// Analyze profitability of direct move
8143 /// prefer float load to int load plus direct move
8144 /// when there is no integer use of int load
8145 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8146   SDNode *Origin = Op.getOperand(0).getNode();
8147   if (Origin->getOpcode() != ISD::LOAD)
8148     return true;
8149 
8150   // If there is no LXSIBZX/LXSIHZX, like Power8,
8151   // prefer direct move if the memory size is 1 or 2 bytes.
8152   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8153   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8154     return true;
8155 
8156   for (SDNode::use_iterator UI = Origin->use_begin(),
8157                             UE = Origin->use_end();
8158        UI != UE; ++UI) {
8159 
8160     // Only look at the users of the loaded value.
8161     if (UI.getUse().get().getResNo() != 0)
8162       continue;
8163 
8164     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8165         UI->getOpcode() != ISD::UINT_TO_FP)
8166       return true;
8167   }
8168 
8169   return false;
8170 }
8171 
8172 /// Custom lowers integer to floating point conversions to use
8173 /// the direct move instructions available in ISA 2.07 to avoid the
8174 /// need for load/store combinations.
8175 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8176                                                     SelectionDAG &DAG,
8177                                                     const SDLoc &dl) const {
8178   assert((Op.getValueType() == MVT::f32 ||
8179           Op.getValueType() == MVT::f64) &&
8180          "Invalid floating point type as target of conversion");
8181   assert(Subtarget.hasFPCVT() &&
8182          "Int to FP conversions with direct moves require FPCVT");
8183   SDValue FP;
8184   SDValue Src = Op.getOperand(0);
8185   bool SinglePrec = Op.getValueType() == MVT::f32;
8186   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8187   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8188   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8189                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8190 
8191   if (WordInt) {
8192     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8193                      dl, MVT::f64, Src);
8194     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8195   }
8196   else {
8197     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8198     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8199   }
8200 
8201   return FP;
8202 }
8203 
8204 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8205 
8206   EVT VecVT = Vec.getValueType();
8207   assert(VecVT.isVector() && "Expected a vector type.");
8208   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8209 
8210   EVT EltVT = VecVT.getVectorElementType();
8211   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8212   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8213 
8214   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8215   SmallVector<SDValue, 16> Ops(NumConcat);
8216   Ops[0] = Vec;
8217   SDValue UndefVec = DAG.getUNDEF(VecVT);
8218   for (unsigned i = 1; i < NumConcat; ++i)
8219     Ops[i] = UndefVec;
8220 
8221   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8222 }
8223 
8224 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8225                                                 const SDLoc &dl) const {
8226 
8227   unsigned Opc = Op.getOpcode();
8228   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8229          "Unexpected conversion type");
8230   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8231          "Supports conversions to v2f64/v4f32 only.");
8232 
8233   bool SignedConv = Opc == ISD::SINT_TO_FP;
8234   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8235 
8236   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8237   EVT WideVT = Wide.getValueType();
8238   unsigned WideNumElts = WideVT.getVectorNumElements();
8239   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8240 
8241   SmallVector<int, 16> ShuffV;
8242   for (unsigned i = 0; i < WideNumElts; ++i)
8243     ShuffV.push_back(i + WideNumElts);
8244 
8245   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8246   int SaveElts = FourEltRes ? 4 : 2;
8247   if (Subtarget.isLittleEndian())
8248     for (int i = 0; i < SaveElts; i++)
8249       ShuffV[i * Stride] = i;
8250   else
8251     for (int i = 1; i <= SaveElts; i++)
8252       ShuffV[i * Stride - 1] = i - 1;
8253 
8254   SDValue ShuffleSrc2 =
8255       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8256   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8257 
8258   SDValue Extend;
8259   if (SignedConv) {
8260     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8261     EVT ExtVT = Op.getOperand(0).getValueType();
8262     if (Subtarget.hasP9Altivec())
8263       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8264                                IntermediateVT.getVectorNumElements());
8265 
8266     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8267                          DAG.getValueType(ExtVT));
8268   } else
8269     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8270 
8271   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8272 }
8273 
8274 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8275                                           SelectionDAG &DAG) const {
8276   SDLoc dl(Op);
8277 
8278   EVT InVT = Op.getOperand(0).getValueType();
8279   EVT OutVT = Op.getValueType();
8280   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8281       isOperationCustom(Op.getOpcode(), InVT))
8282     return LowerINT_TO_FPVector(Op, DAG, dl);
8283 
8284   // Conversions to f128 are legal.
8285   if (Op.getValueType() == MVT::f128)
8286     return Op;
8287 
8288   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8289   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8290     return SDValue();
8291 
8292   if (Op.getOperand(0).getValueType() == MVT::i1)
8293     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8294                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8295                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8296 
8297   // If we have direct moves, we can do all the conversion, skip the store/load
8298   // however, without FPCVT we can't do most conversions.
8299   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8300       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8301     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8302 
8303   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8304          "UINT_TO_FP is supported only with FPCVT");
8305 
8306   // If we have FCFIDS, then use it when converting to single-precision.
8307   // Otherwise, convert to double-precision and then round.
8308   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8309                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8310                                                             : PPCISD::FCFIDS)
8311                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8312                                                             : PPCISD::FCFID);
8313   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8314                   ? MVT::f32
8315                   : MVT::f64;
8316 
8317   if (Op.getOperand(0).getValueType() == MVT::i64) {
8318     SDValue SINT = Op.getOperand(0);
8319     // When converting to single-precision, we actually need to convert
8320     // to double-precision first and then round to single-precision.
8321     // To avoid double-rounding effects during that operation, we have
8322     // to prepare the input operand.  Bits that might be truncated when
8323     // converting to double-precision are replaced by a bit that won't
8324     // be lost at this stage, but is below the single-precision rounding
8325     // position.
8326     //
8327     // However, if -enable-unsafe-fp-math is in effect, accept double
8328     // rounding to avoid the extra overhead.
8329     if (Op.getValueType() == MVT::f32 &&
8330         !Subtarget.hasFPCVT() &&
8331         !DAG.getTarget().Options.UnsafeFPMath) {
8332 
8333       // Twiddle input to make sure the low 11 bits are zero.  (If this
8334       // is the case, we are guaranteed the value will fit into the 53 bit
8335       // mantissa of an IEEE double-precision value without rounding.)
8336       // If any of those low 11 bits were not zero originally, make sure
8337       // bit 12 (value 2048) is set instead, so that the final rounding
8338       // to single-precision gets the correct result.
8339       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8340                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8341       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8342                           Round, DAG.getConstant(2047, dl, MVT::i64));
8343       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8344       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8345                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8346 
8347       // However, we cannot use that value unconditionally: if the magnitude
8348       // of the input value is small, the bit-twiddling we did above might
8349       // end up visibly changing the output.  Fortunately, in that case, we
8350       // don't need to twiddle bits since the original input will convert
8351       // exactly to double-precision floating-point already.  Therefore,
8352       // construct a conditional to use the original value if the top 11
8353       // bits are all sign-bit copies, and use the rounded value computed
8354       // above otherwise.
8355       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8356                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8357       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8358                          Cond, DAG.getConstant(1, dl, MVT::i64));
8359       Cond = DAG.getSetCC(
8360           dl,
8361           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8362           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8363 
8364       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8365     }
8366 
8367     ReuseLoadInfo RLI;
8368     SDValue Bits;
8369 
8370     MachineFunction &MF = DAG.getMachineFunction();
8371     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8372       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8373                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8374       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8375     } else if (Subtarget.hasLFIWAX() &&
8376                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8377       MachineMemOperand *MMO =
8378         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8379                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8380       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8381       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8382                                      DAG.getVTList(MVT::f64, MVT::Other),
8383                                      Ops, MVT::i32, MMO);
8384       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8385     } else if (Subtarget.hasFPCVT() &&
8386                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8387       MachineMemOperand *MMO =
8388         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8389                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8390       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8391       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8392                                      DAG.getVTList(MVT::f64, MVT::Other),
8393                                      Ops, MVT::i32, MMO);
8394       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8395     } else if (((Subtarget.hasLFIWAX() &&
8396                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8397                 (Subtarget.hasFPCVT() &&
8398                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8399                SINT.getOperand(0).getValueType() == MVT::i32) {
8400       MachineFrameInfo &MFI = MF.getFrameInfo();
8401       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8402 
8403       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8404       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8405 
8406       SDValue Store =
8407           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8408                        MachinePointerInfo::getFixedStack(
8409                            DAG.getMachineFunction(), FrameIdx));
8410 
8411       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8412              "Expected an i32 store");
8413 
8414       RLI.Ptr = FIdx;
8415       RLI.Chain = Store;
8416       RLI.MPI =
8417           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8418       RLI.Alignment = Align(4);
8419 
8420       MachineMemOperand *MMO =
8421         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8422                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8423       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8424       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8425                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8426                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8427                                      Ops, MVT::i32, MMO);
8428     } else
8429       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8430 
8431     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8432 
8433     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8434       FP = DAG.getNode(ISD::FP_ROUND, dl,
8435                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8436     return FP;
8437   }
8438 
8439   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8440          "Unhandled INT_TO_FP type in custom expander!");
8441   // Since we only generate this in 64-bit mode, we can take advantage of
8442   // 64-bit registers.  In particular, sign extend the input value into the
8443   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8444   // then lfd it and fcfid it.
8445   MachineFunction &MF = DAG.getMachineFunction();
8446   MachineFrameInfo &MFI = MF.getFrameInfo();
8447   EVT PtrVT = getPointerTy(MF.getDataLayout());
8448 
8449   SDValue Ld;
8450   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8451     ReuseLoadInfo RLI;
8452     bool ReusingLoad;
8453     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8454                                             DAG))) {
8455       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8456       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8457 
8458       SDValue Store =
8459           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8460                        MachinePointerInfo::getFixedStack(
8461                            DAG.getMachineFunction(), FrameIdx));
8462 
8463       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8464              "Expected an i32 store");
8465 
8466       RLI.Ptr = FIdx;
8467       RLI.Chain = Store;
8468       RLI.MPI =
8469           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8470       RLI.Alignment = Align(4);
8471     }
8472 
8473     MachineMemOperand *MMO =
8474       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8475                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8476     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8477     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8478                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8479                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8480                                  Ops, MVT::i32, MMO);
8481     if (ReusingLoad)
8482       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8483   } else {
8484     assert(Subtarget.isPPC64() &&
8485            "i32->FP without LFIWAX supported only on PPC64");
8486 
8487     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8488     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8489 
8490     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8491                                 Op.getOperand(0));
8492 
8493     // STD the extended value into the stack slot.
8494     SDValue Store = DAG.getStore(
8495         DAG.getEntryNode(), dl, Ext64, FIdx,
8496         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8497 
8498     // Load the value as a double.
8499     Ld = DAG.getLoad(
8500         MVT::f64, dl, Store, FIdx,
8501         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8502   }
8503 
8504   // FCFID it and return it.
8505   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8506   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8507     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8508                      DAG.getIntPtrConstant(0, dl));
8509   return FP;
8510 }
8511 
8512 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8513                                             SelectionDAG &DAG) const {
8514   SDLoc dl(Op);
8515   /*
8516    The rounding mode is in bits 30:31 of FPSR, and has the following
8517    settings:
8518      00 Round to nearest
8519      01 Round to 0
8520      10 Round to +inf
8521      11 Round to -inf
8522 
8523   FLT_ROUNDS, on the other hand, expects the following:
8524     -1 Undefined
8525      0 Round to 0
8526      1 Round to nearest
8527      2 Round to +inf
8528      3 Round to -inf
8529 
8530   To perform the conversion, we do:
8531     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8532   */
8533 
8534   MachineFunction &MF = DAG.getMachineFunction();
8535   EVT VT = Op.getValueType();
8536   EVT PtrVT = getPointerTy(MF.getDataLayout());
8537 
8538   // Save FP Control Word to register
8539   SDValue Chain = Op.getOperand(0);
8540   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8541   Chain = MFFS.getValue(1);
8542 
8543   // Save FP register to stack slot
8544   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8545   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8546   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8547 
8548   // Load FP Control Word from low 32 bits of stack slot.
8549   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8550   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8551   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8552   Chain = CWD.getValue(1);
8553 
8554   // Transform as necessary
8555   SDValue CWD1 =
8556     DAG.getNode(ISD::AND, dl, MVT::i32,
8557                 CWD, DAG.getConstant(3, dl, MVT::i32));
8558   SDValue CWD2 =
8559     DAG.getNode(ISD::SRL, dl, MVT::i32,
8560                 DAG.getNode(ISD::AND, dl, MVT::i32,
8561                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8562                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8563                             DAG.getConstant(3, dl, MVT::i32)),
8564                 DAG.getConstant(1, dl, MVT::i32));
8565 
8566   SDValue RetVal =
8567     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8568 
8569   RetVal =
8570       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8571                   dl, VT, RetVal);
8572 
8573   return DAG.getMergeValues({RetVal, Chain}, dl);
8574 }
8575 
8576 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8577   EVT VT = Op.getValueType();
8578   unsigned BitWidth = VT.getSizeInBits();
8579   SDLoc dl(Op);
8580   assert(Op.getNumOperands() == 3 &&
8581          VT == Op.getOperand(1).getValueType() &&
8582          "Unexpected SHL!");
8583 
8584   // Expand into a bunch of logical ops.  Note that these ops
8585   // depend on the PPC behavior for oversized shift amounts.
8586   SDValue Lo = Op.getOperand(0);
8587   SDValue Hi = Op.getOperand(1);
8588   SDValue Amt = Op.getOperand(2);
8589   EVT AmtVT = Amt.getValueType();
8590 
8591   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8592                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8593   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8594   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8595   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8596   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8597                              DAG.getConstant(-BitWidth, dl, AmtVT));
8598   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8599   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8600   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8601   SDValue OutOps[] = { OutLo, OutHi };
8602   return DAG.getMergeValues(OutOps, dl);
8603 }
8604 
8605 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8606   EVT VT = Op.getValueType();
8607   SDLoc dl(Op);
8608   unsigned BitWidth = VT.getSizeInBits();
8609   assert(Op.getNumOperands() == 3 &&
8610          VT == Op.getOperand(1).getValueType() &&
8611          "Unexpected SRL!");
8612 
8613   // Expand into a bunch of logical ops.  Note that these ops
8614   // depend on the PPC behavior for oversized shift amounts.
8615   SDValue Lo = Op.getOperand(0);
8616   SDValue Hi = Op.getOperand(1);
8617   SDValue Amt = Op.getOperand(2);
8618   EVT AmtVT = Amt.getValueType();
8619 
8620   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8621                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8622   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8623   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8624   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8625   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8626                              DAG.getConstant(-BitWidth, dl, AmtVT));
8627   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8628   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8629   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8630   SDValue OutOps[] = { OutLo, OutHi };
8631   return DAG.getMergeValues(OutOps, dl);
8632 }
8633 
8634 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8635   SDLoc dl(Op);
8636   EVT VT = Op.getValueType();
8637   unsigned BitWidth = VT.getSizeInBits();
8638   assert(Op.getNumOperands() == 3 &&
8639          VT == Op.getOperand(1).getValueType() &&
8640          "Unexpected SRA!");
8641 
8642   // Expand into a bunch of logical ops, followed by a select_cc.
8643   SDValue Lo = Op.getOperand(0);
8644   SDValue Hi = Op.getOperand(1);
8645   SDValue Amt = Op.getOperand(2);
8646   EVT AmtVT = Amt.getValueType();
8647 
8648   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8649                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8650   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8651   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8652   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8653   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8654                              DAG.getConstant(-BitWidth, dl, AmtVT));
8655   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8656   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8657   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8658                                   Tmp4, Tmp6, ISD::SETLE);
8659   SDValue OutOps[] = { OutLo, OutHi };
8660   return DAG.getMergeValues(OutOps, dl);
8661 }
8662 
8663 //===----------------------------------------------------------------------===//
8664 // Vector related lowering.
8665 //
8666 
8667 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8668 /// element size of SplatSize. Cast the result to VT.
8669 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8670                                       SelectionDAG &DAG, const SDLoc &dl) {
8671   static const MVT VTys[] = { // canonical VT to use for each size.
8672     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8673   };
8674 
8675   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8676 
8677   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8678   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8679     SplatSize = 1;
8680     Val = 0xFF;
8681   }
8682 
8683   EVT CanonicalVT = VTys[SplatSize-1];
8684 
8685   // Build a canonical splat for this value.
8686   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8687 }
8688 
8689 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8690 /// specified intrinsic ID.
8691 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8692                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8693   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8694   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8695                      DAG.getConstant(IID, dl, MVT::i32), Op);
8696 }
8697 
8698 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8699 /// specified intrinsic ID.
8700 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8701                                 SelectionDAG &DAG, const SDLoc &dl,
8702                                 EVT DestVT = MVT::Other) {
8703   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8704   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8705                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8706 }
8707 
8708 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8709 /// specified intrinsic ID.
8710 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8711                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8712                                 EVT DestVT = MVT::Other) {
8713   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8714   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8715                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8716 }
8717 
8718 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8719 /// amount.  The result has the specified value type.
8720 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8721                            SelectionDAG &DAG, const SDLoc &dl) {
8722   // Force LHS/RHS to be the right type.
8723   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8724   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8725 
8726   int Ops[16];
8727   for (unsigned i = 0; i != 16; ++i)
8728     Ops[i] = i + Amt;
8729   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8730   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8731 }
8732 
8733 /// Do we have an efficient pattern in a .td file for this node?
8734 ///
8735 /// \param V - pointer to the BuildVectorSDNode being matched
8736 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8737 ///
8738 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8739 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8740 /// the opposite is true (expansion is beneficial) are:
8741 /// - The node builds a vector out of integers that are not 32 or 64-bits
8742 /// - The node builds a vector out of constants
8743 /// - The node is a "load-and-splat"
8744 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8745 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8746                                             bool HasDirectMove,
8747                                             bool HasP8Vector) {
8748   EVT VecVT = V->getValueType(0);
8749   bool RightType = VecVT == MVT::v2f64 ||
8750     (HasP8Vector && VecVT == MVT::v4f32) ||
8751     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8752   if (!RightType)
8753     return false;
8754 
8755   bool IsSplat = true;
8756   bool IsLoad = false;
8757   SDValue Op0 = V->getOperand(0);
8758 
8759   // This function is called in a block that confirms the node is not a constant
8760   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8761   // different constants.
8762   if (V->isConstant())
8763     return false;
8764   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8765     if (V->getOperand(i).isUndef())
8766       return false;
8767     // We want to expand nodes that represent load-and-splat even if the
8768     // loaded value is a floating point truncation or conversion to int.
8769     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8770         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8771          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8772         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8773          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8774         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8775          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8776       IsLoad = true;
8777     // If the operands are different or the input is not a load and has more
8778     // uses than just this BV node, then it isn't a splat.
8779     if (V->getOperand(i) != Op0 ||
8780         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8781       IsSplat = false;
8782   }
8783   return !(IsSplat && IsLoad);
8784 }
8785 
8786 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8787 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8788 
8789   SDLoc dl(Op);
8790   SDValue Op0 = Op->getOperand(0);
8791 
8792   if ((Op.getValueType() != MVT::f128) ||
8793       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8794       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8795       (Op0.getOperand(1).getValueType() != MVT::i64))
8796     return SDValue();
8797 
8798   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8799                      Op0.getOperand(1));
8800 }
8801 
8802 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8803   const SDValue *InputLoad = &Op;
8804   if (InputLoad->getOpcode() == ISD::BITCAST)
8805     InputLoad = &InputLoad->getOperand(0);
8806   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8807       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8808     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8809     InputLoad = &InputLoad->getOperand(0);
8810   }
8811   if (InputLoad->getOpcode() != ISD::LOAD)
8812     return nullptr;
8813   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8814   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8815 }
8816 
8817 // Convert the argument APFloat to a single precision APFloat if there is no
8818 // loss in information during the conversion to single precision APFloat and the
8819 // resulting number is not a denormal number. Return true if successful.
8820 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8821   APFloat APFloatToConvert = ArgAPFloat;
8822   bool LosesInfo = true;
8823   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8824                            &LosesInfo);
8825   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8826   if (Success)
8827     ArgAPFloat = APFloatToConvert;
8828   return Success;
8829 }
8830 
8831 // Bitcast the argument APInt to a double and convert it to a single precision
8832 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8833 // argument if there is no loss in information during the conversion from
8834 // double to single precision APFloat and the resulting number is not a denormal
8835 // number. Return true if successful.
8836 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8837   double DpValue = ArgAPInt.bitsToDouble();
8838   APFloat APFloatDp(DpValue);
8839   bool Success = convertToNonDenormSingle(APFloatDp);
8840   if (Success)
8841     ArgAPInt = APFloatDp.bitcastToAPInt();
8842   return Success;
8843 }
8844 
8845 // If this is a case we can't handle, return null and let the default
8846 // expansion code take care of it.  If we CAN select this case, and if it
8847 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8848 // this case more efficiently than a constant pool load, lower it to the
8849 // sequence of ops that should be used.
8850 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8851                                              SelectionDAG &DAG) const {
8852   SDLoc dl(Op);
8853   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8854   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8855 
8856   // Check if this is a splat of a constant value.
8857   APInt APSplatBits, APSplatUndef;
8858   unsigned SplatBitSize;
8859   bool HasAnyUndefs;
8860   bool BVNIsConstantSplat =
8861       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8862                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
8863 
8864   // If it is a splat of a double, check if we can shrink it to a 32 bit
8865   // non-denormal float which when converted back to double gives us the same
8866   // double. This is to exploit the XXSPLTIDP instruction.
8867   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
8868       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
8869       convertToNonDenormSingle(APSplatBits)) {
8870     SDValue SplatNode = DAG.getNode(
8871         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
8872         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
8873     return DAG.getBitcast(Op.getValueType(), SplatNode);
8874   }
8875 
8876   if (!BVNIsConstantSplat || SplatBitSize > 32) {
8877 
8878     bool IsPermutedLoad = false;
8879     const SDValue *InputLoad =
8880         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
8881     // Handle load-and-splat patterns as we have instructions that will do this
8882     // in one go.
8883     if (InputLoad && DAG.isSplatValue(Op, true)) {
8884       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8885 
8886       // We have handling for 4 and 8 byte elements.
8887       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8888 
8889       // Checking for a single use of this load, we have to check for vector
8890       // width (128 bits) / ElementSize uses (since each operand of the
8891       // BUILD_VECTOR is a separate use of the value.
8892       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8893           ((Subtarget.hasVSX() && ElementSize == 64) ||
8894            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8895         SDValue Ops[] = {
8896           LD->getChain(),    // Chain
8897           LD->getBasePtr(),  // Ptr
8898           DAG.getValueType(Op.getValueType()) // VT
8899         };
8900         return
8901           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8902                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8903                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8904       }
8905     }
8906 
8907     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8908     // lowered to VSX instructions under certain conditions.
8909     // Without VSX, there is no pattern more efficient than expanding the node.
8910     if (Subtarget.hasVSX() &&
8911         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8912                                         Subtarget.hasP8Vector()))
8913       return Op;
8914     return SDValue();
8915   }
8916 
8917   uint64_t SplatBits = APSplatBits.getZExtValue();
8918   uint64_t SplatUndef = APSplatUndef.getZExtValue();
8919   unsigned SplatSize = SplatBitSize / 8;
8920 
8921   // First, handle single instruction cases.
8922 
8923   // All zeros?
8924   if (SplatBits == 0) {
8925     // Canonicalize all zero vectors to be v4i32.
8926     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8927       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8928       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8929     }
8930     return Op;
8931   }
8932 
8933   // We have XXSPLTIW for constant splats four bytes wide.
8934   // Given vector length is a multiple of 4, 2-byte splats can be replaced
8935   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
8936   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
8937   // turned into a 4-byte splat of 0xABABABAB.
8938   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
8939     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
8940                                   Op.getValueType(), DAG, dl);
8941 
8942   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
8943     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8944                                   dl);
8945 
8946   // We have XXSPLTIB for constant splats one byte wide.
8947   if (Subtarget.hasP9Vector() && SplatSize == 1)
8948     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8949                                   dl);
8950 
8951   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8952   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8953                     (32-SplatBitSize));
8954   if (SextVal >= -16 && SextVal <= 15)
8955     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
8956                                   dl);
8957 
8958   // Two instruction sequences.
8959 
8960   // If this value is in the range [-32,30] and is even, use:
8961   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8962   // If this value is in the range [17,31] and is odd, use:
8963   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8964   // If this value is in the range [-31,-17] and is odd, use:
8965   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8966   // Note the last two are three-instruction sequences.
8967   if (SextVal >= -32 && SextVal <= 31) {
8968     // To avoid having these optimizations undone by constant folding,
8969     // we convert to a pseudo that will be expanded later into one of
8970     // the above forms.
8971     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8972     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8973               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8974     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8975     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8976     if (VT == Op.getValueType())
8977       return RetVal;
8978     else
8979       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8980   }
8981 
8982   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8983   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8984   // for fneg/fabs.
8985   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8986     // Make -1 and vspltisw -1:
8987     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
8988 
8989     // Make the VSLW intrinsic, computing 0x8000_0000.
8990     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8991                                    OnesV, DAG, dl);
8992 
8993     // xor by OnesV to invert it.
8994     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8995     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8996   }
8997 
8998   // Check to see if this is a wide variety of vsplti*, binop self cases.
8999   static const signed char SplatCsts[] = {
9000     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9001     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9002   };
9003 
9004   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9005     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9006     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9007     int i = SplatCsts[idx];
9008 
9009     // Figure out what shift amount will be used by altivec if shifted by i in
9010     // this splat size.
9011     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9012 
9013     // vsplti + shl self.
9014     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9015       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9016       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9017         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9018         Intrinsic::ppc_altivec_vslw
9019       };
9020       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9021       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9022     }
9023 
9024     // vsplti + srl self.
9025     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9026       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9027       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9028         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9029         Intrinsic::ppc_altivec_vsrw
9030       };
9031       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9032       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9033     }
9034 
9035     // vsplti + sra self.
9036     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9037       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9038       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9039         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9040         Intrinsic::ppc_altivec_vsraw
9041       };
9042       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9043       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9044     }
9045 
9046     // vsplti + rol self.
9047     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9048                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9049       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9050       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9051         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9052         Intrinsic::ppc_altivec_vrlw
9053       };
9054       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9055       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9056     }
9057 
9058     // t = vsplti c, result = vsldoi t, t, 1
9059     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9060       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9061       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9062       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9063     }
9064     // t = vsplti c, result = vsldoi t, t, 2
9065     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9066       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9067       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9068       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9069     }
9070     // t = vsplti c, result = vsldoi t, t, 3
9071     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9072       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9073       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9074       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9075     }
9076   }
9077 
9078   return SDValue();
9079 }
9080 
9081 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9082 /// the specified operations to build the shuffle.
9083 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9084                                       SDValue RHS, SelectionDAG &DAG,
9085                                       const SDLoc &dl) {
9086   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9087   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9088   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9089 
9090   enum {
9091     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9092     OP_VMRGHW,
9093     OP_VMRGLW,
9094     OP_VSPLTISW0,
9095     OP_VSPLTISW1,
9096     OP_VSPLTISW2,
9097     OP_VSPLTISW3,
9098     OP_VSLDOI4,
9099     OP_VSLDOI8,
9100     OP_VSLDOI12
9101   };
9102 
9103   if (OpNum == OP_COPY) {
9104     if (LHSID == (1*9+2)*9+3) return LHS;
9105     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9106     return RHS;
9107   }
9108 
9109   SDValue OpLHS, OpRHS;
9110   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9111   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9112 
9113   int ShufIdxs[16];
9114   switch (OpNum) {
9115   default: llvm_unreachable("Unknown i32 permute!");
9116   case OP_VMRGHW:
9117     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9118     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9119     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9120     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9121     break;
9122   case OP_VMRGLW:
9123     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9124     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9125     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9126     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9127     break;
9128   case OP_VSPLTISW0:
9129     for (unsigned i = 0; i != 16; ++i)
9130       ShufIdxs[i] = (i&3)+0;
9131     break;
9132   case OP_VSPLTISW1:
9133     for (unsigned i = 0; i != 16; ++i)
9134       ShufIdxs[i] = (i&3)+4;
9135     break;
9136   case OP_VSPLTISW2:
9137     for (unsigned i = 0; i != 16; ++i)
9138       ShufIdxs[i] = (i&3)+8;
9139     break;
9140   case OP_VSPLTISW3:
9141     for (unsigned i = 0; i != 16; ++i)
9142       ShufIdxs[i] = (i&3)+12;
9143     break;
9144   case OP_VSLDOI4:
9145     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9146   case OP_VSLDOI8:
9147     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9148   case OP_VSLDOI12:
9149     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9150   }
9151   EVT VT = OpLHS.getValueType();
9152   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9153   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9154   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9155   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9156 }
9157 
9158 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9159 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9160 /// SDValue.
9161 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9162                                            SelectionDAG &DAG) const {
9163   const unsigned BytesInVector = 16;
9164   bool IsLE = Subtarget.isLittleEndian();
9165   SDLoc dl(N);
9166   SDValue V1 = N->getOperand(0);
9167   SDValue V2 = N->getOperand(1);
9168   unsigned ShiftElts = 0, InsertAtByte = 0;
9169   bool Swap = false;
9170 
9171   // Shifts required to get the byte we want at element 7.
9172   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9173                                    0, 15, 14, 13, 12, 11, 10, 9};
9174   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9175                                 1, 2,  3,  4,  5,  6,  7,  8};
9176 
9177   ArrayRef<int> Mask = N->getMask();
9178   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9179 
9180   // For each mask element, find out if we're just inserting something
9181   // from V2 into V1 or vice versa.
9182   // Possible permutations inserting an element from V2 into V1:
9183   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9184   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9185   //   ...
9186   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9187   // Inserting from V1 into V2 will be similar, except mask range will be
9188   // [16,31].
9189 
9190   bool FoundCandidate = false;
9191   // If both vector operands for the shuffle are the same vector, the mask
9192   // will contain only elements from the first one and the second one will be
9193   // undef.
9194   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9195   // Go through the mask of half-words to find an element that's being moved
9196   // from one vector to the other.
9197   for (unsigned i = 0; i < BytesInVector; ++i) {
9198     unsigned CurrentElement = Mask[i];
9199     // If 2nd operand is undefined, we should only look for element 7 in the
9200     // Mask.
9201     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9202       continue;
9203 
9204     bool OtherElementsInOrder = true;
9205     // Examine the other elements in the Mask to see if they're in original
9206     // order.
9207     for (unsigned j = 0; j < BytesInVector; ++j) {
9208       if (j == i)
9209         continue;
9210       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9211       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9212       // in which we always assume we're always picking from the 1st operand.
9213       int MaskOffset =
9214           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9215       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9216         OtherElementsInOrder = false;
9217         break;
9218       }
9219     }
9220     // If other elements are in original order, we record the number of shifts
9221     // we need to get the element we want into element 7. Also record which byte
9222     // in the vector we should insert into.
9223     if (OtherElementsInOrder) {
9224       // If 2nd operand is undefined, we assume no shifts and no swapping.
9225       if (V2.isUndef()) {
9226         ShiftElts = 0;
9227         Swap = false;
9228       } else {
9229         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9230         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9231                          : BigEndianShifts[CurrentElement & 0xF];
9232         Swap = CurrentElement < BytesInVector;
9233       }
9234       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9235       FoundCandidate = true;
9236       break;
9237     }
9238   }
9239 
9240   if (!FoundCandidate)
9241     return SDValue();
9242 
9243   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9244   // optionally with VECSHL if shift is required.
9245   if (Swap)
9246     std::swap(V1, V2);
9247   if (V2.isUndef())
9248     V2 = V1;
9249   if (ShiftElts) {
9250     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9251                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9252     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9253                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9254   }
9255   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9256                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9257 }
9258 
9259 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9260 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9261 /// SDValue.
9262 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9263                                            SelectionDAG &DAG) const {
9264   const unsigned NumHalfWords = 8;
9265   const unsigned BytesInVector = NumHalfWords * 2;
9266   // Check that the shuffle is on half-words.
9267   if (!isNByteElemShuffleMask(N, 2, 1))
9268     return SDValue();
9269 
9270   bool IsLE = Subtarget.isLittleEndian();
9271   SDLoc dl(N);
9272   SDValue V1 = N->getOperand(0);
9273   SDValue V2 = N->getOperand(1);
9274   unsigned ShiftElts = 0, InsertAtByte = 0;
9275   bool Swap = false;
9276 
9277   // Shifts required to get the half-word we want at element 3.
9278   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9279   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9280 
9281   uint32_t Mask = 0;
9282   uint32_t OriginalOrderLow = 0x1234567;
9283   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9284   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9285   // 32-bit space, only need 4-bit nibbles per element.
9286   for (unsigned i = 0; i < NumHalfWords; ++i) {
9287     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9288     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9289   }
9290 
9291   // For each mask element, find out if we're just inserting something
9292   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9293   // from V2 into V1:
9294   //   X, 1, 2, 3, 4, 5, 6, 7
9295   //   0, X, 2, 3, 4, 5, 6, 7
9296   //   0, 1, X, 3, 4, 5, 6, 7
9297   //   0, 1, 2, X, 4, 5, 6, 7
9298   //   0, 1, 2, 3, X, 5, 6, 7
9299   //   0, 1, 2, 3, 4, X, 6, 7
9300   //   0, 1, 2, 3, 4, 5, X, 7
9301   //   0, 1, 2, 3, 4, 5, 6, X
9302   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9303 
9304   bool FoundCandidate = false;
9305   // Go through the mask of half-words to find an element that's being moved
9306   // from one vector to the other.
9307   for (unsigned i = 0; i < NumHalfWords; ++i) {
9308     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9309     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9310     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9311     uint32_t TargetOrder = 0x0;
9312 
9313     // If both vector operands for the shuffle are the same vector, the mask
9314     // will contain only elements from the first one and the second one will be
9315     // undef.
9316     if (V2.isUndef()) {
9317       ShiftElts = 0;
9318       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9319       TargetOrder = OriginalOrderLow;
9320       Swap = false;
9321       // Skip if not the correct element or mask of other elements don't equal
9322       // to our expected order.
9323       if (MaskOneElt == VINSERTHSrcElem &&
9324           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9325         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9326         FoundCandidate = true;
9327         break;
9328       }
9329     } else { // If both operands are defined.
9330       // Target order is [8,15] if the current mask is between [0,7].
9331       TargetOrder =
9332           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9333       // Skip if mask of other elements don't equal our expected order.
9334       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9335         // We only need the last 3 bits for the number of shifts.
9336         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9337                          : BigEndianShifts[MaskOneElt & 0x7];
9338         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9339         Swap = MaskOneElt < NumHalfWords;
9340         FoundCandidate = true;
9341         break;
9342       }
9343     }
9344   }
9345 
9346   if (!FoundCandidate)
9347     return SDValue();
9348 
9349   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9350   // optionally with VECSHL if shift is required.
9351   if (Swap)
9352     std::swap(V1, V2);
9353   if (V2.isUndef())
9354     V2 = V1;
9355   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9356   if (ShiftElts) {
9357     // Double ShiftElts because we're left shifting on v16i8 type.
9358     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9359                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9360     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9361     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9362                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9363     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9364   }
9365   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9366   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9367                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9368   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9369 }
9370 
9371 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9372 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9373 /// return the default SDValue.
9374 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9375                                               SelectionDAG &DAG) const {
9376   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9377   // to v16i8. Peek through the bitcasts to get the actual operands.
9378   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9379   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9380 
9381   auto ShuffleMask = SVN->getMask();
9382   SDValue VecShuffle(SVN, 0);
9383   SDLoc DL(SVN);
9384 
9385   // Check that we have a four byte shuffle.
9386   if (!isNByteElemShuffleMask(SVN, 4, 1))
9387     return SDValue();
9388 
9389   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9390   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9391     std::swap(LHS, RHS);
9392     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9393     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9394   }
9395 
9396   // Ensure that the RHS is a vector of constants.
9397   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9398   if (!BVN)
9399     return SDValue();
9400 
9401   // Check if RHS is a splat of 4-bytes (or smaller).
9402   APInt APSplatValue, APSplatUndef;
9403   unsigned SplatBitSize;
9404   bool HasAnyUndefs;
9405   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9406                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9407       SplatBitSize > 32)
9408     return SDValue();
9409 
9410   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9411   // The instruction splats a constant C into two words of the source vector
9412   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9413   // Thus we check that the shuffle mask is the equivalent  of
9414   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9415   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9416   // within each word are consecutive, so we only need to check the first byte.
9417   SDValue Index;
9418   bool IsLE = Subtarget.isLittleEndian();
9419   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9420       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9421        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9422     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9423   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9424            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9425             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9426     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9427   else
9428     return SDValue();
9429 
9430   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9431   // for XXSPLTI32DX.
9432   unsigned SplatVal = APSplatValue.getZExtValue();
9433   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9434     SplatVal |= (SplatVal << SplatBitSize);
9435 
9436   SDValue SplatNode = DAG.getNode(
9437       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9438       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9439   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9440 }
9441 
9442 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9443 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9444 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9445 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9446 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9447   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9448   assert(Op.getValueType() == MVT::v1i128 &&
9449          "Only set v1i128 as custom, other type shouldn't reach here!");
9450   SDLoc dl(Op);
9451   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9452   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9453   unsigned SHLAmt = N1.getConstantOperandVal(0);
9454   if (SHLAmt % 8 == 0) {
9455     SmallVector<int, 16> Mask(16, 0);
9456     std::iota(Mask.begin(), Mask.end(), 0);
9457     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9458     if (SDValue Shuffle =
9459             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9460                                  DAG.getUNDEF(MVT::v16i8), Mask))
9461       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9462   }
9463   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9464   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9465                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9466   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9467                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9468   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9469   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9470 }
9471 
9472 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9473 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9474 /// return the code it can be lowered into.  Worst case, it can always be
9475 /// lowered into a vperm.
9476 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9477                                                SelectionDAG &DAG) const {
9478   SDLoc dl(Op);
9479   SDValue V1 = Op.getOperand(0);
9480   SDValue V2 = Op.getOperand(1);
9481   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9482 
9483   // Any nodes that were combined in the target-independent combiner prior
9484   // to vector legalization will not be sent to the target combine. Try to
9485   // combine it here.
9486   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9487     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9488       return NewShuffle;
9489     Op = NewShuffle;
9490     SVOp = cast<ShuffleVectorSDNode>(Op);
9491     V1 = Op.getOperand(0);
9492     V2 = Op.getOperand(1);
9493   }
9494   EVT VT = Op.getValueType();
9495   bool isLittleEndian = Subtarget.isLittleEndian();
9496 
9497   unsigned ShiftElts, InsertAtByte;
9498   bool Swap = false;
9499 
9500   // If this is a load-and-splat, we can do that with a single instruction
9501   // in some cases. However if the load has multiple uses, we don't want to
9502   // combine it because that will just produce multiple loads.
9503   bool IsPermutedLoad = false;
9504   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9505   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9506       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9507       InputLoad->hasOneUse()) {
9508     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9509     int SplatIdx =
9510       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9511 
9512     // The splat index for permuted loads will be in the left half of the vector
9513     // which is strictly wider than the loaded value by 8 bytes. So we need to
9514     // adjust the splat index to point to the correct address in memory.
9515     if (IsPermutedLoad) {
9516       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9517       SplatIdx += IsFourByte ? 2 : 1;
9518       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9519              "Splat of a value outside of the loaded memory");
9520     }
9521 
9522     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9523     // For 4-byte load-and-splat, we need Power9.
9524     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9525       uint64_t Offset = 0;
9526       if (IsFourByte)
9527         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9528       else
9529         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9530 
9531       SDValue BasePtr = LD->getBasePtr();
9532       if (Offset != 0)
9533         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9534                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9535       SDValue Ops[] = {
9536         LD->getChain(),    // Chain
9537         BasePtr,           // BasePtr
9538         DAG.getValueType(Op.getValueType()) // VT
9539       };
9540       SDVTList VTL =
9541         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9542       SDValue LdSplt =
9543         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9544                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9545       if (LdSplt.getValueType() != SVOp->getValueType(0))
9546         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9547       return LdSplt;
9548     }
9549   }
9550   if (Subtarget.hasP9Vector() &&
9551       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9552                            isLittleEndian)) {
9553     if (Swap)
9554       std::swap(V1, V2);
9555     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9556     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9557     if (ShiftElts) {
9558       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9559                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9560       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9561                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9562       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9563     }
9564     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9565                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9566     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9567   }
9568 
9569   if (Subtarget.hasPrefixInstrs()) {
9570     SDValue SplatInsertNode;
9571     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9572       return SplatInsertNode;
9573   }
9574 
9575   if (Subtarget.hasP9Altivec()) {
9576     SDValue NewISDNode;
9577     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9578       return NewISDNode;
9579 
9580     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9581       return NewISDNode;
9582   }
9583 
9584   if (Subtarget.hasVSX() &&
9585       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9586     if (Swap)
9587       std::swap(V1, V2);
9588     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9589     SDValue Conv2 =
9590         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9591 
9592     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9593                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9594     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9595   }
9596 
9597   if (Subtarget.hasVSX() &&
9598     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9599     if (Swap)
9600       std::swap(V1, V2);
9601     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9602     SDValue Conv2 =
9603         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9604 
9605     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9606                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9607     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9608   }
9609 
9610   if (Subtarget.hasP9Vector()) {
9611      if (PPC::isXXBRHShuffleMask(SVOp)) {
9612       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9613       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9614       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9615     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9616       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9617       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9618       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9619     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9620       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9621       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9622       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9623     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9624       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9625       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9626       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9627     }
9628   }
9629 
9630   if (Subtarget.hasVSX()) {
9631     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9632       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9633 
9634       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9635       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9636                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9637       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9638     }
9639 
9640     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9641     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9642       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9643       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9644       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9645     }
9646   }
9647 
9648   // Cases that are handled by instructions that take permute immediates
9649   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9650   // selected by the instruction selector.
9651   if (V2.isUndef()) {
9652     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9653         PPC::isSplatShuffleMask(SVOp, 2) ||
9654         PPC::isSplatShuffleMask(SVOp, 4) ||
9655         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9656         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9657         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9658         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9659         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9660         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9661         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9662         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9663         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9664         (Subtarget.hasP8Altivec() && (
9665          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9666          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9667          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9668       return Op;
9669     }
9670   }
9671 
9672   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9673   // and produce a fixed permutation.  If any of these match, do not lower to
9674   // VPERM.
9675   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9676   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9677       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9678       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9679       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9680       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9681       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9682       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9683       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9684       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9685       (Subtarget.hasP8Altivec() && (
9686        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9687        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9688        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9689     return Op;
9690 
9691   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9692   // perfect shuffle table to emit an optimal matching sequence.
9693   ArrayRef<int> PermMask = SVOp->getMask();
9694 
9695   unsigned PFIndexes[4];
9696   bool isFourElementShuffle = true;
9697   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9698     unsigned EltNo = 8;   // Start out undef.
9699     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9700       if (PermMask[i*4+j] < 0)
9701         continue;   // Undef, ignore it.
9702 
9703       unsigned ByteSource = PermMask[i*4+j];
9704       if ((ByteSource & 3) != j) {
9705         isFourElementShuffle = false;
9706         break;
9707       }
9708 
9709       if (EltNo == 8) {
9710         EltNo = ByteSource/4;
9711       } else if (EltNo != ByteSource/4) {
9712         isFourElementShuffle = false;
9713         break;
9714       }
9715     }
9716     PFIndexes[i] = EltNo;
9717   }
9718 
9719   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9720   // perfect shuffle vector to determine if it is cost effective to do this as
9721   // discrete instructions, or whether we should use a vperm.
9722   // For now, we skip this for little endian until such time as we have a
9723   // little-endian perfect shuffle table.
9724   if (isFourElementShuffle && !isLittleEndian) {
9725     // Compute the index in the perfect shuffle table.
9726     unsigned PFTableIndex =
9727       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9728 
9729     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9730     unsigned Cost  = (PFEntry >> 30);
9731 
9732     // Determining when to avoid vperm is tricky.  Many things affect the cost
9733     // of vperm, particularly how many times the perm mask needs to be computed.
9734     // For example, if the perm mask can be hoisted out of a loop or is already
9735     // used (perhaps because there are multiple permutes with the same shuffle
9736     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9737     // the loop requires an extra register.
9738     //
9739     // As a compromise, we only emit discrete instructions if the shuffle can be
9740     // generated in 3 or fewer operations.  When we have loop information
9741     // available, if this block is within a loop, we should avoid using vperm
9742     // for 3-operation perms and use a constant pool load instead.
9743     if (Cost < 3)
9744       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9745   }
9746 
9747   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9748   // vector that will get spilled to the constant pool.
9749   if (V2.isUndef()) V2 = V1;
9750 
9751   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9752   // that it is in input element units, not in bytes.  Convert now.
9753 
9754   // For little endian, the order of the input vectors is reversed, and
9755   // the permutation mask is complemented with respect to 31.  This is
9756   // necessary to produce proper semantics with the big-endian-biased vperm
9757   // instruction.
9758   EVT EltVT = V1.getValueType().getVectorElementType();
9759   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9760 
9761   SmallVector<SDValue, 16> ResultMask;
9762   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9763     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9764 
9765     for (unsigned j = 0; j != BytesPerElement; ++j)
9766       if (isLittleEndian)
9767         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9768                                              dl, MVT::i32));
9769       else
9770         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9771                                              MVT::i32));
9772   }
9773 
9774   ShufflesHandledWithVPERM++;
9775   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9776   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9777   LLVM_DEBUG(SVOp->dump());
9778   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9779   LLVM_DEBUG(VPermMask.dump());
9780 
9781   if (isLittleEndian)
9782     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9783                        V2, V1, VPermMask);
9784   else
9785     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9786                        V1, V2, VPermMask);
9787 }
9788 
9789 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9790 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9791 /// information about the intrinsic.
9792 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9793                                  bool &isDot, const PPCSubtarget &Subtarget) {
9794   unsigned IntrinsicID =
9795       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9796   CompareOpc = -1;
9797   isDot = false;
9798   switch (IntrinsicID) {
9799   default:
9800     return false;
9801   // Comparison predicates.
9802   case Intrinsic::ppc_altivec_vcmpbfp_p:
9803     CompareOpc = 966;
9804     isDot = true;
9805     break;
9806   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9807     CompareOpc = 198;
9808     isDot = true;
9809     break;
9810   case Intrinsic::ppc_altivec_vcmpequb_p:
9811     CompareOpc = 6;
9812     isDot = true;
9813     break;
9814   case Intrinsic::ppc_altivec_vcmpequh_p:
9815     CompareOpc = 70;
9816     isDot = true;
9817     break;
9818   case Intrinsic::ppc_altivec_vcmpequw_p:
9819     CompareOpc = 134;
9820     isDot = true;
9821     break;
9822   case Intrinsic::ppc_altivec_vcmpequd_p:
9823     if (Subtarget.hasP8Altivec()) {
9824       CompareOpc = 199;
9825       isDot = true;
9826     } else
9827       return false;
9828     break;
9829   case Intrinsic::ppc_altivec_vcmpneb_p:
9830   case Intrinsic::ppc_altivec_vcmpneh_p:
9831   case Intrinsic::ppc_altivec_vcmpnew_p:
9832   case Intrinsic::ppc_altivec_vcmpnezb_p:
9833   case Intrinsic::ppc_altivec_vcmpnezh_p:
9834   case Intrinsic::ppc_altivec_vcmpnezw_p:
9835     if (Subtarget.hasP9Altivec()) {
9836       switch (IntrinsicID) {
9837       default:
9838         llvm_unreachable("Unknown comparison intrinsic.");
9839       case Intrinsic::ppc_altivec_vcmpneb_p:
9840         CompareOpc = 7;
9841         break;
9842       case Intrinsic::ppc_altivec_vcmpneh_p:
9843         CompareOpc = 71;
9844         break;
9845       case Intrinsic::ppc_altivec_vcmpnew_p:
9846         CompareOpc = 135;
9847         break;
9848       case Intrinsic::ppc_altivec_vcmpnezb_p:
9849         CompareOpc = 263;
9850         break;
9851       case Intrinsic::ppc_altivec_vcmpnezh_p:
9852         CompareOpc = 327;
9853         break;
9854       case Intrinsic::ppc_altivec_vcmpnezw_p:
9855         CompareOpc = 391;
9856         break;
9857       }
9858       isDot = true;
9859     } else
9860       return false;
9861     break;
9862   case Intrinsic::ppc_altivec_vcmpgefp_p:
9863     CompareOpc = 454;
9864     isDot = true;
9865     break;
9866   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9867     CompareOpc = 710;
9868     isDot = true;
9869     break;
9870   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9871     CompareOpc = 774;
9872     isDot = true;
9873     break;
9874   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9875     CompareOpc = 838;
9876     isDot = true;
9877     break;
9878   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9879     CompareOpc = 902;
9880     isDot = true;
9881     break;
9882   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9883     if (Subtarget.hasP8Altivec()) {
9884       CompareOpc = 967;
9885       isDot = true;
9886     } else
9887       return false;
9888     break;
9889   case Intrinsic::ppc_altivec_vcmpgtub_p:
9890     CompareOpc = 518;
9891     isDot = true;
9892     break;
9893   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9894     CompareOpc = 582;
9895     isDot = true;
9896     break;
9897   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9898     CompareOpc = 646;
9899     isDot = true;
9900     break;
9901   case Intrinsic::ppc_altivec_vcmpgtud_p:
9902     if (Subtarget.hasP8Altivec()) {
9903       CompareOpc = 711;
9904       isDot = true;
9905     } else
9906       return false;
9907     break;
9908 
9909   // VSX predicate comparisons use the same infrastructure
9910   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9911   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9912   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9913   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9914   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9915   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9916     if (Subtarget.hasVSX()) {
9917       switch (IntrinsicID) {
9918       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9919         CompareOpc = 99;
9920         break;
9921       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9922         CompareOpc = 115;
9923         break;
9924       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9925         CompareOpc = 107;
9926         break;
9927       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9928         CompareOpc = 67;
9929         break;
9930       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9931         CompareOpc = 83;
9932         break;
9933       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9934         CompareOpc = 75;
9935         break;
9936       }
9937       isDot = true;
9938     } else
9939       return false;
9940     break;
9941 
9942   // Normal Comparisons.
9943   case Intrinsic::ppc_altivec_vcmpbfp:
9944     CompareOpc = 966;
9945     break;
9946   case Intrinsic::ppc_altivec_vcmpeqfp:
9947     CompareOpc = 198;
9948     break;
9949   case Intrinsic::ppc_altivec_vcmpequb:
9950     CompareOpc = 6;
9951     break;
9952   case Intrinsic::ppc_altivec_vcmpequh:
9953     CompareOpc = 70;
9954     break;
9955   case Intrinsic::ppc_altivec_vcmpequw:
9956     CompareOpc = 134;
9957     break;
9958   case Intrinsic::ppc_altivec_vcmpequd:
9959     if (Subtarget.hasP8Altivec())
9960       CompareOpc = 199;
9961     else
9962       return false;
9963     break;
9964   case Intrinsic::ppc_altivec_vcmpneb:
9965   case Intrinsic::ppc_altivec_vcmpneh:
9966   case Intrinsic::ppc_altivec_vcmpnew:
9967   case Intrinsic::ppc_altivec_vcmpnezb:
9968   case Intrinsic::ppc_altivec_vcmpnezh:
9969   case Intrinsic::ppc_altivec_vcmpnezw:
9970     if (Subtarget.hasP9Altivec())
9971       switch (IntrinsicID) {
9972       default:
9973         llvm_unreachable("Unknown comparison intrinsic.");
9974       case Intrinsic::ppc_altivec_vcmpneb:
9975         CompareOpc = 7;
9976         break;
9977       case Intrinsic::ppc_altivec_vcmpneh:
9978         CompareOpc = 71;
9979         break;
9980       case Intrinsic::ppc_altivec_vcmpnew:
9981         CompareOpc = 135;
9982         break;
9983       case Intrinsic::ppc_altivec_vcmpnezb:
9984         CompareOpc = 263;
9985         break;
9986       case Intrinsic::ppc_altivec_vcmpnezh:
9987         CompareOpc = 327;
9988         break;
9989       case Intrinsic::ppc_altivec_vcmpnezw:
9990         CompareOpc = 391;
9991         break;
9992       }
9993     else
9994       return false;
9995     break;
9996   case Intrinsic::ppc_altivec_vcmpgefp:
9997     CompareOpc = 454;
9998     break;
9999   case Intrinsic::ppc_altivec_vcmpgtfp:
10000     CompareOpc = 710;
10001     break;
10002   case Intrinsic::ppc_altivec_vcmpgtsb:
10003     CompareOpc = 774;
10004     break;
10005   case Intrinsic::ppc_altivec_vcmpgtsh:
10006     CompareOpc = 838;
10007     break;
10008   case Intrinsic::ppc_altivec_vcmpgtsw:
10009     CompareOpc = 902;
10010     break;
10011   case Intrinsic::ppc_altivec_vcmpgtsd:
10012     if (Subtarget.hasP8Altivec())
10013       CompareOpc = 967;
10014     else
10015       return false;
10016     break;
10017   case Intrinsic::ppc_altivec_vcmpgtub:
10018     CompareOpc = 518;
10019     break;
10020   case Intrinsic::ppc_altivec_vcmpgtuh:
10021     CompareOpc = 582;
10022     break;
10023   case Intrinsic::ppc_altivec_vcmpgtuw:
10024     CompareOpc = 646;
10025     break;
10026   case Intrinsic::ppc_altivec_vcmpgtud:
10027     if (Subtarget.hasP8Altivec())
10028       CompareOpc = 711;
10029     else
10030       return false;
10031     break;
10032   }
10033   return true;
10034 }
10035 
10036 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10037 /// lower, do it, otherwise return null.
10038 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10039                                                    SelectionDAG &DAG) const {
10040   unsigned IntrinsicID =
10041     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10042 
10043   SDLoc dl(Op);
10044 
10045   if (IntrinsicID == Intrinsic::thread_pointer) {
10046     // Reads the thread pointer register, used for __builtin_thread_pointer.
10047     if (Subtarget.isPPC64())
10048       return DAG.getRegister(PPC::X13, MVT::i64);
10049     return DAG.getRegister(PPC::R2, MVT::i32);
10050   }
10051 
10052   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10053   // opcode number of the comparison.
10054   int CompareOpc;
10055   bool isDot;
10056   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10057     return SDValue();    // Don't custom lower most intrinsics.
10058 
10059   // If this is a non-dot comparison, make the VCMP node and we are done.
10060   if (!isDot) {
10061     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10062                               Op.getOperand(1), Op.getOperand(2),
10063                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10064     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10065   }
10066 
10067   // Create the PPCISD altivec 'dot' comparison node.
10068   SDValue Ops[] = {
10069     Op.getOperand(2),  // LHS
10070     Op.getOperand(3),  // RHS
10071     DAG.getConstant(CompareOpc, dl, MVT::i32)
10072   };
10073   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10074   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10075 
10076   // Now that we have the comparison, emit a copy from the CR to a GPR.
10077   // This is flagged to the above dot comparison.
10078   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10079                                 DAG.getRegister(PPC::CR6, MVT::i32),
10080                                 CompNode.getValue(1));
10081 
10082   // Unpack the result based on how the target uses it.
10083   unsigned BitNo;   // Bit # of CR6.
10084   bool InvertBit;   // Invert result?
10085   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10086   default:  // Can't happen, don't crash on invalid number though.
10087   case 0:   // Return the value of the EQ bit of CR6.
10088     BitNo = 0; InvertBit = false;
10089     break;
10090   case 1:   // Return the inverted value of the EQ bit of CR6.
10091     BitNo = 0; InvertBit = true;
10092     break;
10093   case 2:   // Return the value of the LT bit of CR6.
10094     BitNo = 2; InvertBit = false;
10095     break;
10096   case 3:   // Return the inverted value of the LT bit of CR6.
10097     BitNo = 2; InvertBit = true;
10098     break;
10099   }
10100 
10101   // Shift the bit into the low position.
10102   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10103                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10104   // Isolate the bit.
10105   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10106                       DAG.getConstant(1, dl, MVT::i32));
10107 
10108   // If we are supposed to, toggle the bit.
10109   if (InvertBit)
10110     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10111                         DAG.getConstant(1, dl, MVT::i32));
10112   return Flags;
10113 }
10114 
10115 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10116                                                SelectionDAG &DAG) const {
10117   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10118   // the beginning of the argument list.
10119   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10120   SDLoc DL(Op);
10121   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10122   case Intrinsic::ppc_cfence: {
10123     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10124     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10125     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10126                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10127                                                   Op.getOperand(ArgStart + 1)),
10128                                       Op.getOperand(0)),
10129                    0);
10130   }
10131   default:
10132     break;
10133   }
10134   return SDValue();
10135 }
10136 
10137 // Lower scalar BSWAP64 to xxbrd.
10138 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10139   SDLoc dl(Op);
10140   // MTVSRDD
10141   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10142                    Op.getOperand(0));
10143   // XXBRD
10144   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10145   // MFVSRD
10146   int VectorIndex = 0;
10147   if (Subtarget.isLittleEndian())
10148     VectorIndex = 1;
10149   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10150                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10151   return Op;
10152 }
10153 
10154 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10155 // compared to a value that is atomically loaded (atomic loads zero-extend).
10156 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10157                                                 SelectionDAG &DAG) const {
10158   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10159          "Expecting an atomic compare-and-swap here.");
10160   SDLoc dl(Op);
10161   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10162   EVT MemVT = AtomicNode->getMemoryVT();
10163   if (MemVT.getSizeInBits() >= 32)
10164     return Op;
10165 
10166   SDValue CmpOp = Op.getOperand(2);
10167   // If this is already correctly zero-extended, leave it alone.
10168   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10169   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10170     return Op;
10171 
10172   // Clear the high bits of the compare operand.
10173   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10174   SDValue NewCmpOp =
10175     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10176                 DAG.getConstant(MaskVal, dl, MVT::i32));
10177 
10178   // Replace the existing compare operand with the properly zero-extended one.
10179   SmallVector<SDValue, 4> Ops;
10180   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10181     Ops.push_back(AtomicNode->getOperand(i));
10182   Ops[2] = NewCmpOp;
10183   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10184   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10185   auto NodeTy =
10186     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10187   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10188 }
10189 
10190 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10191                                                  SelectionDAG &DAG) const {
10192   SDLoc dl(Op);
10193   // Create a stack slot that is 16-byte aligned.
10194   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10195   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10196   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10197   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10198 
10199   // Store the input value into Value#0 of the stack slot.
10200   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10201                                MachinePointerInfo());
10202   // Load it out.
10203   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10204 }
10205 
10206 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10207                                                   SelectionDAG &DAG) const {
10208   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10209          "Should only be called for ISD::INSERT_VECTOR_ELT");
10210 
10211   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10212   // We have legal lowering for constant indices but not for variable ones.
10213   if (!C)
10214     return SDValue();
10215 
10216   EVT VT = Op.getValueType();
10217   SDLoc dl(Op);
10218   SDValue V1 = Op.getOperand(0);
10219   SDValue V2 = Op.getOperand(1);
10220   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10221   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10222     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10223     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10224     unsigned InsertAtElement = C->getZExtValue();
10225     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10226     if (Subtarget.isLittleEndian()) {
10227       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10228     }
10229     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10230                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10231   }
10232   return Op;
10233 }
10234 
10235 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10236   SDLoc dl(Op);
10237   if (Op.getValueType() == MVT::v4i32) {
10238     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10239 
10240     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10241     // +16 as shift amt.
10242     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10243     SDValue RHSSwap =   // = vrlw RHS, 16
10244       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10245 
10246     // Shrinkify inputs to v8i16.
10247     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10248     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10249     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10250 
10251     // Low parts multiplied together, generating 32-bit results (we ignore the
10252     // top parts).
10253     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10254                                         LHS, RHS, DAG, dl, MVT::v4i32);
10255 
10256     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10257                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10258     // Shift the high parts up 16 bits.
10259     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10260                               Neg16, DAG, dl);
10261     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10262   } else if (Op.getValueType() == MVT::v16i8) {
10263     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10264     bool isLittleEndian = Subtarget.isLittleEndian();
10265 
10266     // Multiply the even 8-bit parts, producing 16-bit sums.
10267     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10268                                            LHS, RHS, DAG, dl, MVT::v8i16);
10269     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10270 
10271     // Multiply the odd 8-bit parts, producing 16-bit sums.
10272     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10273                                           LHS, RHS, DAG, dl, MVT::v8i16);
10274     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10275 
10276     // Merge the results together.  Because vmuleub and vmuloub are
10277     // instructions with a big-endian bias, we must reverse the
10278     // element numbering and reverse the meaning of "odd" and "even"
10279     // when generating little endian code.
10280     int Ops[16];
10281     for (unsigned i = 0; i != 8; ++i) {
10282       if (isLittleEndian) {
10283         Ops[i*2  ] = 2*i;
10284         Ops[i*2+1] = 2*i+16;
10285       } else {
10286         Ops[i*2  ] = 2*i+1;
10287         Ops[i*2+1] = 2*i+1+16;
10288       }
10289     }
10290     if (isLittleEndian)
10291       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10292     else
10293       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10294   } else {
10295     llvm_unreachable("Unknown mul to lower!");
10296   }
10297 }
10298 
10299 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10300 
10301   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10302 
10303   EVT VT = Op.getValueType();
10304   assert(VT.isVector() &&
10305          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10306   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10307           VT == MVT::v16i8) &&
10308          "Unexpected vector element type!");
10309   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10310          "Current subtarget doesn't support smax v2i64!");
10311 
10312   // For vector abs, it can be lowered to:
10313   // abs x
10314   // ==>
10315   // y = -x
10316   // smax(x, y)
10317 
10318   SDLoc dl(Op);
10319   SDValue X = Op.getOperand(0);
10320   SDValue Zero = DAG.getConstant(0, dl, VT);
10321   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10322 
10323   // SMAX patch https://reviews.llvm.org/D47332
10324   // hasn't landed yet, so use intrinsic first here.
10325   // TODO: Should use SMAX directly once SMAX patch landed
10326   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10327   if (VT == MVT::v2i64)
10328     BifID = Intrinsic::ppc_altivec_vmaxsd;
10329   else if (VT == MVT::v8i16)
10330     BifID = Intrinsic::ppc_altivec_vmaxsh;
10331   else if (VT == MVT::v16i8)
10332     BifID = Intrinsic::ppc_altivec_vmaxsb;
10333 
10334   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10335 }
10336 
10337 // Custom lowering for fpext vf32 to v2f64
10338 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10339 
10340   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10341          "Should only be called for ISD::FP_EXTEND");
10342 
10343   // FIXME: handle extends from half precision float vectors on P9.
10344   // We only want to custom lower an extend from v2f32 to v2f64.
10345   if (Op.getValueType() != MVT::v2f64 ||
10346       Op.getOperand(0).getValueType() != MVT::v2f32)
10347     return SDValue();
10348 
10349   SDLoc dl(Op);
10350   SDValue Op0 = Op.getOperand(0);
10351 
10352   switch (Op0.getOpcode()) {
10353   default:
10354     return SDValue();
10355   case ISD::EXTRACT_SUBVECTOR: {
10356     assert(Op0.getNumOperands() == 2 &&
10357            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10358            "Node should have 2 operands with second one being a constant!");
10359 
10360     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10361       return SDValue();
10362 
10363     // Custom lower is only done for high or low doubleword.
10364     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10365     if (Idx % 2 != 0)
10366       return SDValue();
10367 
10368     // Since input is v4f32, at this point Idx is either 0 or 2.
10369     // Shift to get the doubleword position we want.
10370     int DWord = Idx >> 1;
10371 
10372     // High and low word positions are different on little endian.
10373     if (Subtarget.isLittleEndian())
10374       DWord ^= 0x1;
10375 
10376     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10377                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10378   }
10379   case ISD::FADD:
10380   case ISD::FMUL:
10381   case ISD::FSUB: {
10382     SDValue NewLoad[2];
10383     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10384       // Ensure both input are loads.
10385       SDValue LdOp = Op0.getOperand(i);
10386       if (LdOp.getOpcode() != ISD::LOAD)
10387         return SDValue();
10388       // Generate new load node.
10389       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10390       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10391       NewLoad[i] = DAG.getMemIntrinsicNode(
10392           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10393           LD->getMemoryVT(), LD->getMemOperand());
10394     }
10395     SDValue NewOp =
10396         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10397                     NewLoad[1], Op0.getNode()->getFlags());
10398     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10399                        DAG.getConstant(0, dl, MVT::i32));
10400   }
10401   case ISD::LOAD: {
10402     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10403     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10404     SDValue NewLd = DAG.getMemIntrinsicNode(
10405         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10406         LD->getMemoryVT(), LD->getMemOperand());
10407     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10408                        DAG.getConstant(0, dl, MVT::i32));
10409   }
10410   }
10411   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10412 }
10413 
10414 /// LowerOperation - Provide custom lowering hooks for some operations.
10415 ///
10416 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10417   switch (Op.getOpcode()) {
10418   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10419   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10420   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10421   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10422   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10423   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10424   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10425   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10426   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10427 
10428   // Variable argument lowering.
10429   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10430   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10431   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10432 
10433   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10434   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10435   case ISD::GET_DYNAMIC_AREA_OFFSET:
10436     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10437 
10438   // Exception handling lowering.
10439   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10440   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10441   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10442 
10443   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10444   case ISD::STORE:              return LowerSTORE(Op, DAG);
10445   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10446   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10447   case ISD::FP_TO_UINT:
10448   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10449   case ISD::UINT_TO_FP:
10450   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10451   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10452 
10453   // Lower 64-bit shifts.
10454   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10455   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10456   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10457 
10458   // Vector-related lowering.
10459   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10460   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10461   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10462   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10463   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10464   case ISD::MUL:                return LowerMUL(Op, DAG);
10465   case ISD::ABS:                return LowerABS(Op, DAG);
10466   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10467   case ISD::ROTL:               return LowerROTL(Op, DAG);
10468 
10469   // For counter-based loop handling.
10470   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10471 
10472   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10473 
10474   // Frame & Return address.
10475   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10476   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10477 
10478   case ISD::INTRINSIC_VOID:
10479     return LowerINTRINSIC_VOID(Op, DAG);
10480   case ISD::BSWAP:
10481     return LowerBSWAP(Op, DAG);
10482   case ISD::ATOMIC_CMP_SWAP:
10483     return LowerATOMIC_CMP_SWAP(Op, DAG);
10484   }
10485 }
10486 
10487 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10488                                            SmallVectorImpl<SDValue>&Results,
10489                                            SelectionDAG &DAG) const {
10490   SDLoc dl(N);
10491   switch (N->getOpcode()) {
10492   default:
10493     llvm_unreachable("Do not know how to custom type legalize this operation!");
10494   case ISD::READCYCLECOUNTER: {
10495     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10496     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10497 
10498     Results.push_back(
10499         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10500     Results.push_back(RTB.getValue(2));
10501     break;
10502   }
10503   case ISD::INTRINSIC_W_CHAIN: {
10504     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10505         Intrinsic::loop_decrement)
10506       break;
10507 
10508     assert(N->getValueType(0) == MVT::i1 &&
10509            "Unexpected result type for CTR decrement intrinsic");
10510     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10511                                  N->getValueType(0));
10512     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10513     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10514                                  N->getOperand(1));
10515 
10516     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10517     Results.push_back(NewInt.getValue(1));
10518     break;
10519   }
10520   case ISD::VAARG: {
10521     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10522       return;
10523 
10524     EVT VT = N->getValueType(0);
10525 
10526     if (VT == MVT::i64) {
10527       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10528 
10529       Results.push_back(NewNode);
10530       Results.push_back(NewNode.getValue(1));
10531     }
10532     return;
10533   }
10534   case ISD::FP_TO_SINT:
10535   case ISD::FP_TO_UINT:
10536     // LowerFP_TO_INT() can only handle f32 and f64.
10537     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10538       return;
10539     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10540     return;
10541   case ISD::TRUNCATE: {
10542     EVT TrgVT = N->getValueType(0);
10543     EVT OpVT = N->getOperand(0).getValueType();
10544     if (TrgVT.isVector() &&
10545         isOperationCustom(N->getOpcode(), TrgVT) &&
10546         OpVT.getSizeInBits() <= 128 &&
10547         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10548       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10549     return;
10550   }
10551   case ISD::BITCAST:
10552     // Don't handle bitcast here.
10553     return;
10554   case ISD::FP_EXTEND:
10555     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10556     if (Lowered)
10557       Results.push_back(Lowered);
10558     return;
10559   }
10560 }
10561 
10562 //===----------------------------------------------------------------------===//
10563 //  Other Lowering Code
10564 //===----------------------------------------------------------------------===//
10565 
10566 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10567   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10568   Function *Func = Intrinsic::getDeclaration(M, Id);
10569   return Builder.CreateCall(Func, {});
10570 }
10571 
10572 // The mappings for emitLeading/TrailingFence is taken from
10573 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10574 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10575                                                  Instruction *Inst,
10576                                                  AtomicOrdering Ord) const {
10577   if (Ord == AtomicOrdering::SequentiallyConsistent)
10578     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10579   if (isReleaseOrStronger(Ord))
10580     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10581   return nullptr;
10582 }
10583 
10584 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10585                                                   Instruction *Inst,
10586                                                   AtomicOrdering Ord) const {
10587   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10588     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10589     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10590     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10591     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10592       return Builder.CreateCall(
10593           Intrinsic::getDeclaration(
10594               Builder.GetInsertBlock()->getParent()->getParent(),
10595               Intrinsic::ppc_cfence, {Inst->getType()}),
10596           {Inst});
10597     // FIXME: Can use isync for rmw operation.
10598     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10599   }
10600   return nullptr;
10601 }
10602 
10603 MachineBasicBlock *
10604 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10605                                     unsigned AtomicSize,
10606                                     unsigned BinOpcode,
10607                                     unsigned CmpOpcode,
10608                                     unsigned CmpPred) const {
10609   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10610   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10611 
10612   auto LoadMnemonic = PPC::LDARX;
10613   auto StoreMnemonic = PPC::STDCX;
10614   switch (AtomicSize) {
10615   default:
10616     llvm_unreachable("Unexpected size of atomic entity");
10617   case 1:
10618     LoadMnemonic = PPC::LBARX;
10619     StoreMnemonic = PPC::STBCX;
10620     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10621     break;
10622   case 2:
10623     LoadMnemonic = PPC::LHARX;
10624     StoreMnemonic = PPC::STHCX;
10625     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10626     break;
10627   case 4:
10628     LoadMnemonic = PPC::LWARX;
10629     StoreMnemonic = PPC::STWCX;
10630     break;
10631   case 8:
10632     LoadMnemonic = PPC::LDARX;
10633     StoreMnemonic = PPC::STDCX;
10634     break;
10635   }
10636 
10637   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10638   MachineFunction *F = BB->getParent();
10639   MachineFunction::iterator It = ++BB->getIterator();
10640 
10641   Register dest = MI.getOperand(0).getReg();
10642   Register ptrA = MI.getOperand(1).getReg();
10643   Register ptrB = MI.getOperand(2).getReg();
10644   Register incr = MI.getOperand(3).getReg();
10645   DebugLoc dl = MI.getDebugLoc();
10646 
10647   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10648   MachineBasicBlock *loop2MBB =
10649     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10650   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10651   F->insert(It, loopMBB);
10652   if (CmpOpcode)
10653     F->insert(It, loop2MBB);
10654   F->insert(It, exitMBB);
10655   exitMBB->splice(exitMBB->begin(), BB,
10656                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10657   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10658 
10659   MachineRegisterInfo &RegInfo = F->getRegInfo();
10660   Register TmpReg = (!BinOpcode) ? incr :
10661     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10662                                            : &PPC::GPRCRegClass);
10663 
10664   //  thisMBB:
10665   //   ...
10666   //   fallthrough --> loopMBB
10667   BB->addSuccessor(loopMBB);
10668 
10669   //  loopMBB:
10670   //   l[wd]arx dest, ptr
10671   //   add r0, dest, incr
10672   //   st[wd]cx. r0, ptr
10673   //   bne- loopMBB
10674   //   fallthrough --> exitMBB
10675 
10676   // For max/min...
10677   //  loopMBB:
10678   //   l[wd]arx dest, ptr
10679   //   cmpl?[wd] incr, dest
10680   //   bgt exitMBB
10681   //  loop2MBB:
10682   //   st[wd]cx. dest, ptr
10683   //   bne- loopMBB
10684   //   fallthrough --> exitMBB
10685 
10686   BB = loopMBB;
10687   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10688     .addReg(ptrA).addReg(ptrB);
10689   if (BinOpcode)
10690     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10691   if (CmpOpcode) {
10692     // Signed comparisons of byte or halfword values must be sign-extended.
10693     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10694       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10695       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10696               ExtReg).addReg(dest);
10697       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10698         .addReg(incr).addReg(ExtReg);
10699     } else
10700       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10701         .addReg(incr).addReg(dest);
10702 
10703     BuildMI(BB, dl, TII->get(PPC::BCC))
10704       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10705     BB->addSuccessor(loop2MBB);
10706     BB->addSuccessor(exitMBB);
10707     BB = loop2MBB;
10708   }
10709   BuildMI(BB, dl, TII->get(StoreMnemonic))
10710     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10711   BuildMI(BB, dl, TII->get(PPC::BCC))
10712     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10713   BB->addSuccessor(loopMBB);
10714   BB->addSuccessor(exitMBB);
10715 
10716   //  exitMBB:
10717   //   ...
10718   BB = exitMBB;
10719   return BB;
10720 }
10721 
10722 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10723     MachineInstr &MI, MachineBasicBlock *BB,
10724     bool is8bit, // operation
10725     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10726   // If we support part-word atomic mnemonics, just use them
10727   if (Subtarget.hasPartwordAtomics())
10728     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10729                             CmpPred);
10730 
10731   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10732   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10733   // In 64 bit mode we have to use 64 bits for addresses, even though the
10734   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10735   // registers without caring whether they're 32 or 64, but here we're
10736   // doing actual arithmetic on the addresses.
10737   bool is64bit = Subtarget.isPPC64();
10738   bool isLittleEndian = Subtarget.isLittleEndian();
10739   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10740 
10741   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10742   MachineFunction *F = BB->getParent();
10743   MachineFunction::iterator It = ++BB->getIterator();
10744 
10745   Register dest = MI.getOperand(0).getReg();
10746   Register ptrA = MI.getOperand(1).getReg();
10747   Register ptrB = MI.getOperand(2).getReg();
10748   Register incr = MI.getOperand(3).getReg();
10749   DebugLoc dl = MI.getDebugLoc();
10750 
10751   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10752   MachineBasicBlock *loop2MBB =
10753       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10754   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10755   F->insert(It, loopMBB);
10756   if (CmpOpcode)
10757     F->insert(It, loop2MBB);
10758   F->insert(It, exitMBB);
10759   exitMBB->splice(exitMBB->begin(), BB,
10760                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10761   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10762 
10763   MachineRegisterInfo &RegInfo = F->getRegInfo();
10764   const TargetRegisterClass *RC =
10765       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10766   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10767 
10768   Register PtrReg = RegInfo.createVirtualRegister(RC);
10769   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10770   Register ShiftReg =
10771       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10772   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10773   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10774   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10775   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10776   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10777   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10778   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10779   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10780   Register Ptr1Reg;
10781   Register TmpReg =
10782       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10783 
10784   //  thisMBB:
10785   //   ...
10786   //   fallthrough --> loopMBB
10787   BB->addSuccessor(loopMBB);
10788 
10789   // The 4-byte load must be aligned, while a char or short may be
10790   // anywhere in the word.  Hence all this nasty bookkeeping code.
10791   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10792   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10793   //   xori shift, shift1, 24 [16]
10794   //   rlwinm ptr, ptr1, 0, 0, 29
10795   //   slw incr2, incr, shift
10796   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10797   //   slw mask, mask2, shift
10798   //  loopMBB:
10799   //   lwarx tmpDest, ptr
10800   //   add tmp, tmpDest, incr2
10801   //   andc tmp2, tmpDest, mask
10802   //   and tmp3, tmp, mask
10803   //   or tmp4, tmp3, tmp2
10804   //   stwcx. tmp4, ptr
10805   //   bne- loopMBB
10806   //   fallthrough --> exitMBB
10807   //   srw dest, tmpDest, shift
10808   if (ptrA != ZeroReg) {
10809     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10810     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10811         .addReg(ptrA)
10812         .addReg(ptrB);
10813   } else {
10814     Ptr1Reg = ptrB;
10815   }
10816   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10817   // mode.
10818   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10819       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10820       .addImm(3)
10821       .addImm(27)
10822       .addImm(is8bit ? 28 : 27);
10823   if (!isLittleEndian)
10824     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10825         .addReg(Shift1Reg)
10826         .addImm(is8bit ? 24 : 16);
10827   if (is64bit)
10828     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10829         .addReg(Ptr1Reg)
10830         .addImm(0)
10831         .addImm(61);
10832   else
10833     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10834         .addReg(Ptr1Reg)
10835         .addImm(0)
10836         .addImm(0)
10837         .addImm(29);
10838   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10839   if (is8bit)
10840     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10841   else {
10842     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10843     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10844         .addReg(Mask3Reg)
10845         .addImm(65535);
10846   }
10847   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10848       .addReg(Mask2Reg)
10849       .addReg(ShiftReg);
10850 
10851   BB = loopMBB;
10852   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10853       .addReg(ZeroReg)
10854       .addReg(PtrReg);
10855   if (BinOpcode)
10856     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10857         .addReg(Incr2Reg)
10858         .addReg(TmpDestReg);
10859   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10860       .addReg(TmpDestReg)
10861       .addReg(MaskReg);
10862   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10863   if (CmpOpcode) {
10864     // For unsigned comparisons, we can directly compare the shifted values.
10865     // For signed comparisons we shift and sign extend.
10866     Register SReg = RegInfo.createVirtualRegister(GPRC);
10867     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10868         .addReg(TmpDestReg)
10869         .addReg(MaskReg);
10870     unsigned ValueReg = SReg;
10871     unsigned CmpReg = Incr2Reg;
10872     if (CmpOpcode == PPC::CMPW) {
10873       ValueReg = RegInfo.createVirtualRegister(GPRC);
10874       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10875           .addReg(SReg)
10876           .addReg(ShiftReg);
10877       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10878       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10879           .addReg(ValueReg);
10880       ValueReg = ValueSReg;
10881       CmpReg = incr;
10882     }
10883     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10884         .addReg(CmpReg)
10885         .addReg(ValueReg);
10886     BuildMI(BB, dl, TII->get(PPC::BCC))
10887         .addImm(CmpPred)
10888         .addReg(PPC::CR0)
10889         .addMBB(exitMBB);
10890     BB->addSuccessor(loop2MBB);
10891     BB->addSuccessor(exitMBB);
10892     BB = loop2MBB;
10893   }
10894   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10895   BuildMI(BB, dl, TII->get(PPC::STWCX))
10896       .addReg(Tmp4Reg)
10897       .addReg(ZeroReg)
10898       .addReg(PtrReg);
10899   BuildMI(BB, dl, TII->get(PPC::BCC))
10900       .addImm(PPC::PRED_NE)
10901       .addReg(PPC::CR0)
10902       .addMBB(loopMBB);
10903   BB->addSuccessor(loopMBB);
10904   BB->addSuccessor(exitMBB);
10905 
10906   //  exitMBB:
10907   //   ...
10908   BB = exitMBB;
10909   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10910       .addReg(TmpDestReg)
10911       .addReg(ShiftReg);
10912   return BB;
10913 }
10914 
10915 llvm::MachineBasicBlock *
10916 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10917                                     MachineBasicBlock *MBB) const {
10918   DebugLoc DL = MI.getDebugLoc();
10919   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10920   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10921 
10922   MachineFunction *MF = MBB->getParent();
10923   MachineRegisterInfo &MRI = MF->getRegInfo();
10924 
10925   const BasicBlock *BB = MBB->getBasicBlock();
10926   MachineFunction::iterator I = ++MBB->getIterator();
10927 
10928   Register DstReg = MI.getOperand(0).getReg();
10929   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10930   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10931   Register mainDstReg = MRI.createVirtualRegister(RC);
10932   Register restoreDstReg = MRI.createVirtualRegister(RC);
10933 
10934   MVT PVT = getPointerTy(MF->getDataLayout());
10935   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10936          "Invalid Pointer Size!");
10937   // For v = setjmp(buf), we generate
10938   //
10939   // thisMBB:
10940   //  SjLjSetup mainMBB
10941   //  bl mainMBB
10942   //  v_restore = 1
10943   //  b sinkMBB
10944   //
10945   // mainMBB:
10946   //  buf[LabelOffset] = LR
10947   //  v_main = 0
10948   //
10949   // sinkMBB:
10950   //  v = phi(main, restore)
10951   //
10952 
10953   MachineBasicBlock *thisMBB = MBB;
10954   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10955   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10956   MF->insert(I, mainMBB);
10957   MF->insert(I, sinkMBB);
10958 
10959   MachineInstrBuilder MIB;
10960 
10961   // Transfer the remainder of BB and its successor edges to sinkMBB.
10962   sinkMBB->splice(sinkMBB->begin(), MBB,
10963                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10964   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10965 
10966   // Note that the structure of the jmp_buf used here is not compatible
10967   // with that used by libc, and is not designed to be. Specifically, it
10968   // stores only those 'reserved' registers that LLVM does not otherwise
10969   // understand how to spill. Also, by convention, by the time this
10970   // intrinsic is called, Clang has already stored the frame address in the
10971   // first slot of the buffer and stack address in the third. Following the
10972   // X86 target code, we'll store the jump address in the second slot. We also
10973   // need to save the TOC pointer (R2) to handle jumps between shared
10974   // libraries, and that will be stored in the fourth slot. The thread
10975   // identifier (R13) is not affected.
10976 
10977   // thisMBB:
10978   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10979   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10980   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10981 
10982   // Prepare IP either in reg.
10983   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10984   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10985   Register BufReg = MI.getOperand(1).getReg();
10986 
10987   if (Subtarget.is64BitELFABI()) {
10988     setUsesTOCBasePtr(*MBB->getParent());
10989     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10990               .addReg(PPC::X2)
10991               .addImm(TOCOffset)
10992               .addReg(BufReg)
10993               .cloneMemRefs(MI);
10994   }
10995 
10996   // Naked functions never have a base pointer, and so we use r1. For all
10997   // other functions, this decision must be delayed until during PEI.
10998   unsigned BaseReg;
10999   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11000     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11001   else
11002     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11003 
11004   MIB = BuildMI(*thisMBB, MI, DL,
11005                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11006             .addReg(BaseReg)
11007             .addImm(BPOffset)
11008             .addReg(BufReg)
11009             .cloneMemRefs(MI);
11010 
11011   // Setup
11012   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11013   MIB.addRegMask(TRI->getNoPreservedMask());
11014 
11015   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11016 
11017   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11018           .addMBB(mainMBB);
11019   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11020 
11021   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11022   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11023 
11024   // mainMBB:
11025   //  mainDstReg = 0
11026   MIB =
11027       BuildMI(mainMBB, DL,
11028               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11029 
11030   // Store IP
11031   if (Subtarget.isPPC64()) {
11032     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11033             .addReg(LabelReg)
11034             .addImm(LabelOffset)
11035             .addReg(BufReg);
11036   } else {
11037     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11038             .addReg(LabelReg)
11039             .addImm(LabelOffset)
11040             .addReg(BufReg);
11041   }
11042   MIB.cloneMemRefs(MI);
11043 
11044   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11045   mainMBB->addSuccessor(sinkMBB);
11046 
11047   // sinkMBB:
11048   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11049           TII->get(PPC::PHI), DstReg)
11050     .addReg(mainDstReg).addMBB(mainMBB)
11051     .addReg(restoreDstReg).addMBB(thisMBB);
11052 
11053   MI.eraseFromParent();
11054   return sinkMBB;
11055 }
11056 
11057 MachineBasicBlock *
11058 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11059                                      MachineBasicBlock *MBB) const {
11060   DebugLoc DL = MI.getDebugLoc();
11061   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11062 
11063   MachineFunction *MF = MBB->getParent();
11064   MachineRegisterInfo &MRI = MF->getRegInfo();
11065 
11066   MVT PVT = getPointerTy(MF->getDataLayout());
11067   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11068          "Invalid Pointer Size!");
11069 
11070   const TargetRegisterClass *RC =
11071     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11072   Register Tmp = MRI.createVirtualRegister(RC);
11073   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11074   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11075   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11076   unsigned BP =
11077       (PVT == MVT::i64)
11078           ? PPC::X30
11079           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11080                                                               : PPC::R30);
11081 
11082   MachineInstrBuilder MIB;
11083 
11084   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11085   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11086   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11087   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11088 
11089   Register BufReg = MI.getOperand(0).getReg();
11090 
11091   // Reload FP (the jumped-to function may not have had a
11092   // frame pointer, and if so, then its r31 will be restored
11093   // as necessary).
11094   if (PVT == MVT::i64) {
11095     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11096             .addImm(0)
11097             .addReg(BufReg);
11098   } else {
11099     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11100             .addImm(0)
11101             .addReg(BufReg);
11102   }
11103   MIB.cloneMemRefs(MI);
11104 
11105   // Reload IP
11106   if (PVT == MVT::i64) {
11107     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11108             .addImm(LabelOffset)
11109             .addReg(BufReg);
11110   } else {
11111     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11112             .addImm(LabelOffset)
11113             .addReg(BufReg);
11114   }
11115   MIB.cloneMemRefs(MI);
11116 
11117   // Reload SP
11118   if (PVT == MVT::i64) {
11119     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11120             .addImm(SPOffset)
11121             .addReg(BufReg);
11122   } else {
11123     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11124             .addImm(SPOffset)
11125             .addReg(BufReg);
11126   }
11127   MIB.cloneMemRefs(MI);
11128 
11129   // Reload BP
11130   if (PVT == MVT::i64) {
11131     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11132             .addImm(BPOffset)
11133             .addReg(BufReg);
11134   } else {
11135     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11136             .addImm(BPOffset)
11137             .addReg(BufReg);
11138   }
11139   MIB.cloneMemRefs(MI);
11140 
11141   // Reload TOC
11142   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11143     setUsesTOCBasePtr(*MBB->getParent());
11144     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11145               .addImm(TOCOffset)
11146               .addReg(BufReg)
11147               .cloneMemRefs(MI);
11148   }
11149 
11150   // Jump
11151   BuildMI(*MBB, MI, DL,
11152           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11153   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11154 
11155   MI.eraseFromParent();
11156   return MBB;
11157 }
11158 
11159 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11160   // If the function specifically requests inline stack probes, emit them.
11161   if (MF.getFunction().hasFnAttribute("probe-stack"))
11162     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11163            "inline-asm";
11164   return false;
11165 }
11166 
11167 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11168   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11169   unsigned StackAlign = TFI->getStackAlignment();
11170   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11171          "Unexpected stack alignment");
11172   // The default stack probe size is 4096 if the function has no
11173   // stack-probe-size attribute.
11174   unsigned StackProbeSize = 4096;
11175   const Function &Fn = MF.getFunction();
11176   if (Fn.hasFnAttribute("stack-probe-size"))
11177     Fn.getFnAttribute("stack-probe-size")
11178         .getValueAsString()
11179         .getAsInteger(0, StackProbeSize);
11180   // Round down to the stack alignment.
11181   StackProbeSize &= ~(StackAlign - 1);
11182   return StackProbeSize ? StackProbeSize : StackAlign;
11183 }
11184 
11185 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11186 // into three phases. In the first phase, it uses pseudo instruction
11187 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11188 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11189 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11190 // MaxCallFrameSize so that it can calculate correct data area pointer.
11191 MachineBasicBlock *
11192 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11193                                     MachineBasicBlock *MBB) const {
11194   const bool isPPC64 = Subtarget.isPPC64();
11195   MachineFunction *MF = MBB->getParent();
11196   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11197   DebugLoc DL = MI.getDebugLoc();
11198   const unsigned ProbeSize = getStackProbeSize(*MF);
11199   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11200   MachineRegisterInfo &MRI = MF->getRegInfo();
11201   // The CFG of probing stack looks as
11202   //         +-----+
11203   //         | MBB |
11204   //         +--+--+
11205   //            |
11206   //       +----v----+
11207   //  +--->+ TestMBB +---+
11208   //  |    +----+----+   |
11209   //  |         |        |
11210   //  |   +-----v----+   |
11211   //  +---+ BlockMBB |   |
11212   //      +----------+   |
11213   //                     |
11214   //       +---------+   |
11215   //       | TailMBB +<--+
11216   //       +---------+
11217   // In MBB, calculate previous frame pointer and final stack pointer.
11218   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11219   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11220   // TailMBB is spliced via \p MI.
11221   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11222   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11223   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11224 
11225   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11226   MF->insert(MBBIter, TestMBB);
11227   MF->insert(MBBIter, BlockMBB);
11228   MF->insert(MBBIter, TailMBB);
11229 
11230   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11231   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11232 
11233   Register DstReg = MI.getOperand(0).getReg();
11234   Register NegSizeReg = MI.getOperand(1).getReg();
11235   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11236   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11237   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11238   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11239 
11240   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11241   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11242   // NegSize.
11243   unsigned ProbeOpc;
11244   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11245     ProbeOpc =
11246         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11247   else
11248     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11249     // and NegSizeReg will be allocated in the same phyreg to avoid
11250     // redundant copy when NegSizeReg has only one use which is current MI and
11251     // will be replaced by PREPARE_PROBED_ALLOCA then.
11252     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11253                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11254   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11255       .addDef(ActualNegSizeReg)
11256       .addReg(NegSizeReg)
11257       .add(MI.getOperand(2))
11258       .add(MI.getOperand(3));
11259 
11260   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11261   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11262           FinalStackPtr)
11263       .addReg(SPReg)
11264       .addReg(ActualNegSizeReg);
11265 
11266   // Materialize a scratch register for update.
11267   int64_t NegProbeSize = -(int64_t)ProbeSize;
11268   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11269   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11270   if (!isInt<16>(NegProbeSize)) {
11271     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11272     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11273         .addImm(NegProbeSize >> 16);
11274     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11275             ScratchReg)
11276         .addReg(TempReg)
11277         .addImm(NegProbeSize & 0xFFFF);
11278   } else
11279     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11280         .addImm(NegProbeSize);
11281 
11282   {
11283     // Probing leading residual part.
11284     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11285     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11286         .addReg(ActualNegSizeReg)
11287         .addReg(ScratchReg);
11288     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11289     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11290         .addReg(Div)
11291         .addReg(ScratchReg);
11292     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11293     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11294         .addReg(Mul)
11295         .addReg(ActualNegSizeReg);
11296     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11297         .addReg(FramePointer)
11298         .addReg(SPReg)
11299         .addReg(NegMod);
11300   }
11301 
11302   {
11303     // Remaining part should be multiple of ProbeSize.
11304     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11305     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11306         .addReg(SPReg)
11307         .addReg(FinalStackPtr);
11308     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11309         .addImm(PPC::PRED_EQ)
11310         .addReg(CmpResult)
11311         .addMBB(TailMBB);
11312     TestMBB->addSuccessor(BlockMBB);
11313     TestMBB->addSuccessor(TailMBB);
11314   }
11315 
11316   {
11317     // Touch the block.
11318     // |P...|P...|P...
11319     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11320         .addReg(FramePointer)
11321         .addReg(SPReg)
11322         .addReg(ScratchReg);
11323     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11324     BlockMBB->addSuccessor(TestMBB);
11325   }
11326 
11327   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11328   // DYNAREAOFFSET pseudo instruction to get the future result.
11329   Register MaxCallFrameSizeReg =
11330       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11331   BuildMI(TailMBB, DL,
11332           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11333           MaxCallFrameSizeReg)
11334       .add(MI.getOperand(2))
11335       .add(MI.getOperand(3));
11336   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11337       .addReg(SPReg)
11338       .addReg(MaxCallFrameSizeReg);
11339 
11340   // Splice instructions after MI to TailMBB.
11341   TailMBB->splice(TailMBB->end(), MBB,
11342                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11343   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11344   MBB->addSuccessor(TestMBB);
11345 
11346   // Delete the pseudo instruction.
11347   MI.eraseFromParent();
11348 
11349   ++NumDynamicAllocaProbed;
11350   return TailMBB;
11351 }
11352 
11353 MachineBasicBlock *
11354 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11355                                                MachineBasicBlock *BB) const {
11356   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11357       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11358     if (Subtarget.is64BitELFABI() &&
11359         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11360         !Subtarget.isUsingPCRelativeCalls()) {
11361       // Call lowering should have added an r2 operand to indicate a dependence
11362       // on the TOC base pointer value. It can't however, because there is no
11363       // way to mark the dependence as implicit there, and so the stackmap code
11364       // will confuse it with a regular operand. Instead, add the dependence
11365       // here.
11366       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11367     }
11368 
11369     return emitPatchPoint(MI, BB);
11370   }
11371 
11372   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11373       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11374     return emitEHSjLjSetJmp(MI, BB);
11375   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11376              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11377     return emitEHSjLjLongJmp(MI, BB);
11378   }
11379 
11380   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11381 
11382   // To "insert" these instructions we actually have to insert their
11383   // control-flow patterns.
11384   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11385   MachineFunction::iterator It = ++BB->getIterator();
11386 
11387   MachineFunction *F = BB->getParent();
11388 
11389   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11390       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11391       MI.getOpcode() == PPC::SELECT_I8) {
11392     SmallVector<MachineOperand, 2> Cond;
11393     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11394         MI.getOpcode() == PPC::SELECT_CC_I8)
11395       Cond.push_back(MI.getOperand(4));
11396     else
11397       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11398     Cond.push_back(MI.getOperand(1));
11399 
11400     DebugLoc dl = MI.getDebugLoc();
11401     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11402                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11403   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11404              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11405              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11406              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11407              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11408              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11409              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11410              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11411              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11412              MI.getOpcode() == PPC::SELECT_F4 ||
11413              MI.getOpcode() == PPC::SELECT_F8 ||
11414              MI.getOpcode() == PPC::SELECT_F16 ||
11415              MI.getOpcode() == PPC::SELECT_SPE ||
11416              MI.getOpcode() == PPC::SELECT_SPE4 ||
11417              MI.getOpcode() == PPC::SELECT_VRRC ||
11418              MI.getOpcode() == PPC::SELECT_VSFRC ||
11419              MI.getOpcode() == PPC::SELECT_VSSRC ||
11420              MI.getOpcode() == PPC::SELECT_VSRC) {
11421     // The incoming instruction knows the destination vreg to set, the
11422     // condition code register to branch on, the true/false values to
11423     // select between, and a branch opcode to use.
11424 
11425     //  thisMBB:
11426     //  ...
11427     //   TrueVal = ...
11428     //   cmpTY ccX, r1, r2
11429     //   bCC copy1MBB
11430     //   fallthrough --> copy0MBB
11431     MachineBasicBlock *thisMBB = BB;
11432     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11433     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11434     DebugLoc dl = MI.getDebugLoc();
11435     F->insert(It, copy0MBB);
11436     F->insert(It, sinkMBB);
11437 
11438     // Transfer the remainder of BB and its successor edges to sinkMBB.
11439     sinkMBB->splice(sinkMBB->begin(), BB,
11440                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11441     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11442 
11443     // Next, add the true and fallthrough blocks as its successors.
11444     BB->addSuccessor(copy0MBB);
11445     BB->addSuccessor(sinkMBB);
11446 
11447     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11448         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11449         MI.getOpcode() == PPC::SELECT_F16 ||
11450         MI.getOpcode() == PPC::SELECT_SPE4 ||
11451         MI.getOpcode() == PPC::SELECT_SPE ||
11452         MI.getOpcode() == PPC::SELECT_VRRC ||
11453         MI.getOpcode() == PPC::SELECT_VSFRC ||
11454         MI.getOpcode() == PPC::SELECT_VSSRC ||
11455         MI.getOpcode() == PPC::SELECT_VSRC) {
11456       BuildMI(BB, dl, TII->get(PPC::BC))
11457           .addReg(MI.getOperand(1).getReg())
11458           .addMBB(sinkMBB);
11459     } else {
11460       unsigned SelectPred = MI.getOperand(4).getImm();
11461       BuildMI(BB, dl, TII->get(PPC::BCC))
11462           .addImm(SelectPred)
11463           .addReg(MI.getOperand(1).getReg())
11464           .addMBB(sinkMBB);
11465     }
11466 
11467     //  copy0MBB:
11468     //   %FalseValue = ...
11469     //   # fallthrough to sinkMBB
11470     BB = copy0MBB;
11471 
11472     // Update machine-CFG edges
11473     BB->addSuccessor(sinkMBB);
11474 
11475     //  sinkMBB:
11476     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11477     //  ...
11478     BB = sinkMBB;
11479     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11480         .addReg(MI.getOperand(3).getReg())
11481         .addMBB(copy0MBB)
11482         .addReg(MI.getOperand(2).getReg())
11483         .addMBB(thisMBB);
11484   } else if (MI.getOpcode() == PPC::ReadTB) {
11485     // To read the 64-bit time-base register on a 32-bit target, we read the
11486     // two halves. Should the counter have wrapped while it was being read, we
11487     // need to try again.
11488     // ...
11489     // readLoop:
11490     // mfspr Rx,TBU # load from TBU
11491     // mfspr Ry,TB  # load from TB
11492     // mfspr Rz,TBU # load from TBU
11493     // cmpw crX,Rx,Rz # check if 'old'='new'
11494     // bne readLoop   # branch if they're not equal
11495     // ...
11496 
11497     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11498     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11499     DebugLoc dl = MI.getDebugLoc();
11500     F->insert(It, readMBB);
11501     F->insert(It, sinkMBB);
11502 
11503     // Transfer the remainder of BB and its successor edges to sinkMBB.
11504     sinkMBB->splice(sinkMBB->begin(), BB,
11505                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11506     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11507 
11508     BB->addSuccessor(readMBB);
11509     BB = readMBB;
11510 
11511     MachineRegisterInfo &RegInfo = F->getRegInfo();
11512     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11513     Register LoReg = MI.getOperand(0).getReg();
11514     Register HiReg = MI.getOperand(1).getReg();
11515 
11516     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11517     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11518     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11519 
11520     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11521 
11522     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11523         .addReg(HiReg)
11524         .addReg(ReadAgainReg);
11525     BuildMI(BB, dl, TII->get(PPC::BCC))
11526         .addImm(PPC::PRED_NE)
11527         .addReg(CmpReg)
11528         .addMBB(readMBB);
11529 
11530     BB->addSuccessor(readMBB);
11531     BB->addSuccessor(sinkMBB);
11532   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11533     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11534   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11535     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11536   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11537     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11538   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11539     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11540 
11541   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11542     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11544     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11546     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11547   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11548     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11549 
11550   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11551     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11553     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11555     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11556   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11557     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11558 
11559   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11560     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11562     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11564     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11565   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11566     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11567 
11568   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11569     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11571     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11573     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11574   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11575     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11576 
11577   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11578     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11580     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11582     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11583   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11584     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11585 
11586   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11587     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11589     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11591     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11592   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11593     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11594 
11595   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11596     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11598     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11600     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11601   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11602     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11603 
11604   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11605     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11606   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11607     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11608   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11609     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11610   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11611     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11612 
11613   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11614     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11615   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11616     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11617   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11618     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11619   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11620     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11621 
11622   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11623     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11624   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11625     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11626   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11627     BB = EmitAtomicBinary(MI, BB, 4, 0);
11628   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11629     BB = EmitAtomicBinary(MI, BB, 8, 0);
11630   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11631            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11632            (Subtarget.hasPartwordAtomics() &&
11633             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11634            (Subtarget.hasPartwordAtomics() &&
11635             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11636     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11637 
11638     auto LoadMnemonic = PPC::LDARX;
11639     auto StoreMnemonic = PPC::STDCX;
11640     switch (MI.getOpcode()) {
11641     default:
11642       llvm_unreachable("Compare and swap of unknown size");
11643     case PPC::ATOMIC_CMP_SWAP_I8:
11644       LoadMnemonic = PPC::LBARX;
11645       StoreMnemonic = PPC::STBCX;
11646       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11647       break;
11648     case PPC::ATOMIC_CMP_SWAP_I16:
11649       LoadMnemonic = PPC::LHARX;
11650       StoreMnemonic = PPC::STHCX;
11651       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11652       break;
11653     case PPC::ATOMIC_CMP_SWAP_I32:
11654       LoadMnemonic = PPC::LWARX;
11655       StoreMnemonic = PPC::STWCX;
11656       break;
11657     case PPC::ATOMIC_CMP_SWAP_I64:
11658       LoadMnemonic = PPC::LDARX;
11659       StoreMnemonic = PPC::STDCX;
11660       break;
11661     }
11662     Register dest = MI.getOperand(0).getReg();
11663     Register ptrA = MI.getOperand(1).getReg();
11664     Register ptrB = MI.getOperand(2).getReg();
11665     Register oldval = MI.getOperand(3).getReg();
11666     Register newval = MI.getOperand(4).getReg();
11667     DebugLoc dl = MI.getDebugLoc();
11668 
11669     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11670     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11671     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11672     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11673     F->insert(It, loop1MBB);
11674     F->insert(It, loop2MBB);
11675     F->insert(It, midMBB);
11676     F->insert(It, exitMBB);
11677     exitMBB->splice(exitMBB->begin(), BB,
11678                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11679     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11680 
11681     //  thisMBB:
11682     //   ...
11683     //   fallthrough --> loopMBB
11684     BB->addSuccessor(loop1MBB);
11685 
11686     // loop1MBB:
11687     //   l[bhwd]arx dest, ptr
11688     //   cmp[wd] dest, oldval
11689     //   bne- midMBB
11690     // loop2MBB:
11691     //   st[bhwd]cx. newval, ptr
11692     //   bne- loopMBB
11693     //   b exitBB
11694     // midMBB:
11695     //   st[bhwd]cx. dest, ptr
11696     // exitBB:
11697     BB = loop1MBB;
11698     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11699     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11700         .addReg(oldval)
11701         .addReg(dest);
11702     BuildMI(BB, dl, TII->get(PPC::BCC))
11703         .addImm(PPC::PRED_NE)
11704         .addReg(PPC::CR0)
11705         .addMBB(midMBB);
11706     BB->addSuccessor(loop2MBB);
11707     BB->addSuccessor(midMBB);
11708 
11709     BB = loop2MBB;
11710     BuildMI(BB, dl, TII->get(StoreMnemonic))
11711         .addReg(newval)
11712         .addReg(ptrA)
11713         .addReg(ptrB);
11714     BuildMI(BB, dl, TII->get(PPC::BCC))
11715         .addImm(PPC::PRED_NE)
11716         .addReg(PPC::CR0)
11717         .addMBB(loop1MBB);
11718     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11719     BB->addSuccessor(loop1MBB);
11720     BB->addSuccessor(exitMBB);
11721 
11722     BB = midMBB;
11723     BuildMI(BB, dl, TII->get(StoreMnemonic))
11724         .addReg(dest)
11725         .addReg(ptrA)
11726         .addReg(ptrB);
11727     BB->addSuccessor(exitMBB);
11728 
11729     //  exitMBB:
11730     //   ...
11731     BB = exitMBB;
11732   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11733              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11734     // We must use 64-bit registers for addresses when targeting 64-bit,
11735     // since we're actually doing arithmetic on them.  Other registers
11736     // can be 32-bit.
11737     bool is64bit = Subtarget.isPPC64();
11738     bool isLittleEndian = Subtarget.isLittleEndian();
11739     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11740 
11741     Register dest = MI.getOperand(0).getReg();
11742     Register ptrA = MI.getOperand(1).getReg();
11743     Register ptrB = MI.getOperand(2).getReg();
11744     Register oldval = MI.getOperand(3).getReg();
11745     Register newval = MI.getOperand(4).getReg();
11746     DebugLoc dl = MI.getDebugLoc();
11747 
11748     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11749     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11750     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11751     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11752     F->insert(It, loop1MBB);
11753     F->insert(It, loop2MBB);
11754     F->insert(It, midMBB);
11755     F->insert(It, exitMBB);
11756     exitMBB->splice(exitMBB->begin(), BB,
11757                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11758     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11759 
11760     MachineRegisterInfo &RegInfo = F->getRegInfo();
11761     const TargetRegisterClass *RC =
11762         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11763     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11764 
11765     Register PtrReg = RegInfo.createVirtualRegister(RC);
11766     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11767     Register ShiftReg =
11768         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11769     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11770     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11771     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11772     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11773     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11774     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11775     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11776     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11777     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11778     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11779     Register Ptr1Reg;
11780     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11781     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11782     //  thisMBB:
11783     //   ...
11784     //   fallthrough --> loopMBB
11785     BB->addSuccessor(loop1MBB);
11786 
11787     // The 4-byte load must be aligned, while a char or short may be
11788     // anywhere in the word.  Hence all this nasty bookkeeping code.
11789     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11790     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11791     //   xori shift, shift1, 24 [16]
11792     //   rlwinm ptr, ptr1, 0, 0, 29
11793     //   slw newval2, newval, shift
11794     //   slw oldval2, oldval,shift
11795     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11796     //   slw mask, mask2, shift
11797     //   and newval3, newval2, mask
11798     //   and oldval3, oldval2, mask
11799     // loop1MBB:
11800     //   lwarx tmpDest, ptr
11801     //   and tmp, tmpDest, mask
11802     //   cmpw tmp, oldval3
11803     //   bne- midMBB
11804     // loop2MBB:
11805     //   andc tmp2, tmpDest, mask
11806     //   or tmp4, tmp2, newval3
11807     //   stwcx. tmp4, ptr
11808     //   bne- loop1MBB
11809     //   b exitBB
11810     // midMBB:
11811     //   stwcx. tmpDest, ptr
11812     // exitBB:
11813     //   srw dest, tmpDest, shift
11814     if (ptrA != ZeroReg) {
11815       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11816       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11817           .addReg(ptrA)
11818           .addReg(ptrB);
11819     } else {
11820       Ptr1Reg = ptrB;
11821     }
11822 
11823     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11824     // mode.
11825     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11826         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11827         .addImm(3)
11828         .addImm(27)
11829         .addImm(is8bit ? 28 : 27);
11830     if (!isLittleEndian)
11831       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11832           .addReg(Shift1Reg)
11833           .addImm(is8bit ? 24 : 16);
11834     if (is64bit)
11835       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11836           .addReg(Ptr1Reg)
11837           .addImm(0)
11838           .addImm(61);
11839     else
11840       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11841           .addReg(Ptr1Reg)
11842           .addImm(0)
11843           .addImm(0)
11844           .addImm(29);
11845     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11846         .addReg(newval)
11847         .addReg(ShiftReg);
11848     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11849         .addReg(oldval)
11850         .addReg(ShiftReg);
11851     if (is8bit)
11852       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11853     else {
11854       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11855       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11856           .addReg(Mask3Reg)
11857           .addImm(65535);
11858     }
11859     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11860         .addReg(Mask2Reg)
11861         .addReg(ShiftReg);
11862     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11863         .addReg(NewVal2Reg)
11864         .addReg(MaskReg);
11865     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11866         .addReg(OldVal2Reg)
11867         .addReg(MaskReg);
11868 
11869     BB = loop1MBB;
11870     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11871         .addReg(ZeroReg)
11872         .addReg(PtrReg);
11873     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11874         .addReg(TmpDestReg)
11875         .addReg(MaskReg);
11876     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11877         .addReg(TmpReg)
11878         .addReg(OldVal3Reg);
11879     BuildMI(BB, dl, TII->get(PPC::BCC))
11880         .addImm(PPC::PRED_NE)
11881         .addReg(PPC::CR0)
11882         .addMBB(midMBB);
11883     BB->addSuccessor(loop2MBB);
11884     BB->addSuccessor(midMBB);
11885 
11886     BB = loop2MBB;
11887     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11888         .addReg(TmpDestReg)
11889         .addReg(MaskReg);
11890     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11891         .addReg(Tmp2Reg)
11892         .addReg(NewVal3Reg);
11893     BuildMI(BB, dl, TII->get(PPC::STWCX))
11894         .addReg(Tmp4Reg)
11895         .addReg(ZeroReg)
11896         .addReg(PtrReg);
11897     BuildMI(BB, dl, TII->get(PPC::BCC))
11898         .addImm(PPC::PRED_NE)
11899         .addReg(PPC::CR0)
11900         .addMBB(loop1MBB);
11901     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11902     BB->addSuccessor(loop1MBB);
11903     BB->addSuccessor(exitMBB);
11904 
11905     BB = midMBB;
11906     BuildMI(BB, dl, TII->get(PPC::STWCX))
11907         .addReg(TmpDestReg)
11908         .addReg(ZeroReg)
11909         .addReg(PtrReg);
11910     BB->addSuccessor(exitMBB);
11911 
11912     //  exitMBB:
11913     //   ...
11914     BB = exitMBB;
11915     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11916         .addReg(TmpReg)
11917         .addReg(ShiftReg);
11918   } else if (MI.getOpcode() == PPC::FADDrtz) {
11919     // This pseudo performs an FADD with rounding mode temporarily forced
11920     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11921     // is not modeled at the SelectionDAG level.
11922     Register Dest = MI.getOperand(0).getReg();
11923     Register Src1 = MI.getOperand(1).getReg();
11924     Register Src2 = MI.getOperand(2).getReg();
11925     DebugLoc dl = MI.getDebugLoc();
11926 
11927     MachineRegisterInfo &RegInfo = F->getRegInfo();
11928     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11929 
11930     // Save FPSCR value.
11931     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11932 
11933     // Set rounding mode to round-to-zero.
11934     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11935     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11936 
11937     // Perform addition.
11938     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11939 
11940     // Restore FPSCR value.
11941     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11942   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11943              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11944              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11945              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11946     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11947                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11948                           ? PPC::ANDI8_rec
11949                           : PPC::ANDI_rec;
11950     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11951                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11952 
11953     MachineRegisterInfo &RegInfo = F->getRegInfo();
11954     Register Dest = RegInfo.createVirtualRegister(
11955         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11956 
11957     DebugLoc Dl = MI.getDebugLoc();
11958     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11959         .addReg(MI.getOperand(1).getReg())
11960         .addImm(1);
11961     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11962             MI.getOperand(0).getReg())
11963         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11964   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11965     DebugLoc Dl = MI.getDebugLoc();
11966     MachineRegisterInfo &RegInfo = F->getRegInfo();
11967     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11968     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11969     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11970             MI.getOperand(0).getReg())
11971         .addReg(CRReg);
11972   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11973     DebugLoc Dl = MI.getDebugLoc();
11974     unsigned Imm = MI.getOperand(1).getImm();
11975     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11976     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11977             MI.getOperand(0).getReg())
11978         .addReg(PPC::CR0EQ);
11979   } else if (MI.getOpcode() == PPC::SETRNDi) {
11980     DebugLoc dl = MI.getDebugLoc();
11981     Register OldFPSCRReg = MI.getOperand(0).getReg();
11982 
11983     // Save FPSCR value.
11984     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11985 
11986     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11987     // the following settings:
11988     //   00 Round to nearest
11989     //   01 Round to 0
11990     //   10 Round to +inf
11991     //   11 Round to -inf
11992 
11993     // When the operand is immediate, using the two least significant bits of
11994     // the immediate to set the bits 62:63 of FPSCR.
11995     unsigned Mode = MI.getOperand(1).getImm();
11996     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11997       .addImm(31);
11998 
11999     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12000       .addImm(30);
12001   } else if (MI.getOpcode() == PPC::SETRND) {
12002     DebugLoc dl = MI.getDebugLoc();
12003 
12004     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12005     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12006     // If the target doesn't have DirectMove, we should use stack to do the
12007     // conversion, because the target doesn't have the instructions like mtvsrd
12008     // or mfvsrd to do this conversion directly.
12009     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12010       if (Subtarget.hasDirectMove()) {
12011         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12012           .addReg(SrcReg);
12013       } else {
12014         // Use stack to do the register copy.
12015         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12016         MachineRegisterInfo &RegInfo = F->getRegInfo();
12017         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12018         if (RC == &PPC::F8RCRegClass) {
12019           // Copy register from F8RCRegClass to G8RCRegclass.
12020           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12021                  "Unsupported RegClass.");
12022 
12023           StoreOp = PPC::STFD;
12024           LoadOp = PPC::LD;
12025         } else {
12026           // Copy register from G8RCRegClass to F8RCRegclass.
12027           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12028                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12029                  "Unsupported RegClass.");
12030         }
12031 
12032         MachineFrameInfo &MFI = F->getFrameInfo();
12033         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12034 
12035         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12036             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12037             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12038             MFI.getObjectAlign(FrameIdx));
12039 
12040         // Store the SrcReg into the stack.
12041         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12042           .addReg(SrcReg)
12043           .addImm(0)
12044           .addFrameIndex(FrameIdx)
12045           .addMemOperand(MMOStore);
12046 
12047         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12048             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12049             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12050             MFI.getObjectAlign(FrameIdx));
12051 
12052         // Load from the stack where SrcReg is stored, and save to DestReg,
12053         // so we have done the RegClass conversion from RegClass::SrcReg to
12054         // RegClass::DestReg.
12055         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12056           .addImm(0)
12057           .addFrameIndex(FrameIdx)
12058           .addMemOperand(MMOLoad);
12059       }
12060     };
12061 
12062     Register OldFPSCRReg = MI.getOperand(0).getReg();
12063 
12064     // Save FPSCR value.
12065     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12066 
12067     // When the operand is gprc register, use two least significant bits of the
12068     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12069     //
12070     // copy OldFPSCRTmpReg, OldFPSCRReg
12071     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12072     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12073     // copy NewFPSCRReg, NewFPSCRTmpReg
12074     // mtfsf 255, NewFPSCRReg
12075     MachineOperand SrcOp = MI.getOperand(1);
12076     MachineRegisterInfo &RegInfo = F->getRegInfo();
12077     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12078 
12079     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12080 
12081     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12082     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12083 
12084     // The first operand of INSERT_SUBREG should be a register which has
12085     // subregisters, we only care about its RegClass, so we should use an
12086     // IMPLICIT_DEF register.
12087     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12088     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12089       .addReg(ImDefReg)
12090       .add(SrcOp)
12091       .addImm(1);
12092 
12093     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12094     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12095       .addReg(OldFPSCRTmpReg)
12096       .addReg(ExtSrcReg)
12097       .addImm(0)
12098       .addImm(62);
12099 
12100     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12101     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12102 
12103     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12104     // bits of FPSCR.
12105     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12106       .addImm(255)
12107       .addReg(NewFPSCRReg)
12108       .addImm(0)
12109       .addImm(0);
12110   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12111              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12112     return emitProbedAlloca(MI, BB);
12113   } else {
12114     llvm_unreachable("Unexpected instr type to insert");
12115   }
12116 
12117   MI.eraseFromParent(); // The pseudo instruction is gone now.
12118   return BB;
12119 }
12120 
12121 //===----------------------------------------------------------------------===//
12122 // Target Optimization Hooks
12123 //===----------------------------------------------------------------------===//
12124 
12125 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12126   // For the estimates, convergence is quadratic, so we essentially double the
12127   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12128   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12129   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12130   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12131   if (VT.getScalarType() == MVT::f64)
12132     RefinementSteps++;
12133   return RefinementSteps;
12134 }
12135 
12136 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12137                                            int Enabled, int &RefinementSteps,
12138                                            bool &UseOneConstNR,
12139                                            bool Reciprocal) const {
12140   EVT VT = Operand.getValueType();
12141   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12142       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12143       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12144       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12145     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12146       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12147 
12148     // The Newton-Raphson computation with a single constant does not provide
12149     // enough accuracy on some CPUs.
12150     UseOneConstNR = !Subtarget.needsTwoConstNR();
12151     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12152   }
12153   return SDValue();
12154 }
12155 
12156 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12157                                             int Enabled,
12158                                             int &RefinementSteps) const {
12159   EVT VT = Operand.getValueType();
12160   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12161       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12162       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12163       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12164     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12165       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12166     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12167   }
12168   return SDValue();
12169 }
12170 
12171 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12172   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12173   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12174   // enabled for division), this functionality is redundant with the default
12175   // combiner logic (once the division -> reciprocal/multiply transformation
12176   // has taken place). As a result, this matters more for older cores than for
12177   // newer ones.
12178 
12179   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12180   // reciprocal if there are two or more FDIVs (for embedded cores with only
12181   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12182   switch (Subtarget.getCPUDirective()) {
12183   default:
12184     return 3;
12185   case PPC::DIR_440:
12186   case PPC::DIR_A2:
12187   case PPC::DIR_E500:
12188   case PPC::DIR_E500mc:
12189   case PPC::DIR_E5500:
12190     return 2;
12191   }
12192 }
12193 
12194 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12195 // collapsed, and so we need to look through chains of them.
12196 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12197                                      int64_t& Offset, SelectionDAG &DAG) {
12198   if (DAG.isBaseWithConstantOffset(Loc)) {
12199     Base = Loc.getOperand(0);
12200     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12201 
12202     // The base might itself be a base plus an offset, and if so, accumulate
12203     // that as well.
12204     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12205   }
12206 }
12207 
12208 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12209                             unsigned Bytes, int Dist,
12210                             SelectionDAG &DAG) {
12211   if (VT.getSizeInBits() / 8 != Bytes)
12212     return false;
12213 
12214   SDValue BaseLoc = Base->getBasePtr();
12215   if (Loc.getOpcode() == ISD::FrameIndex) {
12216     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12217       return false;
12218     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12219     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12220     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12221     int FS  = MFI.getObjectSize(FI);
12222     int BFS = MFI.getObjectSize(BFI);
12223     if (FS != BFS || FS != (int)Bytes) return false;
12224     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12225   }
12226 
12227   SDValue Base1 = Loc, Base2 = BaseLoc;
12228   int64_t Offset1 = 0, Offset2 = 0;
12229   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12230   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12231   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12232     return true;
12233 
12234   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12235   const GlobalValue *GV1 = nullptr;
12236   const GlobalValue *GV2 = nullptr;
12237   Offset1 = 0;
12238   Offset2 = 0;
12239   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12240   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12241   if (isGA1 && isGA2 && GV1 == GV2)
12242     return Offset1 == (Offset2 + Dist*Bytes);
12243   return false;
12244 }
12245 
12246 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12247 // not enforce equality of the chain operands.
12248 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12249                             unsigned Bytes, int Dist,
12250                             SelectionDAG &DAG) {
12251   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12252     EVT VT = LS->getMemoryVT();
12253     SDValue Loc = LS->getBasePtr();
12254     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12255   }
12256 
12257   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12258     EVT VT;
12259     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12260     default: return false;
12261     case Intrinsic::ppc_altivec_lvx:
12262     case Intrinsic::ppc_altivec_lvxl:
12263     case Intrinsic::ppc_vsx_lxvw4x:
12264     case Intrinsic::ppc_vsx_lxvw4x_be:
12265       VT = MVT::v4i32;
12266       break;
12267     case Intrinsic::ppc_vsx_lxvd2x:
12268     case Intrinsic::ppc_vsx_lxvd2x_be:
12269       VT = MVT::v2f64;
12270       break;
12271     case Intrinsic::ppc_altivec_lvebx:
12272       VT = MVT::i8;
12273       break;
12274     case Intrinsic::ppc_altivec_lvehx:
12275       VT = MVT::i16;
12276       break;
12277     case Intrinsic::ppc_altivec_lvewx:
12278       VT = MVT::i32;
12279       break;
12280     }
12281 
12282     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12283   }
12284 
12285   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12286     EVT VT;
12287     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12288     default: return false;
12289     case Intrinsic::ppc_altivec_stvx:
12290     case Intrinsic::ppc_altivec_stvxl:
12291     case Intrinsic::ppc_vsx_stxvw4x:
12292       VT = MVT::v4i32;
12293       break;
12294     case Intrinsic::ppc_vsx_stxvd2x:
12295       VT = MVT::v2f64;
12296       break;
12297     case Intrinsic::ppc_vsx_stxvw4x_be:
12298       VT = MVT::v4i32;
12299       break;
12300     case Intrinsic::ppc_vsx_stxvd2x_be:
12301       VT = MVT::v2f64;
12302       break;
12303     case Intrinsic::ppc_altivec_stvebx:
12304       VT = MVT::i8;
12305       break;
12306     case Intrinsic::ppc_altivec_stvehx:
12307       VT = MVT::i16;
12308       break;
12309     case Intrinsic::ppc_altivec_stvewx:
12310       VT = MVT::i32;
12311       break;
12312     }
12313 
12314     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12315   }
12316 
12317   return false;
12318 }
12319 
12320 // Return true is there is a nearyby consecutive load to the one provided
12321 // (regardless of alignment). We search up and down the chain, looking though
12322 // token factors and other loads (but nothing else). As a result, a true result
12323 // indicates that it is safe to create a new consecutive load adjacent to the
12324 // load provided.
12325 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12326   SDValue Chain = LD->getChain();
12327   EVT VT = LD->getMemoryVT();
12328 
12329   SmallSet<SDNode *, 16> LoadRoots;
12330   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12331   SmallSet<SDNode *, 16> Visited;
12332 
12333   // First, search up the chain, branching to follow all token-factor operands.
12334   // If we find a consecutive load, then we're done, otherwise, record all
12335   // nodes just above the top-level loads and token factors.
12336   while (!Queue.empty()) {
12337     SDNode *ChainNext = Queue.pop_back_val();
12338     if (!Visited.insert(ChainNext).second)
12339       continue;
12340 
12341     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12342       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12343         return true;
12344 
12345       if (!Visited.count(ChainLD->getChain().getNode()))
12346         Queue.push_back(ChainLD->getChain().getNode());
12347     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12348       for (const SDUse &O : ChainNext->ops())
12349         if (!Visited.count(O.getNode()))
12350           Queue.push_back(O.getNode());
12351     } else
12352       LoadRoots.insert(ChainNext);
12353   }
12354 
12355   // Second, search down the chain, starting from the top-level nodes recorded
12356   // in the first phase. These top-level nodes are the nodes just above all
12357   // loads and token factors. Starting with their uses, recursively look though
12358   // all loads (just the chain uses) and token factors to find a consecutive
12359   // load.
12360   Visited.clear();
12361   Queue.clear();
12362 
12363   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12364        IE = LoadRoots.end(); I != IE; ++I) {
12365     Queue.push_back(*I);
12366 
12367     while (!Queue.empty()) {
12368       SDNode *LoadRoot = Queue.pop_back_val();
12369       if (!Visited.insert(LoadRoot).second)
12370         continue;
12371 
12372       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12373         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12374           return true;
12375 
12376       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12377            UE = LoadRoot->use_end(); UI != UE; ++UI)
12378         if (((isa<MemSDNode>(*UI) &&
12379             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12380             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12381           Queue.push_back(*UI);
12382     }
12383   }
12384 
12385   return false;
12386 }
12387 
12388 /// This function is called when we have proved that a SETCC node can be replaced
12389 /// by subtraction (and other supporting instructions) so that the result of
12390 /// comparison is kept in a GPR instead of CR. This function is purely for
12391 /// codegen purposes and has some flags to guide the codegen process.
12392 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12393                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12394   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12395 
12396   // Zero extend the operands to the largest legal integer. Originally, they
12397   // must be of a strictly smaller size.
12398   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12399                          DAG.getConstant(Size, DL, MVT::i32));
12400   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12401                          DAG.getConstant(Size, DL, MVT::i32));
12402 
12403   // Swap if needed. Depends on the condition code.
12404   if (Swap)
12405     std::swap(Op0, Op1);
12406 
12407   // Subtract extended integers.
12408   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12409 
12410   // Move the sign bit to the least significant position and zero out the rest.
12411   // Now the least significant bit carries the result of original comparison.
12412   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12413                              DAG.getConstant(Size - 1, DL, MVT::i32));
12414   auto Final = Shifted;
12415 
12416   // Complement the result if needed. Based on the condition code.
12417   if (Complement)
12418     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12419                         DAG.getConstant(1, DL, MVT::i64));
12420 
12421   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12422 }
12423 
12424 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12425                                                   DAGCombinerInfo &DCI) const {
12426   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12427 
12428   SelectionDAG &DAG = DCI.DAG;
12429   SDLoc DL(N);
12430 
12431   // Size of integers being compared has a critical role in the following
12432   // analysis, so we prefer to do this when all types are legal.
12433   if (!DCI.isAfterLegalizeDAG())
12434     return SDValue();
12435 
12436   // If all users of SETCC extend its value to a legal integer type
12437   // then we replace SETCC with a subtraction
12438   for (SDNode::use_iterator UI = N->use_begin(),
12439        UE = N->use_end(); UI != UE; ++UI) {
12440     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12441       return SDValue();
12442   }
12443 
12444   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12445   auto OpSize = N->getOperand(0).getValueSizeInBits();
12446 
12447   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12448 
12449   if (OpSize < Size) {
12450     switch (CC) {
12451     default: break;
12452     case ISD::SETULT:
12453       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12454     case ISD::SETULE:
12455       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12456     case ISD::SETUGT:
12457       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12458     case ISD::SETUGE:
12459       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12460     }
12461   }
12462 
12463   return SDValue();
12464 }
12465 
12466 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12467                                                   DAGCombinerInfo &DCI) const {
12468   SelectionDAG &DAG = DCI.DAG;
12469   SDLoc dl(N);
12470 
12471   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12472   // If we're tracking CR bits, we need to be careful that we don't have:
12473   //   trunc(binary-ops(zext(x), zext(y)))
12474   // or
12475   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12476   // such that we're unnecessarily moving things into GPRs when it would be
12477   // better to keep them in CR bits.
12478 
12479   // Note that trunc here can be an actual i1 trunc, or can be the effective
12480   // truncation that comes from a setcc or select_cc.
12481   if (N->getOpcode() == ISD::TRUNCATE &&
12482       N->getValueType(0) != MVT::i1)
12483     return SDValue();
12484 
12485   if (N->getOperand(0).getValueType() != MVT::i32 &&
12486       N->getOperand(0).getValueType() != MVT::i64)
12487     return SDValue();
12488 
12489   if (N->getOpcode() == ISD::SETCC ||
12490       N->getOpcode() == ISD::SELECT_CC) {
12491     // If we're looking at a comparison, then we need to make sure that the
12492     // high bits (all except for the first) don't matter the result.
12493     ISD::CondCode CC =
12494       cast<CondCodeSDNode>(N->getOperand(
12495         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12496     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12497 
12498     if (ISD::isSignedIntSetCC(CC)) {
12499       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12500           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12501         return SDValue();
12502     } else if (ISD::isUnsignedIntSetCC(CC)) {
12503       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12504                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12505           !DAG.MaskedValueIsZero(N->getOperand(1),
12506                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12507         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12508                                              : SDValue());
12509     } else {
12510       // This is neither a signed nor an unsigned comparison, just make sure
12511       // that the high bits are equal.
12512       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12513       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12514 
12515       // We don't really care about what is known about the first bit (if
12516       // anything), so clear it in all masks prior to comparing them.
12517       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12518       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12519 
12520       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12521         return SDValue();
12522     }
12523   }
12524 
12525   // We now know that the higher-order bits are irrelevant, we just need to
12526   // make sure that all of the intermediate operations are bit operations, and
12527   // all inputs are extensions.
12528   if (N->getOperand(0).getOpcode() != ISD::AND &&
12529       N->getOperand(0).getOpcode() != ISD::OR  &&
12530       N->getOperand(0).getOpcode() != ISD::XOR &&
12531       N->getOperand(0).getOpcode() != ISD::SELECT &&
12532       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12533       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12534       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12535       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12536       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12537     return SDValue();
12538 
12539   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12540       N->getOperand(1).getOpcode() != ISD::AND &&
12541       N->getOperand(1).getOpcode() != ISD::OR  &&
12542       N->getOperand(1).getOpcode() != ISD::XOR &&
12543       N->getOperand(1).getOpcode() != ISD::SELECT &&
12544       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12545       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12546       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12547       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12548       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12549     return SDValue();
12550 
12551   SmallVector<SDValue, 4> Inputs;
12552   SmallVector<SDValue, 8> BinOps, PromOps;
12553   SmallPtrSet<SDNode *, 16> Visited;
12554 
12555   for (unsigned i = 0; i < 2; ++i) {
12556     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12557           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12558           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12559           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12560         isa<ConstantSDNode>(N->getOperand(i)))
12561       Inputs.push_back(N->getOperand(i));
12562     else
12563       BinOps.push_back(N->getOperand(i));
12564 
12565     if (N->getOpcode() == ISD::TRUNCATE)
12566       break;
12567   }
12568 
12569   // Visit all inputs, collect all binary operations (and, or, xor and
12570   // select) that are all fed by extensions.
12571   while (!BinOps.empty()) {
12572     SDValue BinOp = BinOps.back();
12573     BinOps.pop_back();
12574 
12575     if (!Visited.insert(BinOp.getNode()).second)
12576       continue;
12577 
12578     PromOps.push_back(BinOp);
12579 
12580     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12581       // The condition of the select is not promoted.
12582       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12583         continue;
12584       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12585         continue;
12586 
12587       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12588             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12589             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12590            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12591           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12592         Inputs.push_back(BinOp.getOperand(i));
12593       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12594                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12595                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12596                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12597                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12598                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12599                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12600                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12601                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12602         BinOps.push_back(BinOp.getOperand(i));
12603       } else {
12604         // We have an input that is not an extension or another binary
12605         // operation; we'll abort this transformation.
12606         return SDValue();
12607       }
12608     }
12609   }
12610 
12611   // Make sure that this is a self-contained cluster of operations (which
12612   // is not quite the same thing as saying that everything has only one
12613   // use).
12614   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12615     if (isa<ConstantSDNode>(Inputs[i]))
12616       continue;
12617 
12618     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12619                               UE = Inputs[i].getNode()->use_end();
12620          UI != UE; ++UI) {
12621       SDNode *User = *UI;
12622       if (User != N && !Visited.count(User))
12623         return SDValue();
12624 
12625       // Make sure that we're not going to promote the non-output-value
12626       // operand(s) or SELECT or SELECT_CC.
12627       // FIXME: Although we could sometimes handle this, and it does occur in
12628       // practice that one of the condition inputs to the select is also one of
12629       // the outputs, we currently can't deal with this.
12630       if (User->getOpcode() == ISD::SELECT) {
12631         if (User->getOperand(0) == Inputs[i])
12632           return SDValue();
12633       } else if (User->getOpcode() == ISD::SELECT_CC) {
12634         if (User->getOperand(0) == Inputs[i] ||
12635             User->getOperand(1) == Inputs[i])
12636           return SDValue();
12637       }
12638     }
12639   }
12640 
12641   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12642     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12643                               UE = PromOps[i].getNode()->use_end();
12644          UI != UE; ++UI) {
12645       SDNode *User = *UI;
12646       if (User != N && !Visited.count(User))
12647         return SDValue();
12648 
12649       // Make sure that we're not going to promote the non-output-value
12650       // operand(s) or SELECT or SELECT_CC.
12651       // FIXME: Although we could sometimes handle this, and it does occur in
12652       // practice that one of the condition inputs to the select is also one of
12653       // the outputs, we currently can't deal with this.
12654       if (User->getOpcode() == ISD::SELECT) {
12655         if (User->getOperand(0) == PromOps[i])
12656           return SDValue();
12657       } else if (User->getOpcode() == ISD::SELECT_CC) {
12658         if (User->getOperand(0) == PromOps[i] ||
12659             User->getOperand(1) == PromOps[i])
12660           return SDValue();
12661       }
12662     }
12663   }
12664 
12665   // Replace all inputs with the extension operand.
12666   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12667     // Constants may have users outside the cluster of to-be-promoted nodes,
12668     // and so we need to replace those as we do the promotions.
12669     if (isa<ConstantSDNode>(Inputs[i]))
12670       continue;
12671     else
12672       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12673   }
12674 
12675   std::list<HandleSDNode> PromOpHandles;
12676   for (auto &PromOp : PromOps)
12677     PromOpHandles.emplace_back(PromOp);
12678 
12679   // Replace all operations (these are all the same, but have a different
12680   // (i1) return type). DAG.getNode will validate that the types of
12681   // a binary operator match, so go through the list in reverse so that
12682   // we've likely promoted both operands first. Any intermediate truncations or
12683   // extensions disappear.
12684   while (!PromOpHandles.empty()) {
12685     SDValue PromOp = PromOpHandles.back().getValue();
12686     PromOpHandles.pop_back();
12687 
12688     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12689         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12690         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12691         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12692       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12693           PromOp.getOperand(0).getValueType() != MVT::i1) {
12694         // The operand is not yet ready (see comment below).
12695         PromOpHandles.emplace_front(PromOp);
12696         continue;
12697       }
12698 
12699       SDValue RepValue = PromOp.getOperand(0);
12700       if (isa<ConstantSDNode>(RepValue))
12701         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12702 
12703       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12704       continue;
12705     }
12706 
12707     unsigned C;
12708     switch (PromOp.getOpcode()) {
12709     default:             C = 0; break;
12710     case ISD::SELECT:    C = 1; break;
12711     case ISD::SELECT_CC: C = 2; break;
12712     }
12713 
12714     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12715          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12716         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12717          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12718       // The to-be-promoted operands of this node have not yet been
12719       // promoted (this should be rare because we're going through the
12720       // list backward, but if one of the operands has several users in
12721       // this cluster of to-be-promoted nodes, it is possible).
12722       PromOpHandles.emplace_front(PromOp);
12723       continue;
12724     }
12725 
12726     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12727                                 PromOp.getNode()->op_end());
12728 
12729     // If there are any constant inputs, make sure they're replaced now.
12730     for (unsigned i = 0; i < 2; ++i)
12731       if (isa<ConstantSDNode>(Ops[C+i]))
12732         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12733 
12734     DAG.ReplaceAllUsesOfValueWith(PromOp,
12735       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12736   }
12737 
12738   // Now we're left with the initial truncation itself.
12739   if (N->getOpcode() == ISD::TRUNCATE)
12740     return N->getOperand(0);
12741 
12742   // Otherwise, this is a comparison. The operands to be compared have just
12743   // changed type (to i1), but everything else is the same.
12744   return SDValue(N, 0);
12745 }
12746 
12747 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12748                                                   DAGCombinerInfo &DCI) const {
12749   SelectionDAG &DAG = DCI.DAG;
12750   SDLoc dl(N);
12751 
12752   // If we're tracking CR bits, we need to be careful that we don't have:
12753   //   zext(binary-ops(trunc(x), trunc(y)))
12754   // or
12755   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12756   // such that we're unnecessarily moving things into CR bits that can more
12757   // efficiently stay in GPRs. Note that if we're not certain that the high
12758   // bits are set as required by the final extension, we still may need to do
12759   // some masking to get the proper behavior.
12760 
12761   // This same functionality is important on PPC64 when dealing with
12762   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12763   // the return values of functions. Because it is so similar, it is handled
12764   // here as well.
12765 
12766   if (N->getValueType(0) != MVT::i32 &&
12767       N->getValueType(0) != MVT::i64)
12768     return SDValue();
12769 
12770   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12771         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12772     return SDValue();
12773 
12774   if (N->getOperand(0).getOpcode() != ISD::AND &&
12775       N->getOperand(0).getOpcode() != ISD::OR  &&
12776       N->getOperand(0).getOpcode() != ISD::XOR &&
12777       N->getOperand(0).getOpcode() != ISD::SELECT &&
12778       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12779     return SDValue();
12780 
12781   SmallVector<SDValue, 4> Inputs;
12782   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12783   SmallPtrSet<SDNode *, 16> Visited;
12784 
12785   // Visit all inputs, collect all binary operations (and, or, xor and
12786   // select) that are all fed by truncations.
12787   while (!BinOps.empty()) {
12788     SDValue BinOp = BinOps.back();
12789     BinOps.pop_back();
12790 
12791     if (!Visited.insert(BinOp.getNode()).second)
12792       continue;
12793 
12794     PromOps.push_back(BinOp);
12795 
12796     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12797       // The condition of the select is not promoted.
12798       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12799         continue;
12800       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12801         continue;
12802 
12803       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12804           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12805         Inputs.push_back(BinOp.getOperand(i));
12806       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12807                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12808                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12809                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12810                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12811         BinOps.push_back(BinOp.getOperand(i));
12812       } else {
12813         // We have an input that is not a truncation or another binary
12814         // operation; we'll abort this transformation.
12815         return SDValue();
12816       }
12817     }
12818   }
12819 
12820   // The operands of a select that must be truncated when the select is
12821   // promoted because the operand is actually part of the to-be-promoted set.
12822   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12823 
12824   // Make sure that this is a self-contained cluster of operations (which
12825   // is not quite the same thing as saying that everything has only one
12826   // use).
12827   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12828     if (isa<ConstantSDNode>(Inputs[i]))
12829       continue;
12830 
12831     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12832                               UE = Inputs[i].getNode()->use_end();
12833          UI != UE; ++UI) {
12834       SDNode *User = *UI;
12835       if (User != N && !Visited.count(User))
12836         return SDValue();
12837 
12838       // If we're going to promote the non-output-value operand(s) or SELECT or
12839       // SELECT_CC, record them for truncation.
12840       if (User->getOpcode() == ISD::SELECT) {
12841         if (User->getOperand(0) == Inputs[i])
12842           SelectTruncOp[0].insert(std::make_pair(User,
12843                                     User->getOperand(0).getValueType()));
12844       } else if (User->getOpcode() == ISD::SELECT_CC) {
12845         if (User->getOperand(0) == Inputs[i])
12846           SelectTruncOp[0].insert(std::make_pair(User,
12847                                     User->getOperand(0).getValueType()));
12848         if (User->getOperand(1) == Inputs[i])
12849           SelectTruncOp[1].insert(std::make_pair(User,
12850                                     User->getOperand(1).getValueType()));
12851       }
12852     }
12853   }
12854 
12855   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12856     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12857                               UE = PromOps[i].getNode()->use_end();
12858          UI != UE; ++UI) {
12859       SDNode *User = *UI;
12860       if (User != N && !Visited.count(User))
12861         return SDValue();
12862 
12863       // If we're going to promote the non-output-value operand(s) or SELECT or
12864       // SELECT_CC, record them for truncation.
12865       if (User->getOpcode() == ISD::SELECT) {
12866         if (User->getOperand(0) == PromOps[i])
12867           SelectTruncOp[0].insert(std::make_pair(User,
12868                                     User->getOperand(0).getValueType()));
12869       } else if (User->getOpcode() == ISD::SELECT_CC) {
12870         if (User->getOperand(0) == PromOps[i])
12871           SelectTruncOp[0].insert(std::make_pair(User,
12872                                     User->getOperand(0).getValueType()));
12873         if (User->getOperand(1) == PromOps[i])
12874           SelectTruncOp[1].insert(std::make_pair(User,
12875                                     User->getOperand(1).getValueType()));
12876       }
12877     }
12878   }
12879 
12880   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12881   bool ReallyNeedsExt = false;
12882   if (N->getOpcode() != ISD::ANY_EXTEND) {
12883     // If all of the inputs are not already sign/zero extended, then
12884     // we'll still need to do that at the end.
12885     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12886       if (isa<ConstantSDNode>(Inputs[i]))
12887         continue;
12888 
12889       unsigned OpBits =
12890         Inputs[i].getOperand(0).getValueSizeInBits();
12891       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12892 
12893       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12894            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12895                                   APInt::getHighBitsSet(OpBits,
12896                                                         OpBits-PromBits))) ||
12897           (N->getOpcode() == ISD::SIGN_EXTEND &&
12898            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12899              (OpBits-(PromBits-1)))) {
12900         ReallyNeedsExt = true;
12901         break;
12902       }
12903     }
12904   }
12905 
12906   // Replace all inputs, either with the truncation operand, or a
12907   // truncation or extension to the final output type.
12908   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12909     // Constant inputs need to be replaced with the to-be-promoted nodes that
12910     // use them because they might have users outside of the cluster of
12911     // promoted nodes.
12912     if (isa<ConstantSDNode>(Inputs[i]))
12913       continue;
12914 
12915     SDValue InSrc = Inputs[i].getOperand(0);
12916     if (Inputs[i].getValueType() == N->getValueType(0))
12917       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12918     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12919       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12920         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12921     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12922       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12923         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12924     else
12925       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12926         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12927   }
12928 
12929   std::list<HandleSDNode> PromOpHandles;
12930   for (auto &PromOp : PromOps)
12931     PromOpHandles.emplace_back(PromOp);
12932 
12933   // Replace all operations (these are all the same, but have a different
12934   // (promoted) return type). DAG.getNode will validate that the types of
12935   // a binary operator match, so go through the list in reverse so that
12936   // we've likely promoted both operands first.
12937   while (!PromOpHandles.empty()) {
12938     SDValue PromOp = PromOpHandles.back().getValue();
12939     PromOpHandles.pop_back();
12940 
12941     unsigned C;
12942     switch (PromOp.getOpcode()) {
12943     default:             C = 0; break;
12944     case ISD::SELECT:    C = 1; break;
12945     case ISD::SELECT_CC: C = 2; break;
12946     }
12947 
12948     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12949          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12950         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12951          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12952       // The to-be-promoted operands of this node have not yet been
12953       // promoted (this should be rare because we're going through the
12954       // list backward, but if one of the operands has several users in
12955       // this cluster of to-be-promoted nodes, it is possible).
12956       PromOpHandles.emplace_front(PromOp);
12957       continue;
12958     }
12959 
12960     // For SELECT and SELECT_CC nodes, we do a similar check for any
12961     // to-be-promoted comparison inputs.
12962     if (PromOp.getOpcode() == ISD::SELECT ||
12963         PromOp.getOpcode() == ISD::SELECT_CC) {
12964       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12965            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12966           (SelectTruncOp[1].count(PromOp.getNode()) &&
12967            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12968         PromOpHandles.emplace_front(PromOp);
12969         continue;
12970       }
12971     }
12972 
12973     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12974                                 PromOp.getNode()->op_end());
12975 
12976     // If this node has constant inputs, then they'll need to be promoted here.
12977     for (unsigned i = 0; i < 2; ++i) {
12978       if (!isa<ConstantSDNode>(Ops[C+i]))
12979         continue;
12980       if (Ops[C+i].getValueType() == N->getValueType(0))
12981         continue;
12982 
12983       if (N->getOpcode() == ISD::SIGN_EXTEND)
12984         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12985       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12986         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12987       else
12988         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12989     }
12990 
12991     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12992     // truncate them again to the original value type.
12993     if (PromOp.getOpcode() == ISD::SELECT ||
12994         PromOp.getOpcode() == ISD::SELECT_CC) {
12995       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12996       if (SI0 != SelectTruncOp[0].end())
12997         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12998       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12999       if (SI1 != SelectTruncOp[1].end())
13000         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13001     }
13002 
13003     DAG.ReplaceAllUsesOfValueWith(PromOp,
13004       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13005   }
13006 
13007   // Now we're left with the initial extension itself.
13008   if (!ReallyNeedsExt)
13009     return N->getOperand(0);
13010 
13011   // To zero extend, just mask off everything except for the first bit (in the
13012   // i1 case).
13013   if (N->getOpcode() == ISD::ZERO_EXTEND)
13014     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13015                        DAG.getConstant(APInt::getLowBitsSet(
13016                                          N->getValueSizeInBits(0), PromBits),
13017                                        dl, N->getValueType(0)));
13018 
13019   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13020          "Invalid extension type");
13021   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13022   SDValue ShiftCst =
13023       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13024   return DAG.getNode(
13025       ISD::SRA, dl, N->getValueType(0),
13026       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13027       ShiftCst);
13028 }
13029 
13030 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13031                                         DAGCombinerInfo &DCI) const {
13032   assert(N->getOpcode() == ISD::SETCC &&
13033          "Should be called with a SETCC node");
13034 
13035   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13036   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13037     SDValue LHS = N->getOperand(0);
13038     SDValue RHS = N->getOperand(1);
13039 
13040     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13041     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13042         LHS.hasOneUse())
13043       std::swap(LHS, RHS);
13044 
13045     // x == 0-y --> x+y == 0
13046     // x != 0-y --> x+y != 0
13047     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13048         RHS.hasOneUse()) {
13049       SDLoc DL(N);
13050       SelectionDAG &DAG = DCI.DAG;
13051       EVT VT = N->getValueType(0);
13052       EVT OpVT = LHS.getValueType();
13053       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13054       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13055     }
13056   }
13057 
13058   return DAGCombineTruncBoolExt(N, DCI);
13059 }
13060 
13061 // Is this an extending load from an f32 to an f64?
13062 static bool isFPExtLoad(SDValue Op) {
13063   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13064     return LD->getExtensionType() == ISD::EXTLOAD &&
13065       Op.getValueType() == MVT::f64;
13066   return false;
13067 }
13068 
13069 /// Reduces the number of fp-to-int conversion when building a vector.
13070 ///
13071 /// If this vector is built out of floating to integer conversions,
13072 /// transform it to a vector built out of floating point values followed by a
13073 /// single floating to integer conversion of the vector.
13074 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13075 /// becomes (fptosi (build_vector ($A, $B, ...)))
13076 SDValue PPCTargetLowering::
13077 combineElementTruncationToVectorTruncation(SDNode *N,
13078                                            DAGCombinerInfo &DCI) const {
13079   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13080          "Should be called with a BUILD_VECTOR node");
13081 
13082   SelectionDAG &DAG = DCI.DAG;
13083   SDLoc dl(N);
13084 
13085   SDValue FirstInput = N->getOperand(0);
13086   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13087          "The input operand must be an fp-to-int conversion.");
13088 
13089   // This combine happens after legalization so the fp_to_[su]i nodes are
13090   // already converted to PPCSISD nodes.
13091   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13092   if (FirstConversion == PPCISD::FCTIDZ ||
13093       FirstConversion == PPCISD::FCTIDUZ ||
13094       FirstConversion == PPCISD::FCTIWZ ||
13095       FirstConversion == PPCISD::FCTIWUZ) {
13096     bool IsSplat = true;
13097     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13098       FirstConversion == PPCISD::FCTIWUZ;
13099     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13100     SmallVector<SDValue, 4> Ops;
13101     EVT TargetVT = N->getValueType(0);
13102     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13103       SDValue NextOp = N->getOperand(i);
13104       if (NextOp.getOpcode() != PPCISD::MFVSR)
13105         return SDValue();
13106       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13107       if (NextConversion != FirstConversion)
13108         return SDValue();
13109       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13110       // This is not valid if the input was originally double precision. It is
13111       // also not profitable to do unless this is an extending load in which
13112       // case doing this combine will allow us to combine consecutive loads.
13113       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13114         return SDValue();
13115       if (N->getOperand(i) != FirstInput)
13116         IsSplat = false;
13117     }
13118 
13119     // If this is a splat, we leave it as-is since there will be only a single
13120     // fp-to-int conversion followed by a splat of the integer. This is better
13121     // for 32-bit and smaller ints and neutral for 64-bit ints.
13122     if (IsSplat)
13123       return SDValue();
13124 
13125     // Now that we know we have the right type of node, get its operands
13126     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13127       SDValue In = N->getOperand(i).getOperand(0);
13128       if (Is32Bit) {
13129         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13130         // here, we know that all inputs are extending loads so this is safe).
13131         if (In.isUndef())
13132           Ops.push_back(DAG.getUNDEF(SrcVT));
13133         else {
13134           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13135                                       MVT::f32, In.getOperand(0),
13136                                       DAG.getIntPtrConstant(1, dl));
13137           Ops.push_back(Trunc);
13138         }
13139       } else
13140         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13141     }
13142 
13143     unsigned Opcode;
13144     if (FirstConversion == PPCISD::FCTIDZ ||
13145         FirstConversion == PPCISD::FCTIWZ)
13146       Opcode = ISD::FP_TO_SINT;
13147     else
13148       Opcode = ISD::FP_TO_UINT;
13149 
13150     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13151     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13152     return DAG.getNode(Opcode, dl, TargetVT, BV);
13153   }
13154   return SDValue();
13155 }
13156 
13157 /// Reduce the number of loads when building a vector.
13158 ///
13159 /// Building a vector out of multiple loads can be converted to a load
13160 /// of the vector type if the loads are consecutive. If the loads are
13161 /// consecutive but in descending order, a shuffle is added at the end
13162 /// to reorder the vector.
13163 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13164   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13165          "Should be called with a BUILD_VECTOR node");
13166 
13167   SDLoc dl(N);
13168 
13169   // Return early for non byte-sized type, as they can't be consecutive.
13170   if (!N->getValueType(0).getVectorElementType().isByteSized())
13171     return SDValue();
13172 
13173   bool InputsAreConsecutiveLoads = true;
13174   bool InputsAreReverseConsecutive = true;
13175   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13176   SDValue FirstInput = N->getOperand(0);
13177   bool IsRoundOfExtLoad = false;
13178 
13179   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13180       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13181     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13182     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13183   }
13184   // Not a build vector of (possibly fp_rounded) loads.
13185   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13186       N->getNumOperands() == 1)
13187     return SDValue();
13188 
13189   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13190     // If any inputs are fp_round(extload), they all must be.
13191     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13192       return SDValue();
13193 
13194     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13195       N->getOperand(i);
13196     if (NextInput.getOpcode() != ISD::LOAD)
13197       return SDValue();
13198 
13199     SDValue PreviousInput =
13200       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13201     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13202     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13203 
13204     // If any inputs are fp_round(extload), they all must be.
13205     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13206       return SDValue();
13207 
13208     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13209       InputsAreConsecutiveLoads = false;
13210     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13211       InputsAreReverseConsecutive = false;
13212 
13213     // Exit early if the loads are neither consecutive nor reverse consecutive.
13214     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13215       return SDValue();
13216   }
13217 
13218   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13219          "The loads cannot be both consecutive and reverse consecutive.");
13220 
13221   SDValue FirstLoadOp =
13222     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13223   SDValue LastLoadOp =
13224     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13225                        N->getOperand(N->getNumOperands()-1);
13226 
13227   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13228   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13229   if (InputsAreConsecutiveLoads) {
13230     assert(LD1 && "Input needs to be a LoadSDNode.");
13231     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13232                        LD1->getBasePtr(), LD1->getPointerInfo(),
13233                        LD1->getAlignment());
13234   }
13235   if (InputsAreReverseConsecutive) {
13236     assert(LDL && "Input needs to be a LoadSDNode.");
13237     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13238                                LDL->getBasePtr(), LDL->getPointerInfo(),
13239                                LDL->getAlignment());
13240     SmallVector<int, 16> Ops;
13241     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13242       Ops.push_back(i);
13243 
13244     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13245                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13246   }
13247   return SDValue();
13248 }
13249 
13250 // This function adds the required vector_shuffle needed to get
13251 // the elements of the vector extract in the correct position
13252 // as specified by the CorrectElems encoding.
13253 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13254                                       SDValue Input, uint64_t Elems,
13255                                       uint64_t CorrectElems) {
13256   SDLoc dl(N);
13257 
13258   unsigned NumElems = Input.getValueType().getVectorNumElements();
13259   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13260 
13261   // Knowing the element indices being extracted from the original
13262   // vector and the order in which they're being inserted, just put
13263   // them at element indices required for the instruction.
13264   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13265     if (DAG.getDataLayout().isLittleEndian())
13266       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13267     else
13268       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13269     CorrectElems = CorrectElems >> 8;
13270     Elems = Elems >> 8;
13271   }
13272 
13273   SDValue Shuffle =
13274       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13275                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13276 
13277   EVT VT = N->getValueType(0);
13278   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13279 
13280   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13281                                Input.getValueType().getVectorElementType(),
13282                                VT.getVectorNumElements());
13283   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13284                      DAG.getValueType(ExtVT));
13285 }
13286 
13287 // Look for build vector patterns where input operands come from sign
13288 // extended vector_extract elements of specific indices. If the correct indices
13289 // aren't used, add a vector shuffle to fix up the indices and create
13290 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13291 // during instruction selection.
13292 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13293   // This array encodes the indices that the vector sign extend instructions
13294   // extract from when extending from one type to another for both BE and LE.
13295   // The right nibble of each byte corresponds to the LE incides.
13296   // and the left nibble of each byte corresponds to the BE incides.
13297   // For example: 0x3074B8FC  byte->word
13298   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13299   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13300   // For example: 0x000070F8  byte->double word
13301   // For LE: the allowed indices are: 0x0,0x8
13302   // For BE: the allowed indices are: 0x7,0xF
13303   uint64_t TargetElems[] = {
13304       0x3074B8FC, // b->w
13305       0x000070F8, // b->d
13306       0x10325476, // h->w
13307       0x00003074, // h->d
13308       0x00001032, // w->d
13309   };
13310 
13311   uint64_t Elems = 0;
13312   int Index;
13313   SDValue Input;
13314 
13315   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13316     if (!Op)
13317       return false;
13318     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13319         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13320       return false;
13321 
13322     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13323     // of the right width.
13324     SDValue Extract = Op.getOperand(0);
13325     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13326       Extract = Extract.getOperand(0);
13327     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13328       return false;
13329 
13330     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13331     if (!ExtOp)
13332       return false;
13333 
13334     Index = ExtOp->getZExtValue();
13335     if (Input && Input != Extract.getOperand(0))
13336       return false;
13337 
13338     if (!Input)
13339       Input = Extract.getOperand(0);
13340 
13341     Elems = Elems << 8;
13342     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13343     Elems |= Index;
13344 
13345     return true;
13346   };
13347 
13348   // If the build vector operands aren't sign extended vector extracts,
13349   // of the same input vector, then return.
13350   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13351     if (!isSExtOfVecExtract(N->getOperand(i))) {
13352       return SDValue();
13353     }
13354   }
13355 
13356   // If the vector extract indicies are not correct, add the appropriate
13357   // vector_shuffle.
13358   int TgtElemArrayIdx;
13359   int InputSize = Input.getValueType().getScalarSizeInBits();
13360   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13361   if (InputSize + OutputSize == 40)
13362     TgtElemArrayIdx = 0;
13363   else if (InputSize + OutputSize == 72)
13364     TgtElemArrayIdx = 1;
13365   else if (InputSize + OutputSize == 48)
13366     TgtElemArrayIdx = 2;
13367   else if (InputSize + OutputSize == 80)
13368     TgtElemArrayIdx = 3;
13369   else if (InputSize + OutputSize == 96)
13370     TgtElemArrayIdx = 4;
13371   else
13372     return SDValue();
13373 
13374   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13375   CorrectElems = DAG.getDataLayout().isLittleEndian()
13376                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13377                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13378   if (Elems != CorrectElems) {
13379     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13380   }
13381 
13382   // Regular lowering will catch cases where a shuffle is not needed.
13383   return SDValue();
13384 }
13385 
13386 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13387                                                  DAGCombinerInfo &DCI) const {
13388   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13389          "Should be called with a BUILD_VECTOR node");
13390 
13391   SelectionDAG &DAG = DCI.DAG;
13392   SDLoc dl(N);
13393 
13394   if (!Subtarget.hasVSX())
13395     return SDValue();
13396 
13397   // The target independent DAG combiner will leave a build_vector of
13398   // float-to-int conversions intact. We can generate MUCH better code for
13399   // a float-to-int conversion of a vector of floats.
13400   SDValue FirstInput = N->getOperand(0);
13401   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13402     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13403     if (Reduced)
13404       return Reduced;
13405   }
13406 
13407   // If we're building a vector out of consecutive loads, just load that
13408   // vector type.
13409   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13410   if (Reduced)
13411     return Reduced;
13412 
13413   // If we're building a vector out of extended elements from another vector
13414   // we have P9 vector integer extend instructions. The code assumes legal
13415   // input types (i.e. it can't handle things like v4i16) so do not run before
13416   // legalization.
13417   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13418     Reduced = combineBVOfVecSExt(N, DAG);
13419     if (Reduced)
13420       return Reduced;
13421   }
13422 
13423 
13424   if (N->getValueType(0) != MVT::v2f64)
13425     return SDValue();
13426 
13427   // Looking for:
13428   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13429   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13430       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13431     return SDValue();
13432   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13433       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13434     return SDValue();
13435   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13436     return SDValue();
13437 
13438   SDValue Ext1 = FirstInput.getOperand(0);
13439   SDValue Ext2 = N->getOperand(1).getOperand(0);
13440   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13441      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13442     return SDValue();
13443 
13444   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13445   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13446   if (!Ext1Op || !Ext2Op)
13447     return SDValue();
13448   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13449       Ext1.getOperand(0) != Ext2.getOperand(0))
13450     return SDValue();
13451 
13452   int FirstElem = Ext1Op->getZExtValue();
13453   int SecondElem = Ext2Op->getZExtValue();
13454   int SubvecIdx;
13455   if (FirstElem == 0 && SecondElem == 1)
13456     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13457   else if (FirstElem == 2 && SecondElem == 3)
13458     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13459   else
13460     return SDValue();
13461 
13462   SDValue SrcVec = Ext1.getOperand(0);
13463   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13464     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13465   return DAG.getNode(NodeType, dl, MVT::v2f64,
13466                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13467 }
13468 
13469 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13470                                               DAGCombinerInfo &DCI) const {
13471   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13472           N->getOpcode() == ISD::UINT_TO_FP) &&
13473          "Need an int -> FP conversion node here");
13474 
13475   if (useSoftFloat() || !Subtarget.has64BitSupport())
13476     return SDValue();
13477 
13478   SelectionDAG &DAG = DCI.DAG;
13479   SDLoc dl(N);
13480   SDValue Op(N, 0);
13481 
13482   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13483   // from the hardware.
13484   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13485     return SDValue();
13486   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13487       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13488     return SDValue();
13489 
13490   SDValue FirstOperand(Op.getOperand(0));
13491   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13492     (FirstOperand.getValueType() == MVT::i8 ||
13493      FirstOperand.getValueType() == MVT::i16);
13494   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13495     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13496     bool DstDouble = Op.getValueType() == MVT::f64;
13497     unsigned ConvOp = Signed ?
13498       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13499       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13500     SDValue WidthConst =
13501       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13502                             dl, false);
13503     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13504     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13505     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13506                                          DAG.getVTList(MVT::f64, MVT::Other),
13507                                          Ops, MVT::i8, LDN->getMemOperand());
13508 
13509     // For signed conversion, we need to sign-extend the value in the VSR
13510     if (Signed) {
13511       SDValue ExtOps[] = { Ld, WidthConst };
13512       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13513       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13514     } else
13515       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13516   }
13517 
13518 
13519   // For i32 intermediate values, unfortunately, the conversion functions
13520   // leave the upper 32 bits of the value are undefined. Within the set of
13521   // scalar instructions, we have no method for zero- or sign-extending the
13522   // value. Thus, we cannot handle i32 intermediate values here.
13523   if (Op.getOperand(0).getValueType() == MVT::i32)
13524     return SDValue();
13525 
13526   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13527          "UINT_TO_FP is supported only with FPCVT");
13528 
13529   // If we have FCFIDS, then use it when converting to single-precision.
13530   // Otherwise, convert to double-precision and then round.
13531   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13532                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13533                                                             : PPCISD::FCFIDS)
13534                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13535                                                             : PPCISD::FCFID);
13536   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13537                   ? MVT::f32
13538                   : MVT::f64;
13539 
13540   // If we're converting from a float, to an int, and back to a float again,
13541   // then we don't need the store/load pair at all.
13542   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13543        Subtarget.hasFPCVT()) ||
13544       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13545     SDValue Src = Op.getOperand(0).getOperand(0);
13546     if (Src.getValueType() == MVT::f32) {
13547       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13548       DCI.AddToWorklist(Src.getNode());
13549     } else if (Src.getValueType() != MVT::f64) {
13550       // Make sure that we don't pick up a ppc_fp128 source value.
13551       return SDValue();
13552     }
13553 
13554     unsigned FCTOp =
13555       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13556                                                         PPCISD::FCTIDUZ;
13557 
13558     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13559     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13560 
13561     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13562       FP = DAG.getNode(ISD::FP_ROUND, dl,
13563                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13564       DCI.AddToWorklist(FP.getNode());
13565     }
13566 
13567     return FP;
13568   }
13569 
13570   return SDValue();
13571 }
13572 
13573 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13574 // builtins) into loads with swaps.
13575 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13576                                               DAGCombinerInfo &DCI) const {
13577   SelectionDAG &DAG = DCI.DAG;
13578   SDLoc dl(N);
13579   SDValue Chain;
13580   SDValue Base;
13581   MachineMemOperand *MMO;
13582 
13583   switch (N->getOpcode()) {
13584   default:
13585     llvm_unreachable("Unexpected opcode for little endian VSX load");
13586   case ISD::LOAD: {
13587     LoadSDNode *LD = cast<LoadSDNode>(N);
13588     Chain = LD->getChain();
13589     Base = LD->getBasePtr();
13590     MMO = LD->getMemOperand();
13591     // If the MMO suggests this isn't a load of a full vector, leave
13592     // things alone.  For a built-in, we have to make the change for
13593     // correctness, so if there is a size problem that will be a bug.
13594     if (MMO->getSize() < 16)
13595       return SDValue();
13596     break;
13597   }
13598   case ISD::INTRINSIC_W_CHAIN: {
13599     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13600     Chain = Intrin->getChain();
13601     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13602     // us what we want. Get operand 2 instead.
13603     Base = Intrin->getOperand(2);
13604     MMO = Intrin->getMemOperand();
13605     break;
13606   }
13607   }
13608 
13609   MVT VecTy = N->getValueType(0).getSimpleVT();
13610 
13611   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13612   // aligned and the type is a vector with elements up to 4 bytes
13613   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13614       VecTy.getScalarSizeInBits() <= 32) {
13615     return SDValue();
13616   }
13617 
13618   SDValue LoadOps[] = { Chain, Base };
13619   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13620                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13621                                          LoadOps, MVT::v2f64, MMO);
13622 
13623   DCI.AddToWorklist(Load.getNode());
13624   Chain = Load.getValue(1);
13625   SDValue Swap = DAG.getNode(
13626       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13627   DCI.AddToWorklist(Swap.getNode());
13628 
13629   // Add a bitcast if the resulting load type doesn't match v2f64.
13630   if (VecTy != MVT::v2f64) {
13631     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13632     DCI.AddToWorklist(N.getNode());
13633     // Package {bitcast value, swap's chain} to match Load's shape.
13634     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13635                        N, Swap.getValue(1));
13636   }
13637 
13638   return Swap;
13639 }
13640 
13641 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13642 // builtins) into stores with swaps.
13643 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13644                                                DAGCombinerInfo &DCI) const {
13645   SelectionDAG &DAG = DCI.DAG;
13646   SDLoc dl(N);
13647   SDValue Chain;
13648   SDValue Base;
13649   unsigned SrcOpnd;
13650   MachineMemOperand *MMO;
13651 
13652   switch (N->getOpcode()) {
13653   default:
13654     llvm_unreachable("Unexpected opcode for little endian VSX store");
13655   case ISD::STORE: {
13656     StoreSDNode *ST = cast<StoreSDNode>(N);
13657     Chain = ST->getChain();
13658     Base = ST->getBasePtr();
13659     MMO = ST->getMemOperand();
13660     SrcOpnd = 1;
13661     // If the MMO suggests this isn't a store of a full vector, leave
13662     // things alone.  For a built-in, we have to make the change for
13663     // correctness, so if there is a size problem that will be a bug.
13664     if (MMO->getSize() < 16)
13665       return SDValue();
13666     break;
13667   }
13668   case ISD::INTRINSIC_VOID: {
13669     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13670     Chain = Intrin->getChain();
13671     // Intrin->getBasePtr() oddly does not get what we want.
13672     Base = Intrin->getOperand(3);
13673     MMO = Intrin->getMemOperand();
13674     SrcOpnd = 2;
13675     break;
13676   }
13677   }
13678 
13679   SDValue Src = N->getOperand(SrcOpnd);
13680   MVT VecTy = Src.getValueType().getSimpleVT();
13681 
13682   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13683   // aligned and the type is a vector with elements up to 4 bytes
13684   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13685       VecTy.getScalarSizeInBits() <= 32) {
13686     return SDValue();
13687   }
13688 
13689   // All stores are done as v2f64 and possible bit cast.
13690   if (VecTy != MVT::v2f64) {
13691     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13692     DCI.AddToWorklist(Src.getNode());
13693   }
13694 
13695   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13696                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13697   DCI.AddToWorklist(Swap.getNode());
13698   Chain = Swap.getValue(1);
13699   SDValue StoreOps[] = { Chain, Swap, Base };
13700   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13701                                           DAG.getVTList(MVT::Other),
13702                                           StoreOps, VecTy, MMO);
13703   DCI.AddToWorklist(Store.getNode());
13704   return Store;
13705 }
13706 
13707 // Handle DAG combine for STORE (FP_TO_INT F).
13708 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13709                                                DAGCombinerInfo &DCI) const {
13710 
13711   SelectionDAG &DAG = DCI.DAG;
13712   SDLoc dl(N);
13713   unsigned Opcode = N->getOperand(1).getOpcode();
13714 
13715   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13716          && "Not a FP_TO_INT Instruction!");
13717 
13718   SDValue Val = N->getOperand(1).getOperand(0);
13719   EVT Op1VT = N->getOperand(1).getValueType();
13720   EVT ResVT = Val.getValueType();
13721 
13722   // Floating point types smaller than 32 bits are not legal on Power.
13723   if (ResVT.getScalarSizeInBits() < 32)
13724     return SDValue();
13725 
13726   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13727   bool ValidTypeForStoreFltAsInt =
13728         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13729          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13730 
13731   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13732       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13733     return SDValue();
13734 
13735   // Extend f32 values to f64
13736   if (ResVT.getScalarSizeInBits() == 32) {
13737     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13738     DCI.AddToWorklist(Val.getNode());
13739   }
13740 
13741   // Set signed or unsigned conversion opcode.
13742   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13743                           PPCISD::FP_TO_SINT_IN_VSR :
13744                           PPCISD::FP_TO_UINT_IN_VSR;
13745 
13746   Val = DAG.getNode(ConvOpcode,
13747                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13748   DCI.AddToWorklist(Val.getNode());
13749 
13750   // Set number of bytes being converted.
13751   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13752   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13753                     DAG.getIntPtrConstant(ByteSize, dl, false),
13754                     DAG.getValueType(Op1VT) };
13755 
13756   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13757           DAG.getVTList(MVT::Other), Ops,
13758           cast<StoreSDNode>(N)->getMemoryVT(),
13759           cast<StoreSDNode>(N)->getMemOperand());
13760 
13761   DCI.AddToWorklist(Val.getNode());
13762   return Val;
13763 }
13764 
13765 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
13766   // Check that the source of the element keeps flipping
13767   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
13768   bool PrevElemFromFirstVec = Mask[0] < NumElts;
13769   for (int i = 1, e = Mask.size(); i < e; i++) {
13770     if (PrevElemFromFirstVec && Mask[i] < NumElts)
13771       return false;
13772     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
13773       return false;
13774     PrevElemFromFirstVec = !PrevElemFromFirstVec;
13775   }
13776   return true;
13777 }
13778 
13779 static bool isSplatBV(SDValue Op) {
13780   if (Op.getOpcode() != ISD::BUILD_VECTOR)
13781     return false;
13782   SDValue FirstOp;
13783 
13784   // Find first non-undef input.
13785   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
13786     FirstOp = Op.getOperand(i);
13787     if (!FirstOp.isUndef())
13788       break;
13789   }
13790 
13791   // All inputs are undef or the same as the first non-undef input.
13792   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
13793     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
13794       return false;
13795   return true;
13796 }
13797 
13798 static SDValue isScalarToVec(SDValue Op) {
13799   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13800     return Op;
13801   if (Op.getOpcode() != ISD::BITCAST)
13802     return SDValue();
13803   Op = Op.getOperand(0);
13804   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13805     return Op;
13806   return SDValue();
13807 }
13808 
13809 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
13810                                             int LHSMaxIdx, int RHSMinIdx,
13811                                             int RHSMaxIdx, int HalfVec) {
13812   for (int i = 0, e = ShuffV.size(); i < e; i++) {
13813     int Idx = ShuffV[i];
13814     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
13815       ShuffV[i] += HalfVec;
13816   }
13817   return;
13818 }
13819 
13820 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
13821 // the original is:
13822 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
13823 // In such a case, just change the shuffle mask to extract the element
13824 // from the permuted index.
13825 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
13826   SDLoc dl(OrigSToV);
13827   EVT VT = OrigSToV.getValueType();
13828   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
13829          "Expecting a SCALAR_TO_VECTOR here");
13830   SDValue Input = OrigSToV.getOperand(0);
13831 
13832   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13833     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
13834     SDValue OrigVector = Input.getOperand(0);
13835 
13836     // Can't handle non-const element indices or different vector types
13837     // for the input to the extract and the output of the scalar_to_vector.
13838     if (Idx && VT == OrigVector.getValueType()) {
13839       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
13840       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
13841       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
13842     }
13843   }
13844   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
13845                      OrigSToV.getOperand(0));
13846 }
13847 
13848 // On little endian subtargets, combine shuffles such as:
13849 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
13850 // into:
13851 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
13852 // because the latter can be matched to a single instruction merge.
13853 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
13854 // to put the value into element zero. Adjust the shuffle mask so that the
13855 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
13856 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
13857                                                 SelectionDAG &DAG) const {
13858   SDValue LHS = SVN->getOperand(0);
13859   SDValue RHS = SVN->getOperand(1);
13860   auto Mask = SVN->getMask();
13861   int NumElts = LHS.getValueType().getVectorNumElements();
13862   SDValue Res(SVN, 0);
13863   SDLoc dl(SVN);
13864 
13865   // None of these combines are useful on big endian systems since the ISA
13866   // already has a big endian bias.
13867   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13868     return Res;
13869 
13870   // If this is not a shuffle of a shuffle and the first element comes from
13871   // the second vector, canonicalize to the commuted form. This will make it
13872   // more likely to match one of the single instruction patterns.
13873   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13874       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
13875     std::swap(LHS, RHS);
13876     Res = DAG.getCommutedVectorShuffle(*SVN);
13877     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13878   }
13879 
13880   // Adjust the shuffle mask if either input vector comes from a
13881   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
13882   // form (to prevent the need for a swap).
13883   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
13884   SDValue SToVLHS = isScalarToVec(LHS);
13885   SDValue SToVRHS = isScalarToVec(RHS);
13886   if (SToVLHS || SToVRHS) {
13887     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
13888                             : SToVRHS.getValueType().getVectorNumElements();
13889     int NumEltsOut = ShuffV.size();
13890 
13891     // Initially assume that neither input is permuted. These will be adjusted
13892     // accordingly if either input is.
13893     int LHSMaxIdx = -1;
13894     int RHSMinIdx = -1;
13895     int RHSMaxIdx = -1;
13896     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
13897 
13898     // Get the permuted scalar to vector nodes for the source(s) that come from
13899     // ISD::SCALAR_TO_VECTOR.
13900     if (SToVLHS) {
13901       // Set up the values for the shuffle vector fixup.
13902       LHSMaxIdx = NumEltsOut / NumEltsIn;
13903       SToVLHS = getSToVPermuted(SToVLHS, DAG);
13904       if (SToVLHS.getValueType() != LHS.getValueType())
13905         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
13906       LHS = SToVLHS;
13907     }
13908     if (SToVRHS) {
13909       RHSMinIdx = NumEltsOut;
13910       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
13911       SToVRHS = getSToVPermuted(SToVRHS, DAG);
13912       if (SToVRHS.getValueType() != RHS.getValueType())
13913         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
13914       RHS = SToVRHS;
13915     }
13916 
13917     // Fix up the shuffle mask to reflect where the desired element actually is.
13918     // The minimum and maximum indices that correspond to element zero for both
13919     // the LHS and RHS are computed and will control which shuffle mask entries
13920     // are to be changed. For example, if the RHS is permuted, any shuffle mask
13921     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
13922     // HalfVec to refer to the corresponding element in the permuted vector.
13923     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
13924                                     HalfVec);
13925     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
13926 
13927     // We may have simplified away the shuffle. We won't be able to do anything
13928     // further with it here.
13929     if (!isa<ShuffleVectorSDNode>(Res))
13930       return Res;
13931     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13932   }
13933 
13934   // The common case after we commuted the shuffle is that the RHS is a splat
13935   // and we have elements coming in from the splat at indices that are not
13936   // conducive to using a merge.
13937   // Example:
13938   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
13939   if (!isSplatBV(RHS))
13940     return Res;
13941 
13942   // We are looking for a mask such that all even elements are from
13943   // one vector and all odd elements from the other.
13944   if (!isAlternatingShuffMask(Mask, NumElts))
13945     return Res;
13946 
13947   // Adjust the mask so we are pulling in the same index from the splat
13948   // as the index from the interesting vector in consecutive elements.
13949   // Example (even elements from first vector):
13950   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
13951   if (Mask[0] < NumElts)
13952     for (int i = 1, e = Mask.size(); i < e; i += 2)
13953       ShuffV[i] = (ShuffV[i - 1] + NumElts);
13954   // Example (odd elements from first vector):
13955   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
13956   else
13957     for (int i = 0, e = Mask.size(); i < e; i += 2)
13958       ShuffV[i] = (ShuffV[i + 1] + NumElts);
13959 
13960   // If the RHS has undefs, we need to remove them since we may have created
13961   // a shuffle that adds those instead of the splat value.
13962   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
13963   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
13964 
13965   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
13966   return Res;
13967 }
13968 
13969 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13970                                                 LSBaseSDNode *LSBase,
13971                                                 DAGCombinerInfo &DCI) const {
13972   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13973         "Not a reverse memop pattern!");
13974 
13975   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13976     auto Mask = SVN->getMask();
13977     int i = 0;
13978     auto I = Mask.rbegin();
13979     auto E = Mask.rend();
13980 
13981     for (; I != E; ++I) {
13982       if (*I != i)
13983         return false;
13984       i++;
13985     }
13986     return true;
13987   };
13988 
13989   SelectionDAG &DAG = DCI.DAG;
13990   EVT VT = SVN->getValueType(0);
13991 
13992   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13993     return SDValue();
13994 
13995   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13996   // See comment in PPCVSXSwapRemoval.cpp.
13997   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13998   if (!Subtarget.hasP9Vector())
13999     return SDValue();
14000 
14001   if(!IsElementReverse(SVN))
14002     return SDValue();
14003 
14004   if (LSBase->getOpcode() == ISD::LOAD) {
14005     SDLoc dl(SVN);
14006     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14007     return DAG.getMemIntrinsicNode(
14008         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14009         LSBase->getMemoryVT(), LSBase->getMemOperand());
14010   }
14011 
14012   if (LSBase->getOpcode() == ISD::STORE) {
14013     SDLoc dl(LSBase);
14014     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14015                           LSBase->getBasePtr()};
14016     return DAG.getMemIntrinsicNode(
14017         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14018         LSBase->getMemoryVT(), LSBase->getMemOperand());
14019   }
14020 
14021   llvm_unreachable("Expected a load or store node here");
14022 }
14023 
14024 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14025                                              DAGCombinerInfo &DCI) const {
14026   SelectionDAG &DAG = DCI.DAG;
14027   SDLoc dl(N);
14028   switch (N->getOpcode()) {
14029   default: break;
14030   case ISD::ADD:
14031     return combineADD(N, DCI);
14032   case ISD::SHL:
14033     return combineSHL(N, DCI);
14034   case ISD::SRA:
14035     return combineSRA(N, DCI);
14036   case ISD::SRL:
14037     return combineSRL(N, DCI);
14038   case ISD::MUL:
14039     return combineMUL(N, DCI);
14040   case ISD::FMA:
14041   case PPCISD::FNMSUB:
14042     return combineFMALike(N, DCI);
14043   case PPCISD::SHL:
14044     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14045         return N->getOperand(0);
14046     break;
14047   case PPCISD::SRL:
14048     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14049         return N->getOperand(0);
14050     break;
14051   case PPCISD::SRA:
14052     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14053       if (C->isNullValue() ||   //  0 >>s V -> 0.
14054           C->isAllOnesValue())    // -1 >>s V -> -1.
14055         return N->getOperand(0);
14056     }
14057     break;
14058   case ISD::SIGN_EXTEND:
14059   case ISD::ZERO_EXTEND:
14060   case ISD::ANY_EXTEND:
14061     return DAGCombineExtBoolTrunc(N, DCI);
14062   case ISD::TRUNCATE:
14063     return combineTRUNCATE(N, DCI);
14064   case ISD::SETCC:
14065     if (SDValue CSCC = combineSetCC(N, DCI))
14066       return CSCC;
14067     LLVM_FALLTHROUGH;
14068   case ISD::SELECT_CC:
14069     return DAGCombineTruncBoolExt(N, DCI);
14070   case ISD::SINT_TO_FP:
14071   case ISD::UINT_TO_FP:
14072     return combineFPToIntToFP(N, DCI);
14073   case ISD::VECTOR_SHUFFLE:
14074     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14075       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14076       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14077     }
14078     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14079   case ISD::STORE: {
14080 
14081     EVT Op1VT = N->getOperand(1).getValueType();
14082     unsigned Opcode = N->getOperand(1).getOpcode();
14083 
14084     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14085       SDValue Val= combineStoreFPToInt(N, DCI);
14086       if (Val)
14087         return Val;
14088     }
14089 
14090     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14091       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14092       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14093       if (Val)
14094         return Val;
14095     }
14096 
14097     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14098     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14099         N->getOperand(1).getNode()->hasOneUse() &&
14100         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14101          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14102 
14103       // STBRX can only handle simple types and it makes no sense to store less
14104       // two bytes in byte-reversed order.
14105       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14106       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14107         break;
14108 
14109       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14110       // Do an any-extend to 32-bits if this is a half-word input.
14111       if (BSwapOp.getValueType() == MVT::i16)
14112         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14113 
14114       // If the type of BSWAP operand is wider than stored memory width
14115       // it need to be shifted to the right side before STBRX.
14116       if (Op1VT.bitsGT(mVT)) {
14117         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14118         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14119                               DAG.getConstant(Shift, dl, MVT::i32));
14120         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14121         if (Op1VT == MVT::i64)
14122           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14123       }
14124 
14125       SDValue Ops[] = {
14126         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14127       };
14128       return
14129         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14130                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14131                                 cast<StoreSDNode>(N)->getMemOperand());
14132     }
14133 
14134     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14135     // So it can increase the chance of CSE constant construction.
14136     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14137         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14138       // Need to sign-extended to 64-bits to handle negative values.
14139       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14140       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14141                                     MemVT.getSizeInBits());
14142       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14143 
14144       // DAG.getTruncStore() can't be used here because it doesn't accept
14145       // the general (base + offset) addressing mode.
14146       // So we use UpdateNodeOperands and setTruncatingStore instead.
14147       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14148                              N->getOperand(3));
14149       cast<StoreSDNode>(N)->setTruncatingStore(true);
14150       return SDValue(N, 0);
14151     }
14152 
14153     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14154     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14155     if (Op1VT.isSimple()) {
14156       MVT StoreVT = Op1VT.getSimpleVT();
14157       if (Subtarget.needsSwapsForVSXMemOps() &&
14158           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14159            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14160         return expandVSXStoreForLE(N, DCI);
14161     }
14162     break;
14163   }
14164   case ISD::LOAD: {
14165     LoadSDNode *LD = cast<LoadSDNode>(N);
14166     EVT VT = LD->getValueType(0);
14167 
14168     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14169     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14170     if (VT.isSimple()) {
14171       MVT LoadVT = VT.getSimpleVT();
14172       if (Subtarget.needsSwapsForVSXMemOps() &&
14173           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14174            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14175         return expandVSXLoadForLE(N, DCI);
14176     }
14177 
14178     // We sometimes end up with a 64-bit integer load, from which we extract
14179     // two single-precision floating-point numbers. This happens with
14180     // std::complex<float>, and other similar structures, because of the way we
14181     // canonicalize structure copies. However, if we lack direct moves,
14182     // then the final bitcasts from the extracted integer values to the
14183     // floating-point numbers turn into store/load pairs. Even with direct moves,
14184     // just loading the two floating-point numbers is likely better.
14185     auto ReplaceTwoFloatLoad = [&]() {
14186       if (VT != MVT::i64)
14187         return false;
14188 
14189       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14190           LD->isVolatile())
14191         return false;
14192 
14193       //  We're looking for a sequence like this:
14194       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14195       //      t16: i64 = srl t13, Constant:i32<32>
14196       //    t17: i32 = truncate t16
14197       //  t18: f32 = bitcast t17
14198       //    t19: i32 = truncate t13
14199       //  t20: f32 = bitcast t19
14200 
14201       if (!LD->hasNUsesOfValue(2, 0))
14202         return false;
14203 
14204       auto UI = LD->use_begin();
14205       while (UI.getUse().getResNo() != 0) ++UI;
14206       SDNode *Trunc = *UI++;
14207       while (UI.getUse().getResNo() != 0) ++UI;
14208       SDNode *RightShift = *UI;
14209       if (Trunc->getOpcode() != ISD::TRUNCATE)
14210         std::swap(Trunc, RightShift);
14211 
14212       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14213           Trunc->getValueType(0) != MVT::i32 ||
14214           !Trunc->hasOneUse())
14215         return false;
14216       if (RightShift->getOpcode() != ISD::SRL ||
14217           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14218           RightShift->getConstantOperandVal(1) != 32 ||
14219           !RightShift->hasOneUse())
14220         return false;
14221 
14222       SDNode *Trunc2 = *RightShift->use_begin();
14223       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14224           Trunc2->getValueType(0) != MVT::i32 ||
14225           !Trunc2->hasOneUse())
14226         return false;
14227 
14228       SDNode *Bitcast = *Trunc->use_begin();
14229       SDNode *Bitcast2 = *Trunc2->use_begin();
14230 
14231       if (Bitcast->getOpcode() != ISD::BITCAST ||
14232           Bitcast->getValueType(0) != MVT::f32)
14233         return false;
14234       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14235           Bitcast2->getValueType(0) != MVT::f32)
14236         return false;
14237 
14238       if (Subtarget.isLittleEndian())
14239         std::swap(Bitcast, Bitcast2);
14240 
14241       // Bitcast has the second float (in memory-layout order) and Bitcast2
14242       // has the first one.
14243 
14244       SDValue BasePtr = LD->getBasePtr();
14245       if (LD->isIndexed()) {
14246         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14247                "Non-pre-inc AM on PPC?");
14248         BasePtr =
14249           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14250                       LD->getOffset());
14251       }
14252 
14253       auto MMOFlags =
14254           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14255       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14256                                       LD->getPointerInfo(), LD->getAlignment(),
14257                                       MMOFlags, LD->getAAInfo());
14258       SDValue AddPtr =
14259         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14260                     BasePtr, DAG.getIntPtrConstant(4, dl));
14261       SDValue FloatLoad2 = DAG.getLoad(
14262           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14263           LD->getPointerInfo().getWithOffset(4),
14264           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14265 
14266       if (LD->isIndexed()) {
14267         // Note that DAGCombine should re-form any pre-increment load(s) from
14268         // what is produced here if that makes sense.
14269         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14270       }
14271 
14272       DCI.CombineTo(Bitcast2, FloatLoad);
14273       DCI.CombineTo(Bitcast, FloatLoad2);
14274 
14275       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14276                                     SDValue(FloatLoad2.getNode(), 1));
14277       return true;
14278     };
14279 
14280     if (ReplaceTwoFloatLoad())
14281       return SDValue(N, 0);
14282 
14283     EVT MemVT = LD->getMemoryVT();
14284     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14285     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14286     if (LD->isUnindexed() && VT.isVector() &&
14287         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14288           // P8 and later hardware should just use LOAD.
14289           !Subtarget.hasP8Vector() &&
14290           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14291            VT == MVT::v4f32))) &&
14292         LD->getAlign() < ABIAlignment) {
14293       // This is a type-legal unaligned Altivec load.
14294       SDValue Chain = LD->getChain();
14295       SDValue Ptr = LD->getBasePtr();
14296       bool isLittleEndian = Subtarget.isLittleEndian();
14297 
14298       // This implements the loading of unaligned vectors as described in
14299       // the venerable Apple Velocity Engine overview. Specifically:
14300       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14301       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14302       //
14303       // The general idea is to expand a sequence of one or more unaligned
14304       // loads into an alignment-based permutation-control instruction (lvsl
14305       // or lvsr), a series of regular vector loads (which always truncate
14306       // their input address to an aligned address), and a series of
14307       // permutations.  The results of these permutations are the requested
14308       // loaded values.  The trick is that the last "extra" load is not taken
14309       // from the address you might suspect (sizeof(vector) bytes after the
14310       // last requested load), but rather sizeof(vector) - 1 bytes after the
14311       // last requested vector. The point of this is to avoid a page fault if
14312       // the base address happened to be aligned. This works because if the
14313       // base address is aligned, then adding less than a full vector length
14314       // will cause the last vector in the sequence to be (re)loaded.
14315       // Otherwise, the next vector will be fetched as you might suspect was
14316       // necessary.
14317 
14318       // We might be able to reuse the permutation generation from
14319       // a different base address offset from this one by an aligned amount.
14320       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14321       // optimization later.
14322       Intrinsic::ID Intr, IntrLD, IntrPerm;
14323       MVT PermCntlTy, PermTy, LDTy;
14324       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14325                             : Intrinsic::ppc_altivec_lvsl;
14326       IntrLD = Intrinsic::ppc_altivec_lvx;
14327       IntrPerm = Intrinsic::ppc_altivec_vperm;
14328       PermCntlTy = MVT::v16i8;
14329       PermTy = MVT::v4i32;
14330       LDTy = MVT::v4i32;
14331 
14332       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14333 
14334       // Create the new MMO for the new base load. It is like the original MMO,
14335       // but represents an area in memory almost twice the vector size centered
14336       // on the original address. If the address is unaligned, we might start
14337       // reading up to (sizeof(vector)-1) bytes below the address of the
14338       // original unaligned load.
14339       MachineFunction &MF = DAG.getMachineFunction();
14340       MachineMemOperand *BaseMMO =
14341         MF.getMachineMemOperand(LD->getMemOperand(),
14342                                 -(long)MemVT.getStoreSize()+1,
14343                                 2*MemVT.getStoreSize()-1);
14344 
14345       // Create the new base load.
14346       SDValue LDXIntID =
14347           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14348       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14349       SDValue BaseLoad =
14350         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14351                                 DAG.getVTList(PermTy, MVT::Other),
14352                                 BaseLoadOps, LDTy, BaseMMO);
14353 
14354       // Note that the value of IncOffset (which is provided to the next
14355       // load's pointer info offset value, and thus used to calculate the
14356       // alignment), and the value of IncValue (which is actually used to
14357       // increment the pointer value) are different! This is because we
14358       // require the next load to appear to be aligned, even though it
14359       // is actually offset from the base pointer by a lesser amount.
14360       int IncOffset = VT.getSizeInBits() / 8;
14361       int IncValue = IncOffset;
14362 
14363       // Walk (both up and down) the chain looking for another load at the real
14364       // (aligned) offset (the alignment of the other load does not matter in
14365       // this case). If found, then do not use the offset reduction trick, as
14366       // that will prevent the loads from being later combined (as they would
14367       // otherwise be duplicates).
14368       if (!findConsecutiveLoad(LD, DAG))
14369         --IncValue;
14370 
14371       SDValue Increment =
14372           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14373       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14374 
14375       MachineMemOperand *ExtraMMO =
14376         MF.getMachineMemOperand(LD->getMemOperand(),
14377                                 1, 2*MemVT.getStoreSize()-1);
14378       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14379       SDValue ExtraLoad =
14380         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14381                                 DAG.getVTList(PermTy, MVT::Other),
14382                                 ExtraLoadOps, LDTy, ExtraMMO);
14383 
14384       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14385         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14386 
14387       // Because vperm has a big-endian bias, we must reverse the order
14388       // of the input vectors and complement the permute control vector
14389       // when generating little endian code.  We have already handled the
14390       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14391       // and ExtraLoad here.
14392       SDValue Perm;
14393       if (isLittleEndian)
14394         Perm = BuildIntrinsicOp(IntrPerm,
14395                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14396       else
14397         Perm = BuildIntrinsicOp(IntrPerm,
14398                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14399 
14400       if (VT != PermTy)
14401         Perm = Subtarget.hasAltivec()
14402                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14403                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14404                                  DAG.getTargetConstant(1, dl, MVT::i64));
14405                                // second argument is 1 because this rounding
14406                                // is always exact.
14407 
14408       // The output of the permutation is our loaded result, the TokenFactor is
14409       // our new chain.
14410       DCI.CombineTo(N, Perm, TF);
14411       return SDValue(N, 0);
14412     }
14413     }
14414     break;
14415     case ISD::INTRINSIC_WO_CHAIN: {
14416       bool isLittleEndian = Subtarget.isLittleEndian();
14417       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14418       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14419                                            : Intrinsic::ppc_altivec_lvsl);
14420       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14421         SDValue Add = N->getOperand(1);
14422 
14423         int Bits = 4 /* 16 byte alignment */;
14424 
14425         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14426                                   APInt::getAllOnesValue(Bits /* alignment */)
14427                                       .zext(Add.getScalarValueSizeInBits()))) {
14428           SDNode *BasePtr = Add->getOperand(0).getNode();
14429           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14430                                     UE = BasePtr->use_end();
14431                UI != UE; ++UI) {
14432             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14433                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14434                     IID) {
14435               // We've found another LVSL/LVSR, and this address is an aligned
14436               // multiple of that one. The results will be the same, so use the
14437               // one we've just found instead.
14438 
14439               return SDValue(*UI, 0);
14440             }
14441           }
14442         }
14443 
14444         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14445           SDNode *BasePtr = Add->getOperand(0).getNode();
14446           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14447                UE = BasePtr->use_end(); UI != UE; ++UI) {
14448             if (UI->getOpcode() == ISD::ADD &&
14449                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14450                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14451                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14452                 (1ULL << Bits) == 0) {
14453               SDNode *OtherAdd = *UI;
14454               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14455                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14456                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14457                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14458                   return SDValue(*VI, 0);
14459                 }
14460               }
14461             }
14462           }
14463         }
14464       }
14465 
14466       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14467       // Expose the vabsduw/h/b opportunity for down stream
14468       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14469           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14470            IID == Intrinsic::ppc_altivec_vmaxsh ||
14471            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14472         SDValue V1 = N->getOperand(1);
14473         SDValue V2 = N->getOperand(2);
14474         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14475              V1.getSimpleValueType() == MVT::v8i16 ||
14476              V1.getSimpleValueType() == MVT::v16i8) &&
14477             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14478           // (0-a, a)
14479           if (V1.getOpcode() == ISD::SUB &&
14480               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14481               V1.getOperand(1) == V2) {
14482             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14483           }
14484           // (a, 0-a)
14485           if (V2.getOpcode() == ISD::SUB &&
14486               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14487               V2.getOperand(1) == V1) {
14488             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14489           }
14490           // (x-y, y-x)
14491           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14492               V1.getOperand(0) == V2.getOperand(1) &&
14493               V1.getOperand(1) == V2.getOperand(0)) {
14494             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14495           }
14496         }
14497       }
14498     }
14499 
14500     break;
14501   case ISD::INTRINSIC_W_CHAIN:
14502     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14503     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14504     if (Subtarget.needsSwapsForVSXMemOps()) {
14505       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14506       default:
14507         break;
14508       case Intrinsic::ppc_vsx_lxvw4x:
14509       case Intrinsic::ppc_vsx_lxvd2x:
14510         return expandVSXLoadForLE(N, DCI);
14511       }
14512     }
14513     break;
14514   case ISD::INTRINSIC_VOID:
14515     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14516     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14517     if (Subtarget.needsSwapsForVSXMemOps()) {
14518       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14519       default:
14520         break;
14521       case Intrinsic::ppc_vsx_stxvw4x:
14522       case Intrinsic::ppc_vsx_stxvd2x:
14523         return expandVSXStoreForLE(N, DCI);
14524       }
14525     }
14526     break;
14527   case ISD::BSWAP:
14528     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14529     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14530         N->getOperand(0).hasOneUse() &&
14531         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14532          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14533           N->getValueType(0) == MVT::i64))) {
14534       SDValue Load = N->getOperand(0);
14535       LoadSDNode *LD = cast<LoadSDNode>(Load);
14536       // Create the byte-swapping load.
14537       SDValue Ops[] = {
14538         LD->getChain(),    // Chain
14539         LD->getBasePtr(),  // Ptr
14540         DAG.getValueType(N->getValueType(0)) // VT
14541       };
14542       SDValue BSLoad =
14543         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14544                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14545                                               MVT::i64 : MVT::i32, MVT::Other),
14546                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14547 
14548       // If this is an i16 load, insert the truncate.
14549       SDValue ResVal = BSLoad;
14550       if (N->getValueType(0) == MVT::i16)
14551         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14552 
14553       // First, combine the bswap away.  This makes the value produced by the
14554       // load dead.
14555       DCI.CombineTo(N, ResVal);
14556 
14557       // Next, combine the load away, we give it a bogus result value but a real
14558       // chain result.  The result value is dead because the bswap is dead.
14559       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14560 
14561       // Return N so it doesn't get rechecked!
14562       return SDValue(N, 0);
14563     }
14564     break;
14565   case PPCISD::VCMP:
14566     // If a VCMPo node already exists with exactly the same operands as this
14567     // node, use its result instead of this node (VCMPo computes both a CR6 and
14568     // a normal output).
14569     //
14570     if (!N->getOperand(0).hasOneUse() &&
14571         !N->getOperand(1).hasOneUse() &&
14572         !N->getOperand(2).hasOneUse()) {
14573 
14574       // Scan all of the users of the LHS, looking for VCMPo's that match.
14575       SDNode *VCMPoNode = nullptr;
14576 
14577       SDNode *LHSN = N->getOperand(0).getNode();
14578       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14579            UI != E; ++UI)
14580         if (UI->getOpcode() == PPCISD::VCMPo &&
14581             UI->getOperand(1) == N->getOperand(1) &&
14582             UI->getOperand(2) == N->getOperand(2) &&
14583             UI->getOperand(0) == N->getOperand(0)) {
14584           VCMPoNode = *UI;
14585           break;
14586         }
14587 
14588       // If there is no VCMPo node, or if the flag value has a single use, don't
14589       // transform this.
14590       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14591         break;
14592 
14593       // Look at the (necessarily single) use of the flag value.  If it has a
14594       // chain, this transformation is more complex.  Note that multiple things
14595       // could use the value result, which we should ignore.
14596       SDNode *FlagUser = nullptr;
14597       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14598            FlagUser == nullptr; ++UI) {
14599         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14600         SDNode *User = *UI;
14601         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14602           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14603             FlagUser = User;
14604             break;
14605           }
14606         }
14607       }
14608 
14609       // If the user is a MFOCRF instruction, we know this is safe.
14610       // Otherwise we give up for right now.
14611       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14612         return SDValue(VCMPoNode, 0);
14613     }
14614     break;
14615   case ISD::BRCOND: {
14616     SDValue Cond = N->getOperand(1);
14617     SDValue Target = N->getOperand(2);
14618 
14619     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14620         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14621           Intrinsic::loop_decrement) {
14622 
14623       // We now need to make the intrinsic dead (it cannot be instruction
14624       // selected).
14625       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14626       assert(Cond.getNode()->hasOneUse() &&
14627              "Counter decrement has more than one use");
14628 
14629       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14630                          N->getOperand(0), Target);
14631     }
14632   }
14633   break;
14634   case ISD::BR_CC: {
14635     // If this is a branch on an altivec predicate comparison, lower this so
14636     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14637     // lowering is done pre-legalize, because the legalizer lowers the predicate
14638     // compare down to code that is difficult to reassemble.
14639     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14640     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14641 
14642     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14643     // value. If so, pass-through the AND to get to the intrinsic.
14644     if (LHS.getOpcode() == ISD::AND &&
14645         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14646         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14647           Intrinsic::loop_decrement &&
14648         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14649         !isNullConstant(LHS.getOperand(1)))
14650       LHS = LHS.getOperand(0);
14651 
14652     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14653         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14654           Intrinsic::loop_decrement &&
14655         isa<ConstantSDNode>(RHS)) {
14656       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14657              "Counter decrement comparison is not EQ or NE");
14658 
14659       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14660       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14661                     (CC == ISD::SETNE && !Val);
14662 
14663       // We now need to make the intrinsic dead (it cannot be instruction
14664       // selected).
14665       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14666       assert(LHS.getNode()->hasOneUse() &&
14667              "Counter decrement has more than one use");
14668 
14669       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14670                          N->getOperand(0), N->getOperand(4));
14671     }
14672 
14673     int CompareOpc;
14674     bool isDot;
14675 
14676     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14677         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14678         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14679       assert(isDot && "Can't compare against a vector result!");
14680 
14681       // If this is a comparison against something other than 0/1, then we know
14682       // that the condition is never/always true.
14683       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14684       if (Val != 0 && Val != 1) {
14685         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14686           return N->getOperand(0);
14687         // Always !=, turn it into an unconditional branch.
14688         return DAG.getNode(ISD::BR, dl, MVT::Other,
14689                            N->getOperand(0), N->getOperand(4));
14690       }
14691 
14692       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14693 
14694       // Create the PPCISD altivec 'dot' comparison node.
14695       SDValue Ops[] = {
14696         LHS.getOperand(2),  // LHS of compare
14697         LHS.getOperand(3),  // RHS of compare
14698         DAG.getConstant(CompareOpc, dl, MVT::i32)
14699       };
14700       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14701       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14702 
14703       // Unpack the result based on how the target uses it.
14704       PPC::Predicate CompOpc;
14705       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14706       default:  // Can't happen, don't crash on invalid number though.
14707       case 0:   // Branch on the value of the EQ bit of CR6.
14708         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14709         break;
14710       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14711         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14712         break;
14713       case 2:   // Branch on the value of the LT bit of CR6.
14714         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14715         break;
14716       case 3:   // Branch on the inverted value of the LT bit of CR6.
14717         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14718         break;
14719       }
14720 
14721       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14722                          DAG.getConstant(CompOpc, dl, MVT::i32),
14723                          DAG.getRegister(PPC::CR6, MVT::i32),
14724                          N->getOperand(4), CompNode.getValue(1));
14725     }
14726     break;
14727   }
14728   case ISD::BUILD_VECTOR:
14729     return DAGCombineBuildVector(N, DCI);
14730   case ISD::ABS:
14731     return combineABS(N, DCI);
14732   case ISD::VSELECT:
14733     return combineVSelect(N, DCI);
14734   }
14735 
14736   return SDValue();
14737 }
14738 
14739 SDValue
14740 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14741                                  SelectionDAG &DAG,
14742                                  SmallVectorImpl<SDNode *> &Created) const {
14743   // fold (sdiv X, pow2)
14744   EVT VT = N->getValueType(0);
14745   if (VT == MVT::i64 && !Subtarget.isPPC64())
14746     return SDValue();
14747   if ((VT != MVT::i32 && VT != MVT::i64) ||
14748       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14749     return SDValue();
14750 
14751   SDLoc DL(N);
14752   SDValue N0 = N->getOperand(0);
14753 
14754   bool IsNegPow2 = (-Divisor).isPowerOf2();
14755   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14756   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14757 
14758   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14759   Created.push_back(Op.getNode());
14760 
14761   if (IsNegPow2) {
14762     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14763     Created.push_back(Op.getNode());
14764   }
14765 
14766   return Op;
14767 }
14768 
14769 //===----------------------------------------------------------------------===//
14770 // Inline Assembly Support
14771 //===----------------------------------------------------------------------===//
14772 
14773 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14774                                                       KnownBits &Known,
14775                                                       const APInt &DemandedElts,
14776                                                       const SelectionDAG &DAG,
14777                                                       unsigned Depth) const {
14778   Known.resetAll();
14779   switch (Op.getOpcode()) {
14780   default: break;
14781   case PPCISD::LBRX: {
14782     // lhbrx is known to have the top bits cleared out.
14783     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14784       Known.Zero = 0xFFFF0000;
14785     break;
14786   }
14787   case ISD::INTRINSIC_WO_CHAIN: {
14788     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14789     default: break;
14790     case Intrinsic::ppc_altivec_vcmpbfp_p:
14791     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14792     case Intrinsic::ppc_altivec_vcmpequb_p:
14793     case Intrinsic::ppc_altivec_vcmpequh_p:
14794     case Intrinsic::ppc_altivec_vcmpequw_p:
14795     case Intrinsic::ppc_altivec_vcmpequd_p:
14796     case Intrinsic::ppc_altivec_vcmpgefp_p:
14797     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14798     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14799     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14800     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14801     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14802     case Intrinsic::ppc_altivec_vcmpgtub_p:
14803     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14804     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14805     case Intrinsic::ppc_altivec_vcmpgtud_p:
14806       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14807       break;
14808     }
14809   }
14810   }
14811 }
14812 
14813 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14814   switch (Subtarget.getCPUDirective()) {
14815   default: break;
14816   case PPC::DIR_970:
14817   case PPC::DIR_PWR4:
14818   case PPC::DIR_PWR5:
14819   case PPC::DIR_PWR5X:
14820   case PPC::DIR_PWR6:
14821   case PPC::DIR_PWR6X:
14822   case PPC::DIR_PWR7:
14823   case PPC::DIR_PWR8:
14824   case PPC::DIR_PWR9:
14825   case PPC::DIR_PWR10:
14826   case PPC::DIR_PWR_FUTURE: {
14827     if (!ML)
14828       break;
14829 
14830     if (!DisableInnermostLoopAlign32) {
14831       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14832       // so that we can decrease cache misses and branch-prediction misses.
14833       // Actual alignment of the loop will depend on the hotness check and other
14834       // logic in alignBlocks.
14835       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14836         return Align(32);
14837     }
14838 
14839     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14840 
14841     // For small loops (between 5 and 8 instructions), align to a 32-byte
14842     // boundary so that the entire loop fits in one instruction-cache line.
14843     uint64_t LoopSize = 0;
14844     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14845       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14846         LoopSize += TII->getInstSizeInBytes(*J);
14847         if (LoopSize > 32)
14848           break;
14849       }
14850 
14851     if (LoopSize > 16 && LoopSize <= 32)
14852       return Align(32);
14853 
14854     break;
14855   }
14856   }
14857 
14858   return TargetLowering::getPrefLoopAlignment(ML);
14859 }
14860 
14861 /// getConstraintType - Given a constraint, return the type of
14862 /// constraint it is for this target.
14863 PPCTargetLowering::ConstraintType
14864 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14865   if (Constraint.size() == 1) {
14866     switch (Constraint[0]) {
14867     default: break;
14868     case 'b':
14869     case 'r':
14870     case 'f':
14871     case 'd':
14872     case 'v':
14873     case 'y':
14874       return C_RegisterClass;
14875     case 'Z':
14876       // FIXME: While Z does indicate a memory constraint, it specifically
14877       // indicates an r+r address (used in conjunction with the 'y' modifier
14878       // in the replacement string). Currently, we're forcing the base
14879       // register to be r0 in the asm printer (which is interpreted as zero)
14880       // and forming the complete address in the second register. This is
14881       // suboptimal.
14882       return C_Memory;
14883     }
14884   } else if (Constraint == "wc") { // individual CR bits.
14885     return C_RegisterClass;
14886   } else if (Constraint == "wa" || Constraint == "wd" ||
14887              Constraint == "wf" || Constraint == "ws" ||
14888              Constraint == "wi" || Constraint == "ww") {
14889     return C_RegisterClass; // VSX registers.
14890   }
14891   return TargetLowering::getConstraintType(Constraint);
14892 }
14893 
14894 /// Examine constraint type and operand type and determine a weight value.
14895 /// This object must already have been set up with the operand type
14896 /// and the current alternative constraint selected.
14897 TargetLowering::ConstraintWeight
14898 PPCTargetLowering::getSingleConstraintMatchWeight(
14899     AsmOperandInfo &info, const char *constraint) const {
14900   ConstraintWeight weight = CW_Invalid;
14901   Value *CallOperandVal = info.CallOperandVal;
14902     // If we don't have a value, we can't do a match,
14903     // but allow it at the lowest weight.
14904   if (!CallOperandVal)
14905     return CW_Default;
14906   Type *type = CallOperandVal->getType();
14907 
14908   // Look at the constraint type.
14909   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14910     return CW_Register; // an individual CR bit.
14911   else if ((StringRef(constraint) == "wa" ||
14912             StringRef(constraint) == "wd" ||
14913             StringRef(constraint) == "wf") &&
14914            type->isVectorTy())
14915     return CW_Register;
14916   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14917     return CW_Register; // just hold 64-bit integers data.
14918   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14919     return CW_Register;
14920   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14921     return CW_Register;
14922 
14923   switch (*constraint) {
14924   default:
14925     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14926     break;
14927   case 'b':
14928     if (type->isIntegerTy())
14929       weight = CW_Register;
14930     break;
14931   case 'f':
14932     if (type->isFloatTy())
14933       weight = CW_Register;
14934     break;
14935   case 'd':
14936     if (type->isDoubleTy())
14937       weight = CW_Register;
14938     break;
14939   case 'v':
14940     if (type->isVectorTy())
14941       weight = CW_Register;
14942     break;
14943   case 'y':
14944     weight = CW_Register;
14945     break;
14946   case 'Z':
14947     weight = CW_Memory;
14948     break;
14949   }
14950   return weight;
14951 }
14952 
14953 std::pair<unsigned, const TargetRegisterClass *>
14954 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14955                                                 StringRef Constraint,
14956                                                 MVT VT) const {
14957   if (Constraint.size() == 1) {
14958     // GCC RS6000 Constraint Letters
14959     switch (Constraint[0]) {
14960     case 'b':   // R1-R31
14961       if (VT == MVT::i64 && Subtarget.isPPC64())
14962         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14963       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14964     case 'r':   // R0-R31
14965       if (VT == MVT::i64 && Subtarget.isPPC64())
14966         return std::make_pair(0U, &PPC::G8RCRegClass);
14967       return std::make_pair(0U, &PPC::GPRCRegClass);
14968     // 'd' and 'f' constraints are both defined to be "the floating point
14969     // registers", where one is for 32-bit and the other for 64-bit. We don't
14970     // really care overly much here so just give them all the same reg classes.
14971     case 'd':
14972     case 'f':
14973       if (Subtarget.hasSPE()) {
14974         if (VT == MVT::f32 || VT == MVT::i32)
14975           return std::make_pair(0U, &PPC::GPRCRegClass);
14976         if (VT == MVT::f64 || VT == MVT::i64)
14977           return std::make_pair(0U, &PPC::SPERCRegClass);
14978       } else {
14979         if (VT == MVT::f32 || VT == MVT::i32)
14980           return std::make_pair(0U, &PPC::F4RCRegClass);
14981         if (VT == MVT::f64 || VT == MVT::i64)
14982           return std::make_pair(0U, &PPC::F8RCRegClass);
14983       }
14984       break;
14985     case 'v':
14986       if (Subtarget.hasAltivec())
14987         return std::make_pair(0U, &PPC::VRRCRegClass);
14988       break;
14989     case 'y':   // crrc
14990       return std::make_pair(0U, &PPC::CRRCRegClass);
14991     }
14992   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14993     // An individual CR bit.
14994     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14995   } else if ((Constraint == "wa" || Constraint == "wd" ||
14996              Constraint == "wf" || Constraint == "wi") &&
14997              Subtarget.hasVSX()) {
14998     return std::make_pair(0U, &PPC::VSRCRegClass);
14999   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15000     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15001       return std::make_pair(0U, &PPC::VSSRCRegClass);
15002     else
15003       return std::make_pair(0U, &PPC::VSFRCRegClass);
15004   }
15005 
15006   // If we name a VSX register, we can't defer to the base class because it
15007   // will not recognize the correct register (their names will be VSL{0-31}
15008   // and V{0-31} so they won't match). So we match them here.
15009   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15010     int VSNum = atoi(Constraint.data() + 3);
15011     assert(VSNum >= 0 && VSNum <= 63 &&
15012            "Attempted to access a vsr out of range");
15013     if (VSNum < 32)
15014       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15015     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15016   }
15017   std::pair<unsigned, const TargetRegisterClass *> R =
15018       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15019 
15020   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15021   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15022   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15023   // register.
15024   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15025   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15026   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15027       PPC::GPRCRegClass.contains(R.first))
15028     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15029                             PPC::sub_32, &PPC::G8RCRegClass),
15030                           &PPC::G8RCRegClass);
15031 
15032   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15033   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15034     R.first = PPC::CR0;
15035     R.second = &PPC::CRRCRegClass;
15036   }
15037 
15038   return R;
15039 }
15040 
15041 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15042 /// vector.  If it is invalid, don't add anything to Ops.
15043 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15044                                                      std::string &Constraint,
15045                                                      std::vector<SDValue>&Ops,
15046                                                      SelectionDAG &DAG) const {
15047   SDValue Result;
15048 
15049   // Only support length 1 constraints.
15050   if (Constraint.length() > 1) return;
15051 
15052   char Letter = Constraint[0];
15053   switch (Letter) {
15054   default: break;
15055   case 'I':
15056   case 'J':
15057   case 'K':
15058   case 'L':
15059   case 'M':
15060   case 'N':
15061   case 'O':
15062   case 'P': {
15063     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15064     if (!CST) return; // Must be an immediate to match.
15065     SDLoc dl(Op);
15066     int64_t Value = CST->getSExtValue();
15067     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15068                          // numbers are printed as such.
15069     switch (Letter) {
15070     default: llvm_unreachable("Unknown constraint letter!");
15071     case 'I':  // "I" is a signed 16-bit constant.
15072       if (isInt<16>(Value))
15073         Result = DAG.getTargetConstant(Value, dl, TCVT);
15074       break;
15075     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15076       if (isShiftedUInt<16, 16>(Value))
15077         Result = DAG.getTargetConstant(Value, dl, TCVT);
15078       break;
15079     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15080       if (isShiftedInt<16, 16>(Value))
15081         Result = DAG.getTargetConstant(Value, dl, TCVT);
15082       break;
15083     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15084       if (isUInt<16>(Value))
15085         Result = DAG.getTargetConstant(Value, dl, TCVT);
15086       break;
15087     case 'M':  // "M" is a constant that is greater than 31.
15088       if (Value > 31)
15089         Result = DAG.getTargetConstant(Value, dl, TCVT);
15090       break;
15091     case 'N':  // "N" is a positive constant that is an exact power of two.
15092       if (Value > 0 && isPowerOf2_64(Value))
15093         Result = DAG.getTargetConstant(Value, dl, TCVT);
15094       break;
15095     case 'O':  // "O" is the constant zero.
15096       if (Value == 0)
15097         Result = DAG.getTargetConstant(Value, dl, TCVT);
15098       break;
15099     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15100       if (isInt<16>(-Value))
15101         Result = DAG.getTargetConstant(Value, dl, TCVT);
15102       break;
15103     }
15104     break;
15105   }
15106   }
15107 
15108   if (Result.getNode()) {
15109     Ops.push_back(Result);
15110     return;
15111   }
15112 
15113   // Handle standard constraint letters.
15114   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15115 }
15116 
15117 // isLegalAddressingMode - Return true if the addressing mode represented
15118 // by AM is legal for this target, for a load/store of the specified type.
15119 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15120                                               const AddrMode &AM, Type *Ty,
15121                                               unsigned AS, Instruction *I) const {
15122   // PPC does not allow r+i addressing modes for vectors!
15123   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15124     return false;
15125 
15126   // PPC allows a sign-extended 16-bit immediate field.
15127   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15128     return false;
15129 
15130   // No global is ever allowed as a base.
15131   if (AM.BaseGV)
15132     return false;
15133 
15134   // PPC only support r+r,
15135   switch (AM.Scale) {
15136   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15137     break;
15138   case 1:
15139     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15140       return false;
15141     // Otherwise we have r+r or r+i.
15142     break;
15143   case 2:
15144     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15145       return false;
15146     // Allow 2*r as r+r.
15147     break;
15148   default:
15149     // No other scales are supported.
15150     return false;
15151   }
15152 
15153   return true;
15154 }
15155 
15156 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15157                                            SelectionDAG &DAG) const {
15158   MachineFunction &MF = DAG.getMachineFunction();
15159   MachineFrameInfo &MFI = MF.getFrameInfo();
15160   MFI.setReturnAddressIsTaken(true);
15161 
15162   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15163     return SDValue();
15164 
15165   SDLoc dl(Op);
15166   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15167 
15168   // Make sure the function does not optimize away the store of the RA to
15169   // the stack.
15170   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15171   FuncInfo->setLRStoreRequired();
15172   bool isPPC64 = Subtarget.isPPC64();
15173   auto PtrVT = getPointerTy(MF.getDataLayout());
15174 
15175   if (Depth > 0) {
15176     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15177     SDValue Offset =
15178         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15179                         isPPC64 ? MVT::i64 : MVT::i32);
15180     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15181                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15182                        MachinePointerInfo());
15183   }
15184 
15185   // Just load the return address off the stack.
15186   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15187   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15188                      MachinePointerInfo());
15189 }
15190 
15191 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15192                                           SelectionDAG &DAG) const {
15193   SDLoc dl(Op);
15194   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15195 
15196   MachineFunction &MF = DAG.getMachineFunction();
15197   MachineFrameInfo &MFI = MF.getFrameInfo();
15198   MFI.setFrameAddressIsTaken(true);
15199 
15200   EVT PtrVT = getPointerTy(MF.getDataLayout());
15201   bool isPPC64 = PtrVT == MVT::i64;
15202 
15203   // Naked functions never have a frame pointer, and so we use r1. For all
15204   // other functions, this decision must be delayed until during PEI.
15205   unsigned FrameReg;
15206   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15207     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15208   else
15209     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15210 
15211   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15212                                          PtrVT);
15213   while (Depth--)
15214     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15215                             FrameAddr, MachinePointerInfo());
15216   return FrameAddr;
15217 }
15218 
15219 // FIXME? Maybe this could be a TableGen attribute on some registers and
15220 // this table could be generated automatically from RegInfo.
15221 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15222                                               const MachineFunction &MF) const {
15223   bool isPPC64 = Subtarget.isPPC64();
15224 
15225   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15226   if (!is64Bit && VT != LLT::scalar(32))
15227     report_fatal_error("Invalid register global variable type");
15228 
15229   Register Reg = StringSwitch<Register>(RegName)
15230                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15231                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15232                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15233                      .Default(Register());
15234 
15235   if (Reg)
15236     return Reg;
15237   report_fatal_error("Invalid register name global variable");
15238 }
15239 
15240 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15241   // 32-bit SVR4 ABI access everything as got-indirect.
15242   if (Subtarget.is32BitELFABI())
15243     return true;
15244 
15245   // AIX accesses everything indirectly through the TOC, which is similar to
15246   // the GOT.
15247   if (Subtarget.isAIXABI())
15248     return true;
15249 
15250   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15251   // If it is small or large code model, module locals are accessed
15252   // indirectly by loading their address from .toc/.got.
15253   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15254     return true;
15255 
15256   // JumpTable and BlockAddress are accessed as got-indirect.
15257   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15258     return true;
15259 
15260   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15261     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15262 
15263   return false;
15264 }
15265 
15266 bool
15267 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15268   // The PowerPC target isn't yet aware of offsets.
15269   return false;
15270 }
15271 
15272 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15273                                            const CallInst &I,
15274                                            MachineFunction &MF,
15275                                            unsigned Intrinsic) const {
15276   switch (Intrinsic) {
15277   case Intrinsic::ppc_altivec_lvx:
15278   case Intrinsic::ppc_altivec_lvxl:
15279   case Intrinsic::ppc_altivec_lvebx:
15280   case Intrinsic::ppc_altivec_lvehx:
15281   case Intrinsic::ppc_altivec_lvewx:
15282   case Intrinsic::ppc_vsx_lxvd2x:
15283   case Intrinsic::ppc_vsx_lxvw4x: {
15284     EVT VT;
15285     switch (Intrinsic) {
15286     case Intrinsic::ppc_altivec_lvebx:
15287       VT = MVT::i8;
15288       break;
15289     case Intrinsic::ppc_altivec_lvehx:
15290       VT = MVT::i16;
15291       break;
15292     case Intrinsic::ppc_altivec_lvewx:
15293       VT = MVT::i32;
15294       break;
15295     case Intrinsic::ppc_vsx_lxvd2x:
15296       VT = MVT::v2f64;
15297       break;
15298     default:
15299       VT = MVT::v4i32;
15300       break;
15301     }
15302 
15303     Info.opc = ISD::INTRINSIC_W_CHAIN;
15304     Info.memVT = VT;
15305     Info.ptrVal = I.getArgOperand(0);
15306     Info.offset = -VT.getStoreSize()+1;
15307     Info.size = 2*VT.getStoreSize()-1;
15308     Info.align = Align(1);
15309     Info.flags = MachineMemOperand::MOLoad;
15310     return true;
15311   }
15312   case Intrinsic::ppc_altivec_stvx:
15313   case Intrinsic::ppc_altivec_stvxl:
15314   case Intrinsic::ppc_altivec_stvebx:
15315   case Intrinsic::ppc_altivec_stvehx:
15316   case Intrinsic::ppc_altivec_stvewx:
15317   case Intrinsic::ppc_vsx_stxvd2x:
15318   case Intrinsic::ppc_vsx_stxvw4x: {
15319     EVT VT;
15320     switch (Intrinsic) {
15321     case Intrinsic::ppc_altivec_stvebx:
15322       VT = MVT::i8;
15323       break;
15324     case Intrinsic::ppc_altivec_stvehx:
15325       VT = MVT::i16;
15326       break;
15327     case Intrinsic::ppc_altivec_stvewx:
15328       VT = MVT::i32;
15329       break;
15330     case Intrinsic::ppc_vsx_stxvd2x:
15331       VT = MVT::v2f64;
15332       break;
15333     default:
15334       VT = MVT::v4i32;
15335       break;
15336     }
15337 
15338     Info.opc = ISD::INTRINSIC_VOID;
15339     Info.memVT = VT;
15340     Info.ptrVal = I.getArgOperand(1);
15341     Info.offset = -VT.getStoreSize()+1;
15342     Info.size = 2*VT.getStoreSize()-1;
15343     Info.align = Align(1);
15344     Info.flags = MachineMemOperand::MOStore;
15345     return true;
15346   }
15347   default:
15348     break;
15349   }
15350 
15351   return false;
15352 }
15353 
15354 /// It returns EVT::Other if the type should be determined using generic
15355 /// target-independent logic.
15356 EVT PPCTargetLowering::getOptimalMemOpType(
15357     const MemOp &Op, const AttributeList &FuncAttributes) const {
15358   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15359     // We should use Altivec/VSX loads and stores when available. For unaligned
15360     // addresses, unaligned VSX loads are only fast starting with the P8.
15361     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15362         (Op.isAligned(Align(16)) ||
15363          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15364       return MVT::v4i32;
15365   }
15366 
15367   if (Subtarget.isPPC64()) {
15368     return MVT::i64;
15369   }
15370 
15371   return MVT::i32;
15372 }
15373 
15374 /// Returns true if it is beneficial to convert a load of a constant
15375 /// to just the constant itself.
15376 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15377                                                           Type *Ty) const {
15378   assert(Ty->isIntegerTy());
15379 
15380   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15381   return !(BitSize == 0 || BitSize > 64);
15382 }
15383 
15384 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15385   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15386     return false;
15387   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15388   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15389   return NumBits1 == 64 && NumBits2 == 32;
15390 }
15391 
15392 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15393   if (!VT1.isInteger() || !VT2.isInteger())
15394     return false;
15395   unsigned NumBits1 = VT1.getSizeInBits();
15396   unsigned NumBits2 = VT2.getSizeInBits();
15397   return NumBits1 == 64 && NumBits2 == 32;
15398 }
15399 
15400 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15401   // Generally speaking, zexts are not free, but they are free when they can be
15402   // folded with other operations.
15403   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15404     EVT MemVT = LD->getMemoryVT();
15405     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15406          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15407         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15408          LD->getExtensionType() == ISD::ZEXTLOAD))
15409       return true;
15410   }
15411 
15412   // FIXME: Add other cases...
15413   //  - 32-bit shifts with a zext to i64
15414   //  - zext after ctlz, bswap, etc.
15415   //  - zext after and by a constant mask
15416 
15417   return TargetLowering::isZExtFree(Val, VT2);
15418 }
15419 
15420 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15421   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15422          "invalid fpext types");
15423   // Extending to float128 is not free.
15424   if (DestVT == MVT::f128)
15425     return false;
15426   return true;
15427 }
15428 
15429 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15430   return isInt<16>(Imm) || isUInt<16>(Imm);
15431 }
15432 
15433 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15434   return isInt<16>(Imm) || isUInt<16>(Imm);
15435 }
15436 
15437 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15438                                                        unsigned,
15439                                                        unsigned,
15440                                                        MachineMemOperand::Flags,
15441                                                        bool *Fast) const {
15442   if (DisablePPCUnaligned)
15443     return false;
15444 
15445   // PowerPC supports unaligned memory access for simple non-vector types.
15446   // Although accessing unaligned addresses is not as efficient as accessing
15447   // aligned addresses, it is generally more efficient than manual expansion,
15448   // and generally only traps for software emulation when crossing page
15449   // boundaries.
15450 
15451   if (!VT.isSimple())
15452     return false;
15453 
15454   if (VT.isFloatingPoint() && !VT.isVector() &&
15455       !Subtarget.allowsUnalignedFPAccess())
15456     return false;
15457 
15458   if (VT.getSimpleVT().isVector()) {
15459     if (Subtarget.hasVSX()) {
15460       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15461           VT != MVT::v4f32 && VT != MVT::v4i32)
15462         return false;
15463     } else {
15464       return false;
15465     }
15466   }
15467 
15468   if (VT == MVT::ppcf128)
15469     return false;
15470 
15471   if (Fast)
15472     *Fast = true;
15473 
15474   return true;
15475 }
15476 
15477 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15478                                                    EVT VT) const {
15479   return isFMAFasterThanFMulAndFAdd(
15480       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15481 }
15482 
15483 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15484                                                    Type *Ty) const {
15485   switch (Ty->getScalarType()->getTypeID()) {
15486   case Type::FloatTyID:
15487   case Type::DoubleTyID:
15488     return true;
15489   case Type::FP128TyID:
15490     return Subtarget.hasP9Vector();
15491   default:
15492     return false;
15493   }
15494 }
15495 
15496 // FIXME: add more patterns which are not profitable to hoist.
15497 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15498   if (!I->hasOneUse())
15499     return true;
15500 
15501   Instruction *User = I->user_back();
15502   assert(User && "A single use instruction with no uses.");
15503 
15504   switch (I->getOpcode()) {
15505   case Instruction::FMul: {
15506     // Don't break FMA, PowerPC prefers FMA.
15507     if (User->getOpcode() != Instruction::FSub &&
15508         User->getOpcode() != Instruction::FAdd)
15509       return true;
15510 
15511     const TargetOptions &Options = getTargetMachine().Options;
15512     const Function *F = I->getFunction();
15513     const DataLayout &DL = F->getParent()->getDataLayout();
15514     Type *Ty = User->getOperand(0)->getType();
15515 
15516     return !(
15517         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15518         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15519         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15520   }
15521   case Instruction::Load: {
15522     // Don't break "store (load float*)" pattern, this pattern will be combined
15523     // to "store (load int32)" in later InstCombine pass. See function
15524     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15525     // cycles than loading a 32 bit integer.
15526     LoadInst *LI = cast<LoadInst>(I);
15527     // For the loads that combineLoadToOperationType does nothing, like
15528     // ordered load, it should be profitable to hoist them.
15529     // For swifterror load, it can only be used for pointer to pointer type, so
15530     // later type check should get rid of this case.
15531     if (!LI->isUnordered())
15532       return true;
15533 
15534     if (User->getOpcode() != Instruction::Store)
15535       return true;
15536 
15537     if (I->getType()->getTypeID() != Type::FloatTyID)
15538       return true;
15539 
15540     return false;
15541   }
15542   default:
15543     return true;
15544   }
15545   return true;
15546 }
15547 
15548 const MCPhysReg *
15549 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15550   // LR is a callee-save register, but we must treat it as clobbered by any call
15551   // site. Hence we include LR in the scratch registers, which are in turn added
15552   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15553   // to CTR, which is used by any indirect call.
15554   static const MCPhysReg ScratchRegs[] = {
15555     PPC::X12, PPC::LR8, PPC::CTR8, 0
15556   };
15557 
15558   return ScratchRegs;
15559 }
15560 
15561 Register PPCTargetLowering::getExceptionPointerRegister(
15562     const Constant *PersonalityFn) const {
15563   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15564 }
15565 
15566 Register PPCTargetLowering::getExceptionSelectorRegister(
15567     const Constant *PersonalityFn) const {
15568   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15569 }
15570 
15571 bool
15572 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15573                      EVT VT , unsigned DefinedValues) const {
15574   if (VT == MVT::v2i64)
15575     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15576 
15577   if (Subtarget.hasVSX())
15578     return true;
15579 
15580   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15581 }
15582 
15583 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15584   if (DisableILPPref || Subtarget.enableMachineScheduler())
15585     return TargetLowering::getSchedulingPreference(N);
15586 
15587   return Sched::ILP;
15588 }
15589 
15590 // Create a fast isel object.
15591 FastISel *
15592 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15593                                   const TargetLibraryInfo *LibInfo) const {
15594   return PPC::createFastISel(FuncInfo, LibInfo);
15595 }
15596 
15597 // 'Inverted' means the FMA opcode after negating one multiplicand.
15598 // For example, (fma -a b c) = (fnmsub a b c)
15599 static unsigned invertFMAOpcode(unsigned Opc) {
15600   switch (Opc) {
15601   default:
15602     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15603   case ISD::FMA:
15604     return PPCISD::FNMSUB;
15605   case PPCISD::FNMSUB:
15606     return ISD::FMA;
15607   }
15608 }
15609 
15610 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15611                                                 bool LegalOps, bool OptForSize,
15612                                                 NegatibleCost &Cost,
15613                                                 unsigned Depth) const {
15614   if (Depth > SelectionDAG::MaxRecursionDepth)
15615     return SDValue();
15616 
15617   unsigned Opc = Op.getOpcode();
15618   EVT VT = Op.getValueType();
15619   SDNodeFlags Flags = Op.getNode()->getFlags();
15620 
15621   switch (Opc) {
15622   case PPCISD::FNMSUB:
15623     if (!Op.hasOneUse() || !isTypeLegal(VT))
15624       break;
15625 
15626     const TargetOptions &Options = getTargetMachine().Options;
15627     SDValue N0 = Op.getOperand(0);
15628     SDValue N1 = Op.getOperand(1);
15629     SDValue N2 = Op.getOperand(2);
15630     SDLoc Loc(Op);
15631 
15632     NegatibleCost N2Cost = NegatibleCost::Expensive;
15633     SDValue NegN2 =
15634         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15635 
15636     if (!NegN2)
15637       return SDValue();
15638 
15639     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15640     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15641     // These transformations may change sign of zeroes. For example,
15642     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15643     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15644       // Try and choose the cheaper one to negate.
15645       NegatibleCost N0Cost = NegatibleCost::Expensive;
15646       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15647                                            N0Cost, Depth + 1);
15648 
15649       NegatibleCost N1Cost = NegatibleCost::Expensive;
15650       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15651                                            N1Cost, Depth + 1);
15652 
15653       if (NegN0 && N0Cost <= N1Cost) {
15654         Cost = std::min(N0Cost, N2Cost);
15655         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15656       } else if (NegN1) {
15657         Cost = std::min(N1Cost, N2Cost);
15658         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15659       }
15660     }
15661 
15662     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15663     if (isOperationLegal(ISD::FMA, VT)) {
15664       Cost = N2Cost;
15665       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15666     }
15667 
15668     break;
15669   }
15670 
15671   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15672                                               Cost, Depth);
15673 }
15674 
15675 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15676 bool PPCTargetLowering::useLoadStackGuardNode() const {
15677   if (!Subtarget.isTargetLinux())
15678     return TargetLowering::useLoadStackGuardNode();
15679   return true;
15680 }
15681 
15682 // Override to disable global variable loading on Linux.
15683 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15684   if (!Subtarget.isTargetLinux())
15685     return TargetLowering::insertSSPDeclarations(M);
15686 }
15687 
15688 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15689                                      bool ForCodeSize) const {
15690   if (!VT.isSimple() || !Subtarget.hasVSX())
15691     return false;
15692 
15693   switch(VT.getSimpleVT().SimpleTy) {
15694   default:
15695     // For FP types that are currently not supported by PPC backend, return
15696     // false. Examples: f16, f80.
15697     return false;
15698   case MVT::f32:
15699   case MVT::f64:
15700     if (Subtarget.hasPrefixInstrs()) {
15701       // With prefixed instructions, we can materialize anything that can be
15702       // represented with a 32-bit immediate, not just positive zero.
15703       APFloat APFloatOfImm = Imm;
15704       return convertToNonDenormSingle(APFloatOfImm);
15705     }
15706     LLVM_FALLTHROUGH;
15707   case MVT::ppcf128:
15708     return Imm.isPosZero();
15709   }
15710 }
15711 
15712 // For vector shift operation op, fold
15713 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15714 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15715                                   SelectionDAG &DAG) {
15716   SDValue N0 = N->getOperand(0);
15717   SDValue N1 = N->getOperand(1);
15718   EVT VT = N0.getValueType();
15719   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15720   unsigned Opcode = N->getOpcode();
15721   unsigned TargetOpcode;
15722 
15723   switch (Opcode) {
15724   default:
15725     llvm_unreachable("Unexpected shift operation");
15726   case ISD::SHL:
15727     TargetOpcode = PPCISD::SHL;
15728     break;
15729   case ISD::SRL:
15730     TargetOpcode = PPCISD::SRL;
15731     break;
15732   case ISD::SRA:
15733     TargetOpcode = PPCISD::SRA;
15734     break;
15735   }
15736 
15737   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15738       N1->getOpcode() == ISD::AND)
15739     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15740       if (Mask->getZExtValue() == OpSizeInBits - 1)
15741         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15742 
15743   return SDValue();
15744 }
15745 
15746 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15747   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15748     return Value;
15749 
15750   SDValue N0 = N->getOperand(0);
15751   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15752   if (!Subtarget.isISA3_0() ||
15753       N0.getOpcode() != ISD::SIGN_EXTEND ||
15754       N0.getOperand(0).getValueType() != MVT::i32 ||
15755       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15756     return SDValue();
15757 
15758   // We can't save an operation here if the value is already extended, and
15759   // the existing shift is easier to combine.
15760   SDValue ExtsSrc = N0.getOperand(0);
15761   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15762       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15763     return SDValue();
15764 
15765   SDLoc DL(N0);
15766   SDValue ShiftBy = SDValue(CN1, 0);
15767   // We want the shift amount to be i32 on the extswli, but the shift could
15768   // have an i64.
15769   if (ShiftBy.getValueType() == MVT::i64)
15770     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15771 
15772   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15773                          ShiftBy);
15774 }
15775 
15776 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15777   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15778     return Value;
15779 
15780   return SDValue();
15781 }
15782 
15783 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15784   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15785     return Value;
15786 
15787   return SDValue();
15788 }
15789 
15790 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15791 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15792 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15793 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15794 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15795                                  const PPCSubtarget &Subtarget) {
15796   if (!Subtarget.isPPC64())
15797     return SDValue();
15798 
15799   SDValue LHS = N->getOperand(0);
15800   SDValue RHS = N->getOperand(1);
15801 
15802   auto isZextOfCompareWithConstant = [](SDValue Op) {
15803     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15804         Op.getValueType() != MVT::i64)
15805       return false;
15806 
15807     SDValue Cmp = Op.getOperand(0);
15808     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15809         Cmp.getOperand(0).getValueType() != MVT::i64)
15810       return false;
15811 
15812     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15813       int64_t NegConstant = 0 - Constant->getSExtValue();
15814       // Due to the limitations of the addi instruction,
15815       // -C is required to be [-32768, 32767].
15816       return isInt<16>(NegConstant);
15817     }
15818 
15819     return false;
15820   };
15821 
15822   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15823   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15824 
15825   // If there is a pattern, canonicalize a zext operand to the RHS.
15826   if (LHSHasPattern && !RHSHasPattern)
15827     std::swap(LHS, RHS);
15828   else if (!LHSHasPattern && !RHSHasPattern)
15829     return SDValue();
15830 
15831   SDLoc DL(N);
15832   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15833   SDValue Cmp = RHS.getOperand(0);
15834   SDValue Z = Cmp.getOperand(0);
15835   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15836 
15837   assert(Constant && "Constant Should not be a null pointer.");
15838   int64_t NegConstant = 0 - Constant->getSExtValue();
15839 
15840   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15841   default: break;
15842   case ISD::SETNE: {
15843     //                                 when C == 0
15844     //                             --> addze X, (addic Z, -1).carry
15845     //                            /
15846     // add X, (zext(setne Z, C))--
15847     //                            \    when -32768 <= -C <= 32767 && C != 0
15848     //                             --> addze X, (addic (addi Z, -C), -1).carry
15849     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15850                               DAG.getConstant(NegConstant, DL, MVT::i64));
15851     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15852     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15853                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15854     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15855                        SDValue(Addc.getNode(), 1));
15856     }
15857   case ISD::SETEQ: {
15858     //                                 when C == 0
15859     //                             --> addze X, (subfic Z, 0).carry
15860     //                            /
15861     // add X, (zext(sete  Z, C))--
15862     //                            \    when -32768 <= -C <= 32767 && C != 0
15863     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15864     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15865                               DAG.getConstant(NegConstant, DL, MVT::i64));
15866     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15867     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15868                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15869     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15870                        SDValue(Subc.getNode(), 1));
15871     }
15872   }
15873 
15874   return SDValue();
15875 }
15876 
15877 // Transform
15878 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
15879 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
15880 // In this case both C1 and C2 must be known constants.
15881 // C1+C2 must fit into a 34 bit signed integer.
15882 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
15883                                           const PPCSubtarget &Subtarget) {
15884   if (!Subtarget.isUsingPCRelativeCalls())
15885     return SDValue();
15886 
15887   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
15888   // If we find that node try to cast the Global Address and the Constant.
15889   SDValue LHS = N->getOperand(0);
15890   SDValue RHS = N->getOperand(1);
15891 
15892   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
15893     std::swap(LHS, RHS);
15894 
15895   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
15896     return SDValue();
15897 
15898   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
15899   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
15900   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
15901 
15902   // Check that both casts succeeded.
15903   if (!GSDN || !ConstNode)
15904     return SDValue();
15905 
15906   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
15907   SDLoc DL(GSDN);
15908 
15909   // The signed int offset needs to fit in 34 bits.
15910   if (!isInt<34>(NewOffset))
15911     return SDValue();
15912 
15913   // The new global address is a copy of the old global address except
15914   // that it has the updated Offset.
15915   SDValue GA =
15916       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
15917                                  NewOffset, GSDN->getTargetFlags());
15918   SDValue MatPCRel =
15919       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
15920   return MatPCRel;
15921 }
15922 
15923 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15924   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15925     return Value;
15926 
15927   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
15928     return Value;
15929 
15930   return SDValue();
15931 }
15932 
15933 // Detect TRUNCATE operations on bitcasts of float128 values.
15934 // What we are looking for here is the situtation where we extract a subset
15935 // of bits from a 128 bit float.
15936 // This can be of two forms:
15937 // 1) BITCAST of f128 feeding TRUNCATE
15938 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15939 // The reason this is required is because we do not have a legal i128 type
15940 // and so we want to prevent having to store the f128 and then reload part
15941 // of it.
15942 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15943                                            DAGCombinerInfo &DCI) const {
15944   // If we are using CRBits then try that first.
15945   if (Subtarget.useCRBits()) {
15946     // Check if CRBits did anything and return that if it did.
15947     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15948       return CRTruncValue;
15949   }
15950 
15951   SDLoc dl(N);
15952   SDValue Op0 = N->getOperand(0);
15953 
15954   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
15955   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
15956     EVT VT = N->getValueType(0);
15957     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15958       return SDValue();
15959     SDValue Sub = Op0.getOperand(0);
15960     if (Sub.getOpcode() == ISD::SUB) {
15961       SDValue SubOp0 = Sub.getOperand(0);
15962       SDValue SubOp1 = Sub.getOperand(1);
15963       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
15964           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
15965         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
15966                                SubOp1.getOperand(0),
15967                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
15968       }
15969     }
15970   }
15971 
15972   // Looking for a truncate of i128 to i64.
15973   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15974     return SDValue();
15975 
15976   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15977 
15978   // SRL feeding TRUNCATE.
15979   if (Op0.getOpcode() == ISD::SRL) {
15980     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15981     // The right shift has to be by 64 bits.
15982     if (!ConstNode || ConstNode->getZExtValue() != 64)
15983       return SDValue();
15984 
15985     // Switch the element number to extract.
15986     EltToExtract = EltToExtract ? 0 : 1;
15987     // Update Op0 past the SRL.
15988     Op0 = Op0.getOperand(0);
15989   }
15990 
15991   // BITCAST feeding a TRUNCATE possibly via SRL.
15992   if (Op0.getOpcode() == ISD::BITCAST &&
15993       Op0.getValueType() == MVT::i128 &&
15994       Op0.getOperand(0).getValueType() == MVT::f128) {
15995     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15996     return DCI.DAG.getNode(
15997         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15998         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15999   }
16000   return SDValue();
16001 }
16002 
16003 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16004   SelectionDAG &DAG = DCI.DAG;
16005 
16006   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16007   if (!ConstOpOrElement)
16008     return SDValue();
16009 
16010   // An imul is usually smaller than the alternative sequence for legal type.
16011   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16012       isOperationLegal(ISD::MUL, N->getValueType(0)))
16013     return SDValue();
16014 
16015   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16016     switch (this->Subtarget.getCPUDirective()) {
16017     default:
16018       // TODO: enhance the condition for subtarget before pwr8
16019       return false;
16020     case PPC::DIR_PWR8:
16021       //  type        mul     add    shl
16022       // scalar        4       1      1
16023       // vector        7       2      2
16024       return true;
16025     case PPC::DIR_PWR9:
16026     case PPC::DIR_PWR10:
16027     case PPC::DIR_PWR_FUTURE:
16028       //  type        mul     add    shl
16029       // scalar        5       2      2
16030       // vector        7       2      2
16031 
16032       // The cycle RATIO of related operations are showed as a table above.
16033       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16034       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16035       // are 4, it is always profitable; but for 3 instrs patterns
16036       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16037       // So we should only do it for vector type.
16038       return IsAddOne && IsNeg ? VT.isVector() : true;
16039     }
16040   };
16041 
16042   EVT VT = N->getValueType(0);
16043   SDLoc DL(N);
16044 
16045   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16046   bool IsNeg = MulAmt.isNegative();
16047   APInt MulAmtAbs = MulAmt.abs();
16048 
16049   if ((MulAmtAbs - 1).isPowerOf2()) {
16050     // (mul x, 2^N + 1) => (add (shl x, N), x)
16051     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16052 
16053     if (!IsProfitable(IsNeg, true, VT))
16054       return SDValue();
16055 
16056     SDValue Op0 = N->getOperand(0);
16057     SDValue Op1 =
16058         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16059                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16060     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16061 
16062     if (!IsNeg)
16063       return Res;
16064 
16065     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16066   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16067     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16068     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16069 
16070     if (!IsProfitable(IsNeg, false, VT))
16071       return SDValue();
16072 
16073     SDValue Op0 = N->getOperand(0);
16074     SDValue Op1 =
16075         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16076                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16077 
16078     if (!IsNeg)
16079       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16080     else
16081       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16082 
16083   } else {
16084     return SDValue();
16085   }
16086 }
16087 
16088 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16089 // in combiner since we need to check SD flags and other subtarget features.
16090 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16091                                           DAGCombinerInfo &DCI) const {
16092   SDValue N0 = N->getOperand(0);
16093   SDValue N1 = N->getOperand(1);
16094   SDValue N2 = N->getOperand(2);
16095   SDNodeFlags Flags = N->getFlags();
16096   EVT VT = N->getValueType(0);
16097   SelectionDAG &DAG = DCI.DAG;
16098   const TargetOptions &Options = getTargetMachine().Options;
16099   unsigned Opc = N->getOpcode();
16100   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16101   bool LegalOps = !DCI.isBeforeLegalizeOps();
16102   SDLoc Loc(N);
16103 
16104   if (!isOperationLegal(ISD::FMA, VT))
16105     return SDValue();
16106 
16107   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16108   // since (fnmsub a b c)=-0 while c-ab=+0.
16109   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16110     return SDValue();
16111 
16112   // (fma (fneg a) b c) => (fnmsub a b c)
16113   // (fnmsub (fneg a) b c) => (fma a b c)
16114   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16115     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16116 
16117   // (fma a (fneg b) c) => (fnmsub a b c)
16118   // (fnmsub a (fneg b) c) => (fma a b c)
16119   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16120     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16121 
16122   return SDValue();
16123 }
16124 
16125 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16126   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16127   if (!Subtarget.is64BitELFABI())
16128     return false;
16129 
16130   // If not a tail call then no need to proceed.
16131   if (!CI->isTailCall())
16132     return false;
16133 
16134   // If sibling calls have been disabled and tail-calls aren't guaranteed
16135   // there is no reason to duplicate.
16136   auto &TM = getTargetMachine();
16137   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16138     return false;
16139 
16140   // Can't tail call a function called indirectly, or if it has variadic args.
16141   const Function *Callee = CI->getCalledFunction();
16142   if (!Callee || Callee->isVarArg())
16143     return false;
16144 
16145   // Make sure the callee and caller calling conventions are eligible for tco.
16146   const Function *Caller = CI->getParent()->getParent();
16147   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16148                                            CI->getCallingConv()))
16149       return false;
16150 
16151   // If the function is local then we have a good chance at tail-calling it
16152   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16153 }
16154 
16155 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16156   if (!Subtarget.hasVSX())
16157     return false;
16158   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16159     return true;
16160   return VT == MVT::f32 || VT == MVT::f64 ||
16161     VT == MVT::v4f32 || VT == MVT::v2f64;
16162 }
16163 
16164 bool PPCTargetLowering::
16165 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16166   const Value *Mask = AndI.getOperand(1);
16167   // If the mask is suitable for andi. or andis. we should sink the and.
16168   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16169     // Can't handle constants wider than 64-bits.
16170     if (CI->getBitWidth() > 64)
16171       return false;
16172     int64_t ConstVal = CI->getZExtValue();
16173     return isUInt<16>(ConstVal) ||
16174       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16175   }
16176 
16177   // For non-constant masks, we can always use the record-form and.
16178   return true;
16179 }
16180 
16181 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16182 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16183 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16184 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16185 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16186 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16187   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16188   assert(Subtarget.hasP9Altivec() &&
16189          "Only combine this when P9 altivec supported!");
16190   EVT VT = N->getValueType(0);
16191   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16192     return SDValue();
16193 
16194   SelectionDAG &DAG = DCI.DAG;
16195   SDLoc dl(N);
16196   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16197     // Even for signed integers, if it's known to be positive (as signed
16198     // integer) due to zero-extended inputs.
16199     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16200     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16201     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16202          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16203         (SubOpcd1 == ISD::ZERO_EXTEND ||
16204          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16205       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16206                          N->getOperand(0)->getOperand(0),
16207                          N->getOperand(0)->getOperand(1),
16208                          DAG.getTargetConstant(0, dl, MVT::i32));
16209     }
16210 
16211     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16212     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16213         N->getOperand(0).hasOneUse()) {
16214       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16215                          N->getOperand(0)->getOperand(0),
16216                          N->getOperand(0)->getOperand(1),
16217                          DAG.getTargetConstant(1, dl, MVT::i32));
16218     }
16219   }
16220 
16221   return SDValue();
16222 }
16223 
16224 // For type v4i32/v8ii16/v16i8, transform
16225 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16226 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16227 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16228 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16229 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16230                                           DAGCombinerInfo &DCI) const {
16231   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16232   assert(Subtarget.hasP9Altivec() &&
16233          "Only combine this when P9 altivec supported!");
16234 
16235   SelectionDAG &DAG = DCI.DAG;
16236   SDLoc dl(N);
16237   SDValue Cond = N->getOperand(0);
16238   SDValue TrueOpnd = N->getOperand(1);
16239   SDValue FalseOpnd = N->getOperand(2);
16240   EVT VT = N->getOperand(1).getValueType();
16241 
16242   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16243       FalseOpnd.getOpcode() != ISD::SUB)
16244     return SDValue();
16245 
16246   // ABSD only available for type v4i32/v8i16/v16i8
16247   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16248     return SDValue();
16249 
16250   // At least to save one more dependent computation
16251   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16252     return SDValue();
16253 
16254   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16255 
16256   // Can only handle unsigned comparison here
16257   switch (CC) {
16258   default:
16259     return SDValue();
16260   case ISD::SETUGT:
16261   case ISD::SETUGE:
16262     break;
16263   case ISD::SETULT:
16264   case ISD::SETULE:
16265     std::swap(TrueOpnd, FalseOpnd);
16266     break;
16267   }
16268 
16269   SDValue CmpOpnd1 = Cond.getOperand(0);
16270   SDValue CmpOpnd2 = Cond.getOperand(1);
16271 
16272   // SETCC CmpOpnd1 CmpOpnd2 cond
16273   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16274   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16275   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16276       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16277       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16278       FalseOpnd.getOperand(1) == CmpOpnd1) {
16279     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16280                        CmpOpnd1, CmpOpnd2,
16281                        DAG.getTargetConstant(0, dl, MVT::i32));
16282   }
16283 
16284   return SDValue();
16285 }
16286