1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "ppc-lowering"
104 
105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
113 
114 static cl::opt<bool> DisableSCO("disable-ppc-sco",
115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
116 
117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
119 
120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
121 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
122 
123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
124 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
125 
126 STATISTIC(NumTailCalls, "Number of tail calls");
127 STATISTIC(NumSiblingCalls, "Number of sibling calls");
128 
129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
130 
131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
132 
133 // FIXME: Remove this once the bug has been fixed!
134 extern cl::opt<bool> ANDIGlueBug;
135 
136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
137                                      const PPCSubtarget &STI)
138     : TargetLowering(TM), Subtarget(STI) {
139   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140   // arguments are at least 4/8 bytes aligned.
141   bool isPPC64 = Subtarget.isPPC64();
142   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
143 
144   // Set up the register classes.
145   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
146   if (!useSoftFloat()) {
147     if (hasSPE()) {
148       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
149       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
150     } else {
151       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
152       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
153     }
154   }
155 
156   // Match BITREVERSE to customized fast code sequence in the td file.
157   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
158   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
159 
160   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
162 
163   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164   for (MVT VT : MVT::integer_valuetypes()) {
165     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
167   }
168 
169   if (Subtarget.isISA3_0()) {
170     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
171     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
172     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
174   } else {
175     // No extending loads from f16 or HW conversions back and forth.
176     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
177     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
178     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
179     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
180     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
181     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
182     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
183     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
184   }
185 
186   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
187 
188   // PowerPC has pre-inc load and store's.
189   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
194   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
199   if (!Subtarget.hasSPE()) {
200     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
202     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
204   }
205 
206   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
207   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
208   for (MVT VT : ScalarIntVTs) {
209     setOperationAction(ISD::ADDC, VT, Legal);
210     setOperationAction(ISD::ADDE, VT, Legal);
211     setOperationAction(ISD::SUBC, VT, Legal);
212     setOperationAction(ISD::SUBE, VT, Legal);
213   }
214 
215   if (Subtarget.useCRBits()) {
216     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
217 
218     if (isPPC64 || Subtarget.hasFPCVT()) {
219       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
220       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
221                          isPPC64 ? MVT::i64 : MVT::i32);
222       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
223       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
224                         isPPC64 ? MVT::i64 : MVT::i32);
225     } else {
226       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
227       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
228     }
229 
230     // PowerPC does not support direct load/store of condition registers.
231     setOperationAction(ISD::LOAD, MVT::i1, Custom);
232     setOperationAction(ISD::STORE, MVT::i1, Custom);
233 
234     // FIXME: Remove this once the ANDI glue bug is fixed:
235     if (ANDIGlueBug)
236       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
237 
238     for (MVT VT : MVT::integer_valuetypes()) {
239       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
240       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
241       setTruncStoreAction(VT, MVT::i1, Expand);
242     }
243 
244     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
245   }
246 
247   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
248   // PPC (the libcall is not available).
249   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
250   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
251 
252   // We do not currently implement these libm ops for PowerPC.
253   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
254   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
255   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
256   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
257   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
258   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
259 
260   // PowerPC has no SREM/UREM instructions unless we are on P9
261   // On P9 we may use a hardware instruction to compute the remainder.
262   // The instructions are not legalized directly because in the cases where the
263   // result of both the remainder and the division is required it is more
264   // efficient to compute the remainder from the result of the division rather
265   // than use the remainder instruction.
266   if (Subtarget.isISA3_0()) {
267     setOperationAction(ISD::SREM, MVT::i32, Custom);
268     setOperationAction(ISD::UREM, MVT::i32, Custom);
269     setOperationAction(ISD::SREM, MVT::i64, Custom);
270     setOperationAction(ISD::UREM, MVT::i64, Custom);
271   } else {
272     setOperationAction(ISD::SREM, MVT::i32, Expand);
273     setOperationAction(ISD::UREM, MVT::i32, Expand);
274     setOperationAction(ISD::SREM, MVT::i64, Expand);
275     setOperationAction(ISD::UREM, MVT::i64, Expand);
276   }
277 
278   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
279   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
280   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
282   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
284   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
286   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
287 
288   // Handle constrained floating-point operations of scalar.
289   // TODO: Handle SPE specific operation.
290   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
291   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
294   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
295   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
296 
297   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
298   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
299   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
300   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
301   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
302   if (Subtarget.hasVSX())
303     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
304 
305   if (Subtarget.hasFSQRT()) {
306     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
307     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
308   }
309 
310   if (Subtarget.hasFPRND()) {
311     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
315 
316     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
317     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
318     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
319     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
320   }
321 
322   // We don't support sin/cos/sqrt/fmod/pow
323   setOperationAction(ISD::FSIN , MVT::f64, Expand);
324   setOperationAction(ISD::FCOS , MVT::f64, Expand);
325   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
326   setOperationAction(ISD::FREM , MVT::f64, Expand);
327   setOperationAction(ISD::FPOW , MVT::f64, Expand);
328   setOperationAction(ISD::FSIN , MVT::f32, Expand);
329   setOperationAction(ISD::FCOS , MVT::f32, Expand);
330   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
331   setOperationAction(ISD::FREM , MVT::f32, Expand);
332   setOperationAction(ISD::FPOW , MVT::f32, Expand);
333   if (Subtarget.hasSPE()) {
334     setOperationAction(ISD::FMA  , MVT::f64, Expand);
335     setOperationAction(ISD::FMA  , MVT::f32, Expand);
336   } else {
337     setOperationAction(ISD::FMA  , MVT::f64, Legal);
338     setOperationAction(ISD::FMA  , MVT::f32, Legal);
339   }
340 
341   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
342 
343   // If we're enabling GP optimizations, use hardware square root
344   if (!Subtarget.hasFSQRT() &&
345       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
346         Subtarget.hasFRE()))
347     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
348 
349   if (!Subtarget.hasFSQRT() &&
350       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
351         Subtarget.hasFRES()))
352     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
353 
354   if (Subtarget.hasFCPSGN()) {
355     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
356     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
357   } else {
358     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
359     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
360   }
361 
362   if (Subtarget.hasFPRND()) {
363     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
364     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
365     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
366     setOperationAction(ISD::FROUND, MVT::f64, Legal);
367 
368     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
369     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
370     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
371     setOperationAction(ISD::FROUND, MVT::f32, Legal);
372   }
373 
374   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
375   // to speed up scalar BSWAP64.
376   // CTPOP or CTTZ were introduced in P8/P9 respectively
377   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
378   if (Subtarget.hasP9Vector())
379     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
380   else
381     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
382   if (Subtarget.isISA3_0()) {
383     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
384     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
385   } else {
386     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
387     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
388   }
389 
390   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
391     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
392     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
393   } else {
394     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
395     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
396   }
397 
398   // PowerPC does not have ROTR
399   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
400   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
401 
402   if (!Subtarget.useCRBits()) {
403     // PowerPC does not have Select
404     setOperationAction(ISD::SELECT, MVT::i32, Expand);
405     setOperationAction(ISD::SELECT, MVT::i64, Expand);
406     setOperationAction(ISD::SELECT, MVT::f32, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Expand);
408   }
409 
410   // PowerPC wants to turn select_cc of FP into fsel when possible.
411   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
412   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
413 
414   // PowerPC wants to optimize integer setcc a bit
415   if (!Subtarget.useCRBits())
416     setOperationAction(ISD::SETCC, MVT::i32, Custom);
417 
418   // PowerPC does not have BRCOND which requires SetCC
419   if (!Subtarget.useCRBits())
420     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
421 
422   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
423 
424   if (Subtarget.hasSPE()) {
425     // SPE has built-in conversions
426     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
427     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
429   } else {
430     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
431     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
432 
433     // PowerPC does not have [U|S]INT_TO_FP
434     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
435     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
436   }
437 
438   if (Subtarget.hasDirectMove() && isPPC64) {
439     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
440     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
441     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
442     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
443     if (TM.Options.UnsafeFPMath) {
444       setOperationAction(ISD::LRINT, MVT::f64, Legal);
445       setOperationAction(ISD::LRINT, MVT::f32, Legal);
446       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
447       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
448       setOperationAction(ISD::LROUND, MVT::f64, Legal);
449       setOperationAction(ISD::LROUND, MVT::f32, Legal);
450       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
451       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
452     }
453   } else {
454     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
455     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
456     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
457     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
458   }
459 
460   // We cannot sextinreg(i1).  Expand to shifts.
461   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
462 
463   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
464   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
465   // support continuation, user-level threading, and etc.. As a result, no
466   // other SjLj exception interfaces are implemented and please don't build
467   // your own exception handling based on them.
468   // LLVM/Clang supports zero-cost DWARF exception handling.
469   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
470   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
471 
472   // We want to legalize GlobalAddress and ConstantPool nodes into the
473   // appropriate instructions to materialize the address.
474   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
475   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
476   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
477   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
478   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
479   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
480   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
481   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
482   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
483   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
484 
485   // TRAP is legal.
486   setOperationAction(ISD::TRAP, MVT::Other, Legal);
487 
488   // TRAMPOLINE is custom lowered.
489   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
490   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
491 
492   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
493   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
494 
495   if (Subtarget.is64BitELFABI()) {
496     // VAARG always uses double-word chunks, so promote anything smaller.
497     setOperationAction(ISD::VAARG, MVT::i1, Promote);
498     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
499     setOperationAction(ISD::VAARG, MVT::i8, Promote);
500     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
501     setOperationAction(ISD::VAARG, MVT::i16, Promote);
502     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
503     setOperationAction(ISD::VAARG, MVT::i32, Promote);
504     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
505     setOperationAction(ISD::VAARG, MVT::Other, Expand);
506   } else if (Subtarget.is32BitELFABI()) {
507     // VAARG is custom lowered with the 32-bit SVR4 ABI.
508     setOperationAction(ISD::VAARG, MVT::Other, Custom);
509     setOperationAction(ISD::VAARG, MVT::i64, Custom);
510   } else
511     setOperationAction(ISD::VAARG, MVT::Other, Expand);
512 
513   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
514   if (Subtarget.is32BitELFABI())
515     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
516   else
517     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
518 
519   // Use the default implementation.
520   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
521   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
522   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
523   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
524   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
525   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
526   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
527   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
528   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
529 
530   // We want to custom lower some of our intrinsics.
531   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
532 
533   // To handle counter-based loop conditions.
534   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
535 
536   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
537   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
538   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
539   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
540 
541   // Comparisons that require checking two conditions.
542   if (Subtarget.hasSPE()) {
543     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
544     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
545     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
546     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
547   }
548   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
549   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
550   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
551   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
552   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
553   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
554   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
555   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
556   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
557   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
558   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
559   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
560 
561   if (Subtarget.has64BitSupport()) {
562     // They also have instructions for converting between i64 and fp.
563     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
564     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
565     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
566     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
567     // This is just the low 32 bits of a (signed) fp->i64 conversion.
568     // We cannot do this with Promote because i64 is not a legal type.
569     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
570 
571     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
572       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
573   } else {
574     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
575     if (Subtarget.hasSPE())
576       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
577     else
578       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
579   }
580 
581   // With the instructions enabled under FPCVT, we can do everything.
582   if (Subtarget.hasFPCVT()) {
583     if (Subtarget.has64BitSupport()) {
584       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
585       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
586       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
587       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
588     }
589 
590     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
591     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
592     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
593     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
594   }
595 
596   if (Subtarget.use64BitRegs()) {
597     // 64-bit PowerPC implementations can support i64 types directly
598     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
599     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
600     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
601     // 64-bit PowerPC wants to expand i128 shifts itself.
602     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
603     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
604     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
605   } else {
606     // 32-bit PowerPC wants to expand i64 shifts itself.
607     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
608     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
609     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
610   }
611 
612   if (Subtarget.hasVSX()) {
613     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
614     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
615     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
616     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
617   }
618 
619   if (Subtarget.hasAltivec()) {
620     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::SSUBSAT, VT, Legal);
623       setOperationAction(ISD::UADDSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625     }
626     // First set operation action for all vector types to expand. Then we
627     // will selectively turn on ones that can be effectively codegen'd.
628     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
629       // add/sub are legal for all supported vector VT's.
630       setOperationAction(ISD::ADD, VT, Legal);
631       setOperationAction(ISD::SUB, VT, Legal);
632 
633       // For v2i64, these are only valid with P8Vector. This is corrected after
634       // the loop.
635       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
636         setOperationAction(ISD::SMAX, VT, Legal);
637         setOperationAction(ISD::SMIN, VT, Legal);
638         setOperationAction(ISD::UMAX, VT, Legal);
639         setOperationAction(ISD::UMIN, VT, Legal);
640       }
641       else {
642         setOperationAction(ISD::SMAX, VT, Expand);
643         setOperationAction(ISD::SMIN, VT, Expand);
644         setOperationAction(ISD::UMAX, VT, Expand);
645         setOperationAction(ISD::UMIN, VT, Expand);
646       }
647 
648       if (Subtarget.hasVSX()) {
649         setOperationAction(ISD::FMAXNUM, VT, Legal);
650         setOperationAction(ISD::FMINNUM, VT, Legal);
651       }
652 
653       // Vector instructions introduced in P8
654       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
655         setOperationAction(ISD::CTPOP, VT, Legal);
656         setOperationAction(ISD::CTLZ, VT, Legal);
657       }
658       else {
659         setOperationAction(ISD::CTPOP, VT, Expand);
660         setOperationAction(ISD::CTLZ, VT, Expand);
661       }
662 
663       // Vector instructions introduced in P9
664       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
665         setOperationAction(ISD::CTTZ, VT, Legal);
666       else
667         setOperationAction(ISD::CTTZ, VT, Expand);
668 
669       // We promote all shuffles to v16i8.
670       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
671       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
672 
673       // We promote all non-typed operations to v4i32.
674       setOperationAction(ISD::AND   , VT, Promote);
675       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
676       setOperationAction(ISD::OR    , VT, Promote);
677       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
678       setOperationAction(ISD::XOR   , VT, Promote);
679       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
680       setOperationAction(ISD::LOAD  , VT, Promote);
681       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
682       setOperationAction(ISD::SELECT, VT, Promote);
683       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
684       setOperationAction(ISD::VSELECT, VT, Legal);
685       setOperationAction(ISD::SELECT_CC, VT, Promote);
686       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
687       setOperationAction(ISD::STORE, VT, Promote);
688       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
689 
690       // No other operations are legal.
691       setOperationAction(ISD::MUL , VT, Expand);
692       setOperationAction(ISD::SDIV, VT, Expand);
693       setOperationAction(ISD::SREM, VT, Expand);
694       setOperationAction(ISD::UDIV, VT, Expand);
695       setOperationAction(ISD::UREM, VT, Expand);
696       setOperationAction(ISD::FDIV, VT, Expand);
697       setOperationAction(ISD::FREM, VT, Expand);
698       setOperationAction(ISD::FNEG, VT, Expand);
699       setOperationAction(ISD::FSQRT, VT, Expand);
700       setOperationAction(ISD::FLOG, VT, Expand);
701       setOperationAction(ISD::FLOG10, VT, Expand);
702       setOperationAction(ISD::FLOG2, VT, Expand);
703       setOperationAction(ISD::FEXP, VT, Expand);
704       setOperationAction(ISD::FEXP2, VT, Expand);
705       setOperationAction(ISD::FSIN, VT, Expand);
706       setOperationAction(ISD::FCOS, VT, Expand);
707       setOperationAction(ISD::FABS, VT, Expand);
708       setOperationAction(ISD::FFLOOR, VT, Expand);
709       setOperationAction(ISD::FCEIL,  VT, Expand);
710       setOperationAction(ISD::FTRUNC, VT, Expand);
711       setOperationAction(ISD::FRINT,  VT, Expand);
712       setOperationAction(ISD::FNEARBYINT, VT, Expand);
713       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
714       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
715       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
716       setOperationAction(ISD::MULHU, VT, Expand);
717       setOperationAction(ISD::MULHS, VT, Expand);
718       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
719       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
720       setOperationAction(ISD::UDIVREM, VT, Expand);
721       setOperationAction(ISD::SDIVREM, VT, Expand);
722       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
723       setOperationAction(ISD::FPOW, VT, Expand);
724       setOperationAction(ISD::BSWAP, VT, Expand);
725       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
726       setOperationAction(ISD::ROTL, VT, Expand);
727       setOperationAction(ISD::ROTR, VT, Expand);
728 
729       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
730         setTruncStoreAction(VT, InnerVT, Expand);
731         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
732         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
733         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
734       }
735     }
736     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
737     if (!Subtarget.hasP8Vector()) {
738       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
739       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
740       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
741       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
742     }
743 
744     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
745       setOperationAction(ISD::ABS, VT, Custom);
746 
747     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
748     // with merges, splats, etc.
749     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
750 
751     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
752     // are cheap, so handle them before they get expanded to scalar.
753     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
754     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
755     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
756     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
757     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
758 
759     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
760     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
761     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
762     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
763     setOperationAction(ISD::SELECT, MVT::v4i32,
764                        Subtarget.useCRBits() ? Legal : Expand);
765     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
766     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
767     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
768     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
769     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
770     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
771     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
772     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
773     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
774 
775     // Without hasP8Altivec set, v2i64 SMAX isn't available.
776     // But ABS custom lowering requires SMAX support.
777     if (!Subtarget.hasP8Altivec())
778       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
779 
780     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
781     if (Subtarget.hasAltivec())
782       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
783         setOperationAction(ISD::ROTL, VT, Legal);
784     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
785     if (Subtarget.hasP8Altivec())
786       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
787 
788     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
789     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
790     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
791     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
792 
793     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
794     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
795 
796     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
797       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
798       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
799     }
800 
801     if (Subtarget.hasP8Altivec())
802       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
803     else
804       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
805 
806     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
807     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
808 
809     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
810     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
811 
812     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
813     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
814     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
815     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
816 
817     // Altivec does not contain unordered floating-point compare instructions
818     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
819     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
820     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
821     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
822 
823     if (Subtarget.hasVSX()) {
824       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
825       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
826       if (Subtarget.hasP8Vector()) {
827         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
828         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
829       }
830       if (Subtarget.hasDirectMove() && isPPC64) {
831         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
832         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
833         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
834         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
835         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
836         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
837         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
838         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
839       }
840       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
841 
842       // The nearbyint variants are not allowed to raise the inexact exception
843       // so we can only code-gen them with unsafe math.
844       if (TM.Options.UnsafeFPMath) {
845         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
846         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
847       }
848 
849       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
850       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
851       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
852       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
853       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
854       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
855       setOperationAction(ISD::FROUND, MVT::f64, Legal);
856       setOperationAction(ISD::FRINT, MVT::f64, Legal);
857 
858       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
859       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
860       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
861       setOperationAction(ISD::FROUND, MVT::f32, Legal);
862       setOperationAction(ISD::FRINT, MVT::f32, Legal);
863 
864       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
865       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
866 
867       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
868       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
869 
870       // Share the Altivec comparison restrictions.
871       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
872       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
873       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
874       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
875 
876       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
877       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
878 
879       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
880 
881       if (Subtarget.hasP8Vector())
882         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
883 
884       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
885 
886       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
887       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
888       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
889 
890       if (Subtarget.hasP8Altivec()) {
891         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
892         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
893         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
894 
895         // 128 bit shifts can be accomplished via 3 instructions for SHL and
896         // SRL, but not for SRA because of the instructions available:
897         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
898         // doing
899         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
900         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
901         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
902 
903         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
904       }
905       else {
906         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
907         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
908         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
909 
910         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
911 
912         // VSX v2i64 only supports non-arithmetic operations.
913         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
914         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
915       }
916 
917       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
918       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
919       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
920       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
921 
922       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
923 
924       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
925       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
926       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
927       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
928 
929       // Custom handling for partial vectors of integers converted to
930       // floating point. We already have optimal handling for v2i32 through
931       // the DAG combine, so those aren't necessary.
932       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
933       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
934       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
935       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
936       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
937       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
938       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
939       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
940 
941       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
942       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
943       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
944       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
945       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
946       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
947 
948       if (Subtarget.hasDirectMove())
949         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
950       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
951 
952       // Handle constrained floating-point operations of vector.
953       // The predictor is `hasVSX` because altivec instruction has
954       // no exception but VSX vector instruction has.
955       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
956       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
957       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
958       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
959       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
960       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
961       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
962       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
963       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
964       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
965       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
966       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
967       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
968 
969       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
970       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
971       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
972       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
973       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
974       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
975       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
976       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
977       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
978       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
979       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
980       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
981       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
982 
983       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
984     }
985 
986     if (Subtarget.hasP8Altivec()) {
987       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
988       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
989     }
990 
991     if (Subtarget.hasP9Vector()) {
992       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
993       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
994 
995       // 128 bit shifts can be accomplished via 3 instructions for SHL and
996       // SRL, but not for SRA because of the instructions available:
997       // VS{RL} and VS{RL}O.
998       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
999       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1000       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1001 
1002       if (EnableQuadPrecision) {
1003         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1004         setOperationAction(ISD::FADD, MVT::f128, Legal);
1005         setOperationAction(ISD::FSUB, MVT::f128, Legal);
1006         setOperationAction(ISD::FDIV, MVT::f128, Legal);
1007         setOperationAction(ISD::FMUL, MVT::f128, Legal);
1008         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1009         // No extending loads to f128 on PPC.
1010         for (MVT FPT : MVT::fp_valuetypes())
1011           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1012         setOperationAction(ISD::FMA, MVT::f128, Legal);
1013         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1014         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1015         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1016         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1017         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1018         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1019 
1020         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1021         setOperationAction(ISD::FRINT, MVT::f128, Legal);
1022         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1023         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1024         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1025         setOperationAction(ISD::FROUND, MVT::f128, Legal);
1026 
1027         setOperationAction(ISD::SELECT, MVT::f128, Expand);
1028         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1029         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1030         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1031         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1032         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1033         // No implementation for these ops for PowerPC.
1034         setOperationAction(ISD::FSIN , MVT::f128, Expand);
1035         setOperationAction(ISD::FCOS , MVT::f128, Expand);
1036         setOperationAction(ISD::FPOW, MVT::f128, Expand);
1037         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1038         setOperationAction(ISD::FREM, MVT::f128, Expand);
1039 
1040         // Handle constrained floating-point operations of fp128
1041         setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1042         setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1043         setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1044         setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1045         setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1046         setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1047         setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1048         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1049         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1050         setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1051         setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1052         setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1053         setOperationAction(ISD::STRICT_FCEIL,  MVT::f128, Legal);
1054         setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1055         setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1056       }
1057       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1058       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1059       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1060       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1061       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1062     }
1063 
1064     if (Subtarget.hasP9Altivec()) {
1065       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1066       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1067 
1068       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1069       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1070       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1071       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1072       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1073       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1074       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1075     }
1076   }
1077 
1078   if (Subtarget.hasQPX()) {
1079     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1080     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1081     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1082     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1083 
1084     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1085     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1086 
1087     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1088     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1089 
1090     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1091     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1092 
1093     if (!Subtarget.useCRBits())
1094       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1095     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1096 
1097     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1098     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1099     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1100     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1101     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1102     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1103     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1104 
1105     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1106     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1107 
1108     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1109     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1110 
1111     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1112     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1113     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1114     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1115     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1116     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1117     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1118     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1119     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1120     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1121 
1122     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1123     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1124 
1125     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1126     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1127 
1128     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1129 
1130     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1131     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1132     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1133     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1134 
1135     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1136     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1137 
1138     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1139     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1140 
1141     if (!Subtarget.useCRBits())
1142       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1143     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1144 
1145     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1146     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1147     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1148     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1149     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1150     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1151     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1152 
1153     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1154     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1155 
1156     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1157     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1158     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1159     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1160     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1161     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1162     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1163     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1164     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1165     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1166 
1167     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1168     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1169 
1170     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1171     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1172 
1173     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1174 
1175     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1176     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1177     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1178 
1179     if (!Subtarget.useCRBits())
1180       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1181     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1182 
1183     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1184     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1185 
1186     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1187     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1188     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1189     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1190     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1191     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1192     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1193 
1194     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1195     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1196 
1197     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1198 
1199     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1200     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1201     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1202     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1203 
1204     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1205     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1206     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1207     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1208 
1209     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1210     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1211 
1212     // These need to set FE_INEXACT, and so cannot be vectorized here.
1213     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1214     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1215 
1216     if (TM.Options.UnsafeFPMath) {
1217       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1218       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1219 
1220       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1221       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1222     } else {
1223       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1224       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1225 
1226       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1227       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1228     }
1229 
1230     // TODO: Handle constrained floating-point operations of v4f64
1231   }
1232 
1233   if (Subtarget.has64BitSupport())
1234     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1235 
1236   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1237 
1238   if (!isPPC64) {
1239     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1240     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1241   }
1242 
1243   setBooleanContents(ZeroOrOneBooleanContent);
1244 
1245   if (Subtarget.hasAltivec()) {
1246     // Altivec instructions set fields to all zeros or all ones.
1247     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1248   }
1249 
1250   if (!isPPC64) {
1251     // These libcalls are not available in 32-bit.
1252     setLibcallName(RTLIB::SHL_I128, nullptr);
1253     setLibcallName(RTLIB::SRL_I128, nullptr);
1254     setLibcallName(RTLIB::SRA_I128, nullptr);
1255   }
1256 
1257   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1258 
1259   // We have target-specific dag combine patterns for the following nodes:
1260   setTargetDAGCombine(ISD::ADD);
1261   setTargetDAGCombine(ISD::SHL);
1262   setTargetDAGCombine(ISD::SRA);
1263   setTargetDAGCombine(ISD::SRL);
1264   setTargetDAGCombine(ISD::MUL);
1265   setTargetDAGCombine(ISD::FMA);
1266   setTargetDAGCombine(ISD::SINT_TO_FP);
1267   setTargetDAGCombine(ISD::BUILD_VECTOR);
1268   if (Subtarget.hasFPCVT())
1269     setTargetDAGCombine(ISD::UINT_TO_FP);
1270   setTargetDAGCombine(ISD::LOAD);
1271   setTargetDAGCombine(ISD::STORE);
1272   setTargetDAGCombine(ISD::BR_CC);
1273   if (Subtarget.useCRBits())
1274     setTargetDAGCombine(ISD::BRCOND);
1275   setTargetDAGCombine(ISD::BSWAP);
1276   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1277   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1278   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1279 
1280   setTargetDAGCombine(ISD::SIGN_EXTEND);
1281   setTargetDAGCombine(ISD::ZERO_EXTEND);
1282   setTargetDAGCombine(ISD::ANY_EXTEND);
1283 
1284   setTargetDAGCombine(ISD::TRUNCATE);
1285   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1286 
1287 
1288   if (Subtarget.useCRBits()) {
1289     setTargetDAGCombine(ISD::TRUNCATE);
1290     setTargetDAGCombine(ISD::SETCC);
1291     setTargetDAGCombine(ISD::SELECT_CC);
1292   }
1293 
1294   // Use reciprocal estimates.
1295   if (TM.Options.UnsafeFPMath) {
1296     setTargetDAGCombine(ISD::FDIV);
1297     setTargetDAGCombine(ISD::FSQRT);
1298   }
1299 
1300   if (Subtarget.hasP9Altivec()) {
1301     setTargetDAGCombine(ISD::ABS);
1302     setTargetDAGCombine(ISD::VSELECT);
1303   }
1304 
1305   if (EnableQuadPrecision) {
1306     setLibcallName(RTLIB::LOG_F128, "logf128");
1307     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1308     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1309     setLibcallName(RTLIB::EXP_F128, "expf128");
1310     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1311     setLibcallName(RTLIB::SIN_F128, "sinf128");
1312     setLibcallName(RTLIB::COS_F128, "cosf128");
1313     setLibcallName(RTLIB::POW_F128, "powf128");
1314     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1315     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1316     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1317     setLibcallName(RTLIB::REM_F128, "fmodf128");
1318   }
1319 
1320   // With 32 condition bits, we don't need to sink (and duplicate) compares
1321   // aggressively in CodeGenPrep.
1322   if (Subtarget.useCRBits()) {
1323     setHasMultipleConditionRegisters();
1324     setJumpIsExpensive();
1325   }
1326 
1327   setMinFunctionAlignment(Align(4));
1328 
1329   switch (Subtarget.getCPUDirective()) {
1330   default: break;
1331   case PPC::DIR_970:
1332   case PPC::DIR_A2:
1333   case PPC::DIR_E500:
1334   case PPC::DIR_E500mc:
1335   case PPC::DIR_E5500:
1336   case PPC::DIR_PWR4:
1337   case PPC::DIR_PWR5:
1338   case PPC::DIR_PWR5X:
1339   case PPC::DIR_PWR6:
1340   case PPC::DIR_PWR6X:
1341   case PPC::DIR_PWR7:
1342   case PPC::DIR_PWR8:
1343   case PPC::DIR_PWR9:
1344   case PPC::DIR_PWR10:
1345   case PPC::DIR_PWR_FUTURE:
1346     setPrefLoopAlignment(Align(16));
1347     setPrefFunctionAlignment(Align(16));
1348     break;
1349   }
1350 
1351   if (Subtarget.enableMachineScheduler())
1352     setSchedulingPreference(Sched::Source);
1353   else
1354     setSchedulingPreference(Sched::Hybrid);
1355 
1356   computeRegisterProperties(STI.getRegisterInfo());
1357 
1358   // The Freescale cores do better with aggressive inlining of memcpy and
1359   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1360   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1361       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1362     MaxStoresPerMemset = 32;
1363     MaxStoresPerMemsetOptSize = 16;
1364     MaxStoresPerMemcpy = 32;
1365     MaxStoresPerMemcpyOptSize = 8;
1366     MaxStoresPerMemmove = 32;
1367     MaxStoresPerMemmoveOptSize = 8;
1368   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1369     // The A2 also benefits from (very) aggressive inlining of memcpy and
1370     // friends. The overhead of a the function call, even when warm, can be
1371     // over one hundred cycles.
1372     MaxStoresPerMemset = 128;
1373     MaxStoresPerMemcpy = 128;
1374     MaxStoresPerMemmove = 128;
1375     MaxLoadsPerMemcmp = 128;
1376   } else {
1377     MaxLoadsPerMemcmp = 8;
1378     MaxLoadsPerMemcmpOptSize = 4;
1379   }
1380 
1381   // Let the subtarget (CPU) decide if a predictable select is more expensive
1382   // than the corresponding branch. This information is used in CGP to decide
1383   // when to convert selects into branches.
1384   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1385 }
1386 
1387 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1388 /// the desired ByVal argument alignment.
1389 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1390                              unsigned MaxMaxAlign) {
1391   if (MaxAlign == MaxMaxAlign)
1392     return;
1393   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1394     if (MaxMaxAlign >= 32 &&
1395         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1396       MaxAlign = 32;
1397     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1398              MaxAlign < 16)
1399       MaxAlign = 16;
1400   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1401     unsigned EltAlign = 0;
1402     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1403     if (EltAlign > MaxAlign)
1404       MaxAlign = EltAlign;
1405   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1406     for (auto *EltTy : STy->elements()) {
1407       unsigned EltAlign = 0;
1408       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1409       if (EltAlign > MaxAlign)
1410         MaxAlign = EltAlign;
1411       if (MaxAlign == MaxMaxAlign)
1412         break;
1413     }
1414   }
1415 }
1416 
1417 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1418 /// function arguments in the caller parameter area.
1419 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1420                                                   const DataLayout &DL) const {
1421   // 16byte and wider vectors are passed on 16byte boundary.
1422   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1423   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1424   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1425     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1426   return Align;
1427 }
1428 
1429 bool PPCTargetLowering::useSoftFloat() const {
1430   return Subtarget.useSoftFloat();
1431 }
1432 
1433 bool PPCTargetLowering::hasSPE() const {
1434   return Subtarget.hasSPE();
1435 }
1436 
1437 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1438   return VT.isScalarInteger();
1439 }
1440 
1441 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1442 /// type is cheaper than a multiply followed by a shift.
1443 /// This is true for words and doublewords on 64-bit PowerPC.
1444 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1445   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1446                               isOperationLegal(ISD::MULHU, Type)))
1447     return true;
1448   return TargetLowering::isMulhCheaperThanMulShift(Type);
1449 }
1450 
1451 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1452   switch ((PPCISD::NodeType)Opcode) {
1453   case PPCISD::FIRST_NUMBER:    break;
1454   case PPCISD::FSEL:            return "PPCISD::FSEL";
1455   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1456   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1457   case PPCISD::FCFID:           return "PPCISD::FCFID";
1458   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1459   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1460   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1461   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1462   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1463   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1464   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1465   case PPCISD::FP_TO_UINT_IN_VSR:
1466                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1467   case PPCISD::FP_TO_SINT_IN_VSR:
1468                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1469   case PPCISD::FRE:             return "PPCISD::FRE";
1470   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1471   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1472   case PPCISD::VPERM:           return "PPCISD::VPERM";
1473   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1474   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1475   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1476   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1477   case PPCISD::CMPB:            return "PPCISD::CMPB";
1478   case PPCISD::Hi:              return "PPCISD::Hi";
1479   case PPCISD::Lo:              return "PPCISD::Lo";
1480   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1481   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1482   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1483   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1484   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1485   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1486   case PPCISD::SRL:             return "PPCISD::SRL";
1487   case PPCISD::SRA:             return "PPCISD::SRA";
1488   case PPCISD::SHL:             return "PPCISD::SHL";
1489   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1490   case PPCISD::CALL:            return "PPCISD::CALL";
1491   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1492   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1493   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1494   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1495   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1496   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1497   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1498   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1499   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1500   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1501   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1502   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1503   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1504   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1505   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1506   case PPCISD::ANDI_rec_1_EQ_BIT:
1507     return "PPCISD::ANDI_rec_1_EQ_BIT";
1508   case PPCISD::ANDI_rec_1_GT_BIT:
1509     return "PPCISD::ANDI_rec_1_GT_BIT";
1510   case PPCISD::VCMP:            return "PPCISD::VCMP";
1511   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1512   case PPCISD::LBRX:            return "PPCISD::LBRX";
1513   case PPCISD::STBRX:           return "PPCISD::STBRX";
1514   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1515   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1516   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1517   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1518   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1519   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1520   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1521   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1522   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1523   case PPCISD::ST_VSR_SCAL_INT:
1524                                 return "PPCISD::ST_VSR_SCAL_INT";
1525   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1526   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1527   case PPCISD::BDZ:             return "PPCISD::BDZ";
1528   case PPCISD::MFFS:            return "PPCISD::MFFS";
1529   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1530   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1531   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1532   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1533   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1534   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1535   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1536   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1537   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1538   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1539   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1540   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1541   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1542   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1543   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1544   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1545   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1546   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1547   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1548   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1549   case PPCISD::SC:              return "PPCISD::SC";
1550   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1551   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1552   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1553   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1554   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1555   case PPCISD::VABSD:           return "PPCISD::VABSD";
1556   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1557   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1558   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1559   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1560   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1561   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1562   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1563   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1564   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1565   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1566   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1567   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1568   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1569   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1570   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1571   }
1572   return nullptr;
1573 }
1574 
1575 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1576                                           EVT VT) const {
1577   if (!VT.isVector())
1578     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1579 
1580   if (Subtarget.hasQPX())
1581     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1582 
1583   return VT.changeVectorElementTypeToInteger();
1584 }
1585 
1586 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1587   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1588   return true;
1589 }
1590 
1591 //===----------------------------------------------------------------------===//
1592 // Node matching predicates, for use by the tblgen matching code.
1593 //===----------------------------------------------------------------------===//
1594 
1595 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1596 static bool isFloatingPointZero(SDValue Op) {
1597   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1598     return CFP->getValueAPF().isZero();
1599   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1600     // Maybe this has already been legalized into the constant pool?
1601     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1602       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1603         return CFP->getValueAPF().isZero();
1604   }
1605   return false;
1606 }
1607 
1608 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1609 /// true if Op is undef or if it matches the specified value.
1610 static bool isConstantOrUndef(int Op, int Val) {
1611   return Op < 0 || Op == Val;
1612 }
1613 
1614 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1615 /// VPKUHUM instruction.
1616 /// The ShuffleKind distinguishes between big-endian operations with
1617 /// two different inputs (0), either-endian operations with two identical
1618 /// inputs (1), and little-endian operations with two different inputs (2).
1619 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1620 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1621                                SelectionDAG &DAG) {
1622   bool IsLE = DAG.getDataLayout().isLittleEndian();
1623   if (ShuffleKind == 0) {
1624     if (IsLE)
1625       return false;
1626     for (unsigned i = 0; i != 16; ++i)
1627       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1628         return false;
1629   } else if (ShuffleKind == 2) {
1630     if (!IsLE)
1631       return false;
1632     for (unsigned i = 0; i != 16; ++i)
1633       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1634         return false;
1635   } else if (ShuffleKind == 1) {
1636     unsigned j = IsLE ? 0 : 1;
1637     for (unsigned i = 0; i != 8; ++i)
1638       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1639           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1640         return false;
1641   }
1642   return true;
1643 }
1644 
1645 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1646 /// VPKUWUM instruction.
1647 /// The ShuffleKind distinguishes between big-endian operations with
1648 /// two different inputs (0), either-endian operations with two identical
1649 /// inputs (1), and little-endian operations with two different inputs (2).
1650 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1651 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1652                                SelectionDAG &DAG) {
1653   bool IsLE = DAG.getDataLayout().isLittleEndian();
1654   if (ShuffleKind == 0) {
1655     if (IsLE)
1656       return false;
1657     for (unsigned i = 0; i != 16; i += 2)
1658       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1659           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1660         return false;
1661   } else if (ShuffleKind == 2) {
1662     if (!IsLE)
1663       return false;
1664     for (unsigned i = 0; i != 16; i += 2)
1665       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1666           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1667         return false;
1668   } else if (ShuffleKind == 1) {
1669     unsigned j = IsLE ? 0 : 2;
1670     for (unsigned i = 0; i != 8; i += 2)
1671       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1672           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1673           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1674           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1675         return false;
1676   }
1677   return true;
1678 }
1679 
1680 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1681 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1682 /// current subtarget.
1683 ///
1684 /// The ShuffleKind distinguishes between big-endian operations with
1685 /// two different inputs (0), either-endian operations with two identical
1686 /// inputs (1), and little-endian operations with two different inputs (2).
1687 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1688 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1689                                SelectionDAG &DAG) {
1690   const PPCSubtarget& Subtarget =
1691       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1692   if (!Subtarget.hasP8Vector())
1693     return false;
1694 
1695   bool IsLE = DAG.getDataLayout().isLittleEndian();
1696   if (ShuffleKind == 0) {
1697     if (IsLE)
1698       return false;
1699     for (unsigned i = 0; i != 16; i += 4)
1700       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1701           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1702           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1703           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1704         return false;
1705   } else if (ShuffleKind == 2) {
1706     if (!IsLE)
1707       return false;
1708     for (unsigned i = 0; i != 16; i += 4)
1709       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1710           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1711           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1712           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1713         return false;
1714   } else if (ShuffleKind == 1) {
1715     unsigned j = IsLE ? 0 : 4;
1716     for (unsigned i = 0; i != 8; i += 4)
1717       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1718           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1719           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1720           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1721           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1722           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1723           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1724           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1725         return false;
1726   }
1727   return true;
1728 }
1729 
1730 /// isVMerge - Common function, used to match vmrg* shuffles.
1731 ///
1732 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1733                      unsigned LHSStart, unsigned RHSStart) {
1734   if (N->getValueType(0) != MVT::v16i8)
1735     return false;
1736   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1737          "Unsupported merge size!");
1738 
1739   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1740     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1741       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1742                              LHSStart+j+i*UnitSize) ||
1743           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1744                              RHSStart+j+i*UnitSize))
1745         return false;
1746     }
1747   return true;
1748 }
1749 
1750 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1751 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1752 /// The ShuffleKind distinguishes between big-endian merges with two
1753 /// different inputs (0), either-endian merges with two identical inputs (1),
1754 /// and little-endian merges with two different inputs (2).  For the latter,
1755 /// the input operands are swapped (see PPCInstrAltivec.td).
1756 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1757                              unsigned ShuffleKind, SelectionDAG &DAG) {
1758   if (DAG.getDataLayout().isLittleEndian()) {
1759     if (ShuffleKind == 1) // unary
1760       return isVMerge(N, UnitSize, 0, 0);
1761     else if (ShuffleKind == 2) // swapped
1762       return isVMerge(N, UnitSize, 0, 16);
1763     else
1764       return false;
1765   } else {
1766     if (ShuffleKind == 1) // unary
1767       return isVMerge(N, UnitSize, 8, 8);
1768     else if (ShuffleKind == 0) // normal
1769       return isVMerge(N, UnitSize, 8, 24);
1770     else
1771       return false;
1772   }
1773 }
1774 
1775 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1776 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1777 /// The ShuffleKind distinguishes between big-endian merges with two
1778 /// different inputs (0), either-endian merges with two identical inputs (1),
1779 /// and little-endian merges with two different inputs (2).  For the latter,
1780 /// the input operands are swapped (see PPCInstrAltivec.td).
1781 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1782                              unsigned ShuffleKind, SelectionDAG &DAG) {
1783   if (DAG.getDataLayout().isLittleEndian()) {
1784     if (ShuffleKind == 1) // unary
1785       return isVMerge(N, UnitSize, 8, 8);
1786     else if (ShuffleKind == 2) // swapped
1787       return isVMerge(N, UnitSize, 8, 24);
1788     else
1789       return false;
1790   } else {
1791     if (ShuffleKind == 1) // unary
1792       return isVMerge(N, UnitSize, 0, 0);
1793     else if (ShuffleKind == 0) // normal
1794       return isVMerge(N, UnitSize, 0, 16);
1795     else
1796       return false;
1797   }
1798 }
1799 
1800 /**
1801  * Common function used to match vmrgew and vmrgow shuffles
1802  *
1803  * The indexOffset determines whether to look for even or odd words in
1804  * the shuffle mask. This is based on the of the endianness of the target
1805  * machine.
1806  *   - Little Endian:
1807  *     - Use offset of 0 to check for odd elements
1808  *     - Use offset of 4 to check for even elements
1809  *   - Big Endian:
1810  *     - Use offset of 0 to check for even elements
1811  *     - Use offset of 4 to check for odd elements
1812  * A detailed description of the vector element ordering for little endian and
1813  * big endian can be found at
1814  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1815  * Targeting your applications - what little endian and big endian IBM XL C/C++
1816  * compiler differences mean to you
1817  *
1818  * The mask to the shuffle vector instruction specifies the indices of the
1819  * elements from the two input vectors to place in the result. The elements are
1820  * numbered in array-access order, starting with the first vector. These vectors
1821  * are always of type v16i8, thus each vector will contain 16 elements of size
1822  * 8. More info on the shuffle vector can be found in the
1823  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1824  * Language Reference.
1825  *
1826  * The RHSStartValue indicates whether the same input vectors are used (unary)
1827  * or two different input vectors are used, based on the following:
1828  *   - If the instruction uses the same vector for both inputs, the range of the
1829  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1830  *     be 0.
1831  *   - If the instruction has two different vectors then the range of the
1832  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1833  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1834  *     to 31 specify elements in the second vector).
1835  *
1836  * \param[in] N The shuffle vector SD Node to analyze
1837  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1838  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1839  * vector to the shuffle_vector instruction
1840  * \return true iff this shuffle vector represents an even or odd word merge
1841  */
1842 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1843                      unsigned RHSStartValue) {
1844   if (N->getValueType(0) != MVT::v16i8)
1845     return false;
1846 
1847   for (unsigned i = 0; i < 2; ++i)
1848     for (unsigned j = 0; j < 4; ++j)
1849       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1850                              i*RHSStartValue+j+IndexOffset) ||
1851           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1852                              i*RHSStartValue+j+IndexOffset+8))
1853         return false;
1854   return true;
1855 }
1856 
1857 /**
1858  * Determine if the specified shuffle mask is suitable for the vmrgew or
1859  * vmrgow instructions.
1860  *
1861  * \param[in] N The shuffle vector SD Node to analyze
1862  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1863  * \param[in] ShuffleKind Identify the type of merge:
1864  *   - 0 = big-endian merge with two different inputs;
1865  *   - 1 = either-endian merge with two identical inputs;
1866  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1867  *     little-endian merges).
1868  * \param[in] DAG The current SelectionDAG
1869  * \return true iff this shuffle mask
1870  */
1871 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1872                               unsigned ShuffleKind, SelectionDAG &DAG) {
1873   if (DAG.getDataLayout().isLittleEndian()) {
1874     unsigned indexOffset = CheckEven ? 4 : 0;
1875     if (ShuffleKind == 1) // Unary
1876       return isVMerge(N, indexOffset, 0);
1877     else if (ShuffleKind == 2) // swapped
1878       return isVMerge(N, indexOffset, 16);
1879     else
1880       return false;
1881   }
1882   else {
1883     unsigned indexOffset = CheckEven ? 0 : 4;
1884     if (ShuffleKind == 1) // Unary
1885       return isVMerge(N, indexOffset, 0);
1886     else if (ShuffleKind == 0) // Normal
1887       return isVMerge(N, indexOffset, 16);
1888     else
1889       return false;
1890   }
1891   return false;
1892 }
1893 
1894 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1895 /// amount, otherwise return -1.
1896 /// The ShuffleKind distinguishes between big-endian operations with two
1897 /// different inputs (0), either-endian operations with two identical inputs
1898 /// (1), and little-endian operations with two different inputs (2).  For the
1899 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1900 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1901                              SelectionDAG &DAG) {
1902   if (N->getValueType(0) != MVT::v16i8)
1903     return -1;
1904 
1905   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1906 
1907   // Find the first non-undef value in the shuffle mask.
1908   unsigned i;
1909   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1910     /*search*/;
1911 
1912   if (i == 16) return -1;  // all undef.
1913 
1914   // Otherwise, check to see if the rest of the elements are consecutively
1915   // numbered from this value.
1916   unsigned ShiftAmt = SVOp->getMaskElt(i);
1917   if (ShiftAmt < i) return -1;
1918 
1919   ShiftAmt -= i;
1920   bool isLE = DAG.getDataLayout().isLittleEndian();
1921 
1922   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1923     // Check the rest of the elements to see if they are consecutive.
1924     for (++i; i != 16; ++i)
1925       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1926         return -1;
1927   } else if (ShuffleKind == 1) {
1928     // Check the rest of the elements to see if they are consecutive.
1929     for (++i; i != 16; ++i)
1930       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1931         return -1;
1932   } else
1933     return -1;
1934 
1935   if (isLE)
1936     ShiftAmt = 16 - ShiftAmt;
1937 
1938   return ShiftAmt;
1939 }
1940 
1941 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1942 /// specifies a splat of a single element that is suitable for input to
1943 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1944 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1945   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1946          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1947 
1948   // The consecutive indices need to specify an element, not part of two
1949   // different elements.  So abandon ship early if this isn't the case.
1950   if (N->getMaskElt(0) % EltSize != 0)
1951     return false;
1952 
1953   // This is a splat operation if each element of the permute is the same, and
1954   // if the value doesn't reference the second vector.
1955   unsigned ElementBase = N->getMaskElt(0);
1956 
1957   // FIXME: Handle UNDEF elements too!
1958   if (ElementBase >= 16)
1959     return false;
1960 
1961   // Check that the indices are consecutive, in the case of a multi-byte element
1962   // splatted with a v16i8 mask.
1963   for (unsigned i = 1; i != EltSize; ++i)
1964     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1965       return false;
1966 
1967   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1968     if (N->getMaskElt(i) < 0) continue;
1969     for (unsigned j = 0; j != EltSize; ++j)
1970       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1971         return false;
1972   }
1973   return true;
1974 }
1975 
1976 /// Check that the mask is shuffling N byte elements. Within each N byte
1977 /// element of the mask, the indices could be either in increasing or
1978 /// decreasing order as long as they are consecutive.
1979 /// \param[in] N the shuffle vector SD Node to analyze
1980 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1981 /// Word/DoubleWord/QuadWord).
1982 /// \param[in] StepLen the delta indices number among the N byte element, if
1983 /// the mask is in increasing/decreasing order then it is 1/-1.
1984 /// \return true iff the mask is shuffling N byte elements.
1985 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1986                                    int StepLen) {
1987   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1988          "Unexpected element width.");
1989   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1990 
1991   unsigned NumOfElem = 16 / Width;
1992   unsigned MaskVal[16]; //  Width is never greater than 16
1993   for (unsigned i = 0; i < NumOfElem; ++i) {
1994     MaskVal[0] = N->getMaskElt(i * Width);
1995     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1996       return false;
1997     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1998       return false;
1999     }
2000 
2001     for (unsigned int j = 1; j < Width; ++j) {
2002       MaskVal[j] = N->getMaskElt(i * Width + j);
2003       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2004         return false;
2005       }
2006     }
2007   }
2008 
2009   return true;
2010 }
2011 
2012 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2013                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2014   if (!isNByteElemShuffleMask(N, 4, 1))
2015     return false;
2016 
2017   // Now we look at mask elements 0,4,8,12
2018   unsigned M0 = N->getMaskElt(0) / 4;
2019   unsigned M1 = N->getMaskElt(4) / 4;
2020   unsigned M2 = N->getMaskElt(8) / 4;
2021   unsigned M3 = N->getMaskElt(12) / 4;
2022   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2023   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2024 
2025   // Below, let H and L be arbitrary elements of the shuffle mask
2026   // where H is in the range [4,7] and L is in the range [0,3].
2027   // H, 1, 2, 3 or L, 5, 6, 7
2028   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2029       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2030     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2031     InsertAtByte = IsLE ? 12 : 0;
2032     Swap = M0 < 4;
2033     return true;
2034   }
2035   // 0, H, 2, 3 or 4, L, 6, 7
2036   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2037       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2038     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2039     InsertAtByte = IsLE ? 8 : 4;
2040     Swap = M1 < 4;
2041     return true;
2042   }
2043   // 0, 1, H, 3 or 4, 5, L, 7
2044   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2045       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2046     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2047     InsertAtByte = IsLE ? 4 : 8;
2048     Swap = M2 < 4;
2049     return true;
2050   }
2051   // 0, 1, 2, H or 4, 5, 6, L
2052   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2053       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2054     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2055     InsertAtByte = IsLE ? 0 : 12;
2056     Swap = M3 < 4;
2057     return true;
2058   }
2059 
2060   // If both vector operands for the shuffle are the same vector, the mask will
2061   // contain only elements from the first one and the second one will be undef.
2062   if (N->getOperand(1).isUndef()) {
2063     ShiftElts = 0;
2064     Swap = true;
2065     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2066     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2067       InsertAtByte = IsLE ? 12 : 0;
2068       return true;
2069     }
2070     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2071       InsertAtByte = IsLE ? 8 : 4;
2072       return true;
2073     }
2074     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2075       InsertAtByte = IsLE ? 4 : 8;
2076       return true;
2077     }
2078     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2079       InsertAtByte = IsLE ? 0 : 12;
2080       return true;
2081     }
2082   }
2083 
2084   return false;
2085 }
2086 
2087 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2088                                bool &Swap, bool IsLE) {
2089   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2090   // Ensure each byte index of the word is consecutive.
2091   if (!isNByteElemShuffleMask(N, 4, 1))
2092     return false;
2093 
2094   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2095   unsigned M0 = N->getMaskElt(0) / 4;
2096   unsigned M1 = N->getMaskElt(4) / 4;
2097   unsigned M2 = N->getMaskElt(8) / 4;
2098   unsigned M3 = N->getMaskElt(12) / 4;
2099 
2100   // If both vector operands for the shuffle are the same vector, the mask will
2101   // contain only elements from the first one and the second one will be undef.
2102   if (N->getOperand(1).isUndef()) {
2103     assert(M0 < 4 && "Indexing into an undef vector?");
2104     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2105       return false;
2106 
2107     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2108     Swap = false;
2109     return true;
2110   }
2111 
2112   // Ensure each word index of the ShuffleVector Mask is consecutive.
2113   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2114     return false;
2115 
2116   if (IsLE) {
2117     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2118       // Input vectors don't need to be swapped if the leading element
2119       // of the result is one of the 3 left elements of the second vector
2120       // (or if there is no shift to be done at all).
2121       Swap = false;
2122       ShiftElts = (8 - M0) % 8;
2123     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2124       // Input vectors need to be swapped if the leading element
2125       // of the result is one of the 3 left elements of the first vector
2126       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2127       Swap = true;
2128       ShiftElts = (4 - M0) % 4;
2129     }
2130 
2131     return true;
2132   } else {                                          // BE
2133     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2134       // Input vectors don't need to be swapped if the leading element
2135       // of the result is one of the 4 elements of the first vector.
2136       Swap = false;
2137       ShiftElts = M0;
2138     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2139       // Input vectors need to be swapped if the leading element
2140       // of the result is one of the 4 elements of the right vector.
2141       Swap = true;
2142       ShiftElts = M0 - 4;
2143     }
2144 
2145     return true;
2146   }
2147 }
2148 
2149 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2150   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2151 
2152   if (!isNByteElemShuffleMask(N, Width, -1))
2153     return false;
2154 
2155   for (int i = 0; i < 16; i += Width)
2156     if (N->getMaskElt(i) != i + Width - 1)
2157       return false;
2158 
2159   return true;
2160 }
2161 
2162 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2163   return isXXBRShuffleMaskHelper(N, 2);
2164 }
2165 
2166 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2167   return isXXBRShuffleMaskHelper(N, 4);
2168 }
2169 
2170 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2171   return isXXBRShuffleMaskHelper(N, 8);
2172 }
2173 
2174 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2175   return isXXBRShuffleMaskHelper(N, 16);
2176 }
2177 
2178 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2179 /// if the inputs to the instruction should be swapped and set \p DM to the
2180 /// value for the immediate.
2181 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2182 /// AND element 0 of the result comes from the first input (LE) or second input
2183 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2184 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2185 /// mask.
2186 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2187                                bool &Swap, bool IsLE) {
2188   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2189 
2190   // Ensure each byte index of the double word is consecutive.
2191   if (!isNByteElemShuffleMask(N, 8, 1))
2192     return false;
2193 
2194   unsigned M0 = N->getMaskElt(0) / 8;
2195   unsigned M1 = N->getMaskElt(8) / 8;
2196   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2197 
2198   // If both vector operands for the shuffle are the same vector, the mask will
2199   // contain only elements from the first one and the second one will be undef.
2200   if (N->getOperand(1).isUndef()) {
2201     if ((M0 | M1) < 2) {
2202       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2203       Swap = false;
2204       return true;
2205     } else
2206       return false;
2207   }
2208 
2209   if (IsLE) {
2210     if (M0 > 1 && M1 < 2) {
2211       Swap = false;
2212     } else if (M0 < 2 && M1 > 1) {
2213       M0 = (M0 + 2) % 4;
2214       M1 = (M1 + 2) % 4;
2215       Swap = true;
2216     } else
2217       return false;
2218 
2219     // Note: if control flow comes here that means Swap is already set above
2220     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2221     return true;
2222   } else { // BE
2223     if (M0 < 2 && M1 > 1) {
2224       Swap = false;
2225     } else if (M0 > 1 && M1 < 2) {
2226       M0 = (M0 + 2) % 4;
2227       M1 = (M1 + 2) % 4;
2228       Swap = true;
2229     } else
2230       return false;
2231 
2232     // Note: if control flow comes here that means Swap is already set above
2233     DM = (M0 << 1) + (M1 & 1);
2234     return true;
2235   }
2236 }
2237 
2238 
2239 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2240 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2241 /// elements are counted from the left of the vector register).
2242 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2243                                          SelectionDAG &DAG) {
2244   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2245   assert(isSplatShuffleMask(SVOp, EltSize));
2246   if (DAG.getDataLayout().isLittleEndian())
2247     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2248   else
2249     return SVOp->getMaskElt(0) / EltSize;
2250 }
2251 
2252 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2253 /// by using a vspltis[bhw] instruction of the specified element size, return
2254 /// the constant being splatted.  The ByteSize field indicates the number of
2255 /// bytes of each element [124] -> [bhw].
2256 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2257   SDValue OpVal(nullptr, 0);
2258 
2259   // If ByteSize of the splat is bigger than the element size of the
2260   // build_vector, then we have a case where we are checking for a splat where
2261   // multiple elements of the buildvector are folded together into a single
2262   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2263   unsigned EltSize = 16/N->getNumOperands();
2264   if (EltSize < ByteSize) {
2265     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2266     SDValue UniquedVals[4];
2267     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2268 
2269     // See if all of the elements in the buildvector agree across.
2270     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2271       if (N->getOperand(i).isUndef()) continue;
2272       // If the element isn't a constant, bail fully out.
2273       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2274 
2275       if (!UniquedVals[i&(Multiple-1)].getNode())
2276         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2277       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2278         return SDValue();  // no match.
2279     }
2280 
2281     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2282     // either constant or undef values that are identical for each chunk.  See
2283     // if these chunks can form into a larger vspltis*.
2284 
2285     // Check to see if all of the leading entries are either 0 or -1.  If
2286     // neither, then this won't fit into the immediate field.
2287     bool LeadingZero = true;
2288     bool LeadingOnes = true;
2289     for (unsigned i = 0; i != Multiple-1; ++i) {
2290       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2291 
2292       LeadingZero &= isNullConstant(UniquedVals[i]);
2293       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2294     }
2295     // Finally, check the least significant entry.
2296     if (LeadingZero) {
2297       if (!UniquedVals[Multiple-1].getNode())
2298         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2299       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2300       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2301         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2302     }
2303     if (LeadingOnes) {
2304       if (!UniquedVals[Multiple-1].getNode())
2305         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2306       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2307       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2308         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2309     }
2310 
2311     return SDValue();
2312   }
2313 
2314   // Check to see if this buildvec has a single non-undef value in its elements.
2315   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2316     if (N->getOperand(i).isUndef()) continue;
2317     if (!OpVal.getNode())
2318       OpVal = N->getOperand(i);
2319     else if (OpVal != N->getOperand(i))
2320       return SDValue();
2321   }
2322 
2323   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2324 
2325   unsigned ValSizeInBytes = EltSize;
2326   uint64_t Value = 0;
2327   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2328     Value = CN->getZExtValue();
2329   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2330     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2331     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2332   }
2333 
2334   // If the splat value is larger than the element value, then we can never do
2335   // this splat.  The only case that we could fit the replicated bits into our
2336   // immediate field for would be zero, and we prefer to use vxor for it.
2337   if (ValSizeInBytes < ByteSize) return SDValue();
2338 
2339   // If the element value is larger than the splat value, check if it consists
2340   // of a repeated bit pattern of size ByteSize.
2341   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2342     return SDValue();
2343 
2344   // Properly sign extend the value.
2345   int MaskVal = SignExtend32(Value, ByteSize * 8);
2346 
2347   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2348   if (MaskVal == 0) return SDValue();
2349 
2350   // Finally, if this value fits in a 5 bit sext field, return it
2351   if (SignExtend32<5>(MaskVal) == MaskVal)
2352     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2353   return SDValue();
2354 }
2355 
2356 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2357 /// amount, otherwise return -1.
2358 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2359   EVT VT = N->getValueType(0);
2360   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2361     return -1;
2362 
2363   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2364 
2365   // Find the first non-undef value in the shuffle mask.
2366   unsigned i;
2367   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2368     /*search*/;
2369 
2370   if (i == 4) return -1;  // all undef.
2371 
2372   // Otherwise, check to see if the rest of the elements are consecutively
2373   // numbered from this value.
2374   unsigned ShiftAmt = SVOp->getMaskElt(i);
2375   if (ShiftAmt < i) return -1;
2376   ShiftAmt -= i;
2377 
2378   // Check the rest of the elements to see if they are consecutive.
2379   for (++i; i != 4; ++i)
2380     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2381       return -1;
2382 
2383   return ShiftAmt;
2384 }
2385 
2386 //===----------------------------------------------------------------------===//
2387 //  Addressing Mode Selection
2388 //===----------------------------------------------------------------------===//
2389 
2390 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2391 /// or 64-bit immediate, and if the value can be accurately represented as a
2392 /// sign extension from a 16-bit value.  If so, this returns true and the
2393 /// immediate.
2394 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2395   if (!isa<ConstantSDNode>(N))
2396     return false;
2397 
2398   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2399   if (N->getValueType(0) == MVT::i32)
2400     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2401   else
2402     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2403 }
2404 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2405   return isIntS16Immediate(Op.getNode(), Imm);
2406 }
2407 
2408 
2409 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2410 /// be represented as an indexed [r+r] operation.
2411 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2412                                                SDValue &Index,
2413                                                SelectionDAG &DAG) const {
2414   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2415       UI != E; ++UI) {
2416     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2417       if (Memop->getMemoryVT() == MVT::f64) {
2418           Base = N.getOperand(0);
2419           Index = N.getOperand(1);
2420           return true;
2421       }
2422     }
2423   }
2424   return false;
2425 }
2426 
2427 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2428 /// can be represented as an indexed [r+r] operation.  Returns false if it
2429 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2430 /// non-zero and N can be represented by a base register plus a signed 16-bit
2431 /// displacement, make a more precise judgement by checking (displacement % \p
2432 /// EncodingAlignment).
2433 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2434                                             SDValue &Index, SelectionDAG &DAG,
2435                                             unsigned EncodingAlignment) const {
2436   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2437   // a [pc+imm].
2438   if (SelectAddressPCRel(N, Base))
2439     return false;
2440 
2441   int16_t imm = 0;
2442   if (N.getOpcode() == ISD::ADD) {
2443     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2444     // SPE load/store can only handle 8-bit offsets.
2445     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2446         return true;
2447     if (isIntS16Immediate(N.getOperand(1), imm) &&
2448         (!EncodingAlignment || !(imm % EncodingAlignment)))
2449       return false; // r+i
2450     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2451       return false;    // r+i
2452 
2453     Base = N.getOperand(0);
2454     Index = N.getOperand(1);
2455     return true;
2456   } else if (N.getOpcode() == ISD::OR) {
2457     if (isIntS16Immediate(N.getOperand(1), imm) &&
2458         (!EncodingAlignment || !(imm % EncodingAlignment)))
2459       return false; // r+i can fold it if we can.
2460 
2461     // If this is an or of disjoint bitfields, we can codegen this as an add
2462     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2463     // disjoint.
2464     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2465 
2466     if (LHSKnown.Zero.getBoolValue()) {
2467       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2468       // If all of the bits are known zero on the LHS or RHS, the add won't
2469       // carry.
2470       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2471         Base = N.getOperand(0);
2472         Index = N.getOperand(1);
2473         return true;
2474       }
2475     }
2476   }
2477 
2478   return false;
2479 }
2480 
2481 // If we happen to be doing an i64 load or store into a stack slot that has
2482 // less than a 4-byte alignment, then the frame-index elimination may need to
2483 // use an indexed load or store instruction (because the offset may not be a
2484 // multiple of 4). The extra register needed to hold the offset comes from the
2485 // register scavenger, and it is possible that the scavenger will need to use
2486 // an emergency spill slot. As a result, we need to make sure that a spill slot
2487 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2488 // stack slot.
2489 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2490   // FIXME: This does not handle the LWA case.
2491   if (VT != MVT::i64)
2492     return;
2493 
2494   // NOTE: We'll exclude negative FIs here, which come from argument
2495   // lowering, because there are no known test cases triggering this problem
2496   // using packed structures (or similar). We can remove this exclusion if
2497   // we find such a test case. The reason why this is so test-case driven is
2498   // because this entire 'fixup' is only to prevent crashes (from the
2499   // register scavenger) on not-really-valid inputs. For example, if we have:
2500   //   %a = alloca i1
2501   //   %b = bitcast i1* %a to i64*
2502   //   store i64* a, i64 b
2503   // then the store should really be marked as 'align 1', but is not. If it
2504   // were marked as 'align 1' then the indexed form would have been
2505   // instruction-selected initially, and the problem this 'fixup' is preventing
2506   // won't happen regardless.
2507   if (FrameIdx < 0)
2508     return;
2509 
2510   MachineFunction &MF = DAG.getMachineFunction();
2511   MachineFrameInfo &MFI = MF.getFrameInfo();
2512 
2513   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2514     return;
2515 
2516   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2517   FuncInfo->setHasNonRISpills();
2518 }
2519 
2520 /// Returns true if the address N can be represented by a base register plus
2521 /// a signed 16-bit displacement [r+imm], and if it is not better
2522 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2523 /// displacements that are multiples of that value.
2524 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2525                                             SDValue &Base,
2526                                             SelectionDAG &DAG,
2527                                             unsigned EncodingAlignment) const {
2528   // FIXME dl should come from parent load or store, not from address
2529   SDLoc dl(N);
2530 
2531   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2532   // a [pc+imm].
2533   if (SelectAddressPCRel(N, Base))
2534     return false;
2535 
2536   // If this can be more profitably realized as r+r, fail.
2537   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2538     return false;
2539 
2540   if (N.getOpcode() == ISD::ADD) {
2541     int16_t imm = 0;
2542     if (isIntS16Immediate(N.getOperand(1), imm) &&
2543         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2544       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2545       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2546         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2547         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2548       } else {
2549         Base = N.getOperand(0);
2550       }
2551       return true; // [r+i]
2552     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2553       // Match LOAD (ADD (X, Lo(G))).
2554       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2555              && "Cannot handle constant offsets yet!");
2556       Disp = N.getOperand(1).getOperand(0);  // The global address.
2557       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2558              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2559              Disp.getOpcode() == ISD::TargetConstantPool ||
2560              Disp.getOpcode() == ISD::TargetJumpTable);
2561       Base = N.getOperand(0);
2562       return true;  // [&g+r]
2563     }
2564   } else if (N.getOpcode() == ISD::OR) {
2565     int16_t imm = 0;
2566     if (isIntS16Immediate(N.getOperand(1), imm) &&
2567         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2568       // If this is an or of disjoint bitfields, we can codegen this as an add
2569       // (for better address arithmetic) if the LHS and RHS of the OR are
2570       // provably disjoint.
2571       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2572 
2573       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2574         // If all of the bits are known zero on the LHS or RHS, the add won't
2575         // carry.
2576         if (FrameIndexSDNode *FI =
2577               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2578           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2579           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2580         } else {
2581           Base = N.getOperand(0);
2582         }
2583         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2584         return true;
2585       }
2586     }
2587   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2588     // Loading from a constant address.
2589 
2590     // If this address fits entirely in a 16-bit sext immediate field, codegen
2591     // this as "d, 0"
2592     int16_t Imm;
2593     if (isIntS16Immediate(CN, Imm) &&
2594         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2595       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2596       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2597                              CN->getValueType(0));
2598       return true;
2599     }
2600 
2601     // Handle 32-bit sext immediates with LIS + addr mode.
2602     if ((CN->getValueType(0) == MVT::i32 ||
2603          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2604         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2605       int Addr = (int)CN->getZExtValue();
2606 
2607       // Otherwise, break this down into an LIS + disp.
2608       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2609 
2610       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2611                                    MVT::i32);
2612       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2613       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2614       return true;
2615     }
2616   }
2617 
2618   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2619   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2620     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2621     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2622   } else
2623     Base = N;
2624   return true;      // [r+0]
2625 }
2626 
2627 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2628 /// represented as an indexed [r+r] operation.
2629 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2630                                                 SDValue &Index,
2631                                                 SelectionDAG &DAG) const {
2632   // Check to see if we can easily represent this as an [r+r] address.  This
2633   // will fail if it thinks that the address is more profitably represented as
2634   // reg+imm, e.g. where imm = 0.
2635   if (SelectAddressRegReg(N, Base, Index, DAG))
2636     return true;
2637 
2638   // If the address is the result of an add, we will utilize the fact that the
2639   // address calculation includes an implicit add.  However, we can reduce
2640   // register pressure if we do not materialize a constant just for use as the
2641   // index register.  We only get rid of the add if it is not an add of a
2642   // value and a 16-bit signed constant and both have a single use.
2643   int16_t imm = 0;
2644   if (N.getOpcode() == ISD::ADD &&
2645       (!isIntS16Immediate(N.getOperand(1), imm) ||
2646        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2647     Base = N.getOperand(0);
2648     Index = N.getOperand(1);
2649     return true;
2650   }
2651 
2652   // Otherwise, do it the hard way, using R0 as the base register.
2653   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2654                          N.getValueType());
2655   Index = N;
2656   return true;
2657 }
2658 
2659 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2660   Ty *PCRelCand = dyn_cast<Ty>(N);
2661   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2662 }
2663 
2664 /// Returns true if this address is a PC Relative address.
2665 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2666 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2667 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2668   // This is a materialize PC Relative node. Always select this as PC Relative.
2669   Base = N;
2670   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2671     return true;
2672   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2673       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2674       isValidPCRelNode<JumpTableSDNode>(N) ||
2675       isValidPCRelNode<BlockAddressSDNode>(N))
2676     return true;
2677   return false;
2678 }
2679 
2680 /// Returns true if we should use a direct load into vector instruction
2681 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2682 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2683 
2684   // If there are any other uses other than scalar to vector, then we should
2685   // keep it as a scalar load -> direct move pattern to prevent multiple
2686   // loads.
2687   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2688   if (!LD)
2689     return false;
2690 
2691   EVT MemVT = LD->getMemoryVT();
2692   if (!MemVT.isSimple())
2693     return false;
2694   switch(MemVT.getSimpleVT().SimpleTy) {
2695   case MVT::i64:
2696     break;
2697   case MVT::i32:
2698     if (!ST.hasP8Vector())
2699       return false;
2700     break;
2701   case MVT::i16:
2702   case MVT::i8:
2703     if (!ST.hasP9Vector())
2704       return false;
2705     break;
2706   default:
2707     return false;
2708   }
2709 
2710   SDValue LoadedVal(N, 0);
2711   if (!LoadedVal.hasOneUse())
2712     return false;
2713 
2714   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2715        UI != UE; ++UI)
2716     if (UI.getUse().get().getResNo() == 0 &&
2717         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2718       return false;
2719 
2720   return true;
2721 }
2722 
2723 /// getPreIndexedAddressParts - returns true by value, base pointer and
2724 /// offset pointer and addressing mode by reference if the node's address
2725 /// can be legally represented as pre-indexed load / store address.
2726 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2727                                                   SDValue &Offset,
2728                                                   ISD::MemIndexedMode &AM,
2729                                                   SelectionDAG &DAG) const {
2730   if (DisablePPCPreinc) return false;
2731 
2732   bool isLoad = true;
2733   SDValue Ptr;
2734   EVT VT;
2735   unsigned Alignment;
2736   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2737     Ptr = LD->getBasePtr();
2738     VT = LD->getMemoryVT();
2739     Alignment = LD->getAlignment();
2740   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2741     Ptr = ST->getBasePtr();
2742     VT  = ST->getMemoryVT();
2743     Alignment = ST->getAlignment();
2744     isLoad = false;
2745   } else
2746     return false;
2747 
2748   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2749   // instructions because we can fold these into a more efficient instruction
2750   // instead, (such as LXSD).
2751   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2752     return false;
2753   }
2754 
2755   // PowerPC doesn't have preinc load/store instructions for vectors (except
2756   // for QPX, which does have preinc r+r forms).
2757   if (VT.isVector()) {
2758     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2759       return false;
2760     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2761       AM = ISD::PRE_INC;
2762       return true;
2763     }
2764   }
2765 
2766   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2767     // Common code will reject creating a pre-inc form if the base pointer
2768     // is a frame index, or if N is a store and the base pointer is either
2769     // the same as or a predecessor of the value being stored.  Check for
2770     // those situations here, and try with swapped Base/Offset instead.
2771     bool Swap = false;
2772 
2773     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2774       Swap = true;
2775     else if (!isLoad) {
2776       SDValue Val = cast<StoreSDNode>(N)->getValue();
2777       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2778         Swap = true;
2779     }
2780 
2781     if (Swap)
2782       std::swap(Base, Offset);
2783 
2784     AM = ISD::PRE_INC;
2785     return true;
2786   }
2787 
2788   // LDU/STU can only handle immediates that are a multiple of 4.
2789   if (VT != MVT::i64) {
2790     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2791       return false;
2792   } else {
2793     // LDU/STU need an address with at least 4-byte alignment.
2794     if (Alignment < 4)
2795       return false;
2796 
2797     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2798       return false;
2799   }
2800 
2801   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2802     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2803     // sext i32 to i64 when addr mode is r+i.
2804     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2805         LD->getExtensionType() == ISD::SEXTLOAD &&
2806         isa<ConstantSDNode>(Offset))
2807       return false;
2808   }
2809 
2810   AM = ISD::PRE_INC;
2811   return true;
2812 }
2813 
2814 //===----------------------------------------------------------------------===//
2815 //  LowerOperation implementation
2816 //===----------------------------------------------------------------------===//
2817 
2818 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2819 /// and LoOpFlags to the target MO flags.
2820 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2821                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2822                                const GlobalValue *GV = nullptr) {
2823   HiOpFlags = PPCII::MO_HA;
2824   LoOpFlags = PPCII::MO_LO;
2825 
2826   // Don't use the pic base if not in PIC relocation model.
2827   if (IsPIC) {
2828     HiOpFlags |= PPCII::MO_PIC_FLAG;
2829     LoOpFlags |= PPCII::MO_PIC_FLAG;
2830   }
2831 }
2832 
2833 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2834                              SelectionDAG &DAG) {
2835   SDLoc DL(HiPart);
2836   EVT PtrVT = HiPart.getValueType();
2837   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2838 
2839   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2840   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2841 
2842   // With PIC, the first instruction is actually "GR+hi(&G)".
2843   if (isPIC)
2844     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2845                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2846 
2847   // Generate non-pic code that has direct accesses to the constant pool.
2848   // The address of the global is just (hi(&g)+lo(&g)).
2849   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2850 }
2851 
2852 static void setUsesTOCBasePtr(MachineFunction &MF) {
2853   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2854   FuncInfo->setUsesTOCBasePtr();
2855 }
2856 
2857 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2858   setUsesTOCBasePtr(DAG.getMachineFunction());
2859 }
2860 
2861 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2862                                        SDValue GA) const {
2863   const bool Is64Bit = Subtarget.isPPC64();
2864   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2865   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2866                         : Subtarget.isAIXABI()
2867                               ? DAG.getRegister(PPC::R2, VT)
2868                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2869   SDValue Ops[] = { GA, Reg };
2870   return DAG.getMemIntrinsicNode(
2871       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2872       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2873       MachineMemOperand::MOLoad);
2874 }
2875 
2876 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2877                                              SelectionDAG &DAG) const {
2878   EVT PtrVT = Op.getValueType();
2879   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2880   const Constant *C = CP->getConstVal();
2881 
2882   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2883   // The actual address of the GlobalValue is stored in the TOC.
2884   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2885     if (Subtarget.isUsingPCRelativeCalls()) {
2886       SDLoc DL(CP);
2887       EVT Ty = getPointerTy(DAG.getDataLayout());
2888       SDValue ConstPool = DAG.getTargetConstantPool(
2889           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2890       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2891     }
2892     setUsesTOCBasePtr(DAG);
2893     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2894     return getTOCEntry(DAG, SDLoc(CP), GA);
2895   }
2896 
2897   unsigned MOHiFlag, MOLoFlag;
2898   bool IsPIC = isPositionIndependent();
2899   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2900 
2901   if (IsPIC && Subtarget.isSVR4ABI()) {
2902     SDValue GA =
2903         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2904     return getTOCEntry(DAG, SDLoc(CP), GA);
2905   }
2906 
2907   SDValue CPIHi =
2908       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2909   SDValue CPILo =
2910       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2911   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2912 }
2913 
2914 // For 64-bit PowerPC, prefer the more compact relative encodings.
2915 // This trades 32 bits per jump table entry for one or two instructions
2916 // on the jump site.
2917 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2918   if (isJumpTableRelative())
2919     return MachineJumpTableInfo::EK_LabelDifference32;
2920 
2921   return TargetLowering::getJumpTableEncoding();
2922 }
2923 
2924 bool PPCTargetLowering::isJumpTableRelative() const {
2925   if (UseAbsoluteJumpTables)
2926     return false;
2927   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2928     return true;
2929   return TargetLowering::isJumpTableRelative();
2930 }
2931 
2932 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2933                                                     SelectionDAG &DAG) const {
2934   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2935     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2936 
2937   switch (getTargetMachine().getCodeModel()) {
2938   case CodeModel::Small:
2939   case CodeModel::Medium:
2940     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2941   default:
2942     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2943                        getPointerTy(DAG.getDataLayout()));
2944   }
2945 }
2946 
2947 const MCExpr *
2948 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2949                                                 unsigned JTI,
2950                                                 MCContext &Ctx) const {
2951   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2952     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2953 
2954   switch (getTargetMachine().getCodeModel()) {
2955   case CodeModel::Small:
2956   case CodeModel::Medium:
2957     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2958   default:
2959     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2960   }
2961 }
2962 
2963 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2964   EVT PtrVT = Op.getValueType();
2965   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2966 
2967   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2968   if (Subtarget.isUsingPCRelativeCalls()) {
2969     SDLoc DL(JT);
2970     EVT Ty = getPointerTy(DAG.getDataLayout());
2971     SDValue GA =
2972         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2973     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2974     return MatAddr;
2975   }
2976 
2977   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2978   // The actual address of the GlobalValue is stored in the TOC.
2979   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2980     setUsesTOCBasePtr(DAG);
2981     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2982     return getTOCEntry(DAG, SDLoc(JT), GA);
2983   }
2984 
2985   unsigned MOHiFlag, MOLoFlag;
2986   bool IsPIC = isPositionIndependent();
2987   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2988 
2989   if (IsPIC && Subtarget.isSVR4ABI()) {
2990     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2991                                         PPCII::MO_PIC_FLAG);
2992     return getTOCEntry(DAG, SDLoc(GA), GA);
2993   }
2994 
2995   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2996   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2997   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2998 }
2999 
3000 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3001                                              SelectionDAG &DAG) const {
3002   EVT PtrVT = Op.getValueType();
3003   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3004   const BlockAddress *BA = BASDN->getBlockAddress();
3005 
3006   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3007   if (Subtarget.isUsingPCRelativeCalls()) {
3008     SDLoc DL(BASDN);
3009     EVT Ty = getPointerTy(DAG.getDataLayout());
3010     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3011                                            PPCII::MO_PCREL_FLAG);
3012     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3013     return MatAddr;
3014   }
3015 
3016   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3017   // The actual BlockAddress is stored in the TOC.
3018   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3019     setUsesTOCBasePtr(DAG);
3020     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3021     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3022   }
3023 
3024   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3025   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3026     return getTOCEntry(
3027         DAG, SDLoc(BASDN),
3028         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3029 
3030   unsigned MOHiFlag, MOLoFlag;
3031   bool IsPIC = isPositionIndependent();
3032   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3033   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3034   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3035   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3036 }
3037 
3038 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3039                                               SelectionDAG &DAG) const {
3040   // FIXME: TLS addresses currently use medium model code sequences,
3041   // which is the most useful form.  Eventually support for small and
3042   // large models could be added if users need it, at the cost of
3043   // additional complexity.
3044   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3045   if (DAG.getTarget().useEmulatedTLS())
3046     return LowerToTLSEmulatedModel(GA, DAG);
3047 
3048   SDLoc dl(GA);
3049   const GlobalValue *GV = GA->getGlobal();
3050   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3051   bool is64bit = Subtarget.isPPC64();
3052   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3053   PICLevel::Level picLevel = M->getPICLevel();
3054 
3055   const TargetMachine &TM = getTargetMachine();
3056   TLSModel::Model Model = TM.getTLSModel(GV);
3057 
3058   if (Model == TLSModel::LocalExec) {
3059     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3060                                                PPCII::MO_TPREL_HA);
3061     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3062                                                PPCII::MO_TPREL_LO);
3063     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3064                              : DAG.getRegister(PPC::R2, MVT::i32);
3065 
3066     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3067     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3068   }
3069 
3070   if (Model == TLSModel::InitialExec) {
3071     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3072     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3073                                                 PPCII::MO_TLS);
3074     SDValue GOTPtr;
3075     if (is64bit) {
3076       setUsesTOCBasePtr(DAG);
3077       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3078       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
3079                            PtrVT, GOTReg, TGA);
3080     } else {
3081       if (!TM.isPositionIndependent())
3082         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3083       else if (picLevel == PICLevel::SmallPIC)
3084         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3085       else
3086         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3087     }
3088     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
3089                                    PtrVT, TGA, GOTPtr);
3090     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3091   }
3092 
3093   if (Model == TLSModel::GeneralDynamic) {
3094     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3095     SDValue GOTPtr;
3096     if (is64bit) {
3097       setUsesTOCBasePtr(DAG);
3098       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3099       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3100                                    GOTReg, TGA);
3101     } else {
3102       if (picLevel == PICLevel::SmallPIC)
3103         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3104       else
3105         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3106     }
3107     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3108                        GOTPtr, TGA, TGA);
3109   }
3110 
3111   if (Model == TLSModel::LocalDynamic) {
3112     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3113     SDValue GOTPtr;
3114     if (is64bit) {
3115       setUsesTOCBasePtr(DAG);
3116       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3117       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3118                            GOTReg, TGA);
3119     } else {
3120       if (picLevel == PICLevel::SmallPIC)
3121         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3122       else
3123         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3124     }
3125     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3126                                   PtrVT, GOTPtr, TGA, TGA);
3127     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3128                                       PtrVT, TLSAddr, TGA);
3129     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3130   }
3131 
3132   llvm_unreachable("Unknown TLS model!");
3133 }
3134 
3135 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3136                                               SelectionDAG &DAG) const {
3137   EVT PtrVT = Op.getValueType();
3138   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3139   SDLoc DL(GSDN);
3140   const GlobalValue *GV = GSDN->getGlobal();
3141 
3142   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3143   // The actual address of the GlobalValue is stored in the TOC.
3144   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3145     if (Subtarget.isUsingPCRelativeCalls()) {
3146       EVT Ty = getPointerTy(DAG.getDataLayout());
3147       if (isAccessedAsGotIndirect(Op)) {
3148         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3149                                                 PPCII::MO_PCREL_FLAG |
3150                                                     PPCII::MO_GOT_FLAG);
3151         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3152         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3153                                    MachinePointerInfo());
3154         return Load;
3155       } else {
3156         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3157                                                 PPCII::MO_PCREL_FLAG);
3158         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3159       }
3160     }
3161     setUsesTOCBasePtr(DAG);
3162     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3163     return getTOCEntry(DAG, DL, GA);
3164   }
3165 
3166   unsigned MOHiFlag, MOLoFlag;
3167   bool IsPIC = isPositionIndependent();
3168   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3169 
3170   if (IsPIC && Subtarget.isSVR4ABI()) {
3171     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3172                                             GSDN->getOffset(),
3173                                             PPCII::MO_PIC_FLAG);
3174     return getTOCEntry(DAG, DL, GA);
3175   }
3176 
3177   SDValue GAHi =
3178     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3179   SDValue GALo =
3180     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3181 
3182   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3183 }
3184 
3185 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3186   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3187   SDLoc dl(Op);
3188 
3189   if (Op.getValueType() == MVT::v2i64) {
3190     // When the operands themselves are v2i64 values, we need to do something
3191     // special because VSX has no underlying comparison operations for these.
3192     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3193       // Equality can be handled by casting to the legal type for Altivec
3194       // comparisons, everything else needs to be expanded.
3195       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3196         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3197                  DAG.getSetCC(dl, MVT::v4i32,
3198                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3199                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3200                    CC));
3201       }
3202 
3203       return SDValue();
3204     }
3205 
3206     // We handle most of these in the usual way.
3207     return Op;
3208   }
3209 
3210   // If we're comparing for equality to zero, expose the fact that this is
3211   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3212   // fold the new nodes.
3213   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3214     return V;
3215 
3216   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3217     // Leave comparisons against 0 and -1 alone for now, since they're usually
3218     // optimized.  FIXME: revisit this when we can custom lower all setcc
3219     // optimizations.
3220     if (C->isAllOnesValue() || C->isNullValue())
3221       return SDValue();
3222   }
3223 
3224   // If we have an integer seteq/setne, turn it into a compare against zero
3225   // by xor'ing the rhs with the lhs, which is faster than setting a
3226   // condition register, reading it back out, and masking the correct bit.  The
3227   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3228   // the result to other bit-twiddling opportunities.
3229   EVT LHSVT = Op.getOperand(0).getValueType();
3230   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3231     EVT VT = Op.getValueType();
3232     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3233                                 Op.getOperand(1));
3234     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3235   }
3236   return SDValue();
3237 }
3238 
3239 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3240   SDNode *Node = Op.getNode();
3241   EVT VT = Node->getValueType(0);
3242   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3243   SDValue InChain = Node->getOperand(0);
3244   SDValue VAListPtr = Node->getOperand(1);
3245   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3246   SDLoc dl(Node);
3247 
3248   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3249 
3250   // gpr_index
3251   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3252                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3253   InChain = GprIndex.getValue(1);
3254 
3255   if (VT == MVT::i64) {
3256     // Check if GprIndex is even
3257     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3258                                  DAG.getConstant(1, dl, MVT::i32));
3259     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3260                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3261     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3262                                           DAG.getConstant(1, dl, MVT::i32));
3263     // Align GprIndex to be even if it isn't
3264     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3265                            GprIndex);
3266   }
3267 
3268   // fpr index is 1 byte after gpr
3269   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3270                                DAG.getConstant(1, dl, MVT::i32));
3271 
3272   // fpr
3273   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3274                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3275   InChain = FprIndex.getValue(1);
3276 
3277   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3278                                        DAG.getConstant(8, dl, MVT::i32));
3279 
3280   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3281                                         DAG.getConstant(4, dl, MVT::i32));
3282 
3283   // areas
3284   SDValue OverflowArea =
3285       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3286   InChain = OverflowArea.getValue(1);
3287 
3288   SDValue RegSaveArea =
3289       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3290   InChain = RegSaveArea.getValue(1);
3291 
3292   // select overflow_area if index > 8
3293   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3294                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3295 
3296   // adjustment constant gpr_index * 4/8
3297   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3298                                     VT.isInteger() ? GprIndex : FprIndex,
3299                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3300                                                     MVT::i32));
3301 
3302   // OurReg = RegSaveArea + RegConstant
3303   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3304                                RegConstant);
3305 
3306   // Floating types are 32 bytes into RegSaveArea
3307   if (VT.isFloatingPoint())
3308     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3309                          DAG.getConstant(32, dl, MVT::i32));
3310 
3311   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3312   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3313                                    VT.isInteger() ? GprIndex : FprIndex,
3314                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3315                                                    MVT::i32));
3316 
3317   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3318                               VT.isInteger() ? VAListPtr : FprPtr,
3319                               MachinePointerInfo(SV), MVT::i8);
3320 
3321   // determine if we should load from reg_save_area or overflow_area
3322   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3323 
3324   // increase overflow_area by 4/8 if gpr/fpr > 8
3325   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3326                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3327                                           dl, MVT::i32));
3328 
3329   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3330                              OverflowAreaPlusN);
3331 
3332   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3333                               MachinePointerInfo(), MVT::i32);
3334 
3335   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3336 }
3337 
3338 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3339   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3340 
3341   // We have to copy the entire va_list struct:
3342   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3343   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3344                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3345                        false, true, false, MachinePointerInfo(),
3346                        MachinePointerInfo());
3347 }
3348 
3349 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3350                                                   SelectionDAG &DAG) const {
3351   if (Subtarget.isAIXABI())
3352     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3353 
3354   return Op.getOperand(0);
3355 }
3356 
3357 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3358                                                 SelectionDAG &DAG) const {
3359   if (Subtarget.isAIXABI())
3360     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3361 
3362   SDValue Chain = Op.getOperand(0);
3363   SDValue Trmp = Op.getOperand(1); // trampoline
3364   SDValue FPtr = Op.getOperand(2); // nested function
3365   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3366   SDLoc dl(Op);
3367 
3368   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3369   bool isPPC64 = (PtrVT == MVT::i64);
3370   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3371 
3372   TargetLowering::ArgListTy Args;
3373   TargetLowering::ArgListEntry Entry;
3374 
3375   Entry.Ty = IntPtrTy;
3376   Entry.Node = Trmp; Args.push_back(Entry);
3377 
3378   // TrampSize == (isPPC64 ? 48 : 40);
3379   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3380                                isPPC64 ? MVT::i64 : MVT::i32);
3381   Args.push_back(Entry);
3382 
3383   Entry.Node = FPtr; Args.push_back(Entry);
3384   Entry.Node = Nest; Args.push_back(Entry);
3385 
3386   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3387   TargetLowering::CallLoweringInfo CLI(DAG);
3388   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3389       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3390       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3391 
3392   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3393   return CallResult.second;
3394 }
3395 
3396 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3397   MachineFunction &MF = DAG.getMachineFunction();
3398   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3399   EVT PtrVT = getPointerTy(MF.getDataLayout());
3400 
3401   SDLoc dl(Op);
3402 
3403   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3404     // vastart just stores the address of the VarArgsFrameIndex slot into the
3405     // memory location argument.
3406     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3407     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3408     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3409                         MachinePointerInfo(SV));
3410   }
3411 
3412   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3413   // We suppose the given va_list is already allocated.
3414   //
3415   // typedef struct {
3416   //  char gpr;     /* index into the array of 8 GPRs
3417   //                 * stored in the register save area
3418   //                 * gpr=0 corresponds to r3,
3419   //                 * gpr=1 to r4, etc.
3420   //                 */
3421   //  char fpr;     /* index into the array of 8 FPRs
3422   //                 * stored in the register save area
3423   //                 * fpr=0 corresponds to f1,
3424   //                 * fpr=1 to f2, etc.
3425   //                 */
3426   //  char *overflow_arg_area;
3427   //                /* location on stack that holds
3428   //                 * the next overflow argument
3429   //                 */
3430   //  char *reg_save_area;
3431   //               /* where r3:r10 and f1:f8 (if saved)
3432   //                * are stored
3433   //                */
3434   // } va_list[1];
3435 
3436   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3437   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3438   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3439                                             PtrVT);
3440   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3441                                  PtrVT);
3442 
3443   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3444   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3445 
3446   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3447   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3448 
3449   uint64_t FPROffset = 1;
3450   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3451 
3452   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3453 
3454   // Store first byte : number of int regs
3455   SDValue firstStore =
3456       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3457                         MachinePointerInfo(SV), MVT::i8);
3458   uint64_t nextOffset = FPROffset;
3459   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3460                                   ConstFPROffset);
3461 
3462   // Store second byte : number of float regs
3463   SDValue secondStore =
3464       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3465                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3466   nextOffset += StackOffset;
3467   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3468 
3469   // Store second word : arguments given on stack
3470   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3471                                     MachinePointerInfo(SV, nextOffset));
3472   nextOffset += FrameOffset;
3473   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3474 
3475   // Store third word : arguments given in registers
3476   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3477                       MachinePointerInfo(SV, nextOffset));
3478 }
3479 
3480 /// FPR - The set of FP registers that should be allocated for arguments
3481 /// on Darwin and AIX.
3482 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3483                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3484                                 PPC::F11, PPC::F12, PPC::F13};
3485 
3486 /// QFPR - The set of QPX registers that should be allocated for arguments.
3487 static const MCPhysReg QFPR[] = {
3488     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3489     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3490 
3491 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3492 /// the stack.
3493 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3494                                        unsigned PtrByteSize) {
3495   unsigned ArgSize = ArgVT.getStoreSize();
3496   if (Flags.isByVal())
3497     ArgSize = Flags.getByValSize();
3498 
3499   // Round up to multiples of the pointer size, except for array members,
3500   // which are always packed.
3501   if (!Flags.isInConsecutiveRegs())
3502     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3503 
3504   return ArgSize;
3505 }
3506 
3507 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3508 /// on the stack.
3509 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3510                                          ISD::ArgFlagsTy Flags,
3511                                          unsigned PtrByteSize) {
3512   Align Alignment(PtrByteSize);
3513 
3514   // Altivec parameters are padded to a 16 byte boundary.
3515   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3516       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3517       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3518       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3519     Alignment = Align(16);
3520   // QPX vector types stored in double-precision are padded to a 32 byte
3521   // boundary.
3522   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3523     Alignment = Align(32);
3524 
3525   // ByVal parameters are aligned as requested.
3526   if (Flags.isByVal()) {
3527     auto BVAlign = Flags.getNonZeroByValAlign();
3528     if (BVAlign > PtrByteSize) {
3529       if (BVAlign.value() % PtrByteSize != 0)
3530         llvm_unreachable(
3531             "ByVal alignment is not a multiple of the pointer size");
3532 
3533       Alignment = BVAlign;
3534     }
3535   }
3536 
3537   // Array members are always packed to their original alignment.
3538   if (Flags.isInConsecutiveRegs()) {
3539     // If the array member was split into multiple registers, the first
3540     // needs to be aligned to the size of the full type.  (Except for
3541     // ppcf128, which is only aligned as its f64 components.)
3542     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3543       Alignment = Align(OrigVT.getStoreSize());
3544     else
3545       Alignment = Align(ArgVT.getStoreSize());
3546   }
3547 
3548   return Alignment;
3549 }
3550 
3551 /// CalculateStackSlotUsed - Return whether this argument will use its
3552 /// stack slot (instead of being passed in registers).  ArgOffset,
3553 /// AvailableFPRs, and AvailableVRs must hold the current argument
3554 /// position, and will be updated to account for this argument.
3555 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3556                                    ISD::ArgFlagsTy Flags,
3557                                    unsigned PtrByteSize,
3558                                    unsigned LinkageSize,
3559                                    unsigned ParamAreaSize,
3560                                    unsigned &ArgOffset,
3561                                    unsigned &AvailableFPRs,
3562                                    unsigned &AvailableVRs, bool HasQPX) {
3563   bool UseMemory = false;
3564 
3565   // Respect alignment of argument on the stack.
3566   Align Alignment =
3567       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3568   ArgOffset = alignTo(ArgOffset, Alignment);
3569   // If there's no space left in the argument save area, we must
3570   // use memory (this check also catches zero-sized arguments).
3571   if (ArgOffset >= LinkageSize + ParamAreaSize)
3572     UseMemory = true;
3573 
3574   // Allocate argument on the stack.
3575   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3576   if (Flags.isInConsecutiveRegsLast())
3577     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3578   // If we overran the argument save area, we must use memory
3579   // (this check catches arguments passed partially in memory)
3580   if (ArgOffset > LinkageSize + ParamAreaSize)
3581     UseMemory = true;
3582 
3583   // However, if the argument is actually passed in an FPR or a VR,
3584   // we don't use memory after all.
3585   if (!Flags.isByVal()) {
3586     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3587         // QPX registers overlap with the scalar FP registers.
3588         (HasQPX && (ArgVT == MVT::v4f32 ||
3589                     ArgVT == MVT::v4f64 ||
3590                     ArgVT == MVT::v4i1)))
3591       if (AvailableFPRs > 0) {
3592         --AvailableFPRs;
3593         return false;
3594       }
3595     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3596         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3597         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3598         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3599       if (AvailableVRs > 0) {
3600         --AvailableVRs;
3601         return false;
3602       }
3603   }
3604 
3605   return UseMemory;
3606 }
3607 
3608 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3609 /// ensure minimum alignment required for target.
3610 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3611                                      unsigned NumBytes) {
3612   return alignTo(NumBytes, Lowering->getStackAlign());
3613 }
3614 
3615 SDValue PPCTargetLowering::LowerFormalArguments(
3616     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3617     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3618     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3619   if (Subtarget.isAIXABI())
3620     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3621                                     InVals);
3622   if (Subtarget.is64BitELFABI())
3623     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3624                                        InVals);
3625   if (Subtarget.is32BitELFABI())
3626     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3627                                        InVals);
3628 
3629   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3630                                      InVals);
3631 }
3632 
3633 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3634     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3635     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3636     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3637 
3638   // 32-bit SVR4 ABI Stack Frame Layout:
3639   //              +-----------------------------------+
3640   //        +-->  |            Back chain             |
3641   //        |     +-----------------------------------+
3642   //        |     | Floating-point register save area |
3643   //        |     +-----------------------------------+
3644   //        |     |    General register save area     |
3645   //        |     +-----------------------------------+
3646   //        |     |          CR save word             |
3647   //        |     +-----------------------------------+
3648   //        |     |         VRSAVE save word          |
3649   //        |     +-----------------------------------+
3650   //        |     |         Alignment padding         |
3651   //        |     +-----------------------------------+
3652   //        |     |     Vector register save area     |
3653   //        |     +-----------------------------------+
3654   //        |     |       Local variable space        |
3655   //        |     +-----------------------------------+
3656   //        |     |        Parameter list area        |
3657   //        |     +-----------------------------------+
3658   //        |     |           LR save word            |
3659   //        |     +-----------------------------------+
3660   // SP-->  +---  |            Back chain             |
3661   //              +-----------------------------------+
3662   //
3663   // Specifications:
3664   //   System V Application Binary Interface PowerPC Processor Supplement
3665   //   AltiVec Technology Programming Interface Manual
3666 
3667   MachineFunction &MF = DAG.getMachineFunction();
3668   MachineFrameInfo &MFI = MF.getFrameInfo();
3669   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3670 
3671   EVT PtrVT = getPointerTy(MF.getDataLayout());
3672   // Potential tail calls could cause overwriting of argument stack slots.
3673   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3674                        (CallConv == CallingConv::Fast));
3675   const Align PtrAlign(4);
3676 
3677   // Assign locations to all of the incoming arguments.
3678   SmallVector<CCValAssign, 16> ArgLocs;
3679   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3680                  *DAG.getContext());
3681 
3682   // Reserve space for the linkage area on the stack.
3683   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3684   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3685   if (useSoftFloat())
3686     CCInfo.PreAnalyzeFormalArguments(Ins);
3687 
3688   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3689   CCInfo.clearWasPPCF128();
3690 
3691   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3692     CCValAssign &VA = ArgLocs[i];
3693 
3694     // Arguments stored in registers.
3695     if (VA.isRegLoc()) {
3696       const TargetRegisterClass *RC;
3697       EVT ValVT = VA.getValVT();
3698 
3699       switch (ValVT.getSimpleVT().SimpleTy) {
3700         default:
3701           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3702         case MVT::i1:
3703         case MVT::i32:
3704           RC = &PPC::GPRCRegClass;
3705           break;
3706         case MVT::f32:
3707           if (Subtarget.hasP8Vector())
3708             RC = &PPC::VSSRCRegClass;
3709           else if (Subtarget.hasSPE())
3710             RC = &PPC::GPRCRegClass;
3711           else
3712             RC = &PPC::F4RCRegClass;
3713           break;
3714         case MVT::f64:
3715           if (Subtarget.hasVSX())
3716             RC = &PPC::VSFRCRegClass;
3717           else if (Subtarget.hasSPE())
3718             // SPE passes doubles in GPR pairs.
3719             RC = &PPC::GPRCRegClass;
3720           else
3721             RC = &PPC::F8RCRegClass;
3722           break;
3723         case MVT::v16i8:
3724         case MVT::v8i16:
3725         case MVT::v4i32:
3726           RC = &PPC::VRRCRegClass;
3727           break;
3728         case MVT::v4f32:
3729           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3730           break;
3731         case MVT::v2f64:
3732         case MVT::v2i64:
3733           RC = &PPC::VRRCRegClass;
3734           break;
3735         case MVT::v4f64:
3736           RC = &PPC::QFRCRegClass;
3737           break;
3738         case MVT::v4i1:
3739           RC = &PPC::QBRCRegClass;
3740           break;
3741       }
3742 
3743       SDValue ArgValue;
3744       // Transform the arguments stored in physical registers into
3745       // virtual ones.
3746       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3747         assert(i + 1 < e && "No second half of double precision argument");
3748         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3749         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3750         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3751         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3752         if (!Subtarget.isLittleEndian())
3753           std::swap (ArgValueLo, ArgValueHi);
3754         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3755                                ArgValueHi);
3756       } else {
3757         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3758         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3759                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3760         if (ValVT == MVT::i1)
3761           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3762       }
3763 
3764       InVals.push_back(ArgValue);
3765     } else {
3766       // Argument stored in memory.
3767       assert(VA.isMemLoc());
3768 
3769       // Get the extended size of the argument type in stack
3770       unsigned ArgSize = VA.getLocVT().getStoreSize();
3771       // Get the actual size of the argument type
3772       unsigned ObjSize = VA.getValVT().getStoreSize();
3773       unsigned ArgOffset = VA.getLocMemOffset();
3774       // Stack objects in PPC32 are right justified.
3775       ArgOffset += ArgSize - ObjSize;
3776       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3777 
3778       // Create load nodes to retrieve arguments from the stack.
3779       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3780       InVals.push_back(
3781           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3782     }
3783   }
3784 
3785   // Assign locations to all of the incoming aggregate by value arguments.
3786   // Aggregates passed by value are stored in the local variable space of the
3787   // caller's stack frame, right above the parameter list area.
3788   SmallVector<CCValAssign, 16> ByValArgLocs;
3789   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3790                       ByValArgLocs, *DAG.getContext());
3791 
3792   // Reserve stack space for the allocations in CCInfo.
3793   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3794 
3795   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3796 
3797   // Area that is at least reserved in the caller of this function.
3798   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3799   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3800 
3801   // Set the size that is at least reserved in caller of this function.  Tail
3802   // call optimized function's reserved stack space needs to be aligned so that
3803   // taking the difference between two stack areas will result in an aligned
3804   // stack.
3805   MinReservedArea =
3806       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3807   FuncInfo->setMinReservedArea(MinReservedArea);
3808 
3809   SmallVector<SDValue, 8> MemOps;
3810 
3811   // If the function takes variable number of arguments, make a frame index for
3812   // the start of the first vararg value... for expansion of llvm.va_start.
3813   if (isVarArg) {
3814     static const MCPhysReg GPArgRegs[] = {
3815       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3816       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3817     };
3818     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3819 
3820     static const MCPhysReg FPArgRegs[] = {
3821       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3822       PPC::F8
3823     };
3824     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3825 
3826     if (useSoftFloat() || hasSPE())
3827        NumFPArgRegs = 0;
3828 
3829     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3830     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3831 
3832     // Make room for NumGPArgRegs and NumFPArgRegs.
3833     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3834                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3835 
3836     FuncInfo->setVarArgsStackOffset(
3837       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3838                             CCInfo.getNextStackOffset(), true));
3839 
3840     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3841     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3842 
3843     // The fixed integer arguments of a variadic function are stored to the
3844     // VarArgsFrameIndex on the stack so that they may be loaded by
3845     // dereferencing the result of va_next.
3846     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3847       // Get an existing live-in vreg, or add a new one.
3848       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3849       if (!VReg)
3850         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3851 
3852       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3853       SDValue Store =
3854           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3855       MemOps.push_back(Store);
3856       // Increment the address by four for the next argument to store
3857       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3858       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3859     }
3860 
3861     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3862     // is set.
3863     // The double arguments are stored to the VarArgsFrameIndex
3864     // on the stack.
3865     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3866       // Get an existing live-in vreg, or add a new one.
3867       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3868       if (!VReg)
3869         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3870 
3871       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3872       SDValue Store =
3873           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3874       MemOps.push_back(Store);
3875       // Increment the address by eight for the next argument to store
3876       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3877                                          PtrVT);
3878       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3879     }
3880   }
3881 
3882   if (!MemOps.empty())
3883     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3884 
3885   return Chain;
3886 }
3887 
3888 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3889 // value to MVT::i64 and then truncate to the correct register size.
3890 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3891                                              EVT ObjectVT, SelectionDAG &DAG,
3892                                              SDValue ArgVal,
3893                                              const SDLoc &dl) const {
3894   if (Flags.isSExt())
3895     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3896                          DAG.getValueType(ObjectVT));
3897   else if (Flags.isZExt())
3898     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3899                          DAG.getValueType(ObjectVT));
3900 
3901   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3902 }
3903 
3904 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3905     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3906     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3907     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3908   // TODO: add description of PPC stack frame format, or at least some docs.
3909   //
3910   bool isELFv2ABI = Subtarget.isELFv2ABI();
3911   bool isLittleEndian = Subtarget.isLittleEndian();
3912   MachineFunction &MF = DAG.getMachineFunction();
3913   MachineFrameInfo &MFI = MF.getFrameInfo();
3914   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3915 
3916   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3917          "fastcc not supported on varargs functions");
3918 
3919   EVT PtrVT = getPointerTy(MF.getDataLayout());
3920   // Potential tail calls could cause overwriting of argument stack slots.
3921   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3922                        (CallConv == CallingConv::Fast));
3923   unsigned PtrByteSize = 8;
3924   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3925 
3926   static const MCPhysReg GPR[] = {
3927     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3928     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3929   };
3930   static const MCPhysReg VR[] = {
3931     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3932     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3933   };
3934 
3935   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3936   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3937   const unsigned Num_VR_Regs  = array_lengthof(VR);
3938   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3939 
3940   // Do a first pass over the arguments to determine whether the ABI
3941   // guarantees that our caller has allocated the parameter save area
3942   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3943   // in the ELFv2 ABI, it is true if this is a vararg function or if
3944   // any parameter is located in a stack slot.
3945 
3946   bool HasParameterArea = !isELFv2ABI || isVarArg;
3947   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3948   unsigned NumBytes = LinkageSize;
3949   unsigned AvailableFPRs = Num_FPR_Regs;
3950   unsigned AvailableVRs = Num_VR_Regs;
3951   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3952     if (Ins[i].Flags.isNest())
3953       continue;
3954 
3955     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3956                                PtrByteSize, LinkageSize, ParamAreaSize,
3957                                NumBytes, AvailableFPRs, AvailableVRs,
3958                                Subtarget.hasQPX()))
3959       HasParameterArea = true;
3960   }
3961 
3962   // Add DAG nodes to load the arguments or copy them out of registers.  On
3963   // entry to a function on PPC, the arguments start after the linkage area,
3964   // although the first ones are often in registers.
3965 
3966   unsigned ArgOffset = LinkageSize;
3967   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3968   unsigned &QFPR_idx = FPR_idx;
3969   SmallVector<SDValue, 8> MemOps;
3970   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3971   unsigned CurArgIdx = 0;
3972   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3973     SDValue ArgVal;
3974     bool needsLoad = false;
3975     EVT ObjectVT = Ins[ArgNo].VT;
3976     EVT OrigVT = Ins[ArgNo].ArgVT;
3977     unsigned ObjSize = ObjectVT.getStoreSize();
3978     unsigned ArgSize = ObjSize;
3979     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3980     if (Ins[ArgNo].isOrigArg()) {
3981       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3982       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3983     }
3984     // We re-align the argument offset for each argument, except when using the
3985     // fast calling convention, when we need to make sure we do that only when
3986     // we'll actually use a stack slot.
3987     unsigned CurArgOffset;
3988     Align Alignment;
3989     auto ComputeArgOffset = [&]() {
3990       /* Respect alignment of argument on the stack.  */
3991       Alignment =
3992           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3993       ArgOffset = alignTo(ArgOffset, Alignment);
3994       CurArgOffset = ArgOffset;
3995     };
3996 
3997     if (CallConv != CallingConv::Fast) {
3998       ComputeArgOffset();
3999 
4000       /* Compute GPR index associated with argument offset.  */
4001       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4002       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4003     }
4004 
4005     // FIXME the codegen can be much improved in some cases.
4006     // We do not have to keep everything in memory.
4007     if (Flags.isByVal()) {
4008       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4009 
4010       if (CallConv == CallingConv::Fast)
4011         ComputeArgOffset();
4012 
4013       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4014       ObjSize = Flags.getByValSize();
4015       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4016       // Empty aggregate parameters do not take up registers.  Examples:
4017       //   struct { } a;
4018       //   union  { } b;
4019       //   int c[0];
4020       // etc.  However, we have to provide a place-holder in InVals, so
4021       // pretend we have an 8-byte item at the current address for that
4022       // purpose.
4023       if (!ObjSize) {
4024         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4025         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4026         InVals.push_back(FIN);
4027         continue;
4028       }
4029 
4030       // Create a stack object covering all stack doublewords occupied
4031       // by the argument.  If the argument is (fully or partially) on
4032       // the stack, or if the argument is fully in registers but the
4033       // caller has allocated the parameter save anyway, we can refer
4034       // directly to the caller's stack frame.  Otherwise, create a
4035       // local copy in our own frame.
4036       int FI;
4037       if (HasParameterArea ||
4038           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4039         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4040       else
4041         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4042       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4043 
4044       // Handle aggregates smaller than 8 bytes.
4045       if (ObjSize < PtrByteSize) {
4046         // The value of the object is its address, which differs from the
4047         // address of the enclosing doubleword on big-endian systems.
4048         SDValue Arg = FIN;
4049         if (!isLittleEndian) {
4050           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4051           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4052         }
4053         InVals.push_back(Arg);
4054 
4055         if (GPR_idx != Num_GPR_Regs) {
4056           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4057           FuncInfo->addLiveInAttr(VReg, Flags);
4058           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4059           SDValue Store;
4060 
4061           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4062             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4063                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4064             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4065                                       MachinePointerInfo(&*FuncArg), ObjType);
4066           } else {
4067             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4068             // store the whole register as-is to the parameter save area
4069             // slot.
4070             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4071                                  MachinePointerInfo(&*FuncArg));
4072           }
4073 
4074           MemOps.push_back(Store);
4075         }
4076         // Whether we copied from a register or not, advance the offset
4077         // into the parameter save area by a full doubleword.
4078         ArgOffset += PtrByteSize;
4079         continue;
4080       }
4081 
4082       // The value of the object is its address, which is the address of
4083       // its first stack doubleword.
4084       InVals.push_back(FIN);
4085 
4086       // Store whatever pieces of the object are in registers to memory.
4087       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4088         if (GPR_idx == Num_GPR_Regs)
4089           break;
4090 
4091         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4092         FuncInfo->addLiveInAttr(VReg, Flags);
4093         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4094         SDValue Addr = FIN;
4095         if (j) {
4096           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4097           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4098         }
4099         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4100                                      MachinePointerInfo(&*FuncArg, j));
4101         MemOps.push_back(Store);
4102         ++GPR_idx;
4103       }
4104       ArgOffset += ArgSize;
4105       continue;
4106     }
4107 
4108     switch (ObjectVT.getSimpleVT().SimpleTy) {
4109     default: llvm_unreachable("Unhandled argument type!");
4110     case MVT::i1:
4111     case MVT::i32:
4112     case MVT::i64:
4113       if (Flags.isNest()) {
4114         // The 'nest' parameter, if any, is passed in R11.
4115         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4116         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4117 
4118         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4119           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4120 
4121         break;
4122       }
4123 
4124       // These can be scalar arguments or elements of an integer array type
4125       // passed directly.  Clang may use those instead of "byval" aggregate
4126       // types to avoid forcing arguments to memory unnecessarily.
4127       if (GPR_idx != Num_GPR_Regs) {
4128         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4129         FuncInfo->addLiveInAttr(VReg, Flags);
4130         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4131 
4132         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4133           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4134           // value to MVT::i64 and then truncate to the correct register size.
4135           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4136       } else {
4137         if (CallConv == CallingConv::Fast)
4138           ComputeArgOffset();
4139 
4140         needsLoad = true;
4141         ArgSize = PtrByteSize;
4142       }
4143       if (CallConv != CallingConv::Fast || needsLoad)
4144         ArgOffset += 8;
4145       break;
4146 
4147     case MVT::f32:
4148     case MVT::f64:
4149       // These can be scalar arguments or elements of a float array type
4150       // passed directly.  The latter are used to implement ELFv2 homogenous
4151       // float aggregates.
4152       if (FPR_idx != Num_FPR_Regs) {
4153         unsigned VReg;
4154 
4155         if (ObjectVT == MVT::f32)
4156           VReg = MF.addLiveIn(FPR[FPR_idx],
4157                               Subtarget.hasP8Vector()
4158                                   ? &PPC::VSSRCRegClass
4159                                   : &PPC::F4RCRegClass);
4160         else
4161           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4162                                                 ? &PPC::VSFRCRegClass
4163                                                 : &PPC::F8RCRegClass);
4164 
4165         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4166         ++FPR_idx;
4167       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4168         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4169         // once we support fp <-> gpr moves.
4170 
4171         // This can only ever happen in the presence of f32 array types,
4172         // since otherwise we never run out of FPRs before running out
4173         // of GPRs.
4174         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4175         FuncInfo->addLiveInAttr(VReg, Flags);
4176         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4177 
4178         if (ObjectVT == MVT::f32) {
4179           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4180             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4181                                  DAG.getConstant(32, dl, MVT::i32));
4182           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4183         }
4184 
4185         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4186       } else {
4187         if (CallConv == CallingConv::Fast)
4188           ComputeArgOffset();
4189 
4190         needsLoad = true;
4191       }
4192 
4193       // When passing an array of floats, the array occupies consecutive
4194       // space in the argument area; only round up to the next doubleword
4195       // at the end of the array.  Otherwise, each float takes 8 bytes.
4196       if (CallConv != CallingConv::Fast || needsLoad) {
4197         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4198         ArgOffset += ArgSize;
4199         if (Flags.isInConsecutiveRegsLast())
4200           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4201       }
4202       break;
4203     case MVT::v4f32:
4204     case MVT::v4i32:
4205     case MVT::v8i16:
4206     case MVT::v16i8:
4207     case MVT::v2f64:
4208     case MVT::v2i64:
4209     case MVT::v1i128:
4210     case MVT::f128:
4211       if (!Subtarget.hasQPX()) {
4212         // These can be scalar arguments or elements of a vector array type
4213         // passed directly.  The latter are used to implement ELFv2 homogenous
4214         // vector aggregates.
4215         if (VR_idx != Num_VR_Regs) {
4216           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4217           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4218           ++VR_idx;
4219         } else {
4220           if (CallConv == CallingConv::Fast)
4221             ComputeArgOffset();
4222           needsLoad = true;
4223         }
4224         if (CallConv != CallingConv::Fast || needsLoad)
4225           ArgOffset += 16;
4226         break;
4227       } // not QPX
4228 
4229       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4230              "Invalid QPX parameter type");
4231       LLVM_FALLTHROUGH;
4232 
4233     case MVT::v4f64:
4234     case MVT::v4i1:
4235       // QPX vectors are treated like their scalar floating-point subregisters
4236       // (except that they're larger).
4237       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4238       if (QFPR_idx != Num_QFPR_Regs) {
4239         const TargetRegisterClass *RC;
4240         switch (ObjectVT.getSimpleVT().SimpleTy) {
4241         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4242         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4243         default:         RC = &PPC::QBRCRegClass; break;
4244         }
4245 
4246         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4247         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4248         ++QFPR_idx;
4249       } else {
4250         if (CallConv == CallingConv::Fast)
4251           ComputeArgOffset();
4252         needsLoad = true;
4253       }
4254       if (CallConv != CallingConv::Fast || needsLoad)
4255         ArgOffset += Sz;
4256       break;
4257     }
4258 
4259     // We need to load the argument to a virtual register if we determined
4260     // above that we ran out of physical registers of the appropriate type.
4261     if (needsLoad) {
4262       if (ObjSize < ArgSize && !isLittleEndian)
4263         CurArgOffset += ArgSize - ObjSize;
4264       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4265       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4266       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4267     }
4268 
4269     InVals.push_back(ArgVal);
4270   }
4271 
4272   // Area that is at least reserved in the caller of this function.
4273   unsigned MinReservedArea;
4274   if (HasParameterArea)
4275     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4276   else
4277     MinReservedArea = LinkageSize;
4278 
4279   // Set the size that is at least reserved in caller of this function.  Tail
4280   // call optimized functions' reserved stack space needs to be aligned so that
4281   // taking the difference between two stack areas will result in an aligned
4282   // stack.
4283   MinReservedArea =
4284       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4285   FuncInfo->setMinReservedArea(MinReservedArea);
4286 
4287   // If the function takes variable number of arguments, make a frame index for
4288   // the start of the first vararg value... for expansion of llvm.va_start.
4289   if (isVarArg) {
4290     int Depth = ArgOffset;
4291 
4292     FuncInfo->setVarArgsFrameIndex(
4293       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4294     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4295 
4296     // If this function is vararg, store any remaining integer argument regs
4297     // to their spots on the stack so that they may be loaded by dereferencing
4298     // the result of va_next.
4299     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4300          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4301       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4302       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4303       SDValue Store =
4304           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4305       MemOps.push_back(Store);
4306       // Increment the address by four for the next argument to store
4307       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4308       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4309     }
4310   }
4311 
4312   if (!MemOps.empty())
4313     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4314 
4315   return Chain;
4316 }
4317 
4318 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4319     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4320     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4321     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4322   // TODO: add description of PPC stack frame format, or at least some docs.
4323   //
4324   MachineFunction &MF = DAG.getMachineFunction();
4325   MachineFrameInfo &MFI = MF.getFrameInfo();
4326   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4327 
4328   EVT PtrVT = getPointerTy(MF.getDataLayout());
4329   bool isPPC64 = PtrVT == MVT::i64;
4330   // Potential tail calls could cause overwriting of argument stack slots.
4331   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4332                        (CallConv == CallingConv::Fast));
4333   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4334   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4335   unsigned ArgOffset = LinkageSize;
4336   // Area that is at least reserved in caller of this function.
4337   unsigned MinReservedArea = ArgOffset;
4338 
4339   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4340     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4341     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4342   };
4343   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4344     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4345     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4346   };
4347   static const MCPhysReg VR[] = {
4348     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4349     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4350   };
4351 
4352   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4353   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4354   const unsigned Num_VR_Regs  = array_lengthof( VR);
4355 
4356   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4357 
4358   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4359 
4360   // In 32-bit non-varargs functions, the stack space for vectors is after the
4361   // stack space for non-vectors.  We do not use this space unless we have
4362   // too many vectors to fit in registers, something that only occurs in
4363   // constructed examples:), but we have to walk the arglist to figure
4364   // that out...for the pathological case, compute VecArgOffset as the
4365   // start of the vector parameter area.  Computing VecArgOffset is the
4366   // entire point of the following loop.
4367   unsigned VecArgOffset = ArgOffset;
4368   if (!isVarArg && !isPPC64) {
4369     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4370          ++ArgNo) {
4371       EVT ObjectVT = Ins[ArgNo].VT;
4372       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4373 
4374       if (Flags.isByVal()) {
4375         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4376         unsigned ObjSize = Flags.getByValSize();
4377         unsigned ArgSize =
4378                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4379         VecArgOffset += ArgSize;
4380         continue;
4381       }
4382 
4383       switch(ObjectVT.getSimpleVT().SimpleTy) {
4384       default: llvm_unreachable("Unhandled argument type!");
4385       case MVT::i1:
4386       case MVT::i32:
4387       case MVT::f32:
4388         VecArgOffset += 4;
4389         break;
4390       case MVT::i64:  // PPC64
4391       case MVT::f64:
4392         // FIXME: We are guaranteed to be !isPPC64 at this point.
4393         // Does MVT::i64 apply?
4394         VecArgOffset += 8;
4395         break;
4396       case MVT::v4f32:
4397       case MVT::v4i32:
4398       case MVT::v8i16:
4399       case MVT::v16i8:
4400         // Nothing to do, we're only looking at Nonvector args here.
4401         break;
4402       }
4403     }
4404   }
4405   // We've found where the vector parameter area in memory is.  Skip the
4406   // first 12 parameters; these don't use that memory.
4407   VecArgOffset = ((VecArgOffset+15)/16)*16;
4408   VecArgOffset += 12*16;
4409 
4410   // Add DAG nodes to load the arguments or copy them out of registers.  On
4411   // entry to a function on PPC, the arguments start after the linkage area,
4412   // although the first ones are often in registers.
4413 
4414   SmallVector<SDValue, 8> MemOps;
4415   unsigned nAltivecParamsAtEnd = 0;
4416   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4417   unsigned CurArgIdx = 0;
4418   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4419     SDValue ArgVal;
4420     bool needsLoad = false;
4421     EVT ObjectVT = Ins[ArgNo].VT;
4422     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4423     unsigned ArgSize = ObjSize;
4424     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4425     if (Ins[ArgNo].isOrigArg()) {
4426       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4427       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4428     }
4429     unsigned CurArgOffset = ArgOffset;
4430 
4431     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4432     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4433         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4434       if (isVarArg || isPPC64) {
4435         MinReservedArea = ((MinReservedArea+15)/16)*16;
4436         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4437                                                   Flags,
4438                                                   PtrByteSize);
4439       } else  nAltivecParamsAtEnd++;
4440     } else
4441       // Calculate min reserved area.
4442       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4443                                                 Flags,
4444                                                 PtrByteSize);
4445 
4446     // FIXME the codegen can be much improved in some cases.
4447     // We do not have to keep everything in memory.
4448     if (Flags.isByVal()) {
4449       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4450 
4451       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4452       ObjSize = Flags.getByValSize();
4453       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4454       // Objects of size 1 and 2 are right justified, everything else is
4455       // left justified.  This means the memory address is adjusted forwards.
4456       if (ObjSize==1 || ObjSize==2) {
4457         CurArgOffset = CurArgOffset + (4 - ObjSize);
4458       }
4459       // The value of the object is its address.
4460       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4461       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4462       InVals.push_back(FIN);
4463       if (ObjSize==1 || ObjSize==2) {
4464         if (GPR_idx != Num_GPR_Regs) {
4465           unsigned VReg;
4466           if (isPPC64)
4467             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4468           else
4469             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4470           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4471           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4472           SDValue Store =
4473               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4474                                 MachinePointerInfo(&*FuncArg), ObjType);
4475           MemOps.push_back(Store);
4476           ++GPR_idx;
4477         }
4478 
4479         ArgOffset += PtrByteSize;
4480 
4481         continue;
4482       }
4483       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4484         // Store whatever pieces of the object are in registers
4485         // to memory.  ArgOffset will be the address of the beginning
4486         // of the object.
4487         if (GPR_idx != Num_GPR_Regs) {
4488           unsigned VReg;
4489           if (isPPC64)
4490             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4491           else
4492             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4493           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4494           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4495           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4496           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4497                                        MachinePointerInfo(&*FuncArg, j));
4498           MemOps.push_back(Store);
4499           ++GPR_idx;
4500           ArgOffset += PtrByteSize;
4501         } else {
4502           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4503           break;
4504         }
4505       }
4506       continue;
4507     }
4508 
4509     switch (ObjectVT.getSimpleVT().SimpleTy) {
4510     default: llvm_unreachable("Unhandled argument type!");
4511     case MVT::i1:
4512     case MVT::i32:
4513       if (!isPPC64) {
4514         if (GPR_idx != Num_GPR_Regs) {
4515           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4516           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4517 
4518           if (ObjectVT == MVT::i1)
4519             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4520 
4521           ++GPR_idx;
4522         } else {
4523           needsLoad = true;
4524           ArgSize = PtrByteSize;
4525         }
4526         // All int arguments reserve stack space in the Darwin ABI.
4527         ArgOffset += PtrByteSize;
4528         break;
4529       }
4530       LLVM_FALLTHROUGH;
4531     case MVT::i64:  // PPC64
4532       if (GPR_idx != Num_GPR_Regs) {
4533         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4534         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4535 
4536         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4537           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4538           // value to MVT::i64 and then truncate to the correct register size.
4539           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4540 
4541         ++GPR_idx;
4542       } else {
4543         needsLoad = true;
4544         ArgSize = PtrByteSize;
4545       }
4546       // All int arguments reserve stack space in the Darwin ABI.
4547       ArgOffset += 8;
4548       break;
4549 
4550     case MVT::f32:
4551     case MVT::f64:
4552       // Every 4 bytes of argument space consumes one of the GPRs available for
4553       // argument passing.
4554       if (GPR_idx != Num_GPR_Regs) {
4555         ++GPR_idx;
4556         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4557           ++GPR_idx;
4558       }
4559       if (FPR_idx != Num_FPR_Regs) {
4560         unsigned VReg;
4561 
4562         if (ObjectVT == MVT::f32)
4563           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4564         else
4565           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4566 
4567         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4568         ++FPR_idx;
4569       } else {
4570         needsLoad = true;
4571       }
4572 
4573       // All FP arguments reserve stack space in the Darwin ABI.
4574       ArgOffset += isPPC64 ? 8 : ObjSize;
4575       break;
4576     case MVT::v4f32:
4577     case MVT::v4i32:
4578     case MVT::v8i16:
4579     case MVT::v16i8:
4580       // Note that vector arguments in registers don't reserve stack space,
4581       // except in varargs functions.
4582       if (VR_idx != Num_VR_Regs) {
4583         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4584         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4585         if (isVarArg) {
4586           while ((ArgOffset % 16) != 0) {
4587             ArgOffset += PtrByteSize;
4588             if (GPR_idx != Num_GPR_Regs)
4589               GPR_idx++;
4590           }
4591           ArgOffset += 16;
4592           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4593         }
4594         ++VR_idx;
4595       } else {
4596         if (!isVarArg && !isPPC64) {
4597           // Vectors go after all the nonvectors.
4598           CurArgOffset = VecArgOffset;
4599           VecArgOffset += 16;
4600         } else {
4601           // Vectors are aligned.
4602           ArgOffset = ((ArgOffset+15)/16)*16;
4603           CurArgOffset = ArgOffset;
4604           ArgOffset += 16;
4605         }
4606         needsLoad = true;
4607       }
4608       break;
4609     }
4610 
4611     // We need to load the argument to a virtual register if we determined above
4612     // that we ran out of physical registers of the appropriate type.
4613     if (needsLoad) {
4614       int FI = MFI.CreateFixedObject(ObjSize,
4615                                      CurArgOffset + (ArgSize - ObjSize),
4616                                      isImmutable);
4617       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4618       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4619     }
4620 
4621     InVals.push_back(ArgVal);
4622   }
4623 
4624   // Allow for Altivec parameters at the end, if needed.
4625   if (nAltivecParamsAtEnd) {
4626     MinReservedArea = ((MinReservedArea+15)/16)*16;
4627     MinReservedArea += 16*nAltivecParamsAtEnd;
4628   }
4629 
4630   // Area that is at least reserved in the caller of this function.
4631   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4632 
4633   // Set the size that is at least reserved in caller of this function.  Tail
4634   // call optimized functions' reserved stack space needs to be aligned so that
4635   // taking the difference between two stack areas will result in an aligned
4636   // stack.
4637   MinReservedArea =
4638       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4639   FuncInfo->setMinReservedArea(MinReservedArea);
4640 
4641   // If the function takes variable number of arguments, make a frame index for
4642   // the start of the first vararg value... for expansion of llvm.va_start.
4643   if (isVarArg) {
4644     int Depth = ArgOffset;
4645 
4646     FuncInfo->setVarArgsFrameIndex(
4647       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4648                             Depth, true));
4649     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4650 
4651     // If this function is vararg, store any remaining integer argument regs
4652     // to their spots on the stack so that they may be loaded by dereferencing
4653     // the result of va_next.
4654     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4655       unsigned VReg;
4656 
4657       if (isPPC64)
4658         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4659       else
4660         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4661 
4662       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4663       SDValue Store =
4664           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4665       MemOps.push_back(Store);
4666       // Increment the address by four for the next argument to store
4667       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4668       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4669     }
4670   }
4671 
4672   if (!MemOps.empty())
4673     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4674 
4675   return Chain;
4676 }
4677 
4678 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4679 /// adjusted to accommodate the arguments for the tailcall.
4680 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4681                                    unsigned ParamSize) {
4682 
4683   if (!isTailCall) return 0;
4684 
4685   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4686   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4687   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4688   // Remember only if the new adjustment is bigger.
4689   if (SPDiff < FI->getTailCallSPDelta())
4690     FI->setTailCallSPDelta(SPDiff);
4691 
4692   return SPDiff;
4693 }
4694 
4695 static bool isFunctionGlobalAddress(SDValue Callee);
4696 
4697 static bool
4698 callsShareTOCBase(const Function *Caller, SDValue Callee,
4699                     const TargetMachine &TM) {
4700    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4701    // don't have enough information to determine if the caller and calle share
4702    // the same  TOC base, so we have to pessimistically assume they don't for
4703    // correctness.
4704    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4705    if (!G)
4706      return false;
4707 
4708    const GlobalValue *GV = G->getGlobal();
4709   // The medium and large code models are expected to provide a sufficiently
4710   // large TOC to provide all data addressing needs of a module with a
4711   // single TOC. Since each module will be addressed with a single TOC then we
4712   // only need to check that caller and callee don't cross dso boundaries.
4713   if (CodeModel::Medium == TM.getCodeModel() ||
4714       CodeModel::Large == TM.getCodeModel())
4715     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4716 
4717   // Otherwise we need to ensure callee and caller are in the same section,
4718   // since the linker may allocate multiple TOCs, and we don't know which
4719   // sections will belong to the same TOC base.
4720 
4721   if (!GV->isStrongDefinitionForLinker())
4722     return false;
4723 
4724   // Any explicitly-specified sections and section prefixes must also match.
4725   // Also, if we're using -ffunction-sections, then each function is always in
4726   // a different section (the same is true for COMDAT functions).
4727   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4728       GV->getSection() != Caller->getSection())
4729     return false;
4730   if (const auto *F = dyn_cast<Function>(GV)) {
4731     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4732       return false;
4733   }
4734 
4735   // If the callee might be interposed, then we can't assume the ultimate call
4736   // target will be in the same section. Even in cases where we can assume that
4737   // interposition won't happen, in any case where the linker might insert a
4738   // stub to allow for interposition, we must generate code as though
4739   // interposition might occur. To understand why this matters, consider a
4740   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4741   // in the same section, but a is in a different module (i.e. has a different
4742   // TOC base pointer). If the linker allows for interposition between b and c,
4743   // then it will generate a stub for the call edge between b and c which will
4744   // save the TOC pointer into the designated stack slot allocated by b. If we
4745   // return true here, and therefore allow a tail call between b and c, that
4746   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4747   // pointer into the stack slot allocated by a (where the a -> b stub saved
4748   // a's TOC base pointer). If we're not considering a tail call, but rather,
4749   // whether a nop is needed after the call instruction in b, because the linker
4750   // will insert a stub, it might complain about a missing nop if we omit it
4751   // (although many don't complain in this case).
4752   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4753     return false;
4754 
4755   return true;
4756 }
4757 
4758 static bool
4759 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4760                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4761   assert(Subtarget.is64BitELFABI());
4762 
4763   const unsigned PtrByteSize = 8;
4764   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4765 
4766   static const MCPhysReg GPR[] = {
4767     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4768     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4769   };
4770   static const MCPhysReg VR[] = {
4771     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4772     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4773   };
4774 
4775   const unsigned NumGPRs = array_lengthof(GPR);
4776   const unsigned NumFPRs = 13;
4777   const unsigned NumVRs = array_lengthof(VR);
4778   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4779 
4780   unsigned NumBytes = LinkageSize;
4781   unsigned AvailableFPRs = NumFPRs;
4782   unsigned AvailableVRs = NumVRs;
4783 
4784   for (const ISD::OutputArg& Param : Outs) {
4785     if (Param.Flags.isNest()) continue;
4786 
4787     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4788                                PtrByteSize, LinkageSize, ParamAreaSize,
4789                                NumBytes, AvailableFPRs, AvailableVRs,
4790                                Subtarget.hasQPX()))
4791       return true;
4792   }
4793   return false;
4794 }
4795 
4796 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4797   if (CB.arg_size() != CallerFn->arg_size())
4798     return false;
4799 
4800   auto CalleeArgIter = CB.arg_begin();
4801   auto CalleeArgEnd = CB.arg_end();
4802   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4803 
4804   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4805     const Value* CalleeArg = *CalleeArgIter;
4806     const Value* CallerArg = &(*CallerArgIter);
4807     if (CalleeArg == CallerArg)
4808       continue;
4809 
4810     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4811     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4812     //      }
4813     // 1st argument of callee is undef and has the same type as caller.
4814     if (CalleeArg->getType() == CallerArg->getType() &&
4815         isa<UndefValue>(CalleeArg))
4816       continue;
4817 
4818     return false;
4819   }
4820 
4821   return true;
4822 }
4823 
4824 // Returns true if TCO is possible between the callers and callees
4825 // calling conventions.
4826 static bool
4827 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4828                                     CallingConv::ID CalleeCC) {
4829   // Tail calls are possible with fastcc and ccc.
4830   auto isTailCallableCC  = [] (CallingConv::ID CC){
4831       return  CC == CallingConv::C || CC == CallingConv::Fast;
4832   };
4833   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4834     return false;
4835 
4836   // We can safely tail call both fastcc and ccc callees from a c calling
4837   // convention caller. If the caller is fastcc, we may have less stack space
4838   // than a non-fastcc caller with the same signature so disable tail-calls in
4839   // that case.
4840   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4841 }
4842 
4843 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4844     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4845     const SmallVectorImpl<ISD::OutputArg> &Outs,
4846     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4847   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4848 
4849   if (DisableSCO && !TailCallOpt) return false;
4850 
4851   // Variadic argument functions are not supported.
4852   if (isVarArg) return false;
4853 
4854   auto &Caller = DAG.getMachineFunction().getFunction();
4855   // Check that the calling conventions are compatible for tco.
4856   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4857     return false;
4858 
4859   // Caller contains any byval parameter is not supported.
4860   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4861     return false;
4862 
4863   // Callee contains any byval parameter is not supported, too.
4864   // Note: This is a quick work around, because in some cases, e.g.
4865   // caller's stack size > callee's stack size, we are still able to apply
4866   // sibling call optimization. For example, gcc is able to do SCO for caller1
4867   // in the following example, but not for caller2.
4868   //   struct test {
4869   //     long int a;
4870   //     char ary[56];
4871   //   } gTest;
4872   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4873   //     b->a = v.a;
4874   //     return 0;
4875   //   }
4876   //   void caller1(struct test a, struct test c, struct test *b) {
4877   //     callee(gTest, b); }
4878   //   void caller2(struct test *b) { callee(gTest, b); }
4879   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4880     return false;
4881 
4882   // If callee and caller use different calling conventions, we cannot pass
4883   // parameters on stack since offsets for the parameter area may be different.
4884   if (Caller.getCallingConv() != CalleeCC &&
4885       needStackSlotPassParameters(Subtarget, Outs))
4886     return false;
4887 
4888   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4889   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4890   // callee potentially have different TOC bases then we cannot tail call since
4891   // we need to restore the TOC pointer after the call.
4892   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4893   // We cannot guarantee this for indirect calls or calls to external functions.
4894   // When PC-Relative addressing is used, the concept of the TOC is no longer
4895   // applicable so this check is not required.
4896   // Check first for indirect calls.
4897   if (!Subtarget.isUsingPCRelativeCalls() &&
4898       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4899     return false;
4900 
4901   // Check if we share the TOC base.
4902   if (!Subtarget.isUsingPCRelativeCalls() &&
4903       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4904     return false;
4905 
4906   // TCO allows altering callee ABI, so we don't have to check further.
4907   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4908     return true;
4909 
4910   if (DisableSCO) return false;
4911 
4912   // If callee use the same argument list that caller is using, then we can
4913   // apply SCO on this case. If it is not, then we need to check if callee needs
4914   // stack for passing arguments.
4915   // PC Relative tail calls may not have a CallBase.
4916   // If there is no CallBase we cannot verify if we have the same argument
4917   // list so assume that we don't have the same argument list.
4918   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4919       needStackSlotPassParameters(Subtarget, Outs))
4920     return false;
4921   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4922     return false;
4923 
4924   return true;
4925 }
4926 
4927 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4928 /// for tail call optimization. Targets which want to do tail call
4929 /// optimization should implement this function.
4930 bool
4931 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4932                                                      CallingConv::ID CalleeCC,
4933                                                      bool isVarArg,
4934                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4935                                                      SelectionDAG& DAG) const {
4936   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4937     return false;
4938 
4939   // Variable argument functions are not supported.
4940   if (isVarArg)
4941     return false;
4942 
4943   MachineFunction &MF = DAG.getMachineFunction();
4944   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4945   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4946     // Functions containing by val parameters are not supported.
4947     for (unsigned i = 0; i != Ins.size(); i++) {
4948        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4949        if (Flags.isByVal()) return false;
4950     }
4951 
4952     // Non-PIC/GOT tail calls are supported.
4953     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4954       return true;
4955 
4956     // At the moment we can only do local tail calls (in same module, hidden
4957     // or protected) if we are generating PIC.
4958     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4959       return G->getGlobal()->hasHiddenVisibility()
4960           || G->getGlobal()->hasProtectedVisibility();
4961   }
4962 
4963   return false;
4964 }
4965 
4966 /// isCallCompatibleAddress - Return the immediate to use if the specified
4967 /// 32-bit value is representable in the immediate field of a BxA instruction.
4968 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4969   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4970   if (!C) return nullptr;
4971 
4972   int Addr = C->getZExtValue();
4973   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4974       SignExtend32<26>(Addr) != Addr)
4975     return nullptr;  // Top 6 bits have to be sext of immediate.
4976 
4977   return DAG
4978       .getConstant(
4979           (int)C->getZExtValue() >> 2, SDLoc(Op),
4980           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4981       .getNode();
4982 }
4983 
4984 namespace {
4985 
4986 struct TailCallArgumentInfo {
4987   SDValue Arg;
4988   SDValue FrameIdxOp;
4989   int FrameIdx = 0;
4990 
4991   TailCallArgumentInfo() = default;
4992 };
4993 
4994 } // end anonymous namespace
4995 
4996 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4997 static void StoreTailCallArgumentsToStackSlot(
4998     SelectionDAG &DAG, SDValue Chain,
4999     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
5000     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
5001   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
5002     SDValue Arg = TailCallArgs[i].Arg;
5003     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5004     int FI = TailCallArgs[i].FrameIdx;
5005     // Store relative to framepointer.
5006     MemOpChains.push_back(DAG.getStore(
5007         Chain, dl, Arg, FIN,
5008         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5009   }
5010 }
5011 
5012 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5013 /// the appropriate stack slot for the tail call optimized function call.
5014 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5015                                              SDValue OldRetAddr, SDValue OldFP,
5016                                              int SPDiff, const SDLoc &dl) {
5017   if (SPDiff) {
5018     // Calculate the new stack slot for the return address.
5019     MachineFunction &MF = DAG.getMachineFunction();
5020     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5021     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5022     bool isPPC64 = Subtarget.isPPC64();
5023     int SlotSize = isPPC64 ? 8 : 4;
5024     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5025     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5026                                                          NewRetAddrLoc, true);
5027     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5028     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5029     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5030                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5031   }
5032   return Chain;
5033 }
5034 
5035 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5036 /// the position of the argument.
5037 static void
5038 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5039                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5040                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5041   int Offset = ArgOffset + SPDiff;
5042   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5043   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5044   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5045   SDValue FIN = DAG.getFrameIndex(FI, VT);
5046   TailCallArgumentInfo Info;
5047   Info.Arg = Arg;
5048   Info.FrameIdxOp = FIN;
5049   Info.FrameIdx = FI;
5050   TailCallArguments.push_back(Info);
5051 }
5052 
5053 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5054 /// stack slot. Returns the chain as result and the loaded frame pointers in
5055 /// LROpOut/FPOpout. Used when tail calling.
5056 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5057     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5058     SDValue &FPOpOut, const SDLoc &dl) const {
5059   if (SPDiff) {
5060     // Load the LR and FP stack slot for later adjusting.
5061     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5062     LROpOut = getReturnAddrFrameIndex(DAG);
5063     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5064     Chain = SDValue(LROpOut.getNode(), 1);
5065   }
5066   return Chain;
5067 }
5068 
5069 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5070 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5071 /// specified by the specific parameter attribute. The copy will be passed as
5072 /// a byval function parameter.
5073 /// Sometimes what we are copying is the end of a larger object, the part that
5074 /// does not fit in registers.
5075 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5076                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5077                                          SelectionDAG &DAG, const SDLoc &dl) {
5078   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5079   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5080                        Flags.getNonZeroByValAlign(), false, false, false,
5081                        MachinePointerInfo(), MachinePointerInfo());
5082 }
5083 
5084 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5085 /// tail calls.
5086 static void LowerMemOpCallTo(
5087     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5088     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5089     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5090     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5091   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5092   if (!isTailCall) {
5093     if (isVector) {
5094       SDValue StackPtr;
5095       if (isPPC64)
5096         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5097       else
5098         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5099       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5100                            DAG.getConstant(ArgOffset, dl, PtrVT));
5101     }
5102     MemOpChains.push_back(
5103         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5104     // Calculate and remember argument location.
5105   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5106                                   TailCallArguments);
5107 }
5108 
5109 static void
5110 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5111                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5112                 SDValue FPOp,
5113                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5114   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5115   // might overwrite each other in case of tail call optimization.
5116   SmallVector<SDValue, 8> MemOpChains2;
5117   // Do not flag preceding copytoreg stuff together with the following stuff.
5118   InFlag = SDValue();
5119   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5120                                     MemOpChains2, dl);
5121   if (!MemOpChains2.empty())
5122     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5123 
5124   // Store the return address to the appropriate stack slot.
5125   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5126 
5127   // Emit callseq_end just before tailcall node.
5128   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5129                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5130   InFlag = Chain.getValue(1);
5131 }
5132 
5133 // Is this global address that of a function that can be called by name? (as
5134 // opposed to something that must hold a descriptor for an indirect call).
5135 static bool isFunctionGlobalAddress(SDValue Callee) {
5136   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5137     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5138         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5139       return false;
5140 
5141     return G->getGlobal()->getValueType()->isFunctionTy();
5142   }
5143 
5144   return false;
5145 }
5146 
5147 SDValue PPCTargetLowering::LowerCallResult(
5148     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5149     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5150     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5151   SmallVector<CCValAssign, 16> RVLocs;
5152   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5153                     *DAG.getContext());
5154 
5155   CCRetInfo.AnalyzeCallResult(
5156       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5157                ? RetCC_PPC_Cold
5158                : RetCC_PPC);
5159 
5160   // Copy all of the result registers out of their specified physreg.
5161   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5162     CCValAssign &VA = RVLocs[i];
5163     assert(VA.isRegLoc() && "Can only return in registers!");
5164 
5165     SDValue Val;
5166 
5167     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5168       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5169                                       InFlag);
5170       Chain = Lo.getValue(1);
5171       InFlag = Lo.getValue(2);
5172       VA = RVLocs[++i]; // skip ahead to next loc
5173       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5174                                       InFlag);
5175       Chain = Hi.getValue(1);
5176       InFlag = Hi.getValue(2);
5177       if (!Subtarget.isLittleEndian())
5178         std::swap (Lo, Hi);
5179       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5180     } else {
5181       Val = DAG.getCopyFromReg(Chain, dl,
5182                                VA.getLocReg(), VA.getLocVT(), InFlag);
5183       Chain = Val.getValue(1);
5184       InFlag = Val.getValue(2);
5185     }
5186 
5187     switch (VA.getLocInfo()) {
5188     default: llvm_unreachable("Unknown loc info!");
5189     case CCValAssign::Full: break;
5190     case CCValAssign::AExt:
5191       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5192       break;
5193     case CCValAssign::ZExt:
5194       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5195                         DAG.getValueType(VA.getValVT()));
5196       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5197       break;
5198     case CCValAssign::SExt:
5199       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5200                         DAG.getValueType(VA.getValVT()));
5201       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5202       break;
5203     }
5204 
5205     InVals.push_back(Val);
5206   }
5207 
5208   return Chain;
5209 }
5210 
5211 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5212                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5213   // PatchPoint calls are not indirect.
5214   if (isPatchPoint)
5215     return false;
5216 
5217   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5218     return false;
5219 
5220   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5221   // becuase the immediate function pointer points to a descriptor instead of
5222   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5223   // pointer immediate points to the global entry point, while the BLA would
5224   // need to jump to the local entry point (see rL211174).
5225   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5226       isBLACompatibleAddress(Callee, DAG))
5227     return false;
5228 
5229   return true;
5230 }
5231 
5232 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5233 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5234   return Subtarget.isAIXABI() ||
5235          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5236 }
5237 
5238 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5239                               const Function &Caller,
5240                               const SDValue &Callee,
5241                               const PPCSubtarget &Subtarget,
5242                               const TargetMachine &TM) {
5243   if (CFlags.IsTailCall)
5244     return PPCISD::TC_RETURN;
5245 
5246   // This is a call through a function pointer.
5247   if (CFlags.IsIndirect) {
5248     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5249     // indirect calls. The save of the caller's TOC pointer to the stack will be
5250     // inserted into the DAG as part of call lowering. The restore of the TOC
5251     // pointer is modeled by using a pseudo instruction for the call opcode that
5252     // represents the 2 instruction sequence of an indirect branch and link,
5253     // immediately followed by a load of the TOC pointer from the the stack save
5254     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5255     // as it is not saved or used.
5256     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5257                                                : PPCISD::BCTRL;
5258   }
5259 
5260   if (Subtarget.isUsingPCRelativeCalls()) {
5261     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5262     return PPCISD::CALL_NOTOC;
5263   }
5264 
5265   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5266   // immediately following the call instruction if the caller and callee may
5267   // have different TOC bases. At link time if the linker determines the calls
5268   // may not share a TOC base, the call is redirected to a trampoline inserted
5269   // by the linker. The trampoline will (among other things) save the callers
5270   // TOC pointer at an ABI designated offset in the linkage area and the linker
5271   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5272   // into gpr2.
5273   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5274       return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5275                                                     : PPCISD::CALL_NOP;
5276 
5277   return PPCISD::CALL;
5278 }
5279 
5280 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5281                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5282   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5283     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5284       return SDValue(Dest, 0);
5285 
5286   // Returns true if the callee is local, and false otherwise.
5287   auto isLocalCallee = [&]() {
5288     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5289     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5290     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5291 
5292     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5293            !dyn_cast_or_null<GlobalIFunc>(GV);
5294   };
5295 
5296   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5297   // a static relocation model causes some versions of GNU LD (2.17.50, at
5298   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5299   // built with secure-PLT.
5300   bool UsePlt =
5301       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5302       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5303 
5304   // On AIX, direct function calls reference the symbol for the function's
5305   // entry point, which is named by prepending a "." before the function's
5306   // C-linkage name.
5307   const auto getAIXFuncEntryPointSymbolSDNode =
5308       [&](StringRef FuncName, bool IsDeclaration,
5309           const XCOFF::StorageClass &SC) {
5310         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5311 
5312         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5313             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5314 
5315         if (IsDeclaration && !S->hasRepresentedCsectSet()) {
5316           // On AIX, an undefined symbol needs to be associated with a
5317           // MCSectionXCOFF to get the correct storage mapping class.
5318           // In this case, XCOFF::XMC_PR.
5319           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5320               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5321               SectionKind::getMetadata());
5322           S->setRepresentedCsect(Sec);
5323         }
5324 
5325         MVT PtrVT =
5326             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5327         return DAG.getMCSymbol(S, PtrVT);
5328       };
5329 
5330   if (isFunctionGlobalAddress(Callee)) {
5331     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5332     const GlobalValue *GV = G->getGlobal();
5333 
5334     if (!Subtarget.isAIXABI())
5335       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5336                                         UsePlt ? PPCII::MO_PLT : 0);
5337 
5338     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5339     const GlobalObject *GO = cast<GlobalObject>(GV);
5340     const XCOFF::StorageClass SC =
5341         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5342     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5343                                             SC);
5344   }
5345 
5346   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5347     const char *SymName = S->getSymbol();
5348     if (!Subtarget.isAIXABI())
5349       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5350                                          UsePlt ? PPCII::MO_PLT : 0);
5351 
5352     // If there exists a user-declared function whose name is the same as the
5353     // ExternalSymbol's, then we pick up the user-declared version.
5354     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5355     if (const Function *F =
5356             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5357       const XCOFF::StorageClass SC =
5358           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5359       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5360                                               SC);
5361     }
5362 
5363     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5364   }
5365 
5366   // No transformation needed.
5367   assert(Callee.getNode() && "What no callee?");
5368   return Callee;
5369 }
5370 
5371 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5372   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5373          "Expected a CALLSEQ_STARTSDNode.");
5374 
5375   // The last operand is the chain, except when the node has glue. If the node
5376   // has glue, then the last operand is the glue, and the chain is the second
5377   // last operand.
5378   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5379   if (LastValue.getValueType() != MVT::Glue)
5380     return LastValue;
5381 
5382   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5383 }
5384 
5385 // Creates the node that moves a functions address into the count register
5386 // to prepare for an indirect call instruction.
5387 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5388                                 SDValue &Glue, SDValue &Chain,
5389                                 const SDLoc &dl) {
5390   SDValue MTCTROps[] = {Chain, Callee, Glue};
5391   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5392   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5393                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5394   // The glue is the second value produced.
5395   Glue = Chain.getValue(1);
5396 }
5397 
5398 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5399                                           SDValue &Glue, SDValue &Chain,
5400                                           SDValue CallSeqStart,
5401                                           const CallBase *CB, const SDLoc &dl,
5402                                           bool hasNest,
5403                                           const PPCSubtarget &Subtarget) {
5404   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5405   // entry point, but to the function descriptor (the function entry point
5406   // address is part of the function descriptor though).
5407   // The function descriptor is a three doubleword structure with the
5408   // following fields: function entry point, TOC base address and
5409   // environment pointer.
5410   // Thus for a call through a function pointer, the following actions need
5411   // to be performed:
5412   //   1. Save the TOC of the caller in the TOC save area of its stack
5413   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5414   //   2. Load the address of the function entry point from the function
5415   //      descriptor.
5416   //   3. Load the TOC of the callee from the function descriptor into r2.
5417   //   4. Load the environment pointer from the function descriptor into
5418   //      r11.
5419   //   5. Branch to the function entry point address.
5420   //   6. On return of the callee, the TOC of the caller needs to be
5421   //      restored (this is done in FinishCall()).
5422   //
5423   // The loads are scheduled at the beginning of the call sequence, and the
5424   // register copies are flagged together to ensure that no other
5425   // operations can be scheduled in between. E.g. without flagging the
5426   // copies together, a TOC access in the caller could be scheduled between
5427   // the assignment of the callee TOC and the branch to the callee, which leads
5428   // to incorrect code.
5429 
5430   // Start by loading the function address from the descriptor.
5431   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5432   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5433                       ? (MachineMemOperand::MODereferenceable |
5434                          MachineMemOperand::MOInvariant)
5435                       : MachineMemOperand::MONone;
5436 
5437   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5438 
5439   // Registers used in building the DAG.
5440   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5441   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5442 
5443   // Offsets of descriptor members.
5444   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5445   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5446 
5447   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5448   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5449 
5450   // One load for the functions entry point address.
5451   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5452                                     Alignment, MMOFlags);
5453 
5454   // One for loading the TOC anchor for the module that contains the called
5455   // function.
5456   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5457   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5458   SDValue TOCPtr =
5459       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5460                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5461 
5462   // One for loading the environment pointer.
5463   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5464   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5465   SDValue LoadEnvPtr =
5466       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5467                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5468 
5469 
5470   // Then copy the newly loaded TOC anchor to the TOC pointer.
5471   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5472   Chain = TOCVal.getValue(0);
5473   Glue = TOCVal.getValue(1);
5474 
5475   // If the function call has an explicit 'nest' parameter, it takes the
5476   // place of the environment pointer.
5477   assert((!hasNest || !Subtarget.isAIXABI()) &&
5478          "Nest parameter is not supported on AIX.");
5479   if (!hasNest) {
5480     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5481     Chain = EnvVal.getValue(0);
5482     Glue = EnvVal.getValue(1);
5483   }
5484 
5485   // The rest of the indirect call sequence is the same as the non-descriptor
5486   // DAG.
5487   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5488 }
5489 
5490 static void
5491 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5492                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5493                   SelectionDAG &DAG,
5494                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5495                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5496                   const PPCSubtarget &Subtarget) {
5497   const bool IsPPC64 = Subtarget.isPPC64();
5498   // MVT for a general purpose register.
5499   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5500 
5501   // First operand is always the chain.
5502   Ops.push_back(Chain);
5503 
5504   // If it's a direct call pass the callee as the second operand.
5505   if (!CFlags.IsIndirect)
5506     Ops.push_back(Callee);
5507   else {
5508     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5509 
5510     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5511     // on the stack (this would have been done in `LowerCall_64SVR4` or
5512     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5513     // represents both the indirect branch and a load that restores the TOC
5514     // pointer from the linkage area. The operand for the TOC restore is an add
5515     // of the TOC save offset to the stack pointer. This must be the second
5516     // operand: after the chain input but before any other variadic arguments.
5517     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5518     // saved or used.
5519     if (isTOCSaveRestoreRequired(Subtarget)) {
5520       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5521 
5522       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5523       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5524       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5525       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5526       Ops.push_back(AddTOC);
5527     }
5528 
5529     // Add the register used for the environment pointer.
5530     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5531       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5532                                     RegVT));
5533 
5534 
5535     // Add CTR register as callee so a bctr can be emitted later.
5536     if (CFlags.IsTailCall)
5537       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5538   }
5539 
5540   // If this is a tail call add stack pointer delta.
5541   if (CFlags.IsTailCall)
5542     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5543 
5544   // Add argument registers to the end of the list so that they are known live
5545   // into the call.
5546   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5547     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5548                                   RegsToPass[i].second.getValueType()));
5549 
5550   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5551   // no way to mark dependencies as implicit here.
5552   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5553   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5554        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5555     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5556 
5557   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5558   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5559     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5560 
5561   // Add a register mask operand representing the call-preserved registers.
5562   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5563   const uint32_t *Mask =
5564       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5565   assert(Mask && "Missing call preserved mask for calling convention");
5566   Ops.push_back(DAG.getRegisterMask(Mask));
5567 
5568   // If the glue is valid, it is the last operand.
5569   if (Glue.getNode())
5570     Ops.push_back(Glue);
5571 }
5572 
5573 SDValue PPCTargetLowering::FinishCall(
5574     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5575     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5576     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5577     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5578     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5579 
5580   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5581       Subtarget.isAIXABI())
5582     setUsesTOCBasePtr(DAG);
5583 
5584   unsigned CallOpc =
5585       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5586                     Subtarget, DAG.getTarget());
5587 
5588   if (!CFlags.IsIndirect)
5589     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5590   else if (Subtarget.usesFunctionDescriptors())
5591     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5592                                   dl, CFlags.HasNest, Subtarget);
5593   else
5594     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5595 
5596   // Build the operand list for the call instruction.
5597   SmallVector<SDValue, 8> Ops;
5598   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5599                     SPDiff, Subtarget);
5600 
5601   // Emit tail call.
5602   if (CFlags.IsTailCall) {
5603     // Indirect tail call when using PC Relative calls do not have the same
5604     // constraints.
5605     assert(((Callee.getOpcode() == ISD::Register &&
5606              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5607             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5608             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5609             isa<ConstantSDNode>(Callee) ||
5610             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5611            "Expecting a global address, external symbol, absolute value, "
5612            "register or an indirect tail call when PC Relative calls are "
5613            "used.");
5614     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5615     assert(CallOpc == PPCISD::TC_RETURN &&
5616            "Unexpected call opcode for a tail call.");
5617     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5618     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5619   }
5620 
5621   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5622   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5623   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5624   Glue = Chain.getValue(1);
5625 
5626   // When performing tail call optimization the callee pops its arguments off
5627   // the stack. Account for this here so these bytes can be pushed back on in
5628   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5629   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5630                          getTargetMachine().Options.GuaranteedTailCallOpt)
5631                             ? NumBytes
5632                             : 0;
5633 
5634   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5635                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5636                              Glue, dl);
5637   Glue = Chain.getValue(1);
5638 
5639   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5640                          DAG, InVals);
5641 }
5642 
5643 SDValue
5644 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5645                              SmallVectorImpl<SDValue> &InVals) const {
5646   SelectionDAG &DAG                     = CLI.DAG;
5647   SDLoc &dl                             = CLI.DL;
5648   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5649   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5650   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5651   SDValue Chain                         = CLI.Chain;
5652   SDValue Callee                        = CLI.Callee;
5653   bool &isTailCall                      = CLI.IsTailCall;
5654   CallingConv::ID CallConv              = CLI.CallConv;
5655   bool isVarArg                         = CLI.IsVarArg;
5656   bool isPatchPoint                     = CLI.IsPatchPoint;
5657   const CallBase *CB                    = CLI.CB;
5658 
5659   if (isTailCall) {
5660     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5661       isTailCall = false;
5662     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5663       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5664           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5665     else
5666       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5667                                                      Ins, DAG);
5668     if (isTailCall) {
5669       ++NumTailCalls;
5670       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5671         ++NumSiblingCalls;
5672 
5673       // PC Relative calls no longer guarantee that the callee is a Global
5674       // Address Node. The callee could be an indirect tail call in which
5675       // case the SDValue for the callee could be a load (to load the address
5676       // of a function pointer) or it may be a register copy (to move the
5677       // address of the callee from a function parameter into a virtual
5678       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5679       assert((Subtarget.isUsingPCRelativeCalls() ||
5680               isa<GlobalAddressSDNode>(Callee)) &&
5681              "Callee should be an llvm::Function object.");
5682 
5683       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5684                         << "\nTCO callee: ");
5685       LLVM_DEBUG(Callee.dump());
5686     }
5687   }
5688 
5689   if (!isTailCall && CB && CB->isMustTailCall())
5690     report_fatal_error("failed to perform tail call elimination on a call "
5691                        "site marked musttail");
5692 
5693   // When long calls (i.e. indirect calls) are always used, calls are always
5694   // made via function pointer. If we have a function name, first translate it
5695   // into a pointer.
5696   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5697       !isTailCall)
5698     Callee = LowerGlobalAddress(Callee, DAG);
5699 
5700   CallFlags CFlags(
5701       CallConv, isTailCall, isVarArg, isPatchPoint,
5702       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5703       // hasNest
5704       Subtarget.is64BitELFABI() &&
5705           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5706       CLI.NoMerge);
5707 
5708   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5709     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5710                             InVals, CB);
5711 
5712   if (Subtarget.isSVR4ABI())
5713     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5714                             InVals, CB);
5715 
5716   if (Subtarget.isAIXABI())
5717     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5718                          InVals, CB);
5719 
5720   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5721                           InVals, CB);
5722 }
5723 
5724 SDValue PPCTargetLowering::LowerCall_32SVR4(
5725     SDValue Chain, SDValue Callee, CallFlags CFlags,
5726     const SmallVectorImpl<ISD::OutputArg> &Outs,
5727     const SmallVectorImpl<SDValue> &OutVals,
5728     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5729     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5730     const CallBase *CB) const {
5731   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5732   // of the 32-bit SVR4 ABI stack frame layout.
5733 
5734   const CallingConv::ID CallConv = CFlags.CallConv;
5735   const bool IsVarArg = CFlags.IsVarArg;
5736   const bool IsTailCall = CFlags.IsTailCall;
5737 
5738   assert((CallConv == CallingConv::C ||
5739           CallConv == CallingConv::Cold ||
5740           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5741 
5742   const Align PtrAlign(4);
5743 
5744   MachineFunction &MF = DAG.getMachineFunction();
5745 
5746   // Mark this function as potentially containing a function that contains a
5747   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5748   // and restoring the callers stack pointer in this functions epilog. This is
5749   // done because by tail calling the called function might overwrite the value
5750   // in this function's (MF) stack pointer stack slot 0(SP).
5751   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5752       CallConv == CallingConv::Fast)
5753     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5754 
5755   // Count how many bytes are to be pushed on the stack, including the linkage
5756   // area, parameter list area and the part of the local variable space which
5757   // contains copies of aggregates which are passed by value.
5758 
5759   // Assign locations to all of the outgoing arguments.
5760   SmallVector<CCValAssign, 16> ArgLocs;
5761   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5762 
5763   // Reserve space for the linkage area on the stack.
5764   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5765                        PtrAlign);
5766   if (useSoftFloat())
5767     CCInfo.PreAnalyzeCallOperands(Outs);
5768 
5769   if (IsVarArg) {
5770     // Handle fixed and variable vector arguments differently.
5771     // Fixed vector arguments go into registers as long as registers are
5772     // available. Variable vector arguments always go into memory.
5773     unsigned NumArgs = Outs.size();
5774 
5775     for (unsigned i = 0; i != NumArgs; ++i) {
5776       MVT ArgVT = Outs[i].VT;
5777       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5778       bool Result;
5779 
5780       if (Outs[i].IsFixed) {
5781         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5782                                CCInfo);
5783       } else {
5784         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5785                                       ArgFlags, CCInfo);
5786       }
5787 
5788       if (Result) {
5789 #ifndef NDEBUG
5790         errs() << "Call operand #" << i << " has unhandled type "
5791              << EVT(ArgVT).getEVTString() << "\n";
5792 #endif
5793         llvm_unreachable(nullptr);
5794       }
5795     }
5796   } else {
5797     // All arguments are treated the same.
5798     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5799   }
5800   CCInfo.clearWasPPCF128();
5801 
5802   // Assign locations to all of the outgoing aggregate by value arguments.
5803   SmallVector<CCValAssign, 16> ByValArgLocs;
5804   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5805 
5806   // Reserve stack space for the allocations in CCInfo.
5807   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5808 
5809   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5810 
5811   // Size of the linkage area, parameter list area and the part of the local
5812   // space variable where copies of aggregates which are passed by value are
5813   // stored.
5814   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5815 
5816   // Calculate by how many bytes the stack has to be adjusted in case of tail
5817   // call optimization.
5818   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5819 
5820   // Adjust the stack pointer for the new arguments...
5821   // These operations are automatically eliminated by the prolog/epilog pass
5822   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5823   SDValue CallSeqStart = Chain;
5824 
5825   // Load the return address and frame pointer so it can be moved somewhere else
5826   // later.
5827   SDValue LROp, FPOp;
5828   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5829 
5830   // Set up a copy of the stack pointer for use loading and storing any
5831   // arguments that may not fit in the registers available for argument
5832   // passing.
5833   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5834 
5835   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5836   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5837   SmallVector<SDValue, 8> MemOpChains;
5838 
5839   bool seenFloatArg = false;
5840   // Walk the register/memloc assignments, inserting copies/loads.
5841   // i - Tracks the index into the list of registers allocated for the call
5842   // RealArgIdx - Tracks the index into the list of actual function arguments
5843   // j - Tracks the index into the list of byval arguments
5844   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5845        i != e;
5846        ++i, ++RealArgIdx) {
5847     CCValAssign &VA = ArgLocs[i];
5848     SDValue Arg = OutVals[RealArgIdx];
5849     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5850 
5851     if (Flags.isByVal()) {
5852       // Argument is an aggregate which is passed by value, thus we need to
5853       // create a copy of it in the local variable space of the current stack
5854       // frame (which is the stack frame of the caller) and pass the address of
5855       // this copy to the callee.
5856       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5857       CCValAssign &ByValVA = ByValArgLocs[j++];
5858       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5859 
5860       // Memory reserved in the local variable space of the callers stack frame.
5861       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5862 
5863       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5864       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5865                            StackPtr, PtrOff);
5866 
5867       // Create a copy of the argument in the local area of the current
5868       // stack frame.
5869       SDValue MemcpyCall =
5870         CreateCopyOfByValArgument(Arg, PtrOff,
5871                                   CallSeqStart.getNode()->getOperand(0),
5872                                   Flags, DAG, dl);
5873 
5874       // This must go outside the CALLSEQ_START..END.
5875       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5876                                                      SDLoc(MemcpyCall));
5877       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5878                              NewCallSeqStart.getNode());
5879       Chain = CallSeqStart = NewCallSeqStart;
5880 
5881       // Pass the address of the aggregate copy on the stack either in a
5882       // physical register or in the parameter list area of the current stack
5883       // frame to the callee.
5884       Arg = PtrOff;
5885     }
5886 
5887     // When useCRBits() is true, there can be i1 arguments.
5888     // It is because getRegisterType(MVT::i1) => MVT::i1,
5889     // and for other integer types getRegisterType() => MVT::i32.
5890     // Extend i1 and ensure callee will get i32.
5891     if (Arg.getValueType() == MVT::i1)
5892       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5893                         dl, MVT::i32, Arg);
5894 
5895     if (VA.isRegLoc()) {
5896       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5897       // Put argument in a physical register.
5898       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5899         bool IsLE = Subtarget.isLittleEndian();
5900         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5901                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5902         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5903         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5904                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5905         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5906                              SVal.getValue(0)));
5907       } else
5908         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5909     } else {
5910       // Put argument in the parameter list area of the current stack frame.
5911       assert(VA.isMemLoc());
5912       unsigned LocMemOffset = VA.getLocMemOffset();
5913 
5914       if (!IsTailCall) {
5915         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5916         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5917                              StackPtr, PtrOff);
5918 
5919         MemOpChains.push_back(
5920             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5921       } else {
5922         // Calculate and remember argument location.
5923         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5924                                  TailCallArguments);
5925       }
5926     }
5927   }
5928 
5929   if (!MemOpChains.empty())
5930     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5931 
5932   // Build a sequence of copy-to-reg nodes chained together with token chain
5933   // and flag operands which copy the outgoing args into the appropriate regs.
5934   SDValue InFlag;
5935   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5936     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5937                              RegsToPass[i].second, InFlag);
5938     InFlag = Chain.getValue(1);
5939   }
5940 
5941   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5942   // registers.
5943   if (IsVarArg) {
5944     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5945     SDValue Ops[] = { Chain, InFlag };
5946 
5947     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5948                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5949 
5950     InFlag = Chain.getValue(1);
5951   }
5952 
5953   if (IsTailCall)
5954     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5955                     TailCallArguments);
5956 
5957   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5958                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5959 }
5960 
5961 // Copy an argument into memory, being careful to do this outside the
5962 // call sequence for the call to which the argument belongs.
5963 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5964     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5965     SelectionDAG &DAG, const SDLoc &dl) const {
5966   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5967                         CallSeqStart.getNode()->getOperand(0),
5968                         Flags, DAG, dl);
5969   // The MEMCPY must go outside the CALLSEQ_START..END.
5970   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5971   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5972                                                  SDLoc(MemcpyCall));
5973   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5974                          NewCallSeqStart.getNode());
5975   return NewCallSeqStart;
5976 }
5977 
5978 SDValue PPCTargetLowering::LowerCall_64SVR4(
5979     SDValue Chain, SDValue Callee, CallFlags CFlags,
5980     const SmallVectorImpl<ISD::OutputArg> &Outs,
5981     const SmallVectorImpl<SDValue> &OutVals,
5982     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5983     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5984     const CallBase *CB) const {
5985   bool isELFv2ABI = Subtarget.isELFv2ABI();
5986   bool isLittleEndian = Subtarget.isLittleEndian();
5987   unsigned NumOps = Outs.size();
5988   bool IsSibCall = false;
5989   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5990 
5991   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5992   unsigned PtrByteSize = 8;
5993 
5994   MachineFunction &MF = DAG.getMachineFunction();
5995 
5996   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5997     IsSibCall = true;
5998 
5999   // Mark this function as potentially containing a function that contains a
6000   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6001   // and restoring the callers stack pointer in this functions epilog. This is
6002   // done because by tail calling the called function might overwrite the value
6003   // in this function's (MF) stack pointer stack slot 0(SP).
6004   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6005     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6006 
6007   assert(!(IsFastCall && CFlags.IsVarArg) &&
6008          "fastcc not supported on varargs functions");
6009 
6010   // Count how many bytes are to be pushed on the stack, including the linkage
6011   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6012   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6013   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6014   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6015   unsigned NumBytes = LinkageSize;
6016   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6017   unsigned &QFPR_idx = FPR_idx;
6018 
6019   static const MCPhysReg GPR[] = {
6020     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6021     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6022   };
6023   static const MCPhysReg VR[] = {
6024     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6025     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6026   };
6027 
6028   const unsigned NumGPRs = array_lengthof(GPR);
6029   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6030   const unsigned NumVRs  = array_lengthof(VR);
6031   const unsigned NumQFPRs = NumFPRs;
6032 
6033   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6034   // can be passed to the callee in registers.
6035   // For the fast calling convention, there is another check below.
6036   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6037   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6038   if (!HasParameterArea) {
6039     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6040     unsigned AvailableFPRs = NumFPRs;
6041     unsigned AvailableVRs = NumVRs;
6042     unsigned NumBytesTmp = NumBytes;
6043     for (unsigned i = 0; i != NumOps; ++i) {
6044       if (Outs[i].Flags.isNest()) continue;
6045       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6046                                 PtrByteSize, LinkageSize, ParamAreaSize,
6047                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
6048                                 Subtarget.hasQPX()))
6049         HasParameterArea = true;
6050     }
6051   }
6052 
6053   // When using the fast calling convention, we don't provide backing for
6054   // arguments that will be in registers.
6055   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6056 
6057   // Avoid allocating parameter area for fastcc functions if all the arguments
6058   // can be passed in the registers.
6059   if (IsFastCall)
6060     HasParameterArea = false;
6061 
6062   // Add up all the space actually used.
6063   for (unsigned i = 0; i != NumOps; ++i) {
6064     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6065     EVT ArgVT = Outs[i].VT;
6066     EVT OrigVT = Outs[i].ArgVT;
6067 
6068     if (Flags.isNest())
6069       continue;
6070 
6071     if (IsFastCall) {
6072       if (Flags.isByVal()) {
6073         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6074         if (NumGPRsUsed > NumGPRs)
6075           HasParameterArea = true;
6076       } else {
6077         switch (ArgVT.getSimpleVT().SimpleTy) {
6078         default: llvm_unreachable("Unexpected ValueType for argument!");
6079         case MVT::i1:
6080         case MVT::i32:
6081         case MVT::i64:
6082           if (++NumGPRsUsed <= NumGPRs)
6083             continue;
6084           break;
6085         case MVT::v4i32:
6086         case MVT::v8i16:
6087         case MVT::v16i8:
6088         case MVT::v2f64:
6089         case MVT::v2i64:
6090         case MVT::v1i128:
6091         case MVT::f128:
6092           if (++NumVRsUsed <= NumVRs)
6093             continue;
6094           break;
6095         case MVT::v4f32:
6096           // When using QPX, this is handled like a FP register, otherwise, it
6097           // is an Altivec register.
6098           if (Subtarget.hasQPX()) {
6099             if (++NumFPRsUsed <= NumFPRs)
6100               continue;
6101           } else {
6102             if (++NumVRsUsed <= NumVRs)
6103               continue;
6104           }
6105           break;
6106         case MVT::f32:
6107         case MVT::f64:
6108         case MVT::v4f64: // QPX
6109         case MVT::v4i1:  // QPX
6110           if (++NumFPRsUsed <= NumFPRs)
6111             continue;
6112           break;
6113         }
6114         HasParameterArea = true;
6115       }
6116     }
6117 
6118     /* Respect alignment of argument on the stack.  */
6119     auto Alignement =
6120         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6121     NumBytes = alignTo(NumBytes, Alignement);
6122 
6123     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6124     if (Flags.isInConsecutiveRegsLast())
6125       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6126   }
6127 
6128   unsigned NumBytesActuallyUsed = NumBytes;
6129 
6130   // In the old ELFv1 ABI,
6131   // the prolog code of the callee may store up to 8 GPR argument registers to
6132   // the stack, allowing va_start to index over them in memory if its varargs.
6133   // Because we cannot tell if this is needed on the caller side, we have to
6134   // conservatively assume that it is needed.  As such, make sure we have at
6135   // least enough stack space for the caller to store the 8 GPRs.
6136   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6137   // really requires memory operands, e.g. a vararg function.
6138   if (HasParameterArea)
6139     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6140   else
6141     NumBytes = LinkageSize;
6142 
6143   // Tail call needs the stack to be aligned.
6144   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6145     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6146 
6147   int SPDiff = 0;
6148 
6149   // Calculate by how many bytes the stack has to be adjusted in case of tail
6150   // call optimization.
6151   if (!IsSibCall)
6152     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6153 
6154   // To protect arguments on the stack from being clobbered in a tail call,
6155   // force all the loads to happen before doing any other lowering.
6156   if (CFlags.IsTailCall)
6157     Chain = DAG.getStackArgumentTokenFactor(Chain);
6158 
6159   // Adjust the stack pointer for the new arguments...
6160   // These operations are automatically eliminated by the prolog/epilog pass
6161   if (!IsSibCall)
6162     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6163   SDValue CallSeqStart = Chain;
6164 
6165   // Load the return address and frame pointer so it can be move somewhere else
6166   // later.
6167   SDValue LROp, FPOp;
6168   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6169 
6170   // Set up a copy of the stack pointer for use loading and storing any
6171   // arguments that may not fit in the registers available for argument
6172   // passing.
6173   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6174 
6175   // Figure out which arguments are going to go in registers, and which in
6176   // memory.  Also, if this is a vararg function, floating point operations
6177   // must be stored to our stack, and loaded into integer regs as well, if
6178   // any integer regs are available for argument passing.
6179   unsigned ArgOffset = LinkageSize;
6180 
6181   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6182   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6183 
6184   SmallVector<SDValue, 8> MemOpChains;
6185   for (unsigned i = 0; i != NumOps; ++i) {
6186     SDValue Arg = OutVals[i];
6187     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6188     EVT ArgVT = Outs[i].VT;
6189     EVT OrigVT = Outs[i].ArgVT;
6190 
6191     // PtrOff will be used to store the current argument to the stack if a
6192     // register cannot be found for it.
6193     SDValue PtrOff;
6194 
6195     // We re-align the argument offset for each argument, except when using the
6196     // fast calling convention, when we need to make sure we do that only when
6197     // we'll actually use a stack slot.
6198     auto ComputePtrOff = [&]() {
6199       /* Respect alignment of argument on the stack.  */
6200       auto Alignment =
6201           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6202       ArgOffset = alignTo(ArgOffset, Alignment);
6203 
6204       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6205 
6206       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6207     };
6208 
6209     if (!IsFastCall) {
6210       ComputePtrOff();
6211 
6212       /* Compute GPR index associated with argument offset.  */
6213       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6214       GPR_idx = std::min(GPR_idx, NumGPRs);
6215     }
6216 
6217     // Promote integers to 64-bit values.
6218     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6219       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6220       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6221       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6222     }
6223 
6224     // FIXME memcpy is used way more than necessary.  Correctness first.
6225     // Note: "by value" is code for passing a structure by value, not
6226     // basic types.
6227     if (Flags.isByVal()) {
6228       // Note: Size includes alignment padding, so
6229       //   struct x { short a; char b; }
6230       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6231       // These are the proper values we need for right-justifying the
6232       // aggregate in a parameter register.
6233       unsigned Size = Flags.getByValSize();
6234 
6235       // An empty aggregate parameter takes up no storage and no
6236       // registers.
6237       if (Size == 0)
6238         continue;
6239 
6240       if (IsFastCall)
6241         ComputePtrOff();
6242 
6243       // All aggregates smaller than 8 bytes must be passed right-justified.
6244       if (Size==1 || Size==2 || Size==4) {
6245         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6246         if (GPR_idx != NumGPRs) {
6247           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6248                                         MachinePointerInfo(), VT);
6249           MemOpChains.push_back(Load.getValue(1));
6250           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6251 
6252           ArgOffset += PtrByteSize;
6253           continue;
6254         }
6255       }
6256 
6257       if (GPR_idx == NumGPRs && Size < 8) {
6258         SDValue AddPtr = PtrOff;
6259         if (!isLittleEndian) {
6260           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6261                                           PtrOff.getValueType());
6262           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6263         }
6264         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6265                                                           CallSeqStart,
6266                                                           Flags, DAG, dl);
6267         ArgOffset += PtrByteSize;
6268         continue;
6269       }
6270       // Copy entire object into memory.  There are cases where gcc-generated
6271       // code assumes it is there, even if it could be put entirely into
6272       // registers.  (This is not what the doc says.)
6273 
6274       // FIXME: The above statement is likely due to a misunderstanding of the
6275       // documents.  All arguments must be copied into the parameter area BY
6276       // THE CALLEE in the event that the callee takes the address of any
6277       // formal argument.  That has not yet been implemented.  However, it is
6278       // reasonable to use the stack area as a staging area for the register
6279       // load.
6280 
6281       // Skip this for small aggregates, as we will use the same slot for a
6282       // right-justified copy, below.
6283       if (Size >= 8)
6284         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6285                                                           CallSeqStart,
6286                                                           Flags, DAG, dl);
6287 
6288       // When a register is available, pass a small aggregate right-justified.
6289       if (Size < 8 && GPR_idx != NumGPRs) {
6290         // The easiest way to get this right-justified in a register
6291         // is to copy the structure into the rightmost portion of a
6292         // local variable slot, then load the whole slot into the
6293         // register.
6294         // FIXME: The memcpy seems to produce pretty awful code for
6295         // small aggregates, particularly for packed ones.
6296         // FIXME: It would be preferable to use the slot in the
6297         // parameter save area instead of a new local variable.
6298         SDValue AddPtr = PtrOff;
6299         if (!isLittleEndian) {
6300           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6301           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6302         }
6303         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6304                                                           CallSeqStart,
6305                                                           Flags, DAG, dl);
6306 
6307         // Load the slot into the register.
6308         SDValue Load =
6309             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6310         MemOpChains.push_back(Load.getValue(1));
6311         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6312 
6313         // Done with this argument.
6314         ArgOffset += PtrByteSize;
6315         continue;
6316       }
6317 
6318       // For aggregates larger than PtrByteSize, copy the pieces of the
6319       // object that fit into registers from the parameter save area.
6320       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6321         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6322         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6323         if (GPR_idx != NumGPRs) {
6324           SDValue Load =
6325               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6326           MemOpChains.push_back(Load.getValue(1));
6327           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6328           ArgOffset += PtrByteSize;
6329         } else {
6330           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6331           break;
6332         }
6333       }
6334       continue;
6335     }
6336 
6337     switch (Arg.getSimpleValueType().SimpleTy) {
6338     default: llvm_unreachable("Unexpected ValueType for argument!");
6339     case MVT::i1:
6340     case MVT::i32:
6341     case MVT::i64:
6342       if (Flags.isNest()) {
6343         // The 'nest' parameter, if any, is passed in R11.
6344         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6345         break;
6346       }
6347 
6348       // These can be scalar arguments or elements of an integer array type
6349       // passed directly.  Clang may use those instead of "byval" aggregate
6350       // types to avoid forcing arguments to memory unnecessarily.
6351       if (GPR_idx != NumGPRs) {
6352         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6353       } else {
6354         if (IsFastCall)
6355           ComputePtrOff();
6356 
6357         assert(HasParameterArea &&
6358                "Parameter area must exist to pass an argument in memory.");
6359         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6360                          true, CFlags.IsTailCall, false, MemOpChains,
6361                          TailCallArguments, dl);
6362         if (IsFastCall)
6363           ArgOffset += PtrByteSize;
6364       }
6365       if (!IsFastCall)
6366         ArgOffset += PtrByteSize;
6367       break;
6368     case MVT::f32:
6369     case MVT::f64: {
6370       // These can be scalar arguments or elements of a float array type
6371       // passed directly.  The latter are used to implement ELFv2 homogenous
6372       // float aggregates.
6373 
6374       // Named arguments go into FPRs first, and once they overflow, the
6375       // remaining arguments go into GPRs and then the parameter save area.
6376       // Unnamed arguments for vararg functions always go to GPRs and
6377       // then the parameter save area.  For now, put all arguments to vararg
6378       // routines always in both locations (FPR *and* GPR or stack slot).
6379       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6380       bool NeededLoad = false;
6381 
6382       // First load the argument into the next available FPR.
6383       if (FPR_idx != NumFPRs)
6384         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6385 
6386       // Next, load the argument into GPR or stack slot if needed.
6387       if (!NeedGPROrStack)
6388         ;
6389       else if (GPR_idx != NumGPRs && !IsFastCall) {
6390         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6391         // once we support fp <-> gpr moves.
6392 
6393         // In the non-vararg case, this can only ever happen in the
6394         // presence of f32 array types, since otherwise we never run
6395         // out of FPRs before running out of GPRs.
6396         SDValue ArgVal;
6397 
6398         // Double values are always passed in a single GPR.
6399         if (Arg.getValueType() != MVT::f32) {
6400           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6401 
6402         // Non-array float values are extended and passed in a GPR.
6403         } else if (!Flags.isInConsecutiveRegs()) {
6404           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6405           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6406 
6407         // If we have an array of floats, we collect every odd element
6408         // together with its predecessor into one GPR.
6409         } else if (ArgOffset % PtrByteSize != 0) {
6410           SDValue Lo, Hi;
6411           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6412           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6413           if (!isLittleEndian)
6414             std::swap(Lo, Hi);
6415           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6416 
6417         // The final element, if even, goes into the first half of a GPR.
6418         } else if (Flags.isInConsecutiveRegsLast()) {
6419           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6420           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6421           if (!isLittleEndian)
6422             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6423                                  DAG.getConstant(32, dl, MVT::i32));
6424 
6425         // Non-final even elements are skipped; they will be handled
6426         // together the with subsequent argument on the next go-around.
6427         } else
6428           ArgVal = SDValue();
6429 
6430         if (ArgVal.getNode())
6431           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6432       } else {
6433         if (IsFastCall)
6434           ComputePtrOff();
6435 
6436         // Single-precision floating-point values are mapped to the
6437         // second (rightmost) word of the stack doubleword.
6438         if (Arg.getValueType() == MVT::f32 &&
6439             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6440           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6441           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6442         }
6443 
6444         assert(HasParameterArea &&
6445                "Parameter area must exist to pass an argument in memory.");
6446         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6447                          true, CFlags.IsTailCall, false, MemOpChains,
6448                          TailCallArguments, dl);
6449 
6450         NeededLoad = true;
6451       }
6452       // When passing an array of floats, the array occupies consecutive
6453       // space in the argument area; only round up to the next doubleword
6454       // at the end of the array.  Otherwise, each float takes 8 bytes.
6455       if (!IsFastCall || NeededLoad) {
6456         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6457                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6458         if (Flags.isInConsecutiveRegsLast())
6459           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6460       }
6461       break;
6462     }
6463     case MVT::v4f32:
6464     case MVT::v4i32:
6465     case MVT::v8i16:
6466     case MVT::v16i8:
6467     case MVT::v2f64:
6468     case MVT::v2i64:
6469     case MVT::v1i128:
6470     case MVT::f128:
6471       if (!Subtarget.hasQPX()) {
6472       // These can be scalar arguments or elements of a vector array type
6473       // passed directly.  The latter are used to implement ELFv2 homogenous
6474       // vector aggregates.
6475 
6476       // For a varargs call, named arguments go into VRs or on the stack as
6477       // usual; unnamed arguments always go to the stack or the corresponding
6478       // GPRs when within range.  For now, we always put the value in both
6479       // locations (or even all three).
6480       if (CFlags.IsVarArg) {
6481         assert(HasParameterArea &&
6482                "Parameter area must exist if we have a varargs call.");
6483         // We could elide this store in the case where the object fits
6484         // entirely in R registers.  Maybe later.
6485         SDValue Store =
6486             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6487         MemOpChains.push_back(Store);
6488         if (VR_idx != NumVRs) {
6489           SDValue Load =
6490               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6491           MemOpChains.push_back(Load.getValue(1));
6492           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6493         }
6494         ArgOffset += 16;
6495         for (unsigned i=0; i<16; i+=PtrByteSize) {
6496           if (GPR_idx == NumGPRs)
6497             break;
6498           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6499                                    DAG.getConstant(i, dl, PtrVT));
6500           SDValue Load =
6501               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6502           MemOpChains.push_back(Load.getValue(1));
6503           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6504         }
6505         break;
6506       }
6507 
6508       // Non-varargs Altivec params go into VRs or on the stack.
6509       if (VR_idx != NumVRs) {
6510         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6511       } else {
6512         if (IsFastCall)
6513           ComputePtrOff();
6514 
6515         assert(HasParameterArea &&
6516                "Parameter area must exist to pass an argument in memory.");
6517         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6518                          true, CFlags.IsTailCall, true, MemOpChains,
6519                          TailCallArguments, dl);
6520         if (IsFastCall)
6521           ArgOffset += 16;
6522       }
6523 
6524       if (!IsFastCall)
6525         ArgOffset += 16;
6526       break;
6527       } // not QPX
6528 
6529       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6530              "Invalid QPX parameter type");
6531 
6532       LLVM_FALLTHROUGH;
6533     case MVT::v4f64:
6534     case MVT::v4i1: {
6535       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6536       if (CFlags.IsVarArg) {
6537         assert(HasParameterArea &&
6538                "Parameter area must exist if we have a varargs call.");
6539         // We could elide this store in the case where the object fits
6540         // entirely in R registers.  Maybe later.
6541         SDValue Store =
6542             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6543         MemOpChains.push_back(Store);
6544         if (QFPR_idx != NumQFPRs) {
6545           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6546                                      PtrOff, MachinePointerInfo());
6547           MemOpChains.push_back(Load.getValue(1));
6548           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6549         }
6550         ArgOffset += (IsF32 ? 16 : 32);
6551         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6552           if (GPR_idx == NumGPRs)
6553             break;
6554           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6555                                    DAG.getConstant(i, dl, PtrVT));
6556           SDValue Load =
6557               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6558           MemOpChains.push_back(Load.getValue(1));
6559           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6560         }
6561         break;
6562       }
6563 
6564       // Non-varargs QPX params go into registers or on the stack.
6565       if (QFPR_idx != NumQFPRs) {
6566         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6567       } else {
6568         if (IsFastCall)
6569           ComputePtrOff();
6570 
6571         assert(HasParameterArea &&
6572                "Parameter area must exist to pass an argument in memory.");
6573         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6574                          true, CFlags.IsTailCall, true, MemOpChains,
6575                          TailCallArguments, dl);
6576         if (IsFastCall)
6577           ArgOffset += (IsF32 ? 16 : 32);
6578       }
6579 
6580       if (!IsFastCall)
6581         ArgOffset += (IsF32 ? 16 : 32);
6582       break;
6583       }
6584     }
6585   }
6586 
6587   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6588          "mismatch in size of parameter area");
6589   (void)NumBytesActuallyUsed;
6590 
6591   if (!MemOpChains.empty())
6592     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6593 
6594   // Check if this is an indirect call (MTCTR/BCTRL).
6595   // See prepareDescriptorIndirectCall and buildCallOperands for more
6596   // information about calls through function pointers in the 64-bit SVR4 ABI.
6597   if (CFlags.IsIndirect) {
6598     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6599     // caller in the TOC save area.
6600     if (isTOCSaveRestoreRequired(Subtarget)) {
6601       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6602       // Load r2 into a virtual register and store it to the TOC save area.
6603       setUsesTOCBasePtr(DAG);
6604       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6605       // TOC save area offset.
6606       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6607       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6608       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6609       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6610                            MachinePointerInfo::getStack(
6611                                DAG.getMachineFunction(), TOCSaveOffset));
6612     }
6613     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6614     // This does not mean the MTCTR instruction must use R12; it's easier
6615     // to model this as an extra parameter, so do that.
6616     if (isELFv2ABI && !CFlags.IsPatchPoint)
6617       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6618   }
6619 
6620   // Build a sequence of copy-to-reg nodes chained together with token chain
6621   // and flag operands which copy the outgoing args into the appropriate regs.
6622   SDValue InFlag;
6623   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6624     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6625                              RegsToPass[i].second, InFlag);
6626     InFlag = Chain.getValue(1);
6627   }
6628 
6629   if (CFlags.IsTailCall && !IsSibCall)
6630     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6631                     TailCallArguments);
6632 
6633   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6634                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6635 }
6636 
6637 SDValue PPCTargetLowering::LowerCall_Darwin(
6638     SDValue Chain, SDValue Callee, CallFlags CFlags,
6639     const SmallVectorImpl<ISD::OutputArg> &Outs,
6640     const SmallVectorImpl<SDValue> &OutVals,
6641     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6642     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6643     const CallBase *CB) const {
6644   unsigned NumOps = Outs.size();
6645 
6646   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6647   bool isPPC64 = PtrVT == MVT::i64;
6648   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6649 
6650   MachineFunction &MF = DAG.getMachineFunction();
6651 
6652   // Mark this function as potentially containing a function that contains a
6653   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6654   // and restoring the callers stack pointer in this functions epilog. This is
6655   // done because by tail calling the called function might overwrite the value
6656   // in this function's (MF) stack pointer stack slot 0(SP).
6657   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6658       CFlags.CallConv == CallingConv::Fast)
6659     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6660 
6661   // Count how many bytes are to be pushed on the stack, including the linkage
6662   // area, and parameter passing area.  We start with 24/48 bytes, which is
6663   // prereserved space for [SP][CR][LR][3 x unused].
6664   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6665   unsigned NumBytes = LinkageSize;
6666 
6667   // Add up all the space actually used.
6668   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6669   // they all go in registers, but we must reserve stack space for them for
6670   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6671   // assigned stack space in order, with padding so Altivec parameters are
6672   // 16-byte aligned.
6673   unsigned nAltivecParamsAtEnd = 0;
6674   for (unsigned i = 0; i != NumOps; ++i) {
6675     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6676     EVT ArgVT = Outs[i].VT;
6677     // Varargs Altivec parameters are padded to a 16 byte boundary.
6678     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6679         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6680         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6681       if (!CFlags.IsVarArg && !isPPC64) {
6682         // Non-varargs Altivec parameters go after all the non-Altivec
6683         // parameters; handle those later so we know how much padding we need.
6684         nAltivecParamsAtEnd++;
6685         continue;
6686       }
6687       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6688       NumBytes = ((NumBytes+15)/16)*16;
6689     }
6690     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6691   }
6692 
6693   // Allow for Altivec parameters at the end, if needed.
6694   if (nAltivecParamsAtEnd) {
6695     NumBytes = ((NumBytes+15)/16)*16;
6696     NumBytes += 16*nAltivecParamsAtEnd;
6697   }
6698 
6699   // The prolog code of the callee may store up to 8 GPR argument registers to
6700   // the stack, allowing va_start to index over them in memory if its varargs.
6701   // Because we cannot tell if this is needed on the caller side, we have to
6702   // conservatively assume that it is needed.  As such, make sure we have at
6703   // least enough stack space for the caller to store the 8 GPRs.
6704   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6705 
6706   // Tail call needs the stack to be aligned.
6707   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6708       CFlags.CallConv == CallingConv::Fast)
6709     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6710 
6711   // Calculate by how many bytes the stack has to be adjusted in case of tail
6712   // call optimization.
6713   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6714 
6715   // To protect arguments on the stack from being clobbered in a tail call,
6716   // force all the loads to happen before doing any other lowering.
6717   if (CFlags.IsTailCall)
6718     Chain = DAG.getStackArgumentTokenFactor(Chain);
6719 
6720   // Adjust the stack pointer for the new arguments...
6721   // These operations are automatically eliminated by the prolog/epilog pass
6722   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6723   SDValue CallSeqStart = Chain;
6724 
6725   // Load the return address and frame pointer so it can be move somewhere else
6726   // later.
6727   SDValue LROp, FPOp;
6728   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6729 
6730   // Set up a copy of the stack pointer for use loading and storing any
6731   // arguments that may not fit in the registers available for argument
6732   // passing.
6733   SDValue StackPtr;
6734   if (isPPC64)
6735     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6736   else
6737     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6738 
6739   // Figure out which arguments are going to go in registers, and which in
6740   // memory.  Also, if this is a vararg function, floating point operations
6741   // must be stored to our stack, and loaded into integer regs as well, if
6742   // any integer regs are available for argument passing.
6743   unsigned ArgOffset = LinkageSize;
6744   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6745 
6746   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6747     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6748     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6749   };
6750   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6751     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6752     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6753   };
6754   static const MCPhysReg VR[] = {
6755     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6756     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6757   };
6758   const unsigned NumGPRs = array_lengthof(GPR_32);
6759   const unsigned NumFPRs = 13;
6760   const unsigned NumVRs  = array_lengthof(VR);
6761 
6762   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6763 
6764   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6765   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6766 
6767   SmallVector<SDValue, 8> MemOpChains;
6768   for (unsigned i = 0; i != NumOps; ++i) {
6769     SDValue Arg = OutVals[i];
6770     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6771 
6772     // PtrOff will be used to store the current argument to the stack if a
6773     // register cannot be found for it.
6774     SDValue PtrOff;
6775 
6776     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6777 
6778     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6779 
6780     // On PPC64, promote integers to 64-bit values.
6781     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6782       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6783       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6784       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6785     }
6786 
6787     // FIXME memcpy is used way more than necessary.  Correctness first.
6788     // Note: "by value" is code for passing a structure by value, not
6789     // basic types.
6790     if (Flags.isByVal()) {
6791       unsigned Size = Flags.getByValSize();
6792       // Very small objects are passed right-justified.  Everything else is
6793       // passed left-justified.
6794       if (Size==1 || Size==2) {
6795         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6796         if (GPR_idx != NumGPRs) {
6797           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6798                                         MachinePointerInfo(), VT);
6799           MemOpChains.push_back(Load.getValue(1));
6800           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6801 
6802           ArgOffset += PtrByteSize;
6803         } else {
6804           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6805                                           PtrOff.getValueType());
6806           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6807           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6808                                                             CallSeqStart,
6809                                                             Flags, DAG, dl);
6810           ArgOffset += PtrByteSize;
6811         }
6812         continue;
6813       }
6814       // Copy entire object into memory.  There are cases where gcc-generated
6815       // code assumes it is there, even if it could be put entirely into
6816       // registers.  (This is not what the doc says.)
6817       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6818                                                         CallSeqStart,
6819                                                         Flags, DAG, dl);
6820 
6821       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6822       // copy the pieces of the object that fit into registers from the
6823       // parameter save area.
6824       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6825         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6826         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6827         if (GPR_idx != NumGPRs) {
6828           SDValue Load =
6829               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6830           MemOpChains.push_back(Load.getValue(1));
6831           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6832           ArgOffset += PtrByteSize;
6833         } else {
6834           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6835           break;
6836         }
6837       }
6838       continue;
6839     }
6840 
6841     switch (Arg.getSimpleValueType().SimpleTy) {
6842     default: llvm_unreachable("Unexpected ValueType for argument!");
6843     case MVT::i1:
6844     case MVT::i32:
6845     case MVT::i64:
6846       if (GPR_idx != NumGPRs) {
6847         if (Arg.getValueType() == MVT::i1)
6848           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6849 
6850         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6851       } else {
6852         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6853                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6854                          TailCallArguments, dl);
6855       }
6856       ArgOffset += PtrByteSize;
6857       break;
6858     case MVT::f32:
6859     case MVT::f64:
6860       if (FPR_idx != NumFPRs) {
6861         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6862 
6863         if (CFlags.IsVarArg) {
6864           SDValue Store =
6865               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6866           MemOpChains.push_back(Store);
6867 
6868           // Float varargs are always shadowed in available integer registers
6869           if (GPR_idx != NumGPRs) {
6870             SDValue Load =
6871                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6872             MemOpChains.push_back(Load.getValue(1));
6873             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6874           }
6875           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6876             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6877             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6878             SDValue Load =
6879                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6880             MemOpChains.push_back(Load.getValue(1));
6881             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6882           }
6883         } else {
6884           // If we have any FPRs remaining, we may also have GPRs remaining.
6885           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6886           // GPRs.
6887           if (GPR_idx != NumGPRs)
6888             ++GPR_idx;
6889           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6890               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6891             ++GPR_idx;
6892         }
6893       } else
6894         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6895                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6896                          TailCallArguments, dl);
6897       if (isPPC64)
6898         ArgOffset += 8;
6899       else
6900         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6901       break;
6902     case MVT::v4f32:
6903     case MVT::v4i32:
6904     case MVT::v8i16:
6905     case MVT::v16i8:
6906       if (CFlags.IsVarArg) {
6907         // These go aligned on the stack, or in the corresponding R registers
6908         // when within range.  The Darwin PPC ABI doc claims they also go in
6909         // V registers; in fact gcc does this only for arguments that are
6910         // prototyped, not for those that match the ...  We do it for all
6911         // arguments, seems to work.
6912         while (ArgOffset % 16 !=0) {
6913           ArgOffset += PtrByteSize;
6914           if (GPR_idx != NumGPRs)
6915             GPR_idx++;
6916         }
6917         // We could elide this store in the case where the object fits
6918         // entirely in R registers.  Maybe later.
6919         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6920                              DAG.getConstant(ArgOffset, dl, PtrVT));
6921         SDValue Store =
6922             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6923         MemOpChains.push_back(Store);
6924         if (VR_idx != NumVRs) {
6925           SDValue Load =
6926               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6927           MemOpChains.push_back(Load.getValue(1));
6928           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6929         }
6930         ArgOffset += 16;
6931         for (unsigned i=0; i<16; i+=PtrByteSize) {
6932           if (GPR_idx == NumGPRs)
6933             break;
6934           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6935                                    DAG.getConstant(i, dl, PtrVT));
6936           SDValue Load =
6937               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6938           MemOpChains.push_back(Load.getValue(1));
6939           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6940         }
6941         break;
6942       }
6943 
6944       // Non-varargs Altivec params generally go in registers, but have
6945       // stack space allocated at the end.
6946       if (VR_idx != NumVRs) {
6947         // Doesn't have GPR space allocated.
6948         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6949       } else if (nAltivecParamsAtEnd==0) {
6950         // We are emitting Altivec params in order.
6951         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6952                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6953                          TailCallArguments, dl);
6954         ArgOffset += 16;
6955       }
6956       break;
6957     }
6958   }
6959   // If all Altivec parameters fit in registers, as they usually do,
6960   // they get stack space following the non-Altivec parameters.  We
6961   // don't track this here because nobody below needs it.
6962   // If there are more Altivec parameters than fit in registers emit
6963   // the stores here.
6964   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6965     unsigned j = 0;
6966     // Offset is aligned; skip 1st 12 params which go in V registers.
6967     ArgOffset = ((ArgOffset+15)/16)*16;
6968     ArgOffset += 12*16;
6969     for (unsigned i = 0; i != NumOps; ++i) {
6970       SDValue Arg = OutVals[i];
6971       EVT ArgType = Outs[i].VT;
6972       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6973           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6974         if (++j > NumVRs) {
6975           SDValue PtrOff;
6976           // We are emitting Altivec params in order.
6977           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6978                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6979                            TailCallArguments, dl);
6980           ArgOffset += 16;
6981         }
6982       }
6983     }
6984   }
6985 
6986   if (!MemOpChains.empty())
6987     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6988 
6989   // On Darwin, R12 must contain the address of an indirect callee.  This does
6990   // not mean the MTCTR instruction must use R12; it's easier to model this as
6991   // an extra parameter, so do that.
6992   if (CFlags.IsIndirect) {
6993     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6994     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6995                                                    PPC::R12), Callee));
6996   }
6997 
6998   // Build a sequence of copy-to-reg nodes chained together with token chain
6999   // and flag operands which copy the outgoing args into the appropriate regs.
7000   SDValue InFlag;
7001   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
7002     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
7003                              RegsToPass[i].second, InFlag);
7004     InFlag = Chain.getValue(1);
7005   }
7006 
7007   if (CFlags.IsTailCall)
7008     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
7009                     TailCallArguments);
7010 
7011   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7012                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7013 }
7014 
7015 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
7016                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
7017                    CCState &State) {
7018 
7019   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
7020       State.getMachineFunction().getSubtarget());
7021   const bool IsPPC64 = Subtarget.isPPC64();
7022   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
7023   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
7024 
7025   assert((!ValVT.isInteger() ||
7026           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
7027          "Integer argument exceeds register size: should have been legalized");
7028 
7029   if (ValVT == MVT::f128)
7030     report_fatal_error("f128 is unimplemented on AIX.");
7031 
7032   if (ArgFlags.isNest())
7033     report_fatal_error("Nest arguments are unimplemented.");
7034 
7035   if (ValVT.isVector() || LocVT.isVector())
7036     report_fatal_error("Vector arguments are unimplemented on AIX.");
7037 
7038   static const MCPhysReg GPR_32[] = {// 32-bit registers.
7039                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7040                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7041   static const MCPhysReg GPR_64[] = {// 64-bit registers.
7042                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7043                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7044 
7045   if (ArgFlags.isByVal()) {
7046     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
7047       report_fatal_error("Pass-by-value arguments with alignment greater than "
7048                          "register width are not supported.");
7049 
7050     const unsigned ByValSize = ArgFlags.getByValSize();
7051 
7052     // An empty aggregate parameter takes up no storage and no registers,
7053     // but needs a MemLoc for a stack slot for the formal arguments side.
7054     if (ByValSize == 0) {
7055       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7056                                        State.getNextStackOffset(), RegVT,
7057                                        LocInfo));
7058       return false;
7059     }
7060 
7061     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
7062     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
7063     for (const unsigned E = Offset + StackSize; Offset < E;
7064          Offset += PtrAlign.value()) {
7065       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7066         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7067       else {
7068         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7069                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
7070                                          LocInfo));
7071         break;
7072       }
7073     }
7074     return false;
7075   }
7076 
7077   // Arguments always reserve parameter save area.
7078   switch (ValVT.SimpleTy) {
7079   default:
7080     report_fatal_error("Unhandled value type for argument.");
7081   case MVT::i64:
7082     // i64 arguments should have been split to i32 for PPC32.
7083     assert(IsPPC64 && "PPC32 should have split i64 values.");
7084     LLVM_FALLTHROUGH;
7085   case MVT::i1:
7086   case MVT::i32: {
7087     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
7088     // AIX integer arguments are always passed in register width.
7089     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
7090       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
7091                                   : CCValAssign::LocInfo::ZExt;
7092     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7093       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7094     else
7095       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
7096 
7097     return false;
7098   }
7099   case MVT::f32:
7100   case MVT::f64: {
7101     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7102     const unsigned StoreSize = LocVT.getStoreSize();
7103     // Floats are always 4-byte aligned in the PSA on AIX.
7104     // This includes f64 in 64-bit mode for ABI compatibility.
7105     const unsigned Offset =
7106         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
7107     unsigned FReg = State.AllocateReg(FPR);
7108     if (FReg)
7109       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7110 
7111     // Reserve and initialize GPRs or initialize the PSA as required.
7112     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7113       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7114         assert(FReg && "An FPR should be available when a GPR is reserved.");
7115         if (State.isVarArg()) {
7116           // Successfully reserved GPRs are only initialized for vararg calls.
7117           // Custom handling is required for:
7118           //   f64 in PPC32 needs to be split into 2 GPRs.
7119           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7120           State.addLoc(
7121               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7122         }
7123       } else {
7124         // If there are insufficient GPRs, the PSA needs to be initialized.
7125         // Initialization occurs even if an FPR was initialized for
7126         // compatibility with the AIX XL compiler. The full memory for the
7127         // argument will be initialized even if a prior word is saved in GPR.
7128         // A custom memLoc is used when the argument also passes in FPR so
7129         // that the callee handling can skip over it easily.
7130         State.addLoc(
7131             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7132                                              LocInfo)
7133                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7134         break;
7135       }
7136     }
7137 
7138     return false;
7139   }
7140   }
7141   return true;
7142 }
7143 
7144 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7145                                                     bool IsPPC64) {
7146   assert((IsPPC64 || SVT != MVT::i64) &&
7147          "i64 should have been split for 32-bit codegen.");
7148 
7149   switch (SVT) {
7150   default:
7151     report_fatal_error("Unexpected value type for formal argument");
7152   case MVT::i1:
7153   case MVT::i32:
7154   case MVT::i64:
7155     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7156   case MVT::f32:
7157     return &PPC::F4RCRegClass;
7158   case MVT::f64:
7159     return &PPC::F8RCRegClass;
7160   }
7161 }
7162 
7163 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7164                                         SelectionDAG &DAG, SDValue ArgValue,
7165                                         MVT LocVT, const SDLoc &dl) {
7166   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7167   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7168 
7169   if (Flags.isSExt())
7170     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7171                            DAG.getValueType(ValVT));
7172   else if (Flags.isZExt())
7173     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7174                            DAG.getValueType(ValVT));
7175 
7176   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7177 }
7178 
7179 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7180   const unsigned LASize = FL->getLinkageSize();
7181 
7182   if (PPC::GPRCRegClass.contains(Reg)) {
7183     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7184            "Reg must be a valid argument register!");
7185     return LASize + 4 * (Reg - PPC::R3);
7186   }
7187 
7188   if (PPC::G8RCRegClass.contains(Reg)) {
7189     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7190            "Reg must be a valid argument register!");
7191     return LASize + 8 * (Reg - PPC::X3);
7192   }
7193 
7194   llvm_unreachable("Only general purpose registers expected.");
7195 }
7196 
7197 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7198     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7199     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7200     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7201 
7202   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7203           CallConv == CallingConv::Fast) &&
7204          "Unexpected calling convention!");
7205 
7206   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7207     report_fatal_error("Tail call support is unimplemented on AIX.");
7208 
7209   if (useSoftFloat())
7210     report_fatal_error("Soft float support is unimplemented on AIX.");
7211 
7212   const PPCSubtarget &Subtarget =
7213       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7214   if (Subtarget.hasQPX())
7215     report_fatal_error("QPX support is not supported on AIX.");
7216 
7217   const bool IsPPC64 = Subtarget.isPPC64();
7218   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7219 
7220   // Assign locations to all of the incoming arguments.
7221   SmallVector<CCValAssign, 16> ArgLocs;
7222   MachineFunction &MF = DAG.getMachineFunction();
7223   MachineFrameInfo &MFI = MF.getFrameInfo();
7224   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7225 
7226   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7227   // Reserve space for the linkage area on the stack.
7228   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7229   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7230   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7231 
7232   SmallVector<SDValue, 8> MemOps;
7233 
7234   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7235     CCValAssign &VA = ArgLocs[I++];
7236     MVT LocVT = VA.getLocVT();
7237     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7238 
7239     // For compatibility with the AIX XL compiler, the float args in the
7240     // parameter save area are initialized even if the argument is available
7241     // in register.  The caller is required to initialize both the register
7242     // and memory, however, the callee can choose to expect it in either.
7243     // The memloc is dismissed here because the argument is retrieved from
7244     // the register.
7245     if (VA.isMemLoc() && VA.needsCustom())
7246       continue;
7247 
7248     if (Flags.isByVal() && VA.isMemLoc()) {
7249       const unsigned Size =
7250           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7251                   PtrByteSize);
7252       const int FI = MF.getFrameInfo().CreateFixedObject(
7253           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7254           /* IsAliased */ true);
7255       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7256       InVals.push_back(FIN);
7257 
7258       continue;
7259     }
7260 
7261     if (Flags.isByVal()) {
7262       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7263 
7264       const MCPhysReg ArgReg = VA.getLocReg();
7265       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7266 
7267       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7268         report_fatal_error("Over aligned byvals not supported yet.");
7269 
7270       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7271       const int FI = MF.getFrameInfo().CreateFixedObject(
7272           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7273           /* IsAliased */ true);
7274       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7275       InVals.push_back(FIN);
7276 
7277       // Add live ins for all the RegLocs for the same ByVal.
7278       const TargetRegisterClass *RegClass =
7279           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7280 
7281       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7282                                                unsigned Offset) {
7283         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7284         // Since the callers side has left justified the aggregate in the
7285         // register, we can simply store the entire register into the stack
7286         // slot.
7287         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7288         // The store to the fixedstack object is needed becuase accessing a
7289         // field of the ByVal will use a gep and load. Ideally we will optimize
7290         // to extracting the value from the register directly, and elide the
7291         // stores when the arguments address is not taken, but that will need to
7292         // be future work.
7293         SDValue Store =
7294             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7295                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7296                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7297 
7298         MemOps.push_back(Store);
7299       };
7300 
7301       unsigned Offset = 0;
7302       HandleRegLoc(VA.getLocReg(), Offset);
7303       Offset += PtrByteSize;
7304       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7305            Offset += PtrByteSize) {
7306         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7307                "RegLocs should be for ByVal argument.");
7308 
7309         const CCValAssign RL = ArgLocs[I++];
7310         HandleRegLoc(RL.getLocReg(), Offset);
7311       }
7312 
7313       if (Offset != StackSize) {
7314         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7315                "Expected MemLoc for remaining bytes.");
7316         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7317         // Consume the MemLoc.The InVal has already been emitted, so nothing
7318         // more needs to be done.
7319         ++I;
7320       }
7321 
7322       continue;
7323     }
7324 
7325     EVT ValVT = VA.getValVT();
7326     if (VA.isRegLoc() && !VA.needsCustom()) {
7327       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7328       unsigned VReg =
7329           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7330       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7331       if (ValVT.isScalarInteger() &&
7332           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7333         ArgValue =
7334             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7335       }
7336       InVals.push_back(ArgValue);
7337       continue;
7338     }
7339     if (VA.isMemLoc()) {
7340       const unsigned LocSize = LocVT.getStoreSize();
7341       const unsigned ValSize = ValVT.getStoreSize();
7342       assert((ValSize <= LocSize) &&
7343              "Object size is larger than size of MemLoc");
7344       int CurArgOffset = VA.getLocMemOffset();
7345       // Objects are right-justified because AIX is big-endian.
7346       if (LocSize > ValSize)
7347         CurArgOffset += LocSize - ValSize;
7348       // Potential tail calls could cause overwriting of argument stack slots.
7349       const bool IsImmutable =
7350           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7351             (CallConv == CallingConv::Fast));
7352       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7353       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7354       SDValue ArgValue =
7355           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7356       InVals.push_back(ArgValue);
7357       continue;
7358     }
7359   }
7360 
7361   // On AIX a minimum of 8 words is saved to the parameter save area.
7362   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7363   // Area that is at least reserved in the caller of this function.
7364   unsigned CallerReservedArea =
7365       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7366 
7367   // Set the size that is at least reserved in caller of this function. Tail
7368   // call optimized function's reserved stack space needs to be aligned so
7369   // that taking the difference between two stack areas will result in an
7370   // aligned stack.
7371   CallerReservedArea =
7372       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7373   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7374   FuncInfo->setMinReservedArea(CallerReservedArea);
7375 
7376   if (isVarArg) {
7377     FuncInfo->setVarArgsFrameIndex(
7378         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7379     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7380 
7381     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7382                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7383 
7384     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7385                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7386     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7387 
7388     // The fixed integer arguments of a variadic function are stored to the
7389     // VarArgsFrameIndex on the stack so that they may be loaded by
7390     // dereferencing the result of va_next.
7391     for (unsigned GPRIndex =
7392              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7393          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7394 
7395       const unsigned VReg =
7396           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7397                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7398 
7399       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7400       SDValue Store =
7401           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7402       MemOps.push_back(Store);
7403       // Increment the address for the next argument to store.
7404       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7405       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7406     }
7407   }
7408 
7409   if (!MemOps.empty())
7410     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7411 
7412   return Chain;
7413 }
7414 
7415 SDValue PPCTargetLowering::LowerCall_AIX(
7416     SDValue Chain, SDValue Callee, CallFlags CFlags,
7417     const SmallVectorImpl<ISD::OutputArg> &Outs,
7418     const SmallVectorImpl<SDValue> &OutVals,
7419     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7420     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7421     const CallBase *CB) const {
7422 
7423   assert((CFlags.CallConv == CallingConv::C ||
7424           CFlags.CallConv == CallingConv::Cold ||
7425           CFlags.CallConv == CallingConv::Fast) &&
7426          "Unexpected calling convention!");
7427 
7428   if (CFlags.IsPatchPoint)
7429     report_fatal_error("This call type is unimplemented on AIX.");
7430 
7431   const PPCSubtarget& Subtarget =
7432       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7433   if (Subtarget.hasQPX())
7434     report_fatal_error("QPX is not supported on AIX.");
7435   if (Subtarget.hasAltivec())
7436     report_fatal_error("Altivec support is unimplemented on AIX.");
7437 
7438   MachineFunction &MF = DAG.getMachineFunction();
7439   SmallVector<CCValAssign, 16> ArgLocs;
7440   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7441                  *DAG.getContext());
7442 
7443   // Reserve space for the linkage save area (LSA) on the stack.
7444   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7445   //   [SP][CR][LR][2 x reserved][TOC].
7446   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7447   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7448   const bool IsPPC64 = Subtarget.isPPC64();
7449   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7450   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7451   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7452   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7453 
7454   // The prolog code of the callee may store up to 8 GPR argument registers to
7455   // the stack, allowing va_start to index over them in memory if the callee
7456   // is variadic.
7457   // Because we cannot tell if this is needed on the caller side, we have to
7458   // conservatively assume that it is needed.  As such, make sure we have at
7459   // least enough stack space for the caller to store the 8 GPRs.
7460   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7461   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7462                                      CCInfo.getNextStackOffset());
7463 
7464   // Adjust the stack pointer for the new arguments...
7465   // These operations are automatically eliminated by the prolog/epilog pass.
7466   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7467   SDValue CallSeqStart = Chain;
7468 
7469   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7470   SmallVector<SDValue, 8> MemOpChains;
7471 
7472   // Set up a copy of the stack pointer for loading and storing any
7473   // arguments that may not fit in the registers available for argument
7474   // passing.
7475   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7476                                    : DAG.getRegister(PPC::R1, MVT::i32);
7477 
7478   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7479     const unsigned ValNo = ArgLocs[I].getValNo();
7480     SDValue Arg = OutVals[ValNo];
7481     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7482 
7483     if (Flags.isByVal()) {
7484       const unsigned ByValSize = Flags.getByValSize();
7485 
7486       // Nothing to do for zero-sized ByVals on the caller side.
7487       if (!ByValSize) {
7488         ++I;
7489         continue;
7490       }
7491 
7492       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7493         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7494                               (LoadOffset != 0)
7495                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7496                                   : Arg,
7497                               MachinePointerInfo(), VT);
7498       };
7499 
7500       unsigned LoadOffset = 0;
7501 
7502       // Initialize registers, which are fully occupied by the by-val argument.
7503       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7504         SDValue Load = GetLoad(PtrVT, LoadOffset);
7505         MemOpChains.push_back(Load.getValue(1));
7506         LoadOffset += PtrByteSize;
7507         const CCValAssign &ByValVA = ArgLocs[I++];
7508         assert(ByValVA.getValNo() == ValNo &&
7509                "Unexpected location for pass-by-value argument.");
7510         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7511       }
7512 
7513       if (LoadOffset == ByValSize)
7514         continue;
7515 
7516       // There must be one more loc to handle the remainder.
7517       assert(ArgLocs[I].getValNo() == ValNo &&
7518              "Expected additional location for by-value argument.");
7519 
7520       if (ArgLocs[I].isMemLoc()) {
7521         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7522         const CCValAssign &ByValVA = ArgLocs[I++];
7523         ISD::ArgFlagsTy MemcpyFlags = Flags;
7524         // Only memcpy the bytes that don't pass in register.
7525         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7526         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7527             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7528                               : Arg,
7529             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7530             CallSeqStart, MemcpyFlags, DAG, dl);
7531         continue;
7532       }
7533 
7534       // Initialize the final register residue.
7535       // Any residue that occupies the final by-val arg register must be
7536       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7537       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7538       // 2 and 1 byte loads.
7539       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7540       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7541              "Unexpected register residue for by-value argument.");
7542       SDValue ResidueVal;
7543       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7544         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7545         const MVT VT =
7546             N == 1 ? MVT::i8
7547                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7548         SDValue Load = GetLoad(VT, LoadOffset);
7549         MemOpChains.push_back(Load.getValue(1));
7550         LoadOffset += N;
7551         Bytes += N;
7552 
7553         // By-val arguments are passed left-justfied in register.
7554         // Every load here needs to be shifted, otherwise a full register load
7555         // should have been used.
7556         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7557                "Unexpected load emitted during handling of pass-by-value "
7558                "argument.");
7559         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7560         EVT ShiftAmountTy =
7561             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7562         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7563         SDValue ShiftedLoad =
7564             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7565         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7566                                               ShiftedLoad)
7567                                 : ShiftedLoad;
7568       }
7569 
7570       const CCValAssign &ByValVA = ArgLocs[I++];
7571       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7572       continue;
7573     }
7574 
7575     CCValAssign &VA = ArgLocs[I++];
7576     const MVT LocVT = VA.getLocVT();
7577     const MVT ValVT = VA.getValVT();
7578 
7579     switch (VA.getLocInfo()) {
7580     default:
7581       report_fatal_error("Unexpected argument extension type.");
7582     case CCValAssign::Full:
7583       break;
7584     case CCValAssign::ZExt:
7585       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7586       break;
7587     case CCValAssign::SExt:
7588       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7589       break;
7590     }
7591 
7592     if (VA.isRegLoc() && !VA.needsCustom()) {
7593       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7594       continue;
7595     }
7596 
7597     if (VA.isMemLoc()) {
7598       SDValue PtrOff =
7599           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7600       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7601       MemOpChains.push_back(
7602           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7603 
7604       continue;
7605     }
7606 
7607     // Custom handling is used for GPR initializations for vararg float
7608     // arguments.
7609     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7610            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7611            "Unexpected register handling for calling convention.");
7612 
7613     SDValue ArgAsInt =
7614         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7615 
7616     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7617       // f32 in 32-bit GPR
7618       // f64 in 64-bit GPR
7619       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7620     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7621       // f32 in 64-bit GPR.
7622       RegsToPass.push_back(std::make_pair(
7623           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7624     else {
7625       // f64 in two 32-bit GPRs
7626       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7627       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7628              "Unexpected custom register for argument!");
7629       CCValAssign &GPR1 = VA;
7630       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7631                                      DAG.getConstant(32, dl, MVT::i8));
7632       RegsToPass.push_back(std::make_pair(
7633           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7634 
7635       if (I != E) {
7636         // If only 1 GPR was available, there will only be one custom GPR and
7637         // the argument will also pass in memory.
7638         CCValAssign &PeekArg = ArgLocs[I];
7639         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7640           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7641           CCValAssign &GPR2 = ArgLocs[I++];
7642           RegsToPass.push_back(std::make_pair(
7643               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7644         }
7645       }
7646     }
7647   }
7648 
7649   if (!MemOpChains.empty())
7650     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7651 
7652   // For indirect calls, we need to save the TOC base to the stack for
7653   // restoration after the call.
7654   if (CFlags.IsIndirect) {
7655     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7656     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7657     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7658     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7659     const unsigned TOCSaveOffset =
7660         Subtarget.getFrameLowering()->getTOCSaveOffset();
7661 
7662     setUsesTOCBasePtr(DAG);
7663     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7664     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7665     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7666     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7667     Chain = DAG.getStore(
7668         Val.getValue(1), dl, Val, AddPtr,
7669         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7670   }
7671 
7672   // Build a sequence of copy-to-reg nodes chained together with token chain
7673   // and flag operands which copy the outgoing args into the appropriate regs.
7674   SDValue InFlag;
7675   for (auto Reg : RegsToPass) {
7676     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7677     InFlag = Chain.getValue(1);
7678   }
7679 
7680   const int SPDiff = 0;
7681   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7682                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7683 }
7684 
7685 bool
7686 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7687                                   MachineFunction &MF, bool isVarArg,
7688                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7689                                   LLVMContext &Context) const {
7690   SmallVector<CCValAssign, 16> RVLocs;
7691   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7692   return CCInfo.CheckReturn(
7693       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7694                 ? RetCC_PPC_Cold
7695                 : RetCC_PPC);
7696 }
7697 
7698 SDValue
7699 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7700                                bool isVarArg,
7701                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7702                                const SmallVectorImpl<SDValue> &OutVals,
7703                                const SDLoc &dl, SelectionDAG &DAG) const {
7704   SmallVector<CCValAssign, 16> RVLocs;
7705   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7706                  *DAG.getContext());
7707   CCInfo.AnalyzeReturn(Outs,
7708                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7709                            ? RetCC_PPC_Cold
7710                            : RetCC_PPC);
7711 
7712   SDValue Flag;
7713   SmallVector<SDValue, 4> RetOps(1, Chain);
7714 
7715   // Copy the result values into the output registers.
7716   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7717     CCValAssign &VA = RVLocs[i];
7718     assert(VA.isRegLoc() && "Can only return in registers!");
7719 
7720     SDValue Arg = OutVals[RealResIdx];
7721 
7722     switch (VA.getLocInfo()) {
7723     default: llvm_unreachable("Unknown loc info!");
7724     case CCValAssign::Full: break;
7725     case CCValAssign::AExt:
7726       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7727       break;
7728     case CCValAssign::ZExt:
7729       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7730       break;
7731     case CCValAssign::SExt:
7732       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7733       break;
7734     }
7735     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7736       bool isLittleEndian = Subtarget.isLittleEndian();
7737       // Legalize ret f64 -> ret 2 x i32.
7738       SDValue SVal =
7739           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7740                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7741       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7742       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7743       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7744                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7745       Flag = Chain.getValue(1);
7746       VA = RVLocs[++i]; // skip ahead to next loc
7747       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7748     } else
7749       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7750     Flag = Chain.getValue(1);
7751     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7752   }
7753 
7754   RetOps[0] = Chain;  // Update chain.
7755 
7756   // Add the flag if we have it.
7757   if (Flag.getNode())
7758     RetOps.push_back(Flag);
7759 
7760   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7761 }
7762 
7763 SDValue
7764 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7765                                                 SelectionDAG &DAG) const {
7766   SDLoc dl(Op);
7767 
7768   // Get the correct type for integers.
7769   EVT IntVT = Op.getValueType();
7770 
7771   // Get the inputs.
7772   SDValue Chain = Op.getOperand(0);
7773   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7774   // Build a DYNAREAOFFSET node.
7775   SDValue Ops[2] = {Chain, FPSIdx};
7776   SDVTList VTs = DAG.getVTList(IntVT);
7777   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7778 }
7779 
7780 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7781                                              SelectionDAG &DAG) const {
7782   // When we pop the dynamic allocation we need to restore the SP link.
7783   SDLoc dl(Op);
7784 
7785   // Get the correct type for pointers.
7786   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7787 
7788   // Construct the stack pointer operand.
7789   bool isPPC64 = Subtarget.isPPC64();
7790   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7791   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7792 
7793   // Get the operands for the STACKRESTORE.
7794   SDValue Chain = Op.getOperand(0);
7795   SDValue SaveSP = Op.getOperand(1);
7796 
7797   // Load the old link SP.
7798   SDValue LoadLinkSP =
7799       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7800 
7801   // Restore the stack pointer.
7802   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7803 
7804   // Store the old link SP.
7805   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7806 }
7807 
7808 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7809   MachineFunction &MF = DAG.getMachineFunction();
7810   bool isPPC64 = Subtarget.isPPC64();
7811   EVT PtrVT = getPointerTy(MF.getDataLayout());
7812 
7813   // Get current frame pointer save index.  The users of this index will be
7814   // primarily DYNALLOC instructions.
7815   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7816   int RASI = FI->getReturnAddrSaveIndex();
7817 
7818   // If the frame pointer save index hasn't been defined yet.
7819   if (!RASI) {
7820     // Find out what the fix offset of the frame pointer save area.
7821     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7822     // Allocate the frame index for frame pointer save area.
7823     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7824     // Save the result.
7825     FI->setReturnAddrSaveIndex(RASI);
7826   }
7827   return DAG.getFrameIndex(RASI, PtrVT);
7828 }
7829 
7830 SDValue
7831 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7832   MachineFunction &MF = DAG.getMachineFunction();
7833   bool isPPC64 = Subtarget.isPPC64();
7834   EVT PtrVT = getPointerTy(MF.getDataLayout());
7835 
7836   // Get current frame pointer save index.  The users of this index will be
7837   // primarily DYNALLOC instructions.
7838   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7839   int FPSI = FI->getFramePointerSaveIndex();
7840 
7841   // If the frame pointer save index hasn't been defined yet.
7842   if (!FPSI) {
7843     // Find out what the fix offset of the frame pointer save area.
7844     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7845     // Allocate the frame index for frame pointer save area.
7846     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7847     // Save the result.
7848     FI->setFramePointerSaveIndex(FPSI);
7849   }
7850   return DAG.getFrameIndex(FPSI, PtrVT);
7851 }
7852 
7853 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7854                                                    SelectionDAG &DAG) const {
7855   // Get the inputs.
7856   SDValue Chain = Op.getOperand(0);
7857   SDValue Size  = Op.getOperand(1);
7858   SDLoc dl(Op);
7859 
7860   // Get the correct type for pointers.
7861   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7862   // Negate the size.
7863   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7864                                 DAG.getConstant(0, dl, PtrVT), Size);
7865   // Construct a node for the frame pointer save index.
7866   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7867   // Build a DYNALLOC node.
7868   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7869   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7870   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7871 }
7872 
7873 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7874                                                      SelectionDAG &DAG) const {
7875   MachineFunction &MF = DAG.getMachineFunction();
7876 
7877   bool isPPC64 = Subtarget.isPPC64();
7878   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7879 
7880   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7881   return DAG.getFrameIndex(FI, PtrVT);
7882 }
7883 
7884 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7885                                                SelectionDAG &DAG) const {
7886   SDLoc DL(Op);
7887   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7888                      DAG.getVTList(MVT::i32, MVT::Other),
7889                      Op.getOperand(0), Op.getOperand(1));
7890 }
7891 
7892 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7893                                                 SelectionDAG &DAG) const {
7894   SDLoc DL(Op);
7895   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7896                      Op.getOperand(0), Op.getOperand(1));
7897 }
7898 
7899 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7900   if (Op.getValueType().isVector())
7901     return LowerVectorLoad(Op, DAG);
7902 
7903   assert(Op.getValueType() == MVT::i1 &&
7904          "Custom lowering only for i1 loads");
7905 
7906   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7907 
7908   SDLoc dl(Op);
7909   LoadSDNode *LD = cast<LoadSDNode>(Op);
7910 
7911   SDValue Chain = LD->getChain();
7912   SDValue BasePtr = LD->getBasePtr();
7913   MachineMemOperand *MMO = LD->getMemOperand();
7914 
7915   SDValue NewLD =
7916       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7917                      BasePtr, MVT::i8, MMO);
7918   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7919 
7920   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7921   return DAG.getMergeValues(Ops, dl);
7922 }
7923 
7924 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7925   if (Op.getOperand(1).getValueType().isVector())
7926     return LowerVectorStore(Op, DAG);
7927 
7928   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7929          "Custom lowering only for i1 stores");
7930 
7931   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7932 
7933   SDLoc dl(Op);
7934   StoreSDNode *ST = cast<StoreSDNode>(Op);
7935 
7936   SDValue Chain = ST->getChain();
7937   SDValue BasePtr = ST->getBasePtr();
7938   SDValue Value = ST->getValue();
7939   MachineMemOperand *MMO = ST->getMemOperand();
7940 
7941   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7942                       Value);
7943   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7944 }
7945 
7946 // FIXME: Remove this once the ANDI glue bug is fixed:
7947 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7948   assert(Op.getValueType() == MVT::i1 &&
7949          "Custom lowering only for i1 results");
7950 
7951   SDLoc DL(Op);
7952   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7953 }
7954 
7955 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7956                                                SelectionDAG &DAG) const {
7957 
7958   // Implements a vector truncate that fits in a vector register as a shuffle.
7959   // We want to legalize vector truncates down to where the source fits in
7960   // a vector register (and target is therefore smaller than vector register
7961   // size).  At that point legalization will try to custom lower the sub-legal
7962   // result and get here - where we can contain the truncate as a single target
7963   // operation.
7964 
7965   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7966   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7967   //
7968   // We will implement it for big-endian ordering as this (where x denotes
7969   // undefined):
7970   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7971   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7972   //
7973   // The same operation in little-endian ordering will be:
7974   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7975   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7976 
7977   assert(Op.getValueType().isVector() && "Vector type expected.");
7978 
7979   SDLoc DL(Op);
7980   SDValue N1 = Op.getOperand(0);
7981   unsigned SrcSize = N1.getValueType().getSizeInBits();
7982   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7983   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7984 
7985   EVT TrgVT = Op.getValueType();
7986   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7987   EVT EltVT = TrgVT.getVectorElementType();
7988   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7989   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7990 
7991   // First list the elements we want to keep.
7992   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7993   SmallVector<int, 16> ShuffV;
7994   if (Subtarget.isLittleEndian())
7995     for (unsigned i = 0; i < TrgNumElts; ++i)
7996       ShuffV.push_back(i * SizeMult);
7997   else
7998     for (unsigned i = 1; i <= TrgNumElts; ++i)
7999       ShuffV.push_back(i * SizeMult - 1);
8000 
8001   // Populate the remaining elements with undefs.
8002   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
8003     // ShuffV.push_back(i + WideNumElts);
8004     ShuffV.push_back(WideNumElts + 1);
8005 
8006   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
8007   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
8008 }
8009 
8010 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
8011 /// possible.
8012 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
8013   // Not FP? Not a fsel.
8014   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
8015       !Op.getOperand(2).getValueType().isFloatingPoint())
8016     return Op;
8017 
8018   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
8019 
8020   EVT ResVT = Op.getValueType();
8021   EVT CmpVT = Op.getOperand(0).getValueType();
8022   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8023   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
8024   SDLoc dl(Op);
8025   SDNodeFlags Flags = Op.getNode()->getFlags();
8026 
8027   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
8028   // presence of infinities.
8029   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8030     switch (CC) {
8031     default:
8032       break;
8033     case ISD::SETOGT:
8034     case ISD::SETGT:
8035       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8036     case ISD::SETOLT:
8037     case ISD::SETLT:
8038       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8039     }
8040   }
8041 
8042   // We might be able to do better than this under some circumstances, but in
8043   // general, fsel-based lowering of select is a finite-math-only optimization.
8044   // For more information, see section F.3 of the 2.06 ISA specification.
8045   // With ISA 3.0
8046   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8047       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8048     return Op;
8049 
8050   // If the RHS of the comparison is a 0.0, we don't need to do the
8051   // subtraction at all.
8052   SDValue Sel1;
8053   if (isFloatingPointZero(RHS))
8054     switch (CC) {
8055     default: break;       // SETUO etc aren't handled by fsel.
8056     case ISD::SETNE:
8057       std::swap(TV, FV);
8058       LLVM_FALLTHROUGH;
8059     case ISD::SETEQ:
8060       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8061         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8062       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8063       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8064         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8065       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8066                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8067     case ISD::SETULT:
8068     case ISD::SETLT:
8069       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8070       LLVM_FALLTHROUGH;
8071     case ISD::SETOGE:
8072     case ISD::SETGE:
8073       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8074         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8075       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8076     case ISD::SETUGT:
8077     case ISD::SETGT:
8078       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8079       LLVM_FALLTHROUGH;
8080     case ISD::SETOLE:
8081     case ISD::SETLE:
8082       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8083         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8084       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8085                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8086     }
8087 
8088   SDValue Cmp;
8089   switch (CC) {
8090   default: break;       // SETUO etc aren't handled by fsel.
8091   case ISD::SETNE:
8092     std::swap(TV, FV);
8093     LLVM_FALLTHROUGH;
8094   case ISD::SETEQ:
8095     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8096     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8097       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8098     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8099     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8100       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8101     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8102                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8103   case ISD::SETULT:
8104   case ISD::SETLT:
8105     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8106     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8107       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8108     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8109   case ISD::SETOGE:
8110   case ISD::SETGE:
8111     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8112     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8113       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8114     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8115   case ISD::SETUGT:
8116   case ISD::SETGT:
8117     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8118     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8119       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8120     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8121   case ISD::SETOLE:
8122   case ISD::SETLE:
8123     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8124     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8125       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8126     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8127   }
8128   return Op;
8129 }
8130 
8131 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8132                                                SelectionDAG &DAG,
8133                                                const SDLoc &dl) const {
8134   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8135   SDValue Src = Op.getOperand(0);
8136   if (Src.getValueType() == MVT::f32)
8137     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8138 
8139   SDValue Tmp;
8140   switch (Op.getSimpleValueType().SimpleTy) {
8141   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8142   case MVT::i32:
8143     Tmp = DAG.getNode(
8144         Op.getOpcode() == ISD::FP_TO_SINT
8145             ? PPCISD::FCTIWZ
8146             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8147         dl, MVT::f64, Src);
8148     break;
8149   case MVT::i64:
8150     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8151            "i64 FP_TO_UINT is supported only with FPCVT");
8152     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8153                                                         PPCISD::FCTIDUZ,
8154                       dl, MVT::f64, Src);
8155     break;
8156   }
8157 
8158   // Convert the FP value to an int value through memory.
8159   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8160     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
8161   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8162   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8163   MachinePointerInfo MPI =
8164       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8165 
8166   // Emit a store to the stack slot.
8167   SDValue Chain;
8168   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8169   if (i32Stack) {
8170     MachineFunction &MF = DAG.getMachineFunction();
8171     Alignment = Align(4);
8172     MachineMemOperand *MMO =
8173         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8174     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
8175     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8176               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8177   } else
8178     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
8179 
8180   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8181   // add in a bias on big endian.
8182   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8183     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8184                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8185     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8186   }
8187 
8188   RLI.Chain = Chain;
8189   RLI.Ptr = FIPtr;
8190   RLI.MPI = MPI;
8191   RLI.Alignment = Alignment;
8192 }
8193 
8194 /// Custom lowers floating point to integer conversions to use
8195 /// the direct move instructions available in ISA 2.07 to avoid the
8196 /// need for load/store combinations.
8197 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8198                                                     SelectionDAG &DAG,
8199                                                     const SDLoc &dl) const {
8200   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8201   SDValue Src = Op.getOperand(0);
8202 
8203   if (Src.getValueType() == MVT::f32)
8204     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8205 
8206   SDValue Tmp;
8207   switch (Op.getSimpleValueType().SimpleTy) {
8208   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8209   case MVT::i32:
8210     Tmp = DAG.getNode(
8211         Op.getOpcode() == ISD::FP_TO_SINT
8212             ? PPCISD::FCTIWZ
8213             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8214         dl, MVT::f64, Src);
8215     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8216     break;
8217   case MVT::i64:
8218     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8219            "i64 FP_TO_UINT is supported only with FPCVT");
8220     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8221                                                         PPCISD::FCTIDUZ,
8222                       dl, MVT::f64, Src);
8223     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8224     break;
8225   }
8226   return Tmp;
8227 }
8228 
8229 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8230                                           const SDLoc &dl) const {
8231 
8232   // FP to INT conversions are legal for f128.
8233   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
8234     return Op;
8235 
8236   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8237   // PPC (the libcall is not available).
8238   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8239     if (Op.getValueType() == MVT::i32) {
8240       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8241         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8242                                  MVT::f64, Op.getOperand(0),
8243                                  DAG.getIntPtrConstant(0, dl));
8244         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8245                                  MVT::f64, Op.getOperand(0),
8246                                  DAG.getIntPtrConstant(1, dl));
8247 
8248         // Add the two halves of the long double in round-to-zero mode.
8249         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8250 
8251         // Now use a smaller FP_TO_SINT.
8252         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8253       }
8254       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8255         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8256         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8257         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8258         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8259         // FIXME: generated code sucks.
8260         // TODO: Are there fast-math-flags to propagate to this FSUB?
8261         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8262                                    Op.getOperand(0), Tmp);
8263         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8264         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8265                            DAG.getConstant(0x80000000, dl, MVT::i32));
8266         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8267                                     Op.getOperand(0));
8268         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8269                                ISD::SETGE);
8270       }
8271     }
8272 
8273     return SDValue();
8274   }
8275 
8276   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8277     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8278 
8279   ReuseLoadInfo RLI;
8280   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8281 
8282   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8283                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8284 }
8285 
8286 // We're trying to insert a regular store, S, and then a load, L. If the
8287 // incoming value, O, is a load, we might just be able to have our load use the
8288 // address used by O. However, we don't know if anything else will store to
8289 // that address before we can load from it. To prevent this situation, we need
8290 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8291 // the same chain operand as O, we create a token factor from the chain results
8292 // of O and L, and we replace all uses of O's chain result with that token
8293 // factor (see spliceIntoChain below for this last part).
8294 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8295                                             ReuseLoadInfo &RLI,
8296                                             SelectionDAG &DAG,
8297                                             ISD::LoadExtType ET) const {
8298   SDLoc dl(Op);
8299   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8300                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8301   if (ET == ISD::NON_EXTLOAD &&
8302       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8303       isOperationLegalOrCustom(Op.getOpcode(),
8304                                Op.getOperand(0).getValueType())) {
8305 
8306     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8307     return true;
8308   }
8309 
8310   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8311   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8312       LD->isNonTemporal())
8313     return false;
8314   if (LD->getMemoryVT() != MemVT)
8315     return false;
8316 
8317   RLI.Ptr = LD->getBasePtr();
8318   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8319     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8320            "Non-pre-inc AM on PPC?");
8321     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8322                           LD->getOffset());
8323   }
8324 
8325   RLI.Chain = LD->getChain();
8326   RLI.MPI = LD->getPointerInfo();
8327   RLI.IsDereferenceable = LD->isDereferenceable();
8328   RLI.IsInvariant = LD->isInvariant();
8329   RLI.Alignment = LD->getAlign();
8330   RLI.AAInfo = LD->getAAInfo();
8331   RLI.Ranges = LD->getRanges();
8332 
8333   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8334   return true;
8335 }
8336 
8337 // Given the head of the old chain, ResChain, insert a token factor containing
8338 // it and NewResChain, and make users of ResChain now be users of that token
8339 // factor.
8340 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8341 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8342                                         SDValue NewResChain,
8343                                         SelectionDAG &DAG) const {
8344   if (!ResChain)
8345     return;
8346 
8347   SDLoc dl(NewResChain);
8348 
8349   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8350                            NewResChain, DAG.getUNDEF(MVT::Other));
8351   assert(TF.getNode() != NewResChain.getNode() &&
8352          "A new TF really is required here");
8353 
8354   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8355   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8356 }
8357 
8358 /// Analyze profitability of direct move
8359 /// prefer float load to int load plus direct move
8360 /// when there is no integer use of int load
8361 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8362   SDNode *Origin = Op.getOperand(0).getNode();
8363   if (Origin->getOpcode() != ISD::LOAD)
8364     return true;
8365 
8366   // If there is no LXSIBZX/LXSIHZX, like Power8,
8367   // prefer direct move if the memory size is 1 or 2 bytes.
8368   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8369   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8370     return true;
8371 
8372   for (SDNode::use_iterator UI = Origin->use_begin(),
8373                             UE = Origin->use_end();
8374        UI != UE; ++UI) {
8375 
8376     // Only look at the users of the loaded value.
8377     if (UI.getUse().get().getResNo() != 0)
8378       continue;
8379 
8380     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8381         UI->getOpcode() != ISD::UINT_TO_FP)
8382       return true;
8383   }
8384 
8385   return false;
8386 }
8387 
8388 /// Custom lowers integer to floating point conversions to use
8389 /// the direct move instructions available in ISA 2.07 to avoid the
8390 /// need for load/store combinations.
8391 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8392                                                     SelectionDAG &DAG,
8393                                                     const SDLoc &dl) const {
8394   assert((Op.getValueType() == MVT::f32 ||
8395           Op.getValueType() == MVT::f64) &&
8396          "Invalid floating point type as target of conversion");
8397   assert(Subtarget.hasFPCVT() &&
8398          "Int to FP conversions with direct moves require FPCVT");
8399   SDValue FP;
8400   SDValue Src = Op.getOperand(0);
8401   bool SinglePrec = Op.getValueType() == MVT::f32;
8402   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8403   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8404   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8405                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8406 
8407   if (WordInt) {
8408     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8409                      dl, MVT::f64, Src);
8410     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8411   }
8412   else {
8413     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8414     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8415   }
8416 
8417   return FP;
8418 }
8419 
8420 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8421 
8422   EVT VecVT = Vec.getValueType();
8423   assert(VecVT.isVector() && "Expected a vector type.");
8424   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8425 
8426   EVT EltVT = VecVT.getVectorElementType();
8427   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8428   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8429 
8430   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8431   SmallVector<SDValue, 16> Ops(NumConcat);
8432   Ops[0] = Vec;
8433   SDValue UndefVec = DAG.getUNDEF(VecVT);
8434   for (unsigned i = 1; i < NumConcat; ++i)
8435     Ops[i] = UndefVec;
8436 
8437   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8438 }
8439 
8440 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8441                                                 const SDLoc &dl) const {
8442 
8443   unsigned Opc = Op.getOpcode();
8444   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8445          "Unexpected conversion type");
8446   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8447          "Supports conversions to v2f64/v4f32 only.");
8448 
8449   bool SignedConv = Opc == ISD::SINT_TO_FP;
8450   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8451 
8452   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8453   EVT WideVT = Wide.getValueType();
8454   unsigned WideNumElts = WideVT.getVectorNumElements();
8455   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8456 
8457   SmallVector<int, 16> ShuffV;
8458   for (unsigned i = 0; i < WideNumElts; ++i)
8459     ShuffV.push_back(i + WideNumElts);
8460 
8461   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8462   int SaveElts = FourEltRes ? 4 : 2;
8463   if (Subtarget.isLittleEndian())
8464     for (int i = 0; i < SaveElts; i++)
8465       ShuffV[i * Stride] = i;
8466   else
8467     for (int i = 1; i <= SaveElts; i++)
8468       ShuffV[i * Stride - 1] = i - 1;
8469 
8470   SDValue ShuffleSrc2 =
8471       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8472   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8473 
8474   SDValue Extend;
8475   if (SignedConv) {
8476     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8477     EVT ExtVT = Op.getOperand(0).getValueType();
8478     if (Subtarget.hasP9Altivec())
8479       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8480                                IntermediateVT.getVectorNumElements());
8481 
8482     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8483                          DAG.getValueType(ExtVT));
8484   } else
8485     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8486 
8487   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8488 }
8489 
8490 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8491                                           SelectionDAG &DAG) const {
8492   SDLoc dl(Op);
8493 
8494   EVT InVT = Op.getOperand(0).getValueType();
8495   EVT OutVT = Op.getValueType();
8496   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8497       isOperationCustom(Op.getOpcode(), InVT))
8498     return LowerINT_TO_FPVector(Op, DAG, dl);
8499 
8500   // Conversions to f128 are legal.
8501   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8502     return Op;
8503 
8504   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8505     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8506       return SDValue();
8507 
8508     SDValue Value = Op.getOperand(0);
8509     // The values are now known to be -1 (false) or 1 (true). To convert this
8510     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8511     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8512     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8513 
8514     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8515 
8516     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8517 
8518     if (Op.getValueType() != MVT::v4f64)
8519       Value = DAG.getNode(ISD::FP_ROUND, dl,
8520                           Op.getValueType(), Value,
8521                           DAG.getIntPtrConstant(1, dl));
8522     return Value;
8523   }
8524 
8525   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8526   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8527     return SDValue();
8528 
8529   if (Op.getOperand(0).getValueType() == MVT::i1)
8530     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8531                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8532                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8533 
8534   // If we have direct moves, we can do all the conversion, skip the store/load
8535   // however, without FPCVT we can't do most conversions.
8536   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8537       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8538     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8539 
8540   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8541          "UINT_TO_FP is supported only with FPCVT");
8542 
8543   // If we have FCFIDS, then use it when converting to single-precision.
8544   // Otherwise, convert to double-precision and then round.
8545   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8546                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8547                                                             : PPCISD::FCFIDS)
8548                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8549                                                             : PPCISD::FCFID);
8550   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8551                   ? MVT::f32
8552                   : MVT::f64;
8553 
8554   if (Op.getOperand(0).getValueType() == MVT::i64) {
8555     SDValue SINT = Op.getOperand(0);
8556     // When converting to single-precision, we actually need to convert
8557     // to double-precision first and then round to single-precision.
8558     // To avoid double-rounding effects during that operation, we have
8559     // to prepare the input operand.  Bits that might be truncated when
8560     // converting to double-precision are replaced by a bit that won't
8561     // be lost at this stage, but is below the single-precision rounding
8562     // position.
8563     //
8564     // However, if -enable-unsafe-fp-math is in effect, accept double
8565     // rounding to avoid the extra overhead.
8566     if (Op.getValueType() == MVT::f32 &&
8567         !Subtarget.hasFPCVT() &&
8568         !DAG.getTarget().Options.UnsafeFPMath) {
8569 
8570       // Twiddle input to make sure the low 11 bits are zero.  (If this
8571       // is the case, we are guaranteed the value will fit into the 53 bit
8572       // mantissa of an IEEE double-precision value without rounding.)
8573       // If any of those low 11 bits were not zero originally, make sure
8574       // bit 12 (value 2048) is set instead, so that the final rounding
8575       // to single-precision gets the correct result.
8576       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8577                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8578       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8579                           Round, DAG.getConstant(2047, dl, MVT::i64));
8580       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8581       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8582                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8583 
8584       // However, we cannot use that value unconditionally: if the magnitude
8585       // of the input value is small, the bit-twiddling we did above might
8586       // end up visibly changing the output.  Fortunately, in that case, we
8587       // don't need to twiddle bits since the original input will convert
8588       // exactly to double-precision floating-point already.  Therefore,
8589       // construct a conditional to use the original value if the top 11
8590       // bits are all sign-bit copies, and use the rounded value computed
8591       // above otherwise.
8592       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8593                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8594       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8595                          Cond, DAG.getConstant(1, dl, MVT::i64));
8596       Cond = DAG.getSetCC(
8597           dl,
8598           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8599           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8600 
8601       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8602     }
8603 
8604     ReuseLoadInfo RLI;
8605     SDValue Bits;
8606 
8607     MachineFunction &MF = DAG.getMachineFunction();
8608     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8609       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8610                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8611       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8612     } else if (Subtarget.hasLFIWAX() &&
8613                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8614       MachineMemOperand *MMO =
8615         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8616                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8617       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8618       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8619                                      DAG.getVTList(MVT::f64, MVT::Other),
8620                                      Ops, MVT::i32, MMO);
8621       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8622     } else if (Subtarget.hasFPCVT() &&
8623                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8624       MachineMemOperand *MMO =
8625         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8626                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8627       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8628       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8629                                      DAG.getVTList(MVT::f64, MVT::Other),
8630                                      Ops, MVT::i32, MMO);
8631       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8632     } else if (((Subtarget.hasLFIWAX() &&
8633                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8634                 (Subtarget.hasFPCVT() &&
8635                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8636                SINT.getOperand(0).getValueType() == MVT::i32) {
8637       MachineFrameInfo &MFI = MF.getFrameInfo();
8638       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8639 
8640       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8641       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8642 
8643       SDValue Store =
8644           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8645                        MachinePointerInfo::getFixedStack(
8646                            DAG.getMachineFunction(), FrameIdx));
8647 
8648       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8649              "Expected an i32 store");
8650 
8651       RLI.Ptr = FIdx;
8652       RLI.Chain = Store;
8653       RLI.MPI =
8654           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8655       RLI.Alignment = Align(4);
8656 
8657       MachineMemOperand *MMO =
8658         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8659                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8660       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8661       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8662                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8663                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8664                                      Ops, MVT::i32, MMO);
8665     } else
8666       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8667 
8668     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8669 
8670     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8671       FP = DAG.getNode(ISD::FP_ROUND, dl,
8672                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8673     return FP;
8674   }
8675 
8676   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8677          "Unhandled INT_TO_FP type in custom expander!");
8678   // Since we only generate this in 64-bit mode, we can take advantage of
8679   // 64-bit registers.  In particular, sign extend the input value into the
8680   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8681   // then lfd it and fcfid it.
8682   MachineFunction &MF = DAG.getMachineFunction();
8683   MachineFrameInfo &MFI = MF.getFrameInfo();
8684   EVT PtrVT = getPointerTy(MF.getDataLayout());
8685 
8686   SDValue Ld;
8687   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8688     ReuseLoadInfo RLI;
8689     bool ReusingLoad;
8690     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8691                                             DAG))) {
8692       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8693       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8694 
8695       SDValue Store =
8696           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8697                        MachinePointerInfo::getFixedStack(
8698                            DAG.getMachineFunction(), FrameIdx));
8699 
8700       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8701              "Expected an i32 store");
8702 
8703       RLI.Ptr = FIdx;
8704       RLI.Chain = Store;
8705       RLI.MPI =
8706           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8707       RLI.Alignment = Align(4);
8708     }
8709 
8710     MachineMemOperand *MMO =
8711       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8712                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8713     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8714     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8715                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8716                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8717                                  Ops, MVT::i32, MMO);
8718     if (ReusingLoad)
8719       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8720   } else {
8721     assert(Subtarget.isPPC64() &&
8722            "i32->FP without LFIWAX supported only on PPC64");
8723 
8724     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8725     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8726 
8727     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8728                                 Op.getOperand(0));
8729 
8730     // STD the extended value into the stack slot.
8731     SDValue Store = DAG.getStore(
8732         DAG.getEntryNode(), dl, Ext64, FIdx,
8733         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8734 
8735     // Load the value as a double.
8736     Ld = DAG.getLoad(
8737         MVT::f64, dl, Store, FIdx,
8738         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8739   }
8740 
8741   // FCFID it and return it.
8742   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8743   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8744     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8745                      DAG.getIntPtrConstant(0, dl));
8746   return FP;
8747 }
8748 
8749 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8750                                             SelectionDAG &DAG) const {
8751   SDLoc dl(Op);
8752   /*
8753    The rounding mode is in bits 30:31 of FPSR, and has the following
8754    settings:
8755      00 Round to nearest
8756      01 Round to 0
8757      10 Round to +inf
8758      11 Round to -inf
8759 
8760   FLT_ROUNDS, on the other hand, expects the following:
8761     -1 Undefined
8762      0 Round to 0
8763      1 Round to nearest
8764      2 Round to +inf
8765      3 Round to -inf
8766 
8767   To perform the conversion, we do:
8768     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8769   */
8770 
8771   MachineFunction &MF = DAG.getMachineFunction();
8772   EVT VT = Op.getValueType();
8773   EVT PtrVT = getPointerTy(MF.getDataLayout());
8774 
8775   // Save FP Control Word to register
8776   SDValue Chain = Op.getOperand(0);
8777   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8778   Chain = MFFS.getValue(1);
8779 
8780   // Save FP register to stack slot
8781   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8782   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8783   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8784 
8785   // Load FP Control Word from low 32 bits of stack slot.
8786   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8787   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8788   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8789   Chain = CWD.getValue(1);
8790 
8791   // Transform as necessary
8792   SDValue CWD1 =
8793     DAG.getNode(ISD::AND, dl, MVT::i32,
8794                 CWD, DAG.getConstant(3, dl, MVT::i32));
8795   SDValue CWD2 =
8796     DAG.getNode(ISD::SRL, dl, MVT::i32,
8797                 DAG.getNode(ISD::AND, dl, MVT::i32,
8798                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8799                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8800                             DAG.getConstant(3, dl, MVT::i32)),
8801                 DAG.getConstant(1, dl, MVT::i32));
8802 
8803   SDValue RetVal =
8804     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8805 
8806   RetVal =
8807       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8808                   dl, VT, RetVal);
8809 
8810   return DAG.getMergeValues({RetVal, Chain}, dl);
8811 }
8812 
8813 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8814   EVT VT = Op.getValueType();
8815   unsigned BitWidth = VT.getSizeInBits();
8816   SDLoc dl(Op);
8817   assert(Op.getNumOperands() == 3 &&
8818          VT == Op.getOperand(1).getValueType() &&
8819          "Unexpected SHL!");
8820 
8821   // Expand into a bunch of logical ops.  Note that these ops
8822   // depend on the PPC behavior for oversized shift amounts.
8823   SDValue Lo = Op.getOperand(0);
8824   SDValue Hi = Op.getOperand(1);
8825   SDValue Amt = Op.getOperand(2);
8826   EVT AmtVT = Amt.getValueType();
8827 
8828   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8829                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8830   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8831   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8832   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8833   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8834                              DAG.getConstant(-BitWidth, dl, AmtVT));
8835   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8836   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8837   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8838   SDValue OutOps[] = { OutLo, OutHi };
8839   return DAG.getMergeValues(OutOps, dl);
8840 }
8841 
8842 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8843   EVT VT = Op.getValueType();
8844   SDLoc dl(Op);
8845   unsigned BitWidth = VT.getSizeInBits();
8846   assert(Op.getNumOperands() == 3 &&
8847          VT == Op.getOperand(1).getValueType() &&
8848          "Unexpected SRL!");
8849 
8850   // Expand into a bunch of logical ops.  Note that these ops
8851   // depend on the PPC behavior for oversized shift amounts.
8852   SDValue Lo = Op.getOperand(0);
8853   SDValue Hi = Op.getOperand(1);
8854   SDValue Amt = Op.getOperand(2);
8855   EVT AmtVT = Amt.getValueType();
8856 
8857   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8858                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8859   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8860   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8861   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8862   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8863                              DAG.getConstant(-BitWidth, dl, AmtVT));
8864   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8865   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8866   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8867   SDValue OutOps[] = { OutLo, OutHi };
8868   return DAG.getMergeValues(OutOps, dl);
8869 }
8870 
8871 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8872   SDLoc dl(Op);
8873   EVT VT = Op.getValueType();
8874   unsigned BitWidth = VT.getSizeInBits();
8875   assert(Op.getNumOperands() == 3 &&
8876          VT == Op.getOperand(1).getValueType() &&
8877          "Unexpected SRA!");
8878 
8879   // Expand into a bunch of logical ops, followed by a select_cc.
8880   SDValue Lo = Op.getOperand(0);
8881   SDValue Hi = Op.getOperand(1);
8882   SDValue Amt = Op.getOperand(2);
8883   EVT AmtVT = Amt.getValueType();
8884 
8885   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8886                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8887   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8888   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8889   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8890   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8891                              DAG.getConstant(-BitWidth, dl, AmtVT));
8892   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8893   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8894   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8895                                   Tmp4, Tmp6, ISD::SETLE);
8896   SDValue OutOps[] = { OutLo, OutHi };
8897   return DAG.getMergeValues(OutOps, dl);
8898 }
8899 
8900 //===----------------------------------------------------------------------===//
8901 // Vector related lowering.
8902 //
8903 
8904 /// BuildSplatI - Build a canonical splati of Val with an element size of
8905 /// SplatSize.  Cast the result to VT.
8906 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8907                            SelectionDAG &DAG, const SDLoc &dl) {
8908   static const MVT VTys[] = { // canonical VT to use for each size.
8909     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8910   };
8911 
8912   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8913 
8914   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8915   if (Val == -1)
8916     SplatSize = 1;
8917 
8918   EVT CanonicalVT = VTys[SplatSize-1];
8919 
8920   // Build a canonical splat for this value.
8921   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8922 }
8923 
8924 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8925 /// specified intrinsic ID.
8926 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8927                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8928   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8929   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8930                      DAG.getConstant(IID, dl, MVT::i32), Op);
8931 }
8932 
8933 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8934 /// specified intrinsic ID.
8935 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8936                                 SelectionDAG &DAG, const SDLoc &dl,
8937                                 EVT DestVT = MVT::Other) {
8938   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8939   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8940                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8941 }
8942 
8943 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8944 /// specified intrinsic ID.
8945 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8946                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8947                                 EVT DestVT = MVT::Other) {
8948   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8949   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8950                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8951 }
8952 
8953 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8954 /// amount.  The result has the specified value type.
8955 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8956                            SelectionDAG &DAG, const SDLoc &dl) {
8957   // Force LHS/RHS to be the right type.
8958   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8959   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8960 
8961   int Ops[16];
8962   for (unsigned i = 0; i != 16; ++i)
8963     Ops[i] = i + Amt;
8964   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8965   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8966 }
8967 
8968 /// Do we have an efficient pattern in a .td file for this node?
8969 ///
8970 /// \param V - pointer to the BuildVectorSDNode being matched
8971 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8972 ///
8973 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8974 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8975 /// the opposite is true (expansion is beneficial) are:
8976 /// - The node builds a vector out of integers that are not 32 or 64-bits
8977 /// - The node builds a vector out of constants
8978 /// - The node is a "load-and-splat"
8979 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8980 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8981                                             bool HasDirectMove,
8982                                             bool HasP8Vector) {
8983   EVT VecVT = V->getValueType(0);
8984   bool RightType = VecVT == MVT::v2f64 ||
8985     (HasP8Vector && VecVT == MVT::v4f32) ||
8986     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8987   if (!RightType)
8988     return false;
8989 
8990   bool IsSplat = true;
8991   bool IsLoad = false;
8992   SDValue Op0 = V->getOperand(0);
8993 
8994   // This function is called in a block that confirms the node is not a constant
8995   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8996   // different constants.
8997   if (V->isConstant())
8998     return false;
8999   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9000     if (V->getOperand(i).isUndef())
9001       return false;
9002     // We want to expand nodes that represent load-and-splat even if the
9003     // loaded value is a floating point truncation or conversion to int.
9004     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9005         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9006          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9007         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9008          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9009         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9010          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9011       IsLoad = true;
9012     // If the operands are different or the input is not a load and has more
9013     // uses than just this BV node, then it isn't a splat.
9014     if (V->getOperand(i) != Op0 ||
9015         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9016       IsSplat = false;
9017   }
9018   return !(IsSplat && IsLoad);
9019 }
9020 
9021 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9022 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9023 
9024   SDLoc dl(Op);
9025   SDValue Op0 = Op->getOperand(0);
9026 
9027   if (!EnableQuadPrecision ||
9028       (Op.getValueType() != MVT::f128 ) ||
9029       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9030       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
9031       (Op0.getOperand(1).getValueType() != MVT::i64))
9032     return SDValue();
9033 
9034   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9035                      Op0.getOperand(1));
9036 }
9037 
9038 static const SDValue *getNormalLoadInput(const SDValue &Op) {
9039   const SDValue *InputLoad = &Op;
9040   if (InputLoad->getOpcode() == ISD::BITCAST)
9041     InputLoad = &InputLoad->getOperand(0);
9042   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
9043     InputLoad = &InputLoad->getOperand(0);
9044   if (InputLoad->getOpcode() != ISD::LOAD)
9045     return nullptr;
9046   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9047   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9048 }
9049 
9050 // If this is a case we can't handle, return null and let the default
9051 // expansion code take care of it.  If we CAN select this case, and if it
9052 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9053 // this case more efficiently than a constant pool load, lower it to the
9054 // sequence of ops that should be used.
9055 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9056                                              SelectionDAG &DAG) const {
9057   SDLoc dl(Op);
9058   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9059   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9060 
9061   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
9062     // We first build an i32 vector, load it into a QPX register,
9063     // then convert it to a floating-point vector and compare it
9064     // to a zero vector to get the boolean result.
9065     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9066     int FrameIdx = MFI.CreateStackObject(16, 16, false);
9067     MachinePointerInfo PtrInfo =
9068         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9069     EVT PtrVT = getPointerTy(DAG.getDataLayout());
9070     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9071 
9072     assert(BVN->getNumOperands() == 4 &&
9073       "BUILD_VECTOR for v4i1 does not have 4 operands");
9074 
9075     bool IsConst = true;
9076     for (unsigned i = 0; i < 4; ++i) {
9077       if (BVN->getOperand(i).isUndef()) continue;
9078       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
9079         IsConst = false;
9080         break;
9081       }
9082     }
9083 
9084     if (IsConst) {
9085       Constant *One =
9086         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
9087       Constant *NegOne =
9088         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
9089 
9090       Constant *CV[4];
9091       for (unsigned i = 0; i < 4; ++i) {
9092         if (BVN->getOperand(i).isUndef())
9093           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
9094         else if (isNullConstant(BVN->getOperand(i)))
9095           CV[i] = NegOne;
9096         else
9097           CV[i] = One;
9098       }
9099 
9100       Constant *CP = ConstantVector::get(CV);
9101       SDValue CPIdx =
9102           DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));
9103 
9104       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
9105       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
9106       return DAG.getMemIntrinsicNode(
9107           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
9108           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
9109     }
9110 
9111     SmallVector<SDValue, 4> Stores;
9112     for (unsigned i = 0; i < 4; ++i) {
9113       if (BVN->getOperand(i).isUndef()) continue;
9114 
9115       unsigned Offset = 4*i;
9116       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9117       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9118 
9119       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
9120       if (StoreSize > 4) {
9121         Stores.push_back(
9122             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
9123                               PtrInfo.getWithOffset(Offset), MVT::i32));
9124       } else {
9125         SDValue StoreValue = BVN->getOperand(i);
9126         if (StoreSize < 4)
9127           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
9128 
9129         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
9130                                       PtrInfo.getWithOffset(Offset)));
9131       }
9132     }
9133 
9134     SDValue StoreChain;
9135     if (!Stores.empty())
9136       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9137     else
9138       StoreChain = DAG.getEntryNode();
9139 
9140     // Now load from v4i32 into the QPX register; this will extend it to
9141     // v4i64 but not yet convert it to a floating point. Nevertheless, this
9142     // is typed as v4f64 because the QPX register integer states are not
9143     // explicitly represented.
9144 
9145     SDValue Ops[] = {StoreChain,
9146                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
9147                      FIdx};
9148     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
9149 
9150     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
9151       dl, VTs, Ops, MVT::v4i32, PtrInfo);
9152     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9153       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
9154       LoadedVect);
9155 
9156     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
9157 
9158     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
9159   }
9160 
9161   // All other QPX vectors are handled by generic code.
9162   if (Subtarget.hasQPX())
9163     return SDValue();
9164 
9165   // Check if this is a splat of a constant value.
9166   APInt APSplatBits, APSplatUndef;
9167   unsigned SplatBitSize;
9168   bool HasAnyUndefs;
9169   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9170                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9171       SplatBitSize > 32) {
9172 
9173     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
9174     // Handle load-and-splat patterns as we have instructions that will do this
9175     // in one go.
9176     if (InputLoad && DAG.isSplatValue(Op, true)) {
9177       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9178 
9179       // We have handling for 4 and 8 byte elements.
9180       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9181 
9182       // Checking for a single use of this load, we have to check for vector
9183       // width (128 bits) / ElementSize uses (since each operand of the
9184       // BUILD_VECTOR is a separate use of the value.
9185       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9186           ((Subtarget.hasVSX() && ElementSize == 64) ||
9187            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9188         SDValue Ops[] = {
9189           LD->getChain(),    // Chain
9190           LD->getBasePtr(),  // Ptr
9191           DAG.getValueType(Op.getValueType()) // VT
9192         };
9193         return
9194           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9195                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9196                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9197       }
9198     }
9199 
9200     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9201     // lowered to VSX instructions under certain conditions.
9202     // Without VSX, there is no pattern more efficient than expanding the node.
9203     if (Subtarget.hasVSX() &&
9204         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9205                                         Subtarget.hasP8Vector()))
9206       return Op;
9207     return SDValue();
9208   }
9209 
9210   unsigned SplatBits = APSplatBits.getZExtValue();
9211   unsigned SplatUndef = APSplatUndef.getZExtValue();
9212   unsigned SplatSize = SplatBitSize / 8;
9213 
9214   // First, handle single instruction cases.
9215 
9216   // All zeros?
9217   if (SplatBits == 0) {
9218     // Canonicalize all zero vectors to be v4i32.
9219     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9220       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9221       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9222     }
9223     return Op;
9224   }
9225 
9226   // We have XXSPLTIB for constant splats one byte wide
9227   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
9228   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
9229   if (Subtarget.hasP9Vector() && SplatSize == 1)
9230     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
9231 
9232   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9233   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9234                     (32-SplatBitSize));
9235   if (SextVal >= -16 && SextVal <= 15)
9236     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
9237 
9238   // Two instruction sequences.
9239 
9240   // If this value is in the range [-32,30] and is even, use:
9241   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9242   // If this value is in the range [17,31] and is odd, use:
9243   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9244   // If this value is in the range [-31,-17] and is odd, use:
9245   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9246   // Note the last two are three-instruction sequences.
9247   if (SextVal >= -32 && SextVal <= 31) {
9248     // To avoid having these optimizations undone by constant folding,
9249     // we convert to a pseudo that will be expanded later into one of
9250     // the above forms.
9251     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9252     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9253               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9254     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9255     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9256     if (VT == Op.getValueType())
9257       return RetVal;
9258     else
9259       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9260   }
9261 
9262   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9263   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9264   // for fneg/fabs.
9265   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9266     // Make -1 and vspltisw -1:
9267     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
9268 
9269     // Make the VSLW intrinsic, computing 0x8000_0000.
9270     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9271                                    OnesV, DAG, dl);
9272 
9273     // xor by OnesV to invert it.
9274     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9275     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9276   }
9277 
9278   // Check to see if this is a wide variety of vsplti*, binop self cases.
9279   static const signed char SplatCsts[] = {
9280     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9281     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9282   };
9283 
9284   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9285     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9286     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9287     int i = SplatCsts[idx];
9288 
9289     // Figure out what shift amount will be used by altivec if shifted by i in
9290     // this splat size.
9291     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9292 
9293     // vsplti + shl self.
9294     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9295       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9296       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9297         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9298         Intrinsic::ppc_altivec_vslw
9299       };
9300       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9301       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9302     }
9303 
9304     // vsplti + srl self.
9305     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9306       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9307       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9308         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9309         Intrinsic::ppc_altivec_vsrw
9310       };
9311       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9312       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9313     }
9314 
9315     // vsplti + sra self.
9316     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9317       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9318       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9319         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9320         Intrinsic::ppc_altivec_vsraw
9321       };
9322       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9323       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9324     }
9325 
9326     // vsplti + rol self.
9327     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9328                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9329       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9330       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9331         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9332         Intrinsic::ppc_altivec_vrlw
9333       };
9334       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9335       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9336     }
9337 
9338     // t = vsplti c, result = vsldoi t, t, 1
9339     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9340       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9341       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9342       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9343     }
9344     // t = vsplti c, result = vsldoi t, t, 2
9345     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9346       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9347       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9348       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9349     }
9350     // t = vsplti c, result = vsldoi t, t, 3
9351     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9352       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9353       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9354       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9355     }
9356   }
9357 
9358   return SDValue();
9359 }
9360 
9361 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9362 /// the specified operations to build the shuffle.
9363 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9364                                       SDValue RHS, SelectionDAG &DAG,
9365                                       const SDLoc &dl) {
9366   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9367   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9368   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9369 
9370   enum {
9371     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9372     OP_VMRGHW,
9373     OP_VMRGLW,
9374     OP_VSPLTISW0,
9375     OP_VSPLTISW1,
9376     OP_VSPLTISW2,
9377     OP_VSPLTISW3,
9378     OP_VSLDOI4,
9379     OP_VSLDOI8,
9380     OP_VSLDOI12
9381   };
9382 
9383   if (OpNum == OP_COPY) {
9384     if (LHSID == (1*9+2)*9+3) return LHS;
9385     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9386     return RHS;
9387   }
9388 
9389   SDValue OpLHS, OpRHS;
9390   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9391   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9392 
9393   int ShufIdxs[16];
9394   switch (OpNum) {
9395   default: llvm_unreachable("Unknown i32 permute!");
9396   case OP_VMRGHW:
9397     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9398     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9399     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9400     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9401     break;
9402   case OP_VMRGLW:
9403     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9404     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9405     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9406     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9407     break;
9408   case OP_VSPLTISW0:
9409     for (unsigned i = 0; i != 16; ++i)
9410       ShufIdxs[i] = (i&3)+0;
9411     break;
9412   case OP_VSPLTISW1:
9413     for (unsigned i = 0; i != 16; ++i)
9414       ShufIdxs[i] = (i&3)+4;
9415     break;
9416   case OP_VSPLTISW2:
9417     for (unsigned i = 0; i != 16; ++i)
9418       ShufIdxs[i] = (i&3)+8;
9419     break;
9420   case OP_VSPLTISW3:
9421     for (unsigned i = 0; i != 16; ++i)
9422       ShufIdxs[i] = (i&3)+12;
9423     break;
9424   case OP_VSLDOI4:
9425     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9426   case OP_VSLDOI8:
9427     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9428   case OP_VSLDOI12:
9429     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9430   }
9431   EVT VT = OpLHS.getValueType();
9432   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9433   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9434   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9435   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9436 }
9437 
9438 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9439 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9440 /// SDValue.
9441 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9442                                            SelectionDAG &DAG) const {
9443   const unsigned BytesInVector = 16;
9444   bool IsLE = Subtarget.isLittleEndian();
9445   SDLoc dl(N);
9446   SDValue V1 = N->getOperand(0);
9447   SDValue V2 = N->getOperand(1);
9448   unsigned ShiftElts = 0, InsertAtByte = 0;
9449   bool Swap = false;
9450 
9451   // Shifts required to get the byte we want at element 7.
9452   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9453                                    0, 15, 14, 13, 12, 11, 10, 9};
9454   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9455                                 1, 2,  3,  4,  5,  6,  7,  8};
9456 
9457   ArrayRef<int> Mask = N->getMask();
9458   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9459 
9460   // For each mask element, find out if we're just inserting something
9461   // from V2 into V1 or vice versa.
9462   // Possible permutations inserting an element from V2 into V1:
9463   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9464   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9465   //   ...
9466   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9467   // Inserting from V1 into V2 will be similar, except mask range will be
9468   // [16,31].
9469 
9470   bool FoundCandidate = false;
9471   // If both vector operands for the shuffle are the same vector, the mask
9472   // will contain only elements from the first one and the second one will be
9473   // undef.
9474   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9475   // Go through the mask of half-words to find an element that's being moved
9476   // from one vector to the other.
9477   for (unsigned i = 0; i < BytesInVector; ++i) {
9478     unsigned CurrentElement = Mask[i];
9479     // If 2nd operand is undefined, we should only look for element 7 in the
9480     // Mask.
9481     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9482       continue;
9483 
9484     bool OtherElementsInOrder = true;
9485     // Examine the other elements in the Mask to see if they're in original
9486     // order.
9487     for (unsigned j = 0; j < BytesInVector; ++j) {
9488       if (j == i)
9489         continue;
9490       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9491       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9492       // in which we always assume we're always picking from the 1st operand.
9493       int MaskOffset =
9494           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9495       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9496         OtherElementsInOrder = false;
9497         break;
9498       }
9499     }
9500     // If other elements are in original order, we record the number of shifts
9501     // we need to get the element we want into element 7. Also record which byte
9502     // in the vector we should insert into.
9503     if (OtherElementsInOrder) {
9504       // If 2nd operand is undefined, we assume no shifts and no swapping.
9505       if (V2.isUndef()) {
9506         ShiftElts = 0;
9507         Swap = false;
9508       } else {
9509         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9510         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9511                          : BigEndianShifts[CurrentElement & 0xF];
9512         Swap = CurrentElement < BytesInVector;
9513       }
9514       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9515       FoundCandidate = true;
9516       break;
9517     }
9518   }
9519 
9520   if (!FoundCandidate)
9521     return SDValue();
9522 
9523   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9524   // optionally with VECSHL if shift is required.
9525   if (Swap)
9526     std::swap(V1, V2);
9527   if (V2.isUndef())
9528     V2 = V1;
9529   if (ShiftElts) {
9530     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9531                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9532     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9533                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9534   }
9535   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9536                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9537 }
9538 
9539 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9540 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9541 /// SDValue.
9542 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9543                                            SelectionDAG &DAG) const {
9544   const unsigned NumHalfWords = 8;
9545   const unsigned BytesInVector = NumHalfWords * 2;
9546   // Check that the shuffle is on half-words.
9547   if (!isNByteElemShuffleMask(N, 2, 1))
9548     return SDValue();
9549 
9550   bool IsLE = Subtarget.isLittleEndian();
9551   SDLoc dl(N);
9552   SDValue V1 = N->getOperand(0);
9553   SDValue V2 = N->getOperand(1);
9554   unsigned ShiftElts = 0, InsertAtByte = 0;
9555   bool Swap = false;
9556 
9557   // Shifts required to get the half-word we want at element 3.
9558   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9559   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9560 
9561   uint32_t Mask = 0;
9562   uint32_t OriginalOrderLow = 0x1234567;
9563   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9564   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9565   // 32-bit space, only need 4-bit nibbles per element.
9566   for (unsigned i = 0; i < NumHalfWords; ++i) {
9567     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9568     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9569   }
9570 
9571   // For each mask element, find out if we're just inserting something
9572   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9573   // from V2 into V1:
9574   //   X, 1, 2, 3, 4, 5, 6, 7
9575   //   0, X, 2, 3, 4, 5, 6, 7
9576   //   0, 1, X, 3, 4, 5, 6, 7
9577   //   0, 1, 2, X, 4, 5, 6, 7
9578   //   0, 1, 2, 3, X, 5, 6, 7
9579   //   0, 1, 2, 3, 4, X, 6, 7
9580   //   0, 1, 2, 3, 4, 5, X, 7
9581   //   0, 1, 2, 3, 4, 5, 6, X
9582   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9583 
9584   bool FoundCandidate = false;
9585   // Go through the mask of half-words to find an element that's being moved
9586   // from one vector to the other.
9587   for (unsigned i = 0; i < NumHalfWords; ++i) {
9588     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9589     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9590     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9591     uint32_t TargetOrder = 0x0;
9592 
9593     // If both vector operands for the shuffle are the same vector, the mask
9594     // will contain only elements from the first one and the second one will be
9595     // undef.
9596     if (V2.isUndef()) {
9597       ShiftElts = 0;
9598       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9599       TargetOrder = OriginalOrderLow;
9600       Swap = false;
9601       // Skip if not the correct element or mask of other elements don't equal
9602       // to our expected order.
9603       if (MaskOneElt == VINSERTHSrcElem &&
9604           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9605         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9606         FoundCandidate = true;
9607         break;
9608       }
9609     } else { // If both operands are defined.
9610       // Target order is [8,15] if the current mask is between [0,7].
9611       TargetOrder =
9612           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9613       // Skip if mask of other elements don't equal our expected order.
9614       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9615         // We only need the last 3 bits for the number of shifts.
9616         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9617                          : BigEndianShifts[MaskOneElt & 0x7];
9618         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9619         Swap = MaskOneElt < NumHalfWords;
9620         FoundCandidate = true;
9621         break;
9622       }
9623     }
9624   }
9625 
9626   if (!FoundCandidate)
9627     return SDValue();
9628 
9629   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9630   // optionally with VECSHL if shift is required.
9631   if (Swap)
9632     std::swap(V1, V2);
9633   if (V2.isUndef())
9634     V2 = V1;
9635   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9636   if (ShiftElts) {
9637     // Double ShiftElts because we're left shifting on v16i8 type.
9638     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9639                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9640     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9641     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9642                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9643     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9644   }
9645   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9646   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9647                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9648   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9649 }
9650 
9651 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9652 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9653 /// return the code it can be lowered into.  Worst case, it can always be
9654 /// lowered into a vperm.
9655 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9656                                                SelectionDAG &DAG) const {
9657   SDLoc dl(Op);
9658   SDValue V1 = Op.getOperand(0);
9659   SDValue V2 = Op.getOperand(1);
9660   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9661   EVT VT = Op.getValueType();
9662   bool isLittleEndian = Subtarget.isLittleEndian();
9663 
9664   unsigned ShiftElts, InsertAtByte;
9665   bool Swap = false;
9666 
9667   // If this is a load-and-splat, we can do that with a single instruction
9668   // in some cases. However if the load has multiple uses, we don't want to
9669   // combine it because that will just produce multiple loads.
9670   const SDValue *InputLoad = getNormalLoadInput(V1);
9671   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9672       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9673       InputLoad->hasOneUse()) {
9674     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9675     int SplatIdx =
9676       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9677 
9678     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9679     // For 4-byte load-and-splat, we need Power9.
9680     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9681       uint64_t Offset = 0;
9682       if (IsFourByte)
9683         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9684       else
9685         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9686       SDValue BasePtr = LD->getBasePtr();
9687       if (Offset != 0)
9688         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9689                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9690       SDValue Ops[] = {
9691         LD->getChain(),    // Chain
9692         BasePtr,           // BasePtr
9693         DAG.getValueType(Op.getValueType()) // VT
9694       };
9695       SDVTList VTL =
9696         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9697       SDValue LdSplt =
9698         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9699                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9700       if (LdSplt.getValueType() != SVOp->getValueType(0))
9701         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9702       return LdSplt;
9703     }
9704   }
9705   if (Subtarget.hasP9Vector() &&
9706       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9707                            isLittleEndian)) {
9708     if (Swap)
9709       std::swap(V1, V2);
9710     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9711     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9712     if (ShiftElts) {
9713       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9714                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9715       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9716                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9717       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9718     }
9719     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9720                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9721     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9722   }
9723 
9724   if (Subtarget.hasP9Altivec()) {
9725     SDValue NewISDNode;
9726     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9727       return NewISDNode;
9728 
9729     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9730       return NewISDNode;
9731   }
9732 
9733   if (Subtarget.hasVSX() &&
9734       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9735     if (Swap)
9736       std::swap(V1, V2);
9737     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9738     SDValue Conv2 =
9739         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9740 
9741     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9742                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9743     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9744   }
9745 
9746   if (Subtarget.hasVSX() &&
9747     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9748     if (Swap)
9749       std::swap(V1, V2);
9750     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9751     SDValue Conv2 =
9752         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9753 
9754     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9755                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9756     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9757   }
9758 
9759   if (Subtarget.hasP9Vector()) {
9760      if (PPC::isXXBRHShuffleMask(SVOp)) {
9761       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9762       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9763       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9764     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9765       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9766       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9767       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9768     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9769       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9770       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9771       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9772     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9773       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9774       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9775       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9776     }
9777   }
9778 
9779   if (Subtarget.hasVSX()) {
9780     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9781       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9782 
9783       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9784       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9785                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9786       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9787     }
9788 
9789     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9790     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9791       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9792       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9793       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9794     }
9795   }
9796 
9797   if (Subtarget.hasQPX()) {
9798     if (VT.getVectorNumElements() != 4)
9799       return SDValue();
9800 
9801     if (V2.isUndef()) V2 = V1;
9802 
9803     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9804     if (AlignIdx != -1) {
9805       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9806                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9807     } else if (SVOp->isSplat()) {
9808       int SplatIdx = SVOp->getSplatIndex();
9809       if (SplatIdx >= 4) {
9810         std::swap(V1, V2);
9811         SplatIdx -= 4;
9812       }
9813 
9814       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9815                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9816     }
9817 
9818     // Lower this into a qvgpci/qvfperm pair.
9819 
9820     // Compute the qvgpci literal
9821     unsigned idx = 0;
9822     for (unsigned i = 0; i < 4; ++i) {
9823       int m = SVOp->getMaskElt(i);
9824       unsigned mm = m >= 0 ? (unsigned) m : i;
9825       idx |= mm << (3-i)*3;
9826     }
9827 
9828     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9829                              DAG.getConstant(idx, dl, MVT::i32));
9830     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9831   }
9832 
9833   // Cases that are handled by instructions that take permute immediates
9834   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9835   // selected by the instruction selector.
9836   if (V2.isUndef()) {
9837     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9838         PPC::isSplatShuffleMask(SVOp, 2) ||
9839         PPC::isSplatShuffleMask(SVOp, 4) ||
9840         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9841         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9842         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9843         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9844         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9845         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9846         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9847         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9848         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9849         (Subtarget.hasP8Altivec() && (
9850          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9851          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9852          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9853       return Op;
9854     }
9855   }
9856 
9857   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9858   // and produce a fixed permutation.  If any of these match, do not lower to
9859   // VPERM.
9860   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9861   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9862       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9863       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9864       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9865       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9866       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9867       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9868       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9869       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9870       (Subtarget.hasP8Altivec() && (
9871        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9872        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9873        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9874     return Op;
9875 
9876   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9877   // perfect shuffle table to emit an optimal matching sequence.
9878   ArrayRef<int> PermMask = SVOp->getMask();
9879 
9880   unsigned PFIndexes[4];
9881   bool isFourElementShuffle = true;
9882   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9883     unsigned EltNo = 8;   // Start out undef.
9884     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9885       if (PermMask[i*4+j] < 0)
9886         continue;   // Undef, ignore it.
9887 
9888       unsigned ByteSource = PermMask[i*4+j];
9889       if ((ByteSource & 3) != j) {
9890         isFourElementShuffle = false;
9891         break;
9892       }
9893 
9894       if (EltNo == 8) {
9895         EltNo = ByteSource/4;
9896       } else if (EltNo != ByteSource/4) {
9897         isFourElementShuffle = false;
9898         break;
9899       }
9900     }
9901     PFIndexes[i] = EltNo;
9902   }
9903 
9904   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9905   // perfect shuffle vector to determine if it is cost effective to do this as
9906   // discrete instructions, or whether we should use a vperm.
9907   // For now, we skip this for little endian until such time as we have a
9908   // little-endian perfect shuffle table.
9909   if (isFourElementShuffle && !isLittleEndian) {
9910     // Compute the index in the perfect shuffle table.
9911     unsigned PFTableIndex =
9912       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9913 
9914     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9915     unsigned Cost  = (PFEntry >> 30);
9916 
9917     // Determining when to avoid vperm is tricky.  Many things affect the cost
9918     // of vperm, particularly how many times the perm mask needs to be computed.
9919     // For example, if the perm mask can be hoisted out of a loop or is already
9920     // used (perhaps because there are multiple permutes with the same shuffle
9921     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9922     // the loop requires an extra register.
9923     //
9924     // As a compromise, we only emit discrete instructions if the shuffle can be
9925     // generated in 3 or fewer operations.  When we have loop information
9926     // available, if this block is within a loop, we should avoid using vperm
9927     // for 3-operation perms and use a constant pool load instead.
9928     if (Cost < 3)
9929       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9930   }
9931 
9932   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9933   // vector that will get spilled to the constant pool.
9934   if (V2.isUndef()) V2 = V1;
9935 
9936   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9937   // that it is in input element units, not in bytes.  Convert now.
9938 
9939   // For little endian, the order of the input vectors is reversed, and
9940   // the permutation mask is complemented with respect to 31.  This is
9941   // necessary to produce proper semantics with the big-endian-biased vperm
9942   // instruction.
9943   EVT EltVT = V1.getValueType().getVectorElementType();
9944   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9945 
9946   SmallVector<SDValue, 16> ResultMask;
9947   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9948     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9949 
9950     for (unsigned j = 0; j != BytesPerElement; ++j)
9951       if (isLittleEndian)
9952         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9953                                              dl, MVT::i32));
9954       else
9955         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9956                                              MVT::i32));
9957   }
9958 
9959   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9960   if (isLittleEndian)
9961     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9962                        V2, V1, VPermMask);
9963   else
9964     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9965                        V1, V2, VPermMask);
9966 }
9967 
9968 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9969 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9970 /// information about the intrinsic.
9971 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9972                                  bool &isDot, const PPCSubtarget &Subtarget) {
9973   unsigned IntrinsicID =
9974       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9975   CompareOpc = -1;
9976   isDot = false;
9977   switch (IntrinsicID) {
9978   default:
9979     return false;
9980   // Comparison predicates.
9981   case Intrinsic::ppc_altivec_vcmpbfp_p:
9982     CompareOpc = 966;
9983     isDot = true;
9984     break;
9985   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9986     CompareOpc = 198;
9987     isDot = true;
9988     break;
9989   case Intrinsic::ppc_altivec_vcmpequb_p:
9990     CompareOpc = 6;
9991     isDot = true;
9992     break;
9993   case Intrinsic::ppc_altivec_vcmpequh_p:
9994     CompareOpc = 70;
9995     isDot = true;
9996     break;
9997   case Intrinsic::ppc_altivec_vcmpequw_p:
9998     CompareOpc = 134;
9999     isDot = true;
10000     break;
10001   case Intrinsic::ppc_altivec_vcmpequd_p:
10002     if (Subtarget.hasP8Altivec()) {
10003       CompareOpc = 199;
10004       isDot = true;
10005     } else
10006       return false;
10007     break;
10008   case Intrinsic::ppc_altivec_vcmpneb_p:
10009   case Intrinsic::ppc_altivec_vcmpneh_p:
10010   case Intrinsic::ppc_altivec_vcmpnew_p:
10011   case Intrinsic::ppc_altivec_vcmpnezb_p:
10012   case Intrinsic::ppc_altivec_vcmpnezh_p:
10013   case Intrinsic::ppc_altivec_vcmpnezw_p:
10014     if (Subtarget.hasP9Altivec()) {
10015       switch (IntrinsicID) {
10016       default:
10017         llvm_unreachable("Unknown comparison intrinsic.");
10018       case Intrinsic::ppc_altivec_vcmpneb_p:
10019         CompareOpc = 7;
10020         break;
10021       case Intrinsic::ppc_altivec_vcmpneh_p:
10022         CompareOpc = 71;
10023         break;
10024       case Intrinsic::ppc_altivec_vcmpnew_p:
10025         CompareOpc = 135;
10026         break;
10027       case Intrinsic::ppc_altivec_vcmpnezb_p:
10028         CompareOpc = 263;
10029         break;
10030       case Intrinsic::ppc_altivec_vcmpnezh_p:
10031         CompareOpc = 327;
10032         break;
10033       case Intrinsic::ppc_altivec_vcmpnezw_p:
10034         CompareOpc = 391;
10035         break;
10036       }
10037       isDot = true;
10038     } else
10039       return false;
10040     break;
10041   case Intrinsic::ppc_altivec_vcmpgefp_p:
10042     CompareOpc = 454;
10043     isDot = true;
10044     break;
10045   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10046     CompareOpc = 710;
10047     isDot = true;
10048     break;
10049   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10050     CompareOpc = 774;
10051     isDot = true;
10052     break;
10053   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10054     CompareOpc = 838;
10055     isDot = true;
10056     break;
10057   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10058     CompareOpc = 902;
10059     isDot = true;
10060     break;
10061   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10062     if (Subtarget.hasP8Altivec()) {
10063       CompareOpc = 967;
10064       isDot = true;
10065     } else
10066       return false;
10067     break;
10068   case Intrinsic::ppc_altivec_vcmpgtub_p:
10069     CompareOpc = 518;
10070     isDot = true;
10071     break;
10072   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10073     CompareOpc = 582;
10074     isDot = true;
10075     break;
10076   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10077     CompareOpc = 646;
10078     isDot = true;
10079     break;
10080   case Intrinsic::ppc_altivec_vcmpgtud_p:
10081     if (Subtarget.hasP8Altivec()) {
10082       CompareOpc = 711;
10083       isDot = true;
10084     } else
10085       return false;
10086     break;
10087 
10088   // VSX predicate comparisons use the same infrastructure
10089   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10090   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10091   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10092   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10093   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10094   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10095     if (Subtarget.hasVSX()) {
10096       switch (IntrinsicID) {
10097       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10098         CompareOpc = 99;
10099         break;
10100       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10101         CompareOpc = 115;
10102         break;
10103       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10104         CompareOpc = 107;
10105         break;
10106       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10107         CompareOpc = 67;
10108         break;
10109       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10110         CompareOpc = 83;
10111         break;
10112       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10113         CompareOpc = 75;
10114         break;
10115       }
10116       isDot = true;
10117     } else
10118       return false;
10119     break;
10120 
10121   // Normal Comparisons.
10122   case Intrinsic::ppc_altivec_vcmpbfp:
10123     CompareOpc = 966;
10124     break;
10125   case Intrinsic::ppc_altivec_vcmpeqfp:
10126     CompareOpc = 198;
10127     break;
10128   case Intrinsic::ppc_altivec_vcmpequb:
10129     CompareOpc = 6;
10130     break;
10131   case Intrinsic::ppc_altivec_vcmpequh:
10132     CompareOpc = 70;
10133     break;
10134   case Intrinsic::ppc_altivec_vcmpequw:
10135     CompareOpc = 134;
10136     break;
10137   case Intrinsic::ppc_altivec_vcmpequd:
10138     if (Subtarget.hasP8Altivec())
10139       CompareOpc = 199;
10140     else
10141       return false;
10142     break;
10143   case Intrinsic::ppc_altivec_vcmpneb:
10144   case Intrinsic::ppc_altivec_vcmpneh:
10145   case Intrinsic::ppc_altivec_vcmpnew:
10146   case Intrinsic::ppc_altivec_vcmpnezb:
10147   case Intrinsic::ppc_altivec_vcmpnezh:
10148   case Intrinsic::ppc_altivec_vcmpnezw:
10149     if (Subtarget.hasP9Altivec())
10150       switch (IntrinsicID) {
10151       default:
10152         llvm_unreachable("Unknown comparison intrinsic.");
10153       case Intrinsic::ppc_altivec_vcmpneb:
10154         CompareOpc = 7;
10155         break;
10156       case Intrinsic::ppc_altivec_vcmpneh:
10157         CompareOpc = 71;
10158         break;
10159       case Intrinsic::ppc_altivec_vcmpnew:
10160         CompareOpc = 135;
10161         break;
10162       case Intrinsic::ppc_altivec_vcmpnezb:
10163         CompareOpc = 263;
10164         break;
10165       case Intrinsic::ppc_altivec_vcmpnezh:
10166         CompareOpc = 327;
10167         break;
10168       case Intrinsic::ppc_altivec_vcmpnezw:
10169         CompareOpc = 391;
10170         break;
10171       }
10172     else
10173       return false;
10174     break;
10175   case Intrinsic::ppc_altivec_vcmpgefp:
10176     CompareOpc = 454;
10177     break;
10178   case Intrinsic::ppc_altivec_vcmpgtfp:
10179     CompareOpc = 710;
10180     break;
10181   case Intrinsic::ppc_altivec_vcmpgtsb:
10182     CompareOpc = 774;
10183     break;
10184   case Intrinsic::ppc_altivec_vcmpgtsh:
10185     CompareOpc = 838;
10186     break;
10187   case Intrinsic::ppc_altivec_vcmpgtsw:
10188     CompareOpc = 902;
10189     break;
10190   case Intrinsic::ppc_altivec_vcmpgtsd:
10191     if (Subtarget.hasP8Altivec())
10192       CompareOpc = 967;
10193     else
10194       return false;
10195     break;
10196   case Intrinsic::ppc_altivec_vcmpgtub:
10197     CompareOpc = 518;
10198     break;
10199   case Intrinsic::ppc_altivec_vcmpgtuh:
10200     CompareOpc = 582;
10201     break;
10202   case Intrinsic::ppc_altivec_vcmpgtuw:
10203     CompareOpc = 646;
10204     break;
10205   case Intrinsic::ppc_altivec_vcmpgtud:
10206     if (Subtarget.hasP8Altivec())
10207       CompareOpc = 711;
10208     else
10209       return false;
10210     break;
10211   }
10212   return true;
10213 }
10214 
10215 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10216 /// lower, do it, otherwise return null.
10217 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10218                                                    SelectionDAG &DAG) const {
10219   unsigned IntrinsicID =
10220     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10221 
10222   SDLoc dl(Op);
10223 
10224   if (IntrinsicID == Intrinsic::thread_pointer) {
10225     // Reads the thread pointer register, used for __builtin_thread_pointer.
10226     if (Subtarget.isPPC64())
10227       return DAG.getRegister(PPC::X13, MVT::i64);
10228     return DAG.getRegister(PPC::R2, MVT::i32);
10229   }
10230 
10231   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10232   // opcode number of the comparison.
10233   int CompareOpc;
10234   bool isDot;
10235   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10236     return SDValue();    // Don't custom lower most intrinsics.
10237 
10238   // If this is a non-dot comparison, make the VCMP node and we are done.
10239   if (!isDot) {
10240     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10241                               Op.getOperand(1), Op.getOperand(2),
10242                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10243     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10244   }
10245 
10246   // Create the PPCISD altivec 'dot' comparison node.
10247   SDValue Ops[] = {
10248     Op.getOperand(2),  // LHS
10249     Op.getOperand(3),  // RHS
10250     DAG.getConstant(CompareOpc, dl, MVT::i32)
10251   };
10252   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10253   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10254 
10255   // Now that we have the comparison, emit a copy from the CR to a GPR.
10256   // This is flagged to the above dot comparison.
10257   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10258                                 DAG.getRegister(PPC::CR6, MVT::i32),
10259                                 CompNode.getValue(1));
10260 
10261   // Unpack the result based on how the target uses it.
10262   unsigned BitNo;   // Bit # of CR6.
10263   bool InvertBit;   // Invert result?
10264   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10265   default:  // Can't happen, don't crash on invalid number though.
10266   case 0:   // Return the value of the EQ bit of CR6.
10267     BitNo = 0; InvertBit = false;
10268     break;
10269   case 1:   // Return the inverted value of the EQ bit of CR6.
10270     BitNo = 0; InvertBit = true;
10271     break;
10272   case 2:   // Return the value of the LT bit of CR6.
10273     BitNo = 2; InvertBit = false;
10274     break;
10275   case 3:   // Return the inverted value of the LT bit of CR6.
10276     BitNo = 2; InvertBit = true;
10277     break;
10278   }
10279 
10280   // Shift the bit into the low position.
10281   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10282                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10283   // Isolate the bit.
10284   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10285                       DAG.getConstant(1, dl, MVT::i32));
10286 
10287   // If we are supposed to, toggle the bit.
10288   if (InvertBit)
10289     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10290                         DAG.getConstant(1, dl, MVT::i32));
10291   return Flags;
10292 }
10293 
10294 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10295                                                SelectionDAG &DAG) const {
10296   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10297   // the beginning of the argument list.
10298   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10299   SDLoc DL(Op);
10300   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10301   case Intrinsic::ppc_cfence: {
10302     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10303     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10304     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10305                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10306                                                   Op.getOperand(ArgStart + 1)),
10307                                       Op.getOperand(0)),
10308                    0);
10309   }
10310   default:
10311     break;
10312   }
10313   return SDValue();
10314 }
10315 
10316 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
10317   // Check for a DIV with the same operands as this REM.
10318   for (auto UI : Op.getOperand(1)->uses()) {
10319     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
10320         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
10321       if (UI->getOperand(0) == Op.getOperand(0) &&
10322           UI->getOperand(1) == Op.getOperand(1))
10323         return SDValue();
10324   }
10325   return Op;
10326 }
10327 
10328 // Lower scalar BSWAP64 to xxbrd.
10329 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10330   SDLoc dl(Op);
10331   // MTVSRDD
10332   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10333                    Op.getOperand(0));
10334   // XXBRD
10335   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10336   // MFVSRD
10337   int VectorIndex = 0;
10338   if (Subtarget.isLittleEndian())
10339     VectorIndex = 1;
10340   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10341                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10342   return Op;
10343 }
10344 
10345 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10346 // compared to a value that is atomically loaded (atomic loads zero-extend).
10347 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10348                                                 SelectionDAG &DAG) const {
10349   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10350          "Expecting an atomic compare-and-swap here.");
10351   SDLoc dl(Op);
10352   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10353   EVT MemVT = AtomicNode->getMemoryVT();
10354   if (MemVT.getSizeInBits() >= 32)
10355     return Op;
10356 
10357   SDValue CmpOp = Op.getOperand(2);
10358   // If this is already correctly zero-extended, leave it alone.
10359   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10360   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10361     return Op;
10362 
10363   // Clear the high bits of the compare operand.
10364   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10365   SDValue NewCmpOp =
10366     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10367                 DAG.getConstant(MaskVal, dl, MVT::i32));
10368 
10369   // Replace the existing compare operand with the properly zero-extended one.
10370   SmallVector<SDValue, 4> Ops;
10371   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10372     Ops.push_back(AtomicNode->getOperand(i));
10373   Ops[2] = NewCmpOp;
10374   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10375   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10376   auto NodeTy =
10377     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10378   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10379 }
10380 
10381 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10382                                                  SelectionDAG &DAG) const {
10383   SDLoc dl(Op);
10384   // Create a stack slot that is 16-byte aligned.
10385   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10386   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10387   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10388   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10389 
10390   // Store the input value into Value#0 of the stack slot.
10391   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10392                                MachinePointerInfo());
10393   // Load it out.
10394   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10395 }
10396 
10397 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10398                                                   SelectionDAG &DAG) const {
10399   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10400          "Should only be called for ISD::INSERT_VECTOR_ELT");
10401 
10402   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10403   // We have legal lowering for constant indices but not for variable ones.
10404   if (!C)
10405     return SDValue();
10406 
10407   EVT VT = Op.getValueType();
10408   SDLoc dl(Op);
10409   SDValue V1 = Op.getOperand(0);
10410   SDValue V2 = Op.getOperand(1);
10411   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10412   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10413     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10414     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10415     unsigned InsertAtElement = C->getZExtValue();
10416     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10417     if (Subtarget.isLittleEndian()) {
10418       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10419     }
10420     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10421                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10422   }
10423   return Op;
10424 }
10425 
10426 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10427                                                    SelectionDAG &DAG) const {
10428   SDLoc dl(Op);
10429   SDNode *N = Op.getNode();
10430 
10431   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10432          "Unknown extract_vector_elt type");
10433 
10434   SDValue Value = N->getOperand(0);
10435 
10436   // The first part of this is like the store lowering except that we don't
10437   // need to track the chain.
10438 
10439   // The values are now known to be -1 (false) or 1 (true). To convert this
10440   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10441   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10442   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10443 
10444   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10445   // understand how to form the extending load.
10446   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10447 
10448   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10449 
10450   // Now convert to an integer and store.
10451   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10452     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10453     Value);
10454 
10455   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10456   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10457   MachinePointerInfo PtrInfo =
10458       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10459   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10460   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10461 
10462   SDValue StoreChain = DAG.getEntryNode();
10463   SDValue Ops[] = {StoreChain,
10464                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10465                    Value, FIdx};
10466   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10467 
10468   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10469     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10470 
10471   // Extract the value requested.
10472   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10473   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10474   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10475 
10476   SDValue IntVal =
10477       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10478 
10479   if (!Subtarget.useCRBits())
10480     return IntVal;
10481 
10482   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10483 }
10484 
10485 /// Lowering for QPX v4i1 loads
10486 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10487                                            SelectionDAG &DAG) const {
10488   SDLoc dl(Op);
10489   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10490   SDValue LoadChain = LN->getChain();
10491   SDValue BasePtr = LN->getBasePtr();
10492 
10493   if (Op.getValueType() == MVT::v4f64 ||
10494       Op.getValueType() == MVT::v4f32) {
10495     EVT MemVT = LN->getMemoryVT();
10496     unsigned Alignment = LN->getAlignment();
10497 
10498     // If this load is properly aligned, then it is legal.
10499     if (Alignment >= MemVT.getStoreSize())
10500       return Op;
10501 
10502     EVT ScalarVT = Op.getValueType().getScalarType(),
10503         ScalarMemVT = MemVT.getScalarType();
10504     unsigned Stride = ScalarMemVT.getStoreSize();
10505 
10506     SDValue Vals[4], LoadChains[4];
10507     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10508       SDValue Load;
10509       if (ScalarVT != ScalarMemVT)
10510         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10511                               BasePtr,
10512                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10513                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10514                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10515       else
10516         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10517                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10518                            MinAlign(Alignment, Idx * Stride),
10519                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10520 
10521       if (Idx == 0 && LN->isIndexed()) {
10522         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10523                "Unknown addressing mode on vector load");
10524         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10525                                   LN->getAddressingMode());
10526       }
10527 
10528       Vals[Idx] = Load;
10529       LoadChains[Idx] = Load.getValue(1);
10530 
10531       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10532                             DAG.getConstant(Stride, dl,
10533                                             BasePtr.getValueType()));
10534     }
10535 
10536     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10537     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10538 
10539     if (LN->isIndexed()) {
10540       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10541       return DAG.getMergeValues(RetOps, dl);
10542     }
10543 
10544     SDValue RetOps[] = { Value, TF };
10545     return DAG.getMergeValues(RetOps, dl);
10546   }
10547 
10548   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10549   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10550 
10551   // To lower v4i1 from a byte array, we load the byte elements of the
10552   // vector and then reuse the BUILD_VECTOR logic.
10553 
10554   SDValue VectElmts[4], VectElmtChains[4];
10555   for (unsigned i = 0; i < 4; ++i) {
10556     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10557     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10558 
10559     VectElmts[i] = DAG.getExtLoad(
10560         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10561         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10562         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10563     VectElmtChains[i] = VectElmts[i].getValue(1);
10564   }
10565 
10566   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10567   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10568 
10569   SDValue RVals[] = { Value, LoadChain };
10570   return DAG.getMergeValues(RVals, dl);
10571 }
10572 
10573 /// Lowering for QPX v4i1 stores
10574 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10575                                             SelectionDAG &DAG) const {
10576   SDLoc dl(Op);
10577   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10578   SDValue StoreChain = SN->getChain();
10579   SDValue BasePtr = SN->getBasePtr();
10580   SDValue Value = SN->getValue();
10581 
10582   if (Value.getValueType() == MVT::v4f64 ||
10583       Value.getValueType() == MVT::v4f32) {
10584     EVT MemVT = SN->getMemoryVT();
10585     unsigned Alignment = SN->getAlignment();
10586 
10587     // If this store is properly aligned, then it is legal.
10588     if (Alignment >= MemVT.getStoreSize())
10589       return Op;
10590 
10591     EVT ScalarVT = Value.getValueType().getScalarType(),
10592         ScalarMemVT = MemVT.getScalarType();
10593     unsigned Stride = ScalarMemVT.getStoreSize();
10594 
10595     SDValue Stores[4];
10596     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10597       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10598                                DAG.getVectorIdxConstant(Idx, dl));
10599       SDValue Store;
10600       if (ScalarVT != ScalarMemVT)
10601         Store =
10602             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10603                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10604                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10605                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10606       else
10607         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10608                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10609                              MinAlign(Alignment, Idx * Stride),
10610                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10611 
10612       if (Idx == 0 && SN->isIndexed()) {
10613         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10614                "Unknown addressing mode on vector store");
10615         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10616                                     SN->getAddressingMode());
10617       }
10618 
10619       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10620                             DAG.getConstant(Stride, dl,
10621                                             BasePtr.getValueType()));
10622       Stores[Idx] = Store;
10623     }
10624 
10625     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10626 
10627     if (SN->isIndexed()) {
10628       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10629       return DAG.getMergeValues(RetOps, dl);
10630     }
10631 
10632     return TF;
10633   }
10634 
10635   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10636   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10637 
10638   // The values are now known to be -1 (false) or 1 (true). To convert this
10639   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10640   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10641   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10642 
10643   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10644   // understand how to form the extending load.
10645   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10646 
10647   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10648 
10649   // Now convert to an integer and store.
10650   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10651     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10652     Value);
10653 
10654   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10655   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10656   MachinePointerInfo PtrInfo =
10657       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10658   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10659   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10660 
10661   SDValue Ops[] = {StoreChain,
10662                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10663                    Value, FIdx};
10664   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10665 
10666   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10667     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10668 
10669   // Move data into the byte array.
10670   SDValue Loads[4], LoadChains[4];
10671   for (unsigned i = 0; i < 4; ++i) {
10672     unsigned Offset = 4*i;
10673     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10674     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10675 
10676     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10677                            PtrInfo.getWithOffset(Offset));
10678     LoadChains[i] = Loads[i].getValue(1);
10679   }
10680 
10681   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10682 
10683   SDValue Stores[4];
10684   for (unsigned i = 0; i < 4; ++i) {
10685     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10686     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10687 
10688     Stores[i] = DAG.getTruncStore(
10689         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10690         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10691         SN->getAAInfo());
10692   }
10693 
10694   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10695 
10696   return StoreChain;
10697 }
10698 
10699 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10700   SDLoc dl(Op);
10701   if (Op.getValueType() == MVT::v4i32) {
10702     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10703 
10704     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10705     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10706 
10707     SDValue RHSSwap =   // = vrlw RHS, 16
10708       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10709 
10710     // Shrinkify inputs to v8i16.
10711     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10712     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10713     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10714 
10715     // Low parts multiplied together, generating 32-bit results (we ignore the
10716     // top parts).
10717     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10718                                         LHS, RHS, DAG, dl, MVT::v4i32);
10719 
10720     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10721                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10722     // Shift the high parts up 16 bits.
10723     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10724                               Neg16, DAG, dl);
10725     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10726   } else if (Op.getValueType() == MVT::v16i8) {
10727     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10728     bool isLittleEndian = Subtarget.isLittleEndian();
10729 
10730     // Multiply the even 8-bit parts, producing 16-bit sums.
10731     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10732                                            LHS, RHS, DAG, dl, MVT::v8i16);
10733     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10734 
10735     // Multiply the odd 8-bit parts, producing 16-bit sums.
10736     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10737                                           LHS, RHS, DAG, dl, MVT::v8i16);
10738     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10739 
10740     // Merge the results together.  Because vmuleub and vmuloub are
10741     // instructions with a big-endian bias, we must reverse the
10742     // element numbering and reverse the meaning of "odd" and "even"
10743     // when generating little endian code.
10744     int Ops[16];
10745     for (unsigned i = 0; i != 8; ++i) {
10746       if (isLittleEndian) {
10747         Ops[i*2  ] = 2*i;
10748         Ops[i*2+1] = 2*i+16;
10749       } else {
10750         Ops[i*2  ] = 2*i+1;
10751         Ops[i*2+1] = 2*i+1+16;
10752       }
10753     }
10754     if (isLittleEndian)
10755       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10756     else
10757       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10758   } else {
10759     llvm_unreachable("Unknown mul to lower!");
10760   }
10761 }
10762 
10763 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10764 
10765   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10766 
10767   EVT VT = Op.getValueType();
10768   assert(VT.isVector() &&
10769          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10770   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10771           VT == MVT::v16i8) &&
10772          "Unexpected vector element type!");
10773   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10774          "Current subtarget doesn't support smax v2i64!");
10775 
10776   // For vector abs, it can be lowered to:
10777   // abs x
10778   // ==>
10779   // y = -x
10780   // smax(x, y)
10781 
10782   SDLoc dl(Op);
10783   SDValue X = Op.getOperand(0);
10784   SDValue Zero = DAG.getConstant(0, dl, VT);
10785   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10786 
10787   // SMAX patch https://reviews.llvm.org/D47332
10788   // hasn't landed yet, so use intrinsic first here.
10789   // TODO: Should use SMAX directly once SMAX patch landed
10790   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10791   if (VT == MVT::v2i64)
10792     BifID = Intrinsic::ppc_altivec_vmaxsd;
10793   else if (VT == MVT::v8i16)
10794     BifID = Intrinsic::ppc_altivec_vmaxsh;
10795   else if (VT == MVT::v16i8)
10796     BifID = Intrinsic::ppc_altivec_vmaxsb;
10797 
10798   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10799 }
10800 
10801 // Custom lowering for fpext vf32 to v2f64
10802 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10803 
10804   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10805          "Should only be called for ISD::FP_EXTEND");
10806 
10807   // FIXME: handle extends from half precision float vectors on P9.
10808   // We only want to custom lower an extend from v2f32 to v2f64.
10809   if (Op.getValueType() != MVT::v2f64 ||
10810       Op.getOperand(0).getValueType() != MVT::v2f32)
10811     return SDValue();
10812 
10813   SDLoc dl(Op);
10814   SDValue Op0 = Op.getOperand(0);
10815 
10816   switch (Op0.getOpcode()) {
10817   default:
10818     return SDValue();
10819   case ISD::EXTRACT_SUBVECTOR: {
10820     assert(Op0.getNumOperands() == 2 &&
10821            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10822            "Node should have 2 operands with second one being a constant!");
10823 
10824     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10825       return SDValue();
10826 
10827     // Custom lower is only done for high or low doubleword.
10828     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10829     if (Idx % 2 != 0)
10830       return SDValue();
10831 
10832     // Since input is v4f32, at this point Idx is either 0 or 2.
10833     // Shift to get the doubleword position we want.
10834     int DWord = Idx >> 1;
10835 
10836     // High and low word positions are different on little endian.
10837     if (Subtarget.isLittleEndian())
10838       DWord ^= 0x1;
10839 
10840     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10841                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10842   }
10843   case ISD::FADD:
10844   case ISD::FMUL:
10845   case ISD::FSUB: {
10846     SDValue NewLoad[2];
10847     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10848       // Ensure both input are loads.
10849       SDValue LdOp = Op0.getOperand(i);
10850       if (LdOp.getOpcode() != ISD::LOAD)
10851         return SDValue();
10852       // Generate new load node.
10853       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10854       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10855       NewLoad[i] = DAG.getMemIntrinsicNode(
10856           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10857           LD->getMemoryVT(), LD->getMemOperand());
10858     }
10859     SDValue NewOp =
10860         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10861                     NewLoad[1], Op0.getNode()->getFlags());
10862     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10863                        DAG.getConstant(0, dl, MVT::i32));
10864   }
10865   case ISD::LOAD: {
10866     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10867     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10868     SDValue NewLd = DAG.getMemIntrinsicNode(
10869         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10870         LD->getMemoryVT(), LD->getMemOperand());
10871     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10872                        DAG.getConstant(0, dl, MVT::i32));
10873   }
10874   }
10875   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10876 }
10877 
10878 /// LowerOperation - Provide custom lowering hooks for some operations.
10879 ///
10880 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10881   switch (Op.getOpcode()) {
10882   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10883   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10884   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10885   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10886   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10887   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10888   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10889   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10890   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10891 
10892   // Variable argument lowering.
10893   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10894   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10895   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10896 
10897   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10898   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10899   case ISD::GET_DYNAMIC_AREA_OFFSET:
10900     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10901 
10902   // Exception handling lowering.
10903   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10904   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10905   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10906 
10907   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10908   case ISD::STORE:              return LowerSTORE(Op, DAG);
10909   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10910   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10911   case ISD::FP_TO_UINT:
10912   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10913   case ISD::UINT_TO_FP:
10914   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10915   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10916 
10917   // Lower 64-bit shifts.
10918   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10919   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10920   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10921 
10922   // Vector-related lowering.
10923   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10924   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10925   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10926   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10927   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10928   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10929   case ISD::MUL:                return LowerMUL(Op, DAG);
10930   case ISD::ABS:                return LowerABS(Op, DAG);
10931   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10932 
10933   // For counter-based loop handling.
10934   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10935 
10936   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10937 
10938   // Frame & Return address.
10939   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10940   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10941 
10942   case ISD::INTRINSIC_VOID:
10943     return LowerINTRINSIC_VOID(Op, DAG);
10944   case ISD::SREM:
10945   case ISD::UREM:
10946     return LowerREM(Op, DAG);
10947   case ISD::BSWAP:
10948     return LowerBSWAP(Op, DAG);
10949   case ISD::ATOMIC_CMP_SWAP:
10950     return LowerATOMIC_CMP_SWAP(Op, DAG);
10951   }
10952 }
10953 
10954 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10955                                            SmallVectorImpl<SDValue>&Results,
10956                                            SelectionDAG &DAG) const {
10957   SDLoc dl(N);
10958   switch (N->getOpcode()) {
10959   default:
10960     llvm_unreachable("Do not know how to custom type legalize this operation!");
10961   case ISD::READCYCLECOUNTER: {
10962     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10963     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10964 
10965     Results.push_back(
10966         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10967     Results.push_back(RTB.getValue(2));
10968     break;
10969   }
10970   case ISD::INTRINSIC_W_CHAIN: {
10971     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10972         Intrinsic::loop_decrement)
10973       break;
10974 
10975     assert(N->getValueType(0) == MVT::i1 &&
10976            "Unexpected result type for CTR decrement intrinsic");
10977     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10978                                  N->getValueType(0));
10979     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10980     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10981                                  N->getOperand(1));
10982 
10983     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10984     Results.push_back(NewInt.getValue(1));
10985     break;
10986   }
10987   case ISD::VAARG: {
10988     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10989       return;
10990 
10991     EVT VT = N->getValueType(0);
10992 
10993     if (VT == MVT::i64) {
10994       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10995 
10996       Results.push_back(NewNode);
10997       Results.push_back(NewNode.getValue(1));
10998     }
10999     return;
11000   }
11001   case ISD::FP_TO_SINT:
11002   case ISD::FP_TO_UINT:
11003     // LowerFP_TO_INT() can only handle f32 and f64.
11004     if (N->getOperand(0).getValueType() == MVT::ppcf128)
11005       return;
11006     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11007     return;
11008   case ISD::TRUNCATE: {
11009     EVT TrgVT = N->getValueType(0);
11010     EVT OpVT = N->getOperand(0).getValueType();
11011     if (TrgVT.isVector() &&
11012         isOperationCustom(N->getOpcode(), TrgVT) &&
11013         OpVT.getSizeInBits() <= 128 &&
11014         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
11015       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
11016     return;
11017   }
11018   case ISD::BITCAST:
11019     // Don't handle bitcast here.
11020     return;
11021   case ISD::FP_EXTEND:
11022     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11023     if (Lowered)
11024       Results.push_back(Lowered);
11025     return;
11026   }
11027 }
11028 
11029 //===----------------------------------------------------------------------===//
11030 //  Other Lowering Code
11031 //===----------------------------------------------------------------------===//
11032 
11033 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11034   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11035   Function *Func = Intrinsic::getDeclaration(M, Id);
11036   return Builder.CreateCall(Func, {});
11037 }
11038 
11039 // The mappings for emitLeading/TrailingFence is taken from
11040 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11041 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11042                                                  Instruction *Inst,
11043                                                  AtomicOrdering Ord) const {
11044   if (Ord == AtomicOrdering::SequentiallyConsistent)
11045     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11046   if (isReleaseOrStronger(Ord))
11047     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11048   return nullptr;
11049 }
11050 
11051 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11052                                                   Instruction *Inst,
11053                                                   AtomicOrdering Ord) const {
11054   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11055     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11056     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11057     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11058     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11059       return Builder.CreateCall(
11060           Intrinsic::getDeclaration(
11061               Builder.GetInsertBlock()->getParent()->getParent(),
11062               Intrinsic::ppc_cfence, {Inst->getType()}),
11063           {Inst});
11064     // FIXME: Can use isync for rmw operation.
11065     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11066   }
11067   return nullptr;
11068 }
11069 
11070 MachineBasicBlock *
11071 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11072                                     unsigned AtomicSize,
11073                                     unsigned BinOpcode,
11074                                     unsigned CmpOpcode,
11075                                     unsigned CmpPred) const {
11076   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11077   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11078 
11079   auto LoadMnemonic = PPC::LDARX;
11080   auto StoreMnemonic = PPC::STDCX;
11081   switch (AtomicSize) {
11082   default:
11083     llvm_unreachable("Unexpected size of atomic entity");
11084   case 1:
11085     LoadMnemonic = PPC::LBARX;
11086     StoreMnemonic = PPC::STBCX;
11087     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11088     break;
11089   case 2:
11090     LoadMnemonic = PPC::LHARX;
11091     StoreMnemonic = PPC::STHCX;
11092     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11093     break;
11094   case 4:
11095     LoadMnemonic = PPC::LWARX;
11096     StoreMnemonic = PPC::STWCX;
11097     break;
11098   case 8:
11099     LoadMnemonic = PPC::LDARX;
11100     StoreMnemonic = PPC::STDCX;
11101     break;
11102   }
11103 
11104   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11105   MachineFunction *F = BB->getParent();
11106   MachineFunction::iterator It = ++BB->getIterator();
11107 
11108   Register dest = MI.getOperand(0).getReg();
11109   Register ptrA = MI.getOperand(1).getReg();
11110   Register ptrB = MI.getOperand(2).getReg();
11111   Register incr = MI.getOperand(3).getReg();
11112   DebugLoc dl = MI.getDebugLoc();
11113 
11114   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11115   MachineBasicBlock *loop2MBB =
11116     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11117   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11118   F->insert(It, loopMBB);
11119   if (CmpOpcode)
11120     F->insert(It, loop2MBB);
11121   F->insert(It, exitMBB);
11122   exitMBB->splice(exitMBB->begin(), BB,
11123                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11124   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11125 
11126   MachineRegisterInfo &RegInfo = F->getRegInfo();
11127   Register TmpReg = (!BinOpcode) ? incr :
11128     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11129                                            : &PPC::GPRCRegClass);
11130 
11131   //  thisMBB:
11132   //   ...
11133   //   fallthrough --> loopMBB
11134   BB->addSuccessor(loopMBB);
11135 
11136   //  loopMBB:
11137   //   l[wd]arx dest, ptr
11138   //   add r0, dest, incr
11139   //   st[wd]cx. r0, ptr
11140   //   bne- loopMBB
11141   //   fallthrough --> exitMBB
11142 
11143   // For max/min...
11144   //  loopMBB:
11145   //   l[wd]arx dest, ptr
11146   //   cmpl?[wd] incr, dest
11147   //   bgt exitMBB
11148   //  loop2MBB:
11149   //   st[wd]cx. dest, ptr
11150   //   bne- loopMBB
11151   //   fallthrough --> exitMBB
11152 
11153   BB = loopMBB;
11154   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11155     .addReg(ptrA).addReg(ptrB);
11156   if (BinOpcode)
11157     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11158   if (CmpOpcode) {
11159     // Signed comparisons of byte or halfword values must be sign-extended.
11160     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11161       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11162       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11163               ExtReg).addReg(dest);
11164       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11165         .addReg(incr).addReg(ExtReg);
11166     } else
11167       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11168         .addReg(incr).addReg(dest);
11169 
11170     BuildMI(BB, dl, TII->get(PPC::BCC))
11171       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11172     BB->addSuccessor(loop2MBB);
11173     BB->addSuccessor(exitMBB);
11174     BB = loop2MBB;
11175   }
11176   BuildMI(BB, dl, TII->get(StoreMnemonic))
11177     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11178   BuildMI(BB, dl, TII->get(PPC::BCC))
11179     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11180   BB->addSuccessor(loopMBB);
11181   BB->addSuccessor(exitMBB);
11182 
11183   //  exitMBB:
11184   //   ...
11185   BB = exitMBB;
11186   return BB;
11187 }
11188 
11189 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11190     MachineInstr &MI, MachineBasicBlock *BB,
11191     bool is8bit, // operation
11192     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11193   // If we support part-word atomic mnemonics, just use them
11194   if (Subtarget.hasPartwordAtomics())
11195     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11196                             CmpPred);
11197 
11198   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11199   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11200   // In 64 bit mode we have to use 64 bits for addresses, even though the
11201   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11202   // registers without caring whether they're 32 or 64, but here we're
11203   // doing actual arithmetic on the addresses.
11204   bool is64bit = Subtarget.isPPC64();
11205   bool isLittleEndian = Subtarget.isLittleEndian();
11206   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11207 
11208   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11209   MachineFunction *F = BB->getParent();
11210   MachineFunction::iterator It = ++BB->getIterator();
11211 
11212   Register dest = MI.getOperand(0).getReg();
11213   Register ptrA = MI.getOperand(1).getReg();
11214   Register ptrB = MI.getOperand(2).getReg();
11215   Register incr = MI.getOperand(3).getReg();
11216   DebugLoc dl = MI.getDebugLoc();
11217 
11218   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11219   MachineBasicBlock *loop2MBB =
11220       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11221   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11222   F->insert(It, loopMBB);
11223   if (CmpOpcode)
11224     F->insert(It, loop2MBB);
11225   F->insert(It, exitMBB);
11226   exitMBB->splice(exitMBB->begin(), BB,
11227                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11228   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11229 
11230   MachineRegisterInfo &RegInfo = F->getRegInfo();
11231   const TargetRegisterClass *RC =
11232       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11233   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11234 
11235   Register PtrReg = RegInfo.createVirtualRegister(RC);
11236   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11237   Register ShiftReg =
11238       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11239   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11240   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11241   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11242   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11243   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11244   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11245   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11246   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11247   Register Ptr1Reg;
11248   Register TmpReg =
11249       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11250 
11251   //  thisMBB:
11252   //   ...
11253   //   fallthrough --> loopMBB
11254   BB->addSuccessor(loopMBB);
11255 
11256   // The 4-byte load must be aligned, while a char or short may be
11257   // anywhere in the word.  Hence all this nasty bookkeeping code.
11258   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11259   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11260   //   xori shift, shift1, 24 [16]
11261   //   rlwinm ptr, ptr1, 0, 0, 29
11262   //   slw incr2, incr, shift
11263   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11264   //   slw mask, mask2, shift
11265   //  loopMBB:
11266   //   lwarx tmpDest, ptr
11267   //   add tmp, tmpDest, incr2
11268   //   andc tmp2, tmpDest, mask
11269   //   and tmp3, tmp, mask
11270   //   or tmp4, tmp3, tmp2
11271   //   stwcx. tmp4, ptr
11272   //   bne- loopMBB
11273   //   fallthrough --> exitMBB
11274   //   srw dest, tmpDest, shift
11275   if (ptrA != ZeroReg) {
11276     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11277     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11278         .addReg(ptrA)
11279         .addReg(ptrB);
11280   } else {
11281     Ptr1Reg = ptrB;
11282   }
11283   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11284   // mode.
11285   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11286       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11287       .addImm(3)
11288       .addImm(27)
11289       .addImm(is8bit ? 28 : 27);
11290   if (!isLittleEndian)
11291     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11292         .addReg(Shift1Reg)
11293         .addImm(is8bit ? 24 : 16);
11294   if (is64bit)
11295     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11296         .addReg(Ptr1Reg)
11297         .addImm(0)
11298         .addImm(61);
11299   else
11300     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11301         .addReg(Ptr1Reg)
11302         .addImm(0)
11303         .addImm(0)
11304         .addImm(29);
11305   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11306   if (is8bit)
11307     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11308   else {
11309     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11310     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11311         .addReg(Mask3Reg)
11312         .addImm(65535);
11313   }
11314   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11315       .addReg(Mask2Reg)
11316       .addReg(ShiftReg);
11317 
11318   BB = loopMBB;
11319   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11320       .addReg(ZeroReg)
11321       .addReg(PtrReg);
11322   if (BinOpcode)
11323     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11324         .addReg(Incr2Reg)
11325         .addReg(TmpDestReg);
11326   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11327       .addReg(TmpDestReg)
11328       .addReg(MaskReg);
11329   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11330   if (CmpOpcode) {
11331     // For unsigned comparisons, we can directly compare the shifted values.
11332     // For signed comparisons we shift and sign extend.
11333     Register SReg = RegInfo.createVirtualRegister(GPRC);
11334     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11335         .addReg(TmpDestReg)
11336         .addReg(MaskReg);
11337     unsigned ValueReg = SReg;
11338     unsigned CmpReg = Incr2Reg;
11339     if (CmpOpcode == PPC::CMPW) {
11340       ValueReg = RegInfo.createVirtualRegister(GPRC);
11341       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11342           .addReg(SReg)
11343           .addReg(ShiftReg);
11344       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11345       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11346           .addReg(ValueReg);
11347       ValueReg = ValueSReg;
11348       CmpReg = incr;
11349     }
11350     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11351         .addReg(CmpReg)
11352         .addReg(ValueReg);
11353     BuildMI(BB, dl, TII->get(PPC::BCC))
11354         .addImm(CmpPred)
11355         .addReg(PPC::CR0)
11356         .addMBB(exitMBB);
11357     BB->addSuccessor(loop2MBB);
11358     BB->addSuccessor(exitMBB);
11359     BB = loop2MBB;
11360   }
11361   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11362   BuildMI(BB, dl, TII->get(PPC::STWCX))
11363       .addReg(Tmp4Reg)
11364       .addReg(ZeroReg)
11365       .addReg(PtrReg);
11366   BuildMI(BB, dl, TII->get(PPC::BCC))
11367       .addImm(PPC::PRED_NE)
11368       .addReg(PPC::CR0)
11369       .addMBB(loopMBB);
11370   BB->addSuccessor(loopMBB);
11371   BB->addSuccessor(exitMBB);
11372 
11373   //  exitMBB:
11374   //   ...
11375   BB = exitMBB;
11376   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11377       .addReg(TmpDestReg)
11378       .addReg(ShiftReg);
11379   return BB;
11380 }
11381 
11382 llvm::MachineBasicBlock *
11383 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11384                                     MachineBasicBlock *MBB) const {
11385   DebugLoc DL = MI.getDebugLoc();
11386   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11387   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11388 
11389   MachineFunction *MF = MBB->getParent();
11390   MachineRegisterInfo &MRI = MF->getRegInfo();
11391 
11392   const BasicBlock *BB = MBB->getBasicBlock();
11393   MachineFunction::iterator I = ++MBB->getIterator();
11394 
11395   Register DstReg = MI.getOperand(0).getReg();
11396   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11397   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11398   Register mainDstReg = MRI.createVirtualRegister(RC);
11399   Register restoreDstReg = MRI.createVirtualRegister(RC);
11400 
11401   MVT PVT = getPointerTy(MF->getDataLayout());
11402   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11403          "Invalid Pointer Size!");
11404   // For v = setjmp(buf), we generate
11405   //
11406   // thisMBB:
11407   //  SjLjSetup mainMBB
11408   //  bl mainMBB
11409   //  v_restore = 1
11410   //  b sinkMBB
11411   //
11412   // mainMBB:
11413   //  buf[LabelOffset] = LR
11414   //  v_main = 0
11415   //
11416   // sinkMBB:
11417   //  v = phi(main, restore)
11418   //
11419 
11420   MachineBasicBlock *thisMBB = MBB;
11421   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11422   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11423   MF->insert(I, mainMBB);
11424   MF->insert(I, sinkMBB);
11425 
11426   MachineInstrBuilder MIB;
11427 
11428   // Transfer the remainder of BB and its successor edges to sinkMBB.
11429   sinkMBB->splice(sinkMBB->begin(), MBB,
11430                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11431   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11432 
11433   // Note that the structure of the jmp_buf used here is not compatible
11434   // with that used by libc, and is not designed to be. Specifically, it
11435   // stores only those 'reserved' registers that LLVM does not otherwise
11436   // understand how to spill. Also, by convention, by the time this
11437   // intrinsic is called, Clang has already stored the frame address in the
11438   // first slot of the buffer and stack address in the third. Following the
11439   // X86 target code, we'll store the jump address in the second slot. We also
11440   // need to save the TOC pointer (R2) to handle jumps between shared
11441   // libraries, and that will be stored in the fourth slot. The thread
11442   // identifier (R13) is not affected.
11443 
11444   // thisMBB:
11445   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11446   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11447   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11448 
11449   // Prepare IP either in reg.
11450   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11451   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11452   Register BufReg = MI.getOperand(1).getReg();
11453 
11454   if (Subtarget.is64BitELFABI()) {
11455     setUsesTOCBasePtr(*MBB->getParent());
11456     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11457               .addReg(PPC::X2)
11458               .addImm(TOCOffset)
11459               .addReg(BufReg)
11460               .cloneMemRefs(MI);
11461   }
11462 
11463   // Naked functions never have a base pointer, and so we use r1. For all
11464   // other functions, this decision must be delayed until during PEI.
11465   unsigned BaseReg;
11466   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11467     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11468   else
11469     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11470 
11471   MIB = BuildMI(*thisMBB, MI, DL,
11472                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11473             .addReg(BaseReg)
11474             .addImm(BPOffset)
11475             .addReg(BufReg)
11476             .cloneMemRefs(MI);
11477 
11478   // Setup
11479   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11480   MIB.addRegMask(TRI->getNoPreservedMask());
11481 
11482   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11483 
11484   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11485           .addMBB(mainMBB);
11486   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11487 
11488   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11489   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11490 
11491   // mainMBB:
11492   //  mainDstReg = 0
11493   MIB =
11494       BuildMI(mainMBB, DL,
11495               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11496 
11497   // Store IP
11498   if (Subtarget.isPPC64()) {
11499     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11500             .addReg(LabelReg)
11501             .addImm(LabelOffset)
11502             .addReg(BufReg);
11503   } else {
11504     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11505             .addReg(LabelReg)
11506             .addImm(LabelOffset)
11507             .addReg(BufReg);
11508   }
11509   MIB.cloneMemRefs(MI);
11510 
11511   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11512   mainMBB->addSuccessor(sinkMBB);
11513 
11514   // sinkMBB:
11515   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11516           TII->get(PPC::PHI), DstReg)
11517     .addReg(mainDstReg).addMBB(mainMBB)
11518     .addReg(restoreDstReg).addMBB(thisMBB);
11519 
11520   MI.eraseFromParent();
11521   return sinkMBB;
11522 }
11523 
11524 MachineBasicBlock *
11525 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11526                                      MachineBasicBlock *MBB) const {
11527   DebugLoc DL = MI.getDebugLoc();
11528   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11529 
11530   MachineFunction *MF = MBB->getParent();
11531   MachineRegisterInfo &MRI = MF->getRegInfo();
11532 
11533   MVT PVT = getPointerTy(MF->getDataLayout());
11534   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11535          "Invalid Pointer Size!");
11536 
11537   const TargetRegisterClass *RC =
11538     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11539   Register Tmp = MRI.createVirtualRegister(RC);
11540   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11541   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11542   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11543   unsigned BP =
11544       (PVT == MVT::i64)
11545           ? PPC::X30
11546           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11547                                                               : PPC::R30);
11548 
11549   MachineInstrBuilder MIB;
11550 
11551   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11552   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11553   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11554   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11555 
11556   Register BufReg = MI.getOperand(0).getReg();
11557 
11558   // Reload FP (the jumped-to function may not have had a
11559   // frame pointer, and if so, then its r31 will be restored
11560   // as necessary).
11561   if (PVT == MVT::i64) {
11562     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11563             .addImm(0)
11564             .addReg(BufReg);
11565   } else {
11566     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11567             .addImm(0)
11568             .addReg(BufReg);
11569   }
11570   MIB.cloneMemRefs(MI);
11571 
11572   // Reload IP
11573   if (PVT == MVT::i64) {
11574     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11575             .addImm(LabelOffset)
11576             .addReg(BufReg);
11577   } else {
11578     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11579             .addImm(LabelOffset)
11580             .addReg(BufReg);
11581   }
11582   MIB.cloneMemRefs(MI);
11583 
11584   // Reload SP
11585   if (PVT == MVT::i64) {
11586     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11587             .addImm(SPOffset)
11588             .addReg(BufReg);
11589   } else {
11590     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11591             .addImm(SPOffset)
11592             .addReg(BufReg);
11593   }
11594   MIB.cloneMemRefs(MI);
11595 
11596   // Reload BP
11597   if (PVT == MVT::i64) {
11598     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11599             .addImm(BPOffset)
11600             .addReg(BufReg);
11601   } else {
11602     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11603             .addImm(BPOffset)
11604             .addReg(BufReg);
11605   }
11606   MIB.cloneMemRefs(MI);
11607 
11608   // Reload TOC
11609   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11610     setUsesTOCBasePtr(*MBB->getParent());
11611     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11612               .addImm(TOCOffset)
11613               .addReg(BufReg)
11614               .cloneMemRefs(MI);
11615   }
11616 
11617   // Jump
11618   BuildMI(*MBB, MI, DL,
11619           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11620   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11621 
11622   MI.eraseFromParent();
11623   return MBB;
11624 }
11625 
11626 MachineBasicBlock *
11627 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11628                                                MachineBasicBlock *BB) const {
11629   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11630       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11631     if (Subtarget.is64BitELFABI() &&
11632         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11633         !Subtarget.isUsingPCRelativeCalls()) {
11634       // Call lowering should have added an r2 operand to indicate a dependence
11635       // on the TOC base pointer value. It can't however, because there is no
11636       // way to mark the dependence as implicit there, and so the stackmap code
11637       // will confuse it with a regular operand. Instead, add the dependence
11638       // here.
11639       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11640     }
11641 
11642     return emitPatchPoint(MI, BB);
11643   }
11644 
11645   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11646       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11647     return emitEHSjLjSetJmp(MI, BB);
11648   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11649              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11650     return emitEHSjLjLongJmp(MI, BB);
11651   }
11652 
11653   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11654 
11655   // To "insert" these instructions we actually have to insert their
11656   // control-flow patterns.
11657   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11658   MachineFunction::iterator It = ++BB->getIterator();
11659 
11660   MachineFunction *F = BB->getParent();
11661 
11662   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11663       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11664       MI.getOpcode() == PPC::SELECT_I8) {
11665     SmallVector<MachineOperand, 2> Cond;
11666     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11667         MI.getOpcode() == PPC::SELECT_CC_I8)
11668       Cond.push_back(MI.getOperand(4));
11669     else
11670       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11671     Cond.push_back(MI.getOperand(1));
11672 
11673     DebugLoc dl = MI.getDebugLoc();
11674     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11675                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11676   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11677              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11678              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11679              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11680              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11681              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11682              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11683              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11684              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11685              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11686              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11687              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11688              MI.getOpcode() == PPC::SELECT_F4 ||
11689              MI.getOpcode() == PPC::SELECT_F8 ||
11690              MI.getOpcode() == PPC::SELECT_F16 ||
11691              MI.getOpcode() == PPC::SELECT_QFRC ||
11692              MI.getOpcode() == PPC::SELECT_QSRC ||
11693              MI.getOpcode() == PPC::SELECT_QBRC ||
11694              MI.getOpcode() == PPC::SELECT_SPE ||
11695              MI.getOpcode() == PPC::SELECT_SPE4 ||
11696              MI.getOpcode() == PPC::SELECT_VRRC ||
11697              MI.getOpcode() == PPC::SELECT_VSFRC ||
11698              MI.getOpcode() == PPC::SELECT_VSSRC ||
11699              MI.getOpcode() == PPC::SELECT_VSRC) {
11700     // The incoming instruction knows the destination vreg to set, the
11701     // condition code register to branch on, the true/false values to
11702     // select between, and a branch opcode to use.
11703 
11704     //  thisMBB:
11705     //  ...
11706     //   TrueVal = ...
11707     //   cmpTY ccX, r1, r2
11708     //   bCC copy1MBB
11709     //   fallthrough --> copy0MBB
11710     MachineBasicBlock *thisMBB = BB;
11711     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11712     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11713     DebugLoc dl = MI.getDebugLoc();
11714     F->insert(It, copy0MBB);
11715     F->insert(It, sinkMBB);
11716 
11717     // Transfer the remainder of BB and its successor edges to sinkMBB.
11718     sinkMBB->splice(sinkMBB->begin(), BB,
11719                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11720     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11721 
11722     // Next, add the true and fallthrough blocks as its successors.
11723     BB->addSuccessor(copy0MBB);
11724     BB->addSuccessor(sinkMBB);
11725 
11726     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11727         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11728         MI.getOpcode() == PPC::SELECT_F16 ||
11729         MI.getOpcode() == PPC::SELECT_SPE4 ||
11730         MI.getOpcode() == PPC::SELECT_SPE ||
11731         MI.getOpcode() == PPC::SELECT_QFRC ||
11732         MI.getOpcode() == PPC::SELECT_QSRC ||
11733         MI.getOpcode() == PPC::SELECT_QBRC ||
11734         MI.getOpcode() == PPC::SELECT_VRRC ||
11735         MI.getOpcode() == PPC::SELECT_VSFRC ||
11736         MI.getOpcode() == PPC::SELECT_VSSRC ||
11737         MI.getOpcode() == PPC::SELECT_VSRC) {
11738       BuildMI(BB, dl, TII->get(PPC::BC))
11739           .addReg(MI.getOperand(1).getReg())
11740           .addMBB(sinkMBB);
11741     } else {
11742       unsigned SelectPred = MI.getOperand(4).getImm();
11743       BuildMI(BB, dl, TII->get(PPC::BCC))
11744           .addImm(SelectPred)
11745           .addReg(MI.getOperand(1).getReg())
11746           .addMBB(sinkMBB);
11747     }
11748 
11749     //  copy0MBB:
11750     //   %FalseValue = ...
11751     //   # fallthrough to sinkMBB
11752     BB = copy0MBB;
11753 
11754     // Update machine-CFG edges
11755     BB->addSuccessor(sinkMBB);
11756 
11757     //  sinkMBB:
11758     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11759     //  ...
11760     BB = sinkMBB;
11761     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11762         .addReg(MI.getOperand(3).getReg())
11763         .addMBB(copy0MBB)
11764         .addReg(MI.getOperand(2).getReg())
11765         .addMBB(thisMBB);
11766   } else if (MI.getOpcode() == PPC::ReadTB) {
11767     // To read the 64-bit time-base register on a 32-bit target, we read the
11768     // two halves. Should the counter have wrapped while it was being read, we
11769     // need to try again.
11770     // ...
11771     // readLoop:
11772     // mfspr Rx,TBU # load from TBU
11773     // mfspr Ry,TB  # load from TB
11774     // mfspr Rz,TBU # load from TBU
11775     // cmpw crX,Rx,Rz # check if 'old'='new'
11776     // bne readLoop   # branch if they're not equal
11777     // ...
11778 
11779     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11780     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11781     DebugLoc dl = MI.getDebugLoc();
11782     F->insert(It, readMBB);
11783     F->insert(It, sinkMBB);
11784 
11785     // Transfer the remainder of BB and its successor edges to sinkMBB.
11786     sinkMBB->splice(sinkMBB->begin(), BB,
11787                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11788     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11789 
11790     BB->addSuccessor(readMBB);
11791     BB = readMBB;
11792 
11793     MachineRegisterInfo &RegInfo = F->getRegInfo();
11794     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11795     Register LoReg = MI.getOperand(0).getReg();
11796     Register HiReg = MI.getOperand(1).getReg();
11797 
11798     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11799     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11800     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11801 
11802     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11803 
11804     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11805         .addReg(HiReg)
11806         .addReg(ReadAgainReg);
11807     BuildMI(BB, dl, TII->get(PPC::BCC))
11808         .addImm(PPC::PRED_NE)
11809         .addReg(CmpReg)
11810         .addMBB(readMBB);
11811 
11812     BB->addSuccessor(readMBB);
11813     BB->addSuccessor(sinkMBB);
11814   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11815     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11816   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11817     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11818   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11819     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11820   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11821     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11822 
11823   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11824     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11825   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11826     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11827   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11828     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11829   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11830     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11831 
11832   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11833     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11834   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11835     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11836   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11837     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11838   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11839     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11840 
11841   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11842     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11843   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11844     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11845   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11846     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11847   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11848     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11849 
11850   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11851     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11852   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11853     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11854   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11855     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11856   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11857     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11858 
11859   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11860     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11861   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11862     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11863   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11864     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11865   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11866     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11867 
11868   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11869     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11870   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11871     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11872   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11873     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11874   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11875     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11876 
11877   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11878     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11879   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11880     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11881   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11882     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11883   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11884     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11885 
11886   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11887     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11888   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11889     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11890   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11891     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11892   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11893     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11894 
11895   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11896     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11897   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11898     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11899   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11900     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11901   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11902     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11903 
11904   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11905     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11906   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11907     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11908   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11909     BB = EmitAtomicBinary(MI, BB, 4, 0);
11910   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11911     BB = EmitAtomicBinary(MI, BB, 8, 0);
11912   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11913            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11914            (Subtarget.hasPartwordAtomics() &&
11915             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11916            (Subtarget.hasPartwordAtomics() &&
11917             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11918     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11919 
11920     auto LoadMnemonic = PPC::LDARX;
11921     auto StoreMnemonic = PPC::STDCX;
11922     switch (MI.getOpcode()) {
11923     default:
11924       llvm_unreachable("Compare and swap of unknown size");
11925     case PPC::ATOMIC_CMP_SWAP_I8:
11926       LoadMnemonic = PPC::LBARX;
11927       StoreMnemonic = PPC::STBCX;
11928       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11929       break;
11930     case PPC::ATOMIC_CMP_SWAP_I16:
11931       LoadMnemonic = PPC::LHARX;
11932       StoreMnemonic = PPC::STHCX;
11933       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11934       break;
11935     case PPC::ATOMIC_CMP_SWAP_I32:
11936       LoadMnemonic = PPC::LWARX;
11937       StoreMnemonic = PPC::STWCX;
11938       break;
11939     case PPC::ATOMIC_CMP_SWAP_I64:
11940       LoadMnemonic = PPC::LDARX;
11941       StoreMnemonic = PPC::STDCX;
11942       break;
11943     }
11944     Register dest = MI.getOperand(0).getReg();
11945     Register ptrA = MI.getOperand(1).getReg();
11946     Register ptrB = MI.getOperand(2).getReg();
11947     Register oldval = MI.getOperand(3).getReg();
11948     Register newval = MI.getOperand(4).getReg();
11949     DebugLoc dl = MI.getDebugLoc();
11950 
11951     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11952     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11953     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11954     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11955     F->insert(It, loop1MBB);
11956     F->insert(It, loop2MBB);
11957     F->insert(It, midMBB);
11958     F->insert(It, exitMBB);
11959     exitMBB->splice(exitMBB->begin(), BB,
11960                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11961     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11962 
11963     //  thisMBB:
11964     //   ...
11965     //   fallthrough --> loopMBB
11966     BB->addSuccessor(loop1MBB);
11967 
11968     // loop1MBB:
11969     //   l[bhwd]arx dest, ptr
11970     //   cmp[wd] dest, oldval
11971     //   bne- midMBB
11972     // loop2MBB:
11973     //   st[bhwd]cx. newval, ptr
11974     //   bne- loopMBB
11975     //   b exitBB
11976     // midMBB:
11977     //   st[bhwd]cx. dest, ptr
11978     // exitBB:
11979     BB = loop1MBB;
11980     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11981     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11982         .addReg(oldval)
11983         .addReg(dest);
11984     BuildMI(BB, dl, TII->get(PPC::BCC))
11985         .addImm(PPC::PRED_NE)
11986         .addReg(PPC::CR0)
11987         .addMBB(midMBB);
11988     BB->addSuccessor(loop2MBB);
11989     BB->addSuccessor(midMBB);
11990 
11991     BB = loop2MBB;
11992     BuildMI(BB, dl, TII->get(StoreMnemonic))
11993         .addReg(newval)
11994         .addReg(ptrA)
11995         .addReg(ptrB);
11996     BuildMI(BB, dl, TII->get(PPC::BCC))
11997         .addImm(PPC::PRED_NE)
11998         .addReg(PPC::CR0)
11999         .addMBB(loop1MBB);
12000     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12001     BB->addSuccessor(loop1MBB);
12002     BB->addSuccessor(exitMBB);
12003 
12004     BB = midMBB;
12005     BuildMI(BB, dl, TII->get(StoreMnemonic))
12006         .addReg(dest)
12007         .addReg(ptrA)
12008         .addReg(ptrB);
12009     BB->addSuccessor(exitMBB);
12010 
12011     //  exitMBB:
12012     //   ...
12013     BB = exitMBB;
12014   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12015              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12016     // We must use 64-bit registers for addresses when targeting 64-bit,
12017     // since we're actually doing arithmetic on them.  Other registers
12018     // can be 32-bit.
12019     bool is64bit = Subtarget.isPPC64();
12020     bool isLittleEndian = Subtarget.isLittleEndian();
12021     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12022 
12023     Register dest = MI.getOperand(0).getReg();
12024     Register ptrA = MI.getOperand(1).getReg();
12025     Register ptrB = MI.getOperand(2).getReg();
12026     Register oldval = MI.getOperand(3).getReg();
12027     Register newval = MI.getOperand(4).getReg();
12028     DebugLoc dl = MI.getDebugLoc();
12029 
12030     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12031     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12032     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12033     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12034     F->insert(It, loop1MBB);
12035     F->insert(It, loop2MBB);
12036     F->insert(It, midMBB);
12037     F->insert(It, exitMBB);
12038     exitMBB->splice(exitMBB->begin(), BB,
12039                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12040     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12041 
12042     MachineRegisterInfo &RegInfo = F->getRegInfo();
12043     const TargetRegisterClass *RC =
12044         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12045     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12046 
12047     Register PtrReg = RegInfo.createVirtualRegister(RC);
12048     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12049     Register ShiftReg =
12050         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12051     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12052     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12053     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12054     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12055     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12056     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12057     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12058     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12059     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12060     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12061     Register Ptr1Reg;
12062     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12063     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12064     //  thisMBB:
12065     //   ...
12066     //   fallthrough --> loopMBB
12067     BB->addSuccessor(loop1MBB);
12068 
12069     // The 4-byte load must be aligned, while a char or short may be
12070     // anywhere in the word.  Hence all this nasty bookkeeping code.
12071     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12072     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12073     //   xori shift, shift1, 24 [16]
12074     //   rlwinm ptr, ptr1, 0, 0, 29
12075     //   slw newval2, newval, shift
12076     //   slw oldval2, oldval,shift
12077     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12078     //   slw mask, mask2, shift
12079     //   and newval3, newval2, mask
12080     //   and oldval3, oldval2, mask
12081     // loop1MBB:
12082     //   lwarx tmpDest, ptr
12083     //   and tmp, tmpDest, mask
12084     //   cmpw tmp, oldval3
12085     //   bne- midMBB
12086     // loop2MBB:
12087     //   andc tmp2, tmpDest, mask
12088     //   or tmp4, tmp2, newval3
12089     //   stwcx. tmp4, ptr
12090     //   bne- loop1MBB
12091     //   b exitBB
12092     // midMBB:
12093     //   stwcx. tmpDest, ptr
12094     // exitBB:
12095     //   srw dest, tmpDest, shift
12096     if (ptrA != ZeroReg) {
12097       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12098       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12099           .addReg(ptrA)
12100           .addReg(ptrB);
12101     } else {
12102       Ptr1Reg = ptrB;
12103     }
12104 
12105     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12106     // mode.
12107     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12108         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12109         .addImm(3)
12110         .addImm(27)
12111         .addImm(is8bit ? 28 : 27);
12112     if (!isLittleEndian)
12113       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12114           .addReg(Shift1Reg)
12115           .addImm(is8bit ? 24 : 16);
12116     if (is64bit)
12117       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12118           .addReg(Ptr1Reg)
12119           .addImm(0)
12120           .addImm(61);
12121     else
12122       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12123           .addReg(Ptr1Reg)
12124           .addImm(0)
12125           .addImm(0)
12126           .addImm(29);
12127     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12128         .addReg(newval)
12129         .addReg(ShiftReg);
12130     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12131         .addReg(oldval)
12132         .addReg(ShiftReg);
12133     if (is8bit)
12134       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12135     else {
12136       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12137       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12138           .addReg(Mask3Reg)
12139           .addImm(65535);
12140     }
12141     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12142         .addReg(Mask2Reg)
12143         .addReg(ShiftReg);
12144     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12145         .addReg(NewVal2Reg)
12146         .addReg(MaskReg);
12147     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12148         .addReg(OldVal2Reg)
12149         .addReg(MaskReg);
12150 
12151     BB = loop1MBB;
12152     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12153         .addReg(ZeroReg)
12154         .addReg(PtrReg);
12155     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12156         .addReg(TmpDestReg)
12157         .addReg(MaskReg);
12158     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12159         .addReg(TmpReg)
12160         .addReg(OldVal3Reg);
12161     BuildMI(BB, dl, TII->get(PPC::BCC))
12162         .addImm(PPC::PRED_NE)
12163         .addReg(PPC::CR0)
12164         .addMBB(midMBB);
12165     BB->addSuccessor(loop2MBB);
12166     BB->addSuccessor(midMBB);
12167 
12168     BB = loop2MBB;
12169     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12170         .addReg(TmpDestReg)
12171         .addReg(MaskReg);
12172     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12173         .addReg(Tmp2Reg)
12174         .addReg(NewVal3Reg);
12175     BuildMI(BB, dl, TII->get(PPC::STWCX))
12176         .addReg(Tmp4Reg)
12177         .addReg(ZeroReg)
12178         .addReg(PtrReg);
12179     BuildMI(BB, dl, TII->get(PPC::BCC))
12180         .addImm(PPC::PRED_NE)
12181         .addReg(PPC::CR0)
12182         .addMBB(loop1MBB);
12183     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12184     BB->addSuccessor(loop1MBB);
12185     BB->addSuccessor(exitMBB);
12186 
12187     BB = midMBB;
12188     BuildMI(BB, dl, TII->get(PPC::STWCX))
12189         .addReg(TmpDestReg)
12190         .addReg(ZeroReg)
12191         .addReg(PtrReg);
12192     BB->addSuccessor(exitMBB);
12193 
12194     //  exitMBB:
12195     //   ...
12196     BB = exitMBB;
12197     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12198         .addReg(TmpReg)
12199         .addReg(ShiftReg);
12200   } else if (MI.getOpcode() == PPC::FADDrtz) {
12201     // This pseudo performs an FADD with rounding mode temporarily forced
12202     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12203     // is not modeled at the SelectionDAG level.
12204     Register Dest = MI.getOperand(0).getReg();
12205     Register Src1 = MI.getOperand(1).getReg();
12206     Register Src2 = MI.getOperand(2).getReg();
12207     DebugLoc dl = MI.getDebugLoc();
12208 
12209     MachineRegisterInfo &RegInfo = F->getRegInfo();
12210     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12211 
12212     // Save FPSCR value.
12213     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12214 
12215     // Set rounding mode to round-to-zero.
12216     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
12217     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
12218 
12219     // Perform addition.
12220     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12221 
12222     // Restore FPSCR value.
12223     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12224   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12225              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12226              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12227              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12228     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12229                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12230                           ? PPC::ANDI8_rec
12231                           : PPC::ANDI_rec;
12232     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12233                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12234 
12235     MachineRegisterInfo &RegInfo = F->getRegInfo();
12236     Register Dest = RegInfo.createVirtualRegister(
12237         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12238 
12239     DebugLoc Dl = MI.getDebugLoc();
12240     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12241         .addReg(MI.getOperand(1).getReg())
12242         .addImm(1);
12243     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12244             MI.getOperand(0).getReg())
12245         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12246   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12247     DebugLoc Dl = MI.getDebugLoc();
12248     MachineRegisterInfo &RegInfo = F->getRegInfo();
12249     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12250     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12251     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12252             MI.getOperand(0).getReg())
12253         .addReg(CRReg);
12254   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12255     DebugLoc Dl = MI.getDebugLoc();
12256     unsigned Imm = MI.getOperand(1).getImm();
12257     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12258     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12259             MI.getOperand(0).getReg())
12260         .addReg(PPC::CR0EQ);
12261   } else if (MI.getOpcode() == PPC::SETRNDi) {
12262     DebugLoc dl = MI.getDebugLoc();
12263     Register OldFPSCRReg = MI.getOperand(0).getReg();
12264 
12265     // Save FPSCR value.
12266     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12267 
12268     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12269     // the following settings:
12270     //   00 Round to nearest
12271     //   01 Round to 0
12272     //   10 Round to +inf
12273     //   11 Round to -inf
12274 
12275     // When the operand is immediate, using the two least significant bits of
12276     // the immediate to set the bits 62:63 of FPSCR.
12277     unsigned Mode = MI.getOperand(1).getImm();
12278     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12279       .addImm(31);
12280 
12281     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12282       .addImm(30);
12283   } else if (MI.getOpcode() == PPC::SETRND) {
12284     DebugLoc dl = MI.getDebugLoc();
12285 
12286     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12287     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12288     // If the target doesn't have DirectMove, we should use stack to do the
12289     // conversion, because the target doesn't have the instructions like mtvsrd
12290     // or mfvsrd to do this conversion directly.
12291     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12292       if (Subtarget.hasDirectMove()) {
12293         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12294           .addReg(SrcReg);
12295       } else {
12296         // Use stack to do the register copy.
12297         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12298         MachineRegisterInfo &RegInfo = F->getRegInfo();
12299         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12300         if (RC == &PPC::F8RCRegClass) {
12301           // Copy register from F8RCRegClass to G8RCRegclass.
12302           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12303                  "Unsupported RegClass.");
12304 
12305           StoreOp = PPC::STFD;
12306           LoadOp = PPC::LD;
12307         } else {
12308           // Copy register from G8RCRegClass to F8RCRegclass.
12309           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12310                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12311                  "Unsupported RegClass.");
12312         }
12313 
12314         MachineFrameInfo &MFI = F->getFrameInfo();
12315         int FrameIdx = MFI.CreateStackObject(8, 8, false);
12316 
12317         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12318             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12319             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12320             MFI.getObjectAlign(FrameIdx));
12321 
12322         // Store the SrcReg into the stack.
12323         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12324           .addReg(SrcReg)
12325           .addImm(0)
12326           .addFrameIndex(FrameIdx)
12327           .addMemOperand(MMOStore);
12328 
12329         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12330             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12331             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12332             MFI.getObjectAlign(FrameIdx));
12333 
12334         // Load from the stack where SrcReg is stored, and save to DestReg,
12335         // so we have done the RegClass conversion from RegClass::SrcReg to
12336         // RegClass::DestReg.
12337         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12338           .addImm(0)
12339           .addFrameIndex(FrameIdx)
12340           .addMemOperand(MMOLoad);
12341       }
12342     };
12343 
12344     Register OldFPSCRReg = MI.getOperand(0).getReg();
12345 
12346     // Save FPSCR value.
12347     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12348 
12349     // When the operand is gprc register, use two least significant bits of the
12350     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12351     //
12352     // copy OldFPSCRTmpReg, OldFPSCRReg
12353     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12354     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12355     // copy NewFPSCRReg, NewFPSCRTmpReg
12356     // mtfsf 255, NewFPSCRReg
12357     MachineOperand SrcOp = MI.getOperand(1);
12358     MachineRegisterInfo &RegInfo = F->getRegInfo();
12359     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12360 
12361     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12362 
12363     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12364     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12365 
12366     // The first operand of INSERT_SUBREG should be a register which has
12367     // subregisters, we only care about its RegClass, so we should use an
12368     // IMPLICIT_DEF register.
12369     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12370     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12371       .addReg(ImDefReg)
12372       .add(SrcOp)
12373       .addImm(1);
12374 
12375     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12376     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12377       .addReg(OldFPSCRTmpReg)
12378       .addReg(ExtSrcReg)
12379       .addImm(0)
12380       .addImm(62);
12381 
12382     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12383     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12384 
12385     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12386     // bits of FPSCR.
12387     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12388       .addImm(255)
12389       .addReg(NewFPSCRReg)
12390       .addImm(0)
12391       .addImm(0);
12392   } else {
12393     llvm_unreachable("Unexpected instr type to insert");
12394   }
12395 
12396   MI.eraseFromParent(); // The pseudo instruction is gone now.
12397   return BB;
12398 }
12399 
12400 //===----------------------------------------------------------------------===//
12401 // Target Optimization Hooks
12402 //===----------------------------------------------------------------------===//
12403 
12404 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12405   // For the estimates, convergence is quadratic, so we essentially double the
12406   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12407   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12408   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12409   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12410   if (VT.getScalarType() == MVT::f64)
12411     RefinementSteps++;
12412   return RefinementSteps;
12413 }
12414 
12415 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12416                                            int Enabled, int &RefinementSteps,
12417                                            bool &UseOneConstNR,
12418                                            bool Reciprocal) const {
12419   EVT VT = Operand.getValueType();
12420   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12421       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12422       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12423       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12424       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12425       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12426     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12427       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12428 
12429     // The Newton-Raphson computation with a single constant does not provide
12430     // enough accuracy on some CPUs.
12431     UseOneConstNR = !Subtarget.needsTwoConstNR();
12432     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12433   }
12434   return SDValue();
12435 }
12436 
12437 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12438                                             int Enabled,
12439                                             int &RefinementSteps) const {
12440   EVT VT = Operand.getValueType();
12441   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12442       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12443       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12444       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12445       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12446       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12447     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12448       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12449     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12450   }
12451   return SDValue();
12452 }
12453 
12454 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12455   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12456   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12457   // enabled for division), this functionality is redundant with the default
12458   // combiner logic (once the division -> reciprocal/multiply transformation
12459   // has taken place). As a result, this matters more for older cores than for
12460   // newer ones.
12461 
12462   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12463   // reciprocal if there are two or more FDIVs (for embedded cores with only
12464   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12465   switch (Subtarget.getCPUDirective()) {
12466   default:
12467     return 3;
12468   case PPC::DIR_440:
12469   case PPC::DIR_A2:
12470   case PPC::DIR_E500:
12471   case PPC::DIR_E500mc:
12472   case PPC::DIR_E5500:
12473     return 2;
12474   }
12475 }
12476 
12477 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12478 // collapsed, and so we need to look through chains of them.
12479 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12480                                      int64_t& Offset, SelectionDAG &DAG) {
12481   if (DAG.isBaseWithConstantOffset(Loc)) {
12482     Base = Loc.getOperand(0);
12483     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12484 
12485     // The base might itself be a base plus an offset, and if so, accumulate
12486     // that as well.
12487     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12488   }
12489 }
12490 
12491 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12492                             unsigned Bytes, int Dist,
12493                             SelectionDAG &DAG) {
12494   if (VT.getSizeInBits() / 8 != Bytes)
12495     return false;
12496 
12497   SDValue BaseLoc = Base->getBasePtr();
12498   if (Loc.getOpcode() == ISD::FrameIndex) {
12499     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12500       return false;
12501     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12502     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12503     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12504     int FS  = MFI.getObjectSize(FI);
12505     int BFS = MFI.getObjectSize(BFI);
12506     if (FS != BFS || FS != (int)Bytes) return false;
12507     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12508   }
12509 
12510   SDValue Base1 = Loc, Base2 = BaseLoc;
12511   int64_t Offset1 = 0, Offset2 = 0;
12512   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12513   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12514   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12515     return true;
12516 
12517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12518   const GlobalValue *GV1 = nullptr;
12519   const GlobalValue *GV2 = nullptr;
12520   Offset1 = 0;
12521   Offset2 = 0;
12522   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12523   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12524   if (isGA1 && isGA2 && GV1 == GV2)
12525     return Offset1 == (Offset2 + Dist*Bytes);
12526   return false;
12527 }
12528 
12529 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12530 // not enforce equality of the chain operands.
12531 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12532                             unsigned Bytes, int Dist,
12533                             SelectionDAG &DAG) {
12534   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12535     EVT VT = LS->getMemoryVT();
12536     SDValue Loc = LS->getBasePtr();
12537     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12538   }
12539 
12540   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12541     EVT VT;
12542     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12543     default: return false;
12544     case Intrinsic::ppc_qpx_qvlfd:
12545     case Intrinsic::ppc_qpx_qvlfda:
12546       VT = MVT::v4f64;
12547       break;
12548     case Intrinsic::ppc_qpx_qvlfs:
12549     case Intrinsic::ppc_qpx_qvlfsa:
12550       VT = MVT::v4f32;
12551       break;
12552     case Intrinsic::ppc_qpx_qvlfcd:
12553     case Intrinsic::ppc_qpx_qvlfcda:
12554       VT = MVT::v2f64;
12555       break;
12556     case Intrinsic::ppc_qpx_qvlfcs:
12557     case Intrinsic::ppc_qpx_qvlfcsa:
12558       VT = MVT::v2f32;
12559       break;
12560     case Intrinsic::ppc_qpx_qvlfiwa:
12561     case Intrinsic::ppc_qpx_qvlfiwz:
12562     case Intrinsic::ppc_altivec_lvx:
12563     case Intrinsic::ppc_altivec_lvxl:
12564     case Intrinsic::ppc_vsx_lxvw4x:
12565     case Intrinsic::ppc_vsx_lxvw4x_be:
12566       VT = MVT::v4i32;
12567       break;
12568     case Intrinsic::ppc_vsx_lxvd2x:
12569     case Intrinsic::ppc_vsx_lxvd2x_be:
12570       VT = MVT::v2f64;
12571       break;
12572     case Intrinsic::ppc_altivec_lvebx:
12573       VT = MVT::i8;
12574       break;
12575     case Intrinsic::ppc_altivec_lvehx:
12576       VT = MVT::i16;
12577       break;
12578     case Intrinsic::ppc_altivec_lvewx:
12579       VT = MVT::i32;
12580       break;
12581     }
12582 
12583     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12584   }
12585 
12586   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12587     EVT VT;
12588     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12589     default: return false;
12590     case Intrinsic::ppc_qpx_qvstfd:
12591     case Intrinsic::ppc_qpx_qvstfda:
12592       VT = MVT::v4f64;
12593       break;
12594     case Intrinsic::ppc_qpx_qvstfs:
12595     case Intrinsic::ppc_qpx_qvstfsa:
12596       VT = MVT::v4f32;
12597       break;
12598     case Intrinsic::ppc_qpx_qvstfcd:
12599     case Intrinsic::ppc_qpx_qvstfcda:
12600       VT = MVT::v2f64;
12601       break;
12602     case Intrinsic::ppc_qpx_qvstfcs:
12603     case Intrinsic::ppc_qpx_qvstfcsa:
12604       VT = MVT::v2f32;
12605       break;
12606     case Intrinsic::ppc_qpx_qvstfiw:
12607     case Intrinsic::ppc_qpx_qvstfiwa:
12608     case Intrinsic::ppc_altivec_stvx:
12609     case Intrinsic::ppc_altivec_stvxl:
12610     case Intrinsic::ppc_vsx_stxvw4x:
12611       VT = MVT::v4i32;
12612       break;
12613     case Intrinsic::ppc_vsx_stxvd2x:
12614       VT = MVT::v2f64;
12615       break;
12616     case Intrinsic::ppc_vsx_stxvw4x_be:
12617       VT = MVT::v4i32;
12618       break;
12619     case Intrinsic::ppc_vsx_stxvd2x_be:
12620       VT = MVT::v2f64;
12621       break;
12622     case Intrinsic::ppc_altivec_stvebx:
12623       VT = MVT::i8;
12624       break;
12625     case Intrinsic::ppc_altivec_stvehx:
12626       VT = MVT::i16;
12627       break;
12628     case Intrinsic::ppc_altivec_stvewx:
12629       VT = MVT::i32;
12630       break;
12631     }
12632 
12633     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12634   }
12635 
12636   return false;
12637 }
12638 
12639 // Return true is there is a nearyby consecutive load to the one provided
12640 // (regardless of alignment). We search up and down the chain, looking though
12641 // token factors and other loads (but nothing else). As a result, a true result
12642 // indicates that it is safe to create a new consecutive load adjacent to the
12643 // load provided.
12644 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12645   SDValue Chain = LD->getChain();
12646   EVT VT = LD->getMemoryVT();
12647 
12648   SmallSet<SDNode *, 16> LoadRoots;
12649   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12650   SmallSet<SDNode *, 16> Visited;
12651 
12652   // First, search up the chain, branching to follow all token-factor operands.
12653   // If we find a consecutive load, then we're done, otherwise, record all
12654   // nodes just above the top-level loads and token factors.
12655   while (!Queue.empty()) {
12656     SDNode *ChainNext = Queue.pop_back_val();
12657     if (!Visited.insert(ChainNext).second)
12658       continue;
12659 
12660     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12661       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12662         return true;
12663 
12664       if (!Visited.count(ChainLD->getChain().getNode()))
12665         Queue.push_back(ChainLD->getChain().getNode());
12666     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12667       for (const SDUse &O : ChainNext->ops())
12668         if (!Visited.count(O.getNode()))
12669           Queue.push_back(O.getNode());
12670     } else
12671       LoadRoots.insert(ChainNext);
12672   }
12673 
12674   // Second, search down the chain, starting from the top-level nodes recorded
12675   // in the first phase. These top-level nodes are the nodes just above all
12676   // loads and token factors. Starting with their uses, recursively look though
12677   // all loads (just the chain uses) and token factors to find a consecutive
12678   // load.
12679   Visited.clear();
12680   Queue.clear();
12681 
12682   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12683        IE = LoadRoots.end(); I != IE; ++I) {
12684     Queue.push_back(*I);
12685 
12686     while (!Queue.empty()) {
12687       SDNode *LoadRoot = Queue.pop_back_val();
12688       if (!Visited.insert(LoadRoot).second)
12689         continue;
12690 
12691       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12692         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12693           return true;
12694 
12695       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12696            UE = LoadRoot->use_end(); UI != UE; ++UI)
12697         if (((isa<MemSDNode>(*UI) &&
12698             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12699             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12700           Queue.push_back(*UI);
12701     }
12702   }
12703 
12704   return false;
12705 }
12706 
12707 /// This function is called when we have proved that a SETCC node can be replaced
12708 /// by subtraction (and other supporting instructions) so that the result of
12709 /// comparison is kept in a GPR instead of CR. This function is purely for
12710 /// codegen purposes and has some flags to guide the codegen process.
12711 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12712                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12713   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12714 
12715   // Zero extend the operands to the largest legal integer. Originally, they
12716   // must be of a strictly smaller size.
12717   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12718                          DAG.getConstant(Size, DL, MVT::i32));
12719   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12720                          DAG.getConstant(Size, DL, MVT::i32));
12721 
12722   // Swap if needed. Depends on the condition code.
12723   if (Swap)
12724     std::swap(Op0, Op1);
12725 
12726   // Subtract extended integers.
12727   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12728 
12729   // Move the sign bit to the least significant position and zero out the rest.
12730   // Now the least significant bit carries the result of original comparison.
12731   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12732                              DAG.getConstant(Size - 1, DL, MVT::i32));
12733   auto Final = Shifted;
12734 
12735   // Complement the result if needed. Based on the condition code.
12736   if (Complement)
12737     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12738                         DAG.getConstant(1, DL, MVT::i64));
12739 
12740   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12741 }
12742 
12743 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12744                                                   DAGCombinerInfo &DCI) const {
12745   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12746 
12747   SelectionDAG &DAG = DCI.DAG;
12748   SDLoc DL(N);
12749 
12750   // Size of integers being compared has a critical role in the following
12751   // analysis, so we prefer to do this when all types are legal.
12752   if (!DCI.isAfterLegalizeDAG())
12753     return SDValue();
12754 
12755   // If all users of SETCC extend its value to a legal integer type
12756   // then we replace SETCC with a subtraction
12757   for (SDNode::use_iterator UI = N->use_begin(),
12758        UE = N->use_end(); UI != UE; ++UI) {
12759     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12760       return SDValue();
12761   }
12762 
12763   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12764   auto OpSize = N->getOperand(0).getValueSizeInBits();
12765 
12766   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12767 
12768   if (OpSize < Size) {
12769     switch (CC) {
12770     default: break;
12771     case ISD::SETULT:
12772       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12773     case ISD::SETULE:
12774       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12775     case ISD::SETUGT:
12776       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12777     case ISD::SETUGE:
12778       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12779     }
12780   }
12781 
12782   return SDValue();
12783 }
12784 
12785 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12786                                                   DAGCombinerInfo &DCI) const {
12787   SelectionDAG &DAG = DCI.DAG;
12788   SDLoc dl(N);
12789 
12790   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12791   // If we're tracking CR bits, we need to be careful that we don't have:
12792   //   trunc(binary-ops(zext(x), zext(y)))
12793   // or
12794   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12795   // such that we're unnecessarily moving things into GPRs when it would be
12796   // better to keep them in CR bits.
12797 
12798   // Note that trunc here can be an actual i1 trunc, or can be the effective
12799   // truncation that comes from a setcc or select_cc.
12800   if (N->getOpcode() == ISD::TRUNCATE &&
12801       N->getValueType(0) != MVT::i1)
12802     return SDValue();
12803 
12804   if (N->getOperand(0).getValueType() != MVT::i32 &&
12805       N->getOperand(0).getValueType() != MVT::i64)
12806     return SDValue();
12807 
12808   if (N->getOpcode() == ISD::SETCC ||
12809       N->getOpcode() == ISD::SELECT_CC) {
12810     // If we're looking at a comparison, then we need to make sure that the
12811     // high bits (all except for the first) don't matter the result.
12812     ISD::CondCode CC =
12813       cast<CondCodeSDNode>(N->getOperand(
12814         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12815     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12816 
12817     if (ISD::isSignedIntSetCC(CC)) {
12818       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12819           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12820         return SDValue();
12821     } else if (ISD::isUnsignedIntSetCC(CC)) {
12822       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12823                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12824           !DAG.MaskedValueIsZero(N->getOperand(1),
12825                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12826         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12827                                              : SDValue());
12828     } else {
12829       // This is neither a signed nor an unsigned comparison, just make sure
12830       // that the high bits are equal.
12831       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12832       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12833 
12834       // We don't really care about what is known about the first bit (if
12835       // anything), so clear it in all masks prior to comparing them.
12836       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12837       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12838 
12839       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12840         return SDValue();
12841     }
12842   }
12843 
12844   // We now know that the higher-order bits are irrelevant, we just need to
12845   // make sure that all of the intermediate operations are bit operations, and
12846   // all inputs are extensions.
12847   if (N->getOperand(0).getOpcode() != ISD::AND &&
12848       N->getOperand(0).getOpcode() != ISD::OR  &&
12849       N->getOperand(0).getOpcode() != ISD::XOR &&
12850       N->getOperand(0).getOpcode() != ISD::SELECT &&
12851       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12852       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12853       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12854       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12855       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12856     return SDValue();
12857 
12858   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12859       N->getOperand(1).getOpcode() != ISD::AND &&
12860       N->getOperand(1).getOpcode() != ISD::OR  &&
12861       N->getOperand(1).getOpcode() != ISD::XOR &&
12862       N->getOperand(1).getOpcode() != ISD::SELECT &&
12863       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12864       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12865       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12866       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12867       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12868     return SDValue();
12869 
12870   SmallVector<SDValue, 4> Inputs;
12871   SmallVector<SDValue, 8> BinOps, PromOps;
12872   SmallPtrSet<SDNode *, 16> Visited;
12873 
12874   for (unsigned i = 0; i < 2; ++i) {
12875     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12876           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12877           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12878           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12879         isa<ConstantSDNode>(N->getOperand(i)))
12880       Inputs.push_back(N->getOperand(i));
12881     else
12882       BinOps.push_back(N->getOperand(i));
12883 
12884     if (N->getOpcode() == ISD::TRUNCATE)
12885       break;
12886   }
12887 
12888   // Visit all inputs, collect all binary operations (and, or, xor and
12889   // select) that are all fed by extensions.
12890   while (!BinOps.empty()) {
12891     SDValue BinOp = BinOps.back();
12892     BinOps.pop_back();
12893 
12894     if (!Visited.insert(BinOp.getNode()).second)
12895       continue;
12896 
12897     PromOps.push_back(BinOp);
12898 
12899     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12900       // The condition of the select is not promoted.
12901       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12902         continue;
12903       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12904         continue;
12905 
12906       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12907             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12908             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12909            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12910           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12911         Inputs.push_back(BinOp.getOperand(i));
12912       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12913                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12914                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12915                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12916                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12917                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12918                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12919                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12920                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12921         BinOps.push_back(BinOp.getOperand(i));
12922       } else {
12923         // We have an input that is not an extension or another binary
12924         // operation; we'll abort this transformation.
12925         return SDValue();
12926       }
12927     }
12928   }
12929 
12930   // Make sure that this is a self-contained cluster of operations (which
12931   // is not quite the same thing as saying that everything has only one
12932   // use).
12933   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12934     if (isa<ConstantSDNode>(Inputs[i]))
12935       continue;
12936 
12937     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12938                               UE = Inputs[i].getNode()->use_end();
12939          UI != UE; ++UI) {
12940       SDNode *User = *UI;
12941       if (User != N && !Visited.count(User))
12942         return SDValue();
12943 
12944       // Make sure that we're not going to promote the non-output-value
12945       // operand(s) or SELECT or SELECT_CC.
12946       // FIXME: Although we could sometimes handle this, and it does occur in
12947       // practice that one of the condition inputs to the select is also one of
12948       // the outputs, we currently can't deal with this.
12949       if (User->getOpcode() == ISD::SELECT) {
12950         if (User->getOperand(0) == Inputs[i])
12951           return SDValue();
12952       } else if (User->getOpcode() == ISD::SELECT_CC) {
12953         if (User->getOperand(0) == Inputs[i] ||
12954             User->getOperand(1) == Inputs[i])
12955           return SDValue();
12956       }
12957     }
12958   }
12959 
12960   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12961     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12962                               UE = PromOps[i].getNode()->use_end();
12963          UI != UE; ++UI) {
12964       SDNode *User = *UI;
12965       if (User != N && !Visited.count(User))
12966         return SDValue();
12967 
12968       // Make sure that we're not going to promote the non-output-value
12969       // operand(s) or SELECT or SELECT_CC.
12970       // FIXME: Although we could sometimes handle this, and it does occur in
12971       // practice that one of the condition inputs to the select is also one of
12972       // the outputs, we currently can't deal with this.
12973       if (User->getOpcode() == ISD::SELECT) {
12974         if (User->getOperand(0) == PromOps[i])
12975           return SDValue();
12976       } else if (User->getOpcode() == ISD::SELECT_CC) {
12977         if (User->getOperand(0) == PromOps[i] ||
12978             User->getOperand(1) == PromOps[i])
12979           return SDValue();
12980       }
12981     }
12982   }
12983 
12984   // Replace all inputs with the extension operand.
12985   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12986     // Constants may have users outside the cluster of to-be-promoted nodes,
12987     // and so we need to replace those as we do the promotions.
12988     if (isa<ConstantSDNode>(Inputs[i]))
12989       continue;
12990     else
12991       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12992   }
12993 
12994   std::list<HandleSDNode> PromOpHandles;
12995   for (auto &PromOp : PromOps)
12996     PromOpHandles.emplace_back(PromOp);
12997 
12998   // Replace all operations (these are all the same, but have a different
12999   // (i1) return type). DAG.getNode will validate that the types of
13000   // a binary operator match, so go through the list in reverse so that
13001   // we've likely promoted both operands first. Any intermediate truncations or
13002   // extensions disappear.
13003   while (!PromOpHandles.empty()) {
13004     SDValue PromOp = PromOpHandles.back().getValue();
13005     PromOpHandles.pop_back();
13006 
13007     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13008         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13009         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13010         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13011       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13012           PromOp.getOperand(0).getValueType() != MVT::i1) {
13013         // The operand is not yet ready (see comment below).
13014         PromOpHandles.emplace_front(PromOp);
13015         continue;
13016       }
13017 
13018       SDValue RepValue = PromOp.getOperand(0);
13019       if (isa<ConstantSDNode>(RepValue))
13020         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13021 
13022       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13023       continue;
13024     }
13025 
13026     unsigned C;
13027     switch (PromOp.getOpcode()) {
13028     default:             C = 0; break;
13029     case ISD::SELECT:    C = 1; break;
13030     case ISD::SELECT_CC: C = 2; break;
13031     }
13032 
13033     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13034          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13035         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13036          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13037       // The to-be-promoted operands of this node have not yet been
13038       // promoted (this should be rare because we're going through the
13039       // list backward, but if one of the operands has several users in
13040       // this cluster of to-be-promoted nodes, it is possible).
13041       PromOpHandles.emplace_front(PromOp);
13042       continue;
13043     }
13044 
13045     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13046                                 PromOp.getNode()->op_end());
13047 
13048     // If there are any constant inputs, make sure they're replaced now.
13049     for (unsigned i = 0; i < 2; ++i)
13050       if (isa<ConstantSDNode>(Ops[C+i]))
13051         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13052 
13053     DAG.ReplaceAllUsesOfValueWith(PromOp,
13054       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13055   }
13056 
13057   // Now we're left with the initial truncation itself.
13058   if (N->getOpcode() == ISD::TRUNCATE)
13059     return N->getOperand(0);
13060 
13061   // Otherwise, this is a comparison. The operands to be compared have just
13062   // changed type (to i1), but everything else is the same.
13063   return SDValue(N, 0);
13064 }
13065 
13066 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13067                                                   DAGCombinerInfo &DCI) const {
13068   SelectionDAG &DAG = DCI.DAG;
13069   SDLoc dl(N);
13070 
13071   // If we're tracking CR bits, we need to be careful that we don't have:
13072   //   zext(binary-ops(trunc(x), trunc(y)))
13073   // or
13074   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13075   // such that we're unnecessarily moving things into CR bits that can more
13076   // efficiently stay in GPRs. Note that if we're not certain that the high
13077   // bits are set as required by the final extension, we still may need to do
13078   // some masking to get the proper behavior.
13079 
13080   // This same functionality is important on PPC64 when dealing with
13081   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13082   // the return values of functions. Because it is so similar, it is handled
13083   // here as well.
13084 
13085   if (N->getValueType(0) != MVT::i32 &&
13086       N->getValueType(0) != MVT::i64)
13087     return SDValue();
13088 
13089   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13090         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13091     return SDValue();
13092 
13093   if (N->getOperand(0).getOpcode() != ISD::AND &&
13094       N->getOperand(0).getOpcode() != ISD::OR  &&
13095       N->getOperand(0).getOpcode() != ISD::XOR &&
13096       N->getOperand(0).getOpcode() != ISD::SELECT &&
13097       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13098     return SDValue();
13099 
13100   SmallVector<SDValue, 4> Inputs;
13101   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13102   SmallPtrSet<SDNode *, 16> Visited;
13103 
13104   // Visit all inputs, collect all binary operations (and, or, xor and
13105   // select) that are all fed by truncations.
13106   while (!BinOps.empty()) {
13107     SDValue BinOp = BinOps.back();
13108     BinOps.pop_back();
13109 
13110     if (!Visited.insert(BinOp.getNode()).second)
13111       continue;
13112 
13113     PromOps.push_back(BinOp);
13114 
13115     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13116       // The condition of the select is not promoted.
13117       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13118         continue;
13119       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13120         continue;
13121 
13122       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13123           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13124         Inputs.push_back(BinOp.getOperand(i));
13125       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13126                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13127                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13128                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13129                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13130         BinOps.push_back(BinOp.getOperand(i));
13131       } else {
13132         // We have an input that is not a truncation or another binary
13133         // operation; we'll abort this transformation.
13134         return SDValue();
13135       }
13136     }
13137   }
13138 
13139   // The operands of a select that must be truncated when the select is
13140   // promoted because the operand is actually part of the to-be-promoted set.
13141   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13142 
13143   // Make sure that this is a self-contained cluster of operations (which
13144   // is not quite the same thing as saying that everything has only one
13145   // use).
13146   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13147     if (isa<ConstantSDNode>(Inputs[i]))
13148       continue;
13149 
13150     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13151                               UE = Inputs[i].getNode()->use_end();
13152          UI != UE; ++UI) {
13153       SDNode *User = *UI;
13154       if (User != N && !Visited.count(User))
13155         return SDValue();
13156 
13157       // If we're going to promote the non-output-value operand(s) or SELECT or
13158       // SELECT_CC, record them for truncation.
13159       if (User->getOpcode() == ISD::SELECT) {
13160         if (User->getOperand(0) == Inputs[i])
13161           SelectTruncOp[0].insert(std::make_pair(User,
13162                                     User->getOperand(0).getValueType()));
13163       } else if (User->getOpcode() == ISD::SELECT_CC) {
13164         if (User->getOperand(0) == Inputs[i])
13165           SelectTruncOp[0].insert(std::make_pair(User,
13166                                     User->getOperand(0).getValueType()));
13167         if (User->getOperand(1) == Inputs[i])
13168           SelectTruncOp[1].insert(std::make_pair(User,
13169                                     User->getOperand(1).getValueType()));
13170       }
13171     }
13172   }
13173 
13174   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13175     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13176                               UE = PromOps[i].getNode()->use_end();
13177          UI != UE; ++UI) {
13178       SDNode *User = *UI;
13179       if (User != N && !Visited.count(User))
13180         return SDValue();
13181 
13182       // If we're going to promote the non-output-value operand(s) or SELECT or
13183       // SELECT_CC, record them for truncation.
13184       if (User->getOpcode() == ISD::SELECT) {
13185         if (User->getOperand(0) == PromOps[i])
13186           SelectTruncOp[0].insert(std::make_pair(User,
13187                                     User->getOperand(0).getValueType()));
13188       } else if (User->getOpcode() == ISD::SELECT_CC) {
13189         if (User->getOperand(0) == PromOps[i])
13190           SelectTruncOp[0].insert(std::make_pair(User,
13191                                     User->getOperand(0).getValueType()));
13192         if (User->getOperand(1) == PromOps[i])
13193           SelectTruncOp[1].insert(std::make_pair(User,
13194                                     User->getOperand(1).getValueType()));
13195       }
13196     }
13197   }
13198 
13199   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13200   bool ReallyNeedsExt = false;
13201   if (N->getOpcode() != ISD::ANY_EXTEND) {
13202     // If all of the inputs are not already sign/zero extended, then
13203     // we'll still need to do that at the end.
13204     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13205       if (isa<ConstantSDNode>(Inputs[i]))
13206         continue;
13207 
13208       unsigned OpBits =
13209         Inputs[i].getOperand(0).getValueSizeInBits();
13210       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13211 
13212       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13213            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13214                                   APInt::getHighBitsSet(OpBits,
13215                                                         OpBits-PromBits))) ||
13216           (N->getOpcode() == ISD::SIGN_EXTEND &&
13217            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13218              (OpBits-(PromBits-1)))) {
13219         ReallyNeedsExt = true;
13220         break;
13221       }
13222     }
13223   }
13224 
13225   // Replace all inputs, either with the truncation operand, or a
13226   // truncation or extension to the final output type.
13227   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13228     // Constant inputs need to be replaced with the to-be-promoted nodes that
13229     // use them because they might have users outside of the cluster of
13230     // promoted nodes.
13231     if (isa<ConstantSDNode>(Inputs[i]))
13232       continue;
13233 
13234     SDValue InSrc = Inputs[i].getOperand(0);
13235     if (Inputs[i].getValueType() == N->getValueType(0))
13236       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13237     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13238       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13239         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13240     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13241       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13242         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13243     else
13244       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13245         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13246   }
13247 
13248   std::list<HandleSDNode> PromOpHandles;
13249   for (auto &PromOp : PromOps)
13250     PromOpHandles.emplace_back(PromOp);
13251 
13252   // Replace all operations (these are all the same, but have a different
13253   // (promoted) return type). DAG.getNode will validate that the types of
13254   // a binary operator match, so go through the list in reverse so that
13255   // we've likely promoted both operands first.
13256   while (!PromOpHandles.empty()) {
13257     SDValue PromOp = PromOpHandles.back().getValue();
13258     PromOpHandles.pop_back();
13259 
13260     unsigned C;
13261     switch (PromOp.getOpcode()) {
13262     default:             C = 0; break;
13263     case ISD::SELECT:    C = 1; break;
13264     case ISD::SELECT_CC: C = 2; break;
13265     }
13266 
13267     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13268          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13269         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13270          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13271       // The to-be-promoted operands of this node have not yet been
13272       // promoted (this should be rare because we're going through the
13273       // list backward, but if one of the operands has several users in
13274       // this cluster of to-be-promoted nodes, it is possible).
13275       PromOpHandles.emplace_front(PromOp);
13276       continue;
13277     }
13278 
13279     // For SELECT and SELECT_CC nodes, we do a similar check for any
13280     // to-be-promoted comparison inputs.
13281     if (PromOp.getOpcode() == ISD::SELECT ||
13282         PromOp.getOpcode() == ISD::SELECT_CC) {
13283       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13284            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13285           (SelectTruncOp[1].count(PromOp.getNode()) &&
13286            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13287         PromOpHandles.emplace_front(PromOp);
13288         continue;
13289       }
13290     }
13291 
13292     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13293                                 PromOp.getNode()->op_end());
13294 
13295     // If this node has constant inputs, then they'll need to be promoted here.
13296     for (unsigned i = 0; i < 2; ++i) {
13297       if (!isa<ConstantSDNode>(Ops[C+i]))
13298         continue;
13299       if (Ops[C+i].getValueType() == N->getValueType(0))
13300         continue;
13301 
13302       if (N->getOpcode() == ISD::SIGN_EXTEND)
13303         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13304       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13305         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13306       else
13307         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13308     }
13309 
13310     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13311     // truncate them again to the original value type.
13312     if (PromOp.getOpcode() == ISD::SELECT ||
13313         PromOp.getOpcode() == ISD::SELECT_CC) {
13314       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13315       if (SI0 != SelectTruncOp[0].end())
13316         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13317       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13318       if (SI1 != SelectTruncOp[1].end())
13319         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13320     }
13321 
13322     DAG.ReplaceAllUsesOfValueWith(PromOp,
13323       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13324   }
13325 
13326   // Now we're left with the initial extension itself.
13327   if (!ReallyNeedsExt)
13328     return N->getOperand(0);
13329 
13330   // To zero extend, just mask off everything except for the first bit (in the
13331   // i1 case).
13332   if (N->getOpcode() == ISD::ZERO_EXTEND)
13333     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13334                        DAG.getConstant(APInt::getLowBitsSet(
13335                                          N->getValueSizeInBits(0), PromBits),
13336                                        dl, N->getValueType(0)));
13337 
13338   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13339          "Invalid extension type");
13340   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13341   SDValue ShiftCst =
13342       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13343   return DAG.getNode(
13344       ISD::SRA, dl, N->getValueType(0),
13345       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13346       ShiftCst);
13347 }
13348 
13349 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13350                                         DAGCombinerInfo &DCI) const {
13351   assert(N->getOpcode() == ISD::SETCC &&
13352          "Should be called with a SETCC node");
13353 
13354   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13355   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13356     SDValue LHS = N->getOperand(0);
13357     SDValue RHS = N->getOperand(1);
13358 
13359     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13360     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13361         LHS.hasOneUse())
13362       std::swap(LHS, RHS);
13363 
13364     // x == 0-y --> x+y == 0
13365     // x != 0-y --> x+y != 0
13366     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13367         RHS.hasOneUse()) {
13368       SDLoc DL(N);
13369       SelectionDAG &DAG = DCI.DAG;
13370       EVT VT = N->getValueType(0);
13371       EVT OpVT = LHS.getValueType();
13372       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13373       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13374     }
13375   }
13376 
13377   return DAGCombineTruncBoolExt(N, DCI);
13378 }
13379 
13380 // Is this an extending load from an f32 to an f64?
13381 static bool isFPExtLoad(SDValue Op) {
13382   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13383     return LD->getExtensionType() == ISD::EXTLOAD &&
13384       Op.getValueType() == MVT::f64;
13385   return false;
13386 }
13387 
13388 /// Reduces the number of fp-to-int conversion when building a vector.
13389 ///
13390 /// If this vector is built out of floating to integer conversions,
13391 /// transform it to a vector built out of floating point values followed by a
13392 /// single floating to integer conversion of the vector.
13393 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13394 /// becomes (fptosi (build_vector ($A, $B, ...)))
13395 SDValue PPCTargetLowering::
13396 combineElementTruncationToVectorTruncation(SDNode *N,
13397                                            DAGCombinerInfo &DCI) const {
13398   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13399          "Should be called with a BUILD_VECTOR node");
13400 
13401   SelectionDAG &DAG = DCI.DAG;
13402   SDLoc dl(N);
13403 
13404   SDValue FirstInput = N->getOperand(0);
13405   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13406          "The input operand must be an fp-to-int conversion.");
13407 
13408   // This combine happens after legalization so the fp_to_[su]i nodes are
13409   // already converted to PPCSISD nodes.
13410   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13411   if (FirstConversion == PPCISD::FCTIDZ ||
13412       FirstConversion == PPCISD::FCTIDUZ ||
13413       FirstConversion == PPCISD::FCTIWZ ||
13414       FirstConversion == PPCISD::FCTIWUZ) {
13415     bool IsSplat = true;
13416     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13417       FirstConversion == PPCISD::FCTIWUZ;
13418     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13419     SmallVector<SDValue, 4> Ops;
13420     EVT TargetVT = N->getValueType(0);
13421     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13422       SDValue NextOp = N->getOperand(i);
13423       if (NextOp.getOpcode() != PPCISD::MFVSR)
13424         return SDValue();
13425       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13426       if (NextConversion != FirstConversion)
13427         return SDValue();
13428       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13429       // This is not valid if the input was originally double precision. It is
13430       // also not profitable to do unless this is an extending load in which
13431       // case doing this combine will allow us to combine consecutive loads.
13432       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13433         return SDValue();
13434       if (N->getOperand(i) != FirstInput)
13435         IsSplat = false;
13436     }
13437 
13438     // If this is a splat, we leave it as-is since there will be only a single
13439     // fp-to-int conversion followed by a splat of the integer. This is better
13440     // for 32-bit and smaller ints and neutral for 64-bit ints.
13441     if (IsSplat)
13442       return SDValue();
13443 
13444     // Now that we know we have the right type of node, get its operands
13445     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13446       SDValue In = N->getOperand(i).getOperand(0);
13447       if (Is32Bit) {
13448         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13449         // here, we know that all inputs are extending loads so this is safe).
13450         if (In.isUndef())
13451           Ops.push_back(DAG.getUNDEF(SrcVT));
13452         else {
13453           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13454                                       MVT::f32, In.getOperand(0),
13455                                       DAG.getIntPtrConstant(1, dl));
13456           Ops.push_back(Trunc);
13457         }
13458       } else
13459         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13460     }
13461 
13462     unsigned Opcode;
13463     if (FirstConversion == PPCISD::FCTIDZ ||
13464         FirstConversion == PPCISD::FCTIWZ)
13465       Opcode = ISD::FP_TO_SINT;
13466     else
13467       Opcode = ISD::FP_TO_UINT;
13468 
13469     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13470     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13471     return DAG.getNode(Opcode, dl, TargetVT, BV);
13472   }
13473   return SDValue();
13474 }
13475 
13476 /// Reduce the number of loads when building a vector.
13477 ///
13478 /// Building a vector out of multiple loads can be converted to a load
13479 /// of the vector type if the loads are consecutive. If the loads are
13480 /// consecutive but in descending order, a shuffle is added at the end
13481 /// to reorder the vector.
13482 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13483   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13484          "Should be called with a BUILD_VECTOR node");
13485 
13486   SDLoc dl(N);
13487 
13488   // Return early for non byte-sized type, as they can't be consecutive.
13489   if (!N->getValueType(0).getVectorElementType().isByteSized())
13490     return SDValue();
13491 
13492   bool InputsAreConsecutiveLoads = true;
13493   bool InputsAreReverseConsecutive = true;
13494   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13495   SDValue FirstInput = N->getOperand(0);
13496   bool IsRoundOfExtLoad = false;
13497 
13498   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13499       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13500     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13501     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13502   }
13503   // Not a build vector of (possibly fp_rounded) loads.
13504   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13505       N->getNumOperands() == 1)
13506     return SDValue();
13507 
13508   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13509     // If any inputs are fp_round(extload), they all must be.
13510     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13511       return SDValue();
13512 
13513     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13514       N->getOperand(i);
13515     if (NextInput.getOpcode() != ISD::LOAD)
13516       return SDValue();
13517 
13518     SDValue PreviousInput =
13519       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13520     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13521     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13522 
13523     // If any inputs are fp_round(extload), they all must be.
13524     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13525       return SDValue();
13526 
13527     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13528       InputsAreConsecutiveLoads = false;
13529     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13530       InputsAreReverseConsecutive = false;
13531 
13532     // Exit early if the loads are neither consecutive nor reverse consecutive.
13533     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13534       return SDValue();
13535   }
13536 
13537   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13538          "The loads cannot be both consecutive and reverse consecutive.");
13539 
13540   SDValue FirstLoadOp =
13541     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13542   SDValue LastLoadOp =
13543     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13544                        N->getOperand(N->getNumOperands()-1);
13545 
13546   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13547   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13548   if (InputsAreConsecutiveLoads) {
13549     assert(LD1 && "Input needs to be a LoadSDNode.");
13550     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13551                        LD1->getBasePtr(), LD1->getPointerInfo(),
13552                        LD1->getAlignment());
13553   }
13554   if (InputsAreReverseConsecutive) {
13555     assert(LDL && "Input needs to be a LoadSDNode.");
13556     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13557                                LDL->getBasePtr(), LDL->getPointerInfo(),
13558                                LDL->getAlignment());
13559     SmallVector<int, 16> Ops;
13560     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13561       Ops.push_back(i);
13562 
13563     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13564                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13565   }
13566   return SDValue();
13567 }
13568 
13569 // This function adds the required vector_shuffle needed to get
13570 // the elements of the vector extract in the correct position
13571 // as specified by the CorrectElems encoding.
13572 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13573                                       SDValue Input, uint64_t Elems,
13574                                       uint64_t CorrectElems) {
13575   SDLoc dl(N);
13576 
13577   unsigned NumElems = Input.getValueType().getVectorNumElements();
13578   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13579 
13580   // Knowing the element indices being extracted from the original
13581   // vector and the order in which they're being inserted, just put
13582   // them at element indices required for the instruction.
13583   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13584     if (DAG.getDataLayout().isLittleEndian())
13585       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13586     else
13587       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13588     CorrectElems = CorrectElems >> 8;
13589     Elems = Elems >> 8;
13590   }
13591 
13592   SDValue Shuffle =
13593       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13594                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13595 
13596   EVT VT = N->getValueType(0);
13597   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13598 
13599   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13600                                Input.getValueType().getVectorElementType(),
13601                                VT.getVectorNumElements());
13602   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13603                      DAG.getValueType(ExtVT));
13604 }
13605 
13606 // Look for build vector patterns where input operands come from sign
13607 // extended vector_extract elements of specific indices. If the correct indices
13608 // aren't used, add a vector shuffle to fix up the indices and create
13609 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13610 // during instruction selection.
13611 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13612   // This array encodes the indices that the vector sign extend instructions
13613   // extract from when extending from one type to another for both BE and LE.
13614   // The right nibble of each byte corresponds to the LE incides.
13615   // and the left nibble of each byte corresponds to the BE incides.
13616   // For example: 0x3074B8FC  byte->word
13617   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13618   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13619   // For example: 0x000070F8  byte->double word
13620   // For LE: the allowed indices are: 0x0,0x8
13621   // For BE: the allowed indices are: 0x7,0xF
13622   uint64_t TargetElems[] = {
13623       0x3074B8FC, // b->w
13624       0x000070F8, // b->d
13625       0x10325476, // h->w
13626       0x00003074, // h->d
13627       0x00001032, // w->d
13628   };
13629 
13630   uint64_t Elems = 0;
13631   int Index;
13632   SDValue Input;
13633 
13634   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13635     if (!Op)
13636       return false;
13637     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13638         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13639       return false;
13640 
13641     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13642     // of the right width.
13643     SDValue Extract = Op.getOperand(0);
13644     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13645       Extract = Extract.getOperand(0);
13646     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13647       return false;
13648 
13649     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13650     if (!ExtOp)
13651       return false;
13652 
13653     Index = ExtOp->getZExtValue();
13654     if (Input && Input != Extract.getOperand(0))
13655       return false;
13656 
13657     if (!Input)
13658       Input = Extract.getOperand(0);
13659 
13660     Elems = Elems << 8;
13661     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13662     Elems |= Index;
13663 
13664     return true;
13665   };
13666 
13667   // If the build vector operands aren't sign extended vector extracts,
13668   // of the same input vector, then return.
13669   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13670     if (!isSExtOfVecExtract(N->getOperand(i))) {
13671       return SDValue();
13672     }
13673   }
13674 
13675   // If the vector extract indicies are not correct, add the appropriate
13676   // vector_shuffle.
13677   int TgtElemArrayIdx;
13678   int InputSize = Input.getValueType().getScalarSizeInBits();
13679   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13680   if (InputSize + OutputSize == 40)
13681     TgtElemArrayIdx = 0;
13682   else if (InputSize + OutputSize == 72)
13683     TgtElemArrayIdx = 1;
13684   else if (InputSize + OutputSize == 48)
13685     TgtElemArrayIdx = 2;
13686   else if (InputSize + OutputSize == 80)
13687     TgtElemArrayIdx = 3;
13688   else if (InputSize + OutputSize == 96)
13689     TgtElemArrayIdx = 4;
13690   else
13691     return SDValue();
13692 
13693   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13694   CorrectElems = DAG.getDataLayout().isLittleEndian()
13695                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13696                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13697   if (Elems != CorrectElems) {
13698     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13699   }
13700 
13701   // Regular lowering will catch cases where a shuffle is not needed.
13702   return SDValue();
13703 }
13704 
13705 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13706                                                  DAGCombinerInfo &DCI) const {
13707   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13708          "Should be called with a BUILD_VECTOR node");
13709 
13710   SelectionDAG &DAG = DCI.DAG;
13711   SDLoc dl(N);
13712 
13713   if (!Subtarget.hasVSX())
13714     return SDValue();
13715 
13716   // The target independent DAG combiner will leave a build_vector of
13717   // float-to-int conversions intact. We can generate MUCH better code for
13718   // a float-to-int conversion of a vector of floats.
13719   SDValue FirstInput = N->getOperand(0);
13720   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13721     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13722     if (Reduced)
13723       return Reduced;
13724   }
13725 
13726   // If we're building a vector out of consecutive loads, just load that
13727   // vector type.
13728   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13729   if (Reduced)
13730     return Reduced;
13731 
13732   // If we're building a vector out of extended elements from another vector
13733   // we have P9 vector integer extend instructions. The code assumes legal
13734   // input types (i.e. it can't handle things like v4i16) so do not run before
13735   // legalization.
13736   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13737     Reduced = combineBVOfVecSExt(N, DAG);
13738     if (Reduced)
13739       return Reduced;
13740   }
13741 
13742 
13743   if (N->getValueType(0) != MVT::v2f64)
13744     return SDValue();
13745 
13746   // Looking for:
13747   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13748   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13749       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13750     return SDValue();
13751   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13752       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13753     return SDValue();
13754   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13755     return SDValue();
13756 
13757   SDValue Ext1 = FirstInput.getOperand(0);
13758   SDValue Ext2 = N->getOperand(1).getOperand(0);
13759   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13760      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13761     return SDValue();
13762 
13763   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13764   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13765   if (!Ext1Op || !Ext2Op)
13766     return SDValue();
13767   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13768       Ext1.getOperand(0) != Ext2.getOperand(0))
13769     return SDValue();
13770 
13771   int FirstElem = Ext1Op->getZExtValue();
13772   int SecondElem = Ext2Op->getZExtValue();
13773   int SubvecIdx;
13774   if (FirstElem == 0 && SecondElem == 1)
13775     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13776   else if (FirstElem == 2 && SecondElem == 3)
13777     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13778   else
13779     return SDValue();
13780 
13781   SDValue SrcVec = Ext1.getOperand(0);
13782   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13783     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13784   return DAG.getNode(NodeType, dl, MVT::v2f64,
13785                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13786 }
13787 
13788 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13789                                               DAGCombinerInfo &DCI) const {
13790   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13791           N->getOpcode() == ISD::UINT_TO_FP) &&
13792          "Need an int -> FP conversion node here");
13793 
13794   if (useSoftFloat() || !Subtarget.has64BitSupport())
13795     return SDValue();
13796 
13797   SelectionDAG &DAG = DCI.DAG;
13798   SDLoc dl(N);
13799   SDValue Op(N, 0);
13800 
13801   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13802   // from the hardware.
13803   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13804     return SDValue();
13805   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13806       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13807     return SDValue();
13808 
13809   SDValue FirstOperand(Op.getOperand(0));
13810   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13811     (FirstOperand.getValueType() == MVT::i8 ||
13812      FirstOperand.getValueType() == MVT::i16);
13813   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13814     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13815     bool DstDouble = Op.getValueType() == MVT::f64;
13816     unsigned ConvOp = Signed ?
13817       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13818       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13819     SDValue WidthConst =
13820       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13821                             dl, false);
13822     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13823     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13824     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13825                                          DAG.getVTList(MVT::f64, MVT::Other),
13826                                          Ops, MVT::i8, LDN->getMemOperand());
13827 
13828     // For signed conversion, we need to sign-extend the value in the VSR
13829     if (Signed) {
13830       SDValue ExtOps[] = { Ld, WidthConst };
13831       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13832       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13833     } else
13834       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13835   }
13836 
13837 
13838   // For i32 intermediate values, unfortunately, the conversion functions
13839   // leave the upper 32 bits of the value are undefined. Within the set of
13840   // scalar instructions, we have no method for zero- or sign-extending the
13841   // value. Thus, we cannot handle i32 intermediate values here.
13842   if (Op.getOperand(0).getValueType() == MVT::i32)
13843     return SDValue();
13844 
13845   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13846          "UINT_TO_FP is supported only with FPCVT");
13847 
13848   // If we have FCFIDS, then use it when converting to single-precision.
13849   // Otherwise, convert to double-precision and then round.
13850   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13851                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13852                                                             : PPCISD::FCFIDS)
13853                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13854                                                             : PPCISD::FCFID);
13855   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13856                   ? MVT::f32
13857                   : MVT::f64;
13858 
13859   // If we're converting from a float, to an int, and back to a float again,
13860   // then we don't need the store/load pair at all.
13861   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13862        Subtarget.hasFPCVT()) ||
13863       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13864     SDValue Src = Op.getOperand(0).getOperand(0);
13865     if (Src.getValueType() == MVT::f32) {
13866       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13867       DCI.AddToWorklist(Src.getNode());
13868     } else if (Src.getValueType() != MVT::f64) {
13869       // Make sure that we don't pick up a ppc_fp128 source value.
13870       return SDValue();
13871     }
13872 
13873     unsigned FCTOp =
13874       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13875                                                         PPCISD::FCTIDUZ;
13876 
13877     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13878     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13879 
13880     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13881       FP = DAG.getNode(ISD::FP_ROUND, dl,
13882                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13883       DCI.AddToWorklist(FP.getNode());
13884     }
13885 
13886     return FP;
13887   }
13888 
13889   return SDValue();
13890 }
13891 
13892 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13893 // builtins) into loads with swaps.
13894 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13895                                               DAGCombinerInfo &DCI) const {
13896   SelectionDAG &DAG = DCI.DAG;
13897   SDLoc dl(N);
13898   SDValue Chain;
13899   SDValue Base;
13900   MachineMemOperand *MMO;
13901 
13902   switch (N->getOpcode()) {
13903   default:
13904     llvm_unreachable("Unexpected opcode for little endian VSX load");
13905   case ISD::LOAD: {
13906     LoadSDNode *LD = cast<LoadSDNode>(N);
13907     Chain = LD->getChain();
13908     Base = LD->getBasePtr();
13909     MMO = LD->getMemOperand();
13910     // If the MMO suggests this isn't a load of a full vector, leave
13911     // things alone.  For a built-in, we have to make the change for
13912     // correctness, so if there is a size problem that will be a bug.
13913     if (MMO->getSize() < 16)
13914       return SDValue();
13915     break;
13916   }
13917   case ISD::INTRINSIC_W_CHAIN: {
13918     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13919     Chain = Intrin->getChain();
13920     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13921     // us what we want. Get operand 2 instead.
13922     Base = Intrin->getOperand(2);
13923     MMO = Intrin->getMemOperand();
13924     break;
13925   }
13926   }
13927 
13928   MVT VecTy = N->getValueType(0).getSimpleVT();
13929 
13930   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13931   // aligned and the type is a vector with elements up to 4 bytes
13932   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13933       VecTy.getScalarSizeInBits() <= 32) {
13934     return SDValue();
13935   }
13936 
13937   SDValue LoadOps[] = { Chain, Base };
13938   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13939                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13940                                          LoadOps, MVT::v2f64, MMO);
13941 
13942   DCI.AddToWorklist(Load.getNode());
13943   Chain = Load.getValue(1);
13944   SDValue Swap = DAG.getNode(
13945       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13946   DCI.AddToWorklist(Swap.getNode());
13947 
13948   // Add a bitcast if the resulting load type doesn't match v2f64.
13949   if (VecTy != MVT::v2f64) {
13950     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13951     DCI.AddToWorklist(N.getNode());
13952     // Package {bitcast value, swap's chain} to match Load's shape.
13953     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13954                        N, Swap.getValue(1));
13955   }
13956 
13957   return Swap;
13958 }
13959 
13960 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13961 // builtins) into stores with swaps.
13962 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13963                                                DAGCombinerInfo &DCI) const {
13964   SelectionDAG &DAG = DCI.DAG;
13965   SDLoc dl(N);
13966   SDValue Chain;
13967   SDValue Base;
13968   unsigned SrcOpnd;
13969   MachineMemOperand *MMO;
13970 
13971   switch (N->getOpcode()) {
13972   default:
13973     llvm_unreachable("Unexpected opcode for little endian VSX store");
13974   case ISD::STORE: {
13975     StoreSDNode *ST = cast<StoreSDNode>(N);
13976     Chain = ST->getChain();
13977     Base = ST->getBasePtr();
13978     MMO = ST->getMemOperand();
13979     SrcOpnd = 1;
13980     // If the MMO suggests this isn't a store of a full vector, leave
13981     // things alone.  For a built-in, we have to make the change for
13982     // correctness, so if there is a size problem that will be a bug.
13983     if (MMO->getSize() < 16)
13984       return SDValue();
13985     break;
13986   }
13987   case ISD::INTRINSIC_VOID: {
13988     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13989     Chain = Intrin->getChain();
13990     // Intrin->getBasePtr() oddly does not get what we want.
13991     Base = Intrin->getOperand(3);
13992     MMO = Intrin->getMemOperand();
13993     SrcOpnd = 2;
13994     break;
13995   }
13996   }
13997 
13998   SDValue Src = N->getOperand(SrcOpnd);
13999   MVT VecTy = Src.getValueType().getSimpleVT();
14000 
14001   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14002   // aligned and the type is a vector with elements up to 4 bytes
14003   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14004       VecTy.getScalarSizeInBits() <= 32) {
14005     return SDValue();
14006   }
14007 
14008   // All stores are done as v2f64 and possible bit cast.
14009   if (VecTy != MVT::v2f64) {
14010     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14011     DCI.AddToWorklist(Src.getNode());
14012   }
14013 
14014   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14015                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14016   DCI.AddToWorklist(Swap.getNode());
14017   Chain = Swap.getValue(1);
14018   SDValue StoreOps[] = { Chain, Swap, Base };
14019   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14020                                           DAG.getVTList(MVT::Other),
14021                                           StoreOps, VecTy, MMO);
14022   DCI.AddToWorklist(Store.getNode());
14023   return Store;
14024 }
14025 
14026 // Handle DAG combine for STORE (FP_TO_INT F).
14027 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14028                                                DAGCombinerInfo &DCI) const {
14029 
14030   SelectionDAG &DAG = DCI.DAG;
14031   SDLoc dl(N);
14032   unsigned Opcode = N->getOperand(1).getOpcode();
14033 
14034   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14035          && "Not a FP_TO_INT Instruction!");
14036 
14037   SDValue Val = N->getOperand(1).getOperand(0);
14038   EVT Op1VT = N->getOperand(1).getValueType();
14039   EVT ResVT = Val.getValueType();
14040 
14041   // Floating point types smaller than 32 bits are not legal on Power.
14042   if (ResVT.getScalarSizeInBits() < 32)
14043     return SDValue();
14044 
14045   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14046   bool ValidTypeForStoreFltAsInt =
14047         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14048          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14049 
14050   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14051       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14052     return SDValue();
14053 
14054   // Extend f32 values to f64
14055   if (ResVT.getScalarSizeInBits() == 32) {
14056     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14057     DCI.AddToWorklist(Val.getNode());
14058   }
14059 
14060   // Set signed or unsigned conversion opcode.
14061   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14062                           PPCISD::FP_TO_SINT_IN_VSR :
14063                           PPCISD::FP_TO_UINT_IN_VSR;
14064 
14065   Val = DAG.getNode(ConvOpcode,
14066                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14067   DCI.AddToWorklist(Val.getNode());
14068 
14069   // Set number of bytes being converted.
14070   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14071   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14072                     DAG.getIntPtrConstant(ByteSize, dl, false),
14073                     DAG.getValueType(Op1VT) };
14074 
14075   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14076           DAG.getVTList(MVT::Other), Ops,
14077           cast<StoreSDNode>(N)->getMemoryVT(),
14078           cast<StoreSDNode>(N)->getMemOperand());
14079 
14080   DCI.AddToWorklist(Val.getNode());
14081   return Val;
14082 }
14083 
14084 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14085                                                 LSBaseSDNode *LSBase,
14086                                                 DAGCombinerInfo &DCI) const {
14087   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14088         "Not a reverse memop pattern!");
14089 
14090   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14091     auto Mask = SVN->getMask();
14092     int i = 0;
14093     auto I = Mask.rbegin();
14094     auto E = Mask.rend();
14095 
14096     for (; I != E; ++I) {
14097       if (*I != i)
14098         return false;
14099       i++;
14100     }
14101     return true;
14102   };
14103 
14104   SelectionDAG &DAG = DCI.DAG;
14105   EVT VT = SVN->getValueType(0);
14106 
14107   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14108     return SDValue();
14109 
14110   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14111   // See comment in PPCVSXSwapRemoval.cpp.
14112   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14113   if (!Subtarget.hasP9Vector())
14114     return SDValue();
14115 
14116   if(!IsElementReverse(SVN))
14117     return SDValue();
14118 
14119   if (LSBase->getOpcode() == ISD::LOAD) {
14120     SDLoc dl(SVN);
14121     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14122     return DAG.getMemIntrinsicNode(
14123         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14124         LSBase->getMemoryVT(), LSBase->getMemOperand());
14125   }
14126 
14127   if (LSBase->getOpcode() == ISD::STORE) {
14128     SDLoc dl(LSBase);
14129     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14130                           LSBase->getBasePtr()};
14131     return DAG.getMemIntrinsicNode(
14132         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14133         LSBase->getMemoryVT(), LSBase->getMemOperand());
14134   }
14135 
14136   llvm_unreachable("Expected a load or store node here");
14137 }
14138 
14139 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14140                                              DAGCombinerInfo &DCI) const {
14141   SelectionDAG &DAG = DCI.DAG;
14142   SDLoc dl(N);
14143   switch (N->getOpcode()) {
14144   default: break;
14145   case ISD::ADD:
14146     return combineADD(N, DCI);
14147   case ISD::SHL:
14148     return combineSHL(N, DCI);
14149   case ISD::SRA:
14150     return combineSRA(N, DCI);
14151   case ISD::SRL:
14152     return combineSRL(N, DCI);
14153   case ISD::MUL:
14154     return combineMUL(N, DCI);
14155   case ISD::FMA:
14156   case PPCISD::FNMSUB:
14157     return combineFMALike(N, DCI);
14158   case PPCISD::SHL:
14159     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14160         return N->getOperand(0);
14161     break;
14162   case PPCISD::SRL:
14163     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14164         return N->getOperand(0);
14165     break;
14166   case PPCISD::SRA:
14167     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14168       if (C->isNullValue() ||   //  0 >>s V -> 0.
14169           C->isAllOnesValue())    // -1 >>s V -> -1.
14170         return N->getOperand(0);
14171     }
14172     break;
14173   case ISD::SIGN_EXTEND:
14174   case ISD::ZERO_EXTEND:
14175   case ISD::ANY_EXTEND:
14176     return DAGCombineExtBoolTrunc(N, DCI);
14177   case ISD::TRUNCATE:
14178     return combineTRUNCATE(N, DCI);
14179   case ISD::SETCC:
14180     if (SDValue CSCC = combineSetCC(N, DCI))
14181       return CSCC;
14182     LLVM_FALLTHROUGH;
14183   case ISD::SELECT_CC:
14184     return DAGCombineTruncBoolExt(N, DCI);
14185   case ISD::SINT_TO_FP:
14186   case ISD::UINT_TO_FP:
14187     return combineFPToIntToFP(N, DCI);
14188   case ISD::VECTOR_SHUFFLE:
14189     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14190       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14191       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14192     }
14193     break;
14194   case ISD::STORE: {
14195 
14196     EVT Op1VT = N->getOperand(1).getValueType();
14197     unsigned Opcode = N->getOperand(1).getOpcode();
14198 
14199     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14200       SDValue Val= combineStoreFPToInt(N, DCI);
14201       if (Val)
14202         return Val;
14203     }
14204 
14205     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14206       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14207       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14208       if (Val)
14209         return Val;
14210     }
14211 
14212     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14213     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14214         N->getOperand(1).getNode()->hasOneUse() &&
14215         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14216          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14217 
14218       // STBRX can only handle simple types and it makes no sense to store less
14219       // two bytes in byte-reversed order.
14220       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14221       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14222         break;
14223 
14224       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14225       // Do an any-extend to 32-bits if this is a half-word input.
14226       if (BSwapOp.getValueType() == MVT::i16)
14227         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14228 
14229       // If the type of BSWAP operand is wider than stored memory width
14230       // it need to be shifted to the right side before STBRX.
14231       if (Op1VT.bitsGT(mVT)) {
14232         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14233         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14234                               DAG.getConstant(Shift, dl, MVT::i32));
14235         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14236         if (Op1VT == MVT::i64)
14237           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14238       }
14239 
14240       SDValue Ops[] = {
14241         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14242       };
14243       return
14244         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14245                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14246                                 cast<StoreSDNode>(N)->getMemOperand());
14247     }
14248 
14249     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14250     // So it can increase the chance of CSE constant construction.
14251     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14252         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14253       // Need to sign-extended to 64-bits to handle negative values.
14254       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14255       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14256                                     MemVT.getSizeInBits());
14257       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14258 
14259       // DAG.getTruncStore() can't be used here because it doesn't accept
14260       // the general (base + offset) addressing mode.
14261       // So we use UpdateNodeOperands and setTruncatingStore instead.
14262       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14263                              N->getOperand(3));
14264       cast<StoreSDNode>(N)->setTruncatingStore(true);
14265       return SDValue(N, 0);
14266     }
14267 
14268     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14269     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14270     if (Op1VT.isSimple()) {
14271       MVT StoreVT = Op1VT.getSimpleVT();
14272       if (Subtarget.needsSwapsForVSXMemOps() &&
14273           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14274            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14275         return expandVSXStoreForLE(N, DCI);
14276     }
14277     break;
14278   }
14279   case ISD::LOAD: {
14280     LoadSDNode *LD = cast<LoadSDNode>(N);
14281     EVT VT = LD->getValueType(0);
14282 
14283     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14284     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14285     if (VT.isSimple()) {
14286       MVT LoadVT = VT.getSimpleVT();
14287       if (Subtarget.needsSwapsForVSXMemOps() &&
14288           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14289            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14290         return expandVSXLoadForLE(N, DCI);
14291     }
14292 
14293     // We sometimes end up with a 64-bit integer load, from which we extract
14294     // two single-precision floating-point numbers. This happens with
14295     // std::complex<float>, and other similar structures, because of the way we
14296     // canonicalize structure copies. However, if we lack direct moves,
14297     // then the final bitcasts from the extracted integer values to the
14298     // floating-point numbers turn into store/load pairs. Even with direct moves,
14299     // just loading the two floating-point numbers is likely better.
14300     auto ReplaceTwoFloatLoad = [&]() {
14301       if (VT != MVT::i64)
14302         return false;
14303 
14304       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14305           LD->isVolatile())
14306         return false;
14307 
14308       //  We're looking for a sequence like this:
14309       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14310       //      t16: i64 = srl t13, Constant:i32<32>
14311       //    t17: i32 = truncate t16
14312       //  t18: f32 = bitcast t17
14313       //    t19: i32 = truncate t13
14314       //  t20: f32 = bitcast t19
14315 
14316       if (!LD->hasNUsesOfValue(2, 0))
14317         return false;
14318 
14319       auto UI = LD->use_begin();
14320       while (UI.getUse().getResNo() != 0) ++UI;
14321       SDNode *Trunc = *UI++;
14322       while (UI.getUse().getResNo() != 0) ++UI;
14323       SDNode *RightShift = *UI;
14324       if (Trunc->getOpcode() != ISD::TRUNCATE)
14325         std::swap(Trunc, RightShift);
14326 
14327       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14328           Trunc->getValueType(0) != MVT::i32 ||
14329           !Trunc->hasOneUse())
14330         return false;
14331       if (RightShift->getOpcode() != ISD::SRL ||
14332           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14333           RightShift->getConstantOperandVal(1) != 32 ||
14334           !RightShift->hasOneUse())
14335         return false;
14336 
14337       SDNode *Trunc2 = *RightShift->use_begin();
14338       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14339           Trunc2->getValueType(0) != MVT::i32 ||
14340           !Trunc2->hasOneUse())
14341         return false;
14342 
14343       SDNode *Bitcast = *Trunc->use_begin();
14344       SDNode *Bitcast2 = *Trunc2->use_begin();
14345 
14346       if (Bitcast->getOpcode() != ISD::BITCAST ||
14347           Bitcast->getValueType(0) != MVT::f32)
14348         return false;
14349       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14350           Bitcast2->getValueType(0) != MVT::f32)
14351         return false;
14352 
14353       if (Subtarget.isLittleEndian())
14354         std::swap(Bitcast, Bitcast2);
14355 
14356       // Bitcast has the second float (in memory-layout order) and Bitcast2
14357       // has the first one.
14358 
14359       SDValue BasePtr = LD->getBasePtr();
14360       if (LD->isIndexed()) {
14361         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14362                "Non-pre-inc AM on PPC?");
14363         BasePtr =
14364           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14365                       LD->getOffset());
14366       }
14367 
14368       auto MMOFlags =
14369           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14370       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14371                                       LD->getPointerInfo(), LD->getAlignment(),
14372                                       MMOFlags, LD->getAAInfo());
14373       SDValue AddPtr =
14374         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14375                     BasePtr, DAG.getIntPtrConstant(4, dl));
14376       SDValue FloatLoad2 = DAG.getLoad(
14377           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14378           LD->getPointerInfo().getWithOffset(4),
14379           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14380 
14381       if (LD->isIndexed()) {
14382         // Note that DAGCombine should re-form any pre-increment load(s) from
14383         // what is produced here if that makes sense.
14384         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14385       }
14386 
14387       DCI.CombineTo(Bitcast2, FloatLoad);
14388       DCI.CombineTo(Bitcast, FloatLoad2);
14389 
14390       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14391                                     SDValue(FloatLoad2.getNode(), 1));
14392       return true;
14393     };
14394 
14395     if (ReplaceTwoFloatLoad())
14396       return SDValue(N, 0);
14397 
14398     EVT MemVT = LD->getMemoryVT();
14399     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14400     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
14401     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
14402     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
14403     if (LD->isUnindexed() && VT.isVector() &&
14404         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14405           // P8 and later hardware should just use LOAD.
14406           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
14407                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
14408          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
14409           LD->getAlignment() >= ScalarABIAlignment)) &&
14410         LD->getAlignment() < ABIAlignment) {
14411       // This is a type-legal unaligned Altivec or QPX load.
14412       SDValue Chain = LD->getChain();
14413       SDValue Ptr = LD->getBasePtr();
14414       bool isLittleEndian = Subtarget.isLittleEndian();
14415 
14416       // This implements the loading of unaligned vectors as described in
14417       // the venerable Apple Velocity Engine overview. Specifically:
14418       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14419       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14420       //
14421       // The general idea is to expand a sequence of one or more unaligned
14422       // loads into an alignment-based permutation-control instruction (lvsl
14423       // or lvsr), a series of regular vector loads (which always truncate
14424       // their input address to an aligned address), and a series of
14425       // permutations.  The results of these permutations are the requested
14426       // loaded values.  The trick is that the last "extra" load is not taken
14427       // from the address you might suspect (sizeof(vector) bytes after the
14428       // last requested load), but rather sizeof(vector) - 1 bytes after the
14429       // last requested vector. The point of this is to avoid a page fault if
14430       // the base address happened to be aligned. This works because if the
14431       // base address is aligned, then adding less than a full vector length
14432       // will cause the last vector in the sequence to be (re)loaded.
14433       // Otherwise, the next vector will be fetched as you might suspect was
14434       // necessary.
14435 
14436       // We might be able to reuse the permutation generation from
14437       // a different base address offset from this one by an aligned amount.
14438       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14439       // optimization later.
14440       Intrinsic::ID Intr, IntrLD, IntrPerm;
14441       MVT PermCntlTy, PermTy, LDTy;
14442       if (Subtarget.hasAltivec()) {
14443         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14444                                  Intrinsic::ppc_altivec_lvsl;
14445         IntrLD = Intrinsic::ppc_altivec_lvx;
14446         IntrPerm = Intrinsic::ppc_altivec_vperm;
14447         PermCntlTy = MVT::v16i8;
14448         PermTy = MVT::v4i32;
14449         LDTy = MVT::v4i32;
14450       } else {
14451         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14452                                        Intrinsic::ppc_qpx_qvlpcls;
14453         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14454                                        Intrinsic::ppc_qpx_qvlfs;
14455         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14456         PermCntlTy = MVT::v4f64;
14457         PermTy = MVT::v4f64;
14458         LDTy = MemVT.getSimpleVT();
14459       }
14460 
14461       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14462 
14463       // Create the new MMO for the new base load. It is like the original MMO,
14464       // but represents an area in memory almost twice the vector size centered
14465       // on the original address. If the address is unaligned, we might start
14466       // reading up to (sizeof(vector)-1) bytes below the address of the
14467       // original unaligned load.
14468       MachineFunction &MF = DAG.getMachineFunction();
14469       MachineMemOperand *BaseMMO =
14470         MF.getMachineMemOperand(LD->getMemOperand(),
14471                                 -(long)MemVT.getStoreSize()+1,
14472                                 2*MemVT.getStoreSize()-1);
14473 
14474       // Create the new base load.
14475       SDValue LDXIntID =
14476           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14477       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14478       SDValue BaseLoad =
14479         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14480                                 DAG.getVTList(PermTy, MVT::Other),
14481                                 BaseLoadOps, LDTy, BaseMMO);
14482 
14483       // Note that the value of IncOffset (which is provided to the next
14484       // load's pointer info offset value, and thus used to calculate the
14485       // alignment), and the value of IncValue (which is actually used to
14486       // increment the pointer value) are different! This is because we
14487       // require the next load to appear to be aligned, even though it
14488       // is actually offset from the base pointer by a lesser amount.
14489       int IncOffset = VT.getSizeInBits() / 8;
14490       int IncValue = IncOffset;
14491 
14492       // Walk (both up and down) the chain looking for another load at the real
14493       // (aligned) offset (the alignment of the other load does not matter in
14494       // this case). If found, then do not use the offset reduction trick, as
14495       // that will prevent the loads from being later combined (as they would
14496       // otherwise be duplicates).
14497       if (!findConsecutiveLoad(LD, DAG))
14498         --IncValue;
14499 
14500       SDValue Increment =
14501           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14502       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14503 
14504       MachineMemOperand *ExtraMMO =
14505         MF.getMachineMemOperand(LD->getMemOperand(),
14506                                 1, 2*MemVT.getStoreSize()-1);
14507       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14508       SDValue ExtraLoad =
14509         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14510                                 DAG.getVTList(PermTy, MVT::Other),
14511                                 ExtraLoadOps, LDTy, ExtraMMO);
14512 
14513       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14514         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14515 
14516       // Because vperm has a big-endian bias, we must reverse the order
14517       // of the input vectors and complement the permute control vector
14518       // when generating little endian code.  We have already handled the
14519       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14520       // and ExtraLoad here.
14521       SDValue Perm;
14522       if (isLittleEndian)
14523         Perm = BuildIntrinsicOp(IntrPerm,
14524                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14525       else
14526         Perm = BuildIntrinsicOp(IntrPerm,
14527                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14528 
14529       if (VT != PermTy)
14530         Perm = Subtarget.hasAltivec() ?
14531                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14532                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14533                                DAG.getTargetConstant(1, dl, MVT::i64));
14534                                // second argument is 1 because this rounding
14535                                // is always exact.
14536 
14537       // The output of the permutation is our loaded result, the TokenFactor is
14538       // our new chain.
14539       DCI.CombineTo(N, Perm, TF);
14540       return SDValue(N, 0);
14541     }
14542     }
14543     break;
14544     case ISD::INTRINSIC_WO_CHAIN: {
14545       bool isLittleEndian = Subtarget.isLittleEndian();
14546       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14547       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14548                                            : Intrinsic::ppc_altivec_lvsl);
14549       if ((IID == Intr ||
14550            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14551            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14552         N->getOperand(1)->getOpcode() == ISD::ADD) {
14553         SDValue Add = N->getOperand(1);
14554 
14555         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14556                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14557 
14558         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14559                                   APInt::getAllOnesValue(Bits /* alignment */)
14560                                       .zext(Add.getScalarValueSizeInBits()))) {
14561           SDNode *BasePtr = Add->getOperand(0).getNode();
14562           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14563                                     UE = BasePtr->use_end();
14564                UI != UE; ++UI) {
14565             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14566                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14567               // We've found another LVSL/LVSR, and this address is an aligned
14568               // multiple of that one. The results will be the same, so use the
14569               // one we've just found instead.
14570 
14571               return SDValue(*UI, 0);
14572             }
14573           }
14574         }
14575 
14576         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14577           SDNode *BasePtr = Add->getOperand(0).getNode();
14578           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14579                UE = BasePtr->use_end(); UI != UE; ++UI) {
14580             if (UI->getOpcode() == ISD::ADD &&
14581                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14582                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14583                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14584                 (1ULL << Bits) == 0) {
14585               SDNode *OtherAdd = *UI;
14586               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14587                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14588                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14589                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14590                   return SDValue(*VI, 0);
14591                 }
14592               }
14593             }
14594           }
14595         }
14596       }
14597 
14598       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14599       // Expose the vabsduw/h/b opportunity for down stream
14600       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14601           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14602            IID == Intrinsic::ppc_altivec_vmaxsh ||
14603            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14604         SDValue V1 = N->getOperand(1);
14605         SDValue V2 = N->getOperand(2);
14606         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14607              V1.getSimpleValueType() == MVT::v8i16 ||
14608              V1.getSimpleValueType() == MVT::v16i8) &&
14609             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14610           // (0-a, a)
14611           if (V1.getOpcode() == ISD::SUB &&
14612               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14613               V1.getOperand(1) == V2) {
14614             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14615           }
14616           // (a, 0-a)
14617           if (V2.getOpcode() == ISD::SUB &&
14618               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14619               V2.getOperand(1) == V1) {
14620             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14621           }
14622           // (x-y, y-x)
14623           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14624               V1.getOperand(0) == V2.getOperand(1) &&
14625               V1.getOperand(1) == V2.getOperand(0)) {
14626             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14627           }
14628         }
14629       }
14630     }
14631 
14632     break;
14633   case ISD::INTRINSIC_W_CHAIN:
14634     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14635     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14636     if (Subtarget.needsSwapsForVSXMemOps()) {
14637       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14638       default:
14639         break;
14640       case Intrinsic::ppc_vsx_lxvw4x:
14641       case Intrinsic::ppc_vsx_lxvd2x:
14642         return expandVSXLoadForLE(N, DCI);
14643       }
14644     }
14645     break;
14646   case ISD::INTRINSIC_VOID:
14647     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14648     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14649     if (Subtarget.needsSwapsForVSXMemOps()) {
14650       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14651       default:
14652         break;
14653       case Intrinsic::ppc_vsx_stxvw4x:
14654       case Intrinsic::ppc_vsx_stxvd2x:
14655         return expandVSXStoreForLE(N, DCI);
14656       }
14657     }
14658     break;
14659   case ISD::BSWAP:
14660     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14661     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14662         N->getOperand(0).hasOneUse() &&
14663         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14664          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14665           N->getValueType(0) == MVT::i64))) {
14666       SDValue Load = N->getOperand(0);
14667       LoadSDNode *LD = cast<LoadSDNode>(Load);
14668       // Create the byte-swapping load.
14669       SDValue Ops[] = {
14670         LD->getChain(),    // Chain
14671         LD->getBasePtr(),  // Ptr
14672         DAG.getValueType(N->getValueType(0)) // VT
14673       };
14674       SDValue BSLoad =
14675         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14676                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14677                                               MVT::i64 : MVT::i32, MVT::Other),
14678                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14679 
14680       // If this is an i16 load, insert the truncate.
14681       SDValue ResVal = BSLoad;
14682       if (N->getValueType(0) == MVT::i16)
14683         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14684 
14685       // First, combine the bswap away.  This makes the value produced by the
14686       // load dead.
14687       DCI.CombineTo(N, ResVal);
14688 
14689       // Next, combine the load away, we give it a bogus result value but a real
14690       // chain result.  The result value is dead because the bswap is dead.
14691       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14692 
14693       // Return N so it doesn't get rechecked!
14694       return SDValue(N, 0);
14695     }
14696     break;
14697   case PPCISD::VCMP:
14698     // If a VCMPo node already exists with exactly the same operands as this
14699     // node, use its result instead of this node (VCMPo computes both a CR6 and
14700     // a normal output).
14701     //
14702     if (!N->getOperand(0).hasOneUse() &&
14703         !N->getOperand(1).hasOneUse() &&
14704         !N->getOperand(2).hasOneUse()) {
14705 
14706       // Scan all of the users of the LHS, looking for VCMPo's that match.
14707       SDNode *VCMPoNode = nullptr;
14708 
14709       SDNode *LHSN = N->getOperand(0).getNode();
14710       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14711            UI != E; ++UI)
14712         if (UI->getOpcode() == PPCISD::VCMPo &&
14713             UI->getOperand(1) == N->getOperand(1) &&
14714             UI->getOperand(2) == N->getOperand(2) &&
14715             UI->getOperand(0) == N->getOperand(0)) {
14716           VCMPoNode = *UI;
14717           break;
14718         }
14719 
14720       // If there is no VCMPo node, or if the flag value has a single use, don't
14721       // transform this.
14722       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14723         break;
14724 
14725       // Look at the (necessarily single) use of the flag value.  If it has a
14726       // chain, this transformation is more complex.  Note that multiple things
14727       // could use the value result, which we should ignore.
14728       SDNode *FlagUser = nullptr;
14729       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14730            FlagUser == nullptr; ++UI) {
14731         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14732         SDNode *User = *UI;
14733         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14734           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14735             FlagUser = User;
14736             break;
14737           }
14738         }
14739       }
14740 
14741       // If the user is a MFOCRF instruction, we know this is safe.
14742       // Otherwise we give up for right now.
14743       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14744         return SDValue(VCMPoNode, 0);
14745     }
14746     break;
14747   case ISD::BRCOND: {
14748     SDValue Cond = N->getOperand(1);
14749     SDValue Target = N->getOperand(2);
14750 
14751     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14752         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14753           Intrinsic::loop_decrement) {
14754 
14755       // We now need to make the intrinsic dead (it cannot be instruction
14756       // selected).
14757       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14758       assert(Cond.getNode()->hasOneUse() &&
14759              "Counter decrement has more than one use");
14760 
14761       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14762                          N->getOperand(0), Target);
14763     }
14764   }
14765   break;
14766   case ISD::BR_CC: {
14767     // If this is a branch on an altivec predicate comparison, lower this so
14768     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14769     // lowering is done pre-legalize, because the legalizer lowers the predicate
14770     // compare down to code that is difficult to reassemble.
14771     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14772     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14773 
14774     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14775     // value. If so, pass-through the AND to get to the intrinsic.
14776     if (LHS.getOpcode() == ISD::AND &&
14777         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14778         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14779           Intrinsic::loop_decrement &&
14780         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14781         !isNullConstant(LHS.getOperand(1)))
14782       LHS = LHS.getOperand(0);
14783 
14784     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14785         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14786           Intrinsic::loop_decrement &&
14787         isa<ConstantSDNode>(RHS)) {
14788       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14789              "Counter decrement comparison is not EQ or NE");
14790 
14791       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14792       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14793                     (CC == ISD::SETNE && !Val);
14794 
14795       // We now need to make the intrinsic dead (it cannot be instruction
14796       // selected).
14797       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14798       assert(LHS.getNode()->hasOneUse() &&
14799              "Counter decrement has more than one use");
14800 
14801       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14802                          N->getOperand(0), N->getOperand(4));
14803     }
14804 
14805     int CompareOpc;
14806     bool isDot;
14807 
14808     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14809         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14810         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14811       assert(isDot && "Can't compare against a vector result!");
14812 
14813       // If this is a comparison against something other than 0/1, then we know
14814       // that the condition is never/always true.
14815       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14816       if (Val != 0 && Val != 1) {
14817         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14818           return N->getOperand(0);
14819         // Always !=, turn it into an unconditional branch.
14820         return DAG.getNode(ISD::BR, dl, MVT::Other,
14821                            N->getOperand(0), N->getOperand(4));
14822       }
14823 
14824       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14825 
14826       // Create the PPCISD altivec 'dot' comparison node.
14827       SDValue Ops[] = {
14828         LHS.getOperand(2),  // LHS of compare
14829         LHS.getOperand(3),  // RHS of compare
14830         DAG.getConstant(CompareOpc, dl, MVT::i32)
14831       };
14832       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14833       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14834 
14835       // Unpack the result based on how the target uses it.
14836       PPC::Predicate CompOpc;
14837       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14838       default:  // Can't happen, don't crash on invalid number though.
14839       case 0:   // Branch on the value of the EQ bit of CR6.
14840         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14841         break;
14842       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14843         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14844         break;
14845       case 2:   // Branch on the value of the LT bit of CR6.
14846         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14847         break;
14848       case 3:   // Branch on the inverted value of the LT bit of CR6.
14849         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14850         break;
14851       }
14852 
14853       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14854                          DAG.getConstant(CompOpc, dl, MVT::i32),
14855                          DAG.getRegister(PPC::CR6, MVT::i32),
14856                          N->getOperand(4), CompNode.getValue(1));
14857     }
14858     break;
14859   }
14860   case ISD::BUILD_VECTOR:
14861     return DAGCombineBuildVector(N, DCI);
14862   case ISD::ABS:
14863     return combineABS(N, DCI);
14864   case ISD::VSELECT:
14865     return combineVSelect(N, DCI);
14866   }
14867 
14868   return SDValue();
14869 }
14870 
14871 SDValue
14872 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14873                                  SelectionDAG &DAG,
14874                                  SmallVectorImpl<SDNode *> &Created) const {
14875   // fold (sdiv X, pow2)
14876   EVT VT = N->getValueType(0);
14877   if (VT == MVT::i64 && !Subtarget.isPPC64())
14878     return SDValue();
14879   if ((VT != MVT::i32 && VT != MVT::i64) ||
14880       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14881     return SDValue();
14882 
14883   SDLoc DL(N);
14884   SDValue N0 = N->getOperand(0);
14885 
14886   bool IsNegPow2 = (-Divisor).isPowerOf2();
14887   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14888   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14889 
14890   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14891   Created.push_back(Op.getNode());
14892 
14893   if (IsNegPow2) {
14894     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14895     Created.push_back(Op.getNode());
14896   }
14897 
14898   return Op;
14899 }
14900 
14901 //===----------------------------------------------------------------------===//
14902 // Inline Assembly Support
14903 //===----------------------------------------------------------------------===//
14904 
14905 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14906                                                       KnownBits &Known,
14907                                                       const APInt &DemandedElts,
14908                                                       const SelectionDAG &DAG,
14909                                                       unsigned Depth) const {
14910   Known.resetAll();
14911   switch (Op.getOpcode()) {
14912   default: break;
14913   case PPCISD::LBRX: {
14914     // lhbrx is known to have the top bits cleared out.
14915     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14916       Known.Zero = 0xFFFF0000;
14917     break;
14918   }
14919   case ISD::INTRINSIC_WO_CHAIN: {
14920     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14921     default: break;
14922     case Intrinsic::ppc_altivec_vcmpbfp_p:
14923     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14924     case Intrinsic::ppc_altivec_vcmpequb_p:
14925     case Intrinsic::ppc_altivec_vcmpequh_p:
14926     case Intrinsic::ppc_altivec_vcmpequw_p:
14927     case Intrinsic::ppc_altivec_vcmpequd_p:
14928     case Intrinsic::ppc_altivec_vcmpgefp_p:
14929     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14930     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14931     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14932     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14933     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14934     case Intrinsic::ppc_altivec_vcmpgtub_p:
14935     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14936     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14937     case Intrinsic::ppc_altivec_vcmpgtud_p:
14938       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14939       break;
14940     }
14941   }
14942   }
14943 }
14944 
14945 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14946   switch (Subtarget.getCPUDirective()) {
14947   default: break;
14948   case PPC::DIR_970:
14949   case PPC::DIR_PWR4:
14950   case PPC::DIR_PWR5:
14951   case PPC::DIR_PWR5X:
14952   case PPC::DIR_PWR6:
14953   case PPC::DIR_PWR6X:
14954   case PPC::DIR_PWR7:
14955   case PPC::DIR_PWR8:
14956   case PPC::DIR_PWR9:
14957   case PPC::DIR_PWR10:
14958   case PPC::DIR_PWR_FUTURE: {
14959     if (!ML)
14960       break;
14961 
14962     if (!DisableInnermostLoopAlign32) {
14963       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14964       // so that we can decrease cache misses and branch-prediction misses.
14965       // Actual alignment of the loop will depend on the hotness check and other
14966       // logic in alignBlocks.
14967       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14968         return Align(32);
14969     }
14970 
14971     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14972 
14973     // For small loops (between 5 and 8 instructions), align to a 32-byte
14974     // boundary so that the entire loop fits in one instruction-cache line.
14975     uint64_t LoopSize = 0;
14976     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14977       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14978         LoopSize += TII->getInstSizeInBytes(*J);
14979         if (LoopSize > 32)
14980           break;
14981       }
14982 
14983     if (LoopSize > 16 && LoopSize <= 32)
14984       return Align(32);
14985 
14986     break;
14987   }
14988   }
14989 
14990   return TargetLowering::getPrefLoopAlignment(ML);
14991 }
14992 
14993 /// getConstraintType - Given a constraint, return the type of
14994 /// constraint it is for this target.
14995 PPCTargetLowering::ConstraintType
14996 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14997   if (Constraint.size() == 1) {
14998     switch (Constraint[0]) {
14999     default: break;
15000     case 'b':
15001     case 'r':
15002     case 'f':
15003     case 'd':
15004     case 'v':
15005     case 'y':
15006       return C_RegisterClass;
15007     case 'Z':
15008       // FIXME: While Z does indicate a memory constraint, it specifically
15009       // indicates an r+r address (used in conjunction with the 'y' modifier
15010       // in the replacement string). Currently, we're forcing the base
15011       // register to be r0 in the asm printer (which is interpreted as zero)
15012       // and forming the complete address in the second register. This is
15013       // suboptimal.
15014       return C_Memory;
15015     }
15016   } else if (Constraint == "wc") { // individual CR bits.
15017     return C_RegisterClass;
15018   } else if (Constraint == "wa" || Constraint == "wd" ||
15019              Constraint == "wf" || Constraint == "ws" ||
15020              Constraint == "wi" || Constraint == "ww") {
15021     return C_RegisterClass; // VSX registers.
15022   }
15023   return TargetLowering::getConstraintType(Constraint);
15024 }
15025 
15026 /// Examine constraint type and operand type and determine a weight value.
15027 /// This object must already have been set up with the operand type
15028 /// and the current alternative constraint selected.
15029 TargetLowering::ConstraintWeight
15030 PPCTargetLowering::getSingleConstraintMatchWeight(
15031     AsmOperandInfo &info, const char *constraint) const {
15032   ConstraintWeight weight = CW_Invalid;
15033   Value *CallOperandVal = info.CallOperandVal;
15034     // If we don't have a value, we can't do a match,
15035     // but allow it at the lowest weight.
15036   if (!CallOperandVal)
15037     return CW_Default;
15038   Type *type = CallOperandVal->getType();
15039 
15040   // Look at the constraint type.
15041   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15042     return CW_Register; // an individual CR bit.
15043   else if ((StringRef(constraint) == "wa" ||
15044             StringRef(constraint) == "wd" ||
15045             StringRef(constraint) == "wf") &&
15046            type->isVectorTy())
15047     return CW_Register;
15048   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15049     return CW_Register; // just hold 64-bit integers data.
15050   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15051     return CW_Register;
15052   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15053     return CW_Register;
15054 
15055   switch (*constraint) {
15056   default:
15057     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15058     break;
15059   case 'b':
15060     if (type->isIntegerTy())
15061       weight = CW_Register;
15062     break;
15063   case 'f':
15064     if (type->isFloatTy())
15065       weight = CW_Register;
15066     break;
15067   case 'd':
15068     if (type->isDoubleTy())
15069       weight = CW_Register;
15070     break;
15071   case 'v':
15072     if (type->isVectorTy())
15073       weight = CW_Register;
15074     break;
15075   case 'y':
15076     weight = CW_Register;
15077     break;
15078   case 'Z':
15079     weight = CW_Memory;
15080     break;
15081   }
15082   return weight;
15083 }
15084 
15085 std::pair<unsigned, const TargetRegisterClass *>
15086 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15087                                                 StringRef Constraint,
15088                                                 MVT VT) const {
15089   if (Constraint.size() == 1) {
15090     // GCC RS6000 Constraint Letters
15091     switch (Constraint[0]) {
15092     case 'b':   // R1-R31
15093       if (VT == MVT::i64 && Subtarget.isPPC64())
15094         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15095       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15096     case 'r':   // R0-R31
15097       if (VT == MVT::i64 && Subtarget.isPPC64())
15098         return std::make_pair(0U, &PPC::G8RCRegClass);
15099       return std::make_pair(0U, &PPC::GPRCRegClass);
15100     // 'd' and 'f' constraints are both defined to be "the floating point
15101     // registers", where one is for 32-bit and the other for 64-bit. We don't
15102     // really care overly much here so just give them all the same reg classes.
15103     case 'd':
15104     case 'f':
15105       if (Subtarget.hasSPE()) {
15106         if (VT == MVT::f32 || VT == MVT::i32)
15107           return std::make_pair(0U, &PPC::GPRCRegClass);
15108         if (VT == MVT::f64 || VT == MVT::i64)
15109           return std::make_pair(0U, &PPC::SPERCRegClass);
15110       } else {
15111         if (VT == MVT::f32 || VT == MVT::i32)
15112           return std::make_pair(0U, &PPC::F4RCRegClass);
15113         if (VT == MVT::f64 || VT == MVT::i64)
15114           return std::make_pair(0U, &PPC::F8RCRegClass);
15115         if (VT == MVT::v4f64 && Subtarget.hasQPX())
15116           return std::make_pair(0U, &PPC::QFRCRegClass);
15117         if (VT == MVT::v4f32 && Subtarget.hasQPX())
15118           return std::make_pair(0U, &PPC::QSRCRegClass);
15119       }
15120       break;
15121     case 'v':
15122       if (VT == MVT::v4f64 && Subtarget.hasQPX())
15123         return std::make_pair(0U, &PPC::QFRCRegClass);
15124       if (VT == MVT::v4f32 && Subtarget.hasQPX())
15125         return std::make_pair(0U, &PPC::QSRCRegClass);
15126       if (Subtarget.hasAltivec())
15127         return std::make_pair(0U, &PPC::VRRCRegClass);
15128       break;
15129     case 'y':   // crrc
15130       return std::make_pair(0U, &PPC::CRRCRegClass);
15131     }
15132   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15133     // An individual CR bit.
15134     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15135   } else if ((Constraint == "wa" || Constraint == "wd" ||
15136              Constraint == "wf" || Constraint == "wi") &&
15137              Subtarget.hasVSX()) {
15138     return std::make_pair(0U, &PPC::VSRCRegClass);
15139   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15140     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15141       return std::make_pair(0U, &PPC::VSSRCRegClass);
15142     else
15143       return std::make_pair(0U, &PPC::VSFRCRegClass);
15144   }
15145 
15146   // If we name a VSX register, we can't defer to the base class because it
15147   // will not recognize the correct register (their names will be VSL{0-31}
15148   // and V{0-31} so they won't match). So we match them here.
15149   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15150     int VSNum = atoi(Constraint.data() + 3);
15151     assert(VSNum >= 0 && VSNum <= 63 &&
15152            "Attempted to access a vsr out of range");
15153     if (VSNum < 32)
15154       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15155     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15156   }
15157   std::pair<unsigned, const TargetRegisterClass *> R =
15158       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15159 
15160   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15161   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15162   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15163   // register.
15164   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15165   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15166   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15167       PPC::GPRCRegClass.contains(R.first))
15168     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15169                             PPC::sub_32, &PPC::G8RCRegClass),
15170                           &PPC::G8RCRegClass);
15171 
15172   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15173   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15174     R.first = PPC::CR0;
15175     R.second = &PPC::CRRCRegClass;
15176   }
15177 
15178   return R;
15179 }
15180 
15181 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15182 /// vector.  If it is invalid, don't add anything to Ops.
15183 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15184                                                      std::string &Constraint,
15185                                                      std::vector<SDValue>&Ops,
15186                                                      SelectionDAG &DAG) const {
15187   SDValue Result;
15188 
15189   // Only support length 1 constraints.
15190   if (Constraint.length() > 1) return;
15191 
15192   char Letter = Constraint[0];
15193   switch (Letter) {
15194   default: break;
15195   case 'I':
15196   case 'J':
15197   case 'K':
15198   case 'L':
15199   case 'M':
15200   case 'N':
15201   case 'O':
15202   case 'P': {
15203     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15204     if (!CST) return; // Must be an immediate to match.
15205     SDLoc dl(Op);
15206     int64_t Value = CST->getSExtValue();
15207     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15208                          // numbers are printed as such.
15209     switch (Letter) {
15210     default: llvm_unreachable("Unknown constraint letter!");
15211     case 'I':  // "I" is a signed 16-bit constant.
15212       if (isInt<16>(Value))
15213         Result = DAG.getTargetConstant(Value, dl, TCVT);
15214       break;
15215     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15216       if (isShiftedUInt<16, 16>(Value))
15217         Result = DAG.getTargetConstant(Value, dl, TCVT);
15218       break;
15219     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15220       if (isShiftedInt<16, 16>(Value))
15221         Result = DAG.getTargetConstant(Value, dl, TCVT);
15222       break;
15223     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15224       if (isUInt<16>(Value))
15225         Result = DAG.getTargetConstant(Value, dl, TCVT);
15226       break;
15227     case 'M':  // "M" is a constant that is greater than 31.
15228       if (Value > 31)
15229         Result = DAG.getTargetConstant(Value, dl, TCVT);
15230       break;
15231     case 'N':  // "N" is a positive constant that is an exact power of two.
15232       if (Value > 0 && isPowerOf2_64(Value))
15233         Result = DAG.getTargetConstant(Value, dl, TCVT);
15234       break;
15235     case 'O':  // "O" is the constant zero.
15236       if (Value == 0)
15237         Result = DAG.getTargetConstant(Value, dl, TCVT);
15238       break;
15239     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15240       if (isInt<16>(-Value))
15241         Result = DAG.getTargetConstant(Value, dl, TCVT);
15242       break;
15243     }
15244     break;
15245   }
15246   }
15247 
15248   if (Result.getNode()) {
15249     Ops.push_back(Result);
15250     return;
15251   }
15252 
15253   // Handle standard constraint letters.
15254   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15255 }
15256 
15257 // isLegalAddressingMode - Return true if the addressing mode represented
15258 // by AM is legal for this target, for a load/store of the specified type.
15259 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15260                                               const AddrMode &AM, Type *Ty,
15261                                               unsigned AS, Instruction *I) const {
15262   // PPC does not allow r+i addressing modes for vectors!
15263   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15264     return false;
15265 
15266   // PPC allows a sign-extended 16-bit immediate field.
15267   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15268     return false;
15269 
15270   // No global is ever allowed as a base.
15271   if (AM.BaseGV)
15272     return false;
15273 
15274   // PPC only support r+r,
15275   switch (AM.Scale) {
15276   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15277     break;
15278   case 1:
15279     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15280       return false;
15281     // Otherwise we have r+r or r+i.
15282     break;
15283   case 2:
15284     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15285       return false;
15286     // Allow 2*r as r+r.
15287     break;
15288   default:
15289     // No other scales are supported.
15290     return false;
15291   }
15292 
15293   return true;
15294 }
15295 
15296 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15297                                            SelectionDAG &DAG) const {
15298   MachineFunction &MF = DAG.getMachineFunction();
15299   MachineFrameInfo &MFI = MF.getFrameInfo();
15300   MFI.setReturnAddressIsTaken(true);
15301 
15302   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15303     return SDValue();
15304 
15305   SDLoc dl(Op);
15306   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15307 
15308   // Make sure the function does not optimize away the store of the RA to
15309   // the stack.
15310   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15311   FuncInfo->setLRStoreRequired();
15312   bool isPPC64 = Subtarget.isPPC64();
15313   auto PtrVT = getPointerTy(MF.getDataLayout());
15314 
15315   if (Depth > 0) {
15316     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15317     SDValue Offset =
15318         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15319                         isPPC64 ? MVT::i64 : MVT::i32);
15320     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15321                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15322                        MachinePointerInfo());
15323   }
15324 
15325   // Just load the return address off the stack.
15326   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15327   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15328                      MachinePointerInfo());
15329 }
15330 
15331 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15332                                           SelectionDAG &DAG) const {
15333   SDLoc dl(Op);
15334   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15335 
15336   MachineFunction &MF = DAG.getMachineFunction();
15337   MachineFrameInfo &MFI = MF.getFrameInfo();
15338   MFI.setFrameAddressIsTaken(true);
15339 
15340   EVT PtrVT = getPointerTy(MF.getDataLayout());
15341   bool isPPC64 = PtrVT == MVT::i64;
15342 
15343   // Naked functions never have a frame pointer, and so we use r1. For all
15344   // other functions, this decision must be delayed until during PEI.
15345   unsigned FrameReg;
15346   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15347     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15348   else
15349     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15350 
15351   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15352                                          PtrVT);
15353   while (Depth--)
15354     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15355                             FrameAddr, MachinePointerInfo());
15356   return FrameAddr;
15357 }
15358 
15359 // FIXME? Maybe this could be a TableGen attribute on some registers and
15360 // this table could be generated automatically from RegInfo.
15361 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15362                                               const MachineFunction &MF) const {
15363   bool isPPC64 = Subtarget.isPPC64();
15364 
15365   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15366   if (!is64Bit && VT != LLT::scalar(32))
15367     report_fatal_error("Invalid register global variable type");
15368 
15369   Register Reg = StringSwitch<Register>(RegName)
15370                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15371                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15372                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15373                      .Default(Register());
15374 
15375   if (Reg)
15376     return Reg;
15377   report_fatal_error("Invalid register name global variable");
15378 }
15379 
15380 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15381   // 32-bit SVR4 ABI access everything as got-indirect.
15382   if (Subtarget.is32BitELFABI())
15383     return true;
15384 
15385   // AIX accesses everything indirectly through the TOC, which is similar to
15386   // the GOT.
15387   if (Subtarget.isAIXABI())
15388     return true;
15389 
15390   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15391   // If it is small or large code model, module locals are accessed
15392   // indirectly by loading their address from .toc/.got.
15393   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15394     return true;
15395 
15396   // JumpTable and BlockAddress are accessed as got-indirect.
15397   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15398     return true;
15399 
15400   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15401     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15402 
15403   return false;
15404 }
15405 
15406 bool
15407 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15408   // The PowerPC target isn't yet aware of offsets.
15409   return false;
15410 }
15411 
15412 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15413                                            const CallInst &I,
15414                                            MachineFunction &MF,
15415                                            unsigned Intrinsic) const {
15416   switch (Intrinsic) {
15417   case Intrinsic::ppc_qpx_qvlfd:
15418   case Intrinsic::ppc_qpx_qvlfs:
15419   case Intrinsic::ppc_qpx_qvlfcd:
15420   case Intrinsic::ppc_qpx_qvlfcs:
15421   case Intrinsic::ppc_qpx_qvlfiwa:
15422   case Intrinsic::ppc_qpx_qvlfiwz:
15423   case Intrinsic::ppc_altivec_lvx:
15424   case Intrinsic::ppc_altivec_lvxl:
15425   case Intrinsic::ppc_altivec_lvebx:
15426   case Intrinsic::ppc_altivec_lvehx:
15427   case Intrinsic::ppc_altivec_lvewx:
15428   case Intrinsic::ppc_vsx_lxvd2x:
15429   case Intrinsic::ppc_vsx_lxvw4x: {
15430     EVT VT;
15431     switch (Intrinsic) {
15432     case Intrinsic::ppc_altivec_lvebx:
15433       VT = MVT::i8;
15434       break;
15435     case Intrinsic::ppc_altivec_lvehx:
15436       VT = MVT::i16;
15437       break;
15438     case Intrinsic::ppc_altivec_lvewx:
15439       VT = MVT::i32;
15440       break;
15441     case Intrinsic::ppc_vsx_lxvd2x:
15442       VT = MVT::v2f64;
15443       break;
15444     case Intrinsic::ppc_qpx_qvlfd:
15445       VT = MVT::v4f64;
15446       break;
15447     case Intrinsic::ppc_qpx_qvlfs:
15448       VT = MVT::v4f32;
15449       break;
15450     case Intrinsic::ppc_qpx_qvlfcd:
15451       VT = MVT::v2f64;
15452       break;
15453     case Intrinsic::ppc_qpx_qvlfcs:
15454       VT = MVT::v2f32;
15455       break;
15456     default:
15457       VT = MVT::v4i32;
15458       break;
15459     }
15460 
15461     Info.opc = ISD::INTRINSIC_W_CHAIN;
15462     Info.memVT = VT;
15463     Info.ptrVal = I.getArgOperand(0);
15464     Info.offset = -VT.getStoreSize()+1;
15465     Info.size = 2*VT.getStoreSize()-1;
15466     Info.align = Align(1);
15467     Info.flags = MachineMemOperand::MOLoad;
15468     return true;
15469   }
15470   case Intrinsic::ppc_qpx_qvlfda:
15471   case Intrinsic::ppc_qpx_qvlfsa:
15472   case Intrinsic::ppc_qpx_qvlfcda:
15473   case Intrinsic::ppc_qpx_qvlfcsa:
15474   case Intrinsic::ppc_qpx_qvlfiwaa:
15475   case Intrinsic::ppc_qpx_qvlfiwza: {
15476     EVT VT;
15477     switch (Intrinsic) {
15478     case Intrinsic::ppc_qpx_qvlfda:
15479       VT = MVT::v4f64;
15480       break;
15481     case Intrinsic::ppc_qpx_qvlfsa:
15482       VT = MVT::v4f32;
15483       break;
15484     case Intrinsic::ppc_qpx_qvlfcda:
15485       VT = MVT::v2f64;
15486       break;
15487     case Intrinsic::ppc_qpx_qvlfcsa:
15488       VT = MVT::v2f32;
15489       break;
15490     default:
15491       VT = MVT::v4i32;
15492       break;
15493     }
15494 
15495     Info.opc = ISD::INTRINSIC_W_CHAIN;
15496     Info.memVT = VT;
15497     Info.ptrVal = I.getArgOperand(0);
15498     Info.offset = 0;
15499     Info.size = VT.getStoreSize();
15500     Info.align = Align(1);
15501     Info.flags = MachineMemOperand::MOLoad;
15502     return true;
15503   }
15504   case Intrinsic::ppc_qpx_qvstfd:
15505   case Intrinsic::ppc_qpx_qvstfs:
15506   case Intrinsic::ppc_qpx_qvstfcd:
15507   case Intrinsic::ppc_qpx_qvstfcs:
15508   case Intrinsic::ppc_qpx_qvstfiw:
15509   case Intrinsic::ppc_altivec_stvx:
15510   case Intrinsic::ppc_altivec_stvxl:
15511   case Intrinsic::ppc_altivec_stvebx:
15512   case Intrinsic::ppc_altivec_stvehx:
15513   case Intrinsic::ppc_altivec_stvewx:
15514   case Intrinsic::ppc_vsx_stxvd2x:
15515   case Intrinsic::ppc_vsx_stxvw4x: {
15516     EVT VT;
15517     switch (Intrinsic) {
15518     case Intrinsic::ppc_altivec_stvebx:
15519       VT = MVT::i8;
15520       break;
15521     case Intrinsic::ppc_altivec_stvehx:
15522       VT = MVT::i16;
15523       break;
15524     case Intrinsic::ppc_altivec_stvewx:
15525       VT = MVT::i32;
15526       break;
15527     case Intrinsic::ppc_vsx_stxvd2x:
15528       VT = MVT::v2f64;
15529       break;
15530     case Intrinsic::ppc_qpx_qvstfd:
15531       VT = MVT::v4f64;
15532       break;
15533     case Intrinsic::ppc_qpx_qvstfs:
15534       VT = MVT::v4f32;
15535       break;
15536     case Intrinsic::ppc_qpx_qvstfcd:
15537       VT = MVT::v2f64;
15538       break;
15539     case Intrinsic::ppc_qpx_qvstfcs:
15540       VT = MVT::v2f32;
15541       break;
15542     default:
15543       VT = MVT::v4i32;
15544       break;
15545     }
15546 
15547     Info.opc = ISD::INTRINSIC_VOID;
15548     Info.memVT = VT;
15549     Info.ptrVal = I.getArgOperand(1);
15550     Info.offset = -VT.getStoreSize()+1;
15551     Info.size = 2*VT.getStoreSize()-1;
15552     Info.align = Align(1);
15553     Info.flags = MachineMemOperand::MOStore;
15554     return true;
15555   }
15556   case Intrinsic::ppc_qpx_qvstfda:
15557   case Intrinsic::ppc_qpx_qvstfsa:
15558   case Intrinsic::ppc_qpx_qvstfcda:
15559   case Intrinsic::ppc_qpx_qvstfcsa:
15560   case Intrinsic::ppc_qpx_qvstfiwa: {
15561     EVT VT;
15562     switch (Intrinsic) {
15563     case Intrinsic::ppc_qpx_qvstfda:
15564       VT = MVT::v4f64;
15565       break;
15566     case Intrinsic::ppc_qpx_qvstfsa:
15567       VT = MVT::v4f32;
15568       break;
15569     case Intrinsic::ppc_qpx_qvstfcda:
15570       VT = MVT::v2f64;
15571       break;
15572     case Intrinsic::ppc_qpx_qvstfcsa:
15573       VT = MVT::v2f32;
15574       break;
15575     default:
15576       VT = MVT::v4i32;
15577       break;
15578     }
15579 
15580     Info.opc = ISD::INTRINSIC_VOID;
15581     Info.memVT = VT;
15582     Info.ptrVal = I.getArgOperand(1);
15583     Info.offset = 0;
15584     Info.size = VT.getStoreSize();
15585     Info.align = Align(1);
15586     Info.flags = MachineMemOperand::MOStore;
15587     return true;
15588   }
15589   default:
15590     break;
15591   }
15592 
15593   return false;
15594 }
15595 
15596 /// It returns EVT::Other if the type should be determined using generic
15597 /// target-independent logic.
15598 EVT PPCTargetLowering::getOptimalMemOpType(
15599     const MemOp &Op, const AttributeList &FuncAttributes) const {
15600   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15601     // When expanding a memset, require at least two QPX instructions to cover
15602     // the cost of loading the value to be stored from the constant pool.
15603     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15604         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15605         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15606       return MVT::v4f64;
15607     }
15608 
15609     // We should use Altivec/VSX loads and stores when available. For unaligned
15610     // addresses, unaligned VSX loads are only fast starting with the P8.
15611     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15612         (Op.isAligned(Align(16)) ||
15613          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15614       return MVT::v4i32;
15615   }
15616 
15617   if (Subtarget.isPPC64()) {
15618     return MVT::i64;
15619   }
15620 
15621   return MVT::i32;
15622 }
15623 
15624 /// Returns true if it is beneficial to convert a load of a constant
15625 /// to just the constant itself.
15626 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15627                                                           Type *Ty) const {
15628   assert(Ty->isIntegerTy());
15629 
15630   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15631   return !(BitSize == 0 || BitSize > 64);
15632 }
15633 
15634 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15635   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15636     return false;
15637   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15638   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15639   return NumBits1 == 64 && NumBits2 == 32;
15640 }
15641 
15642 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15643   if (!VT1.isInteger() || !VT2.isInteger())
15644     return false;
15645   unsigned NumBits1 = VT1.getSizeInBits();
15646   unsigned NumBits2 = VT2.getSizeInBits();
15647   return NumBits1 == 64 && NumBits2 == 32;
15648 }
15649 
15650 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15651   // Generally speaking, zexts are not free, but they are free when they can be
15652   // folded with other operations.
15653   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15654     EVT MemVT = LD->getMemoryVT();
15655     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15656          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15657         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15658          LD->getExtensionType() == ISD::ZEXTLOAD))
15659       return true;
15660   }
15661 
15662   // FIXME: Add other cases...
15663   //  - 32-bit shifts with a zext to i64
15664   //  - zext after ctlz, bswap, etc.
15665   //  - zext after and by a constant mask
15666 
15667   return TargetLowering::isZExtFree(Val, VT2);
15668 }
15669 
15670 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15671   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15672          "invalid fpext types");
15673   // Extending to float128 is not free.
15674   if (DestVT == MVT::f128)
15675     return false;
15676   return true;
15677 }
15678 
15679 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15680   return isInt<16>(Imm) || isUInt<16>(Imm);
15681 }
15682 
15683 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15684   return isInt<16>(Imm) || isUInt<16>(Imm);
15685 }
15686 
15687 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15688                                                        unsigned,
15689                                                        unsigned,
15690                                                        MachineMemOperand::Flags,
15691                                                        bool *Fast) const {
15692   if (DisablePPCUnaligned)
15693     return false;
15694 
15695   // PowerPC supports unaligned memory access for simple non-vector types.
15696   // Although accessing unaligned addresses is not as efficient as accessing
15697   // aligned addresses, it is generally more efficient than manual expansion,
15698   // and generally only traps for software emulation when crossing page
15699   // boundaries.
15700 
15701   if (!VT.isSimple())
15702     return false;
15703 
15704   if (VT.isFloatingPoint() && !VT.isVector() &&
15705       !Subtarget.allowsUnalignedFPAccess())
15706     return false;
15707 
15708   if (VT.getSimpleVT().isVector()) {
15709     if (Subtarget.hasVSX()) {
15710       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15711           VT != MVT::v4f32 && VT != MVT::v4i32)
15712         return false;
15713     } else {
15714       return false;
15715     }
15716   }
15717 
15718   if (VT == MVT::ppcf128)
15719     return false;
15720 
15721   if (Fast)
15722     *Fast = true;
15723 
15724   return true;
15725 }
15726 
15727 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15728                                                    EVT VT) const {
15729   return isFMAFasterThanFMulAndFAdd(
15730       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15731 }
15732 
15733 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15734                                                    Type *Ty) const {
15735   switch (Ty->getScalarType()->getTypeID()) {
15736   case Type::FloatTyID:
15737   case Type::DoubleTyID:
15738     return true;
15739   case Type::FP128TyID:
15740     return EnableQuadPrecision && Subtarget.hasP9Vector();
15741   default:
15742     return false;
15743   }
15744 }
15745 
15746 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
15747 // FIXME: add more patterns which are profitable to hoist.
15748 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15749   if (I->getOpcode() != Instruction::FMul)
15750     return true;
15751 
15752   if (!I->hasOneUse())
15753     return true;
15754 
15755   Instruction *User = I->user_back();
15756   assert(User && "A single use instruction with no uses.");
15757 
15758   if (User->getOpcode() != Instruction::FSub &&
15759       User->getOpcode() != Instruction::FAdd)
15760     return true;
15761 
15762   const TargetOptions &Options = getTargetMachine().Options;
15763   const Function *F = I->getFunction();
15764   const DataLayout &DL = F->getParent()->getDataLayout();
15765   Type *Ty = User->getOperand(0)->getType();
15766 
15767   return !(
15768       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15769       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15770       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15771 }
15772 
15773 const MCPhysReg *
15774 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15775   // LR is a callee-save register, but we must treat it as clobbered by any call
15776   // site. Hence we include LR in the scratch registers, which are in turn added
15777   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15778   // to CTR, which is used by any indirect call.
15779   static const MCPhysReg ScratchRegs[] = {
15780     PPC::X12, PPC::LR8, PPC::CTR8, 0
15781   };
15782 
15783   return ScratchRegs;
15784 }
15785 
15786 Register PPCTargetLowering::getExceptionPointerRegister(
15787     const Constant *PersonalityFn) const {
15788   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15789 }
15790 
15791 Register PPCTargetLowering::getExceptionSelectorRegister(
15792     const Constant *PersonalityFn) const {
15793   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15794 }
15795 
15796 bool
15797 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15798                      EVT VT , unsigned DefinedValues) const {
15799   if (VT == MVT::v2i64)
15800     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15801 
15802   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15803     return true;
15804 
15805   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15806 }
15807 
15808 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15809   if (DisableILPPref || Subtarget.enableMachineScheduler())
15810     return TargetLowering::getSchedulingPreference(N);
15811 
15812   return Sched::ILP;
15813 }
15814 
15815 // Create a fast isel object.
15816 FastISel *
15817 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15818                                   const TargetLibraryInfo *LibInfo) const {
15819   return PPC::createFastISel(FuncInfo, LibInfo);
15820 }
15821 
15822 // 'Inverted' means the FMA opcode after negating one multiplicand.
15823 // For example, (fma -a b c) = (fnmsub a b c)
15824 static unsigned invertFMAOpcode(unsigned Opc) {
15825   switch (Opc) {
15826   default:
15827     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15828   case ISD::FMA:
15829     return PPCISD::FNMSUB;
15830   case PPCISD::FNMSUB:
15831     return ISD::FMA;
15832   }
15833 }
15834 
15835 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15836                                                 bool LegalOps, bool OptForSize,
15837                                                 NegatibleCost &Cost,
15838                                                 unsigned Depth) const {
15839   if (Depth > SelectionDAG::MaxRecursionDepth)
15840     return SDValue();
15841 
15842   unsigned Opc = Op.getOpcode();
15843   EVT VT = Op.getValueType();
15844   SDNodeFlags Flags = Op.getNode()->getFlags();
15845 
15846   switch (Opc) {
15847   case PPCISD::FNMSUB:
15848     // TODO: QPX subtarget is deprecated. No transformation here.
15849     if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
15850       break;
15851 
15852     const TargetOptions &Options = getTargetMachine().Options;
15853     SDValue N0 = Op.getOperand(0);
15854     SDValue N1 = Op.getOperand(1);
15855     SDValue N2 = Op.getOperand(2);
15856     SDLoc Loc(Op);
15857 
15858     NegatibleCost N2Cost = NegatibleCost::Expensive;
15859     SDValue NegN2 =
15860         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15861 
15862     if (!NegN2)
15863       return SDValue();
15864 
15865     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15866     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15867     // These transformations may change sign of zeroes. For example,
15868     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15869     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15870       // Try and choose the cheaper one to negate.
15871       NegatibleCost N0Cost = NegatibleCost::Expensive;
15872       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15873                                            N0Cost, Depth + 1);
15874 
15875       NegatibleCost N1Cost = NegatibleCost::Expensive;
15876       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15877                                            N1Cost, Depth + 1);
15878 
15879       if (NegN0 && N0Cost <= N1Cost) {
15880         Cost = std::min(N0Cost, N2Cost);
15881         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15882       } else if (NegN1) {
15883         Cost = std::min(N1Cost, N2Cost);
15884         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15885       }
15886     }
15887 
15888     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15889     if (isOperationLegal(ISD::FMA, VT)) {
15890       Cost = N2Cost;
15891       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15892     }
15893 
15894     break;
15895   }
15896 
15897   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15898                                               Cost, Depth);
15899 }
15900 
15901 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15902 bool PPCTargetLowering::useLoadStackGuardNode() const {
15903   if (!Subtarget.isTargetLinux())
15904     return TargetLowering::useLoadStackGuardNode();
15905   return true;
15906 }
15907 
15908 // Override to disable global variable loading on Linux.
15909 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15910   if (!Subtarget.isTargetLinux())
15911     return TargetLowering::insertSSPDeclarations(M);
15912 }
15913 
15914 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15915                                      bool ForCodeSize) const {
15916   if (!VT.isSimple() || !Subtarget.hasVSX())
15917     return false;
15918 
15919   switch(VT.getSimpleVT().SimpleTy) {
15920   default:
15921     // For FP types that are currently not supported by PPC backend, return
15922     // false. Examples: f16, f80.
15923     return false;
15924   case MVT::f32:
15925   case MVT::f64:
15926   case MVT::ppcf128:
15927     return Imm.isPosZero();
15928   }
15929 }
15930 
15931 // For vector shift operation op, fold
15932 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15933 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15934                                   SelectionDAG &DAG) {
15935   SDValue N0 = N->getOperand(0);
15936   SDValue N1 = N->getOperand(1);
15937   EVT VT = N0.getValueType();
15938   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15939   unsigned Opcode = N->getOpcode();
15940   unsigned TargetOpcode;
15941 
15942   switch (Opcode) {
15943   default:
15944     llvm_unreachable("Unexpected shift operation");
15945   case ISD::SHL:
15946     TargetOpcode = PPCISD::SHL;
15947     break;
15948   case ISD::SRL:
15949     TargetOpcode = PPCISD::SRL;
15950     break;
15951   case ISD::SRA:
15952     TargetOpcode = PPCISD::SRA;
15953     break;
15954   }
15955 
15956   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15957       N1->getOpcode() == ISD::AND)
15958     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15959       if (Mask->getZExtValue() == OpSizeInBits - 1)
15960         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15961 
15962   return SDValue();
15963 }
15964 
15965 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15966   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15967     return Value;
15968 
15969   SDValue N0 = N->getOperand(0);
15970   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15971   if (!Subtarget.isISA3_0() ||
15972       N0.getOpcode() != ISD::SIGN_EXTEND ||
15973       N0.getOperand(0).getValueType() != MVT::i32 ||
15974       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15975     return SDValue();
15976 
15977   // We can't save an operation here if the value is already extended, and
15978   // the existing shift is easier to combine.
15979   SDValue ExtsSrc = N0.getOperand(0);
15980   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15981       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15982     return SDValue();
15983 
15984   SDLoc DL(N0);
15985   SDValue ShiftBy = SDValue(CN1, 0);
15986   // We want the shift amount to be i32 on the extswli, but the shift could
15987   // have an i64.
15988   if (ShiftBy.getValueType() == MVT::i64)
15989     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15990 
15991   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15992                          ShiftBy);
15993 }
15994 
15995 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15996   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15997     return Value;
15998 
15999   return SDValue();
16000 }
16001 
16002 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16003   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16004     return Value;
16005 
16006   return SDValue();
16007 }
16008 
16009 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16010 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16011 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16012 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16013 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16014                                  const PPCSubtarget &Subtarget) {
16015   if (!Subtarget.isPPC64())
16016     return SDValue();
16017 
16018   SDValue LHS = N->getOperand(0);
16019   SDValue RHS = N->getOperand(1);
16020 
16021   auto isZextOfCompareWithConstant = [](SDValue Op) {
16022     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16023         Op.getValueType() != MVT::i64)
16024       return false;
16025 
16026     SDValue Cmp = Op.getOperand(0);
16027     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16028         Cmp.getOperand(0).getValueType() != MVT::i64)
16029       return false;
16030 
16031     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16032       int64_t NegConstant = 0 - Constant->getSExtValue();
16033       // Due to the limitations of the addi instruction,
16034       // -C is required to be [-32768, 32767].
16035       return isInt<16>(NegConstant);
16036     }
16037 
16038     return false;
16039   };
16040 
16041   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16042   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16043 
16044   // If there is a pattern, canonicalize a zext operand to the RHS.
16045   if (LHSHasPattern && !RHSHasPattern)
16046     std::swap(LHS, RHS);
16047   else if (!LHSHasPattern && !RHSHasPattern)
16048     return SDValue();
16049 
16050   SDLoc DL(N);
16051   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16052   SDValue Cmp = RHS.getOperand(0);
16053   SDValue Z = Cmp.getOperand(0);
16054   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16055 
16056   assert(Constant && "Constant Should not be a null pointer.");
16057   int64_t NegConstant = 0 - Constant->getSExtValue();
16058 
16059   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16060   default: break;
16061   case ISD::SETNE: {
16062     //                                 when C == 0
16063     //                             --> addze X, (addic Z, -1).carry
16064     //                            /
16065     // add X, (zext(setne Z, C))--
16066     //                            \    when -32768 <= -C <= 32767 && C != 0
16067     //                             --> addze X, (addic (addi Z, -C), -1).carry
16068     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16069                               DAG.getConstant(NegConstant, DL, MVT::i64));
16070     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16071     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16072                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16073     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16074                        SDValue(Addc.getNode(), 1));
16075     }
16076   case ISD::SETEQ: {
16077     //                                 when C == 0
16078     //                             --> addze X, (subfic Z, 0).carry
16079     //                            /
16080     // add X, (zext(sete  Z, C))--
16081     //                            \    when -32768 <= -C <= 32767 && C != 0
16082     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16083     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16084                               DAG.getConstant(NegConstant, DL, MVT::i64));
16085     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16086     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16087                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16088     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16089                        SDValue(Subc.getNode(), 1));
16090     }
16091   }
16092 
16093   return SDValue();
16094 }
16095 
16096 // Transform
16097 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16098 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16099 // In this case both C1 and C2 must be known constants.
16100 // C1+C2 must fit into a 34 bit signed integer.
16101 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16102                                           const PPCSubtarget &Subtarget) {
16103   if (!Subtarget.isUsingPCRelativeCalls())
16104     return SDValue();
16105 
16106   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16107   // If we find that node try to cast the Global Address and the Constant.
16108   SDValue LHS = N->getOperand(0);
16109   SDValue RHS = N->getOperand(1);
16110 
16111   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16112     std::swap(LHS, RHS);
16113 
16114   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16115     return SDValue();
16116 
16117   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16118   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16119   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16120 
16121   // Check that both casts succeeded.
16122   if (!GSDN || !ConstNode)
16123     return SDValue();
16124 
16125   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16126   SDLoc DL(GSDN);
16127 
16128   // The signed int offset needs to fit in 34 bits.
16129   if (!isInt<34>(NewOffset))
16130     return SDValue();
16131 
16132   // The new global address is a copy of the old global address except
16133   // that it has the updated Offset.
16134   SDValue GA =
16135       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16136                                  NewOffset, GSDN->getTargetFlags());
16137   SDValue MatPCRel =
16138       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16139   return MatPCRel;
16140 }
16141 
16142 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16143   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16144     return Value;
16145 
16146   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16147     return Value;
16148 
16149   return SDValue();
16150 }
16151 
16152 // Detect TRUNCATE operations on bitcasts of float128 values.
16153 // What we are looking for here is the situtation where we extract a subset
16154 // of bits from a 128 bit float.
16155 // This can be of two forms:
16156 // 1) BITCAST of f128 feeding TRUNCATE
16157 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16158 // The reason this is required is because we do not have a legal i128 type
16159 // and so we want to prevent having to store the f128 and then reload part
16160 // of it.
16161 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16162                                            DAGCombinerInfo &DCI) const {
16163   // If we are using CRBits then try that first.
16164   if (Subtarget.useCRBits()) {
16165     // Check if CRBits did anything and return that if it did.
16166     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16167       return CRTruncValue;
16168   }
16169 
16170   SDLoc dl(N);
16171   SDValue Op0 = N->getOperand(0);
16172 
16173   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16174   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16175     EVT VT = N->getValueType(0);
16176     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16177       return SDValue();
16178     SDValue Sub = Op0.getOperand(0);
16179     if (Sub.getOpcode() == ISD::SUB) {
16180       SDValue SubOp0 = Sub.getOperand(0);
16181       SDValue SubOp1 = Sub.getOperand(1);
16182       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16183           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16184         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16185                                SubOp1.getOperand(0),
16186                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16187       }
16188     }
16189   }
16190 
16191   // Looking for a truncate of i128 to i64.
16192   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16193     return SDValue();
16194 
16195   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16196 
16197   // SRL feeding TRUNCATE.
16198   if (Op0.getOpcode() == ISD::SRL) {
16199     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16200     // The right shift has to be by 64 bits.
16201     if (!ConstNode || ConstNode->getZExtValue() != 64)
16202       return SDValue();
16203 
16204     // Switch the element number to extract.
16205     EltToExtract = EltToExtract ? 0 : 1;
16206     // Update Op0 past the SRL.
16207     Op0 = Op0.getOperand(0);
16208   }
16209 
16210   // BITCAST feeding a TRUNCATE possibly via SRL.
16211   if (Op0.getOpcode() == ISD::BITCAST &&
16212       Op0.getValueType() == MVT::i128 &&
16213       Op0.getOperand(0).getValueType() == MVT::f128) {
16214     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16215     return DCI.DAG.getNode(
16216         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16217         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16218   }
16219   return SDValue();
16220 }
16221 
16222 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16223   SelectionDAG &DAG = DCI.DAG;
16224 
16225   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16226   if (!ConstOpOrElement)
16227     return SDValue();
16228 
16229   // An imul is usually smaller than the alternative sequence for legal type.
16230   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16231       isOperationLegal(ISD::MUL, N->getValueType(0)))
16232     return SDValue();
16233 
16234   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16235     switch (this->Subtarget.getCPUDirective()) {
16236     default:
16237       // TODO: enhance the condition for subtarget before pwr8
16238       return false;
16239     case PPC::DIR_PWR8:
16240       //  type        mul     add    shl
16241       // scalar        4       1      1
16242       // vector        7       2      2
16243       return true;
16244     case PPC::DIR_PWR9:
16245     case PPC::DIR_PWR10:
16246     case PPC::DIR_PWR_FUTURE:
16247       //  type        mul     add    shl
16248       // scalar        5       2      2
16249       // vector        7       2      2
16250 
16251       // The cycle RATIO of related operations are showed as a table above.
16252       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16253       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16254       // are 4, it is always profitable; but for 3 instrs patterns
16255       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16256       // So we should only do it for vector type.
16257       return IsAddOne && IsNeg ? VT.isVector() : true;
16258     }
16259   };
16260 
16261   EVT VT = N->getValueType(0);
16262   SDLoc DL(N);
16263 
16264   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16265   bool IsNeg = MulAmt.isNegative();
16266   APInt MulAmtAbs = MulAmt.abs();
16267 
16268   if ((MulAmtAbs - 1).isPowerOf2()) {
16269     // (mul x, 2^N + 1) => (add (shl x, N), x)
16270     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16271 
16272     if (!IsProfitable(IsNeg, true, VT))
16273       return SDValue();
16274 
16275     SDValue Op0 = N->getOperand(0);
16276     SDValue Op1 =
16277         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16278                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16279     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16280 
16281     if (!IsNeg)
16282       return Res;
16283 
16284     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16285   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16286     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16287     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16288 
16289     if (!IsProfitable(IsNeg, false, VT))
16290       return SDValue();
16291 
16292     SDValue Op0 = N->getOperand(0);
16293     SDValue Op1 =
16294         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16295                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16296 
16297     if (!IsNeg)
16298       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16299     else
16300       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16301 
16302   } else {
16303     return SDValue();
16304   }
16305 }
16306 
16307 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16308 // in combiner since we need to check SD flags and other subtarget features.
16309 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16310                                           DAGCombinerInfo &DCI) const {
16311   SDValue N0 = N->getOperand(0);
16312   SDValue N1 = N->getOperand(1);
16313   SDValue N2 = N->getOperand(2);
16314   SDNodeFlags Flags = N->getFlags();
16315   EVT VT = N->getValueType(0);
16316   SelectionDAG &DAG = DCI.DAG;
16317   const TargetOptions &Options = getTargetMachine().Options;
16318   unsigned Opc = N->getOpcode();
16319   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16320   bool LegalOps = !DCI.isBeforeLegalizeOps();
16321   SDLoc Loc(N);
16322 
16323   // TODO: QPX subtarget is deprecated. No transformation here.
16324   if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
16325     return SDValue();
16326 
16327   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16328   // since (fnmsub a b c)=-0 while c-ab=+0.
16329   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16330     return SDValue();
16331 
16332   // (fma (fneg a) b c) => (fnmsub a b c)
16333   // (fnmsub (fneg a) b c) => (fma a b c)
16334   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16335     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16336 
16337   // (fma a (fneg b) c) => (fnmsub a b c)
16338   // (fnmsub a (fneg b) c) => (fma a b c)
16339   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16340     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16341 
16342   return SDValue();
16343 }
16344 
16345 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16346   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16347   if (!Subtarget.is64BitELFABI())
16348     return false;
16349 
16350   // If not a tail call then no need to proceed.
16351   if (!CI->isTailCall())
16352     return false;
16353 
16354   // If sibling calls have been disabled and tail-calls aren't guaranteed
16355   // there is no reason to duplicate.
16356   auto &TM = getTargetMachine();
16357   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16358     return false;
16359 
16360   // Can't tail call a function called indirectly, or if it has variadic args.
16361   const Function *Callee = CI->getCalledFunction();
16362   if (!Callee || Callee->isVarArg())
16363     return false;
16364 
16365   // Make sure the callee and caller calling conventions are eligible for tco.
16366   const Function *Caller = CI->getParent()->getParent();
16367   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16368                                            CI->getCallingConv()))
16369       return false;
16370 
16371   // If the function is local then we have a good chance at tail-calling it
16372   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16373 }
16374 
16375 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16376   if (!Subtarget.hasVSX())
16377     return false;
16378   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16379     return true;
16380   return VT == MVT::f32 || VT == MVT::f64 ||
16381     VT == MVT::v4f32 || VT == MVT::v2f64;
16382 }
16383 
16384 bool PPCTargetLowering::
16385 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16386   const Value *Mask = AndI.getOperand(1);
16387   // If the mask is suitable for andi. or andis. we should sink the and.
16388   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16389     // Can't handle constants wider than 64-bits.
16390     if (CI->getBitWidth() > 64)
16391       return false;
16392     int64_t ConstVal = CI->getZExtValue();
16393     return isUInt<16>(ConstVal) ||
16394       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16395   }
16396 
16397   // For non-constant masks, we can always use the record-form and.
16398   return true;
16399 }
16400 
16401 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16402 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16403 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16404 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16405 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16406 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16407   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16408   assert(Subtarget.hasP9Altivec() &&
16409          "Only combine this when P9 altivec supported!");
16410   EVT VT = N->getValueType(0);
16411   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16412     return SDValue();
16413 
16414   SelectionDAG &DAG = DCI.DAG;
16415   SDLoc dl(N);
16416   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16417     // Even for signed integers, if it's known to be positive (as signed
16418     // integer) due to zero-extended inputs.
16419     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16420     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16421     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16422          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16423         (SubOpcd1 == ISD::ZERO_EXTEND ||
16424          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16425       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16426                          N->getOperand(0)->getOperand(0),
16427                          N->getOperand(0)->getOperand(1),
16428                          DAG.getTargetConstant(0, dl, MVT::i32));
16429     }
16430 
16431     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16432     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16433         N->getOperand(0).hasOneUse()) {
16434       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16435                          N->getOperand(0)->getOperand(0),
16436                          N->getOperand(0)->getOperand(1),
16437                          DAG.getTargetConstant(1, dl, MVT::i32));
16438     }
16439   }
16440 
16441   return SDValue();
16442 }
16443 
16444 // For type v4i32/v8ii16/v16i8, transform
16445 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16446 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16447 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16448 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16449 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16450                                           DAGCombinerInfo &DCI) const {
16451   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16452   assert(Subtarget.hasP9Altivec() &&
16453          "Only combine this when P9 altivec supported!");
16454 
16455   SelectionDAG &DAG = DCI.DAG;
16456   SDLoc dl(N);
16457   SDValue Cond = N->getOperand(0);
16458   SDValue TrueOpnd = N->getOperand(1);
16459   SDValue FalseOpnd = N->getOperand(2);
16460   EVT VT = N->getOperand(1).getValueType();
16461 
16462   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16463       FalseOpnd.getOpcode() != ISD::SUB)
16464     return SDValue();
16465 
16466   // ABSD only available for type v4i32/v8i16/v16i8
16467   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16468     return SDValue();
16469 
16470   // At least to save one more dependent computation
16471   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16472     return SDValue();
16473 
16474   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16475 
16476   // Can only handle unsigned comparison here
16477   switch (CC) {
16478   default:
16479     return SDValue();
16480   case ISD::SETUGT:
16481   case ISD::SETUGE:
16482     break;
16483   case ISD::SETULT:
16484   case ISD::SETULE:
16485     std::swap(TrueOpnd, FalseOpnd);
16486     break;
16487   }
16488 
16489   SDValue CmpOpnd1 = Cond.getOperand(0);
16490   SDValue CmpOpnd2 = Cond.getOperand(1);
16491 
16492   // SETCC CmpOpnd1 CmpOpnd2 cond
16493   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16494   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16495   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16496       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16497       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16498       FalseOpnd.getOperand(1) == CmpOpnd1) {
16499     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16500                        CmpOpnd1, CmpOpnd2,
16501                        DAG.getTargetConstant(0, dl, MVT::i32));
16502   }
16503 
16504   return SDValue();
16505 }
16506