1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCMachineFunctionInfo.h" 17 #include "PPCPerfectShuffle.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 40 CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, 42 CCState &State); 43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 44 MVT &LocVT, 45 CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, 47 CCState &State); 48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 49 MVT &LocVT, 50 CCValAssign::LocInfo &LocInfo, 51 ISD::ArgFlagsTy &ArgFlags, 52 CCState &State); 53 54 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 55 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 58 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 59 60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65 } 66 67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 70 71 setPow2DivIsCheap(); 72 73 // Use _setjmp/_longjmp instead of setjmp/longjmp. 74 setUseUnderscoreSetJmp(true); 75 setUseUnderscoreLongJmp(true); 76 77 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 78 // arguments are at least 4/8 bytes aligned. 79 bool isPPC64 = Subtarget->isPPC64(); 80 setMinStackArgumentAlignment(isPPC64 ? 8:4); 81 82 // Set up the register classes. 83 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 87 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 88 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 89 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 90 91 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 92 93 // PowerPC has pre-inc load and store's. 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 102 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 103 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 104 105 // This is used in the ppcf128->int sequence. Note it has different semantics 106 // from FP_ROUND: that rounds to nearest, this rounds to zero. 107 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 108 109 // We do not currently implement these libm ops for PowerPC. 110 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 111 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 112 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 113 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 114 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 115 116 // PowerPC has no SREM/UREM instructions 117 setOperationAction(ISD::SREM, MVT::i32, Expand); 118 setOperationAction(ISD::UREM, MVT::i32, Expand); 119 setOperationAction(ISD::SREM, MVT::i64, Expand); 120 setOperationAction(ISD::UREM, MVT::i64, Expand); 121 122 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 123 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 124 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 125 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 126 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 127 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 128 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 129 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 130 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 131 132 // We don't support sin/cos/sqrt/fmod/pow 133 setOperationAction(ISD::FSIN , MVT::f64, Expand); 134 setOperationAction(ISD::FCOS , MVT::f64, Expand); 135 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 136 setOperationAction(ISD::FREM , MVT::f64, Expand); 137 setOperationAction(ISD::FPOW , MVT::f64, Expand); 138 setOperationAction(ISD::FMA , MVT::f64, Legal); 139 setOperationAction(ISD::FSIN , MVT::f32, Expand); 140 setOperationAction(ISD::FCOS , MVT::f32, Expand); 141 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 142 setOperationAction(ISD::FREM , MVT::f32, Expand); 143 setOperationAction(ISD::FPOW , MVT::f32, Expand); 144 setOperationAction(ISD::FMA , MVT::f32, Legal); 145 146 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 147 148 // If we're enabling GP optimizations, use hardware square root 149 if (!Subtarget->hasFSQRT()) { 150 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 151 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 152 } 153 154 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 155 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 156 157 // PowerPC does not have BSWAP, CTPOP or CTTZ 158 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 159 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 160 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 161 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 162 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 163 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 164 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 165 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 166 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 167 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 168 169 // PowerPC does not have ROTR 170 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 171 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 172 173 // PowerPC does not have Select 174 setOperationAction(ISD::SELECT, MVT::i32, Expand); 175 setOperationAction(ISD::SELECT, MVT::i64, Expand); 176 setOperationAction(ISD::SELECT, MVT::f32, Expand); 177 setOperationAction(ISD::SELECT, MVT::f64, Expand); 178 179 // PowerPC wants to turn select_cc of FP into fsel when possible. 180 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 181 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 182 183 // PowerPC wants to optimize integer setcc a bit 184 setOperationAction(ISD::SETCC, MVT::i32, Custom); 185 186 // PowerPC does not have BRCOND which requires SetCC 187 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 188 189 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 190 191 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 192 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 193 194 // PowerPC does not have [U|S]INT_TO_FP 195 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 196 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 197 198 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 199 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 200 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 201 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 202 203 // We cannot sextinreg(i1). Expand to shifts. 204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 205 206 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 207 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 208 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 209 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 210 211 212 // We want to legalize GlobalAddress and ConstantPool nodes into the 213 // appropriate instructions to materialize the address. 214 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 215 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 216 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 217 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 218 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 219 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 220 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 221 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 222 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 223 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 224 225 // TRAP is legal. 226 setOperationAction(ISD::TRAP, MVT::Other, Legal); 227 228 // TRAMPOLINE is custom lowered. 229 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 230 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 231 232 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 233 setOperationAction(ISD::VASTART , MVT::Other, Custom); 234 235 if (Subtarget->isSVR4ABI()) { 236 if (isPPC64) { 237 // VAARG always uses double-word chunks, so promote anything smaller. 238 setOperationAction(ISD::VAARG, MVT::i1, Promote); 239 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 240 setOperationAction(ISD::VAARG, MVT::i8, Promote); 241 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 242 setOperationAction(ISD::VAARG, MVT::i16, Promote); 243 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 244 setOperationAction(ISD::VAARG, MVT::i32, Promote); 245 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 246 setOperationAction(ISD::VAARG, MVT::Other, Expand); 247 } else { 248 // VAARG is custom lowered with the 32-bit SVR4 ABI. 249 setOperationAction(ISD::VAARG, MVT::Other, Custom); 250 setOperationAction(ISD::VAARG, MVT::i64, Custom); 251 } 252 } else 253 setOperationAction(ISD::VAARG, MVT::Other, Expand); 254 255 // Use the default implementation. 256 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 257 setOperationAction(ISD::VAEND , MVT::Other, Expand); 258 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 259 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 260 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 261 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 262 263 // We want to custom lower some of our intrinsics. 264 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 265 266 // Comparisons that require checking two conditions. 267 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 268 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 269 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 270 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 271 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 272 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 273 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 274 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 275 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 276 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 277 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 278 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 279 280 if (Subtarget->has64BitSupport()) { 281 // They also have instructions for converting between i64 and fp. 282 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 283 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 284 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 285 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 286 // This is just the low 32 bits of a (signed) fp->i64 conversion. 287 // We cannot do this with Promote because i64 is not a legal type. 288 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 289 290 // FIXME: disable this lowered code. This generates 64-bit register values, 291 // and we don't model the fact that the top part is clobbered by calls. We 292 // need to flag these together so that the value isn't live across a call. 293 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 294 } else { 295 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 296 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 297 } 298 299 if (Subtarget->use64BitRegs()) { 300 // 64-bit PowerPC implementations can support i64 types directly 301 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 302 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 303 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 304 // 64-bit PowerPC wants to expand i128 shifts itself. 305 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 306 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 307 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 308 } else { 309 // 32-bit PowerPC wants to expand i64 shifts itself. 310 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 311 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 312 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 313 } 314 315 if (Subtarget->hasAltivec()) { 316 // First set operation action for all vector types to expand. Then we 317 // will selectively turn on ones that can be effectively codegen'd. 318 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 319 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 320 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 321 322 // add/sub are legal for all supported vector VT's. 323 setOperationAction(ISD::ADD , VT, Legal); 324 setOperationAction(ISD::SUB , VT, Legal); 325 326 // We promote all shuffles to v16i8. 327 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 328 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 329 330 // We promote all non-typed operations to v4i32. 331 setOperationAction(ISD::AND , VT, Promote); 332 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 333 setOperationAction(ISD::OR , VT, Promote); 334 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 335 setOperationAction(ISD::XOR , VT, Promote); 336 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 337 setOperationAction(ISD::LOAD , VT, Promote); 338 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 339 setOperationAction(ISD::SELECT, VT, Promote); 340 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 341 setOperationAction(ISD::STORE, VT, Promote); 342 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 343 344 // No other operations are legal. 345 setOperationAction(ISD::MUL , VT, Expand); 346 setOperationAction(ISD::SDIV, VT, Expand); 347 setOperationAction(ISD::SREM, VT, Expand); 348 setOperationAction(ISD::UDIV, VT, Expand); 349 setOperationAction(ISD::UREM, VT, Expand); 350 setOperationAction(ISD::FDIV, VT, Expand); 351 setOperationAction(ISD::FNEG, VT, Expand); 352 setOperationAction(ISD::FSQRT, VT, Expand); 353 setOperationAction(ISD::FLOG, VT, Expand); 354 setOperationAction(ISD::FLOG10, VT, Expand); 355 setOperationAction(ISD::FLOG2, VT, Expand); 356 setOperationAction(ISD::FEXP, VT, Expand); 357 setOperationAction(ISD::FEXP2, VT, Expand); 358 setOperationAction(ISD::FSIN, VT, Expand); 359 setOperationAction(ISD::FCOS, VT, Expand); 360 setOperationAction(ISD::FABS, VT, Expand); 361 setOperationAction(ISD::FPOWI, VT, Expand); 362 setOperationAction(ISD::FFLOOR, VT, Expand); 363 setOperationAction(ISD::FCEIL, VT, Expand); 364 setOperationAction(ISD::FTRUNC, VT, Expand); 365 setOperationAction(ISD::FRINT, VT, Expand); 366 setOperationAction(ISD::FNEARBYINT, VT, Expand); 367 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 368 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 369 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 370 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 371 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 372 setOperationAction(ISD::UDIVREM, VT, Expand); 373 setOperationAction(ISD::SDIVREM, VT, Expand); 374 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 375 setOperationAction(ISD::FPOW, VT, Expand); 376 setOperationAction(ISD::CTPOP, VT, Expand); 377 setOperationAction(ISD::CTLZ, VT, Expand); 378 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 379 setOperationAction(ISD::CTTZ, VT, Expand); 380 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 381 setOperationAction(ISD::VSELECT, VT, Expand); 382 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 383 384 for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 385 j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) { 386 MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j; 387 setTruncStoreAction(VT, InnerVT, Expand); 388 } 389 setLoadExtAction(ISD::SEXTLOAD, VT, Expand); 390 setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); 391 setLoadExtAction(ISD::EXTLOAD, VT, Expand); 392 } 393 394 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 395 // with merges, splats, etc. 396 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 397 398 setOperationAction(ISD::AND , MVT::v4i32, Legal); 399 setOperationAction(ISD::OR , MVT::v4i32, Legal); 400 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 401 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 402 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 403 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 404 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 405 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 408 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 409 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 410 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 411 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 412 413 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 414 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 415 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 416 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 417 418 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 419 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 420 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 421 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 422 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 423 424 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 425 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 426 427 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 428 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 429 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 430 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 431 432 // Altivec does not contain unordered floating-point compare instructions 433 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 434 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 435 setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand); 436 setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand); 437 setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand); 438 setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand); 439 } 440 441 if (Subtarget->has64BitSupport()) { 442 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 443 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 444 } 445 446 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 447 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 448 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 449 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 450 451 setBooleanContents(ZeroOrOneBooleanContent); 452 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 453 454 if (isPPC64) { 455 setStackPointerRegisterToSaveRestore(PPC::X1); 456 setExceptionPointerRegister(PPC::X3); 457 setExceptionSelectorRegister(PPC::X4); 458 } else { 459 setStackPointerRegisterToSaveRestore(PPC::R1); 460 setExceptionPointerRegister(PPC::R3); 461 setExceptionSelectorRegister(PPC::R4); 462 } 463 464 // We have target-specific dag combine patterns for the following nodes: 465 setTargetDAGCombine(ISD::SINT_TO_FP); 466 setTargetDAGCombine(ISD::STORE); 467 setTargetDAGCombine(ISD::BR_CC); 468 setTargetDAGCombine(ISD::BSWAP); 469 470 // Darwin long double math library functions have $LDBL128 appended. 471 if (Subtarget->isDarwin()) { 472 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 473 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 474 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 475 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 476 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 477 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 478 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 479 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 480 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 481 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 482 } 483 484 setMinFunctionAlignment(2); 485 if (PPCSubTarget.isDarwin()) 486 setPrefFunctionAlignment(4); 487 488 if (isPPC64 && Subtarget->isJITCodeModel()) 489 // Temporary workaround for the inability of PPC64 JIT to handle jump 490 // tables. 491 setSupportJumpTables(false); 492 493 setInsertFencesForAtomic(true); 494 495 setSchedulingPreference(Sched::Hybrid); 496 497 computeRegisterProperties(); 498 499 // The Freescale cores does better with aggressive inlining of memcpy and 500 // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). 501 if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc || 502 Subtarget->getDarwinDirective() == PPC::DIR_E5500) { 503 maxStoresPerMemset = 32; 504 maxStoresPerMemsetOptSize = 16; 505 maxStoresPerMemcpy = 32; 506 maxStoresPerMemcpyOptSize = 8; 507 maxStoresPerMemmove = 32; 508 maxStoresPerMemmoveOptSize = 8; 509 510 setPrefFunctionAlignment(4); 511 benefitFromCodePlacementOpt = true; 512 } 513 } 514 515 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 516 /// function arguments in the caller parameter area. 517 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 518 const TargetMachine &TM = getTargetMachine(); 519 // Darwin passes everything on 4 byte boundary. 520 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 521 return 4; 522 523 // 16byte and wider vectors are passed on 16byte boundary. 524 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 525 if (VTy->getBitWidth() >= 128) 526 return 16; 527 528 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 529 if (PPCSubTarget.isPPC64()) 530 return 8; 531 532 return 4; 533 } 534 535 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 536 switch (Opcode) { 537 default: return 0; 538 case PPCISD::FSEL: return "PPCISD::FSEL"; 539 case PPCISD::FCFID: return "PPCISD::FCFID"; 540 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 541 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 542 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 543 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 544 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 545 case PPCISD::VPERM: return "PPCISD::VPERM"; 546 case PPCISD::Hi: return "PPCISD::Hi"; 547 case PPCISD::Lo: return "PPCISD::Lo"; 548 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 549 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 550 case PPCISD::LOAD: return "PPCISD::LOAD"; 551 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 552 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 553 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 554 case PPCISD::SRL: return "PPCISD::SRL"; 555 case PPCISD::SRA: return "PPCISD::SRA"; 556 case PPCISD::SHL: return "PPCISD::SHL"; 557 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 558 case PPCISD::STD_32: return "PPCISD::STD_32"; 559 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 560 case PPCISD::CALL_NOP_SVR4: return "PPCISD::CALL_NOP_SVR4"; 561 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 562 case PPCISD::NOP: return "PPCISD::NOP"; 563 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 564 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 565 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 566 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 567 case PPCISD::MFCR: return "PPCISD::MFCR"; 568 case PPCISD::VCMP: return "PPCISD::VCMP"; 569 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 570 case PPCISD::LBRX: return "PPCISD::LBRX"; 571 case PPCISD::STBRX: return "PPCISD::STBRX"; 572 case PPCISD::LARX: return "PPCISD::LARX"; 573 case PPCISD::STCX: return "PPCISD::STCX"; 574 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 575 case PPCISD::MFFS: return "PPCISD::MFFS"; 576 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 577 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 578 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 579 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 580 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 581 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 582 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 583 case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA"; 584 case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L"; 585 case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L"; 586 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 587 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 588 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 589 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 590 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 591 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 592 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 593 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 594 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 595 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 596 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 597 } 598 } 599 600 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 601 if (!VT.isVector()) 602 return MVT::i32; 603 return VT.changeVectorElementTypeToInteger(); 604 } 605 606 //===----------------------------------------------------------------------===// 607 // Node matching predicates, for use by the tblgen matching code. 608 //===----------------------------------------------------------------------===// 609 610 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 611 static bool isFloatingPointZero(SDValue Op) { 612 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 613 return CFP->getValueAPF().isZero(); 614 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 615 // Maybe this has already been legalized into the constant pool? 616 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 617 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 618 return CFP->getValueAPF().isZero(); 619 } 620 return false; 621 } 622 623 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 624 /// true if Op is undef or if it matches the specified value. 625 static bool isConstantOrUndef(int Op, int Val) { 626 return Op < 0 || Op == Val; 627 } 628 629 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 630 /// VPKUHUM instruction. 631 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 632 if (!isUnary) { 633 for (unsigned i = 0; i != 16; ++i) 634 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 635 return false; 636 } else { 637 for (unsigned i = 0; i != 8; ++i) 638 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 639 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 640 return false; 641 } 642 return true; 643 } 644 645 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 646 /// VPKUWUM instruction. 647 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 648 if (!isUnary) { 649 for (unsigned i = 0; i != 16; i += 2) 650 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 651 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 652 return false; 653 } else { 654 for (unsigned i = 0; i != 8; i += 2) 655 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 656 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 657 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 658 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 659 return false; 660 } 661 return true; 662 } 663 664 /// isVMerge - Common function, used to match vmrg* shuffles. 665 /// 666 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 667 unsigned LHSStart, unsigned RHSStart) { 668 assert(N->getValueType(0) == MVT::v16i8 && 669 "PPC only supports shuffles by bytes!"); 670 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 671 "Unsupported merge size!"); 672 673 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 674 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 675 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 676 LHSStart+j+i*UnitSize) || 677 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 678 RHSStart+j+i*UnitSize)) 679 return false; 680 } 681 return true; 682 } 683 684 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 685 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 686 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 687 bool isUnary) { 688 if (!isUnary) 689 return isVMerge(N, UnitSize, 8, 24); 690 return isVMerge(N, UnitSize, 8, 8); 691 } 692 693 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 694 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 695 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 696 bool isUnary) { 697 if (!isUnary) 698 return isVMerge(N, UnitSize, 0, 16); 699 return isVMerge(N, UnitSize, 0, 0); 700 } 701 702 703 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 704 /// amount, otherwise return -1. 705 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 706 assert(N->getValueType(0) == MVT::v16i8 && 707 "PPC only supports shuffles by bytes!"); 708 709 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 710 711 // Find the first non-undef value in the shuffle mask. 712 unsigned i; 713 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 714 /*search*/; 715 716 if (i == 16) return -1; // all undef. 717 718 // Otherwise, check to see if the rest of the elements are consecutively 719 // numbered from this value. 720 unsigned ShiftAmt = SVOp->getMaskElt(i); 721 if (ShiftAmt < i) return -1; 722 ShiftAmt -= i; 723 724 if (!isUnary) { 725 // Check the rest of the elements to see if they are consecutive. 726 for (++i; i != 16; ++i) 727 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 728 return -1; 729 } else { 730 // Check the rest of the elements to see if they are consecutive. 731 for (++i; i != 16; ++i) 732 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 733 return -1; 734 } 735 return ShiftAmt; 736 } 737 738 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 739 /// specifies a splat of a single element that is suitable for input to 740 /// VSPLTB/VSPLTH/VSPLTW. 741 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 742 assert(N->getValueType(0) == MVT::v16i8 && 743 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 744 745 // This is a splat operation if each element of the permute is the same, and 746 // if the value doesn't reference the second vector. 747 unsigned ElementBase = N->getMaskElt(0); 748 749 // FIXME: Handle UNDEF elements too! 750 if (ElementBase >= 16) 751 return false; 752 753 // Check that the indices are consecutive, in the case of a multi-byte element 754 // splatted with a v16i8 mask. 755 for (unsigned i = 1; i != EltSize; ++i) 756 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 757 return false; 758 759 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 760 if (N->getMaskElt(i) < 0) continue; 761 for (unsigned j = 0; j != EltSize; ++j) 762 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 763 return false; 764 } 765 return true; 766 } 767 768 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 769 /// are -0.0. 770 bool PPC::isAllNegativeZeroVector(SDNode *N) { 771 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 772 773 APInt APVal, APUndef; 774 unsigned BitSize; 775 bool HasAnyUndefs; 776 777 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 778 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 779 return CFP->getValueAPF().isNegZero(); 780 781 return false; 782 } 783 784 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 785 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 786 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 787 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 788 assert(isSplatShuffleMask(SVOp, EltSize)); 789 return SVOp->getMaskElt(0) / EltSize; 790 } 791 792 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 793 /// by using a vspltis[bhw] instruction of the specified element size, return 794 /// the constant being splatted. The ByteSize field indicates the number of 795 /// bytes of each element [124] -> [bhw]. 796 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 797 SDValue OpVal(0, 0); 798 799 // If ByteSize of the splat is bigger than the element size of the 800 // build_vector, then we have a case where we are checking for a splat where 801 // multiple elements of the buildvector are folded together into a single 802 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 803 unsigned EltSize = 16/N->getNumOperands(); 804 if (EltSize < ByteSize) { 805 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 806 SDValue UniquedVals[4]; 807 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 808 809 // See if all of the elements in the buildvector agree across. 810 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 811 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 812 // If the element isn't a constant, bail fully out. 813 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 814 815 816 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 817 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 818 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 819 return SDValue(); // no match. 820 } 821 822 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 823 // either constant or undef values that are identical for each chunk. See 824 // if these chunks can form into a larger vspltis*. 825 826 // Check to see if all of the leading entries are either 0 or -1. If 827 // neither, then this won't fit into the immediate field. 828 bool LeadingZero = true; 829 bool LeadingOnes = true; 830 for (unsigned i = 0; i != Multiple-1; ++i) { 831 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 832 833 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 834 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 835 } 836 // Finally, check the least significant entry. 837 if (LeadingZero) { 838 if (UniquedVals[Multiple-1].getNode() == 0) 839 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 840 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 841 if (Val < 16) 842 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 843 } 844 if (LeadingOnes) { 845 if (UniquedVals[Multiple-1].getNode() == 0) 846 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 847 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 848 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 849 return DAG.getTargetConstant(Val, MVT::i32); 850 } 851 852 return SDValue(); 853 } 854 855 // Check to see if this buildvec has a single non-undef value in its elements. 856 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 857 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 858 if (OpVal.getNode() == 0) 859 OpVal = N->getOperand(i); 860 else if (OpVal != N->getOperand(i)) 861 return SDValue(); 862 } 863 864 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 865 866 unsigned ValSizeInBytes = EltSize; 867 uint64_t Value = 0; 868 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 869 Value = CN->getZExtValue(); 870 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 871 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 872 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 873 } 874 875 // If the splat value is larger than the element value, then we can never do 876 // this splat. The only case that we could fit the replicated bits into our 877 // immediate field for would be zero, and we prefer to use vxor for it. 878 if (ValSizeInBytes < ByteSize) return SDValue(); 879 880 // If the element value is larger than the splat value, cut it in half and 881 // check to see if the two halves are equal. Continue doing this until we 882 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 883 while (ValSizeInBytes > ByteSize) { 884 ValSizeInBytes >>= 1; 885 886 // If the top half equals the bottom half, we're still ok. 887 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 888 (Value & ((1 << (8*ValSizeInBytes))-1))) 889 return SDValue(); 890 } 891 892 // Properly sign extend the value. 893 int MaskVal = SignExtend32(Value, ByteSize * 8); 894 895 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 896 if (MaskVal == 0) return SDValue(); 897 898 // Finally, if this value fits in a 5 bit sext field, return it 899 if (SignExtend32<5>(MaskVal) == MaskVal) 900 return DAG.getTargetConstant(MaskVal, MVT::i32); 901 return SDValue(); 902 } 903 904 //===----------------------------------------------------------------------===// 905 // Addressing Mode Selection 906 //===----------------------------------------------------------------------===// 907 908 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 909 /// or 64-bit immediate, and if the value can be accurately represented as a 910 /// sign extension from a 16-bit value. If so, this returns true and the 911 /// immediate. 912 static bool isIntS16Immediate(SDNode *N, short &Imm) { 913 if (N->getOpcode() != ISD::Constant) 914 return false; 915 916 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 917 if (N->getValueType(0) == MVT::i32) 918 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 919 else 920 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 921 } 922 static bool isIntS16Immediate(SDValue Op, short &Imm) { 923 return isIntS16Immediate(Op.getNode(), Imm); 924 } 925 926 927 /// SelectAddressRegReg - Given the specified addressed, check to see if it 928 /// can be represented as an indexed [r+r] operation. Returns false if it 929 /// can be more efficiently represented with [r+imm]. 930 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 931 SDValue &Index, 932 SelectionDAG &DAG) const { 933 short imm = 0; 934 if (N.getOpcode() == ISD::ADD) { 935 if (isIntS16Immediate(N.getOperand(1), imm)) 936 return false; // r+i 937 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 938 return false; // r+i 939 940 Base = N.getOperand(0); 941 Index = N.getOperand(1); 942 return true; 943 } else if (N.getOpcode() == ISD::OR) { 944 if (isIntS16Immediate(N.getOperand(1), imm)) 945 return false; // r+i can fold it if we can. 946 947 // If this is an or of disjoint bitfields, we can codegen this as an add 948 // (for better address arithmetic) if the LHS and RHS of the OR are provably 949 // disjoint. 950 APInt LHSKnownZero, LHSKnownOne; 951 APInt RHSKnownZero, RHSKnownOne; 952 DAG.ComputeMaskedBits(N.getOperand(0), 953 LHSKnownZero, LHSKnownOne); 954 955 if (LHSKnownZero.getBoolValue()) { 956 DAG.ComputeMaskedBits(N.getOperand(1), 957 RHSKnownZero, RHSKnownOne); 958 // If all of the bits are known zero on the LHS or RHS, the add won't 959 // carry. 960 if (~(LHSKnownZero | RHSKnownZero) == 0) { 961 Base = N.getOperand(0); 962 Index = N.getOperand(1); 963 return true; 964 } 965 } 966 } 967 968 return false; 969 } 970 971 /// Returns true if the address N can be represented by a base register plus 972 /// a signed 16-bit displacement [r+imm], and if it is not better 973 /// represented as reg+reg. 974 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 975 SDValue &Base, 976 SelectionDAG &DAG) const { 977 // FIXME dl should come from parent load or store, not from address 978 DebugLoc dl = N.getDebugLoc(); 979 // If this can be more profitably realized as r+r, fail. 980 if (SelectAddressRegReg(N, Disp, Base, DAG)) 981 return false; 982 983 if (N.getOpcode() == ISD::ADD) { 984 short imm = 0; 985 if (isIntS16Immediate(N.getOperand(1), imm)) { 986 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 987 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 988 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 989 } else { 990 Base = N.getOperand(0); 991 } 992 return true; // [r+i] 993 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 994 // Match LOAD (ADD (X, Lo(G))). 995 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 996 && "Cannot handle constant offsets yet!"); 997 Disp = N.getOperand(1).getOperand(0); // The global address. 998 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 999 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1000 Disp.getOpcode() == ISD::TargetConstantPool || 1001 Disp.getOpcode() == ISD::TargetJumpTable); 1002 Base = N.getOperand(0); 1003 return true; // [&g+r] 1004 } 1005 } else if (N.getOpcode() == ISD::OR) { 1006 short imm = 0; 1007 if (isIntS16Immediate(N.getOperand(1), imm)) { 1008 // If this is an or of disjoint bitfields, we can codegen this as an add 1009 // (for better address arithmetic) if the LHS and RHS of the OR are 1010 // provably disjoint. 1011 APInt LHSKnownZero, LHSKnownOne; 1012 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1013 1014 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1015 // If all of the bits are known zero on the LHS or RHS, the add won't 1016 // carry. 1017 Base = N.getOperand(0); 1018 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 1019 return true; 1020 } 1021 } 1022 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1023 // Loading from a constant address. 1024 1025 // If this address fits entirely in a 16-bit sext immediate field, codegen 1026 // this as "d, 0" 1027 short Imm; 1028 if (isIntS16Immediate(CN, Imm)) { 1029 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 1030 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1031 CN->getValueType(0)); 1032 return true; 1033 } 1034 1035 // Handle 32-bit sext immediates with LIS + addr mode. 1036 if (CN->getValueType(0) == MVT::i32 || 1037 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1038 int Addr = (int)CN->getZExtValue(); 1039 1040 // Otherwise, break this down into an LIS + disp. 1041 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 1042 1043 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 1044 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1045 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1046 return true; 1047 } 1048 } 1049 1050 Disp = DAG.getTargetConstant(0, getPointerTy()); 1051 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1052 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1053 else 1054 Base = N; 1055 return true; // [r+0] 1056 } 1057 1058 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1059 /// represented as an indexed [r+r] operation. 1060 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1061 SDValue &Index, 1062 SelectionDAG &DAG) const { 1063 // Check to see if we can easily represent this as an [r+r] address. This 1064 // will fail if it thinks that the address is more profitably represented as 1065 // reg+imm, e.g. where imm = 0. 1066 if (SelectAddressRegReg(N, Base, Index, DAG)) 1067 return true; 1068 1069 // If the operand is an addition, always emit this as [r+r], since this is 1070 // better (for code size, and execution, as the memop does the add for free) 1071 // than emitting an explicit add. 1072 if (N.getOpcode() == ISD::ADD) { 1073 Base = N.getOperand(0); 1074 Index = N.getOperand(1); 1075 return true; 1076 } 1077 1078 // Otherwise, do it the hard way, using R0 as the base register. 1079 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1080 N.getValueType()); 1081 Index = N; 1082 return true; 1083 } 1084 1085 /// SelectAddressRegImmShift - Returns true if the address N can be 1086 /// represented by a base register plus a signed 14-bit displacement 1087 /// [r+imm*4]. Suitable for use by STD and friends. 1088 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 1089 SDValue &Base, 1090 SelectionDAG &DAG) const { 1091 // FIXME dl should come from the parent load or store, not the address 1092 DebugLoc dl = N.getDebugLoc(); 1093 // If this can be more profitably realized as r+r, fail. 1094 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1095 return false; 1096 1097 if (N.getOpcode() == ISD::ADD) { 1098 short imm = 0; 1099 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1100 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1101 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1102 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1103 } else { 1104 Base = N.getOperand(0); 1105 } 1106 return true; // [r+i] 1107 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1108 // Match LOAD (ADD (X, Lo(G))). 1109 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1110 && "Cannot handle constant offsets yet!"); 1111 Disp = N.getOperand(1).getOperand(0); // The global address. 1112 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1113 Disp.getOpcode() == ISD::TargetConstantPool || 1114 Disp.getOpcode() == ISD::TargetJumpTable); 1115 Base = N.getOperand(0); 1116 return true; // [&g+r] 1117 } 1118 } else if (N.getOpcode() == ISD::OR) { 1119 short imm = 0; 1120 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1121 // If this is an or of disjoint bitfields, we can codegen this as an add 1122 // (for better address arithmetic) if the LHS and RHS of the OR are 1123 // provably disjoint. 1124 APInt LHSKnownZero, LHSKnownOne; 1125 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1126 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1127 // If all of the bits are known zero on the LHS or RHS, the add won't 1128 // carry. 1129 Base = N.getOperand(0); 1130 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1131 return true; 1132 } 1133 } 1134 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1135 // Loading from a constant address. Verify low two bits are clear. 1136 if ((CN->getZExtValue() & 3) == 0) { 1137 // If this address fits entirely in a 14-bit sext immediate field, codegen 1138 // this as "d, 0" 1139 short Imm; 1140 if (isIntS16Immediate(CN, Imm)) { 1141 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1142 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1143 CN->getValueType(0)); 1144 return true; 1145 } 1146 1147 // Fold the low-part of 32-bit absolute addresses into addr mode. 1148 if (CN->getValueType(0) == MVT::i32 || 1149 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1150 int Addr = (int)CN->getZExtValue(); 1151 1152 // Otherwise, break this down into an LIS + disp. 1153 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1154 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1155 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1156 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1157 return true; 1158 } 1159 } 1160 } 1161 1162 Disp = DAG.getTargetConstant(0, getPointerTy()); 1163 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1164 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1165 else 1166 Base = N; 1167 return true; // [r+0] 1168 } 1169 1170 1171 /// getPreIndexedAddressParts - returns true by value, base pointer and 1172 /// offset pointer and addressing mode by reference if the node's address 1173 /// can be legally represented as pre-indexed load / store address. 1174 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1175 SDValue &Offset, 1176 ISD::MemIndexedMode &AM, 1177 SelectionDAG &DAG) const { 1178 if (DisablePPCPreinc) return false; 1179 1180 SDValue Ptr; 1181 EVT VT; 1182 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1183 Ptr = LD->getBasePtr(); 1184 VT = LD->getMemoryVT(); 1185 1186 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1187 Ptr = ST->getBasePtr(); 1188 VT = ST->getMemoryVT(); 1189 } else 1190 return false; 1191 1192 // PowerPC doesn't have preinc load/store instructions for vectors. 1193 if (VT.isVector()) 1194 return false; 1195 1196 if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) { 1197 AM = ISD::PRE_INC; 1198 return true; 1199 } 1200 1201 // LDU/STU use reg+imm*4, others use reg+imm. 1202 if (VT != MVT::i64) { 1203 // reg + imm 1204 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1205 return false; 1206 } else { 1207 // reg + imm * 4. 1208 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1209 return false; 1210 } 1211 1212 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1213 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1214 // sext i32 to i64 when addr mode is r+i. 1215 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1216 LD->getExtensionType() == ISD::SEXTLOAD && 1217 isa<ConstantSDNode>(Offset)) 1218 return false; 1219 } 1220 1221 AM = ISD::PRE_INC; 1222 return true; 1223 } 1224 1225 //===----------------------------------------------------------------------===// 1226 // LowerOperation implementation 1227 //===----------------------------------------------------------------------===// 1228 1229 /// GetLabelAccessInfo - Return true if we should reference labels using a 1230 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1231 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1232 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1233 HiOpFlags = PPCII::MO_HA16; 1234 LoOpFlags = PPCII::MO_LO16; 1235 1236 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1237 // non-darwin platform. We don't support PIC on other platforms yet. 1238 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1239 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1240 if (isPIC) { 1241 HiOpFlags |= PPCII::MO_PIC_FLAG; 1242 LoOpFlags |= PPCII::MO_PIC_FLAG; 1243 } 1244 1245 // If this is a reference to a global value that requires a non-lazy-ptr, make 1246 // sure that instruction lowering adds it. 1247 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1248 HiOpFlags |= PPCII::MO_NLP_FLAG; 1249 LoOpFlags |= PPCII::MO_NLP_FLAG; 1250 1251 if (GV->hasHiddenVisibility()) { 1252 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1253 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1254 } 1255 } 1256 1257 return isPIC; 1258 } 1259 1260 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1261 SelectionDAG &DAG) { 1262 EVT PtrVT = HiPart.getValueType(); 1263 SDValue Zero = DAG.getConstant(0, PtrVT); 1264 DebugLoc DL = HiPart.getDebugLoc(); 1265 1266 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1267 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1268 1269 // With PIC, the first instruction is actually "GR+hi(&G)". 1270 if (isPIC) 1271 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1272 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1273 1274 // Generate non-pic code that has direct accesses to the constant pool. 1275 // The address of the global is just (hi(&g)+lo(&g)). 1276 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1277 } 1278 1279 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1280 SelectionDAG &DAG) const { 1281 EVT PtrVT = Op.getValueType(); 1282 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1283 const Constant *C = CP->getConstVal(); 1284 1285 // 64-bit SVR4 ABI code is always position-independent. 1286 // The actual address of the GlobalValue is stored in the TOC. 1287 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1288 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 1289 return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA, 1290 DAG.getRegister(PPC::X2, MVT::i64)); 1291 } 1292 1293 unsigned MOHiFlag, MOLoFlag; 1294 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1295 SDValue CPIHi = 1296 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1297 SDValue CPILo = 1298 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1299 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1300 } 1301 1302 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1303 EVT PtrVT = Op.getValueType(); 1304 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1305 1306 // 64-bit SVR4 ABI code is always position-independent. 1307 // The actual address of the GlobalValue is stored in the TOC. 1308 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1309 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1310 return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA, 1311 DAG.getRegister(PPC::X2, MVT::i64)); 1312 } 1313 1314 unsigned MOHiFlag, MOLoFlag; 1315 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1316 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1317 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1318 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1319 } 1320 1321 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1322 SelectionDAG &DAG) const { 1323 EVT PtrVT = Op.getValueType(); 1324 1325 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1326 1327 unsigned MOHiFlag, MOLoFlag; 1328 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1329 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 1330 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 1331 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1332 } 1333 1334 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1335 SelectionDAG &DAG) const { 1336 1337 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1338 DebugLoc dl = GA->getDebugLoc(); 1339 const GlobalValue *GV = GA->getGlobal(); 1340 EVT PtrVT = getPointerTy(); 1341 bool is64bit = PPCSubTarget.isPPC64(); 1342 1343 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 1344 1345 if (Model == TLSModel::LocalExec) { 1346 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1347 PPCII::MO_TPREL16_HA); 1348 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1349 PPCII::MO_TPREL16_LO); 1350 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 1351 is64bit ? MVT::i64 : MVT::i32); 1352 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 1353 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 1354 } 1355 1356 if (!is64bit) 1357 llvm_unreachable("only local-exec is currently supported for ppc32"); 1358 1359 if (Model == TLSModel::InitialExec) { 1360 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 1361 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1362 SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 1363 PtrVT, GOTReg, TGA); 1364 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 1365 PtrVT, TGA, TPOffsetHi); 1366 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA); 1367 } 1368 1369 if (Model == TLSModel::GeneralDynamic) { 1370 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 1371 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1372 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 1373 GOTReg, TGA); 1374 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, 1375 GOTEntryHi, TGA); 1376 1377 // We need a chain node, and don't have one handy. The underlying 1378 // call has no side effects, so using the function entry node 1379 // suffices. 1380 SDValue Chain = DAG.getEntryNode(); 1381 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); 1382 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); 1383 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl, 1384 PtrVT, ParmReg, TGA); 1385 // The return value from GET_TLS_ADDR really is in X3 already, but 1386 // some hacks are needed here to tie everything together. The extra 1387 // copies dissolve during subsequent transforms. 1388 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); 1389 return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT); 1390 } 1391 1392 if (Model == TLSModel::LocalDynamic) { 1393 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 1394 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 1395 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 1396 GOTReg, TGA); 1397 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, 1398 GOTEntryHi, TGA); 1399 1400 // We need a chain node, and don't have one handy. The underlying 1401 // call has no side effects, so using the function entry node 1402 // suffices. 1403 SDValue Chain = DAG.getEntryNode(); 1404 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); 1405 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); 1406 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl, 1407 PtrVT, ParmReg, TGA); 1408 // The return value from GET_TLSLD_ADDR really is in X3 already, but 1409 // some hacks are needed here to tie everything together. The extra 1410 // copies dissolve during subsequent transforms. 1411 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); 1412 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, 1413 Chain, ParmReg, TGA); 1414 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 1415 } 1416 1417 llvm_unreachable("Unknown TLS model!"); 1418 } 1419 1420 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1421 SelectionDAG &DAG) const { 1422 EVT PtrVT = Op.getValueType(); 1423 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1424 DebugLoc DL = GSDN->getDebugLoc(); 1425 const GlobalValue *GV = GSDN->getGlobal(); 1426 1427 // 64-bit SVR4 ABI code is always position-independent. 1428 // The actual address of the GlobalValue is stored in the TOC. 1429 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1430 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1431 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1432 DAG.getRegister(PPC::X2, MVT::i64)); 1433 } 1434 1435 unsigned MOHiFlag, MOLoFlag; 1436 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1437 1438 SDValue GAHi = 1439 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1440 SDValue GALo = 1441 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1442 1443 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1444 1445 // If the global reference is actually to a non-lazy-pointer, we have to do an 1446 // extra load to get the address of the global. 1447 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1448 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1449 false, false, false, 0); 1450 return Ptr; 1451 } 1452 1453 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1454 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1455 DebugLoc dl = Op.getDebugLoc(); 1456 1457 // If we're comparing for equality to zero, expose the fact that this is 1458 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1459 // fold the new nodes. 1460 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1461 if (C->isNullValue() && CC == ISD::SETEQ) { 1462 EVT VT = Op.getOperand(0).getValueType(); 1463 SDValue Zext = Op.getOperand(0); 1464 if (VT.bitsLT(MVT::i32)) { 1465 VT = MVT::i32; 1466 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1467 } 1468 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1469 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1470 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1471 DAG.getConstant(Log2b, MVT::i32)); 1472 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1473 } 1474 // Leave comparisons against 0 and -1 alone for now, since they're usually 1475 // optimized. FIXME: revisit this when we can custom lower all setcc 1476 // optimizations. 1477 if (C->isAllOnesValue() || C->isNullValue()) 1478 return SDValue(); 1479 } 1480 1481 // If we have an integer seteq/setne, turn it into a compare against zero 1482 // by xor'ing the rhs with the lhs, which is faster than setting a 1483 // condition register, reading it back out, and masking the correct bit. The 1484 // normal approach here uses sub to do this instead of xor. Using xor exposes 1485 // the result to other bit-twiddling opportunities. 1486 EVT LHSVT = Op.getOperand(0).getValueType(); 1487 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1488 EVT VT = Op.getValueType(); 1489 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1490 Op.getOperand(1)); 1491 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1492 } 1493 return SDValue(); 1494 } 1495 1496 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1497 const PPCSubtarget &Subtarget) const { 1498 SDNode *Node = Op.getNode(); 1499 EVT VT = Node->getValueType(0); 1500 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1501 SDValue InChain = Node->getOperand(0); 1502 SDValue VAListPtr = Node->getOperand(1); 1503 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1504 DebugLoc dl = Node->getDebugLoc(); 1505 1506 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1507 1508 // gpr_index 1509 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1510 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1511 false, false, 0); 1512 InChain = GprIndex.getValue(1); 1513 1514 if (VT == MVT::i64) { 1515 // Check if GprIndex is even 1516 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1517 DAG.getConstant(1, MVT::i32)); 1518 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1519 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1520 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1521 DAG.getConstant(1, MVT::i32)); 1522 // Align GprIndex to be even if it isn't 1523 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1524 GprIndex); 1525 } 1526 1527 // fpr index is 1 byte after gpr 1528 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1529 DAG.getConstant(1, MVT::i32)); 1530 1531 // fpr 1532 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1533 FprPtr, MachinePointerInfo(SV), MVT::i8, 1534 false, false, 0); 1535 InChain = FprIndex.getValue(1); 1536 1537 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1538 DAG.getConstant(8, MVT::i32)); 1539 1540 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1541 DAG.getConstant(4, MVT::i32)); 1542 1543 // areas 1544 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1545 MachinePointerInfo(), false, false, 1546 false, 0); 1547 InChain = OverflowArea.getValue(1); 1548 1549 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1550 MachinePointerInfo(), false, false, 1551 false, 0); 1552 InChain = RegSaveArea.getValue(1); 1553 1554 // select overflow_area if index > 8 1555 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1556 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1557 1558 // adjustment constant gpr_index * 4/8 1559 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1560 VT.isInteger() ? GprIndex : FprIndex, 1561 DAG.getConstant(VT.isInteger() ? 4 : 8, 1562 MVT::i32)); 1563 1564 // OurReg = RegSaveArea + RegConstant 1565 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1566 RegConstant); 1567 1568 // Floating types are 32 bytes into RegSaveArea 1569 if (VT.isFloatingPoint()) 1570 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1571 DAG.getConstant(32, MVT::i32)); 1572 1573 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1574 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1575 VT.isInteger() ? GprIndex : FprIndex, 1576 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1577 MVT::i32)); 1578 1579 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1580 VT.isInteger() ? VAListPtr : FprPtr, 1581 MachinePointerInfo(SV), 1582 MVT::i8, false, false, 0); 1583 1584 // determine if we should load from reg_save_area or overflow_area 1585 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1586 1587 // increase overflow_area by 4/8 if gpr/fpr > 8 1588 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1589 DAG.getConstant(VT.isInteger() ? 4 : 8, 1590 MVT::i32)); 1591 1592 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1593 OverflowAreaPlusN); 1594 1595 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1596 OverflowAreaPtr, 1597 MachinePointerInfo(), 1598 MVT::i32, false, false, 0); 1599 1600 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1601 false, false, false, 0); 1602 } 1603 1604 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1605 SelectionDAG &DAG) const { 1606 return Op.getOperand(0); 1607 } 1608 1609 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1610 SelectionDAG &DAG) const { 1611 SDValue Chain = Op.getOperand(0); 1612 SDValue Trmp = Op.getOperand(1); // trampoline 1613 SDValue FPtr = Op.getOperand(2); // nested function 1614 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1615 DebugLoc dl = Op.getDebugLoc(); 1616 1617 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1618 bool isPPC64 = (PtrVT == MVT::i64); 1619 Type *IntPtrTy = 1620 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( 1621 *DAG.getContext()); 1622 1623 TargetLowering::ArgListTy Args; 1624 TargetLowering::ArgListEntry Entry; 1625 1626 Entry.Ty = IntPtrTy; 1627 Entry.Node = Trmp; Args.push_back(Entry); 1628 1629 // TrampSize == (isPPC64 ? 48 : 40); 1630 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1631 isPPC64 ? MVT::i64 : MVT::i32); 1632 Args.push_back(Entry); 1633 1634 Entry.Node = FPtr; Args.push_back(Entry); 1635 Entry.Node = Nest; Args.push_back(Entry); 1636 1637 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1638 TargetLowering::CallLoweringInfo CLI(Chain, 1639 Type::getVoidTy(*DAG.getContext()), 1640 false, false, false, false, 0, 1641 CallingConv::C, 1642 /*isTailCall=*/false, 1643 /*doesNotRet=*/false, 1644 /*isReturnValueUsed=*/true, 1645 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1646 Args, DAG, dl); 1647 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 1648 1649 return CallResult.second; 1650 } 1651 1652 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1653 const PPCSubtarget &Subtarget) const { 1654 MachineFunction &MF = DAG.getMachineFunction(); 1655 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1656 1657 DebugLoc dl = Op.getDebugLoc(); 1658 1659 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1660 // vastart just stores the address of the VarArgsFrameIndex slot into the 1661 // memory location argument. 1662 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1663 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1664 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1665 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1666 MachinePointerInfo(SV), 1667 false, false, 0); 1668 } 1669 1670 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1671 // We suppose the given va_list is already allocated. 1672 // 1673 // typedef struct { 1674 // char gpr; /* index into the array of 8 GPRs 1675 // * stored in the register save area 1676 // * gpr=0 corresponds to r3, 1677 // * gpr=1 to r4, etc. 1678 // */ 1679 // char fpr; /* index into the array of 8 FPRs 1680 // * stored in the register save area 1681 // * fpr=0 corresponds to f1, 1682 // * fpr=1 to f2, etc. 1683 // */ 1684 // char *overflow_arg_area; 1685 // /* location on stack that holds 1686 // * the next overflow argument 1687 // */ 1688 // char *reg_save_area; 1689 // /* where r3:r10 and f1:f8 (if saved) 1690 // * are stored 1691 // */ 1692 // } va_list[1]; 1693 1694 1695 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1696 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1697 1698 1699 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1700 1701 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1702 PtrVT); 1703 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1704 PtrVT); 1705 1706 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1707 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1708 1709 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1710 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1711 1712 uint64_t FPROffset = 1; 1713 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1714 1715 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1716 1717 // Store first byte : number of int regs 1718 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1719 Op.getOperand(1), 1720 MachinePointerInfo(SV), 1721 MVT::i8, false, false, 0); 1722 uint64_t nextOffset = FPROffset; 1723 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1724 ConstFPROffset); 1725 1726 // Store second byte : number of float regs 1727 SDValue secondStore = 1728 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1729 MachinePointerInfo(SV, nextOffset), MVT::i8, 1730 false, false, 0); 1731 nextOffset += StackOffset; 1732 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1733 1734 // Store second word : arguments given on stack 1735 SDValue thirdStore = 1736 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1737 MachinePointerInfo(SV, nextOffset), 1738 false, false, 0); 1739 nextOffset += FrameOffset; 1740 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1741 1742 // Store third word : arguments given in registers 1743 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1744 MachinePointerInfo(SV, nextOffset), 1745 false, false, 0); 1746 1747 } 1748 1749 #include "PPCGenCallingConv.inc" 1750 1751 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1752 CCValAssign::LocInfo &LocInfo, 1753 ISD::ArgFlagsTy &ArgFlags, 1754 CCState &State) { 1755 return true; 1756 } 1757 1758 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1759 MVT &LocVT, 1760 CCValAssign::LocInfo &LocInfo, 1761 ISD::ArgFlagsTy &ArgFlags, 1762 CCState &State) { 1763 static const uint16_t ArgRegs[] = { 1764 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1765 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1766 }; 1767 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1768 1769 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1770 1771 // Skip one register if the first unallocated register has an even register 1772 // number and there are still argument registers available which have not been 1773 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1774 // need to skip a register if RegNum is odd. 1775 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1776 State.AllocateReg(ArgRegs[RegNum]); 1777 } 1778 1779 // Always return false here, as this function only makes sure that the first 1780 // unallocated register has an odd register number and does not actually 1781 // allocate a register for the current argument. 1782 return false; 1783 } 1784 1785 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1786 MVT &LocVT, 1787 CCValAssign::LocInfo &LocInfo, 1788 ISD::ArgFlagsTy &ArgFlags, 1789 CCState &State) { 1790 static const uint16_t ArgRegs[] = { 1791 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1792 PPC::F8 1793 }; 1794 1795 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1796 1797 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1798 1799 // If there is only one Floating-point register left we need to put both f64 1800 // values of a split ppc_fp128 value on the stack. 1801 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1802 State.AllocateReg(ArgRegs[RegNum]); 1803 } 1804 1805 // Always return false here, as this function only makes sure that the two f64 1806 // values a ppc_fp128 value is split into are both passed in registers or both 1807 // passed on the stack and does not actually allocate a register for the 1808 // current argument. 1809 return false; 1810 } 1811 1812 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1813 /// on Darwin. 1814 static const uint16_t *GetFPR() { 1815 static const uint16_t FPR[] = { 1816 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1817 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1818 }; 1819 1820 return FPR; 1821 } 1822 1823 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1824 /// the stack. 1825 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1826 unsigned PtrByteSize) { 1827 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1828 if (Flags.isByVal()) 1829 ArgSize = Flags.getByValSize(); 1830 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1831 1832 return ArgSize; 1833 } 1834 1835 SDValue 1836 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1837 CallingConv::ID CallConv, bool isVarArg, 1838 const SmallVectorImpl<ISD::InputArg> 1839 &Ins, 1840 DebugLoc dl, SelectionDAG &DAG, 1841 SmallVectorImpl<SDValue> &InVals) 1842 const { 1843 if (PPCSubTarget.isSVR4ABI()) { 1844 if (PPCSubTarget.isPPC64()) 1845 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 1846 dl, DAG, InVals); 1847 else 1848 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 1849 dl, DAG, InVals); 1850 } else { 1851 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1852 dl, DAG, InVals); 1853 } 1854 } 1855 1856 SDValue 1857 PPCTargetLowering::LowerFormalArguments_32SVR4( 1858 SDValue Chain, 1859 CallingConv::ID CallConv, bool isVarArg, 1860 const SmallVectorImpl<ISD::InputArg> 1861 &Ins, 1862 DebugLoc dl, SelectionDAG &DAG, 1863 SmallVectorImpl<SDValue> &InVals) const { 1864 1865 // 32-bit SVR4 ABI Stack Frame Layout: 1866 // +-----------------------------------+ 1867 // +--> | Back chain | 1868 // | +-----------------------------------+ 1869 // | | Floating-point register save area | 1870 // | +-----------------------------------+ 1871 // | | General register save area | 1872 // | +-----------------------------------+ 1873 // | | CR save word | 1874 // | +-----------------------------------+ 1875 // | | VRSAVE save word | 1876 // | +-----------------------------------+ 1877 // | | Alignment padding | 1878 // | +-----------------------------------+ 1879 // | | Vector register save area | 1880 // | +-----------------------------------+ 1881 // | | Local variable space | 1882 // | +-----------------------------------+ 1883 // | | Parameter list area | 1884 // | +-----------------------------------+ 1885 // | | LR save word | 1886 // | +-----------------------------------+ 1887 // SP--> +--- | Back chain | 1888 // +-----------------------------------+ 1889 // 1890 // Specifications: 1891 // System V Application Binary Interface PowerPC Processor Supplement 1892 // AltiVec Technology Programming Interface Manual 1893 1894 MachineFunction &MF = DAG.getMachineFunction(); 1895 MachineFrameInfo *MFI = MF.getFrameInfo(); 1896 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1897 1898 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1899 // Potential tail calls could cause overwriting of argument stack slots. 1900 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1901 (CallConv == CallingConv::Fast)); 1902 unsigned PtrByteSize = 4; 1903 1904 // Assign locations to all of the incoming arguments. 1905 SmallVector<CCValAssign, 16> ArgLocs; 1906 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1907 getTargetMachine(), ArgLocs, *DAG.getContext()); 1908 1909 // Reserve space for the linkage area on the stack. 1910 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1911 1912 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1913 1914 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1915 CCValAssign &VA = ArgLocs[i]; 1916 1917 // Arguments stored in registers. 1918 if (VA.isRegLoc()) { 1919 const TargetRegisterClass *RC; 1920 EVT ValVT = VA.getValVT(); 1921 1922 switch (ValVT.getSimpleVT().SimpleTy) { 1923 default: 1924 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1925 case MVT::i32: 1926 RC = &PPC::GPRCRegClass; 1927 break; 1928 case MVT::f32: 1929 RC = &PPC::F4RCRegClass; 1930 break; 1931 case MVT::f64: 1932 RC = &PPC::F8RCRegClass; 1933 break; 1934 case MVT::v16i8: 1935 case MVT::v8i16: 1936 case MVT::v4i32: 1937 case MVT::v4f32: 1938 RC = &PPC::VRRCRegClass; 1939 break; 1940 } 1941 1942 // Transform the arguments stored in physical registers into virtual ones. 1943 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1944 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1945 1946 InVals.push_back(ArgValue); 1947 } else { 1948 // Argument stored in memory. 1949 assert(VA.isMemLoc()); 1950 1951 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1952 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1953 isImmutable); 1954 1955 // Create load nodes to retrieve arguments from the stack. 1956 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1957 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1958 MachinePointerInfo(), 1959 false, false, false, 0)); 1960 } 1961 } 1962 1963 // Assign locations to all of the incoming aggregate by value arguments. 1964 // Aggregates passed by value are stored in the local variable space of the 1965 // caller's stack frame, right above the parameter list area. 1966 SmallVector<CCValAssign, 16> ByValArgLocs; 1967 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1968 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1969 1970 // Reserve stack space for the allocations in CCInfo. 1971 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1972 1973 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1974 1975 // Area that is at least reserved in the caller of this function. 1976 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1977 1978 // Set the size that is at least reserved in caller of this function. Tail 1979 // call optimized function's reserved stack space needs to be aligned so that 1980 // taking the difference between two stack areas will result in an aligned 1981 // stack. 1982 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1983 1984 MinReservedArea = 1985 std::max(MinReservedArea, 1986 PPCFrameLowering::getMinCallFrameSize(false, false)); 1987 1988 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1989 getStackAlignment(); 1990 unsigned AlignMask = TargetAlign-1; 1991 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1992 1993 FI->setMinReservedArea(MinReservedArea); 1994 1995 SmallVector<SDValue, 8> MemOps; 1996 1997 // If the function takes variable number of arguments, make a frame index for 1998 // the start of the first vararg value... for expansion of llvm.va_start. 1999 if (isVarArg) { 2000 static const uint16_t GPArgRegs[] = { 2001 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2002 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2003 }; 2004 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2005 2006 static const uint16_t FPArgRegs[] = { 2007 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2008 PPC::F8 2009 }; 2010 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2011 2012 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 2013 NumGPArgRegs)); 2014 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 2015 NumFPArgRegs)); 2016 2017 // Make room for NumGPArgRegs and NumFPArgRegs. 2018 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2019 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 2020 2021 FuncInfo->setVarArgsStackOffset( 2022 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2023 CCInfo.getNextStackOffset(), true)); 2024 2025 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2026 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2027 2028 // The fixed integer arguments of a variadic function are stored to the 2029 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2030 // the result of va_next. 2031 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2032 // Get an existing live-in vreg, or add a new one. 2033 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2034 if (!VReg) 2035 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2036 2037 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2038 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2039 MachinePointerInfo(), false, false, 0); 2040 MemOps.push_back(Store); 2041 // Increment the address by four for the next argument to store 2042 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2043 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2044 } 2045 2046 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2047 // is set. 2048 // The double arguments are stored to the VarArgsFrameIndex 2049 // on the stack. 2050 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2051 // Get an existing live-in vreg, or add a new one. 2052 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2053 if (!VReg) 2054 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2055 2056 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2057 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2058 MachinePointerInfo(), false, false, 0); 2059 MemOps.push_back(Store); 2060 // Increment the address by eight for the next argument to store 2061 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 2062 PtrVT); 2063 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2064 } 2065 } 2066 2067 if (!MemOps.empty()) 2068 Chain = DAG.getNode(ISD::TokenFactor, dl, 2069 MVT::Other, &MemOps[0], MemOps.size()); 2070 2071 return Chain; 2072 } 2073 2074 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2075 // value to MVT::i64 and then truncate to the correct register size. 2076 SDValue 2077 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 2078 SelectionDAG &DAG, SDValue ArgVal, 2079 DebugLoc dl) const { 2080 if (Flags.isSExt()) 2081 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2082 DAG.getValueType(ObjectVT)); 2083 else if (Flags.isZExt()) 2084 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2085 DAG.getValueType(ObjectVT)); 2086 2087 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2088 } 2089 2090 // Set the size that is at least reserved in caller of this function. Tail 2091 // call optimized functions' reserved stack space needs to be aligned so that 2092 // taking the difference between two stack areas will result in an aligned 2093 // stack. 2094 void 2095 PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG, 2096 unsigned nAltivecParamsAtEnd, 2097 unsigned MinReservedArea, 2098 bool isPPC64) const { 2099 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2100 // Add the Altivec parameters at the end, if needed. 2101 if (nAltivecParamsAtEnd) { 2102 MinReservedArea = ((MinReservedArea+15)/16)*16; 2103 MinReservedArea += 16*nAltivecParamsAtEnd; 2104 } 2105 MinReservedArea = 2106 std::max(MinReservedArea, 2107 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2108 unsigned TargetAlign 2109 = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2110 getStackAlignment(); 2111 unsigned AlignMask = TargetAlign-1; 2112 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2113 FI->setMinReservedArea(MinReservedArea); 2114 } 2115 2116 SDValue 2117 PPCTargetLowering::LowerFormalArguments_64SVR4( 2118 SDValue Chain, 2119 CallingConv::ID CallConv, bool isVarArg, 2120 const SmallVectorImpl<ISD::InputArg> 2121 &Ins, 2122 DebugLoc dl, SelectionDAG &DAG, 2123 SmallVectorImpl<SDValue> &InVals) const { 2124 // TODO: add description of PPC stack frame format, or at least some docs. 2125 // 2126 MachineFunction &MF = DAG.getMachineFunction(); 2127 MachineFrameInfo *MFI = MF.getFrameInfo(); 2128 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2129 2130 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2131 // Potential tail calls could cause overwriting of argument stack slots. 2132 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2133 (CallConv == CallingConv::Fast)); 2134 unsigned PtrByteSize = 8; 2135 2136 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); 2137 // Area that is at least reserved in caller of this function. 2138 unsigned MinReservedArea = ArgOffset; 2139 2140 static const uint16_t GPR[] = { 2141 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 2142 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 2143 }; 2144 2145 static const uint16_t *FPR = GetFPR(); 2146 2147 static const uint16_t VR[] = { 2148 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 2149 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 2150 }; 2151 2152 const unsigned Num_GPR_Regs = array_lengthof(GPR); 2153 const unsigned Num_FPR_Regs = 13; 2154 const unsigned Num_VR_Regs = array_lengthof(VR); 2155 2156 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 2157 2158 // Add DAG nodes to load the arguments or copy them out of registers. On 2159 // entry to a function on PPC, the arguments start after the linkage area, 2160 // although the first ones are often in registers. 2161 2162 SmallVector<SDValue, 8> MemOps; 2163 unsigned nAltivecParamsAtEnd = 0; 2164 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 2165 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) { 2166 SDValue ArgVal; 2167 bool needsLoad = false; 2168 EVT ObjectVT = Ins[ArgNo].VT; 2169 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 2170 unsigned ArgSize = ObjSize; 2171 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2172 2173 unsigned CurArgOffset = ArgOffset; 2174 2175 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 2176 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 2177 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 2178 if (isVarArg) { 2179 MinReservedArea = ((MinReservedArea+15)/16)*16; 2180 MinReservedArea += CalculateStackSlotSize(ObjectVT, 2181 Flags, 2182 PtrByteSize); 2183 } else 2184 nAltivecParamsAtEnd++; 2185 } else 2186 // Calculate min reserved area. 2187 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 2188 Flags, 2189 PtrByteSize); 2190 2191 // FIXME the codegen can be much improved in some cases. 2192 // We do not have to keep everything in memory. 2193 if (Flags.isByVal()) { 2194 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2195 ObjSize = Flags.getByValSize(); 2196 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2197 // Empty aggregate parameters do not take up registers. Examples: 2198 // struct { } a; 2199 // union { } b; 2200 // int c[0]; 2201 // etc. However, we have to provide a place-holder in InVals, so 2202 // pretend we have an 8-byte item at the current address for that 2203 // purpose. 2204 if (!ObjSize) { 2205 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2206 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2207 InVals.push_back(FIN); 2208 continue; 2209 } 2210 // All aggregates smaller than 8 bytes must be passed right-justified. 2211 if (ObjSize < PtrByteSize) 2212 CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize); 2213 // The value of the object is its address. 2214 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 2215 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2216 InVals.push_back(FIN); 2217 2218 if (ObjSize < 8) { 2219 if (GPR_idx != Num_GPR_Regs) { 2220 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2221 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2222 SDValue Store; 2223 2224 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 2225 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 2226 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 2227 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2228 MachinePointerInfo(FuncArg, CurArgOffset), 2229 ObjType, false, false, 0); 2230 } else { 2231 // For sizes that don't fit a truncating store (3, 5, 6, 7), 2232 // store the whole register as-is to the parameter save area 2233 // slot. The address of the parameter was already calculated 2234 // above (InVals.push_back(FIN)) to be the right-justified 2235 // offset within the slot. For this store, we need a new 2236 // frame index that points at the beginning of the slot. 2237 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2238 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2239 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2240 MachinePointerInfo(FuncArg, ArgOffset), 2241 false, false, 0); 2242 } 2243 2244 MemOps.push_back(Store); 2245 ++GPR_idx; 2246 } 2247 // Whether we copied from a register or not, advance the offset 2248 // into the parameter save area by a full doubleword. 2249 ArgOffset += PtrByteSize; 2250 continue; 2251 } 2252 2253 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2254 // Store whatever pieces of the object are in registers 2255 // to memory. ArgOffset will be the address of the beginning 2256 // of the object. 2257 if (GPR_idx != Num_GPR_Regs) { 2258 unsigned VReg; 2259 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2260 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2261 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2262 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2263 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2264 MachinePointerInfo(FuncArg, ArgOffset), 2265 false, false, 0); 2266 MemOps.push_back(Store); 2267 ++GPR_idx; 2268 ArgOffset += PtrByteSize; 2269 } else { 2270 ArgOffset += ArgSize - j; 2271 break; 2272 } 2273 } 2274 continue; 2275 } 2276 2277 switch (ObjectVT.getSimpleVT().SimpleTy) { 2278 default: llvm_unreachable("Unhandled argument type!"); 2279 case MVT::i32: 2280 case MVT::i64: 2281 if (GPR_idx != Num_GPR_Regs) { 2282 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2283 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2284 2285 if (ObjectVT == MVT::i32) 2286 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2287 // value to MVT::i64 and then truncate to the correct register size. 2288 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 2289 2290 ++GPR_idx; 2291 } else { 2292 needsLoad = true; 2293 ArgSize = PtrByteSize; 2294 } 2295 ArgOffset += 8; 2296 break; 2297 2298 case MVT::f32: 2299 case MVT::f64: 2300 // Every 8 bytes of argument space consumes one of the GPRs available for 2301 // argument passing. 2302 if (GPR_idx != Num_GPR_Regs) { 2303 ++GPR_idx; 2304 } 2305 if (FPR_idx != Num_FPR_Regs) { 2306 unsigned VReg; 2307 2308 if (ObjectVT == MVT::f32) 2309 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2310 else 2311 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2312 2313 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2314 ++FPR_idx; 2315 } else { 2316 needsLoad = true; 2317 ArgSize = PtrByteSize; 2318 } 2319 2320 ArgOffset += 8; 2321 break; 2322 case MVT::v4f32: 2323 case MVT::v4i32: 2324 case MVT::v8i16: 2325 case MVT::v16i8: 2326 // Note that vector arguments in registers don't reserve stack space, 2327 // except in varargs functions. 2328 if (VR_idx != Num_VR_Regs) { 2329 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2330 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2331 if (isVarArg) { 2332 while ((ArgOffset % 16) != 0) { 2333 ArgOffset += PtrByteSize; 2334 if (GPR_idx != Num_GPR_Regs) 2335 GPR_idx++; 2336 } 2337 ArgOffset += 16; 2338 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2339 } 2340 ++VR_idx; 2341 } else { 2342 // Vectors are aligned. 2343 ArgOffset = ((ArgOffset+15)/16)*16; 2344 CurArgOffset = ArgOffset; 2345 ArgOffset += 16; 2346 needsLoad = true; 2347 } 2348 break; 2349 } 2350 2351 // We need to load the argument to a virtual register if we determined 2352 // above that we ran out of physical registers of the appropriate type. 2353 if (needsLoad) { 2354 int FI = MFI->CreateFixedObject(ObjSize, 2355 CurArgOffset + (ArgSize - ObjSize), 2356 isImmutable); 2357 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2358 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2359 false, false, false, 0); 2360 } 2361 2362 InVals.push_back(ArgVal); 2363 } 2364 2365 // Set the size that is at least reserved in caller of this function. Tail 2366 // call optimized functions' reserved stack space needs to be aligned so that 2367 // taking the difference between two stack areas will result in an aligned 2368 // stack. 2369 setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true); 2370 2371 // If the function takes variable number of arguments, make a frame index for 2372 // the start of the first vararg value... for expansion of llvm.va_start. 2373 if (isVarArg) { 2374 int Depth = ArgOffset; 2375 2376 FuncInfo->setVarArgsFrameIndex( 2377 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 2378 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2379 2380 // If this function is vararg, store any remaining integer argument regs 2381 // to their spots on the stack so that they may be loaded by deferencing the 2382 // result of va_next. 2383 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2384 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2385 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2386 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2387 MachinePointerInfo(), false, false, 0); 2388 MemOps.push_back(Store); 2389 // Increment the address by four for the next argument to store 2390 SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); 2391 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2392 } 2393 } 2394 2395 if (!MemOps.empty()) 2396 Chain = DAG.getNode(ISD::TokenFactor, dl, 2397 MVT::Other, &MemOps[0], MemOps.size()); 2398 2399 return Chain; 2400 } 2401 2402 SDValue 2403 PPCTargetLowering::LowerFormalArguments_Darwin( 2404 SDValue Chain, 2405 CallingConv::ID CallConv, bool isVarArg, 2406 const SmallVectorImpl<ISD::InputArg> 2407 &Ins, 2408 DebugLoc dl, SelectionDAG &DAG, 2409 SmallVectorImpl<SDValue> &InVals) const { 2410 // TODO: add description of PPC stack frame format, or at least some docs. 2411 // 2412 MachineFunction &MF = DAG.getMachineFunction(); 2413 MachineFrameInfo *MFI = MF.getFrameInfo(); 2414 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2415 2416 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2417 bool isPPC64 = PtrVT == MVT::i64; 2418 // Potential tail calls could cause overwriting of argument stack slots. 2419 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2420 (CallConv == CallingConv::Fast)); 2421 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2422 2423 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 2424 // Area that is at least reserved in caller of this function. 2425 unsigned MinReservedArea = ArgOffset; 2426 2427 static const uint16_t GPR_32[] = { // 32-bit registers. 2428 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2429 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2430 }; 2431 static const uint16_t GPR_64[] = { // 64-bit registers. 2432 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 2433 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 2434 }; 2435 2436 static const uint16_t *FPR = GetFPR(); 2437 2438 static const uint16_t VR[] = { 2439 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 2440 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 2441 }; 2442 2443 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 2444 const unsigned Num_FPR_Regs = 13; 2445 const unsigned Num_VR_Regs = array_lengthof( VR); 2446 2447 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 2448 2449 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 2450 2451 // In 32-bit non-varargs functions, the stack space for vectors is after the 2452 // stack space for non-vectors. We do not use this space unless we have 2453 // too many vectors to fit in registers, something that only occurs in 2454 // constructed examples:), but we have to walk the arglist to figure 2455 // that out...for the pathological case, compute VecArgOffset as the 2456 // start of the vector parameter area. Computing VecArgOffset is the 2457 // entire point of the following loop. 2458 unsigned VecArgOffset = ArgOffset; 2459 if (!isVarArg && !isPPC64) { 2460 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 2461 ++ArgNo) { 2462 EVT ObjectVT = Ins[ArgNo].VT; 2463 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2464 2465 if (Flags.isByVal()) { 2466 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 2467 unsigned ObjSize = Flags.getByValSize(); 2468 unsigned ArgSize = 2469 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2470 VecArgOffset += ArgSize; 2471 continue; 2472 } 2473 2474 switch(ObjectVT.getSimpleVT().SimpleTy) { 2475 default: llvm_unreachable("Unhandled argument type!"); 2476 case MVT::i32: 2477 case MVT::f32: 2478 VecArgOffset += 4; 2479 break; 2480 case MVT::i64: // PPC64 2481 case MVT::f64: 2482 // FIXME: We are guaranteed to be !isPPC64 at this point. 2483 // Does MVT::i64 apply? 2484 VecArgOffset += 8; 2485 break; 2486 case MVT::v4f32: 2487 case MVT::v4i32: 2488 case MVT::v8i16: 2489 case MVT::v16i8: 2490 // Nothing to do, we're only looking at Nonvector args here. 2491 break; 2492 } 2493 } 2494 } 2495 // We've found where the vector parameter area in memory is. Skip the 2496 // first 12 parameters; these don't use that memory. 2497 VecArgOffset = ((VecArgOffset+15)/16)*16; 2498 VecArgOffset += 12*16; 2499 2500 // Add DAG nodes to load the arguments or copy them out of registers. On 2501 // entry to a function on PPC, the arguments start after the linkage area, 2502 // although the first ones are often in registers. 2503 2504 SmallVector<SDValue, 8> MemOps; 2505 unsigned nAltivecParamsAtEnd = 0; 2506 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 2507 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) { 2508 SDValue ArgVal; 2509 bool needsLoad = false; 2510 EVT ObjectVT = Ins[ArgNo].VT; 2511 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 2512 unsigned ArgSize = ObjSize; 2513 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2514 2515 unsigned CurArgOffset = ArgOffset; 2516 2517 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 2518 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 2519 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 2520 if (isVarArg || isPPC64) { 2521 MinReservedArea = ((MinReservedArea+15)/16)*16; 2522 MinReservedArea += CalculateStackSlotSize(ObjectVT, 2523 Flags, 2524 PtrByteSize); 2525 } else nAltivecParamsAtEnd++; 2526 } else 2527 // Calculate min reserved area. 2528 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 2529 Flags, 2530 PtrByteSize); 2531 2532 // FIXME the codegen can be much improved in some cases. 2533 // We do not have to keep everything in memory. 2534 if (Flags.isByVal()) { 2535 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2536 ObjSize = Flags.getByValSize(); 2537 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2538 // Objects of size 1 and 2 are right justified, everything else is 2539 // left justified. This means the memory address is adjusted forwards. 2540 if (ObjSize==1 || ObjSize==2) { 2541 CurArgOffset = CurArgOffset + (4 - ObjSize); 2542 } 2543 // The value of the object is its address. 2544 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 2545 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2546 InVals.push_back(FIN); 2547 if (ObjSize==1 || ObjSize==2) { 2548 if (GPR_idx != Num_GPR_Regs) { 2549 unsigned VReg; 2550 if (isPPC64) 2551 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2552 else 2553 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2554 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2555 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 2556 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2557 MachinePointerInfo(FuncArg, 2558 CurArgOffset), 2559 ObjType, false, false, 0); 2560 MemOps.push_back(Store); 2561 ++GPR_idx; 2562 } 2563 2564 ArgOffset += PtrByteSize; 2565 2566 continue; 2567 } 2568 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2569 // Store whatever pieces of the object are in registers 2570 // to memory. ArgOffset will be the address of the beginning 2571 // of the object. 2572 if (GPR_idx != Num_GPR_Regs) { 2573 unsigned VReg; 2574 if (isPPC64) 2575 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2576 else 2577 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2578 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2579 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2580 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2581 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2582 MachinePointerInfo(FuncArg, ArgOffset), 2583 false, false, 0); 2584 MemOps.push_back(Store); 2585 ++GPR_idx; 2586 ArgOffset += PtrByteSize; 2587 } else { 2588 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2589 break; 2590 } 2591 } 2592 continue; 2593 } 2594 2595 switch (ObjectVT.getSimpleVT().SimpleTy) { 2596 default: llvm_unreachable("Unhandled argument type!"); 2597 case MVT::i32: 2598 if (!isPPC64) { 2599 if (GPR_idx != Num_GPR_Regs) { 2600 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2601 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2602 ++GPR_idx; 2603 } else { 2604 needsLoad = true; 2605 ArgSize = PtrByteSize; 2606 } 2607 // All int arguments reserve stack space in the Darwin ABI. 2608 ArgOffset += PtrByteSize; 2609 break; 2610 } 2611 // FALLTHROUGH 2612 case MVT::i64: // PPC64 2613 if (GPR_idx != Num_GPR_Regs) { 2614 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2615 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2616 2617 if (ObjectVT == MVT::i32) 2618 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2619 // value to MVT::i64 and then truncate to the correct register size. 2620 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 2621 2622 ++GPR_idx; 2623 } else { 2624 needsLoad = true; 2625 ArgSize = PtrByteSize; 2626 } 2627 // All int arguments reserve stack space in the Darwin ABI. 2628 ArgOffset += 8; 2629 break; 2630 2631 case MVT::f32: 2632 case MVT::f64: 2633 // Every 4 bytes of argument space consumes one of the GPRs available for 2634 // argument passing. 2635 if (GPR_idx != Num_GPR_Regs) { 2636 ++GPR_idx; 2637 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2638 ++GPR_idx; 2639 } 2640 if (FPR_idx != Num_FPR_Regs) { 2641 unsigned VReg; 2642 2643 if (ObjectVT == MVT::f32) 2644 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2645 else 2646 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2647 2648 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2649 ++FPR_idx; 2650 } else { 2651 needsLoad = true; 2652 } 2653 2654 // All FP arguments reserve stack space in the Darwin ABI. 2655 ArgOffset += isPPC64 ? 8 : ObjSize; 2656 break; 2657 case MVT::v4f32: 2658 case MVT::v4i32: 2659 case MVT::v8i16: 2660 case MVT::v16i8: 2661 // Note that vector arguments in registers don't reserve stack space, 2662 // except in varargs functions. 2663 if (VR_idx != Num_VR_Regs) { 2664 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2665 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2666 if (isVarArg) { 2667 while ((ArgOffset % 16) != 0) { 2668 ArgOffset += PtrByteSize; 2669 if (GPR_idx != Num_GPR_Regs) 2670 GPR_idx++; 2671 } 2672 ArgOffset += 16; 2673 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2674 } 2675 ++VR_idx; 2676 } else { 2677 if (!isVarArg && !isPPC64) { 2678 // Vectors go after all the nonvectors. 2679 CurArgOffset = VecArgOffset; 2680 VecArgOffset += 16; 2681 } else { 2682 // Vectors are aligned. 2683 ArgOffset = ((ArgOffset+15)/16)*16; 2684 CurArgOffset = ArgOffset; 2685 ArgOffset += 16; 2686 } 2687 needsLoad = true; 2688 } 2689 break; 2690 } 2691 2692 // We need to load the argument to a virtual register if we determined above 2693 // that we ran out of physical registers of the appropriate type. 2694 if (needsLoad) { 2695 int FI = MFI->CreateFixedObject(ObjSize, 2696 CurArgOffset + (ArgSize - ObjSize), 2697 isImmutable); 2698 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2699 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2700 false, false, false, 0); 2701 } 2702 2703 InVals.push_back(ArgVal); 2704 } 2705 2706 // Set the size that is at least reserved in caller of this function. Tail 2707 // call optimized functions' reserved stack space needs to be aligned so that 2708 // taking the difference between two stack areas will result in an aligned 2709 // stack. 2710 setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64); 2711 2712 // If the function takes variable number of arguments, make a frame index for 2713 // the start of the first vararg value... for expansion of llvm.va_start. 2714 if (isVarArg) { 2715 int Depth = ArgOffset; 2716 2717 FuncInfo->setVarArgsFrameIndex( 2718 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2719 Depth, true)); 2720 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2721 2722 // If this function is vararg, store any remaining integer argument regs 2723 // to their spots on the stack so that they may be loaded by deferencing the 2724 // result of va_next. 2725 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2726 unsigned VReg; 2727 2728 if (isPPC64) 2729 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2730 else 2731 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2732 2733 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2734 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2735 MachinePointerInfo(), false, false, 0); 2736 MemOps.push_back(Store); 2737 // Increment the address by four for the next argument to store 2738 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2739 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2740 } 2741 } 2742 2743 if (!MemOps.empty()) 2744 Chain = DAG.getNode(ISD::TokenFactor, dl, 2745 MVT::Other, &MemOps[0], MemOps.size()); 2746 2747 return Chain; 2748 } 2749 2750 /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus 2751 /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI. 2752 static unsigned 2753 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2754 bool isPPC64, 2755 bool isVarArg, 2756 unsigned CC, 2757 const SmallVectorImpl<ISD::OutputArg> 2758 &Outs, 2759 const SmallVectorImpl<SDValue> &OutVals, 2760 unsigned &nAltivecParamsAtEnd) { 2761 // Count how many bytes are to be pushed on the stack, including the linkage 2762 // area, and parameter passing area. We start with 24/48 bytes, which is 2763 // prereserved space for [SP][CR][LR][3 x unused]. 2764 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2765 unsigned NumOps = Outs.size(); 2766 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2767 2768 // Add up all the space actually used. 2769 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2770 // they all go in registers, but we must reserve stack space for them for 2771 // possible use by the caller. In varargs or 64-bit calls, parameters are 2772 // assigned stack space in order, with padding so Altivec parameters are 2773 // 16-byte aligned. 2774 nAltivecParamsAtEnd = 0; 2775 for (unsigned i = 0; i != NumOps; ++i) { 2776 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2777 EVT ArgVT = Outs[i].VT; 2778 // Varargs Altivec parameters are padded to a 16 byte boundary. 2779 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2780 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2781 if (!isVarArg && !isPPC64) { 2782 // Non-varargs Altivec parameters go after all the non-Altivec 2783 // parameters; handle those later so we know how much padding we need. 2784 nAltivecParamsAtEnd++; 2785 continue; 2786 } 2787 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2788 NumBytes = ((NumBytes+15)/16)*16; 2789 } 2790 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2791 } 2792 2793 // Allow for Altivec parameters at the end, if needed. 2794 if (nAltivecParamsAtEnd) { 2795 NumBytes = ((NumBytes+15)/16)*16; 2796 NumBytes += 16*nAltivecParamsAtEnd; 2797 } 2798 2799 // The prolog code of the callee may store up to 8 GPR argument registers to 2800 // the stack, allowing va_start to index over them in memory if its varargs. 2801 // Because we cannot tell if this is needed on the caller side, we have to 2802 // conservatively assume that it is needed. As such, make sure we have at 2803 // least enough stack space for the caller to store the 8 GPRs. 2804 NumBytes = std::max(NumBytes, 2805 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2806 2807 // Tail call needs the stack to be aligned. 2808 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2809 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2810 getFrameLowering()->getStackAlignment(); 2811 unsigned AlignMask = TargetAlign-1; 2812 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2813 } 2814 2815 return NumBytes; 2816 } 2817 2818 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2819 /// adjusted to accommodate the arguments for the tailcall. 2820 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2821 unsigned ParamSize) { 2822 2823 if (!isTailCall) return 0; 2824 2825 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2826 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2827 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2828 // Remember only if the new adjustement is bigger. 2829 if (SPDiff < FI->getTailCallSPDelta()) 2830 FI->setTailCallSPDelta(SPDiff); 2831 2832 return SPDiff; 2833 } 2834 2835 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2836 /// for tail call optimization. Targets which want to do tail call 2837 /// optimization should implement this function. 2838 bool 2839 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2840 CallingConv::ID CalleeCC, 2841 bool isVarArg, 2842 const SmallVectorImpl<ISD::InputArg> &Ins, 2843 SelectionDAG& DAG) const { 2844 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2845 return false; 2846 2847 // Variable argument functions are not supported. 2848 if (isVarArg) 2849 return false; 2850 2851 MachineFunction &MF = DAG.getMachineFunction(); 2852 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2853 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2854 // Functions containing by val parameters are not supported. 2855 for (unsigned i = 0; i != Ins.size(); i++) { 2856 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2857 if (Flags.isByVal()) return false; 2858 } 2859 2860 // Non PIC/GOT tail calls are supported. 2861 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2862 return true; 2863 2864 // At the moment we can only do local tail calls (in same module, hidden 2865 // or protected) if we are generating PIC. 2866 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2867 return G->getGlobal()->hasHiddenVisibility() 2868 || G->getGlobal()->hasProtectedVisibility(); 2869 } 2870 2871 return false; 2872 } 2873 2874 /// isCallCompatibleAddress - Return the immediate to use if the specified 2875 /// 32-bit value is representable in the immediate field of a BxA instruction. 2876 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2877 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2878 if (!C) return 0; 2879 2880 int Addr = C->getZExtValue(); 2881 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2882 SignExtend32<26>(Addr) != Addr) 2883 return 0; // Top 6 bits have to be sext of immediate. 2884 2885 return DAG.getConstant((int)C->getZExtValue() >> 2, 2886 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2887 } 2888 2889 namespace { 2890 2891 struct TailCallArgumentInfo { 2892 SDValue Arg; 2893 SDValue FrameIdxOp; 2894 int FrameIdx; 2895 2896 TailCallArgumentInfo() : FrameIdx(0) {} 2897 }; 2898 2899 } 2900 2901 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2902 static void 2903 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2904 SDValue Chain, 2905 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2906 SmallVector<SDValue, 8> &MemOpChains, 2907 DebugLoc dl) { 2908 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2909 SDValue Arg = TailCallArgs[i].Arg; 2910 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2911 int FI = TailCallArgs[i].FrameIdx; 2912 // Store relative to framepointer. 2913 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2914 MachinePointerInfo::getFixedStack(FI), 2915 false, false, 0)); 2916 } 2917 } 2918 2919 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2920 /// the appropriate stack slot for the tail call optimized function call. 2921 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2922 MachineFunction &MF, 2923 SDValue Chain, 2924 SDValue OldRetAddr, 2925 SDValue OldFP, 2926 int SPDiff, 2927 bool isPPC64, 2928 bool isDarwinABI, 2929 DebugLoc dl) { 2930 if (SPDiff) { 2931 // Calculate the new stack slot for the return address. 2932 int SlotSize = isPPC64 ? 8 : 4; 2933 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2934 isDarwinABI); 2935 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2936 NewRetAddrLoc, true); 2937 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2938 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2939 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2940 MachinePointerInfo::getFixedStack(NewRetAddr), 2941 false, false, 0); 2942 2943 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2944 // slot as the FP is never overwritten. 2945 if (isDarwinABI) { 2946 int NewFPLoc = 2947 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2948 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2949 true); 2950 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2951 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2952 MachinePointerInfo::getFixedStack(NewFPIdx), 2953 false, false, 0); 2954 } 2955 } 2956 return Chain; 2957 } 2958 2959 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2960 /// the position of the argument. 2961 static void 2962 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2963 SDValue Arg, int SPDiff, unsigned ArgOffset, 2964 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2965 int Offset = ArgOffset + SPDiff; 2966 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2967 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2968 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2969 SDValue FIN = DAG.getFrameIndex(FI, VT); 2970 TailCallArgumentInfo Info; 2971 Info.Arg = Arg; 2972 Info.FrameIdxOp = FIN; 2973 Info.FrameIdx = FI; 2974 TailCallArguments.push_back(Info); 2975 } 2976 2977 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2978 /// stack slot. Returns the chain as result and the loaded frame pointers in 2979 /// LROpOut/FPOpout. Used when tail calling. 2980 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2981 int SPDiff, 2982 SDValue Chain, 2983 SDValue &LROpOut, 2984 SDValue &FPOpOut, 2985 bool isDarwinABI, 2986 DebugLoc dl) const { 2987 if (SPDiff) { 2988 // Load the LR and FP stack slot for later adjusting. 2989 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2990 LROpOut = getReturnAddrFrameIndex(DAG); 2991 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2992 false, false, false, 0); 2993 Chain = SDValue(LROpOut.getNode(), 1); 2994 2995 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2996 // slot as the FP is never overwritten. 2997 if (isDarwinABI) { 2998 FPOpOut = getFramePointerFrameIndex(DAG); 2999 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3000 false, false, false, 0); 3001 Chain = SDValue(FPOpOut.getNode(), 1); 3002 } 3003 } 3004 return Chain; 3005 } 3006 3007 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 3008 /// by "Src" to address "Dst" of size "Size". Alignment information is 3009 /// specified by the specific parameter attribute. The copy will be passed as 3010 /// a byval function parameter. 3011 /// Sometimes what we are copying is the end of a larger object, the part that 3012 /// does not fit in registers. 3013 static SDValue 3014 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 3015 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 3016 DebugLoc dl) { 3017 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 3018 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 3019 false, false, MachinePointerInfo(0), 3020 MachinePointerInfo(0)); 3021 } 3022 3023 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 3024 /// tail calls. 3025 static void 3026 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 3027 SDValue Arg, SDValue PtrOff, int SPDiff, 3028 unsigned ArgOffset, bool isPPC64, bool isTailCall, 3029 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 3030 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 3031 DebugLoc dl) { 3032 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3033 if (!isTailCall) { 3034 if (isVector) { 3035 SDValue StackPtr; 3036 if (isPPC64) 3037 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3038 else 3039 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3040 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3041 DAG.getConstant(ArgOffset, PtrVT)); 3042 } 3043 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3044 MachinePointerInfo(), false, false, 0)); 3045 // Calculate and remember argument location. 3046 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 3047 TailCallArguments); 3048 } 3049 3050 static 3051 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 3052 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 3053 SDValue LROp, SDValue FPOp, bool isDarwinABI, 3054 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 3055 MachineFunction &MF = DAG.getMachineFunction(); 3056 3057 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 3058 // might overwrite each other in case of tail call optimization. 3059 SmallVector<SDValue, 8> MemOpChains2; 3060 // Do not flag preceding copytoreg stuff together with the following stuff. 3061 InFlag = SDValue(); 3062 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 3063 MemOpChains2, dl); 3064 if (!MemOpChains2.empty()) 3065 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3066 &MemOpChains2[0], MemOpChains2.size()); 3067 3068 // Store the return address to the appropriate stack slot. 3069 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 3070 isPPC64, isDarwinABI, dl); 3071 3072 // Emit callseq_end just before tailcall node. 3073 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 3074 DAG.getIntPtrConstant(0, true), InFlag); 3075 InFlag = Chain.getValue(1); 3076 } 3077 3078 static 3079 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 3080 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 3081 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 3082 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 3083 const PPCSubtarget &PPCSubTarget) { 3084 3085 bool isPPC64 = PPCSubTarget.isPPC64(); 3086 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 3087 3088 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3089 NodeTys.push_back(MVT::Other); // Returns a chain 3090 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 3091 3092 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 3093 3094 bool needIndirectCall = true; 3095 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 3096 // If this is an absolute destination address, use the munged value. 3097 Callee = SDValue(Dest, 0); 3098 needIndirectCall = false; 3099 } 3100 3101 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3102 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 3103 // Use indirect calls for ALL functions calls in JIT mode, since the 3104 // far-call stubs may be outside relocation limits for a BL instruction. 3105 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 3106 unsigned OpFlags = 0; 3107 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 3108 (PPCSubTarget.getTargetTriple().isMacOSX() && 3109 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 3110 (G->getGlobal()->isDeclaration() || 3111 G->getGlobal()->isWeakForLinker())) { 3112 // PC-relative references to external symbols should go through $stub, 3113 // unless we're building with the leopard linker or later, which 3114 // automatically synthesizes these stubs. 3115 OpFlags = PPCII::MO_DARWIN_STUB; 3116 } 3117 3118 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 3119 // every direct call is) turn it into a TargetGlobalAddress / 3120 // TargetExternalSymbol node so that legalize doesn't hack it. 3121 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 3122 Callee.getValueType(), 3123 0, OpFlags); 3124 needIndirectCall = false; 3125 } 3126 } 3127 3128 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3129 unsigned char OpFlags = 0; 3130 3131 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 3132 (PPCSubTarget.getTargetTriple().isMacOSX() && 3133 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 3134 // PC-relative references to external symbols should go through $stub, 3135 // unless we're building with the leopard linker or later, which 3136 // automatically synthesizes these stubs. 3137 OpFlags = PPCII::MO_DARWIN_STUB; 3138 } 3139 3140 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 3141 OpFlags); 3142 needIndirectCall = false; 3143 } 3144 3145 if (needIndirectCall) { 3146 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 3147 // to do the call, we can't use PPCISD::CALL. 3148 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 3149 3150 if (isSVR4ABI && isPPC64) { 3151 // Function pointers in the 64-bit SVR4 ABI do not point to the function 3152 // entry point, but to the function descriptor (the function entry point 3153 // address is part of the function descriptor though). 3154 // The function descriptor is a three doubleword structure with the 3155 // following fields: function entry point, TOC base address and 3156 // environment pointer. 3157 // Thus for a call through a function pointer, the following actions need 3158 // to be performed: 3159 // 1. Save the TOC of the caller in the TOC save area of its stack 3160 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 3161 // 2. Load the address of the function entry point from the function 3162 // descriptor. 3163 // 3. Load the TOC of the callee from the function descriptor into r2. 3164 // 4. Load the environment pointer from the function descriptor into 3165 // r11. 3166 // 5. Branch to the function entry point address. 3167 // 6. On return of the callee, the TOC of the caller needs to be 3168 // restored (this is done in FinishCall()). 3169 // 3170 // All those operations are flagged together to ensure that no other 3171 // operations can be scheduled in between. E.g. without flagging the 3172 // operations together, a TOC access in the caller could be scheduled 3173 // between the load of the callee TOC and the branch to the callee, which 3174 // results in the TOC access going through the TOC of the callee instead 3175 // of going through the TOC of the caller, which leads to incorrect code. 3176 3177 // Load the address of the function entry point from the function 3178 // descriptor. 3179 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 3180 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 3181 InFlag.getNode() ? 3 : 2); 3182 Chain = LoadFuncPtr.getValue(1); 3183 InFlag = LoadFuncPtr.getValue(2); 3184 3185 // Load environment pointer into r11. 3186 // Offset of the environment pointer within the function descriptor. 3187 SDValue PtrOff = DAG.getIntPtrConstant(16); 3188 3189 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 3190 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 3191 InFlag); 3192 Chain = LoadEnvPtr.getValue(1); 3193 InFlag = LoadEnvPtr.getValue(2); 3194 3195 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 3196 InFlag); 3197 Chain = EnvVal.getValue(0); 3198 InFlag = EnvVal.getValue(1); 3199 3200 // Load TOC of the callee into r2. We are using a target-specific load 3201 // with r2 hard coded, because the result of a target-independent load 3202 // would never go directly into r2, since r2 is a reserved register (which 3203 // prevents the register allocator from allocating it), resulting in an 3204 // additional register being allocated and an unnecessary move instruction 3205 // being generated. 3206 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3207 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 3208 Callee, InFlag); 3209 Chain = LoadTOCPtr.getValue(0); 3210 InFlag = LoadTOCPtr.getValue(1); 3211 3212 MTCTROps[0] = Chain; 3213 MTCTROps[1] = LoadFuncPtr; 3214 MTCTROps[2] = InFlag; 3215 } 3216 3217 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 3218 2 + (InFlag.getNode() != 0)); 3219 InFlag = Chain.getValue(1); 3220 3221 NodeTys.clear(); 3222 NodeTys.push_back(MVT::Other); 3223 NodeTys.push_back(MVT::Glue); 3224 Ops.push_back(Chain); 3225 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 3226 Callee.setNode(0); 3227 // Add CTR register as callee so a bctr can be emitted later. 3228 if (isTailCall) 3229 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 3230 } 3231 3232 // If this is a direct call, pass the chain and the callee. 3233 if (Callee.getNode()) { 3234 Ops.push_back(Chain); 3235 Ops.push_back(Callee); 3236 } 3237 // If this is a tail call add stack pointer delta. 3238 if (isTailCall) 3239 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 3240 3241 // Add argument registers to the end of the list so that they are known live 3242 // into the call. 3243 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 3244 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 3245 RegsToPass[i].second.getValueType())); 3246 3247 return CallOpc; 3248 } 3249 3250 static 3251 bool isLocalCall(const SDValue &Callee) 3252 { 3253 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3254 return !G->getGlobal()->isDeclaration() && 3255 !G->getGlobal()->isWeakForLinker(); 3256 return false; 3257 } 3258 3259 SDValue 3260 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 3261 CallingConv::ID CallConv, bool isVarArg, 3262 const SmallVectorImpl<ISD::InputArg> &Ins, 3263 DebugLoc dl, SelectionDAG &DAG, 3264 SmallVectorImpl<SDValue> &InVals) const { 3265 3266 SmallVector<CCValAssign, 16> RVLocs; 3267 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3268 getTargetMachine(), RVLocs, *DAG.getContext()); 3269 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 3270 3271 // Copy all of the result registers out of their specified physreg. 3272 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 3273 CCValAssign &VA = RVLocs[i]; 3274 assert(VA.isRegLoc() && "Can only return in registers!"); 3275 3276 SDValue Val = DAG.getCopyFromReg(Chain, dl, 3277 VA.getLocReg(), VA.getLocVT(), InFlag); 3278 Chain = Val.getValue(1); 3279 InFlag = Val.getValue(2); 3280 3281 switch (VA.getLocInfo()) { 3282 default: llvm_unreachable("Unknown loc info!"); 3283 case CCValAssign::Full: break; 3284 case CCValAssign::AExt: 3285 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3286 break; 3287 case CCValAssign::ZExt: 3288 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 3289 DAG.getValueType(VA.getValVT())); 3290 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3291 break; 3292 case CCValAssign::SExt: 3293 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 3294 DAG.getValueType(VA.getValVT())); 3295 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 3296 break; 3297 } 3298 3299 InVals.push_back(Val); 3300 } 3301 3302 return Chain; 3303 } 3304 3305 SDValue 3306 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 3307 bool isTailCall, bool isVarArg, 3308 SelectionDAG &DAG, 3309 SmallVector<std::pair<unsigned, SDValue>, 8> 3310 &RegsToPass, 3311 SDValue InFlag, SDValue Chain, 3312 SDValue &Callee, 3313 int SPDiff, unsigned NumBytes, 3314 const SmallVectorImpl<ISD::InputArg> &Ins, 3315 SmallVectorImpl<SDValue> &InVals) const { 3316 std::vector<EVT> NodeTys; 3317 SmallVector<SDValue, 8> Ops; 3318 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 3319 isTailCall, RegsToPass, Ops, NodeTys, 3320 PPCSubTarget); 3321 3322 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 3323 if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 3324 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 3325 3326 // When performing tail call optimization the callee pops its arguments off 3327 // the stack. Account for this here so these bytes can be pushed back on in 3328 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 3329 int BytesCalleePops = 3330 (CallConv == CallingConv::Fast && 3331 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 3332 3333 // Add a register mask operand representing the call-preserved registers. 3334 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 3335 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 3336 assert(Mask && "Missing call preserved mask for calling convention"); 3337 Ops.push_back(DAG.getRegisterMask(Mask)); 3338 3339 if (InFlag.getNode()) 3340 Ops.push_back(InFlag); 3341 3342 // Emit tail call. 3343 if (isTailCall) { 3344 // If this is the first return lowered for this function, add the regs 3345 // to the liveout set for the function. 3346 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3347 SmallVector<CCValAssign, 16> RVLocs; 3348 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3349 getTargetMachine(), RVLocs, *DAG.getContext()); 3350 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 3351 for (unsigned i = 0; i != RVLocs.size(); ++i) 3352 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3353 } 3354 3355 assert(((Callee.getOpcode() == ISD::Register && 3356 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 3357 Callee.getOpcode() == ISD::TargetExternalSymbol || 3358 Callee.getOpcode() == ISD::TargetGlobalAddress || 3359 isa<ConstantSDNode>(Callee)) && 3360 "Expecting an global address, external symbol, absolute value or register"); 3361 3362 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 3363 } 3364 3365 // Add a NOP immediately after the branch instruction when using the 64-bit 3366 // SVR4 ABI. At link time, if caller and callee are in a different module and 3367 // thus have a different TOC, the call will be replaced with a call to a stub 3368 // function which saves the current TOC, loads the TOC of the callee and 3369 // branches to the callee. The NOP will be replaced with a load instruction 3370 // which restores the TOC of the caller from the TOC save slot of the current 3371 // stack frame. If caller and callee belong to the same module (and have the 3372 // same TOC), the NOP will remain unchanged. 3373 3374 bool needsTOCRestore = false; 3375 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 3376 if (CallOpc == PPCISD::BCTRL_SVR4) { 3377 // This is a call through a function pointer. 3378 // Restore the caller TOC from the save area into R2. 3379 // See PrepareCall() for more information about calls through function 3380 // pointers in the 64-bit SVR4 ABI. 3381 // We are using a target-specific load with r2 hard coded, because the 3382 // result of a target-independent load would never go directly into r2, 3383 // since r2 is a reserved register (which prevents the register allocator 3384 // from allocating it), resulting in an additional register being 3385 // allocated and an unnecessary move instruction being generated. 3386 needsTOCRestore = true; 3387 } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) { 3388 // Otherwise insert NOP for non-local calls. 3389 CallOpc = PPCISD::CALL_NOP_SVR4; 3390 } 3391 } 3392 3393 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 3394 InFlag = Chain.getValue(1); 3395 3396 if (needsTOCRestore) { 3397 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3398 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 3399 InFlag = Chain.getValue(1); 3400 } 3401 3402 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 3403 DAG.getIntPtrConstant(BytesCalleePops, true), 3404 InFlag); 3405 if (!Ins.empty()) 3406 InFlag = Chain.getValue(1); 3407 3408 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 3409 Ins, dl, DAG, InVals); 3410 } 3411 3412 SDValue 3413 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 3414 SmallVectorImpl<SDValue> &InVals) const { 3415 SelectionDAG &DAG = CLI.DAG; 3416 DebugLoc &dl = CLI.DL; 3417 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3418 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3419 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3420 SDValue Chain = CLI.Chain; 3421 SDValue Callee = CLI.Callee; 3422 bool &isTailCall = CLI.IsTailCall; 3423 CallingConv::ID CallConv = CLI.CallConv; 3424 bool isVarArg = CLI.IsVarArg; 3425 3426 if (isTailCall) 3427 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 3428 Ins, DAG); 3429 3430 if (PPCSubTarget.isSVR4ABI()) { 3431 if (PPCSubTarget.isPPC64()) 3432 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 3433 isTailCall, Outs, OutVals, Ins, 3434 dl, DAG, InVals); 3435 else 3436 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 3437 isTailCall, Outs, OutVals, Ins, 3438 dl, DAG, InVals); 3439 } 3440 3441 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 3442 isTailCall, Outs, OutVals, Ins, 3443 dl, DAG, InVals); 3444 } 3445 3446 SDValue 3447 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 3448 CallingConv::ID CallConv, bool isVarArg, 3449 bool isTailCall, 3450 const SmallVectorImpl<ISD::OutputArg> &Outs, 3451 const SmallVectorImpl<SDValue> &OutVals, 3452 const SmallVectorImpl<ISD::InputArg> &Ins, 3453 DebugLoc dl, SelectionDAG &DAG, 3454 SmallVectorImpl<SDValue> &InVals) const { 3455 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 3456 // of the 32-bit SVR4 ABI stack frame layout. 3457 3458 assert((CallConv == CallingConv::C || 3459 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 3460 3461 unsigned PtrByteSize = 4; 3462 3463 MachineFunction &MF = DAG.getMachineFunction(); 3464 3465 // Mark this function as potentially containing a function that contains a 3466 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3467 // and restoring the callers stack pointer in this functions epilog. This is 3468 // done because by tail calling the called function might overwrite the value 3469 // in this function's (MF) stack pointer stack slot 0(SP). 3470 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3471 CallConv == CallingConv::Fast) 3472 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3473 3474 // Count how many bytes are to be pushed on the stack, including the linkage 3475 // area, parameter list area and the part of the local variable space which 3476 // contains copies of aggregates which are passed by value. 3477 3478 // Assign locations to all of the outgoing arguments. 3479 SmallVector<CCValAssign, 16> ArgLocs; 3480 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3481 getTargetMachine(), ArgLocs, *DAG.getContext()); 3482 3483 // Reserve space for the linkage area on the stack. 3484 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 3485 3486 if (isVarArg) { 3487 // Handle fixed and variable vector arguments differently. 3488 // Fixed vector arguments go into registers as long as registers are 3489 // available. Variable vector arguments always go into memory. 3490 unsigned NumArgs = Outs.size(); 3491 3492 for (unsigned i = 0; i != NumArgs; ++i) { 3493 MVT ArgVT = Outs[i].VT; 3494 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3495 bool Result; 3496 3497 if (Outs[i].IsFixed) { 3498 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 3499 CCInfo); 3500 } else { 3501 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 3502 ArgFlags, CCInfo); 3503 } 3504 3505 if (Result) { 3506 #ifndef NDEBUG 3507 errs() << "Call operand #" << i << " has unhandled type " 3508 << EVT(ArgVT).getEVTString() << "\n"; 3509 #endif 3510 llvm_unreachable(0); 3511 } 3512 } 3513 } else { 3514 // All arguments are treated the same. 3515 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 3516 } 3517 3518 // Assign locations to all of the outgoing aggregate by value arguments. 3519 SmallVector<CCValAssign, 16> ByValArgLocs; 3520 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3521 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 3522 3523 // Reserve stack space for the allocations in CCInfo. 3524 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3525 3526 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 3527 3528 // Size of the linkage area, parameter list area and the part of the local 3529 // space variable where copies of aggregates which are passed by value are 3530 // stored. 3531 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 3532 3533 // Calculate by how many bytes the stack has to be adjusted in case of tail 3534 // call optimization. 3535 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3536 3537 // Adjust the stack pointer for the new arguments... 3538 // These operations are automatically eliminated by the prolog/epilog pass 3539 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3540 SDValue CallSeqStart = Chain; 3541 3542 // Load the return address and frame pointer so it can be moved somewhere else 3543 // later. 3544 SDValue LROp, FPOp; 3545 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 3546 dl); 3547 3548 // Set up a copy of the stack pointer for use loading and storing any 3549 // arguments that may not fit in the registers available for argument 3550 // passing. 3551 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3552 3553 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3554 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3555 SmallVector<SDValue, 8> MemOpChains; 3556 3557 bool seenFloatArg = false; 3558 // Walk the register/memloc assignments, inserting copies/loads. 3559 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 3560 i != e; 3561 ++i) { 3562 CCValAssign &VA = ArgLocs[i]; 3563 SDValue Arg = OutVals[i]; 3564 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3565 3566 if (Flags.isByVal()) { 3567 // Argument is an aggregate which is passed by value, thus we need to 3568 // create a copy of it in the local variable space of the current stack 3569 // frame (which is the stack frame of the caller) and pass the address of 3570 // this copy to the callee. 3571 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 3572 CCValAssign &ByValVA = ByValArgLocs[j++]; 3573 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 3574 3575 // Memory reserved in the local variable space of the callers stack frame. 3576 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 3577 3578 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3579 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3580 3581 // Create a copy of the argument in the local area of the current 3582 // stack frame. 3583 SDValue MemcpyCall = 3584 CreateCopyOfByValArgument(Arg, PtrOff, 3585 CallSeqStart.getNode()->getOperand(0), 3586 Flags, DAG, dl); 3587 3588 // This must go outside the CALLSEQ_START..END. 3589 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3590 CallSeqStart.getNode()->getOperand(1)); 3591 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3592 NewCallSeqStart.getNode()); 3593 Chain = CallSeqStart = NewCallSeqStart; 3594 3595 // Pass the address of the aggregate copy on the stack either in a 3596 // physical register or in the parameter list area of the current stack 3597 // frame to the callee. 3598 Arg = PtrOff; 3599 } 3600 3601 if (VA.isRegLoc()) { 3602 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3603 // Put argument in a physical register. 3604 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3605 } else { 3606 // Put argument in the parameter list area of the current stack frame. 3607 assert(VA.isMemLoc()); 3608 unsigned LocMemOffset = VA.getLocMemOffset(); 3609 3610 if (!isTailCall) { 3611 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3612 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3613 3614 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3615 MachinePointerInfo(), 3616 false, false, 0)); 3617 } else { 3618 // Calculate and remember argument location. 3619 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3620 TailCallArguments); 3621 } 3622 } 3623 } 3624 3625 if (!MemOpChains.empty()) 3626 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3627 &MemOpChains[0], MemOpChains.size()); 3628 3629 // Build a sequence of copy-to-reg nodes chained together with token chain 3630 // and flag operands which copy the outgoing args into the appropriate regs. 3631 SDValue InFlag; 3632 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3633 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3634 RegsToPass[i].second, InFlag); 3635 InFlag = Chain.getValue(1); 3636 } 3637 3638 // Set CR bit 6 to true if this is a vararg call with floating args passed in 3639 // registers. 3640 if (isVarArg) { 3641 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3642 SDValue Ops[] = { Chain, InFlag }; 3643 3644 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 3645 dl, VTs, Ops, InFlag.getNode() ? 2 : 1); 3646 3647 InFlag = Chain.getValue(1); 3648 } 3649 3650 if (isTailCall) 3651 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3652 false, TailCallArguments); 3653 3654 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3655 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3656 Ins, InVals); 3657 } 3658 3659 // Copy an argument into memory, being careful to do this outside the 3660 // call sequence for the call to which the argument belongs. 3661 SDValue 3662 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 3663 SDValue CallSeqStart, 3664 ISD::ArgFlagsTy Flags, 3665 SelectionDAG &DAG, 3666 DebugLoc dl) const { 3667 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3668 CallSeqStart.getNode()->getOperand(0), 3669 Flags, DAG, dl); 3670 // The MEMCPY must go outside the CALLSEQ_START..END. 3671 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3672 CallSeqStart.getNode()->getOperand(1)); 3673 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3674 NewCallSeqStart.getNode()); 3675 return NewCallSeqStart; 3676 } 3677 3678 SDValue 3679 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 3680 CallingConv::ID CallConv, bool isVarArg, 3681 bool isTailCall, 3682 const SmallVectorImpl<ISD::OutputArg> &Outs, 3683 const SmallVectorImpl<SDValue> &OutVals, 3684 const SmallVectorImpl<ISD::InputArg> &Ins, 3685 DebugLoc dl, SelectionDAG &DAG, 3686 SmallVectorImpl<SDValue> &InVals) const { 3687 3688 unsigned NumOps = Outs.size(); 3689 3690 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3691 unsigned PtrByteSize = 8; 3692 3693 MachineFunction &MF = DAG.getMachineFunction(); 3694 3695 // Mark this function as potentially containing a function that contains a 3696 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3697 // and restoring the callers stack pointer in this functions epilog. This is 3698 // done because by tail calling the called function might overwrite the value 3699 // in this function's (MF) stack pointer stack slot 0(SP). 3700 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3701 CallConv == CallingConv::Fast) 3702 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3703 3704 unsigned nAltivecParamsAtEnd = 0; 3705 3706 // Count how many bytes are to be pushed on the stack, including the linkage 3707 // area, and parameter passing area. We start with at least 48 bytes, which 3708 // is reserved space for [SP][CR][LR][3 x unused]. 3709 // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result 3710 // of this call. 3711 unsigned NumBytes = 3712 CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv, 3713 Outs, OutVals, nAltivecParamsAtEnd); 3714 3715 // Calculate by how many bytes the stack has to be adjusted in case of tail 3716 // call optimization. 3717 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3718 3719 // To protect arguments on the stack from being clobbered in a tail call, 3720 // force all the loads to happen before doing any other lowering. 3721 if (isTailCall) 3722 Chain = DAG.getStackArgumentTokenFactor(Chain); 3723 3724 // Adjust the stack pointer for the new arguments... 3725 // These operations are automatically eliminated by the prolog/epilog pass 3726 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3727 SDValue CallSeqStart = Chain; 3728 3729 // Load the return address and frame pointer so it can be move somewhere else 3730 // later. 3731 SDValue LROp, FPOp; 3732 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3733 dl); 3734 3735 // Set up a copy of the stack pointer for use loading and storing any 3736 // arguments that may not fit in the registers available for argument 3737 // passing. 3738 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3739 3740 // Figure out which arguments are going to go in registers, and which in 3741 // memory. Also, if this is a vararg function, floating point operations 3742 // must be stored to our stack, and loaded into integer regs as well, if 3743 // any integer regs are available for argument passing. 3744 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); 3745 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3746 3747 static const uint16_t GPR[] = { 3748 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3749 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3750 }; 3751 static const uint16_t *FPR = GetFPR(); 3752 3753 static const uint16_t VR[] = { 3754 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3755 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3756 }; 3757 const unsigned NumGPRs = array_lengthof(GPR); 3758 const unsigned NumFPRs = 13; 3759 const unsigned NumVRs = array_lengthof(VR); 3760 3761 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3762 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3763 3764 SmallVector<SDValue, 8> MemOpChains; 3765 for (unsigned i = 0; i != NumOps; ++i) { 3766 SDValue Arg = OutVals[i]; 3767 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3768 3769 // PtrOff will be used to store the current argument to the stack if a 3770 // register cannot be found for it. 3771 SDValue PtrOff; 3772 3773 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3774 3775 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3776 3777 // Promote integers to 64-bit values. 3778 if (Arg.getValueType() == MVT::i32) { 3779 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3780 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3781 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3782 } 3783 3784 // FIXME memcpy is used way more than necessary. Correctness first. 3785 // Note: "by value" is code for passing a structure by value, not 3786 // basic types. 3787 if (Flags.isByVal()) { 3788 // Note: Size includes alignment padding, so 3789 // struct x { short a; char b; } 3790 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 3791 // These are the proper values we need for right-justifying the 3792 // aggregate in a parameter register. 3793 unsigned Size = Flags.getByValSize(); 3794 3795 // An empty aggregate parameter takes up no storage and no 3796 // registers. 3797 if (Size == 0) 3798 continue; 3799 3800 // All aggregates smaller than 8 bytes must be passed right-justified. 3801 if (Size==1 || Size==2 || Size==4) { 3802 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 3803 if (GPR_idx != NumGPRs) { 3804 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3805 MachinePointerInfo(), VT, 3806 false, false, 0); 3807 MemOpChains.push_back(Load.getValue(1)); 3808 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3809 3810 ArgOffset += PtrByteSize; 3811 continue; 3812 } 3813 } 3814 3815 if (GPR_idx == NumGPRs && Size < 8) { 3816 SDValue Const = DAG.getConstant(PtrByteSize - Size, 3817 PtrOff.getValueType()); 3818 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3819 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 3820 CallSeqStart, 3821 Flags, DAG, dl); 3822 ArgOffset += PtrByteSize; 3823 continue; 3824 } 3825 // Copy entire object into memory. There are cases where gcc-generated 3826 // code assumes it is there, even if it could be put entirely into 3827 // registers. (This is not what the doc says.) 3828 3829 // FIXME: The above statement is likely due to a misunderstanding of the 3830 // documents. All arguments must be copied into the parameter area BY 3831 // THE CALLEE in the event that the callee takes the address of any 3832 // formal argument. That has not yet been implemented. However, it is 3833 // reasonable to use the stack area as a staging area for the register 3834 // load. 3835 3836 // Skip this for small aggregates, as we will use the same slot for a 3837 // right-justified copy, below. 3838 if (Size >= 8) 3839 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 3840 CallSeqStart, 3841 Flags, DAG, dl); 3842 3843 // When a register is available, pass a small aggregate right-justified. 3844 if (Size < 8 && GPR_idx != NumGPRs) { 3845 // The easiest way to get this right-justified in a register 3846 // is to copy the structure into the rightmost portion of a 3847 // local variable slot, then load the whole slot into the 3848 // register. 3849 // FIXME: The memcpy seems to produce pretty awful code for 3850 // small aggregates, particularly for packed ones. 3851 // FIXME: It would be preferable to use the slot in the 3852 // parameter save area instead of a new local variable. 3853 SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); 3854 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3855 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 3856 CallSeqStart, 3857 Flags, DAG, dl); 3858 3859 // Load the slot into the register. 3860 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 3861 MachinePointerInfo(), 3862 false, false, false, 0); 3863 MemOpChains.push_back(Load.getValue(1)); 3864 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3865 3866 // Done with this argument. 3867 ArgOffset += PtrByteSize; 3868 continue; 3869 } 3870 3871 // For aggregates larger than PtrByteSize, copy the pieces of the 3872 // object that fit into registers from the parameter save area. 3873 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3874 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3875 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3876 if (GPR_idx != NumGPRs) { 3877 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3878 MachinePointerInfo(), 3879 false, false, false, 0); 3880 MemOpChains.push_back(Load.getValue(1)); 3881 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3882 ArgOffset += PtrByteSize; 3883 } else { 3884 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3885 break; 3886 } 3887 } 3888 continue; 3889 } 3890 3891 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3892 default: llvm_unreachable("Unexpected ValueType for argument!"); 3893 case MVT::i32: 3894 case MVT::i64: 3895 if (GPR_idx != NumGPRs) { 3896 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3897 } else { 3898 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3899 true, isTailCall, false, MemOpChains, 3900 TailCallArguments, dl); 3901 } 3902 ArgOffset += PtrByteSize; 3903 break; 3904 case MVT::f32: 3905 case MVT::f64: 3906 if (FPR_idx != NumFPRs) { 3907 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3908 3909 if (isVarArg) { 3910 // A single float or an aggregate containing only a single float 3911 // must be passed right-justified in the stack doubleword, and 3912 // in the GPR, if one is available. 3913 SDValue StoreOff; 3914 if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) { 3915 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3916 StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3917 } else 3918 StoreOff = PtrOff; 3919 3920 SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff, 3921 MachinePointerInfo(), false, false, 0); 3922 MemOpChains.push_back(Store); 3923 3924 // Float varargs are always shadowed in available integer registers 3925 if (GPR_idx != NumGPRs) { 3926 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3927 MachinePointerInfo(), false, false, 3928 false, 0); 3929 MemOpChains.push_back(Load.getValue(1)); 3930 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3931 } 3932 } else if (GPR_idx != NumGPRs) 3933 // If we have any FPRs remaining, we may also have GPRs remaining. 3934 ++GPR_idx; 3935 } else { 3936 // Single-precision floating-point values are mapped to the 3937 // second (rightmost) word of the stack doubleword. 3938 if (Arg.getValueType() == MVT::f32) { 3939 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3940 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3941 } 3942 3943 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3944 true, isTailCall, false, MemOpChains, 3945 TailCallArguments, dl); 3946 } 3947 ArgOffset += 8; 3948 break; 3949 case MVT::v4f32: 3950 case MVT::v4i32: 3951 case MVT::v8i16: 3952 case MVT::v16i8: 3953 if (isVarArg) { 3954 // These go aligned on the stack, or in the corresponding R registers 3955 // when within range. The Darwin PPC ABI doc claims they also go in 3956 // V registers; in fact gcc does this only for arguments that are 3957 // prototyped, not for those that match the ... We do it for all 3958 // arguments, seems to work. 3959 while (ArgOffset % 16 !=0) { 3960 ArgOffset += PtrByteSize; 3961 if (GPR_idx != NumGPRs) 3962 GPR_idx++; 3963 } 3964 // We could elide this store in the case where the object fits 3965 // entirely in R registers. Maybe later. 3966 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3967 DAG.getConstant(ArgOffset, PtrVT)); 3968 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3969 MachinePointerInfo(), false, false, 0); 3970 MemOpChains.push_back(Store); 3971 if (VR_idx != NumVRs) { 3972 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3973 MachinePointerInfo(), 3974 false, false, false, 0); 3975 MemOpChains.push_back(Load.getValue(1)); 3976 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3977 } 3978 ArgOffset += 16; 3979 for (unsigned i=0; i<16; i+=PtrByteSize) { 3980 if (GPR_idx == NumGPRs) 3981 break; 3982 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3983 DAG.getConstant(i, PtrVT)); 3984 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3985 false, false, false, 0); 3986 MemOpChains.push_back(Load.getValue(1)); 3987 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3988 } 3989 break; 3990 } 3991 3992 // Non-varargs Altivec params generally go in registers, but have 3993 // stack space allocated at the end. 3994 if (VR_idx != NumVRs) { 3995 // Doesn't have GPR space allocated. 3996 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3997 } else { 3998 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3999 true, isTailCall, true, MemOpChains, 4000 TailCallArguments, dl); 4001 ArgOffset += 16; 4002 } 4003 break; 4004 } 4005 } 4006 4007 if (!MemOpChains.empty()) 4008 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4009 &MemOpChains[0], MemOpChains.size()); 4010 4011 // Check if this is an indirect call (MTCTR/BCTRL). 4012 // See PrepareCall() for more information about calls through function 4013 // pointers in the 64-bit SVR4 ABI. 4014 if (!isTailCall && 4015 !dyn_cast<GlobalAddressSDNode>(Callee) && 4016 !dyn_cast<ExternalSymbolSDNode>(Callee) && 4017 !isBLACompatibleAddress(Callee, DAG)) { 4018 // Load r2 into a virtual register and store it to the TOC save area. 4019 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 4020 // TOC save area offset. 4021 SDValue PtrOff = DAG.getIntPtrConstant(40); 4022 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4023 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 4024 false, false, 0); 4025 // R12 must contain the address of an indirect callee. This does not 4026 // mean the MTCTR instruction must use R12; it's easier to model this 4027 // as an extra parameter, so do that. 4028 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 4029 } 4030 4031 // Build a sequence of copy-to-reg nodes chained together with token chain 4032 // and flag operands which copy the outgoing args into the appropriate regs. 4033 SDValue InFlag; 4034 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4035 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4036 RegsToPass[i].second, InFlag); 4037 InFlag = Chain.getValue(1); 4038 } 4039 4040 if (isTailCall) 4041 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 4042 FPOp, true, TailCallArguments); 4043 4044 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 4045 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 4046 Ins, InVals); 4047 } 4048 4049 SDValue 4050 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 4051 CallingConv::ID CallConv, bool isVarArg, 4052 bool isTailCall, 4053 const SmallVectorImpl<ISD::OutputArg> &Outs, 4054 const SmallVectorImpl<SDValue> &OutVals, 4055 const SmallVectorImpl<ISD::InputArg> &Ins, 4056 DebugLoc dl, SelectionDAG &DAG, 4057 SmallVectorImpl<SDValue> &InVals) const { 4058 4059 unsigned NumOps = Outs.size(); 4060 4061 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4062 bool isPPC64 = PtrVT == MVT::i64; 4063 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4064 4065 MachineFunction &MF = DAG.getMachineFunction(); 4066 4067 // Mark this function as potentially containing a function that contains a 4068 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4069 // and restoring the callers stack pointer in this functions epilog. This is 4070 // done because by tail calling the called function might overwrite the value 4071 // in this function's (MF) stack pointer stack slot 0(SP). 4072 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4073 CallConv == CallingConv::Fast) 4074 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4075 4076 unsigned nAltivecParamsAtEnd = 0; 4077 4078 // Count how many bytes are to be pushed on the stack, including the linkage 4079 // area, and parameter passing area. We start with 24/48 bytes, which is 4080 // prereserved space for [SP][CR][LR][3 x unused]. 4081 unsigned NumBytes = 4082 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 4083 Outs, OutVals, 4084 nAltivecParamsAtEnd); 4085 4086 // Calculate by how many bytes the stack has to be adjusted in case of tail 4087 // call optimization. 4088 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4089 4090 // To protect arguments on the stack from being clobbered in a tail call, 4091 // force all the loads to happen before doing any other lowering. 4092 if (isTailCall) 4093 Chain = DAG.getStackArgumentTokenFactor(Chain); 4094 4095 // Adjust the stack pointer for the new arguments... 4096 // These operations are automatically eliminated by the prolog/epilog pass 4097 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 4098 SDValue CallSeqStart = Chain; 4099 4100 // Load the return address and frame pointer so it can be move somewhere else 4101 // later. 4102 SDValue LROp, FPOp; 4103 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4104 dl); 4105 4106 // Set up a copy of the stack pointer for use loading and storing any 4107 // arguments that may not fit in the registers available for argument 4108 // passing. 4109 SDValue StackPtr; 4110 if (isPPC64) 4111 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4112 else 4113 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4114 4115 // Figure out which arguments are going to go in registers, and which in 4116 // memory. Also, if this is a vararg function, floating point operations 4117 // must be stored to our stack, and loaded into integer regs as well, if 4118 // any integer regs are available for argument passing. 4119 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 4120 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4121 4122 static const uint16_t GPR_32[] = { // 32-bit registers. 4123 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4124 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4125 }; 4126 static const uint16_t GPR_64[] = { // 64-bit registers. 4127 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4128 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4129 }; 4130 static const uint16_t *FPR = GetFPR(); 4131 4132 static const uint16_t VR[] = { 4133 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4134 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4135 }; 4136 const unsigned NumGPRs = array_lengthof(GPR_32); 4137 const unsigned NumFPRs = 13; 4138 const unsigned NumVRs = array_lengthof(VR); 4139 4140 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 4141 4142 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4143 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4144 4145 SmallVector<SDValue, 8> MemOpChains; 4146 for (unsigned i = 0; i != NumOps; ++i) { 4147 SDValue Arg = OutVals[i]; 4148 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4149 4150 // PtrOff will be used to store the current argument to the stack if a 4151 // register cannot be found for it. 4152 SDValue PtrOff; 4153 4154 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 4155 4156 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4157 4158 // On PPC64, promote integers to 64-bit values. 4159 if (isPPC64 && Arg.getValueType() == MVT::i32) { 4160 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4161 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4162 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4163 } 4164 4165 // FIXME memcpy is used way more than necessary. Correctness first. 4166 // Note: "by value" is code for passing a structure by value, not 4167 // basic types. 4168 if (Flags.isByVal()) { 4169 unsigned Size = Flags.getByValSize(); 4170 // Very small objects are passed right-justified. Everything else is 4171 // passed left-justified. 4172 if (Size==1 || Size==2) { 4173 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 4174 if (GPR_idx != NumGPRs) { 4175 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4176 MachinePointerInfo(), VT, 4177 false, false, 0); 4178 MemOpChains.push_back(Load.getValue(1)); 4179 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4180 4181 ArgOffset += PtrByteSize; 4182 } else { 4183 SDValue Const = DAG.getConstant(PtrByteSize - Size, 4184 PtrOff.getValueType()); 4185 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4186 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4187 CallSeqStart, 4188 Flags, DAG, dl); 4189 ArgOffset += PtrByteSize; 4190 } 4191 continue; 4192 } 4193 // Copy entire object into memory. There are cases where gcc-generated 4194 // code assumes it is there, even if it could be put entirely into 4195 // registers. (This is not what the doc says.) 4196 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 4197 CallSeqStart, 4198 Flags, DAG, dl); 4199 4200 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 4201 // copy the pieces of the object that fit into registers from the 4202 // parameter save area. 4203 for (unsigned j=0; j<Size; j+=PtrByteSize) { 4204 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 4205 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 4206 if (GPR_idx != NumGPRs) { 4207 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 4208 MachinePointerInfo(), 4209 false, false, false, 0); 4210 MemOpChains.push_back(Load.getValue(1)); 4211 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4212 ArgOffset += PtrByteSize; 4213 } else { 4214 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 4215 break; 4216 } 4217 } 4218 continue; 4219 } 4220 4221 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 4222 default: llvm_unreachable("Unexpected ValueType for argument!"); 4223 case MVT::i32: 4224 case MVT::i64: 4225 if (GPR_idx != NumGPRs) { 4226 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 4227 } else { 4228 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4229 isPPC64, isTailCall, false, MemOpChains, 4230 TailCallArguments, dl); 4231 } 4232 ArgOffset += PtrByteSize; 4233 break; 4234 case MVT::f32: 4235 case MVT::f64: 4236 if (FPR_idx != NumFPRs) { 4237 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 4238 4239 if (isVarArg) { 4240 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 4241 MachinePointerInfo(), false, false, 0); 4242 MemOpChains.push_back(Store); 4243 4244 // Float varargs are always shadowed in available integer registers 4245 if (GPR_idx != NumGPRs) { 4246 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 4247 MachinePointerInfo(), false, false, 4248 false, 0); 4249 MemOpChains.push_back(Load.getValue(1)); 4250 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4251 } 4252 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 4253 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 4254 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 4255 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 4256 MachinePointerInfo(), 4257 false, false, false, 0); 4258 MemOpChains.push_back(Load.getValue(1)); 4259 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4260 } 4261 } else { 4262 // If we have any FPRs remaining, we may also have GPRs remaining. 4263 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 4264 // GPRs. 4265 if (GPR_idx != NumGPRs) 4266 ++GPR_idx; 4267 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 4268 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 4269 ++GPR_idx; 4270 } 4271 } else 4272 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4273 isPPC64, isTailCall, false, MemOpChains, 4274 TailCallArguments, dl); 4275 if (isPPC64) 4276 ArgOffset += 8; 4277 else 4278 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 4279 break; 4280 case MVT::v4f32: 4281 case MVT::v4i32: 4282 case MVT::v8i16: 4283 case MVT::v16i8: 4284 if (isVarArg) { 4285 // These go aligned on the stack, or in the corresponding R registers 4286 // when within range. The Darwin PPC ABI doc claims they also go in 4287 // V registers; in fact gcc does this only for arguments that are 4288 // prototyped, not for those that match the ... We do it for all 4289 // arguments, seems to work. 4290 while (ArgOffset % 16 !=0) { 4291 ArgOffset += PtrByteSize; 4292 if (GPR_idx != NumGPRs) 4293 GPR_idx++; 4294 } 4295 // We could elide this store in the case where the object fits 4296 // entirely in R registers. Maybe later. 4297 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4298 DAG.getConstant(ArgOffset, PtrVT)); 4299 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 4300 MachinePointerInfo(), false, false, 0); 4301 MemOpChains.push_back(Store); 4302 if (VR_idx != NumVRs) { 4303 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 4304 MachinePointerInfo(), 4305 false, false, false, 0); 4306 MemOpChains.push_back(Load.getValue(1)); 4307 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 4308 } 4309 ArgOffset += 16; 4310 for (unsigned i=0; i<16; i+=PtrByteSize) { 4311 if (GPR_idx == NumGPRs) 4312 break; 4313 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 4314 DAG.getConstant(i, PtrVT)); 4315 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 4316 false, false, false, 0); 4317 MemOpChains.push_back(Load.getValue(1)); 4318 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4319 } 4320 break; 4321 } 4322 4323 // Non-varargs Altivec params generally go in registers, but have 4324 // stack space allocated at the end. 4325 if (VR_idx != NumVRs) { 4326 // Doesn't have GPR space allocated. 4327 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 4328 } else if (nAltivecParamsAtEnd==0) { 4329 // We are emitting Altivec params in order. 4330 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4331 isPPC64, isTailCall, true, MemOpChains, 4332 TailCallArguments, dl); 4333 ArgOffset += 16; 4334 } 4335 break; 4336 } 4337 } 4338 // If all Altivec parameters fit in registers, as they usually do, 4339 // they get stack space following the non-Altivec parameters. We 4340 // don't track this here because nobody below needs it. 4341 // If there are more Altivec parameters than fit in registers emit 4342 // the stores here. 4343 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 4344 unsigned j = 0; 4345 // Offset is aligned; skip 1st 12 params which go in V registers. 4346 ArgOffset = ((ArgOffset+15)/16)*16; 4347 ArgOffset += 12*16; 4348 for (unsigned i = 0; i != NumOps; ++i) { 4349 SDValue Arg = OutVals[i]; 4350 EVT ArgType = Outs[i].VT; 4351 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 4352 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 4353 if (++j > NumVRs) { 4354 SDValue PtrOff; 4355 // We are emitting Altivec params in order. 4356 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 4357 isPPC64, isTailCall, true, MemOpChains, 4358 TailCallArguments, dl); 4359 ArgOffset += 16; 4360 } 4361 } 4362 } 4363 } 4364 4365 if (!MemOpChains.empty()) 4366 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4367 &MemOpChains[0], MemOpChains.size()); 4368 4369 // On Darwin, R12 must contain the address of an indirect callee. This does 4370 // not mean the MTCTR instruction must use R12; it's easier to model this as 4371 // an extra parameter, so do that. 4372 if (!isTailCall && 4373 !dyn_cast<GlobalAddressSDNode>(Callee) && 4374 !dyn_cast<ExternalSymbolSDNode>(Callee) && 4375 !isBLACompatibleAddress(Callee, DAG)) 4376 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 4377 PPC::R12), Callee)); 4378 4379 // Build a sequence of copy-to-reg nodes chained together with token chain 4380 // and flag operands which copy the outgoing args into the appropriate regs. 4381 SDValue InFlag; 4382 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4383 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4384 RegsToPass[i].second, InFlag); 4385 InFlag = Chain.getValue(1); 4386 } 4387 4388 if (isTailCall) 4389 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 4390 FPOp, true, TailCallArguments); 4391 4392 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 4393 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 4394 Ins, InVals); 4395 } 4396 4397 bool 4398 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 4399 MachineFunction &MF, bool isVarArg, 4400 const SmallVectorImpl<ISD::OutputArg> &Outs, 4401 LLVMContext &Context) const { 4402 SmallVector<CCValAssign, 16> RVLocs; 4403 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 4404 RVLocs, Context); 4405 return CCInfo.CheckReturn(Outs, RetCC_PPC); 4406 } 4407 4408 SDValue 4409 PPCTargetLowering::LowerReturn(SDValue Chain, 4410 CallingConv::ID CallConv, bool isVarArg, 4411 const SmallVectorImpl<ISD::OutputArg> &Outs, 4412 const SmallVectorImpl<SDValue> &OutVals, 4413 DebugLoc dl, SelectionDAG &DAG) const { 4414 4415 SmallVector<CCValAssign, 16> RVLocs; 4416 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4417 getTargetMachine(), RVLocs, *DAG.getContext()); 4418 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 4419 4420 // If this is the first return lowered for this function, add the regs to the 4421 // liveout set for the function. 4422 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 4423 for (unsigned i = 0; i != RVLocs.size(); ++i) 4424 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 4425 } 4426 4427 SDValue Flag; 4428 4429 // Copy the result values into the output registers. 4430 for (unsigned i = 0; i != RVLocs.size(); ++i) { 4431 CCValAssign &VA = RVLocs[i]; 4432 assert(VA.isRegLoc() && "Can only return in registers!"); 4433 4434 SDValue Arg = OutVals[i]; 4435 4436 switch (VA.getLocInfo()) { 4437 default: llvm_unreachable("Unknown loc info!"); 4438 case CCValAssign::Full: break; 4439 case CCValAssign::AExt: 4440 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 4441 break; 4442 case CCValAssign::ZExt: 4443 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 4444 break; 4445 case CCValAssign::SExt: 4446 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 4447 break; 4448 } 4449 4450 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 4451 Flag = Chain.getValue(1); 4452 } 4453 4454 if (Flag.getNode()) 4455 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 4456 else 4457 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 4458 } 4459 4460 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 4461 const PPCSubtarget &Subtarget) const { 4462 // When we pop the dynamic allocation we need to restore the SP link. 4463 DebugLoc dl = Op.getDebugLoc(); 4464 4465 // Get the corect type for pointers. 4466 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4467 4468 // Construct the stack pointer operand. 4469 bool isPPC64 = Subtarget.isPPC64(); 4470 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 4471 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 4472 4473 // Get the operands for the STACKRESTORE. 4474 SDValue Chain = Op.getOperand(0); 4475 SDValue SaveSP = Op.getOperand(1); 4476 4477 // Load the old link SP. 4478 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 4479 MachinePointerInfo(), 4480 false, false, false, 0); 4481 4482 // Restore the stack pointer. 4483 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 4484 4485 // Store the old link SP. 4486 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 4487 false, false, 0); 4488 } 4489 4490 4491 4492 SDValue 4493 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 4494 MachineFunction &MF = DAG.getMachineFunction(); 4495 bool isPPC64 = PPCSubTarget.isPPC64(); 4496 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 4497 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4498 4499 // Get current frame pointer save index. The users of this index will be 4500 // primarily DYNALLOC instructions. 4501 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 4502 int RASI = FI->getReturnAddrSaveIndex(); 4503 4504 // If the frame pointer save index hasn't been defined yet. 4505 if (!RASI) { 4506 // Find out what the fix offset of the frame pointer save area. 4507 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 4508 // Allocate the frame index for frame pointer save area. 4509 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 4510 // Save the result. 4511 FI->setReturnAddrSaveIndex(RASI); 4512 } 4513 return DAG.getFrameIndex(RASI, PtrVT); 4514 } 4515 4516 SDValue 4517 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 4518 MachineFunction &MF = DAG.getMachineFunction(); 4519 bool isPPC64 = PPCSubTarget.isPPC64(); 4520 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 4521 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4522 4523 // Get current frame pointer save index. The users of this index will be 4524 // primarily DYNALLOC instructions. 4525 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 4526 int FPSI = FI->getFramePointerSaveIndex(); 4527 4528 // If the frame pointer save index hasn't been defined yet. 4529 if (!FPSI) { 4530 // Find out what the fix offset of the frame pointer save area. 4531 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 4532 isDarwinABI); 4533 4534 // Allocate the frame index for frame pointer save area. 4535 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 4536 // Save the result. 4537 FI->setFramePointerSaveIndex(FPSI); 4538 } 4539 return DAG.getFrameIndex(FPSI, PtrVT); 4540 } 4541 4542 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 4543 SelectionDAG &DAG, 4544 const PPCSubtarget &Subtarget) const { 4545 // Get the inputs. 4546 SDValue Chain = Op.getOperand(0); 4547 SDValue Size = Op.getOperand(1); 4548 DebugLoc dl = Op.getDebugLoc(); 4549 4550 // Get the corect type for pointers. 4551 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4552 // Negate the size. 4553 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 4554 DAG.getConstant(0, PtrVT), Size); 4555 // Construct a node for the frame pointer save index. 4556 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 4557 // Build a DYNALLOC node. 4558 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 4559 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 4560 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 4561 } 4562 4563 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 4564 /// possible. 4565 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 4566 // Not FP? Not a fsel. 4567 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 4568 !Op.getOperand(2).getValueType().isFloatingPoint()) 4569 return Op; 4570 4571 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 4572 4573 // Cannot handle SETEQ/SETNE. 4574 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 4575 4576 EVT ResVT = Op.getValueType(); 4577 EVT CmpVT = Op.getOperand(0).getValueType(); 4578 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4579 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 4580 DebugLoc dl = Op.getDebugLoc(); 4581 4582 // If the RHS of the comparison is a 0.0, we don't need to do the 4583 // subtraction at all. 4584 if (isFloatingPointZero(RHS)) 4585 switch (CC) { 4586 default: break; // SETUO etc aren't handled by fsel. 4587 case ISD::SETULT: 4588 case ISD::SETLT: 4589 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 4590 case ISD::SETOGE: 4591 case ISD::SETGE: 4592 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 4593 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 4594 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 4595 case ISD::SETUGT: 4596 case ISD::SETGT: 4597 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 4598 case ISD::SETOLE: 4599 case ISD::SETLE: 4600 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 4601 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 4602 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 4603 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 4604 } 4605 4606 SDValue Cmp; 4607 switch (CC) { 4608 default: break; // SETUO etc aren't handled by fsel. 4609 case ISD::SETULT: 4610 case ISD::SETLT: 4611 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 4612 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4613 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4614 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 4615 case ISD::SETOGE: 4616 case ISD::SETGE: 4617 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 4618 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4619 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4620 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 4621 case ISD::SETUGT: 4622 case ISD::SETGT: 4623 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 4624 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4625 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4626 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 4627 case ISD::SETOLE: 4628 case ISD::SETLE: 4629 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 4630 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4631 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4632 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 4633 } 4634 return Op; 4635 } 4636 4637 // FIXME: Split this code up when LegalizeDAGTypes lands. 4638 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 4639 DebugLoc dl) const { 4640 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 4641 SDValue Src = Op.getOperand(0); 4642 if (Src.getValueType() == MVT::f32) 4643 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 4644 4645 SDValue Tmp; 4646 switch (Op.getValueType().getSimpleVT().SimpleTy) { 4647 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 4648 case MVT::i32: 4649 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 4650 PPCISD::FCTIDZ, 4651 dl, MVT::f64, Src); 4652 break; 4653 case MVT::i64: 4654 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 4655 break; 4656 } 4657 4658 // Convert the FP value to an int value through memory. 4659 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 4660 4661 // Emit a store to the stack slot. 4662 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 4663 MachinePointerInfo(), false, false, 0); 4664 4665 // Result is a load from the stack slot. If loading 4 bytes, make sure to 4666 // add in a bias. 4667 if (Op.getValueType() == MVT::i32) 4668 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 4669 DAG.getConstant(4, FIPtr.getValueType())); 4670 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 4671 false, false, false, 0); 4672 } 4673 4674 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 4675 SelectionDAG &DAG) const { 4676 DebugLoc dl = Op.getDebugLoc(); 4677 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 4678 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 4679 return SDValue(); 4680 4681 if (Op.getOperand(0).getValueType() == MVT::i64) { 4682 SDValue SINT = Op.getOperand(0); 4683 // When converting to single-precision, we actually need to convert 4684 // to double-precision first and then round to single-precision. 4685 // To avoid double-rounding effects during that operation, we have 4686 // to prepare the input operand. Bits that might be truncated when 4687 // converting to double-precision are replaced by a bit that won't 4688 // be lost at this stage, but is below the single-precision rounding 4689 // position. 4690 // 4691 // However, if -enable-unsafe-fp-math is in effect, accept double 4692 // rounding to avoid the extra overhead. 4693 if (Op.getValueType() == MVT::f32 && 4694 !DAG.getTarget().Options.UnsafeFPMath) { 4695 4696 // Twiddle input to make sure the low 11 bits are zero. (If this 4697 // is the case, we are guaranteed the value will fit into the 53 bit 4698 // mantissa of an IEEE double-precision value without rounding.) 4699 // If any of those low 11 bits were not zero originally, make sure 4700 // bit 12 (value 2048) is set instead, so that the final rounding 4701 // to single-precision gets the correct result. 4702 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 4703 SINT, DAG.getConstant(2047, MVT::i64)); 4704 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 4705 Round, DAG.getConstant(2047, MVT::i64)); 4706 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 4707 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 4708 Round, DAG.getConstant(-2048, MVT::i64)); 4709 4710 // However, we cannot use that value unconditionally: if the magnitude 4711 // of the input value is small, the bit-twiddling we did above might 4712 // end up visibly changing the output. Fortunately, in that case, we 4713 // don't need to twiddle bits since the original input will convert 4714 // exactly to double-precision floating-point already. Therefore, 4715 // construct a conditional to use the original value if the top 11 4716 // bits are all sign-bit copies, and use the rounded value computed 4717 // above otherwise. 4718 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 4719 SINT, DAG.getConstant(53, MVT::i32)); 4720 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 4721 Cond, DAG.getConstant(1, MVT::i64)); 4722 Cond = DAG.getSetCC(dl, MVT::i32, 4723 Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); 4724 4725 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 4726 } 4727 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 4728 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 4729 if (Op.getValueType() == MVT::f32) 4730 FP = DAG.getNode(ISD::FP_ROUND, dl, 4731 MVT::f32, FP, DAG.getIntPtrConstant(0)); 4732 return FP; 4733 } 4734 4735 assert(Op.getOperand(0).getValueType() == MVT::i32 && 4736 "Unhandled SINT_TO_FP type in custom expander!"); 4737 // Since we only generate this in 64-bit mode, we can take advantage of 4738 // 64-bit registers. In particular, sign extend the input value into the 4739 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 4740 // then lfd it and fcfid it. 4741 MachineFunction &MF = DAG.getMachineFunction(); 4742 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 4743 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 4744 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4745 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4746 4747 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 4748 Op.getOperand(0)); 4749 4750 // STD the extended value into the stack slot. 4751 MachineMemOperand *MMO = 4752 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 4753 MachineMemOperand::MOStore, 8, 8); 4754 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 4755 SDValue Store = 4756 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 4757 Ops, 4, MVT::i64, MMO); 4758 // Load the value as a double. 4759 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 4760 false, false, false, 0); 4761 4762 // FCFID it and return it. 4763 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 4764 if (Op.getValueType() == MVT::f32) 4765 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 4766 return FP; 4767 } 4768 4769 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 4770 SelectionDAG &DAG) const { 4771 DebugLoc dl = Op.getDebugLoc(); 4772 /* 4773 The rounding mode is in bits 30:31 of FPSR, and has the following 4774 settings: 4775 00 Round to nearest 4776 01 Round to 0 4777 10 Round to +inf 4778 11 Round to -inf 4779 4780 FLT_ROUNDS, on the other hand, expects the following: 4781 -1 Undefined 4782 0 Round to 0 4783 1 Round to nearest 4784 2 Round to +inf 4785 3 Round to -inf 4786 4787 To perform the conversion, we do: 4788 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 4789 */ 4790 4791 MachineFunction &MF = DAG.getMachineFunction(); 4792 EVT VT = Op.getValueType(); 4793 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4794 std::vector<EVT> NodeTys; 4795 SDValue MFFSreg, InFlag; 4796 4797 // Save FP Control Word to register 4798 NodeTys.push_back(MVT::f64); // return register 4799 NodeTys.push_back(MVT::Glue); // unused in this context 4800 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4801 4802 // Save FP register to stack slot 4803 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 4804 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 4805 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 4806 StackSlot, MachinePointerInfo(), false, false,0); 4807 4808 // Load FP Control Word from low 32 bits of stack slot. 4809 SDValue Four = DAG.getConstant(4, PtrVT); 4810 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 4811 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 4812 false, false, false, 0); 4813 4814 // Transform as necessary 4815 SDValue CWD1 = 4816 DAG.getNode(ISD::AND, dl, MVT::i32, 4817 CWD, DAG.getConstant(3, MVT::i32)); 4818 SDValue CWD2 = 4819 DAG.getNode(ISD::SRL, dl, MVT::i32, 4820 DAG.getNode(ISD::AND, dl, MVT::i32, 4821 DAG.getNode(ISD::XOR, dl, MVT::i32, 4822 CWD, DAG.getConstant(3, MVT::i32)), 4823 DAG.getConstant(3, MVT::i32)), 4824 DAG.getConstant(1, MVT::i32)); 4825 4826 SDValue RetVal = 4827 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 4828 4829 return DAG.getNode((VT.getSizeInBits() < 16 ? 4830 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 4831 } 4832 4833 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 4834 EVT VT = Op.getValueType(); 4835 unsigned BitWidth = VT.getSizeInBits(); 4836 DebugLoc dl = Op.getDebugLoc(); 4837 assert(Op.getNumOperands() == 3 && 4838 VT == Op.getOperand(1).getValueType() && 4839 "Unexpected SHL!"); 4840 4841 // Expand into a bunch of logical ops. Note that these ops 4842 // depend on the PPC behavior for oversized shift amounts. 4843 SDValue Lo = Op.getOperand(0); 4844 SDValue Hi = Op.getOperand(1); 4845 SDValue Amt = Op.getOperand(2); 4846 EVT AmtVT = Amt.getValueType(); 4847 4848 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4849 DAG.getConstant(BitWidth, AmtVT), Amt); 4850 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 4851 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 4852 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 4853 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4854 DAG.getConstant(-BitWidth, AmtVT)); 4855 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 4856 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 4857 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 4858 SDValue OutOps[] = { OutLo, OutHi }; 4859 return DAG.getMergeValues(OutOps, 2, dl); 4860 } 4861 4862 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 4863 EVT VT = Op.getValueType(); 4864 DebugLoc dl = Op.getDebugLoc(); 4865 unsigned BitWidth = VT.getSizeInBits(); 4866 assert(Op.getNumOperands() == 3 && 4867 VT == Op.getOperand(1).getValueType() && 4868 "Unexpected SRL!"); 4869 4870 // Expand into a bunch of logical ops. Note that these ops 4871 // depend on the PPC behavior for oversized shift amounts. 4872 SDValue Lo = Op.getOperand(0); 4873 SDValue Hi = Op.getOperand(1); 4874 SDValue Amt = Op.getOperand(2); 4875 EVT AmtVT = Amt.getValueType(); 4876 4877 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4878 DAG.getConstant(BitWidth, AmtVT), Amt); 4879 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 4880 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 4881 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 4882 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4883 DAG.getConstant(-BitWidth, AmtVT)); 4884 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 4885 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 4886 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 4887 SDValue OutOps[] = { OutLo, OutHi }; 4888 return DAG.getMergeValues(OutOps, 2, dl); 4889 } 4890 4891 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 4892 DebugLoc dl = Op.getDebugLoc(); 4893 EVT VT = Op.getValueType(); 4894 unsigned BitWidth = VT.getSizeInBits(); 4895 assert(Op.getNumOperands() == 3 && 4896 VT == Op.getOperand(1).getValueType() && 4897 "Unexpected SRA!"); 4898 4899 // Expand into a bunch of logical ops, followed by a select_cc. 4900 SDValue Lo = Op.getOperand(0); 4901 SDValue Hi = Op.getOperand(1); 4902 SDValue Amt = Op.getOperand(2); 4903 EVT AmtVT = Amt.getValueType(); 4904 4905 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4906 DAG.getConstant(BitWidth, AmtVT), Amt); 4907 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 4908 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 4909 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 4910 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4911 DAG.getConstant(-BitWidth, AmtVT)); 4912 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 4913 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 4914 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 4915 Tmp4, Tmp6, ISD::SETLE); 4916 SDValue OutOps[] = { OutLo, OutHi }; 4917 return DAG.getMergeValues(OutOps, 2, dl); 4918 } 4919 4920 //===----------------------------------------------------------------------===// 4921 // Vector related lowering. 4922 // 4923 4924 /// BuildSplatI - Build a canonical splati of Val with an element size of 4925 /// SplatSize. Cast the result to VT. 4926 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 4927 SelectionDAG &DAG, DebugLoc dl) { 4928 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 4929 4930 static const EVT VTys[] = { // canonical VT to use for each size. 4931 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 4932 }; 4933 4934 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 4935 4936 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 4937 if (Val == -1) 4938 SplatSize = 1; 4939 4940 EVT CanonicalVT = VTys[SplatSize-1]; 4941 4942 // Build a canonical splat for this value. 4943 SDValue Elt = DAG.getConstant(Val, MVT::i32); 4944 SmallVector<SDValue, 8> Ops; 4945 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 4946 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 4947 &Ops[0], Ops.size()); 4948 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 4949 } 4950 4951 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 4952 /// specified intrinsic ID. 4953 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 4954 SelectionDAG &DAG, DebugLoc dl, 4955 EVT DestVT = MVT::Other) { 4956 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 4957 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4958 DAG.getConstant(IID, MVT::i32), LHS, RHS); 4959 } 4960 4961 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 4962 /// specified intrinsic ID. 4963 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 4964 SDValue Op2, SelectionDAG &DAG, 4965 DebugLoc dl, EVT DestVT = MVT::Other) { 4966 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 4967 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4968 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 4969 } 4970 4971 4972 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 4973 /// amount. The result has the specified value type. 4974 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 4975 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 4976 // Force LHS/RHS to be the right type. 4977 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 4978 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 4979 4980 int Ops[16]; 4981 for (unsigned i = 0; i != 16; ++i) 4982 Ops[i] = i + Amt; 4983 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 4984 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4985 } 4986 4987 // If this is a case we can't handle, return null and let the default 4988 // expansion code take care of it. If we CAN select this case, and if it 4989 // selects to a single instruction, return Op. Otherwise, if we can codegen 4990 // this case more efficiently than a constant pool load, lower it to the 4991 // sequence of ops that should be used. 4992 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 4993 SelectionDAG &DAG) const { 4994 DebugLoc dl = Op.getDebugLoc(); 4995 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 4996 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 4997 4998 // Check if this is a splat of a constant value. 4999 APInt APSplatBits, APSplatUndef; 5000 unsigned SplatBitSize; 5001 bool HasAnyUndefs; 5002 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 5003 HasAnyUndefs, 0, true) || SplatBitSize > 32) 5004 return SDValue(); 5005 5006 unsigned SplatBits = APSplatBits.getZExtValue(); 5007 unsigned SplatUndef = APSplatUndef.getZExtValue(); 5008 unsigned SplatSize = SplatBitSize / 8; 5009 5010 // First, handle single instruction cases. 5011 5012 // All zeros? 5013 if (SplatBits == 0) { 5014 // Canonicalize all zero vectors to be v4i32. 5015 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 5016 SDValue Z = DAG.getConstant(0, MVT::i32); 5017 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 5018 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 5019 } 5020 return Op; 5021 } 5022 5023 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 5024 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 5025 (32-SplatBitSize)); 5026 if (SextVal >= -16 && SextVal <= 15) 5027 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 5028 5029 5030 // Two instruction sequences. 5031 5032 // If this value is in the range [-32,30] and is even, use: 5033 // tmp = VSPLTI[bhw], result = add tmp, tmp 5034 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 5035 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 5036 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 5037 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5038 } 5039 5040 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 5041 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 5042 // for fneg/fabs. 5043 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 5044 // Make -1 and vspltisw -1: 5045 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 5046 5047 // Make the VSLW intrinsic, computing 0x8000_0000. 5048 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 5049 OnesV, DAG, dl); 5050 5051 // xor by OnesV to invert it. 5052 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 5053 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5054 } 5055 5056 // Check to see if this is a wide variety of vsplti*, binop self cases. 5057 static const signed char SplatCsts[] = { 5058 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 5059 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 5060 }; 5061 5062 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 5063 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 5064 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 5065 int i = SplatCsts[idx]; 5066 5067 // Figure out what shift amount will be used by altivec if shifted by i in 5068 // this splat size. 5069 unsigned TypeShiftAmt = i & (SplatBitSize-1); 5070 5071 // vsplti + shl self. 5072 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 5073 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 5074 static const unsigned IIDs[] = { // Intrinsic to use for each size. 5075 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 5076 Intrinsic::ppc_altivec_vslw 5077 }; 5078 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 5079 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5080 } 5081 5082 // vsplti + srl self. 5083 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 5084 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 5085 static const unsigned IIDs[] = { // Intrinsic to use for each size. 5086 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 5087 Intrinsic::ppc_altivec_vsrw 5088 }; 5089 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 5090 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5091 } 5092 5093 // vsplti + sra self. 5094 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 5095 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 5096 static const unsigned IIDs[] = { // Intrinsic to use for each size. 5097 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 5098 Intrinsic::ppc_altivec_vsraw 5099 }; 5100 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 5101 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5102 } 5103 5104 // vsplti + rol self. 5105 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 5106 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 5107 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 5108 static const unsigned IIDs[] = { // Intrinsic to use for each size. 5109 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 5110 Intrinsic::ppc_altivec_vrlw 5111 }; 5112 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 5113 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 5114 } 5115 5116 // t = vsplti c, result = vsldoi t, t, 1 5117 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 5118 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 5119 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 5120 } 5121 // t = vsplti c, result = vsldoi t, t, 2 5122 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 5123 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 5124 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 5125 } 5126 // t = vsplti c, result = vsldoi t, t, 3 5127 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 5128 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 5129 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 5130 } 5131 } 5132 5133 // Three instruction sequences. 5134 5135 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 5136 if (SextVal >= 0 && SextVal <= 31) { 5137 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 5138 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 5139 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 5140 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 5141 } 5142 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 5143 if (SextVal >= -31 && SextVal <= 0) { 5144 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 5145 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 5146 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 5147 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 5148 } 5149 5150 return SDValue(); 5151 } 5152 5153 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 5154 /// the specified operations to build the shuffle. 5155 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 5156 SDValue RHS, SelectionDAG &DAG, 5157 DebugLoc dl) { 5158 unsigned OpNum = (PFEntry >> 26) & 0x0F; 5159 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 5160 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 5161 5162 enum { 5163 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 5164 OP_VMRGHW, 5165 OP_VMRGLW, 5166 OP_VSPLTISW0, 5167 OP_VSPLTISW1, 5168 OP_VSPLTISW2, 5169 OP_VSPLTISW3, 5170 OP_VSLDOI4, 5171 OP_VSLDOI8, 5172 OP_VSLDOI12 5173 }; 5174 5175 if (OpNum == OP_COPY) { 5176 if (LHSID == (1*9+2)*9+3) return LHS; 5177 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 5178 return RHS; 5179 } 5180 5181 SDValue OpLHS, OpRHS; 5182 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 5183 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 5184 5185 int ShufIdxs[16]; 5186 switch (OpNum) { 5187 default: llvm_unreachable("Unknown i32 permute!"); 5188 case OP_VMRGHW: 5189 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 5190 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 5191 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 5192 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 5193 break; 5194 case OP_VMRGLW: 5195 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 5196 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 5197 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 5198 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 5199 break; 5200 case OP_VSPLTISW0: 5201 for (unsigned i = 0; i != 16; ++i) 5202 ShufIdxs[i] = (i&3)+0; 5203 break; 5204 case OP_VSPLTISW1: 5205 for (unsigned i = 0; i != 16; ++i) 5206 ShufIdxs[i] = (i&3)+4; 5207 break; 5208 case OP_VSPLTISW2: 5209 for (unsigned i = 0; i != 16; ++i) 5210 ShufIdxs[i] = (i&3)+8; 5211 break; 5212 case OP_VSPLTISW3: 5213 for (unsigned i = 0; i != 16; ++i) 5214 ShufIdxs[i] = (i&3)+12; 5215 break; 5216 case OP_VSLDOI4: 5217 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 5218 case OP_VSLDOI8: 5219 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 5220 case OP_VSLDOI12: 5221 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 5222 } 5223 EVT VT = OpLHS.getValueType(); 5224 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 5225 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 5226 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 5227 return DAG.getNode(ISD::BITCAST, dl, VT, T); 5228 } 5229 5230 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 5231 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 5232 /// return the code it can be lowered into. Worst case, it can always be 5233 /// lowered into a vperm. 5234 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 5235 SelectionDAG &DAG) const { 5236 DebugLoc dl = Op.getDebugLoc(); 5237 SDValue V1 = Op.getOperand(0); 5238 SDValue V2 = Op.getOperand(1); 5239 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 5240 EVT VT = Op.getValueType(); 5241 5242 // Cases that are handled by instructions that take permute immediates 5243 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 5244 // selected by the instruction selector. 5245 if (V2.getOpcode() == ISD::UNDEF) { 5246 if (PPC::isSplatShuffleMask(SVOp, 1) || 5247 PPC::isSplatShuffleMask(SVOp, 2) || 5248 PPC::isSplatShuffleMask(SVOp, 4) || 5249 PPC::isVPKUWUMShuffleMask(SVOp, true) || 5250 PPC::isVPKUHUMShuffleMask(SVOp, true) || 5251 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 5252 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 5253 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 5254 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 5255 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 5256 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 5257 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 5258 return Op; 5259 } 5260 } 5261 5262 // Altivec has a variety of "shuffle immediates" that take two vector inputs 5263 // and produce a fixed permutation. If any of these match, do not lower to 5264 // VPERM. 5265 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 5266 PPC::isVPKUHUMShuffleMask(SVOp, false) || 5267 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 5268 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 5269 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 5270 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 5271 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 5272 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 5273 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 5274 return Op; 5275 5276 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 5277 // perfect shuffle table to emit an optimal matching sequence. 5278 ArrayRef<int> PermMask = SVOp->getMask(); 5279 5280 unsigned PFIndexes[4]; 5281 bool isFourElementShuffle = true; 5282 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 5283 unsigned EltNo = 8; // Start out undef. 5284 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 5285 if (PermMask[i*4+j] < 0) 5286 continue; // Undef, ignore it. 5287 5288 unsigned ByteSource = PermMask[i*4+j]; 5289 if ((ByteSource & 3) != j) { 5290 isFourElementShuffle = false; 5291 break; 5292 } 5293 5294 if (EltNo == 8) { 5295 EltNo = ByteSource/4; 5296 } else if (EltNo != ByteSource/4) { 5297 isFourElementShuffle = false; 5298 break; 5299 } 5300 } 5301 PFIndexes[i] = EltNo; 5302 } 5303 5304 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 5305 // perfect shuffle vector to determine if it is cost effective to do this as 5306 // discrete instructions, or whether we should use a vperm. 5307 if (isFourElementShuffle) { 5308 // Compute the index in the perfect shuffle table. 5309 unsigned PFTableIndex = 5310 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 5311 5312 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 5313 unsigned Cost = (PFEntry >> 30); 5314 5315 // Determining when to avoid vperm is tricky. Many things affect the cost 5316 // of vperm, particularly how many times the perm mask needs to be computed. 5317 // For example, if the perm mask can be hoisted out of a loop or is already 5318 // used (perhaps because there are multiple permutes with the same shuffle 5319 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 5320 // the loop requires an extra register. 5321 // 5322 // As a compromise, we only emit discrete instructions if the shuffle can be 5323 // generated in 3 or fewer operations. When we have loop information 5324 // available, if this block is within a loop, we should avoid using vperm 5325 // for 3-operation perms and use a constant pool load instead. 5326 if (Cost < 3) 5327 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 5328 } 5329 5330 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 5331 // vector that will get spilled to the constant pool. 5332 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 5333 5334 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 5335 // that it is in input element units, not in bytes. Convert now. 5336 EVT EltVT = V1.getValueType().getVectorElementType(); 5337 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 5338 5339 SmallVector<SDValue, 16> ResultMask; 5340 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5341 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 5342 5343 for (unsigned j = 0; j != BytesPerElement; ++j) 5344 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 5345 MVT::i32)); 5346 } 5347 5348 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 5349 &ResultMask[0], ResultMask.size()); 5350 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 5351 } 5352 5353 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 5354 /// altivec comparison. If it is, return true and fill in Opc/isDot with 5355 /// information about the intrinsic. 5356 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 5357 bool &isDot) { 5358 unsigned IntrinsicID = 5359 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 5360 CompareOpc = -1; 5361 isDot = false; 5362 switch (IntrinsicID) { 5363 default: return false; 5364 // Comparison predicates. 5365 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 5366 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 5367 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 5368 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 5369 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 5370 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 5371 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 5372 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 5373 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 5374 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 5375 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 5376 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 5377 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 5378 5379 // Normal Comparisons. 5380 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 5381 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 5382 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 5383 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 5384 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 5385 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 5386 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 5387 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 5388 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 5389 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 5390 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 5391 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 5392 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 5393 } 5394 return true; 5395 } 5396 5397 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 5398 /// lower, do it, otherwise return null. 5399 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 5400 SelectionDAG &DAG) const { 5401 // If this is a lowered altivec predicate compare, CompareOpc is set to the 5402 // opcode number of the comparison. 5403 DebugLoc dl = Op.getDebugLoc(); 5404 int CompareOpc; 5405 bool isDot; 5406 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 5407 return SDValue(); // Don't custom lower most intrinsics. 5408 5409 // If this is a non-dot comparison, make the VCMP node and we are done. 5410 if (!isDot) { 5411 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 5412 Op.getOperand(1), Op.getOperand(2), 5413 DAG.getConstant(CompareOpc, MVT::i32)); 5414 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 5415 } 5416 5417 // Create the PPCISD altivec 'dot' comparison node. 5418 SDValue Ops[] = { 5419 Op.getOperand(2), // LHS 5420 Op.getOperand(3), // RHS 5421 DAG.getConstant(CompareOpc, MVT::i32) 5422 }; 5423 std::vector<EVT> VTs; 5424 VTs.push_back(Op.getOperand(2).getValueType()); 5425 VTs.push_back(MVT::Glue); 5426 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5427 5428 // Now that we have the comparison, emit a copy from the CR to a GPR. 5429 // This is flagged to the above dot comparison. 5430 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 5431 DAG.getRegister(PPC::CR6, MVT::i32), 5432 CompNode.getValue(1)); 5433 5434 // Unpack the result based on how the target uses it. 5435 unsigned BitNo; // Bit # of CR6. 5436 bool InvertBit; // Invert result? 5437 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 5438 default: // Can't happen, don't crash on invalid number though. 5439 case 0: // Return the value of the EQ bit of CR6. 5440 BitNo = 0; InvertBit = false; 5441 break; 5442 case 1: // Return the inverted value of the EQ bit of CR6. 5443 BitNo = 0; InvertBit = true; 5444 break; 5445 case 2: // Return the value of the LT bit of CR6. 5446 BitNo = 2; InvertBit = false; 5447 break; 5448 case 3: // Return the inverted value of the LT bit of CR6. 5449 BitNo = 2; InvertBit = true; 5450 break; 5451 } 5452 5453 // Shift the bit into the low position. 5454 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 5455 DAG.getConstant(8-(3-BitNo), MVT::i32)); 5456 // Isolate the bit. 5457 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 5458 DAG.getConstant(1, MVT::i32)); 5459 5460 // If we are supposed to, toggle the bit. 5461 if (InvertBit) 5462 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 5463 DAG.getConstant(1, MVT::i32)); 5464 return Flags; 5465 } 5466 5467 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 5468 SelectionDAG &DAG) const { 5469 DebugLoc dl = Op.getDebugLoc(); 5470 // Create a stack slot that is 16-byte aligned. 5471 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 5472 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 5473 EVT PtrVT = getPointerTy(); 5474 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 5475 5476 // Store the input value into Value#0 of the stack slot. 5477 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 5478 Op.getOperand(0), FIdx, MachinePointerInfo(), 5479 false, false, 0); 5480 // Load it out. 5481 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 5482 false, false, false, 0); 5483 } 5484 5485 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 5486 DebugLoc dl = Op.getDebugLoc(); 5487 if (Op.getValueType() == MVT::v4i32) { 5488 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5489 5490 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 5491 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 5492 5493 SDValue RHSSwap = // = vrlw RHS, 16 5494 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 5495 5496 // Shrinkify inputs to v8i16. 5497 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 5498 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 5499 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 5500 5501 // Low parts multiplied together, generating 32-bit results (we ignore the 5502 // top parts). 5503 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 5504 LHS, RHS, DAG, dl, MVT::v4i32); 5505 5506 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 5507 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 5508 // Shift the high parts up 16 bits. 5509 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 5510 Neg16, DAG, dl); 5511 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 5512 } else if (Op.getValueType() == MVT::v8i16) { 5513 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5514 5515 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 5516 5517 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 5518 LHS, RHS, Zero, DAG, dl); 5519 } else if (Op.getValueType() == MVT::v16i8) { 5520 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5521 5522 // Multiply the even 8-bit parts, producing 16-bit sums. 5523 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 5524 LHS, RHS, DAG, dl, MVT::v8i16); 5525 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 5526 5527 // Multiply the odd 8-bit parts, producing 16-bit sums. 5528 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 5529 LHS, RHS, DAG, dl, MVT::v8i16); 5530 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 5531 5532 // Merge the results together. 5533 int Ops[16]; 5534 for (unsigned i = 0; i != 8; ++i) { 5535 Ops[i*2 ] = 2*i+1; 5536 Ops[i*2+1] = 2*i+1+16; 5537 } 5538 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 5539 } else { 5540 llvm_unreachable("Unknown mul to lower!"); 5541 } 5542 } 5543 5544 /// LowerOperation - Provide custom lowering hooks for some operations. 5545 /// 5546 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5547 switch (Op.getOpcode()) { 5548 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 5549 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5550 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 5551 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 5552 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5553 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 5554 case ISD::SETCC: return LowerSETCC(Op, DAG); 5555 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 5556 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 5557 case ISD::VASTART: 5558 return LowerVASTART(Op, DAG, PPCSubTarget); 5559 5560 case ISD::VAARG: 5561 return LowerVAARG(Op, DAG, PPCSubTarget); 5562 5563 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 5564 case ISD::DYNAMIC_STACKALLOC: 5565 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 5566 5567 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 5568 case ISD::FP_TO_UINT: 5569 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 5570 Op.getDebugLoc()); 5571 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 5572 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5573 5574 // Lower 64-bit shifts. 5575 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 5576 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 5577 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 5578 5579 // Vector-related lowering. 5580 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 5581 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5582 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5583 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 5584 case ISD::MUL: return LowerMUL(Op, DAG); 5585 5586 // Frame & Return address. 5587 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5588 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5589 } 5590 } 5591 5592 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 5593 SmallVectorImpl<SDValue>&Results, 5594 SelectionDAG &DAG) const { 5595 const TargetMachine &TM = getTargetMachine(); 5596 DebugLoc dl = N->getDebugLoc(); 5597 switch (N->getOpcode()) { 5598 default: 5599 llvm_unreachable("Do not know how to custom type legalize this operation!"); 5600 case ISD::VAARG: { 5601 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 5602 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 5603 return; 5604 5605 EVT VT = N->getValueType(0); 5606 5607 if (VT == MVT::i64) { 5608 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 5609 5610 Results.push_back(NewNode); 5611 Results.push_back(NewNode.getValue(1)); 5612 } 5613 return; 5614 } 5615 case ISD::FP_ROUND_INREG: { 5616 assert(N->getValueType(0) == MVT::ppcf128); 5617 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 5618 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 5619 MVT::f64, N->getOperand(0), 5620 DAG.getIntPtrConstant(0)); 5621 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 5622 MVT::f64, N->getOperand(0), 5623 DAG.getIntPtrConstant(1)); 5624 5625 // This sequence changes FPSCR to do round-to-zero, adds the two halves 5626 // of the long double, and puts FPSCR back the way it was. We do not 5627 // actually model FPSCR. 5628 std::vector<EVT> NodeTys; 5629 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 5630 5631 NodeTys.push_back(MVT::f64); // Return register 5632 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 5633 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 5634 MFFSreg = Result.getValue(0); 5635 InFlag = Result.getValue(1); 5636 5637 NodeTys.clear(); 5638 NodeTys.push_back(MVT::Glue); // Returns a flag 5639 Ops[0] = DAG.getConstant(31, MVT::i32); 5640 Ops[1] = InFlag; 5641 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 5642 InFlag = Result.getValue(0); 5643 5644 NodeTys.clear(); 5645 NodeTys.push_back(MVT::Glue); // Returns a flag 5646 Ops[0] = DAG.getConstant(30, MVT::i32); 5647 Ops[1] = InFlag; 5648 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 5649 InFlag = Result.getValue(0); 5650 5651 NodeTys.clear(); 5652 NodeTys.push_back(MVT::f64); // result of add 5653 NodeTys.push_back(MVT::Glue); // Returns a flag 5654 Ops[0] = Lo; 5655 Ops[1] = Hi; 5656 Ops[2] = InFlag; 5657 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 5658 FPreg = Result.getValue(0); 5659 InFlag = Result.getValue(1); 5660 5661 NodeTys.clear(); 5662 NodeTys.push_back(MVT::f64); 5663 Ops[0] = DAG.getConstant(1, MVT::i32); 5664 Ops[1] = MFFSreg; 5665 Ops[2] = FPreg; 5666 Ops[3] = InFlag; 5667 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 5668 FPreg = Result.getValue(0); 5669 5670 // We know the low half is about to be thrown away, so just use something 5671 // convenient. 5672 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 5673 FPreg, FPreg)); 5674 return; 5675 } 5676 case ISD::FP_TO_SINT: 5677 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 5678 return; 5679 } 5680 } 5681 5682 5683 //===----------------------------------------------------------------------===// 5684 // Other Lowering Code 5685 //===----------------------------------------------------------------------===// 5686 5687 MachineBasicBlock * 5688 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 5689 bool is64bit, unsigned BinOpcode) const { 5690 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 5691 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5692 5693 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5694 MachineFunction *F = BB->getParent(); 5695 MachineFunction::iterator It = BB; 5696 ++It; 5697 5698 unsigned dest = MI->getOperand(0).getReg(); 5699 unsigned ptrA = MI->getOperand(1).getReg(); 5700 unsigned ptrB = MI->getOperand(2).getReg(); 5701 unsigned incr = MI->getOperand(3).getReg(); 5702 DebugLoc dl = MI->getDebugLoc(); 5703 5704 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 5705 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5706 F->insert(It, loopMBB); 5707 F->insert(It, exitMBB); 5708 exitMBB->splice(exitMBB->begin(), BB, 5709 llvm::next(MachineBasicBlock::iterator(MI)), 5710 BB->end()); 5711 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5712 5713 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5714 unsigned TmpReg = (!BinOpcode) ? incr : 5715 RegInfo.createVirtualRegister( 5716 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5717 (const TargetRegisterClass *) &PPC::GPRCRegClass); 5718 5719 // thisMBB: 5720 // ... 5721 // fallthrough --> loopMBB 5722 BB->addSuccessor(loopMBB); 5723 5724 // loopMBB: 5725 // l[wd]arx dest, ptr 5726 // add r0, dest, incr 5727 // st[wd]cx. r0, ptr 5728 // bne- loopMBB 5729 // fallthrough --> exitMBB 5730 BB = loopMBB; 5731 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5732 .addReg(ptrA).addReg(ptrB); 5733 if (BinOpcode) 5734 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 5735 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5736 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 5737 BuildMI(BB, dl, TII->get(PPC::BCC)) 5738 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 5739 BB->addSuccessor(loopMBB); 5740 BB->addSuccessor(exitMBB); 5741 5742 // exitMBB: 5743 // ... 5744 BB = exitMBB; 5745 return BB; 5746 } 5747 5748 MachineBasicBlock * 5749 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 5750 MachineBasicBlock *BB, 5751 bool is8bit, // operation 5752 unsigned BinOpcode) const { 5753 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 5754 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5755 // In 64 bit mode we have to use 64 bits for addresses, even though the 5756 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 5757 // registers without caring whether they're 32 or 64, but here we're 5758 // doing actual arithmetic on the addresses. 5759 bool is64bit = PPCSubTarget.isPPC64(); 5760 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5761 5762 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5763 MachineFunction *F = BB->getParent(); 5764 MachineFunction::iterator It = BB; 5765 ++It; 5766 5767 unsigned dest = MI->getOperand(0).getReg(); 5768 unsigned ptrA = MI->getOperand(1).getReg(); 5769 unsigned ptrB = MI->getOperand(2).getReg(); 5770 unsigned incr = MI->getOperand(3).getReg(); 5771 DebugLoc dl = MI->getDebugLoc(); 5772 5773 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 5774 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5775 F->insert(It, loopMBB); 5776 F->insert(It, exitMBB); 5777 exitMBB->splice(exitMBB->begin(), BB, 5778 llvm::next(MachineBasicBlock::iterator(MI)), 5779 BB->end()); 5780 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5781 5782 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5783 const TargetRegisterClass *RC = 5784 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5785 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5786 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5787 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5788 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5789 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 5790 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5791 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5792 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5793 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5794 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 5795 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5796 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5797 unsigned Ptr1Reg; 5798 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 5799 5800 // thisMBB: 5801 // ... 5802 // fallthrough --> loopMBB 5803 BB->addSuccessor(loopMBB); 5804 5805 // The 4-byte load must be aligned, while a char or short may be 5806 // anywhere in the word. Hence all this nasty bookkeeping code. 5807 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5808 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5809 // xori shift, shift1, 24 [16] 5810 // rlwinm ptr, ptr1, 0, 0, 29 5811 // slw incr2, incr, shift 5812 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5813 // slw mask, mask2, shift 5814 // loopMBB: 5815 // lwarx tmpDest, ptr 5816 // add tmp, tmpDest, incr2 5817 // andc tmp2, tmpDest, mask 5818 // and tmp3, tmp, mask 5819 // or tmp4, tmp3, tmp2 5820 // stwcx. tmp4, ptr 5821 // bne- loopMBB 5822 // fallthrough --> exitMBB 5823 // srw dest, tmpDest, shift 5824 if (ptrA != ZeroReg) { 5825 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5826 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5827 .addReg(ptrA).addReg(ptrB); 5828 } else { 5829 Ptr1Reg = ptrB; 5830 } 5831 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5832 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5833 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5834 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5835 if (is64bit) 5836 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5837 .addReg(Ptr1Reg).addImm(0).addImm(61); 5838 else 5839 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5840 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5841 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 5842 .addReg(incr).addReg(ShiftReg); 5843 if (is8bit) 5844 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5845 else { 5846 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5847 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 5848 } 5849 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5850 .addReg(Mask2Reg).addReg(ShiftReg); 5851 5852 BB = loopMBB; 5853 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5854 .addReg(ZeroReg).addReg(PtrReg); 5855 if (BinOpcode) 5856 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 5857 .addReg(Incr2Reg).addReg(TmpDestReg); 5858 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 5859 .addReg(TmpDestReg).addReg(MaskReg); 5860 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 5861 .addReg(TmpReg).addReg(MaskReg); 5862 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 5863 .addReg(Tmp3Reg).addReg(Tmp2Reg); 5864 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5865 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 5866 BuildMI(BB, dl, TII->get(PPC::BCC)) 5867 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 5868 BB->addSuccessor(loopMBB); 5869 BB->addSuccessor(exitMBB); 5870 5871 // exitMBB: 5872 // ... 5873 BB = exitMBB; 5874 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 5875 .addReg(ShiftReg); 5876 return BB; 5877 } 5878 5879 MachineBasicBlock * 5880 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 5881 MachineBasicBlock *BB) const { 5882 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5883 5884 // To "insert" these instructions we actually have to insert their 5885 // control-flow patterns. 5886 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5887 MachineFunction::iterator It = BB; 5888 ++It; 5889 5890 MachineFunction *F = BB->getParent(); 5891 5892 if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 5893 MI->getOpcode() == PPC::SELECT_CC_I8)) { 5894 unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ? 5895 PPC::ISEL8 : PPC::ISEL; 5896 unsigned SelectPred = MI->getOperand(4).getImm(); 5897 DebugLoc dl = MI->getDebugLoc(); 5898 5899 // The SelectPred is ((BI << 5) | BO) for a BCC 5900 unsigned BO = SelectPred & 0xF; 5901 assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel"); 5902 5903 unsigned TrueOpNo, FalseOpNo; 5904 if (BO == 12) { 5905 TrueOpNo = 2; 5906 FalseOpNo = 3; 5907 } else { 5908 TrueOpNo = 3; 5909 FalseOpNo = 2; 5910 SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred); 5911 } 5912 5913 BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg()) 5914 .addReg(MI->getOperand(TrueOpNo).getReg()) 5915 .addReg(MI->getOperand(FalseOpNo).getReg()) 5916 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()); 5917 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 5918 MI->getOpcode() == PPC::SELECT_CC_I8 || 5919 MI->getOpcode() == PPC::SELECT_CC_F4 || 5920 MI->getOpcode() == PPC::SELECT_CC_F8 || 5921 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 5922 5923 5924 // The incoming instruction knows the destination vreg to set, the 5925 // condition code register to branch on, the true/false values to 5926 // select between, and a branch opcode to use. 5927 5928 // thisMBB: 5929 // ... 5930 // TrueVal = ... 5931 // cmpTY ccX, r1, r2 5932 // bCC copy1MBB 5933 // fallthrough --> copy0MBB 5934 MachineBasicBlock *thisMBB = BB; 5935 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 5936 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 5937 unsigned SelectPred = MI->getOperand(4).getImm(); 5938 DebugLoc dl = MI->getDebugLoc(); 5939 F->insert(It, copy0MBB); 5940 F->insert(It, sinkMBB); 5941 5942 // Transfer the remainder of BB and its successor edges to sinkMBB. 5943 sinkMBB->splice(sinkMBB->begin(), BB, 5944 llvm::next(MachineBasicBlock::iterator(MI)), 5945 BB->end()); 5946 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 5947 5948 // Next, add the true and fallthrough blocks as its successors. 5949 BB->addSuccessor(copy0MBB); 5950 BB->addSuccessor(sinkMBB); 5951 5952 BuildMI(BB, dl, TII->get(PPC::BCC)) 5953 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 5954 5955 // copy0MBB: 5956 // %FalseValue = ... 5957 // # fallthrough to sinkMBB 5958 BB = copy0MBB; 5959 5960 // Update machine-CFG edges 5961 BB->addSuccessor(sinkMBB); 5962 5963 // sinkMBB: 5964 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 5965 // ... 5966 BB = sinkMBB; 5967 BuildMI(*BB, BB->begin(), dl, 5968 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 5969 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 5970 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 5971 } 5972 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 5973 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 5974 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 5975 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 5976 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 5977 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 5978 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 5979 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 5980 5981 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 5982 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 5983 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 5984 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 5985 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 5986 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 5987 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 5988 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 5989 5990 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 5991 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 5992 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 5993 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 5994 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 5995 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 5996 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 5997 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 5998 5999 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 6000 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 6001 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 6002 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 6003 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 6004 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 6005 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 6006 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 6007 6008 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 6009 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 6010 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 6011 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 6012 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 6013 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 6014 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 6015 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 6016 6017 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 6018 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 6019 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 6020 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 6021 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 6022 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 6023 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 6024 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 6025 6026 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 6027 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 6028 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 6029 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 6030 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 6031 BB = EmitAtomicBinary(MI, BB, false, 0); 6032 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 6033 BB = EmitAtomicBinary(MI, BB, true, 0); 6034 6035 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 6036 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 6037 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 6038 6039 unsigned dest = MI->getOperand(0).getReg(); 6040 unsigned ptrA = MI->getOperand(1).getReg(); 6041 unsigned ptrB = MI->getOperand(2).getReg(); 6042 unsigned oldval = MI->getOperand(3).getReg(); 6043 unsigned newval = MI->getOperand(4).getReg(); 6044 DebugLoc dl = MI->getDebugLoc(); 6045 6046 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 6047 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 6048 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 6049 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 6050 F->insert(It, loop1MBB); 6051 F->insert(It, loop2MBB); 6052 F->insert(It, midMBB); 6053 F->insert(It, exitMBB); 6054 exitMBB->splice(exitMBB->begin(), BB, 6055 llvm::next(MachineBasicBlock::iterator(MI)), 6056 BB->end()); 6057 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6058 6059 // thisMBB: 6060 // ... 6061 // fallthrough --> loopMBB 6062 BB->addSuccessor(loop1MBB); 6063 6064 // loop1MBB: 6065 // l[wd]arx dest, ptr 6066 // cmp[wd] dest, oldval 6067 // bne- midMBB 6068 // loop2MBB: 6069 // st[wd]cx. newval, ptr 6070 // bne- loopMBB 6071 // b exitBB 6072 // midMBB: 6073 // st[wd]cx. dest, ptr 6074 // exitBB: 6075 BB = loop1MBB; 6076 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 6077 .addReg(ptrA).addReg(ptrB); 6078 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 6079 .addReg(oldval).addReg(dest); 6080 BuildMI(BB, dl, TII->get(PPC::BCC)) 6081 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 6082 BB->addSuccessor(loop2MBB); 6083 BB->addSuccessor(midMBB); 6084 6085 BB = loop2MBB; 6086 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 6087 .addReg(newval).addReg(ptrA).addReg(ptrB); 6088 BuildMI(BB, dl, TII->get(PPC::BCC)) 6089 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 6090 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 6091 BB->addSuccessor(loop1MBB); 6092 BB->addSuccessor(exitMBB); 6093 6094 BB = midMBB; 6095 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 6096 .addReg(dest).addReg(ptrA).addReg(ptrB); 6097 BB->addSuccessor(exitMBB); 6098 6099 // exitMBB: 6100 // ... 6101 BB = exitMBB; 6102 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 6103 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 6104 // We must use 64-bit registers for addresses when targeting 64-bit, 6105 // since we're actually doing arithmetic on them. Other registers 6106 // can be 32-bit. 6107 bool is64bit = PPCSubTarget.isPPC64(); 6108 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 6109 6110 unsigned dest = MI->getOperand(0).getReg(); 6111 unsigned ptrA = MI->getOperand(1).getReg(); 6112 unsigned ptrB = MI->getOperand(2).getReg(); 6113 unsigned oldval = MI->getOperand(3).getReg(); 6114 unsigned newval = MI->getOperand(4).getReg(); 6115 DebugLoc dl = MI->getDebugLoc(); 6116 6117 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 6118 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 6119 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 6120 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 6121 F->insert(It, loop1MBB); 6122 F->insert(It, loop2MBB); 6123 F->insert(It, midMBB); 6124 F->insert(It, exitMBB); 6125 exitMBB->splice(exitMBB->begin(), BB, 6126 llvm::next(MachineBasicBlock::iterator(MI)), 6127 BB->end()); 6128 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6129 6130 MachineRegisterInfo &RegInfo = F->getRegInfo(); 6131 const TargetRegisterClass *RC = 6132 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 6133 (const TargetRegisterClass *) &PPC::GPRCRegClass; 6134 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 6135 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 6136 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 6137 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 6138 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 6139 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 6140 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 6141 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 6142 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 6143 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 6144 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 6145 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 6146 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 6147 unsigned Ptr1Reg; 6148 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 6149 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 6150 // thisMBB: 6151 // ... 6152 // fallthrough --> loopMBB 6153 BB->addSuccessor(loop1MBB); 6154 6155 // The 4-byte load must be aligned, while a char or short may be 6156 // anywhere in the word. Hence all this nasty bookkeeping code. 6157 // add ptr1, ptrA, ptrB [copy if ptrA==0] 6158 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 6159 // xori shift, shift1, 24 [16] 6160 // rlwinm ptr, ptr1, 0, 0, 29 6161 // slw newval2, newval, shift 6162 // slw oldval2, oldval,shift 6163 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 6164 // slw mask, mask2, shift 6165 // and newval3, newval2, mask 6166 // and oldval3, oldval2, mask 6167 // loop1MBB: 6168 // lwarx tmpDest, ptr 6169 // and tmp, tmpDest, mask 6170 // cmpw tmp, oldval3 6171 // bne- midMBB 6172 // loop2MBB: 6173 // andc tmp2, tmpDest, mask 6174 // or tmp4, tmp2, newval3 6175 // stwcx. tmp4, ptr 6176 // bne- loop1MBB 6177 // b exitBB 6178 // midMBB: 6179 // stwcx. tmpDest, ptr 6180 // exitBB: 6181 // srw dest, tmpDest, shift 6182 if (ptrA != ZeroReg) { 6183 Ptr1Reg = RegInfo.createVirtualRegister(RC); 6184 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 6185 .addReg(ptrA).addReg(ptrB); 6186 } else { 6187 Ptr1Reg = ptrB; 6188 } 6189 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 6190 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 6191 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 6192 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 6193 if (is64bit) 6194 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 6195 .addReg(Ptr1Reg).addImm(0).addImm(61); 6196 else 6197 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 6198 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 6199 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 6200 .addReg(newval).addReg(ShiftReg); 6201 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 6202 .addReg(oldval).addReg(ShiftReg); 6203 if (is8bit) 6204 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 6205 else { 6206 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 6207 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 6208 .addReg(Mask3Reg).addImm(65535); 6209 } 6210 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 6211 .addReg(Mask2Reg).addReg(ShiftReg); 6212 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 6213 .addReg(NewVal2Reg).addReg(MaskReg); 6214 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 6215 .addReg(OldVal2Reg).addReg(MaskReg); 6216 6217 BB = loop1MBB; 6218 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 6219 .addReg(ZeroReg).addReg(PtrReg); 6220 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 6221 .addReg(TmpDestReg).addReg(MaskReg); 6222 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 6223 .addReg(TmpReg).addReg(OldVal3Reg); 6224 BuildMI(BB, dl, TII->get(PPC::BCC)) 6225 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 6226 BB->addSuccessor(loop2MBB); 6227 BB->addSuccessor(midMBB); 6228 6229 BB = loop2MBB; 6230 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 6231 .addReg(TmpDestReg).addReg(MaskReg); 6232 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 6233 .addReg(Tmp2Reg).addReg(NewVal3Reg); 6234 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 6235 .addReg(ZeroReg).addReg(PtrReg); 6236 BuildMI(BB, dl, TII->get(PPC::BCC)) 6237 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 6238 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 6239 BB->addSuccessor(loop1MBB); 6240 BB->addSuccessor(exitMBB); 6241 6242 BB = midMBB; 6243 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 6244 .addReg(ZeroReg).addReg(PtrReg); 6245 BB->addSuccessor(exitMBB); 6246 6247 // exitMBB: 6248 // ... 6249 BB = exitMBB; 6250 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 6251 .addReg(ShiftReg); 6252 } else { 6253 llvm_unreachable("Unexpected instr type to insert"); 6254 } 6255 6256 MI->eraseFromParent(); // The pseudo instruction is gone now. 6257 return BB; 6258 } 6259 6260 //===----------------------------------------------------------------------===// 6261 // Target Optimization Hooks 6262 //===----------------------------------------------------------------------===// 6263 6264 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 6265 DAGCombinerInfo &DCI) const { 6266 const TargetMachine &TM = getTargetMachine(); 6267 SelectionDAG &DAG = DCI.DAG; 6268 DebugLoc dl = N->getDebugLoc(); 6269 switch (N->getOpcode()) { 6270 default: break; 6271 case PPCISD::SHL: 6272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 6273 if (C->isNullValue()) // 0 << V -> 0. 6274 return N->getOperand(0); 6275 } 6276 break; 6277 case PPCISD::SRL: 6278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 6279 if (C->isNullValue()) // 0 >>u V -> 0. 6280 return N->getOperand(0); 6281 } 6282 break; 6283 case PPCISD::SRA: 6284 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 6285 if (C->isNullValue() || // 0 >>s V -> 0. 6286 C->isAllOnesValue()) // -1 >>s V -> -1. 6287 return N->getOperand(0); 6288 } 6289 break; 6290 6291 case ISD::SINT_TO_FP: 6292 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 6293 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 6294 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 6295 // We allow the src/dst to be either f32/f64, but the intermediate 6296 // type must be i64. 6297 if (N->getOperand(0).getValueType() == MVT::i64 && 6298 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 6299 SDValue Val = N->getOperand(0).getOperand(0); 6300 if (Val.getValueType() == MVT::f32) { 6301 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 6302 DCI.AddToWorklist(Val.getNode()); 6303 } 6304 6305 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 6306 DCI.AddToWorklist(Val.getNode()); 6307 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 6308 DCI.AddToWorklist(Val.getNode()); 6309 if (N->getValueType(0) == MVT::f32) { 6310 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 6311 DAG.getIntPtrConstant(0)); 6312 DCI.AddToWorklist(Val.getNode()); 6313 } 6314 return Val; 6315 } else if (N->getOperand(0).getValueType() == MVT::i32) { 6316 // If the intermediate type is i32, we can avoid the load/store here 6317 // too. 6318 } 6319 } 6320 } 6321 break; 6322 case ISD::STORE: 6323 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 6324 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 6325 !cast<StoreSDNode>(N)->isTruncatingStore() && 6326 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 6327 N->getOperand(1).getValueType() == MVT::i32 && 6328 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 6329 SDValue Val = N->getOperand(1).getOperand(0); 6330 if (Val.getValueType() == MVT::f32) { 6331 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 6332 DCI.AddToWorklist(Val.getNode()); 6333 } 6334 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 6335 DCI.AddToWorklist(Val.getNode()); 6336 6337 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 6338 N->getOperand(2), N->getOperand(3)); 6339 DCI.AddToWorklist(Val.getNode()); 6340 return Val; 6341 } 6342 6343 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 6344 if (cast<StoreSDNode>(N)->isUnindexed() && 6345 N->getOperand(1).getOpcode() == ISD::BSWAP && 6346 N->getOperand(1).getNode()->hasOneUse() && 6347 (N->getOperand(1).getValueType() == MVT::i32 || 6348 N->getOperand(1).getValueType() == MVT::i16)) { 6349 SDValue BSwapOp = N->getOperand(1).getOperand(0); 6350 // Do an any-extend to 32-bits if this is a half-word input. 6351 if (BSwapOp.getValueType() == MVT::i16) 6352 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 6353 6354 SDValue Ops[] = { 6355 N->getOperand(0), BSwapOp, N->getOperand(2), 6356 DAG.getValueType(N->getOperand(1).getValueType()) 6357 }; 6358 return 6359 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 6360 Ops, array_lengthof(Ops), 6361 cast<StoreSDNode>(N)->getMemoryVT(), 6362 cast<StoreSDNode>(N)->getMemOperand()); 6363 } 6364 break; 6365 case ISD::BSWAP: 6366 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 6367 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6368 N->getOperand(0).hasOneUse() && 6369 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 6370 SDValue Load = N->getOperand(0); 6371 LoadSDNode *LD = cast<LoadSDNode>(Load); 6372 // Create the byte-swapping load. 6373 SDValue Ops[] = { 6374 LD->getChain(), // Chain 6375 LD->getBasePtr(), // Ptr 6376 DAG.getValueType(N->getValueType(0)) // VT 6377 }; 6378 SDValue BSLoad = 6379 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 6380 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 6381 LD->getMemoryVT(), LD->getMemOperand()); 6382 6383 // If this is an i16 load, insert the truncate. 6384 SDValue ResVal = BSLoad; 6385 if (N->getValueType(0) == MVT::i16) 6386 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 6387 6388 // First, combine the bswap away. This makes the value produced by the 6389 // load dead. 6390 DCI.CombineTo(N, ResVal); 6391 6392 // Next, combine the load away, we give it a bogus result value but a real 6393 // chain result. The result value is dead because the bswap is dead. 6394 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6395 6396 // Return N so it doesn't get rechecked! 6397 return SDValue(N, 0); 6398 } 6399 6400 break; 6401 case PPCISD::VCMP: { 6402 // If a VCMPo node already exists with exactly the same operands as this 6403 // node, use its result instead of this node (VCMPo computes both a CR6 and 6404 // a normal output). 6405 // 6406 if (!N->getOperand(0).hasOneUse() && 6407 !N->getOperand(1).hasOneUse() && 6408 !N->getOperand(2).hasOneUse()) { 6409 6410 // Scan all of the users of the LHS, looking for VCMPo's that match. 6411 SDNode *VCMPoNode = 0; 6412 6413 SDNode *LHSN = N->getOperand(0).getNode(); 6414 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 6415 UI != E; ++UI) 6416 if (UI->getOpcode() == PPCISD::VCMPo && 6417 UI->getOperand(1) == N->getOperand(1) && 6418 UI->getOperand(2) == N->getOperand(2) && 6419 UI->getOperand(0) == N->getOperand(0)) { 6420 VCMPoNode = *UI; 6421 break; 6422 } 6423 6424 // If there is no VCMPo node, or if the flag value has a single use, don't 6425 // transform this. 6426 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 6427 break; 6428 6429 // Look at the (necessarily single) use of the flag value. If it has a 6430 // chain, this transformation is more complex. Note that multiple things 6431 // could use the value result, which we should ignore. 6432 SDNode *FlagUser = 0; 6433 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 6434 FlagUser == 0; ++UI) { 6435 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 6436 SDNode *User = *UI; 6437 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 6438 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 6439 FlagUser = User; 6440 break; 6441 } 6442 } 6443 } 6444 6445 // If the user is a MFCR instruction, we know this is safe. Otherwise we 6446 // give up for right now. 6447 if (FlagUser->getOpcode() == PPCISD::MFCR) 6448 return SDValue(VCMPoNode, 0); 6449 } 6450 break; 6451 } 6452 case ISD::BR_CC: { 6453 // If this is a branch on an altivec predicate comparison, lower this so 6454 // that we don't have to do a MFCR: instead, branch directly on CR6. This 6455 // lowering is done pre-legalize, because the legalizer lowers the predicate 6456 // compare down to code that is difficult to reassemble. 6457 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 6458 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 6459 int CompareOpc; 6460 bool isDot; 6461 6462 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 6463 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 6464 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 6465 assert(isDot && "Can't compare against a vector result!"); 6466 6467 // If this is a comparison against something other than 0/1, then we know 6468 // that the condition is never/always true. 6469 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 6470 if (Val != 0 && Val != 1) { 6471 if (CC == ISD::SETEQ) // Cond never true, remove branch. 6472 return N->getOperand(0); 6473 // Always !=, turn it into an unconditional branch. 6474 return DAG.getNode(ISD::BR, dl, MVT::Other, 6475 N->getOperand(0), N->getOperand(4)); 6476 } 6477 6478 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 6479 6480 // Create the PPCISD altivec 'dot' comparison node. 6481 std::vector<EVT> VTs; 6482 SDValue Ops[] = { 6483 LHS.getOperand(2), // LHS of compare 6484 LHS.getOperand(3), // RHS of compare 6485 DAG.getConstant(CompareOpc, MVT::i32) 6486 }; 6487 VTs.push_back(LHS.getOperand(2).getValueType()); 6488 VTs.push_back(MVT::Glue); 6489 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 6490 6491 // Unpack the result based on how the target uses it. 6492 PPC::Predicate CompOpc; 6493 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 6494 default: // Can't happen, don't crash on invalid number though. 6495 case 0: // Branch on the value of the EQ bit of CR6. 6496 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 6497 break; 6498 case 1: // Branch on the inverted value of the EQ bit of CR6. 6499 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 6500 break; 6501 case 2: // Branch on the value of the LT bit of CR6. 6502 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 6503 break; 6504 case 3: // Branch on the inverted value of the LT bit of CR6. 6505 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 6506 break; 6507 } 6508 6509 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 6510 DAG.getConstant(CompOpc, MVT::i32), 6511 DAG.getRegister(PPC::CR6, MVT::i32), 6512 N->getOperand(4), CompNode.getValue(1)); 6513 } 6514 break; 6515 } 6516 } 6517 6518 return SDValue(); 6519 } 6520 6521 //===----------------------------------------------------------------------===// 6522 // Inline Assembly Support 6523 //===----------------------------------------------------------------------===// 6524 6525 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 6526 APInt &KnownZero, 6527 APInt &KnownOne, 6528 const SelectionDAG &DAG, 6529 unsigned Depth) const { 6530 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 6531 switch (Op.getOpcode()) { 6532 default: break; 6533 case PPCISD::LBRX: { 6534 // lhbrx is known to have the top bits cleared out. 6535 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 6536 KnownZero = 0xFFFF0000; 6537 break; 6538 } 6539 case ISD::INTRINSIC_WO_CHAIN: { 6540 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 6541 default: break; 6542 case Intrinsic::ppc_altivec_vcmpbfp_p: 6543 case Intrinsic::ppc_altivec_vcmpeqfp_p: 6544 case Intrinsic::ppc_altivec_vcmpequb_p: 6545 case Intrinsic::ppc_altivec_vcmpequh_p: 6546 case Intrinsic::ppc_altivec_vcmpequw_p: 6547 case Intrinsic::ppc_altivec_vcmpgefp_p: 6548 case Intrinsic::ppc_altivec_vcmpgtfp_p: 6549 case Intrinsic::ppc_altivec_vcmpgtsb_p: 6550 case Intrinsic::ppc_altivec_vcmpgtsh_p: 6551 case Intrinsic::ppc_altivec_vcmpgtsw_p: 6552 case Intrinsic::ppc_altivec_vcmpgtub_p: 6553 case Intrinsic::ppc_altivec_vcmpgtuh_p: 6554 case Intrinsic::ppc_altivec_vcmpgtuw_p: 6555 KnownZero = ~1U; // All bits but the low one are known to be zero. 6556 break; 6557 } 6558 } 6559 } 6560 } 6561 6562 6563 /// getConstraintType - Given a constraint, return the type of 6564 /// constraint it is for this target. 6565 PPCTargetLowering::ConstraintType 6566 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 6567 if (Constraint.size() == 1) { 6568 switch (Constraint[0]) { 6569 default: break; 6570 case 'b': 6571 case 'r': 6572 case 'f': 6573 case 'v': 6574 case 'y': 6575 return C_RegisterClass; 6576 case 'Z': 6577 // FIXME: While Z does indicate a memory constraint, it specifically 6578 // indicates an r+r address (used in conjunction with the 'y' modifier 6579 // in the replacement string). Currently, we're forcing the base 6580 // register to be r0 in the asm printer (which is interpreted as zero) 6581 // and forming the complete address in the second register. This is 6582 // suboptimal. 6583 return C_Memory; 6584 } 6585 } 6586 return TargetLowering::getConstraintType(Constraint); 6587 } 6588 6589 /// Examine constraint type and operand type and determine a weight value. 6590 /// This object must already have been set up with the operand type 6591 /// and the current alternative constraint selected. 6592 TargetLowering::ConstraintWeight 6593 PPCTargetLowering::getSingleConstraintMatchWeight( 6594 AsmOperandInfo &info, const char *constraint) const { 6595 ConstraintWeight weight = CW_Invalid; 6596 Value *CallOperandVal = info.CallOperandVal; 6597 // If we don't have a value, we can't do a match, 6598 // but allow it at the lowest weight. 6599 if (CallOperandVal == NULL) 6600 return CW_Default; 6601 Type *type = CallOperandVal->getType(); 6602 // Look at the constraint type. 6603 switch (*constraint) { 6604 default: 6605 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 6606 break; 6607 case 'b': 6608 if (type->isIntegerTy()) 6609 weight = CW_Register; 6610 break; 6611 case 'f': 6612 if (type->isFloatTy()) 6613 weight = CW_Register; 6614 break; 6615 case 'd': 6616 if (type->isDoubleTy()) 6617 weight = CW_Register; 6618 break; 6619 case 'v': 6620 if (type->isVectorTy()) 6621 weight = CW_Register; 6622 break; 6623 case 'y': 6624 weight = CW_Register; 6625 break; 6626 case 'Z': 6627 weight = CW_Memory; 6628 break; 6629 } 6630 return weight; 6631 } 6632 6633 std::pair<unsigned, const TargetRegisterClass*> 6634 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 6635 EVT VT) const { 6636 if (Constraint.size() == 1) { 6637 // GCC RS6000 Constraint Letters 6638 switch (Constraint[0]) { 6639 case 'b': // R1-R31 6640 case 'r': // R0-R31 6641 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 6642 return std::make_pair(0U, &PPC::G8RCRegClass); 6643 return std::make_pair(0U, &PPC::GPRCRegClass); 6644 case 'f': 6645 if (VT == MVT::f32 || VT == MVT::i32) 6646 return std::make_pair(0U, &PPC::F4RCRegClass); 6647 if (VT == MVT::f64 || VT == MVT::i64) 6648 return std::make_pair(0U, &PPC::F8RCRegClass); 6649 break; 6650 case 'v': 6651 return std::make_pair(0U, &PPC::VRRCRegClass); 6652 case 'y': // crrc 6653 return std::make_pair(0U, &PPC::CRRCRegClass); 6654 } 6655 } 6656 6657 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 6658 } 6659 6660 6661 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6662 /// vector. If it is invalid, don't add anything to Ops. 6663 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 6664 std::string &Constraint, 6665 std::vector<SDValue>&Ops, 6666 SelectionDAG &DAG) const { 6667 SDValue Result(0,0); 6668 6669 // Only support length 1 constraints. 6670 if (Constraint.length() > 1) return; 6671 6672 char Letter = Constraint[0]; 6673 switch (Letter) { 6674 default: break; 6675 case 'I': 6676 case 'J': 6677 case 'K': 6678 case 'L': 6679 case 'M': 6680 case 'N': 6681 case 'O': 6682 case 'P': { 6683 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 6684 if (!CST) return; // Must be an immediate to match. 6685 unsigned Value = CST->getZExtValue(); 6686 switch (Letter) { 6687 default: llvm_unreachable("Unknown constraint letter!"); 6688 case 'I': // "I" is a signed 16-bit constant. 6689 if ((short)Value == (int)Value) 6690 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6691 break; 6692 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 6693 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 6694 if ((short)Value == 0) 6695 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6696 break; 6697 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 6698 if ((Value >> 16) == 0) 6699 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6700 break; 6701 case 'M': // "M" is a constant that is greater than 31. 6702 if (Value > 31) 6703 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6704 break; 6705 case 'N': // "N" is a positive constant that is an exact power of two. 6706 if ((int)Value > 0 && isPowerOf2_32(Value)) 6707 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6708 break; 6709 case 'O': // "O" is the constant zero. 6710 if (Value == 0) 6711 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6712 break; 6713 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 6714 if ((short)-Value == (int)-Value) 6715 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6716 break; 6717 } 6718 break; 6719 } 6720 } 6721 6722 if (Result.getNode()) { 6723 Ops.push_back(Result); 6724 return; 6725 } 6726 6727 // Handle standard constraint letters. 6728 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6729 } 6730 6731 // isLegalAddressingMode - Return true if the addressing mode represented 6732 // by AM is legal for this target, for a load/store of the specified type. 6733 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 6734 Type *Ty) const { 6735 // FIXME: PPC does not allow r+i addressing modes for vectors! 6736 6737 // PPC allows a sign-extended 16-bit immediate field. 6738 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 6739 return false; 6740 6741 // No global is ever allowed as a base. 6742 if (AM.BaseGV) 6743 return false; 6744 6745 // PPC only support r+r, 6746 switch (AM.Scale) { 6747 case 0: // "r+i" or just "i", depending on HasBaseReg. 6748 break; 6749 case 1: 6750 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 6751 return false; 6752 // Otherwise we have r+r or r+i. 6753 break; 6754 case 2: 6755 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 6756 return false; 6757 // Allow 2*r as r+r. 6758 break; 6759 default: 6760 // No other scales are supported. 6761 return false; 6762 } 6763 6764 return true; 6765 } 6766 6767 /// isLegalAddressImmediate - Return true if the integer value can be used 6768 /// as the offset of the target addressing mode for load / store of the 6769 /// given type. 6770 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 6771 // PPC allows a sign-extended 16-bit immediate field. 6772 return (V > -(1 << 16) && V < (1 << 16)-1); 6773 } 6774 6775 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const { 6776 return false; 6777 } 6778 6779 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 6780 SelectionDAG &DAG) const { 6781 MachineFunction &MF = DAG.getMachineFunction(); 6782 MachineFrameInfo *MFI = MF.getFrameInfo(); 6783 MFI->setReturnAddressIsTaken(true); 6784 6785 DebugLoc dl = Op.getDebugLoc(); 6786 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6787 6788 // Make sure the function does not optimize away the store of the RA to 6789 // the stack. 6790 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6791 FuncInfo->setLRStoreRequired(); 6792 bool isPPC64 = PPCSubTarget.isPPC64(); 6793 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 6794 6795 if (Depth > 0) { 6796 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 6797 SDValue Offset = 6798 6799 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 6800 isPPC64? MVT::i64 : MVT::i32); 6801 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 6802 DAG.getNode(ISD::ADD, dl, getPointerTy(), 6803 FrameAddr, Offset), 6804 MachinePointerInfo(), false, false, false, 0); 6805 } 6806 6807 // Just load the return address off the stack. 6808 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 6809 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 6810 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 6811 } 6812 6813 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 6814 SelectionDAG &DAG) const { 6815 DebugLoc dl = Op.getDebugLoc(); 6816 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6817 6818 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 6819 bool isPPC64 = PtrVT == MVT::i64; 6820 6821 MachineFunction &MF = DAG.getMachineFunction(); 6822 MachineFrameInfo *MFI = MF.getFrameInfo(); 6823 MFI->setFrameAddressIsTaken(true); 6824 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 6825 MFI->hasVarSizedObjects()) && 6826 MFI->getStackSize() && 6827 !MF.getFunction()->getAttributes(). 6828 hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked); 6829 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 6830 (is31 ? PPC::R31 : PPC::R1); 6831 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 6832 PtrVT); 6833 while (Depth--) 6834 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 6835 FrameAddr, MachinePointerInfo(), false, false, 6836 false, 0); 6837 return FrameAddr; 6838 } 6839 6840 bool 6841 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 6842 // The PowerPC target isn't yet aware of offsets. 6843 return false; 6844 } 6845 6846 /// getOptimalMemOpType - Returns the target specific optimal type for load 6847 /// and store operations as a result of memset, memcpy, and memmove 6848 /// lowering. If DstAlign is zero that means it's safe to destination 6849 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 6850 /// means there isn't a need to check it against alignment requirement, 6851 /// probably because the source does not need to be loaded. If 'IsMemset' is 6852 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 6853 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 6854 /// source is constant so it does not need to be loaded. 6855 /// It returns EVT::Other if the type should be determined using generic 6856 /// target-independent logic. 6857 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 6858 unsigned DstAlign, unsigned SrcAlign, 6859 bool IsMemset, bool ZeroMemset, 6860 bool MemcpyStrSrc, 6861 MachineFunction &MF) const { 6862 if (this->PPCSubTarget.isPPC64()) { 6863 return MVT::i64; 6864 } else { 6865 return MVT::i32; 6866 } 6867 } 6868 6869 /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than 6870 /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to 6871 /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd 6872 /// is expanded to mul + add. 6873 bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const { 6874 if (!VT.isSimple()) 6875 return false; 6876 6877 switch (VT.getSimpleVT().SimpleTy) { 6878 case MVT::f32: 6879 case MVT::f64: 6880 case MVT::v4f32: 6881 return true; 6882 default: 6883 break; 6884 } 6885 6886 return false; 6887 } 6888 6889 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 6890 if (DisableILPPref) 6891 return TargetLowering::getSchedulingPreference(N); 6892 6893 return Sched::ILP; 6894 } 6895 6896