1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171 
172   // PowerPC has pre-inc load and store's.
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183   if (!Subtarget.hasSPE()) {
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188   }
189 
190   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192   for (MVT VT : ScalarIntVTs) {
193     setOperationAction(ISD::ADDC, VT, Legal);
194     setOperationAction(ISD::ADDE, VT, Legal);
195     setOperationAction(ISD::SUBC, VT, Legal);
196     setOperationAction(ISD::SUBE, VT, Legal);
197   }
198 
199   if (Subtarget.useCRBits()) {
200     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201 
202     if (isPPC64 || Subtarget.hasFPCVT()) {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                          isPPC64 ? MVT::i64 : MVT::i32);
206       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                         isPPC64 ? MVT::i64 : MVT::i32);
209     } else {
210       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212     }
213 
214     // PowerPC does not support direct load/store of condition registers.
215     setOperationAction(ISD::LOAD, MVT::i1, Custom);
216     setOperationAction(ISD::STORE, MVT::i1, Custom);
217 
218     // FIXME: Remove this once the ANDI glue bug is fixed:
219     if (ANDIGlueBug)
220       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221 
222     for (MVT VT : MVT::integer_valuetypes()) {
223       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225       setTruncStoreAction(VT, MVT::i1, Expand);
226     }
227 
228     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229   }
230 
231   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232   // PPC (the libcall is not available).
233   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235 
236   // We do not currently implement these libm ops for PowerPC.
237   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243 
244   // PowerPC has no SREM/UREM instructions unless we are on P9
245   // On P9 we may use a hardware instruction to compute the remainder.
246   // The instructions are not legalized directly because in the cases where the
247   // result of both the remainder and the division is required it is more
248   // efficient to compute the remainder from the result of the division rather
249   // than use the remainder instruction.
250   if (Subtarget.isISA3_0()) {
251     setOperationAction(ISD::SREM, MVT::i32, Custom);
252     setOperationAction(ISD::UREM, MVT::i32, Custom);
253     setOperationAction(ISD::SREM, MVT::i64, Custom);
254     setOperationAction(ISD::UREM, MVT::i64, Custom);
255   } else {
256     setOperationAction(ISD::SREM, MVT::i32, Expand);
257     setOperationAction(ISD::UREM, MVT::i32, Expand);
258     setOperationAction(ISD::SREM, MVT::i64, Expand);
259     setOperationAction(ISD::UREM, MVT::i64, Expand);
260   }
261 
262   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271 
272   // Handle constrained floating-point operations of scalar.
273   // TODO: Handle SPE specific operation.
274   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
275   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
276   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
277   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
278 
279   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
280   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
281   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
282   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
283 
284   // We don't support sin/cos/sqrt/fmod/pow
285   setOperationAction(ISD::FSIN , MVT::f64, Expand);
286   setOperationAction(ISD::FCOS , MVT::f64, Expand);
287   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
288   setOperationAction(ISD::FREM , MVT::f64, Expand);
289   setOperationAction(ISD::FPOW , MVT::f64, Expand);
290   setOperationAction(ISD::FSIN , MVT::f32, Expand);
291   setOperationAction(ISD::FCOS , MVT::f32, Expand);
292   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
293   setOperationAction(ISD::FREM , MVT::f32, Expand);
294   setOperationAction(ISD::FPOW , MVT::f32, Expand);
295   if (Subtarget.hasSPE()) {
296     setOperationAction(ISD::FMA  , MVT::f64, Expand);
297     setOperationAction(ISD::FMA  , MVT::f32, Expand);
298   } else {
299     setOperationAction(ISD::FMA  , MVT::f64, Legal);
300     setOperationAction(ISD::FMA  , MVT::f32, Legal);
301   }
302 
303   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
304 
305   // If we're enabling GP optimizations, use hardware square root
306   if (!Subtarget.hasFSQRT() &&
307       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
308         Subtarget.hasFRE()))
309     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
310 
311   if (!Subtarget.hasFSQRT() &&
312       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
313         Subtarget.hasFRES()))
314     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
315 
316   if (Subtarget.hasFCPSGN()) {
317     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
318     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
319   } else {
320     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
321     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
322   }
323 
324   if (Subtarget.hasFPRND()) {
325     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
326     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
327     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
328     setOperationAction(ISD::FROUND, MVT::f64, Legal);
329 
330     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
331     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
332     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
333     setOperationAction(ISD::FROUND, MVT::f32, Legal);
334   }
335 
336   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
337   // to speed up scalar BSWAP64.
338   // CTPOP or CTTZ were introduced in P8/P9 respectively
339   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
340   if (Subtarget.hasP9Vector())
341     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
342   else
343     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
344   if (Subtarget.isISA3_0()) {
345     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
346     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
347   } else {
348     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
349     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
350   }
351 
352   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
353     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
354     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
355   } else {
356     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
357     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
358   }
359 
360   // PowerPC does not have ROTR
361   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
362   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
363 
364   if (!Subtarget.useCRBits()) {
365     // PowerPC does not have Select
366     setOperationAction(ISD::SELECT, MVT::i32, Expand);
367     setOperationAction(ISD::SELECT, MVT::i64, Expand);
368     setOperationAction(ISD::SELECT, MVT::f32, Expand);
369     setOperationAction(ISD::SELECT, MVT::f64, Expand);
370   }
371 
372   // PowerPC wants to turn select_cc of FP into fsel when possible.
373   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
374   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
375 
376   // PowerPC wants to optimize integer setcc a bit
377   if (!Subtarget.useCRBits())
378     setOperationAction(ISD::SETCC, MVT::i32, Custom);
379 
380   // PowerPC does not have BRCOND which requires SetCC
381   if (!Subtarget.useCRBits())
382     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
383 
384   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
385 
386   if (Subtarget.hasSPE()) {
387     // SPE has built-in conversions
388     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
389     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
390     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
391   } else {
392     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
393     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
394 
395     // PowerPC does not have [U|S]INT_TO_FP
396     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
397     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
398   }
399 
400   if (Subtarget.hasDirectMove() && isPPC64) {
401     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
402     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
403     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
404     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
405     if (TM.Options.UnsafeFPMath) {
406       setOperationAction(ISD::LRINT, MVT::f64, Legal);
407       setOperationAction(ISD::LRINT, MVT::f32, Legal);
408       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
409       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
410       setOperationAction(ISD::LROUND, MVT::f64, Legal);
411       setOperationAction(ISD::LROUND, MVT::f32, Legal);
412       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
413       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
414     }
415   } else {
416     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
417     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
418     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
419     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
420   }
421 
422   // We cannot sextinreg(i1).  Expand to shifts.
423   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
424 
425   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
426   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
427   // support continuation, user-level threading, and etc.. As a result, no
428   // other SjLj exception interfaces are implemented and please don't build
429   // your own exception handling based on them.
430   // LLVM/Clang supports zero-cost DWARF exception handling.
431   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
432   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
433 
434   // We want to legalize GlobalAddress and ConstantPool nodes into the
435   // appropriate instructions to materialize the address.
436   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
437   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
438   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
439   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
440   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
441   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
442   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
443   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
444   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
445   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
446 
447   // TRAP is legal.
448   setOperationAction(ISD::TRAP, MVT::Other, Legal);
449 
450   // TRAMPOLINE is custom lowered.
451   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
452   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
453 
454   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
455   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
456 
457   if (Subtarget.is64BitELFABI()) {
458     // VAARG always uses double-word chunks, so promote anything smaller.
459     setOperationAction(ISD::VAARG, MVT::i1, Promote);
460     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
461     setOperationAction(ISD::VAARG, MVT::i8, Promote);
462     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
463     setOperationAction(ISD::VAARG, MVT::i16, Promote);
464     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
465     setOperationAction(ISD::VAARG, MVT::i32, Promote);
466     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
467     setOperationAction(ISD::VAARG, MVT::Other, Expand);
468   } else if (Subtarget.is32BitELFABI()) {
469     // VAARG is custom lowered with the 32-bit SVR4 ABI.
470     setOperationAction(ISD::VAARG, MVT::Other, Custom);
471     setOperationAction(ISD::VAARG, MVT::i64, Custom);
472   } else
473     setOperationAction(ISD::VAARG, MVT::Other, Expand);
474 
475   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
476   if (Subtarget.is32BitELFABI())
477     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
478   else
479     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
480 
481   // Use the default implementation.
482   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
483   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
484   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
485   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
486   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
487   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
488   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
489   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
490   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
491 
492   // We want to custom lower some of our intrinsics.
493   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
494 
495   // To handle counter-based loop conditions.
496   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
497 
498   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
499   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
500   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
501   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
502 
503   // Comparisons that require checking two conditions.
504   if (Subtarget.hasSPE()) {
505     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
506     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
507     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
508     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
509   }
510   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
511   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
512   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
513   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
514   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
515   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
516   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
517   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
518   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
519   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
520   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
521   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
522 
523   if (Subtarget.has64BitSupport()) {
524     // They also have instructions for converting between i64 and fp.
525     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
526     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
527     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
528     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
529     // This is just the low 32 bits of a (signed) fp->i64 conversion.
530     // We cannot do this with Promote because i64 is not a legal type.
531     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
532 
533     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
534       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
535   } else {
536     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
537     if (Subtarget.hasSPE())
538       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
539     else
540       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
541   }
542 
543   // With the instructions enabled under FPCVT, we can do everything.
544   if (Subtarget.hasFPCVT()) {
545     if (Subtarget.has64BitSupport()) {
546       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
547       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
548       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
549       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
550     }
551 
552     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
553     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
554     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
555     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
556   }
557 
558   if (Subtarget.use64BitRegs()) {
559     // 64-bit PowerPC implementations can support i64 types directly
560     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
561     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
562     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
563     // 64-bit PowerPC wants to expand i128 shifts itself.
564     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
565     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
566     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
567   } else {
568     // 32-bit PowerPC wants to expand i64 shifts itself.
569     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
570     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
571     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
572   }
573 
574   if (Subtarget.hasVSX()) {
575     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
576     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
577     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
578     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
579   }
580 
581   if (Subtarget.hasAltivec()) {
582     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
583       setOperationAction(ISD::SADDSAT, VT, Legal);
584       setOperationAction(ISD::SSUBSAT, VT, Legal);
585       setOperationAction(ISD::UADDSAT, VT, Legal);
586       setOperationAction(ISD::USUBSAT, VT, Legal);
587     }
588     // First set operation action for all vector types to expand. Then we
589     // will selectively turn on ones that can be effectively codegen'd.
590     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
591       // add/sub are legal for all supported vector VT's.
592       setOperationAction(ISD::ADD, VT, Legal);
593       setOperationAction(ISD::SUB, VT, Legal);
594 
595       // For v2i64, these are only valid with P8Vector. This is corrected after
596       // the loop.
597       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
598         setOperationAction(ISD::SMAX, VT, Legal);
599         setOperationAction(ISD::SMIN, VT, Legal);
600         setOperationAction(ISD::UMAX, VT, Legal);
601         setOperationAction(ISD::UMIN, VT, Legal);
602       }
603       else {
604         setOperationAction(ISD::SMAX, VT, Expand);
605         setOperationAction(ISD::SMIN, VT, Expand);
606         setOperationAction(ISD::UMAX, VT, Expand);
607         setOperationAction(ISD::UMIN, VT, Expand);
608       }
609 
610       if (Subtarget.hasVSX()) {
611         setOperationAction(ISD::FMAXNUM, VT, Legal);
612         setOperationAction(ISD::FMINNUM, VT, Legal);
613       }
614 
615       // Vector instructions introduced in P8
616       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
617         setOperationAction(ISD::CTPOP, VT, Legal);
618         setOperationAction(ISD::CTLZ, VT, Legal);
619       }
620       else {
621         setOperationAction(ISD::CTPOP, VT, Expand);
622         setOperationAction(ISD::CTLZ, VT, Expand);
623       }
624 
625       // Vector instructions introduced in P9
626       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
627         setOperationAction(ISD::CTTZ, VT, Legal);
628       else
629         setOperationAction(ISD::CTTZ, VT, Expand);
630 
631       // We promote all shuffles to v16i8.
632       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
633       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
634 
635       // We promote all non-typed operations to v4i32.
636       setOperationAction(ISD::AND   , VT, Promote);
637       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
638       setOperationAction(ISD::OR    , VT, Promote);
639       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
640       setOperationAction(ISD::XOR   , VT, Promote);
641       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
642       setOperationAction(ISD::LOAD  , VT, Promote);
643       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
644       setOperationAction(ISD::SELECT, VT, Promote);
645       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
646       setOperationAction(ISD::VSELECT, VT, Legal);
647       setOperationAction(ISD::SELECT_CC, VT, Promote);
648       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
649       setOperationAction(ISD::STORE, VT, Promote);
650       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
651 
652       // No other operations are legal.
653       setOperationAction(ISD::MUL , VT, Expand);
654       setOperationAction(ISD::SDIV, VT, Expand);
655       setOperationAction(ISD::SREM, VT, Expand);
656       setOperationAction(ISD::UDIV, VT, Expand);
657       setOperationAction(ISD::UREM, VT, Expand);
658       setOperationAction(ISD::FDIV, VT, Expand);
659       setOperationAction(ISD::FREM, VT, Expand);
660       setOperationAction(ISD::FNEG, VT, Expand);
661       setOperationAction(ISD::FSQRT, VT, Expand);
662       setOperationAction(ISD::FLOG, VT, Expand);
663       setOperationAction(ISD::FLOG10, VT, Expand);
664       setOperationAction(ISD::FLOG2, VT, Expand);
665       setOperationAction(ISD::FEXP, VT, Expand);
666       setOperationAction(ISD::FEXP2, VT, Expand);
667       setOperationAction(ISD::FSIN, VT, Expand);
668       setOperationAction(ISD::FCOS, VT, Expand);
669       setOperationAction(ISD::FABS, VT, Expand);
670       setOperationAction(ISD::FFLOOR, VT, Expand);
671       setOperationAction(ISD::FCEIL,  VT, Expand);
672       setOperationAction(ISD::FTRUNC, VT, Expand);
673       setOperationAction(ISD::FRINT,  VT, Expand);
674       setOperationAction(ISD::FNEARBYINT, VT, Expand);
675       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
676       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
677       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
678       setOperationAction(ISD::MULHU, VT, Expand);
679       setOperationAction(ISD::MULHS, VT, Expand);
680       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
681       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
682       setOperationAction(ISD::UDIVREM, VT, Expand);
683       setOperationAction(ISD::SDIVREM, VT, Expand);
684       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
685       setOperationAction(ISD::FPOW, VT, Expand);
686       setOperationAction(ISD::BSWAP, VT, Expand);
687       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
688       setOperationAction(ISD::ROTL, VT, Expand);
689       setOperationAction(ISD::ROTR, VT, Expand);
690 
691       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
692         setTruncStoreAction(VT, InnerVT, Expand);
693         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
694         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
695         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
696       }
697     }
698     if (!Subtarget.hasP8Vector()) {
699       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
700       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
701       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
702       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
703     }
704 
705     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
706       setOperationAction(ISD::ABS, VT, Custom);
707 
708     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
709     // with merges, splats, etc.
710     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
711 
712     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
713     // are cheap, so handle them before they get expanded to scalar.
714     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
715     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
716     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
717     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
718     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
719 
720     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
721     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
722     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
723     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
724     setOperationAction(ISD::SELECT, MVT::v4i32,
725                        Subtarget.useCRBits() ? Legal : Expand);
726     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
727     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
728     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
729     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
730     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
731     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
732     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
733     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
734     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
735 
736     // Without hasP8Altivec set, v2i64 SMAX isn't available.
737     // But ABS custom lowering requires SMAX support.
738     if (!Subtarget.hasP8Altivec())
739       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
740 
741     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
742     if (Subtarget.hasAltivec())
743       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
744         setOperationAction(ISD::ROTL, VT, Legal);
745     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
746     if (Subtarget.hasP8Altivec())
747       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
748 
749     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
750     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
751     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
752     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
753 
754     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
755     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
756 
757     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
758       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
759       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
760     }
761 
762     if (Subtarget.hasP8Altivec())
763       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
764     else
765       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
766 
767     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
768     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
769 
770     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
771     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
772 
773     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
774     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
775     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
776     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
777 
778     // Altivec does not contain unordered floating-point compare instructions
779     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
780     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
781     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
782     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
783 
784     if (Subtarget.hasVSX()) {
785       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
786       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
787       if (Subtarget.hasP8Vector()) {
788         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
789         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
790       }
791       if (Subtarget.hasDirectMove() && isPPC64) {
792         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
793         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
794         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
795         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
796         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
797         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
798         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
799         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
800       }
801       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
802 
803       // The nearbyint variants are not allowed to raise the inexact exception
804       // so we can only code-gen them with unsafe math.
805       if (TM.Options.UnsafeFPMath) {
806         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
807         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
808       }
809 
810       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
811       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
812       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
813       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
814       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
815       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
816       setOperationAction(ISD::FROUND, MVT::f64, Legal);
817       setOperationAction(ISD::FRINT, MVT::f64, Legal);
818 
819       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
820       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
821       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
822       setOperationAction(ISD::FROUND, MVT::f32, Legal);
823       setOperationAction(ISD::FRINT, MVT::f32, Legal);
824 
825       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
826       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
827 
828       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
829       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
830 
831       // Share the Altivec comparison restrictions.
832       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
833       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
834       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
835       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
836 
837       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
838       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
839 
840       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
841 
842       if (Subtarget.hasP8Vector())
843         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
844 
845       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
846 
847       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
848       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
849       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
850 
851       if (Subtarget.hasP8Altivec()) {
852         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
853         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
854         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
855 
856         // 128 bit shifts can be accomplished via 3 instructions for SHL and
857         // SRL, but not for SRA because of the instructions available:
858         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
859         // doing
860         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
861         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
862         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
863 
864         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
865       }
866       else {
867         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
868         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
869         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
870 
871         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
872 
873         // VSX v2i64 only supports non-arithmetic operations.
874         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
875         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
876       }
877 
878       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
879       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
880       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
881       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
882 
883       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
884 
885       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
886       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
887       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
888       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
889 
890       // Custom handling for partial vectors of integers converted to
891       // floating point. We already have optimal handling for v2i32 through
892       // the DAG combine, so those aren't necessary.
893       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
894       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
895       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
896       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
897       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
898       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
899       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
900       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
901 
902       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
903       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
904       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
905       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
906       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
907       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
908 
909       if (Subtarget.hasDirectMove())
910         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
911       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
912 
913       // Handle constrained floating-point operations of vector.
914       // The predictor is `hasVSX` because altivec instruction has
915       // no exception but VSX vector instruction has.
916       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
917       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
918       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
919       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
920 
921       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
922       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
923       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
924       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
925 
926       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
927     }
928 
929     if (Subtarget.hasP8Altivec()) {
930       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
931       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
932     }
933 
934     if (Subtarget.hasP9Vector()) {
935       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
936       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
937 
938       // 128 bit shifts can be accomplished via 3 instructions for SHL and
939       // SRL, but not for SRA because of the instructions available:
940       // VS{RL} and VS{RL}O.
941       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
942       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
943       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
944 
945       if (EnableQuadPrecision) {
946         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
947         setOperationAction(ISD::FADD, MVT::f128, Legal);
948         setOperationAction(ISD::FSUB, MVT::f128, Legal);
949         setOperationAction(ISD::FDIV, MVT::f128, Legal);
950         setOperationAction(ISD::FMUL, MVT::f128, Legal);
951         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
952         // No extending loads to f128 on PPC.
953         for (MVT FPT : MVT::fp_valuetypes())
954           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
955         setOperationAction(ISD::FMA, MVT::f128, Legal);
956         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
957         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
958         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
959         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
960         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
961         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
962 
963         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
964         setOperationAction(ISD::FRINT, MVT::f128, Legal);
965         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
966         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
967         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
968         setOperationAction(ISD::FROUND, MVT::f128, Legal);
969 
970         setOperationAction(ISD::SELECT, MVT::f128, Expand);
971         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
972         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
973         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
974         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
975         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
976         // No implementation for these ops for PowerPC.
977         setOperationAction(ISD::FSIN , MVT::f128, Expand);
978         setOperationAction(ISD::FCOS , MVT::f128, Expand);
979         setOperationAction(ISD::FPOW, MVT::f128, Expand);
980         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
981         setOperationAction(ISD::FREM, MVT::f128, Expand);
982 
983         // Handle constrained floating-point operations of fp128
984         setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
985         setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
986         setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
987         setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
988       }
989       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
990       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
991       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
992       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
993       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
994     }
995 
996     if (Subtarget.hasP9Altivec()) {
997       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
998       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
999 
1000       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1001       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1002       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1003       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1004       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1005       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1006       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1007     }
1008   }
1009 
1010   if (Subtarget.hasQPX()) {
1011     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1012     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1013     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1015 
1016     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1017     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1018 
1019     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1020     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1021 
1022     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1023     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1024 
1025     if (!Subtarget.useCRBits())
1026       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1027     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1028 
1029     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1030     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1031     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1032     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1033     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1034     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1035     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1036 
1037     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1038     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1039 
1040     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1041     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1042 
1043     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1044     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1045     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1046     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1047     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1048     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1049     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1050     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1051     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1052     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1053 
1054     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1055     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1056 
1057     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1058     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1059 
1060     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1061 
1062     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1063     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1064     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1065     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1066 
1067     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1068     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1069 
1070     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1071     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1072 
1073     if (!Subtarget.useCRBits())
1074       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1075     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1076 
1077     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1078     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1079     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1080     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1081     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1082     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1083     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1084 
1085     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1086     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1087 
1088     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1089     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1090     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1091     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1092     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1093     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1094     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1095     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1096     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1097     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1098 
1099     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1100     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1101 
1102     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1103     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1104 
1105     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1106 
1107     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1108     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1109     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1110 
1111     if (!Subtarget.useCRBits())
1112       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1113     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1114 
1115     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1116     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1117 
1118     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1119     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1120     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1121     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1122     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1123     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1124     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1125 
1126     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1127     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1128 
1129     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1130 
1131     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1132     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1133     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1134     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1135 
1136     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1137     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1138     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1139     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1140 
1141     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1142     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1143 
1144     // These need to set FE_INEXACT, and so cannot be vectorized here.
1145     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1146     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1147 
1148     if (TM.Options.UnsafeFPMath) {
1149       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1150       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1151 
1152       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1153       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1154     } else {
1155       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1156       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1157 
1158       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1159       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1160     }
1161 
1162     // TODO: Handle constrained floating-point operations of v4f64
1163   }
1164 
1165   if (Subtarget.has64BitSupport())
1166     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1167 
1168   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1169 
1170   if (!isPPC64) {
1171     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1172     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1173   }
1174 
1175   setBooleanContents(ZeroOrOneBooleanContent);
1176 
1177   if (Subtarget.hasAltivec()) {
1178     // Altivec instructions set fields to all zeros or all ones.
1179     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1180   }
1181 
1182   if (!isPPC64) {
1183     // These libcalls are not available in 32-bit.
1184     setLibcallName(RTLIB::SHL_I128, nullptr);
1185     setLibcallName(RTLIB::SRL_I128, nullptr);
1186     setLibcallName(RTLIB::SRA_I128, nullptr);
1187   }
1188 
1189   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1190 
1191   // We have target-specific dag combine patterns for the following nodes:
1192   setTargetDAGCombine(ISD::ADD);
1193   setTargetDAGCombine(ISD::SHL);
1194   setTargetDAGCombine(ISD::SRA);
1195   setTargetDAGCombine(ISD::SRL);
1196   setTargetDAGCombine(ISD::MUL);
1197   setTargetDAGCombine(ISD::SINT_TO_FP);
1198   setTargetDAGCombine(ISD::BUILD_VECTOR);
1199   if (Subtarget.hasFPCVT())
1200     setTargetDAGCombine(ISD::UINT_TO_FP);
1201   setTargetDAGCombine(ISD::LOAD);
1202   setTargetDAGCombine(ISD::STORE);
1203   setTargetDAGCombine(ISD::BR_CC);
1204   if (Subtarget.useCRBits())
1205     setTargetDAGCombine(ISD::BRCOND);
1206   setTargetDAGCombine(ISD::BSWAP);
1207   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1208   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1209   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1210 
1211   setTargetDAGCombine(ISD::SIGN_EXTEND);
1212   setTargetDAGCombine(ISD::ZERO_EXTEND);
1213   setTargetDAGCombine(ISD::ANY_EXTEND);
1214 
1215   setTargetDAGCombine(ISD::TRUNCATE);
1216   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1217 
1218 
1219   if (Subtarget.useCRBits()) {
1220     setTargetDAGCombine(ISD::TRUNCATE);
1221     setTargetDAGCombine(ISD::SETCC);
1222     setTargetDAGCombine(ISD::SELECT_CC);
1223   }
1224 
1225   // Use reciprocal estimates.
1226   if (TM.Options.UnsafeFPMath) {
1227     setTargetDAGCombine(ISD::FDIV);
1228     setTargetDAGCombine(ISD::FSQRT);
1229   }
1230 
1231   if (Subtarget.hasP9Altivec()) {
1232     setTargetDAGCombine(ISD::ABS);
1233     setTargetDAGCombine(ISD::VSELECT);
1234   }
1235 
1236   if (EnableQuadPrecision) {
1237     setLibcallName(RTLIB::LOG_F128, "logf128");
1238     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1239     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1240     setLibcallName(RTLIB::EXP_F128, "expf128");
1241     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1242     setLibcallName(RTLIB::SIN_F128, "sinf128");
1243     setLibcallName(RTLIB::COS_F128, "cosf128");
1244     setLibcallName(RTLIB::POW_F128, "powf128");
1245     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1246     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1247     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1248     setLibcallName(RTLIB::REM_F128, "fmodf128");
1249   }
1250 
1251   // With 32 condition bits, we don't need to sink (and duplicate) compares
1252   // aggressively in CodeGenPrep.
1253   if (Subtarget.useCRBits()) {
1254     setHasMultipleConditionRegisters();
1255     setJumpIsExpensive();
1256   }
1257 
1258   setMinFunctionAlignment(Align(4));
1259 
1260   switch (Subtarget.getCPUDirective()) {
1261   default: break;
1262   case PPC::DIR_970:
1263   case PPC::DIR_A2:
1264   case PPC::DIR_E500:
1265   case PPC::DIR_E500mc:
1266   case PPC::DIR_E5500:
1267   case PPC::DIR_PWR4:
1268   case PPC::DIR_PWR5:
1269   case PPC::DIR_PWR5X:
1270   case PPC::DIR_PWR6:
1271   case PPC::DIR_PWR6X:
1272   case PPC::DIR_PWR7:
1273   case PPC::DIR_PWR8:
1274   case PPC::DIR_PWR9:
1275   case PPC::DIR_PWR_FUTURE:
1276     setPrefLoopAlignment(Align(16));
1277     setPrefFunctionAlignment(Align(16));
1278     break;
1279   }
1280 
1281   if (Subtarget.enableMachineScheduler())
1282     setSchedulingPreference(Sched::Source);
1283   else
1284     setSchedulingPreference(Sched::Hybrid);
1285 
1286   computeRegisterProperties(STI.getRegisterInfo());
1287 
1288   // The Freescale cores do better with aggressive inlining of memcpy and
1289   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1290   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1291       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1292     MaxStoresPerMemset = 32;
1293     MaxStoresPerMemsetOptSize = 16;
1294     MaxStoresPerMemcpy = 32;
1295     MaxStoresPerMemcpyOptSize = 8;
1296     MaxStoresPerMemmove = 32;
1297     MaxStoresPerMemmoveOptSize = 8;
1298   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1299     // The A2 also benefits from (very) aggressive inlining of memcpy and
1300     // friends. The overhead of a the function call, even when warm, can be
1301     // over one hundred cycles.
1302     MaxStoresPerMemset = 128;
1303     MaxStoresPerMemcpy = 128;
1304     MaxStoresPerMemmove = 128;
1305     MaxLoadsPerMemcmp = 128;
1306   } else {
1307     MaxLoadsPerMemcmp = 8;
1308     MaxLoadsPerMemcmpOptSize = 4;
1309   }
1310 }
1311 
1312 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1313 /// the desired ByVal argument alignment.
1314 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1315                              unsigned MaxMaxAlign) {
1316   if (MaxAlign == MaxMaxAlign)
1317     return;
1318   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1319     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1320       MaxAlign = 32;
1321     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1322       MaxAlign = 16;
1323   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1324     unsigned EltAlign = 0;
1325     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1326     if (EltAlign > MaxAlign)
1327       MaxAlign = EltAlign;
1328   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1329     for (auto *EltTy : STy->elements()) {
1330       unsigned EltAlign = 0;
1331       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1332       if (EltAlign > MaxAlign)
1333         MaxAlign = EltAlign;
1334       if (MaxAlign == MaxMaxAlign)
1335         break;
1336     }
1337   }
1338 }
1339 
1340 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1341 /// function arguments in the caller parameter area.
1342 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1343                                                   const DataLayout &DL) const {
1344   // 16byte and wider vectors are passed on 16byte boundary.
1345   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1346   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1347   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1348     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1349   return Align;
1350 }
1351 
1352 bool PPCTargetLowering::useSoftFloat() const {
1353   return Subtarget.useSoftFloat();
1354 }
1355 
1356 bool PPCTargetLowering::hasSPE() const {
1357   return Subtarget.hasSPE();
1358 }
1359 
1360 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1361   return VT.isScalarInteger();
1362 }
1363 
1364 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1365   switch ((PPCISD::NodeType)Opcode) {
1366   case PPCISD::FIRST_NUMBER:    break;
1367   case PPCISD::FSEL:            return "PPCISD::FSEL";
1368   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1369   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1370   case PPCISD::FCFID:           return "PPCISD::FCFID";
1371   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1372   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1373   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1374   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1375   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1376   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1377   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1378   case PPCISD::FP_TO_UINT_IN_VSR:
1379                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1380   case PPCISD::FP_TO_SINT_IN_VSR:
1381                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1382   case PPCISD::FRE:             return "PPCISD::FRE";
1383   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1384   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1385   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1386   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1387   case PPCISD::VPERM:           return "PPCISD::VPERM";
1388   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1389   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1390   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1391   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1392   case PPCISD::CMPB:            return "PPCISD::CMPB";
1393   case PPCISD::Hi:              return "PPCISD::Hi";
1394   case PPCISD::Lo:              return "PPCISD::Lo";
1395   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1396   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1397   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1398   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1399   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1400   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1401   case PPCISD::SRL:             return "PPCISD::SRL";
1402   case PPCISD::SRA:             return "PPCISD::SRA";
1403   case PPCISD::SHL:             return "PPCISD::SHL";
1404   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1405   case PPCISD::CALL:            return "PPCISD::CALL";
1406   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1407   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1408   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1409   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1410   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1411   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1412   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1413   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1414   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1415   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1416   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1417   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1418   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1419   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1420   case PPCISD::ANDI_rec_1_EQ_BIT:
1421     return "PPCISD::ANDI_rec_1_EQ_BIT";
1422   case PPCISD::ANDI_rec_1_GT_BIT:
1423     return "PPCISD::ANDI_rec_1_GT_BIT";
1424   case PPCISD::VCMP:            return "PPCISD::VCMP";
1425   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1426   case PPCISD::LBRX:            return "PPCISD::LBRX";
1427   case PPCISD::STBRX:           return "PPCISD::STBRX";
1428   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1429   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1430   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1431   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1432   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1433   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1434   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1435   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1436   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1437   case PPCISD::ST_VSR_SCAL_INT:
1438                                 return "PPCISD::ST_VSR_SCAL_INT";
1439   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1440   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1441   case PPCISD::BDZ:             return "PPCISD::BDZ";
1442   case PPCISD::MFFS:            return "PPCISD::MFFS";
1443   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1444   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1445   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1446   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1447   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1448   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1449   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1450   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1451   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1452   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1453   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1454   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1455   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1456   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1457   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1458   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1459   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1460   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1461   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1462   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1463   case PPCISD::SC:              return "PPCISD::SC";
1464   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1465   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1466   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1467   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1468   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1469   case PPCISD::VABSD:           return "PPCISD::VABSD";
1470   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1471   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1472   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1473   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1474   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1475   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1476   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1477   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1478   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1479   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1480   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1481   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1482   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1483   }
1484   return nullptr;
1485 }
1486 
1487 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1488                                           EVT VT) const {
1489   if (!VT.isVector())
1490     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1491 
1492   if (Subtarget.hasQPX())
1493     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1494 
1495   return VT.changeVectorElementTypeToInteger();
1496 }
1497 
1498 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1499   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1500   return true;
1501 }
1502 
1503 //===----------------------------------------------------------------------===//
1504 // Node matching predicates, for use by the tblgen matching code.
1505 //===----------------------------------------------------------------------===//
1506 
1507 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1508 static bool isFloatingPointZero(SDValue Op) {
1509   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1510     return CFP->getValueAPF().isZero();
1511   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1512     // Maybe this has already been legalized into the constant pool?
1513     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1514       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1515         return CFP->getValueAPF().isZero();
1516   }
1517   return false;
1518 }
1519 
1520 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1521 /// true if Op is undef or if it matches the specified value.
1522 static bool isConstantOrUndef(int Op, int Val) {
1523   return Op < 0 || Op == Val;
1524 }
1525 
1526 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1527 /// VPKUHUM instruction.
1528 /// The ShuffleKind distinguishes between big-endian operations with
1529 /// two different inputs (0), either-endian operations with two identical
1530 /// inputs (1), and little-endian operations with two different inputs (2).
1531 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1532 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1533                                SelectionDAG &DAG) {
1534   bool IsLE = DAG.getDataLayout().isLittleEndian();
1535   if (ShuffleKind == 0) {
1536     if (IsLE)
1537       return false;
1538     for (unsigned i = 0; i != 16; ++i)
1539       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1540         return false;
1541   } else if (ShuffleKind == 2) {
1542     if (!IsLE)
1543       return false;
1544     for (unsigned i = 0; i != 16; ++i)
1545       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1546         return false;
1547   } else if (ShuffleKind == 1) {
1548     unsigned j = IsLE ? 0 : 1;
1549     for (unsigned i = 0; i != 8; ++i)
1550       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1551           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1552         return false;
1553   }
1554   return true;
1555 }
1556 
1557 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1558 /// VPKUWUM instruction.
1559 /// The ShuffleKind distinguishes between big-endian operations with
1560 /// two different inputs (0), either-endian operations with two identical
1561 /// inputs (1), and little-endian operations with two different inputs (2).
1562 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1563 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1564                                SelectionDAG &DAG) {
1565   bool IsLE = DAG.getDataLayout().isLittleEndian();
1566   if (ShuffleKind == 0) {
1567     if (IsLE)
1568       return false;
1569     for (unsigned i = 0; i != 16; i += 2)
1570       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1571           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1572         return false;
1573   } else if (ShuffleKind == 2) {
1574     if (!IsLE)
1575       return false;
1576     for (unsigned i = 0; i != 16; i += 2)
1577       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1578           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1579         return false;
1580   } else if (ShuffleKind == 1) {
1581     unsigned j = IsLE ? 0 : 2;
1582     for (unsigned i = 0; i != 8; i += 2)
1583       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1584           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1585           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1586           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1587         return false;
1588   }
1589   return true;
1590 }
1591 
1592 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1593 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1594 /// current subtarget.
1595 ///
1596 /// The ShuffleKind distinguishes between big-endian operations with
1597 /// two different inputs (0), either-endian operations with two identical
1598 /// inputs (1), and little-endian operations with two different inputs (2).
1599 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1600 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1601                                SelectionDAG &DAG) {
1602   const PPCSubtarget& Subtarget =
1603       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1604   if (!Subtarget.hasP8Vector())
1605     return false;
1606 
1607   bool IsLE = DAG.getDataLayout().isLittleEndian();
1608   if (ShuffleKind == 0) {
1609     if (IsLE)
1610       return false;
1611     for (unsigned i = 0; i != 16; i += 4)
1612       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1613           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1614           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1615           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1616         return false;
1617   } else if (ShuffleKind == 2) {
1618     if (!IsLE)
1619       return false;
1620     for (unsigned i = 0; i != 16; i += 4)
1621       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1622           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1623           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1624           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1625         return false;
1626   } else if (ShuffleKind == 1) {
1627     unsigned j = IsLE ? 0 : 4;
1628     for (unsigned i = 0; i != 8; i += 4)
1629       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1630           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1631           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1632           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1633           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1634           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1635           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1636           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1637         return false;
1638   }
1639   return true;
1640 }
1641 
1642 /// isVMerge - Common function, used to match vmrg* shuffles.
1643 ///
1644 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1645                      unsigned LHSStart, unsigned RHSStart) {
1646   if (N->getValueType(0) != MVT::v16i8)
1647     return false;
1648   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1649          "Unsupported merge size!");
1650 
1651   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1652     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1653       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1654                              LHSStart+j+i*UnitSize) ||
1655           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1656                              RHSStart+j+i*UnitSize))
1657         return false;
1658     }
1659   return true;
1660 }
1661 
1662 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1663 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1664 /// The ShuffleKind distinguishes between big-endian merges with two
1665 /// different inputs (0), either-endian merges with two identical inputs (1),
1666 /// and little-endian merges with two different inputs (2).  For the latter,
1667 /// the input operands are swapped (see PPCInstrAltivec.td).
1668 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1669                              unsigned ShuffleKind, SelectionDAG &DAG) {
1670   if (DAG.getDataLayout().isLittleEndian()) {
1671     if (ShuffleKind == 1) // unary
1672       return isVMerge(N, UnitSize, 0, 0);
1673     else if (ShuffleKind == 2) // swapped
1674       return isVMerge(N, UnitSize, 0, 16);
1675     else
1676       return false;
1677   } else {
1678     if (ShuffleKind == 1) // unary
1679       return isVMerge(N, UnitSize, 8, 8);
1680     else if (ShuffleKind == 0) // normal
1681       return isVMerge(N, UnitSize, 8, 24);
1682     else
1683       return false;
1684   }
1685 }
1686 
1687 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1688 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1689 /// The ShuffleKind distinguishes between big-endian merges with two
1690 /// different inputs (0), either-endian merges with two identical inputs (1),
1691 /// and little-endian merges with two different inputs (2).  For the latter,
1692 /// the input operands are swapped (see PPCInstrAltivec.td).
1693 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1694                              unsigned ShuffleKind, SelectionDAG &DAG) {
1695   if (DAG.getDataLayout().isLittleEndian()) {
1696     if (ShuffleKind == 1) // unary
1697       return isVMerge(N, UnitSize, 8, 8);
1698     else if (ShuffleKind == 2) // swapped
1699       return isVMerge(N, UnitSize, 8, 24);
1700     else
1701       return false;
1702   } else {
1703     if (ShuffleKind == 1) // unary
1704       return isVMerge(N, UnitSize, 0, 0);
1705     else if (ShuffleKind == 0) // normal
1706       return isVMerge(N, UnitSize, 0, 16);
1707     else
1708       return false;
1709   }
1710 }
1711 
1712 /**
1713  * Common function used to match vmrgew and vmrgow shuffles
1714  *
1715  * The indexOffset determines whether to look for even or odd words in
1716  * the shuffle mask. This is based on the of the endianness of the target
1717  * machine.
1718  *   - Little Endian:
1719  *     - Use offset of 0 to check for odd elements
1720  *     - Use offset of 4 to check for even elements
1721  *   - Big Endian:
1722  *     - Use offset of 0 to check for even elements
1723  *     - Use offset of 4 to check for odd elements
1724  * A detailed description of the vector element ordering for little endian and
1725  * big endian can be found at
1726  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1727  * Targeting your applications - what little endian and big endian IBM XL C/C++
1728  * compiler differences mean to you
1729  *
1730  * The mask to the shuffle vector instruction specifies the indices of the
1731  * elements from the two input vectors to place in the result. The elements are
1732  * numbered in array-access order, starting with the first vector. These vectors
1733  * are always of type v16i8, thus each vector will contain 16 elements of size
1734  * 8. More info on the shuffle vector can be found in the
1735  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1736  * Language Reference.
1737  *
1738  * The RHSStartValue indicates whether the same input vectors are used (unary)
1739  * or two different input vectors are used, based on the following:
1740  *   - If the instruction uses the same vector for both inputs, the range of the
1741  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1742  *     be 0.
1743  *   - If the instruction has two different vectors then the range of the
1744  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1745  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1746  *     to 31 specify elements in the second vector).
1747  *
1748  * \param[in] N The shuffle vector SD Node to analyze
1749  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1750  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1751  * vector to the shuffle_vector instruction
1752  * \return true iff this shuffle vector represents an even or odd word merge
1753  */
1754 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1755                      unsigned RHSStartValue) {
1756   if (N->getValueType(0) != MVT::v16i8)
1757     return false;
1758 
1759   for (unsigned i = 0; i < 2; ++i)
1760     for (unsigned j = 0; j < 4; ++j)
1761       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1762                              i*RHSStartValue+j+IndexOffset) ||
1763           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1764                              i*RHSStartValue+j+IndexOffset+8))
1765         return false;
1766   return true;
1767 }
1768 
1769 /**
1770  * Determine if the specified shuffle mask is suitable for the vmrgew or
1771  * vmrgow instructions.
1772  *
1773  * \param[in] N The shuffle vector SD Node to analyze
1774  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1775  * \param[in] ShuffleKind Identify the type of merge:
1776  *   - 0 = big-endian merge with two different inputs;
1777  *   - 1 = either-endian merge with two identical inputs;
1778  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1779  *     little-endian merges).
1780  * \param[in] DAG The current SelectionDAG
1781  * \return true iff this shuffle mask
1782  */
1783 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1784                               unsigned ShuffleKind, SelectionDAG &DAG) {
1785   if (DAG.getDataLayout().isLittleEndian()) {
1786     unsigned indexOffset = CheckEven ? 4 : 0;
1787     if (ShuffleKind == 1) // Unary
1788       return isVMerge(N, indexOffset, 0);
1789     else if (ShuffleKind == 2) // swapped
1790       return isVMerge(N, indexOffset, 16);
1791     else
1792       return false;
1793   }
1794   else {
1795     unsigned indexOffset = CheckEven ? 0 : 4;
1796     if (ShuffleKind == 1) // Unary
1797       return isVMerge(N, indexOffset, 0);
1798     else if (ShuffleKind == 0) // Normal
1799       return isVMerge(N, indexOffset, 16);
1800     else
1801       return false;
1802   }
1803   return false;
1804 }
1805 
1806 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1807 /// amount, otherwise return -1.
1808 /// The ShuffleKind distinguishes between big-endian operations with two
1809 /// different inputs (0), either-endian operations with two identical inputs
1810 /// (1), and little-endian operations with two different inputs (2).  For the
1811 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1812 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1813                              SelectionDAG &DAG) {
1814   if (N->getValueType(0) != MVT::v16i8)
1815     return -1;
1816 
1817   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1818 
1819   // Find the first non-undef value in the shuffle mask.
1820   unsigned i;
1821   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1822     /*search*/;
1823 
1824   if (i == 16) return -1;  // all undef.
1825 
1826   // Otherwise, check to see if the rest of the elements are consecutively
1827   // numbered from this value.
1828   unsigned ShiftAmt = SVOp->getMaskElt(i);
1829   if (ShiftAmt < i) return -1;
1830 
1831   ShiftAmt -= i;
1832   bool isLE = DAG.getDataLayout().isLittleEndian();
1833 
1834   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1835     // Check the rest of the elements to see if they are consecutive.
1836     for (++i; i != 16; ++i)
1837       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1838         return -1;
1839   } else if (ShuffleKind == 1) {
1840     // Check the rest of the elements to see if they are consecutive.
1841     for (++i; i != 16; ++i)
1842       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1843         return -1;
1844   } else
1845     return -1;
1846 
1847   if (isLE)
1848     ShiftAmt = 16 - ShiftAmt;
1849 
1850   return ShiftAmt;
1851 }
1852 
1853 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1854 /// specifies a splat of a single element that is suitable for input to
1855 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1856 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1857   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1858          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1859 
1860   // The consecutive indices need to specify an element, not part of two
1861   // different elements.  So abandon ship early if this isn't the case.
1862   if (N->getMaskElt(0) % EltSize != 0)
1863     return false;
1864 
1865   // This is a splat operation if each element of the permute is the same, and
1866   // if the value doesn't reference the second vector.
1867   unsigned ElementBase = N->getMaskElt(0);
1868 
1869   // FIXME: Handle UNDEF elements too!
1870   if (ElementBase >= 16)
1871     return false;
1872 
1873   // Check that the indices are consecutive, in the case of a multi-byte element
1874   // splatted with a v16i8 mask.
1875   for (unsigned i = 1; i != EltSize; ++i)
1876     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1877       return false;
1878 
1879   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1880     if (N->getMaskElt(i) < 0) continue;
1881     for (unsigned j = 0; j != EltSize; ++j)
1882       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1883         return false;
1884   }
1885   return true;
1886 }
1887 
1888 /// Check that the mask is shuffling N byte elements. Within each N byte
1889 /// element of the mask, the indices could be either in increasing or
1890 /// decreasing order as long as they are consecutive.
1891 /// \param[in] N the shuffle vector SD Node to analyze
1892 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1893 /// Word/DoubleWord/QuadWord).
1894 /// \param[in] StepLen the delta indices number among the N byte element, if
1895 /// the mask is in increasing/decreasing order then it is 1/-1.
1896 /// \return true iff the mask is shuffling N byte elements.
1897 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1898                                    int StepLen) {
1899   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1900          "Unexpected element width.");
1901   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1902 
1903   unsigned NumOfElem = 16 / Width;
1904   unsigned MaskVal[16]; //  Width is never greater than 16
1905   for (unsigned i = 0; i < NumOfElem; ++i) {
1906     MaskVal[0] = N->getMaskElt(i * Width);
1907     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1908       return false;
1909     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1910       return false;
1911     }
1912 
1913     for (unsigned int j = 1; j < Width; ++j) {
1914       MaskVal[j] = N->getMaskElt(i * Width + j);
1915       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1916         return false;
1917       }
1918     }
1919   }
1920 
1921   return true;
1922 }
1923 
1924 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1925                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1926   if (!isNByteElemShuffleMask(N, 4, 1))
1927     return false;
1928 
1929   // Now we look at mask elements 0,4,8,12
1930   unsigned M0 = N->getMaskElt(0) / 4;
1931   unsigned M1 = N->getMaskElt(4) / 4;
1932   unsigned M2 = N->getMaskElt(8) / 4;
1933   unsigned M3 = N->getMaskElt(12) / 4;
1934   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1935   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1936 
1937   // Below, let H and L be arbitrary elements of the shuffle mask
1938   // where H is in the range [4,7] and L is in the range [0,3].
1939   // H, 1, 2, 3 or L, 5, 6, 7
1940   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1941       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1942     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1943     InsertAtByte = IsLE ? 12 : 0;
1944     Swap = M0 < 4;
1945     return true;
1946   }
1947   // 0, H, 2, 3 or 4, L, 6, 7
1948   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1949       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1950     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1951     InsertAtByte = IsLE ? 8 : 4;
1952     Swap = M1 < 4;
1953     return true;
1954   }
1955   // 0, 1, H, 3 or 4, 5, L, 7
1956   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1957       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1958     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1959     InsertAtByte = IsLE ? 4 : 8;
1960     Swap = M2 < 4;
1961     return true;
1962   }
1963   // 0, 1, 2, H or 4, 5, 6, L
1964   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1965       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1966     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1967     InsertAtByte = IsLE ? 0 : 12;
1968     Swap = M3 < 4;
1969     return true;
1970   }
1971 
1972   // If both vector operands for the shuffle are the same vector, the mask will
1973   // contain only elements from the first one and the second one will be undef.
1974   if (N->getOperand(1).isUndef()) {
1975     ShiftElts = 0;
1976     Swap = true;
1977     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1978     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1979       InsertAtByte = IsLE ? 12 : 0;
1980       return true;
1981     }
1982     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1983       InsertAtByte = IsLE ? 8 : 4;
1984       return true;
1985     }
1986     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1987       InsertAtByte = IsLE ? 4 : 8;
1988       return true;
1989     }
1990     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1991       InsertAtByte = IsLE ? 0 : 12;
1992       return true;
1993     }
1994   }
1995 
1996   return false;
1997 }
1998 
1999 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2000                                bool &Swap, bool IsLE) {
2001   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2002   // Ensure each byte index of the word is consecutive.
2003   if (!isNByteElemShuffleMask(N, 4, 1))
2004     return false;
2005 
2006   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2007   unsigned M0 = N->getMaskElt(0) / 4;
2008   unsigned M1 = N->getMaskElt(4) / 4;
2009   unsigned M2 = N->getMaskElt(8) / 4;
2010   unsigned M3 = N->getMaskElt(12) / 4;
2011 
2012   // If both vector operands for the shuffle are the same vector, the mask will
2013   // contain only elements from the first one and the second one will be undef.
2014   if (N->getOperand(1).isUndef()) {
2015     assert(M0 < 4 && "Indexing into an undef vector?");
2016     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2017       return false;
2018 
2019     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2020     Swap = false;
2021     return true;
2022   }
2023 
2024   // Ensure each word index of the ShuffleVector Mask is consecutive.
2025   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2026     return false;
2027 
2028   if (IsLE) {
2029     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2030       // Input vectors don't need to be swapped if the leading element
2031       // of the result is one of the 3 left elements of the second vector
2032       // (or if there is no shift to be done at all).
2033       Swap = false;
2034       ShiftElts = (8 - M0) % 8;
2035     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2036       // Input vectors need to be swapped if the leading element
2037       // of the result is one of the 3 left elements of the first vector
2038       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2039       Swap = true;
2040       ShiftElts = (4 - M0) % 4;
2041     }
2042 
2043     return true;
2044   } else {                                          // BE
2045     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2046       // Input vectors don't need to be swapped if the leading element
2047       // of the result is one of the 4 elements of the first vector.
2048       Swap = false;
2049       ShiftElts = M0;
2050     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2051       // Input vectors need to be swapped if the leading element
2052       // of the result is one of the 4 elements of the right vector.
2053       Swap = true;
2054       ShiftElts = M0 - 4;
2055     }
2056 
2057     return true;
2058   }
2059 }
2060 
2061 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2062   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2063 
2064   if (!isNByteElemShuffleMask(N, Width, -1))
2065     return false;
2066 
2067   for (int i = 0; i < 16; i += Width)
2068     if (N->getMaskElt(i) != i + Width - 1)
2069       return false;
2070 
2071   return true;
2072 }
2073 
2074 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2075   return isXXBRShuffleMaskHelper(N, 2);
2076 }
2077 
2078 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2079   return isXXBRShuffleMaskHelper(N, 4);
2080 }
2081 
2082 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2083   return isXXBRShuffleMaskHelper(N, 8);
2084 }
2085 
2086 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2087   return isXXBRShuffleMaskHelper(N, 16);
2088 }
2089 
2090 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2091 /// if the inputs to the instruction should be swapped and set \p DM to the
2092 /// value for the immediate.
2093 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2094 /// AND element 0 of the result comes from the first input (LE) or second input
2095 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2096 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2097 /// mask.
2098 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2099                                bool &Swap, bool IsLE) {
2100   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2101 
2102   // Ensure each byte index of the double word is consecutive.
2103   if (!isNByteElemShuffleMask(N, 8, 1))
2104     return false;
2105 
2106   unsigned M0 = N->getMaskElt(0) / 8;
2107   unsigned M1 = N->getMaskElt(8) / 8;
2108   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2109 
2110   // If both vector operands for the shuffle are the same vector, the mask will
2111   // contain only elements from the first one and the second one will be undef.
2112   if (N->getOperand(1).isUndef()) {
2113     if ((M0 | M1) < 2) {
2114       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2115       Swap = false;
2116       return true;
2117     } else
2118       return false;
2119   }
2120 
2121   if (IsLE) {
2122     if (M0 > 1 && M1 < 2) {
2123       Swap = false;
2124     } else if (M0 < 2 && M1 > 1) {
2125       M0 = (M0 + 2) % 4;
2126       M1 = (M1 + 2) % 4;
2127       Swap = true;
2128     } else
2129       return false;
2130 
2131     // Note: if control flow comes here that means Swap is already set above
2132     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2133     return true;
2134   } else { // BE
2135     if (M0 < 2 && M1 > 1) {
2136       Swap = false;
2137     } else if (M0 > 1 && M1 < 2) {
2138       M0 = (M0 + 2) % 4;
2139       M1 = (M1 + 2) % 4;
2140       Swap = true;
2141     } else
2142       return false;
2143 
2144     // Note: if control flow comes here that means Swap is already set above
2145     DM = (M0 << 1) + (M1 & 1);
2146     return true;
2147   }
2148 }
2149 
2150 
2151 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2152 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2153 /// elements are counted from the left of the vector register).
2154 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2155                                          SelectionDAG &DAG) {
2156   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2157   assert(isSplatShuffleMask(SVOp, EltSize));
2158   if (DAG.getDataLayout().isLittleEndian())
2159     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2160   else
2161     return SVOp->getMaskElt(0) / EltSize;
2162 }
2163 
2164 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2165 /// by using a vspltis[bhw] instruction of the specified element size, return
2166 /// the constant being splatted.  The ByteSize field indicates the number of
2167 /// bytes of each element [124] -> [bhw].
2168 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2169   SDValue OpVal(nullptr, 0);
2170 
2171   // If ByteSize of the splat is bigger than the element size of the
2172   // build_vector, then we have a case where we are checking for a splat where
2173   // multiple elements of the buildvector are folded together into a single
2174   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2175   unsigned EltSize = 16/N->getNumOperands();
2176   if (EltSize < ByteSize) {
2177     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2178     SDValue UniquedVals[4];
2179     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2180 
2181     // See if all of the elements in the buildvector agree across.
2182     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2183       if (N->getOperand(i).isUndef()) continue;
2184       // If the element isn't a constant, bail fully out.
2185       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2186 
2187       if (!UniquedVals[i&(Multiple-1)].getNode())
2188         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2189       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2190         return SDValue();  // no match.
2191     }
2192 
2193     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2194     // either constant or undef values that are identical for each chunk.  See
2195     // if these chunks can form into a larger vspltis*.
2196 
2197     // Check to see if all of the leading entries are either 0 or -1.  If
2198     // neither, then this won't fit into the immediate field.
2199     bool LeadingZero = true;
2200     bool LeadingOnes = true;
2201     for (unsigned i = 0; i != Multiple-1; ++i) {
2202       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2203 
2204       LeadingZero &= isNullConstant(UniquedVals[i]);
2205       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2206     }
2207     // Finally, check the least significant entry.
2208     if (LeadingZero) {
2209       if (!UniquedVals[Multiple-1].getNode())
2210         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2211       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2212       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2213         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2214     }
2215     if (LeadingOnes) {
2216       if (!UniquedVals[Multiple-1].getNode())
2217         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2218       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2219       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2220         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2221     }
2222 
2223     return SDValue();
2224   }
2225 
2226   // Check to see if this buildvec has a single non-undef value in its elements.
2227   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2228     if (N->getOperand(i).isUndef()) continue;
2229     if (!OpVal.getNode())
2230       OpVal = N->getOperand(i);
2231     else if (OpVal != N->getOperand(i))
2232       return SDValue();
2233   }
2234 
2235   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2236 
2237   unsigned ValSizeInBytes = EltSize;
2238   uint64_t Value = 0;
2239   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2240     Value = CN->getZExtValue();
2241   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2242     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2243     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2244   }
2245 
2246   // If the splat value is larger than the element value, then we can never do
2247   // this splat.  The only case that we could fit the replicated bits into our
2248   // immediate field for would be zero, and we prefer to use vxor for it.
2249   if (ValSizeInBytes < ByteSize) return SDValue();
2250 
2251   // If the element value is larger than the splat value, check if it consists
2252   // of a repeated bit pattern of size ByteSize.
2253   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2254     return SDValue();
2255 
2256   // Properly sign extend the value.
2257   int MaskVal = SignExtend32(Value, ByteSize * 8);
2258 
2259   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2260   if (MaskVal == 0) return SDValue();
2261 
2262   // Finally, if this value fits in a 5 bit sext field, return it
2263   if (SignExtend32<5>(MaskVal) == MaskVal)
2264     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2265   return SDValue();
2266 }
2267 
2268 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2269 /// amount, otherwise return -1.
2270 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2271   EVT VT = N->getValueType(0);
2272   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2273     return -1;
2274 
2275   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2276 
2277   // Find the first non-undef value in the shuffle mask.
2278   unsigned i;
2279   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2280     /*search*/;
2281 
2282   if (i == 4) return -1;  // all undef.
2283 
2284   // Otherwise, check to see if the rest of the elements are consecutively
2285   // numbered from this value.
2286   unsigned ShiftAmt = SVOp->getMaskElt(i);
2287   if (ShiftAmt < i) return -1;
2288   ShiftAmt -= i;
2289 
2290   // Check the rest of the elements to see if they are consecutive.
2291   for (++i; i != 4; ++i)
2292     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2293       return -1;
2294 
2295   return ShiftAmt;
2296 }
2297 
2298 //===----------------------------------------------------------------------===//
2299 //  Addressing Mode Selection
2300 //===----------------------------------------------------------------------===//
2301 
2302 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2303 /// or 64-bit immediate, and if the value can be accurately represented as a
2304 /// sign extension from a 16-bit value.  If so, this returns true and the
2305 /// immediate.
2306 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2307   if (!isa<ConstantSDNode>(N))
2308     return false;
2309 
2310   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2311   if (N->getValueType(0) == MVT::i32)
2312     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2313   else
2314     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2315 }
2316 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2317   return isIntS16Immediate(Op.getNode(), Imm);
2318 }
2319 
2320 
2321 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2322 /// be represented as an indexed [r+r] operation.
2323 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2324                                                SDValue &Index,
2325                                                SelectionDAG &DAG) const {
2326   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2327       UI != E; ++UI) {
2328     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2329       if (Memop->getMemoryVT() == MVT::f64) {
2330           Base = N.getOperand(0);
2331           Index = N.getOperand(1);
2332           return true;
2333       }
2334     }
2335   }
2336   return false;
2337 }
2338 
2339 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2340 /// can be represented as an indexed [r+r] operation.  Returns false if it
2341 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2342 /// non-zero and N can be represented by a base register plus a signed 16-bit
2343 /// displacement, make a more precise judgement by checking (displacement % \p
2344 /// EncodingAlignment).
2345 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2346                                             SDValue &Index, SelectionDAG &DAG,
2347                                             unsigned EncodingAlignment) const {
2348   int16_t imm = 0;
2349   if (N.getOpcode() == ISD::ADD) {
2350     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2351     // SPE load/store can only handle 8-bit offsets.
2352     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2353         return true;
2354     if (isIntS16Immediate(N.getOperand(1), imm) &&
2355         (!EncodingAlignment || !(imm % EncodingAlignment)))
2356       return false; // r+i
2357     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2358       return false;    // r+i
2359 
2360     Base = N.getOperand(0);
2361     Index = N.getOperand(1);
2362     return true;
2363   } else if (N.getOpcode() == ISD::OR) {
2364     if (isIntS16Immediate(N.getOperand(1), imm) &&
2365         (!EncodingAlignment || !(imm % EncodingAlignment)))
2366       return false; // r+i can fold it if we can.
2367 
2368     // If this is an or of disjoint bitfields, we can codegen this as an add
2369     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2370     // disjoint.
2371     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2372 
2373     if (LHSKnown.Zero.getBoolValue()) {
2374       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2375       // If all of the bits are known zero on the LHS or RHS, the add won't
2376       // carry.
2377       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2378         Base = N.getOperand(0);
2379         Index = N.getOperand(1);
2380         return true;
2381       }
2382     }
2383   }
2384 
2385   return false;
2386 }
2387 
2388 // If we happen to be doing an i64 load or store into a stack slot that has
2389 // less than a 4-byte alignment, then the frame-index elimination may need to
2390 // use an indexed load or store instruction (because the offset may not be a
2391 // multiple of 4). The extra register needed to hold the offset comes from the
2392 // register scavenger, and it is possible that the scavenger will need to use
2393 // an emergency spill slot. As a result, we need to make sure that a spill slot
2394 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2395 // stack slot.
2396 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2397   // FIXME: This does not handle the LWA case.
2398   if (VT != MVT::i64)
2399     return;
2400 
2401   // NOTE: We'll exclude negative FIs here, which come from argument
2402   // lowering, because there are no known test cases triggering this problem
2403   // using packed structures (or similar). We can remove this exclusion if
2404   // we find such a test case. The reason why this is so test-case driven is
2405   // because this entire 'fixup' is only to prevent crashes (from the
2406   // register scavenger) on not-really-valid inputs. For example, if we have:
2407   //   %a = alloca i1
2408   //   %b = bitcast i1* %a to i64*
2409   //   store i64* a, i64 b
2410   // then the store should really be marked as 'align 1', but is not. If it
2411   // were marked as 'align 1' then the indexed form would have been
2412   // instruction-selected initially, and the problem this 'fixup' is preventing
2413   // won't happen regardless.
2414   if (FrameIdx < 0)
2415     return;
2416 
2417   MachineFunction &MF = DAG.getMachineFunction();
2418   MachineFrameInfo &MFI = MF.getFrameInfo();
2419 
2420   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2421   if (Align >= 4)
2422     return;
2423 
2424   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2425   FuncInfo->setHasNonRISpills();
2426 }
2427 
2428 /// Returns true if the address N can be represented by a base register plus
2429 /// a signed 16-bit displacement [r+imm], and if it is not better
2430 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2431 /// displacements that are multiples of that value.
2432 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2433                                             SDValue &Base,
2434                                             SelectionDAG &DAG,
2435                                             unsigned EncodingAlignment) const {
2436   // FIXME dl should come from parent load or store, not from address
2437   SDLoc dl(N);
2438   // If this can be more profitably realized as r+r, fail.
2439   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2440     return false;
2441 
2442   if (N.getOpcode() == ISD::ADD) {
2443     int16_t imm = 0;
2444     if (isIntS16Immediate(N.getOperand(1), imm) &&
2445         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2446       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2447       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2448         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2449         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2450       } else {
2451         Base = N.getOperand(0);
2452       }
2453       return true; // [r+i]
2454     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2455       // Match LOAD (ADD (X, Lo(G))).
2456       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2457              && "Cannot handle constant offsets yet!");
2458       Disp = N.getOperand(1).getOperand(0);  // The global address.
2459       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2460              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2461              Disp.getOpcode() == ISD::TargetConstantPool ||
2462              Disp.getOpcode() == ISD::TargetJumpTable);
2463       Base = N.getOperand(0);
2464       return true;  // [&g+r]
2465     }
2466   } else if (N.getOpcode() == ISD::OR) {
2467     int16_t imm = 0;
2468     if (isIntS16Immediate(N.getOperand(1), imm) &&
2469         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2470       // If this is an or of disjoint bitfields, we can codegen this as an add
2471       // (for better address arithmetic) if the LHS and RHS of the OR are
2472       // provably disjoint.
2473       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2474 
2475       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2476         // If all of the bits are known zero on the LHS or RHS, the add won't
2477         // carry.
2478         if (FrameIndexSDNode *FI =
2479               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2480           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2481           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2482         } else {
2483           Base = N.getOperand(0);
2484         }
2485         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2486         return true;
2487       }
2488     }
2489   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2490     // Loading from a constant address.
2491 
2492     // If this address fits entirely in a 16-bit sext immediate field, codegen
2493     // this as "d, 0"
2494     int16_t Imm;
2495     if (isIntS16Immediate(CN, Imm) &&
2496         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2497       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2498       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2499                              CN->getValueType(0));
2500       return true;
2501     }
2502 
2503     // Handle 32-bit sext immediates with LIS + addr mode.
2504     if ((CN->getValueType(0) == MVT::i32 ||
2505          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2506         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2507       int Addr = (int)CN->getZExtValue();
2508 
2509       // Otherwise, break this down into an LIS + disp.
2510       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2511 
2512       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2513                                    MVT::i32);
2514       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2515       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2516       return true;
2517     }
2518   }
2519 
2520   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2521   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2522     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2523     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2524   } else
2525     Base = N;
2526   return true;      // [r+0]
2527 }
2528 
2529 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2530 /// represented as an indexed [r+r] operation.
2531 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2532                                                 SDValue &Index,
2533                                                 SelectionDAG &DAG) const {
2534   // Check to see if we can easily represent this as an [r+r] address.  This
2535   // will fail if it thinks that the address is more profitably represented as
2536   // reg+imm, e.g. where imm = 0.
2537   if (SelectAddressRegReg(N, Base, Index, DAG))
2538     return true;
2539 
2540   // If the address is the result of an add, we will utilize the fact that the
2541   // address calculation includes an implicit add.  However, we can reduce
2542   // register pressure if we do not materialize a constant just for use as the
2543   // index register.  We only get rid of the add if it is not an add of a
2544   // value and a 16-bit signed constant and both have a single use.
2545   int16_t imm = 0;
2546   if (N.getOpcode() == ISD::ADD &&
2547       (!isIntS16Immediate(N.getOperand(1), imm) ||
2548        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2549     Base = N.getOperand(0);
2550     Index = N.getOperand(1);
2551     return true;
2552   }
2553 
2554   // Otherwise, do it the hard way, using R0 as the base register.
2555   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2556                          N.getValueType());
2557   Index = N;
2558   return true;
2559 }
2560 
2561 /// Returns true if we should use a direct load into vector instruction
2562 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2563 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2564 
2565   // If there are any other uses other than scalar to vector, then we should
2566   // keep it as a scalar load -> direct move pattern to prevent multiple
2567   // loads.
2568   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2569   if (!LD)
2570     return false;
2571 
2572   EVT MemVT = LD->getMemoryVT();
2573   if (!MemVT.isSimple())
2574     return false;
2575   switch(MemVT.getSimpleVT().SimpleTy) {
2576   case MVT::i64:
2577     break;
2578   case MVT::i32:
2579     if (!ST.hasP8Vector())
2580       return false;
2581     break;
2582   case MVT::i16:
2583   case MVT::i8:
2584     if (!ST.hasP9Vector())
2585       return false;
2586     break;
2587   default:
2588     return false;
2589   }
2590 
2591   SDValue LoadedVal(N, 0);
2592   if (!LoadedVal.hasOneUse())
2593     return false;
2594 
2595   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2596        UI != UE; ++UI)
2597     if (UI.getUse().get().getResNo() == 0 &&
2598         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2599       return false;
2600 
2601   return true;
2602 }
2603 
2604 /// getPreIndexedAddressParts - returns true by value, base pointer and
2605 /// offset pointer and addressing mode by reference if the node's address
2606 /// can be legally represented as pre-indexed load / store address.
2607 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2608                                                   SDValue &Offset,
2609                                                   ISD::MemIndexedMode &AM,
2610                                                   SelectionDAG &DAG) const {
2611   if (DisablePPCPreinc) return false;
2612 
2613   bool isLoad = true;
2614   SDValue Ptr;
2615   EVT VT;
2616   unsigned Alignment;
2617   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2618     Ptr = LD->getBasePtr();
2619     VT = LD->getMemoryVT();
2620     Alignment = LD->getAlignment();
2621   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2622     Ptr = ST->getBasePtr();
2623     VT  = ST->getMemoryVT();
2624     Alignment = ST->getAlignment();
2625     isLoad = false;
2626   } else
2627     return false;
2628 
2629   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2630   // instructions because we can fold these into a more efficient instruction
2631   // instead, (such as LXSD).
2632   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2633     return false;
2634   }
2635 
2636   // PowerPC doesn't have preinc load/store instructions for vectors (except
2637   // for QPX, which does have preinc r+r forms).
2638   if (VT.isVector()) {
2639     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2640       return false;
2641     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2642       AM = ISD::PRE_INC;
2643       return true;
2644     }
2645   }
2646 
2647   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2648     // Common code will reject creating a pre-inc form if the base pointer
2649     // is a frame index, or if N is a store and the base pointer is either
2650     // the same as or a predecessor of the value being stored.  Check for
2651     // those situations here, and try with swapped Base/Offset instead.
2652     bool Swap = false;
2653 
2654     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2655       Swap = true;
2656     else if (!isLoad) {
2657       SDValue Val = cast<StoreSDNode>(N)->getValue();
2658       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2659         Swap = true;
2660     }
2661 
2662     if (Swap)
2663       std::swap(Base, Offset);
2664 
2665     AM = ISD::PRE_INC;
2666     return true;
2667   }
2668 
2669   // LDU/STU can only handle immediates that are a multiple of 4.
2670   if (VT != MVT::i64) {
2671     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2672       return false;
2673   } else {
2674     // LDU/STU need an address with at least 4-byte alignment.
2675     if (Alignment < 4)
2676       return false;
2677 
2678     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2679       return false;
2680   }
2681 
2682   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2683     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2684     // sext i32 to i64 when addr mode is r+i.
2685     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2686         LD->getExtensionType() == ISD::SEXTLOAD &&
2687         isa<ConstantSDNode>(Offset))
2688       return false;
2689   }
2690 
2691   AM = ISD::PRE_INC;
2692   return true;
2693 }
2694 
2695 //===----------------------------------------------------------------------===//
2696 //  LowerOperation implementation
2697 //===----------------------------------------------------------------------===//
2698 
2699 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2700 /// and LoOpFlags to the target MO flags.
2701 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2702                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2703                                const GlobalValue *GV = nullptr) {
2704   HiOpFlags = PPCII::MO_HA;
2705   LoOpFlags = PPCII::MO_LO;
2706 
2707   // Don't use the pic base if not in PIC relocation model.
2708   if (IsPIC) {
2709     HiOpFlags |= PPCII::MO_PIC_FLAG;
2710     LoOpFlags |= PPCII::MO_PIC_FLAG;
2711   }
2712 }
2713 
2714 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2715                              SelectionDAG &DAG) {
2716   SDLoc DL(HiPart);
2717   EVT PtrVT = HiPart.getValueType();
2718   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2719 
2720   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2721   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2722 
2723   // With PIC, the first instruction is actually "GR+hi(&G)".
2724   if (isPIC)
2725     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2726                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2727 
2728   // Generate non-pic code that has direct accesses to the constant pool.
2729   // The address of the global is just (hi(&g)+lo(&g)).
2730   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2731 }
2732 
2733 static void setUsesTOCBasePtr(MachineFunction &MF) {
2734   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2735   FuncInfo->setUsesTOCBasePtr();
2736 }
2737 
2738 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2739   setUsesTOCBasePtr(DAG.getMachineFunction());
2740 }
2741 
2742 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2743                                        SDValue GA) const {
2744   const bool Is64Bit = Subtarget.isPPC64();
2745   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2746   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2747                         : Subtarget.isAIXABI()
2748                               ? DAG.getRegister(PPC::R2, VT)
2749                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2750   SDValue Ops[] = { GA, Reg };
2751   return DAG.getMemIntrinsicNode(
2752       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2753       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2754       MachineMemOperand::MOLoad);
2755 }
2756 
2757 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2758                                              SelectionDAG &DAG) const {
2759   EVT PtrVT = Op.getValueType();
2760   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2761   const Constant *C = CP->getConstVal();
2762 
2763   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2764   // The actual address of the GlobalValue is stored in the TOC.
2765   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2766     setUsesTOCBasePtr(DAG);
2767     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2768     return getTOCEntry(DAG, SDLoc(CP), GA);
2769   }
2770 
2771   unsigned MOHiFlag, MOLoFlag;
2772   bool IsPIC = isPositionIndependent();
2773   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2774 
2775   if (IsPIC && Subtarget.isSVR4ABI()) {
2776     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2777                                            PPCII::MO_PIC_FLAG);
2778     return getTOCEntry(DAG, SDLoc(CP), GA);
2779   }
2780 
2781   SDValue CPIHi =
2782     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2783   SDValue CPILo =
2784     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2785   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2786 }
2787 
2788 // For 64-bit PowerPC, prefer the more compact relative encodings.
2789 // This trades 32 bits per jump table entry for one or two instructions
2790 // on the jump site.
2791 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2792   if (isJumpTableRelative())
2793     return MachineJumpTableInfo::EK_LabelDifference32;
2794 
2795   return TargetLowering::getJumpTableEncoding();
2796 }
2797 
2798 bool PPCTargetLowering::isJumpTableRelative() const {
2799   if (UseAbsoluteJumpTables)
2800     return false;
2801   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2802     return true;
2803   return TargetLowering::isJumpTableRelative();
2804 }
2805 
2806 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2807                                                     SelectionDAG &DAG) const {
2808   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2809     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2810 
2811   switch (getTargetMachine().getCodeModel()) {
2812   case CodeModel::Small:
2813   case CodeModel::Medium:
2814     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2815   default:
2816     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2817                        getPointerTy(DAG.getDataLayout()));
2818   }
2819 }
2820 
2821 const MCExpr *
2822 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2823                                                 unsigned JTI,
2824                                                 MCContext &Ctx) const {
2825   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2826     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2827 
2828   switch (getTargetMachine().getCodeModel()) {
2829   case CodeModel::Small:
2830   case CodeModel::Medium:
2831     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2832   default:
2833     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2834   }
2835 }
2836 
2837 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2838   EVT PtrVT = Op.getValueType();
2839   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2840 
2841   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2842   // The actual address of the GlobalValue is stored in the TOC.
2843   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2844     setUsesTOCBasePtr(DAG);
2845     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2846     return getTOCEntry(DAG, SDLoc(JT), GA);
2847   }
2848 
2849   unsigned MOHiFlag, MOLoFlag;
2850   bool IsPIC = isPositionIndependent();
2851   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2852 
2853   if (IsPIC && Subtarget.isSVR4ABI()) {
2854     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2855                                         PPCII::MO_PIC_FLAG);
2856     return getTOCEntry(DAG, SDLoc(GA), GA);
2857   }
2858 
2859   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2860   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2861   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2862 }
2863 
2864 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2865                                              SelectionDAG &DAG) const {
2866   EVT PtrVT = Op.getValueType();
2867   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2868   const BlockAddress *BA = BASDN->getBlockAddress();
2869 
2870   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2871   // The actual BlockAddress is stored in the TOC.
2872   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2873     setUsesTOCBasePtr(DAG);
2874     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2875     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2876   }
2877 
2878   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2879   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2880     return getTOCEntry(
2881         DAG, SDLoc(BASDN),
2882         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2883 
2884   unsigned MOHiFlag, MOLoFlag;
2885   bool IsPIC = isPositionIndependent();
2886   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2887   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2888   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2889   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2890 }
2891 
2892 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2893                                               SelectionDAG &DAG) const {
2894   // FIXME: TLS addresses currently use medium model code sequences,
2895   // which is the most useful form.  Eventually support for small and
2896   // large models could be added if users need it, at the cost of
2897   // additional complexity.
2898   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2899   if (DAG.getTarget().useEmulatedTLS())
2900     return LowerToTLSEmulatedModel(GA, DAG);
2901 
2902   SDLoc dl(GA);
2903   const GlobalValue *GV = GA->getGlobal();
2904   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2905   bool is64bit = Subtarget.isPPC64();
2906   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2907   PICLevel::Level picLevel = M->getPICLevel();
2908 
2909   const TargetMachine &TM = getTargetMachine();
2910   TLSModel::Model Model = TM.getTLSModel(GV);
2911 
2912   if (Model == TLSModel::LocalExec) {
2913     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2914                                                PPCII::MO_TPREL_HA);
2915     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2916                                                PPCII::MO_TPREL_LO);
2917     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2918                              : DAG.getRegister(PPC::R2, MVT::i32);
2919 
2920     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2921     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2922   }
2923 
2924   if (Model == TLSModel::InitialExec) {
2925     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2926     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2927                                                 PPCII::MO_TLS);
2928     SDValue GOTPtr;
2929     if (is64bit) {
2930       setUsesTOCBasePtr(DAG);
2931       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2932       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2933                            PtrVT, GOTReg, TGA);
2934     } else {
2935       if (!TM.isPositionIndependent())
2936         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2937       else if (picLevel == PICLevel::SmallPIC)
2938         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2939       else
2940         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2941     }
2942     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2943                                    PtrVT, TGA, GOTPtr);
2944     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2945   }
2946 
2947   if (Model == TLSModel::GeneralDynamic) {
2948     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2949     SDValue GOTPtr;
2950     if (is64bit) {
2951       setUsesTOCBasePtr(DAG);
2952       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2953       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2954                                    GOTReg, TGA);
2955     } else {
2956       if (picLevel == PICLevel::SmallPIC)
2957         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2958       else
2959         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2960     }
2961     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2962                        GOTPtr, TGA, TGA);
2963   }
2964 
2965   if (Model == TLSModel::LocalDynamic) {
2966     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2967     SDValue GOTPtr;
2968     if (is64bit) {
2969       setUsesTOCBasePtr(DAG);
2970       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2971       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2972                            GOTReg, TGA);
2973     } else {
2974       if (picLevel == PICLevel::SmallPIC)
2975         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2976       else
2977         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2978     }
2979     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2980                                   PtrVT, GOTPtr, TGA, TGA);
2981     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2982                                       PtrVT, TLSAddr, TGA);
2983     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2984   }
2985 
2986   llvm_unreachable("Unknown TLS model!");
2987 }
2988 
2989 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2990                                               SelectionDAG &DAG) const {
2991   EVT PtrVT = Op.getValueType();
2992   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2993   SDLoc DL(GSDN);
2994   const GlobalValue *GV = GSDN->getGlobal();
2995 
2996   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2997   // The actual address of the GlobalValue is stored in the TOC.
2998   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2999     setUsesTOCBasePtr(DAG);
3000     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3001     return getTOCEntry(DAG, DL, GA);
3002   }
3003 
3004   unsigned MOHiFlag, MOLoFlag;
3005   bool IsPIC = isPositionIndependent();
3006   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3007 
3008   if (IsPIC && Subtarget.isSVR4ABI()) {
3009     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3010                                             GSDN->getOffset(),
3011                                             PPCII::MO_PIC_FLAG);
3012     return getTOCEntry(DAG, DL, GA);
3013   }
3014 
3015   SDValue GAHi =
3016     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3017   SDValue GALo =
3018     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3019 
3020   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3021 }
3022 
3023 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3024   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3025   SDLoc dl(Op);
3026 
3027   if (Op.getValueType() == MVT::v2i64) {
3028     // When the operands themselves are v2i64 values, we need to do something
3029     // special because VSX has no underlying comparison operations for these.
3030     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3031       // Equality can be handled by casting to the legal type for Altivec
3032       // comparisons, everything else needs to be expanded.
3033       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3034         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3035                  DAG.getSetCC(dl, MVT::v4i32,
3036                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3037                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3038                    CC));
3039       }
3040 
3041       return SDValue();
3042     }
3043 
3044     // We handle most of these in the usual way.
3045     return Op;
3046   }
3047 
3048   // If we're comparing for equality to zero, expose the fact that this is
3049   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3050   // fold the new nodes.
3051   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3052     return V;
3053 
3054   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3055     // Leave comparisons against 0 and -1 alone for now, since they're usually
3056     // optimized.  FIXME: revisit this when we can custom lower all setcc
3057     // optimizations.
3058     if (C->isAllOnesValue() || C->isNullValue())
3059       return SDValue();
3060   }
3061 
3062   // If we have an integer seteq/setne, turn it into a compare against zero
3063   // by xor'ing the rhs with the lhs, which is faster than setting a
3064   // condition register, reading it back out, and masking the correct bit.  The
3065   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3066   // the result to other bit-twiddling opportunities.
3067   EVT LHSVT = Op.getOperand(0).getValueType();
3068   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3069     EVT VT = Op.getValueType();
3070     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3071                                 Op.getOperand(1));
3072     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3073   }
3074   return SDValue();
3075 }
3076 
3077 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3078   SDNode *Node = Op.getNode();
3079   EVT VT = Node->getValueType(0);
3080   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3081   SDValue InChain = Node->getOperand(0);
3082   SDValue VAListPtr = Node->getOperand(1);
3083   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3084   SDLoc dl(Node);
3085 
3086   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3087 
3088   // gpr_index
3089   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3090                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3091   InChain = GprIndex.getValue(1);
3092 
3093   if (VT == MVT::i64) {
3094     // Check if GprIndex is even
3095     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3096                                  DAG.getConstant(1, dl, MVT::i32));
3097     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3098                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3099     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3100                                           DAG.getConstant(1, dl, MVT::i32));
3101     // Align GprIndex to be even if it isn't
3102     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3103                            GprIndex);
3104   }
3105 
3106   // fpr index is 1 byte after gpr
3107   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3108                                DAG.getConstant(1, dl, MVT::i32));
3109 
3110   // fpr
3111   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3112                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3113   InChain = FprIndex.getValue(1);
3114 
3115   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3116                                        DAG.getConstant(8, dl, MVT::i32));
3117 
3118   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3119                                         DAG.getConstant(4, dl, MVT::i32));
3120 
3121   // areas
3122   SDValue OverflowArea =
3123       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3124   InChain = OverflowArea.getValue(1);
3125 
3126   SDValue RegSaveArea =
3127       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3128   InChain = RegSaveArea.getValue(1);
3129 
3130   // select overflow_area if index > 8
3131   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3132                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3133 
3134   // adjustment constant gpr_index * 4/8
3135   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3136                                     VT.isInteger() ? GprIndex : FprIndex,
3137                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3138                                                     MVT::i32));
3139 
3140   // OurReg = RegSaveArea + RegConstant
3141   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3142                                RegConstant);
3143 
3144   // Floating types are 32 bytes into RegSaveArea
3145   if (VT.isFloatingPoint())
3146     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3147                          DAG.getConstant(32, dl, MVT::i32));
3148 
3149   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3150   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3151                                    VT.isInteger() ? GprIndex : FprIndex,
3152                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3153                                                    MVT::i32));
3154 
3155   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3156                               VT.isInteger() ? VAListPtr : FprPtr,
3157                               MachinePointerInfo(SV), MVT::i8);
3158 
3159   // determine if we should load from reg_save_area or overflow_area
3160   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3161 
3162   // increase overflow_area by 4/8 if gpr/fpr > 8
3163   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3164                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3165                                           dl, MVT::i32));
3166 
3167   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3168                              OverflowAreaPlusN);
3169 
3170   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3171                               MachinePointerInfo(), MVT::i32);
3172 
3173   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3174 }
3175 
3176 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3177   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3178 
3179   // We have to copy the entire va_list struct:
3180   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3181   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3182                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3183                        false, true, false, MachinePointerInfo(),
3184                        MachinePointerInfo());
3185 }
3186 
3187 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3188                                                   SelectionDAG &DAG) const {
3189   if (Subtarget.isAIXABI())
3190     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3191 
3192   return Op.getOperand(0);
3193 }
3194 
3195 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3196                                                 SelectionDAG &DAG) const {
3197   if (Subtarget.isAIXABI())
3198     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3199 
3200   SDValue Chain = Op.getOperand(0);
3201   SDValue Trmp = Op.getOperand(1); // trampoline
3202   SDValue FPtr = Op.getOperand(2); // nested function
3203   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3204   SDLoc dl(Op);
3205 
3206   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3207   bool isPPC64 = (PtrVT == MVT::i64);
3208   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3209 
3210   TargetLowering::ArgListTy Args;
3211   TargetLowering::ArgListEntry Entry;
3212 
3213   Entry.Ty = IntPtrTy;
3214   Entry.Node = Trmp; Args.push_back(Entry);
3215 
3216   // TrampSize == (isPPC64 ? 48 : 40);
3217   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3218                                isPPC64 ? MVT::i64 : MVT::i32);
3219   Args.push_back(Entry);
3220 
3221   Entry.Node = FPtr; Args.push_back(Entry);
3222   Entry.Node = Nest; Args.push_back(Entry);
3223 
3224   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3225   TargetLowering::CallLoweringInfo CLI(DAG);
3226   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3227       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3228       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3229 
3230   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3231   return CallResult.second;
3232 }
3233 
3234 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3235   MachineFunction &MF = DAG.getMachineFunction();
3236   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3237   EVT PtrVT = getPointerTy(MF.getDataLayout());
3238 
3239   SDLoc dl(Op);
3240 
3241   if (Subtarget.isPPC64()) {
3242     // vastart just stores the address of the VarArgsFrameIndex slot into the
3243     // memory location argument.
3244     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3245     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3246     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3247                         MachinePointerInfo(SV));
3248   }
3249 
3250   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3251   // We suppose the given va_list is already allocated.
3252   //
3253   // typedef struct {
3254   //  char gpr;     /* index into the array of 8 GPRs
3255   //                 * stored in the register save area
3256   //                 * gpr=0 corresponds to r3,
3257   //                 * gpr=1 to r4, etc.
3258   //                 */
3259   //  char fpr;     /* index into the array of 8 FPRs
3260   //                 * stored in the register save area
3261   //                 * fpr=0 corresponds to f1,
3262   //                 * fpr=1 to f2, etc.
3263   //                 */
3264   //  char *overflow_arg_area;
3265   //                /* location on stack that holds
3266   //                 * the next overflow argument
3267   //                 */
3268   //  char *reg_save_area;
3269   //               /* where r3:r10 and f1:f8 (if saved)
3270   //                * are stored
3271   //                */
3272   // } va_list[1];
3273 
3274   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3275   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3276   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3277                                             PtrVT);
3278   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3279                                  PtrVT);
3280 
3281   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3282   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3283 
3284   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3285   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3286 
3287   uint64_t FPROffset = 1;
3288   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3289 
3290   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3291 
3292   // Store first byte : number of int regs
3293   SDValue firstStore =
3294       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3295                         MachinePointerInfo(SV), MVT::i8);
3296   uint64_t nextOffset = FPROffset;
3297   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3298                                   ConstFPROffset);
3299 
3300   // Store second byte : number of float regs
3301   SDValue secondStore =
3302       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3303                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3304   nextOffset += StackOffset;
3305   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3306 
3307   // Store second word : arguments given on stack
3308   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3309                                     MachinePointerInfo(SV, nextOffset));
3310   nextOffset += FrameOffset;
3311   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3312 
3313   // Store third word : arguments given in registers
3314   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3315                       MachinePointerInfo(SV, nextOffset));
3316 }
3317 
3318 /// FPR - The set of FP registers that should be allocated for arguments
3319 /// on Darwin and AIX.
3320 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3321                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3322                                 PPC::F11, PPC::F12, PPC::F13};
3323 
3324 /// QFPR - The set of QPX registers that should be allocated for arguments.
3325 static const MCPhysReg QFPR[] = {
3326     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3327     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3328 
3329 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3330 /// the stack.
3331 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3332                                        unsigned PtrByteSize) {
3333   unsigned ArgSize = ArgVT.getStoreSize();
3334   if (Flags.isByVal())
3335     ArgSize = Flags.getByValSize();
3336 
3337   // Round up to multiples of the pointer size, except for array members,
3338   // which are always packed.
3339   if (!Flags.isInConsecutiveRegs())
3340     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3341 
3342   return ArgSize;
3343 }
3344 
3345 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3346 /// on the stack.
3347 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3348                                          ISD::ArgFlagsTy Flags,
3349                                          unsigned PtrByteSize) {
3350   Align Alignment(PtrByteSize);
3351 
3352   // Altivec parameters are padded to a 16 byte boundary.
3353   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3354       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3355       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3356       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3357     Alignment = Align(16);
3358   // QPX vector types stored in double-precision are padded to a 32 byte
3359   // boundary.
3360   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3361     Alignment = Align(32);
3362 
3363   // ByVal parameters are aligned as requested.
3364   if (Flags.isByVal()) {
3365     auto BVAlign = Flags.getNonZeroByValAlign();
3366     if (BVAlign > PtrByteSize) {
3367       if (BVAlign.value() % PtrByteSize != 0)
3368         llvm_unreachable(
3369             "ByVal alignment is not a multiple of the pointer size");
3370 
3371       Alignment = BVAlign;
3372     }
3373   }
3374 
3375   // Array members are always packed to their original alignment.
3376   if (Flags.isInConsecutiveRegs()) {
3377     // If the array member was split into multiple registers, the first
3378     // needs to be aligned to the size of the full type.  (Except for
3379     // ppcf128, which is only aligned as its f64 components.)
3380     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3381       Alignment = Align(OrigVT.getStoreSize());
3382     else
3383       Alignment = Align(ArgVT.getStoreSize());
3384   }
3385 
3386   return Alignment;
3387 }
3388 
3389 /// CalculateStackSlotUsed - Return whether this argument will use its
3390 /// stack slot (instead of being passed in registers).  ArgOffset,
3391 /// AvailableFPRs, and AvailableVRs must hold the current argument
3392 /// position, and will be updated to account for this argument.
3393 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3394                                    ISD::ArgFlagsTy Flags,
3395                                    unsigned PtrByteSize,
3396                                    unsigned LinkageSize,
3397                                    unsigned ParamAreaSize,
3398                                    unsigned &ArgOffset,
3399                                    unsigned &AvailableFPRs,
3400                                    unsigned &AvailableVRs, bool HasQPX) {
3401   bool UseMemory = false;
3402 
3403   // Respect alignment of argument on the stack.
3404   Align Alignment =
3405       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3406   ArgOffset = alignTo(ArgOffset, Alignment);
3407   // If there's no space left in the argument save area, we must
3408   // use memory (this check also catches zero-sized arguments).
3409   if (ArgOffset >= LinkageSize + ParamAreaSize)
3410     UseMemory = true;
3411 
3412   // Allocate argument on the stack.
3413   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3414   if (Flags.isInConsecutiveRegsLast())
3415     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3416   // If we overran the argument save area, we must use memory
3417   // (this check catches arguments passed partially in memory)
3418   if (ArgOffset > LinkageSize + ParamAreaSize)
3419     UseMemory = true;
3420 
3421   // However, if the argument is actually passed in an FPR or a VR,
3422   // we don't use memory after all.
3423   if (!Flags.isByVal()) {
3424     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3425         // QPX registers overlap with the scalar FP registers.
3426         (HasQPX && (ArgVT == MVT::v4f32 ||
3427                     ArgVT == MVT::v4f64 ||
3428                     ArgVT == MVT::v4i1)))
3429       if (AvailableFPRs > 0) {
3430         --AvailableFPRs;
3431         return false;
3432       }
3433     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3434         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3435         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3436         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3437       if (AvailableVRs > 0) {
3438         --AvailableVRs;
3439         return false;
3440       }
3441   }
3442 
3443   return UseMemory;
3444 }
3445 
3446 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3447 /// ensure minimum alignment required for target.
3448 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3449                                      unsigned NumBytes) {
3450   unsigned TargetAlign = Lowering->getStackAlignment();
3451   unsigned AlignMask = TargetAlign - 1;
3452   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3453   return NumBytes;
3454 }
3455 
3456 SDValue PPCTargetLowering::LowerFormalArguments(
3457     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3458     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3459     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3460   if (Subtarget.isAIXABI())
3461     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3462                                     InVals);
3463   if (Subtarget.is64BitELFABI())
3464     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3465                                        InVals);
3466   if (Subtarget.is32BitELFABI())
3467     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3468                                        InVals);
3469 
3470   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3471                                      InVals);
3472 }
3473 
3474 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3475     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3476     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3477     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3478 
3479   // 32-bit SVR4 ABI Stack Frame Layout:
3480   //              +-----------------------------------+
3481   //        +-->  |            Back chain             |
3482   //        |     +-----------------------------------+
3483   //        |     | Floating-point register save area |
3484   //        |     +-----------------------------------+
3485   //        |     |    General register save area     |
3486   //        |     +-----------------------------------+
3487   //        |     |          CR save word             |
3488   //        |     +-----------------------------------+
3489   //        |     |         VRSAVE save word          |
3490   //        |     +-----------------------------------+
3491   //        |     |         Alignment padding         |
3492   //        |     +-----------------------------------+
3493   //        |     |     Vector register save area     |
3494   //        |     +-----------------------------------+
3495   //        |     |       Local variable space        |
3496   //        |     +-----------------------------------+
3497   //        |     |        Parameter list area        |
3498   //        |     +-----------------------------------+
3499   //        |     |           LR save word            |
3500   //        |     +-----------------------------------+
3501   // SP-->  +---  |            Back chain             |
3502   //              +-----------------------------------+
3503   //
3504   // Specifications:
3505   //   System V Application Binary Interface PowerPC Processor Supplement
3506   //   AltiVec Technology Programming Interface Manual
3507 
3508   MachineFunction &MF = DAG.getMachineFunction();
3509   MachineFrameInfo &MFI = MF.getFrameInfo();
3510   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3511 
3512   EVT PtrVT = getPointerTy(MF.getDataLayout());
3513   // Potential tail calls could cause overwriting of argument stack slots.
3514   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3515                        (CallConv == CallingConv::Fast));
3516   unsigned PtrByteSize = 4;
3517 
3518   // Assign locations to all of the incoming arguments.
3519   SmallVector<CCValAssign, 16> ArgLocs;
3520   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3521                  *DAG.getContext());
3522 
3523   // Reserve space for the linkage area on the stack.
3524   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3525   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3526   if (useSoftFloat())
3527     CCInfo.PreAnalyzeFormalArguments(Ins);
3528 
3529   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3530   CCInfo.clearWasPPCF128();
3531 
3532   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3533     CCValAssign &VA = ArgLocs[i];
3534 
3535     // Arguments stored in registers.
3536     if (VA.isRegLoc()) {
3537       const TargetRegisterClass *RC;
3538       EVT ValVT = VA.getValVT();
3539 
3540       switch (ValVT.getSimpleVT().SimpleTy) {
3541         default:
3542           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3543         case MVT::i1:
3544         case MVT::i32:
3545           RC = &PPC::GPRCRegClass;
3546           break;
3547         case MVT::f32:
3548           if (Subtarget.hasP8Vector())
3549             RC = &PPC::VSSRCRegClass;
3550           else if (Subtarget.hasSPE())
3551             RC = &PPC::GPRCRegClass;
3552           else
3553             RC = &PPC::F4RCRegClass;
3554           break;
3555         case MVT::f64:
3556           if (Subtarget.hasVSX())
3557             RC = &PPC::VSFRCRegClass;
3558           else if (Subtarget.hasSPE())
3559             // SPE passes doubles in GPR pairs.
3560             RC = &PPC::GPRCRegClass;
3561           else
3562             RC = &PPC::F8RCRegClass;
3563           break;
3564         case MVT::v16i8:
3565         case MVT::v8i16:
3566         case MVT::v4i32:
3567           RC = &PPC::VRRCRegClass;
3568           break;
3569         case MVT::v4f32:
3570           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3571           break;
3572         case MVT::v2f64:
3573         case MVT::v2i64:
3574           RC = &PPC::VRRCRegClass;
3575           break;
3576         case MVT::v4f64:
3577           RC = &PPC::QFRCRegClass;
3578           break;
3579         case MVT::v4i1:
3580           RC = &PPC::QBRCRegClass;
3581           break;
3582       }
3583 
3584       SDValue ArgValue;
3585       // Transform the arguments stored in physical registers into
3586       // virtual ones.
3587       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3588         assert(i + 1 < e && "No second half of double precision argument");
3589         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3590         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3591         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3592         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3593         if (!Subtarget.isLittleEndian())
3594           std::swap (ArgValueLo, ArgValueHi);
3595         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3596                                ArgValueHi);
3597       } else {
3598         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3599         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3600                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3601         if (ValVT == MVT::i1)
3602           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3603       }
3604 
3605       InVals.push_back(ArgValue);
3606     } else {
3607       // Argument stored in memory.
3608       assert(VA.isMemLoc());
3609 
3610       // Get the extended size of the argument type in stack
3611       unsigned ArgSize = VA.getLocVT().getStoreSize();
3612       // Get the actual size of the argument type
3613       unsigned ObjSize = VA.getValVT().getStoreSize();
3614       unsigned ArgOffset = VA.getLocMemOffset();
3615       // Stack objects in PPC32 are right justified.
3616       ArgOffset += ArgSize - ObjSize;
3617       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3618 
3619       // Create load nodes to retrieve arguments from the stack.
3620       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3621       InVals.push_back(
3622           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3623     }
3624   }
3625 
3626   // Assign locations to all of the incoming aggregate by value arguments.
3627   // Aggregates passed by value are stored in the local variable space of the
3628   // caller's stack frame, right above the parameter list area.
3629   SmallVector<CCValAssign, 16> ByValArgLocs;
3630   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3631                       ByValArgLocs, *DAG.getContext());
3632 
3633   // Reserve stack space for the allocations in CCInfo.
3634   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3635 
3636   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3637 
3638   // Area that is at least reserved in the caller of this function.
3639   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3640   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3641 
3642   // Set the size that is at least reserved in caller of this function.  Tail
3643   // call optimized function's reserved stack space needs to be aligned so that
3644   // taking the difference between two stack areas will result in an aligned
3645   // stack.
3646   MinReservedArea =
3647       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3648   FuncInfo->setMinReservedArea(MinReservedArea);
3649 
3650   SmallVector<SDValue, 8> MemOps;
3651 
3652   // If the function takes variable number of arguments, make a frame index for
3653   // the start of the first vararg value... for expansion of llvm.va_start.
3654   if (isVarArg) {
3655     static const MCPhysReg GPArgRegs[] = {
3656       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3657       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3658     };
3659     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3660 
3661     static const MCPhysReg FPArgRegs[] = {
3662       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3663       PPC::F8
3664     };
3665     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3666 
3667     if (useSoftFloat() || hasSPE())
3668        NumFPArgRegs = 0;
3669 
3670     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3671     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3672 
3673     // Make room for NumGPArgRegs and NumFPArgRegs.
3674     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3675                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3676 
3677     FuncInfo->setVarArgsStackOffset(
3678       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3679                             CCInfo.getNextStackOffset(), true));
3680 
3681     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3682     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3683 
3684     // The fixed integer arguments of a variadic function are stored to the
3685     // VarArgsFrameIndex on the stack so that they may be loaded by
3686     // dereferencing the result of va_next.
3687     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3688       // Get an existing live-in vreg, or add a new one.
3689       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3690       if (!VReg)
3691         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3692 
3693       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3694       SDValue Store =
3695           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3696       MemOps.push_back(Store);
3697       // Increment the address by four for the next argument to store
3698       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3699       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3700     }
3701 
3702     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3703     // is set.
3704     // The double arguments are stored to the VarArgsFrameIndex
3705     // on the stack.
3706     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3707       // Get an existing live-in vreg, or add a new one.
3708       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3709       if (!VReg)
3710         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3711 
3712       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3713       SDValue Store =
3714           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3715       MemOps.push_back(Store);
3716       // Increment the address by eight for the next argument to store
3717       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3718                                          PtrVT);
3719       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3720     }
3721   }
3722 
3723   if (!MemOps.empty())
3724     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3725 
3726   return Chain;
3727 }
3728 
3729 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3730 // value to MVT::i64 and then truncate to the correct register size.
3731 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3732                                              EVT ObjectVT, SelectionDAG &DAG,
3733                                              SDValue ArgVal,
3734                                              const SDLoc &dl) const {
3735   if (Flags.isSExt())
3736     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3737                          DAG.getValueType(ObjectVT));
3738   else if (Flags.isZExt())
3739     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3740                          DAG.getValueType(ObjectVT));
3741 
3742   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3743 }
3744 
3745 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3746     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3747     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3748     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3749   // TODO: add description of PPC stack frame format, or at least some docs.
3750   //
3751   bool isELFv2ABI = Subtarget.isELFv2ABI();
3752   bool isLittleEndian = Subtarget.isLittleEndian();
3753   MachineFunction &MF = DAG.getMachineFunction();
3754   MachineFrameInfo &MFI = MF.getFrameInfo();
3755   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3756 
3757   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3758          "fastcc not supported on varargs functions");
3759 
3760   EVT PtrVT = getPointerTy(MF.getDataLayout());
3761   // Potential tail calls could cause overwriting of argument stack slots.
3762   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3763                        (CallConv == CallingConv::Fast));
3764   unsigned PtrByteSize = 8;
3765   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3766 
3767   static const MCPhysReg GPR[] = {
3768     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3769     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3770   };
3771   static const MCPhysReg VR[] = {
3772     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3773     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3774   };
3775 
3776   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3777   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3778   const unsigned Num_VR_Regs  = array_lengthof(VR);
3779   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3780 
3781   // Do a first pass over the arguments to determine whether the ABI
3782   // guarantees that our caller has allocated the parameter save area
3783   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3784   // in the ELFv2 ABI, it is true if this is a vararg function or if
3785   // any parameter is located in a stack slot.
3786 
3787   bool HasParameterArea = !isELFv2ABI || isVarArg;
3788   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3789   unsigned NumBytes = LinkageSize;
3790   unsigned AvailableFPRs = Num_FPR_Regs;
3791   unsigned AvailableVRs = Num_VR_Regs;
3792   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3793     if (Ins[i].Flags.isNest())
3794       continue;
3795 
3796     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3797                                PtrByteSize, LinkageSize, ParamAreaSize,
3798                                NumBytes, AvailableFPRs, AvailableVRs,
3799                                Subtarget.hasQPX()))
3800       HasParameterArea = true;
3801   }
3802 
3803   // Add DAG nodes to load the arguments or copy them out of registers.  On
3804   // entry to a function on PPC, the arguments start after the linkage area,
3805   // although the first ones are often in registers.
3806 
3807   unsigned ArgOffset = LinkageSize;
3808   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3809   unsigned &QFPR_idx = FPR_idx;
3810   SmallVector<SDValue, 8> MemOps;
3811   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3812   unsigned CurArgIdx = 0;
3813   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3814     SDValue ArgVal;
3815     bool needsLoad = false;
3816     EVT ObjectVT = Ins[ArgNo].VT;
3817     EVT OrigVT = Ins[ArgNo].ArgVT;
3818     unsigned ObjSize = ObjectVT.getStoreSize();
3819     unsigned ArgSize = ObjSize;
3820     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3821     if (Ins[ArgNo].isOrigArg()) {
3822       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3823       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3824     }
3825     // We re-align the argument offset for each argument, except when using the
3826     // fast calling convention, when we need to make sure we do that only when
3827     // we'll actually use a stack slot.
3828     unsigned CurArgOffset;
3829     Align Alignment;
3830     auto ComputeArgOffset = [&]() {
3831       /* Respect alignment of argument on the stack.  */
3832       Alignment =
3833           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3834       ArgOffset = alignTo(ArgOffset, Alignment);
3835       CurArgOffset = ArgOffset;
3836     };
3837 
3838     if (CallConv != CallingConv::Fast) {
3839       ComputeArgOffset();
3840 
3841       /* Compute GPR index associated with argument offset.  */
3842       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3843       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3844     }
3845 
3846     // FIXME the codegen can be much improved in some cases.
3847     // We do not have to keep everything in memory.
3848     if (Flags.isByVal()) {
3849       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3850 
3851       if (CallConv == CallingConv::Fast)
3852         ComputeArgOffset();
3853 
3854       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3855       ObjSize = Flags.getByValSize();
3856       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3857       // Empty aggregate parameters do not take up registers.  Examples:
3858       //   struct { } a;
3859       //   union  { } b;
3860       //   int c[0];
3861       // etc.  However, we have to provide a place-holder in InVals, so
3862       // pretend we have an 8-byte item at the current address for that
3863       // purpose.
3864       if (!ObjSize) {
3865         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3866         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3867         InVals.push_back(FIN);
3868         continue;
3869       }
3870 
3871       // Create a stack object covering all stack doublewords occupied
3872       // by the argument.  If the argument is (fully or partially) on
3873       // the stack, or if the argument is fully in registers but the
3874       // caller has allocated the parameter save anyway, we can refer
3875       // directly to the caller's stack frame.  Otherwise, create a
3876       // local copy in our own frame.
3877       int FI;
3878       if (HasParameterArea ||
3879           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3880         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3881       else
3882         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3883       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3884 
3885       // Handle aggregates smaller than 8 bytes.
3886       if (ObjSize < PtrByteSize) {
3887         // The value of the object is its address, which differs from the
3888         // address of the enclosing doubleword on big-endian systems.
3889         SDValue Arg = FIN;
3890         if (!isLittleEndian) {
3891           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3892           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3893         }
3894         InVals.push_back(Arg);
3895 
3896         if (GPR_idx != Num_GPR_Regs) {
3897           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3898           FuncInfo->addLiveInAttr(VReg, Flags);
3899           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3900           SDValue Store;
3901 
3902           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3903             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3904                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3905             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3906                                       MachinePointerInfo(&*FuncArg), ObjType);
3907           } else {
3908             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3909             // store the whole register as-is to the parameter save area
3910             // slot.
3911             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3912                                  MachinePointerInfo(&*FuncArg));
3913           }
3914 
3915           MemOps.push_back(Store);
3916         }
3917         // Whether we copied from a register or not, advance the offset
3918         // into the parameter save area by a full doubleword.
3919         ArgOffset += PtrByteSize;
3920         continue;
3921       }
3922 
3923       // The value of the object is its address, which is the address of
3924       // its first stack doubleword.
3925       InVals.push_back(FIN);
3926 
3927       // Store whatever pieces of the object are in registers to memory.
3928       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3929         if (GPR_idx == Num_GPR_Regs)
3930           break;
3931 
3932         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3933         FuncInfo->addLiveInAttr(VReg, Flags);
3934         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3935         SDValue Addr = FIN;
3936         if (j) {
3937           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3938           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3939         }
3940         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3941                                      MachinePointerInfo(&*FuncArg, j));
3942         MemOps.push_back(Store);
3943         ++GPR_idx;
3944       }
3945       ArgOffset += ArgSize;
3946       continue;
3947     }
3948 
3949     switch (ObjectVT.getSimpleVT().SimpleTy) {
3950     default: llvm_unreachable("Unhandled argument type!");
3951     case MVT::i1:
3952     case MVT::i32:
3953     case MVT::i64:
3954       if (Flags.isNest()) {
3955         // The 'nest' parameter, if any, is passed in R11.
3956         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3957         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3958 
3959         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3960           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3961 
3962         break;
3963       }
3964 
3965       // These can be scalar arguments or elements of an integer array type
3966       // passed directly.  Clang may use those instead of "byval" aggregate
3967       // types to avoid forcing arguments to memory unnecessarily.
3968       if (GPR_idx != Num_GPR_Regs) {
3969         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3970         FuncInfo->addLiveInAttr(VReg, Flags);
3971         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3972 
3973         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3974           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3975           // value to MVT::i64 and then truncate to the correct register size.
3976           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3977       } else {
3978         if (CallConv == CallingConv::Fast)
3979           ComputeArgOffset();
3980 
3981         needsLoad = true;
3982         ArgSize = PtrByteSize;
3983       }
3984       if (CallConv != CallingConv::Fast || needsLoad)
3985         ArgOffset += 8;
3986       break;
3987 
3988     case MVT::f32:
3989     case MVT::f64:
3990       // These can be scalar arguments or elements of a float array type
3991       // passed directly.  The latter are used to implement ELFv2 homogenous
3992       // float aggregates.
3993       if (FPR_idx != Num_FPR_Regs) {
3994         unsigned VReg;
3995 
3996         if (ObjectVT == MVT::f32)
3997           VReg = MF.addLiveIn(FPR[FPR_idx],
3998                               Subtarget.hasP8Vector()
3999                                   ? &PPC::VSSRCRegClass
4000                                   : &PPC::F4RCRegClass);
4001         else
4002           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4003                                                 ? &PPC::VSFRCRegClass
4004                                                 : &PPC::F8RCRegClass);
4005 
4006         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4007         ++FPR_idx;
4008       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4009         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4010         // once we support fp <-> gpr moves.
4011 
4012         // This can only ever happen in the presence of f32 array types,
4013         // since otherwise we never run out of FPRs before running out
4014         // of GPRs.
4015         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4016         FuncInfo->addLiveInAttr(VReg, Flags);
4017         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4018 
4019         if (ObjectVT == MVT::f32) {
4020           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4021             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4022                                  DAG.getConstant(32, dl, MVT::i32));
4023           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4024         }
4025 
4026         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4027       } else {
4028         if (CallConv == CallingConv::Fast)
4029           ComputeArgOffset();
4030 
4031         needsLoad = true;
4032       }
4033 
4034       // When passing an array of floats, the array occupies consecutive
4035       // space in the argument area; only round up to the next doubleword
4036       // at the end of the array.  Otherwise, each float takes 8 bytes.
4037       if (CallConv != CallingConv::Fast || needsLoad) {
4038         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4039         ArgOffset += ArgSize;
4040         if (Flags.isInConsecutiveRegsLast())
4041           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4042       }
4043       break;
4044     case MVT::v4f32:
4045     case MVT::v4i32:
4046     case MVT::v8i16:
4047     case MVT::v16i8:
4048     case MVT::v2f64:
4049     case MVT::v2i64:
4050     case MVT::v1i128:
4051     case MVT::f128:
4052       if (!Subtarget.hasQPX()) {
4053         // These can be scalar arguments or elements of a vector array type
4054         // passed directly.  The latter are used to implement ELFv2 homogenous
4055         // vector aggregates.
4056         if (VR_idx != Num_VR_Regs) {
4057           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4058           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4059           ++VR_idx;
4060         } else {
4061           if (CallConv == CallingConv::Fast)
4062             ComputeArgOffset();
4063           needsLoad = true;
4064         }
4065         if (CallConv != CallingConv::Fast || needsLoad)
4066           ArgOffset += 16;
4067         break;
4068       } // not QPX
4069 
4070       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4071              "Invalid QPX parameter type");
4072       LLVM_FALLTHROUGH;
4073 
4074     case MVT::v4f64:
4075     case MVT::v4i1:
4076       // QPX vectors are treated like their scalar floating-point subregisters
4077       // (except that they're larger).
4078       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4079       if (QFPR_idx != Num_QFPR_Regs) {
4080         const TargetRegisterClass *RC;
4081         switch (ObjectVT.getSimpleVT().SimpleTy) {
4082         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4083         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4084         default:         RC = &PPC::QBRCRegClass; break;
4085         }
4086 
4087         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4088         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4089         ++QFPR_idx;
4090       } else {
4091         if (CallConv == CallingConv::Fast)
4092           ComputeArgOffset();
4093         needsLoad = true;
4094       }
4095       if (CallConv != CallingConv::Fast || needsLoad)
4096         ArgOffset += Sz;
4097       break;
4098     }
4099 
4100     // We need to load the argument to a virtual register if we determined
4101     // above that we ran out of physical registers of the appropriate type.
4102     if (needsLoad) {
4103       if (ObjSize < ArgSize && !isLittleEndian)
4104         CurArgOffset += ArgSize - ObjSize;
4105       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4106       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4107       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4108     }
4109 
4110     InVals.push_back(ArgVal);
4111   }
4112 
4113   // Area that is at least reserved in the caller of this function.
4114   unsigned MinReservedArea;
4115   if (HasParameterArea)
4116     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4117   else
4118     MinReservedArea = LinkageSize;
4119 
4120   // Set the size that is at least reserved in caller of this function.  Tail
4121   // call optimized functions' reserved stack space needs to be aligned so that
4122   // taking the difference between two stack areas will result in an aligned
4123   // stack.
4124   MinReservedArea =
4125       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4126   FuncInfo->setMinReservedArea(MinReservedArea);
4127 
4128   // If the function takes variable number of arguments, make a frame index for
4129   // the start of the first vararg value... for expansion of llvm.va_start.
4130   if (isVarArg) {
4131     int Depth = ArgOffset;
4132 
4133     FuncInfo->setVarArgsFrameIndex(
4134       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4135     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4136 
4137     // If this function is vararg, store any remaining integer argument regs
4138     // to their spots on the stack so that they may be loaded by dereferencing
4139     // the result of va_next.
4140     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4141          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4142       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4143       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4144       SDValue Store =
4145           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4146       MemOps.push_back(Store);
4147       // Increment the address by four for the next argument to store
4148       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4149       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4150     }
4151   }
4152 
4153   if (!MemOps.empty())
4154     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4155 
4156   return Chain;
4157 }
4158 
4159 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4160     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4161     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4162     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4163   // TODO: add description of PPC stack frame format, or at least some docs.
4164   //
4165   MachineFunction &MF = DAG.getMachineFunction();
4166   MachineFrameInfo &MFI = MF.getFrameInfo();
4167   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4168 
4169   EVT PtrVT = getPointerTy(MF.getDataLayout());
4170   bool isPPC64 = PtrVT == MVT::i64;
4171   // Potential tail calls could cause overwriting of argument stack slots.
4172   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4173                        (CallConv == CallingConv::Fast));
4174   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4175   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4176   unsigned ArgOffset = LinkageSize;
4177   // Area that is at least reserved in caller of this function.
4178   unsigned MinReservedArea = ArgOffset;
4179 
4180   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4181     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4182     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4183   };
4184   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4185     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4186     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4187   };
4188   static const MCPhysReg VR[] = {
4189     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4190     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4191   };
4192 
4193   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4194   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4195   const unsigned Num_VR_Regs  = array_lengthof( VR);
4196 
4197   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4198 
4199   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4200 
4201   // In 32-bit non-varargs functions, the stack space for vectors is after the
4202   // stack space for non-vectors.  We do not use this space unless we have
4203   // too many vectors to fit in registers, something that only occurs in
4204   // constructed examples:), but we have to walk the arglist to figure
4205   // that out...for the pathological case, compute VecArgOffset as the
4206   // start of the vector parameter area.  Computing VecArgOffset is the
4207   // entire point of the following loop.
4208   unsigned VecArgOffset = ArgOffset;
4209   if (!isVarArg && !isPPC64) {
4210     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4211          ++ArgNo) {
4212       EVT ObjectVT = Ins[ArgNo].VT;
4213       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4214 
4215       if (Flags.isByVal()) {
4216         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4217         unsigned ObjSize = Flags.getByValSize();
4218         unsigned ArgSize =
4219                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4220         VecArgOffset += ArgSize;
4221         continue;
4222       }
4223 
4224       switch(ObjectVT.getSimpleVT().SimpleTy) {
4225       default: llvm_unreachable("Unhandled argument type!");
4226       case MVT::i1:
4227       case MVT::i32:
4228       case MVT::f32:
4229         VecArgOffset += 4;
4230         break;
4231       case MVT::i64:  // PPC64
4232       case MVT::f64:
4233         // FIXME: We are guaranteed to be !isPPC64 at this point.
4234         // Does MVT::i64 apply?
4235         VecArgOffset += 8;
4236         break;
4237       case MVT::v4f32:
4238       case MVT::v4i32:
4239       case MVT::v8i16:
4240       case MVT::v16i8:
4241         // Nothing to do, we're only looking at Nonvector args here.
4242         break;
4243       }
4244     }
4245   }
4246   // We've found where the vector parameter area in memory is.  Skip the
4247   // first 12 parameters; these don't use that memory.
4248   VecArgOffset = ((VecArgOffset+15)/16)*16;
4249   VecArgOffset += 12*16;
4250 
4251   // Add DAG nodes to load the arguments or copy them out of registers.  On
4252   // entry to a function on PPC, the arguments start after the linkage area,
4253   // although the first ones are often in registers.
4254 
4255   SmallVector<SDValue, 8> MemOps;
4256   unsigned nAltivecParamsAtEnd = 0;
4257   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4258   unsigned CurArgIdx = 0;
4259   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4260     SDValue ArgVal;
4261     bool needsLoad = false;
4262     EVT ObjectVT = Ins[ArgNo].VT;
4263     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4264     unsigned ArgSize = ObjSize;
4265     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4266     if (Ins[ArgNo].isOrigArg()) {
4267       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4268       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4269     }
4270     unsigned CurArgOffset = ArgOffset;
4271 
4272     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4273     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4274         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4275       if (isVarArg || isPPC64) {
4276         MinReservedArea = ((MinReservedArea+15)/16)*16;
4277         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4278                                                   Flags,
4279                                                   PtrByteSize);
4280       } else  nAltivecParamsAtEnd++;
4281     } else
4282       // Calculate min reserved area.
4283       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4284                                                 Flags,
4285                                                 PtrByteSize);
4286 
4287     // FIXME the codegen can be much improved in some cases.
4288     // We do not have to keep everything in memory.
4289     if (Flags.isByVal()) {
4290       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4291 
4292       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4293       ObjSize = Flags.getByValSize();
4294       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4295       // Objects of size 1 and 2 are right justified, everything else is
4296       // left justified.  This means the memory address is adjusted forwards.
4297       if (ObjSize==1 || ObjSize==2) {
4298         CurArgOffset = CurArgOffset + (4 - ObjSize);
4299       }
4300       // The value of the object is its address.
4301       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4302       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4303       InVals.push_back(FIN);
4304       if (ObjSize==1 || ObjSize==2) {
4305         if (GPR_idx != Num_GPR_Regs) {
4306           unsigned VReg;
4307           if (isPPC64)
4308             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4309           else
4310             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4311           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4312           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4313           SDValue Store =
4314               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4315                                 MachinePointerInfo(&*FuncArg), ObjType);
4316           MemOps.push_back(Store);
4317           ++GPR_idx;
4318         }
4319 
4320         ArgOffset += PtrByteSize;
4321 
4322         continue;
4323       }
4324       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4325         // Store whatever pieces of the object are in registers
4326         // to memory.  ArgOffset will be the address of the beginning
4327         // of the object.
4328         if (GPR_idx != Num_GPR_Regs) {
4329           unsigned VReg;
4330           if (isPPC64)
4331             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4332           else
4333             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4334           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4335           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4336           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4337           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4338                                        MachinePointerInfo(&*FuncArg, j));
4339           MemOps.push_back(Store);
4340           ++GPR_idx;
4341           ArgOffset += PtrByteSize;
4342         } else {
4343           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4344           break;
4345         }
4346       }
4347       continue;
4348     }
4349 
4350     switch (ObjectVT.getSimpleVT().SimpleTy) {
4351     default: llvm_unreachable("Unhandled argument type!");
4352     case MVT::i1:
4353     case MVT::i32:
4354       if (!isPPC64) {
4355         if (GPR_idx != Num_GPR_Regs) {
4356           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4357           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4358 
4359           if (ObjectVT == MVT::i1)
4360             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4361 
4362           ++GPR_idx;
4363         } else {
4364           needsLoad = true;
4365           ArgSize = PtrByteSize;
4366         }
4367         // All int arguments reserve stack space in the Darwin ABI.
4368         ArgOffset += PtrByteSize;
4369         break;
4370       }
4371       LLVM_FALLTHROUGH;
4372     case MVT::i64:  // PPC64
4373       if (GPR_idx != Num_GPR_Regs) {
4374         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4375         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4376 
4377         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4378           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4379           // value to MVT::i64 and then truncate to the correct register size.
4380           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4381 
4382         ++GPR_idx;
4383       } else {
4384         needsLoad = true;
4385         ArgSize = PtrByteSize;
4386       }
4387       // All int arguments reserve stack space in the Darwin ABI.
4388       ArgOffset += 8;
4389       break;
4390 
4391     case MVT::f32:
4392     case MVT::f64:
4393       // Every 4 bytes of argument space consumes one of the GPRs available for
4394       // argument passing.
4395       if (GPR_idx != Num_GPR_Regs) {
4396         ++GPR_idx;
4397         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4398           ++GPR_idx;
4399       }
4400       if (FPR_idx != Num_FPR_Regs) {
4401         unsigned VReg;
4402 
4403         if (ObjectVT == MVT::f32)
4404           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4405         else
4406           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4407 
4408         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4409         ++FPR_idx;
4410       } else {
4411         needsLoad = true;
4412       }
4413 
4414       // All FP arguments reserve stack space in the Darwin ABI.
4415       ArgOffset += isPPC64 ? 8 : ObjSize;
4416       break;
4417     case MVT::v4f32:
4418     case MVT::v4i32:
4419     case MVT::v8i16:
4420     case MVT::v16i8:
4421       // Note that vector arguments in registers don't reserve stack space,
4422       // except in varargs functions.
4423       if (VR_idx != Num_VR_Regs) {
4424         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4425         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4426         if (isVarArg) {
4427           while ((ArgOffset % 16) != 0) {
4428             ArgOffset += PtrByteSize;
4429             if (GPR_idx != Num_GPR_Regs)
4430               GPR_idx++;
4431           }
4432           ArgOffset += 16;
4433           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4434         }
4435         ++VR_idx;
4436       } else {
4437         if (!isVarArg && !isPPC64) {
4438           // Vectors go after all the nonvectors.
4439           CurArgOffset = VecArgOffset;
4440           VecArgOffset += 16;
4441         } else {
4442           // Vectors are aligned.
4443           ArgOffset = ((ArgOffset+15)/16)*16;
4444           CurArgOffset = ArgOffset;
4445           ArgOffset += 16;
4446         }
4447         needsLoad = true;
4448       }
4449       break;
4450     }
4451 
4452     // We need to load the argument to a virtual register if we determined above
4453     // that we ran out of physical registers of the appropriate type.
4454     if (needsLoad) {
4455       int FI = MFI.CreateFixedObject(ObjSize,
4456                                      CurArgOffset + (ArgSize - ObjSize),
4457                                      isImmutable);
4458       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4459       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4460     }
4461 
4462     InVals.push_back(ArgVal);
4463   }
4464 
4465   // Allow for Altivec parameters at the end, if needed.
4466   if (nAltivecParamsAtEnd) {
4467     MinReservedArea = ((MinReservedArea+15)/16)*16;
4468     MinReservedArea += 16*nAltivecParamsAtEnd;
4469   }
4470 
4471   // Area that is at least reserved in the caller of this function.
4472   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4473 
4474   // Set the size that is at least reserved in caller of this function.  Tail
4475   // call optimized functions' reserved stack space needs to be aligned so that
4476   // taking the difference between two stack areas will result in an aligned
4477   // stack.
4478   MinReservedArea =
4479       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4480   FuncInfo->setMinReservedArea(MinReservedArea);
4481 
4482   // If the function takes variable number of arguments, make a frame index for
4483   // the start of the first vararg value... for expansion of llvm.va_start.
4484   if (isVarArg) {
4485     int Depth = ArgOffset;
4486 
4487     FuncInfo->setVarArgsFrameIndex(
4488       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4489                             Depth, true));
4490     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4491 
4492     // If this function is vararg, store any remaining integer argument regs
4493     // to their spots on the stack so that they may be loaded by dereferencing
4494     // the result of va_next.
4495     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4496       unsigned VReg;
4497 
4498       if (isPPC64)
4499         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4500       else
4501         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4502 
4503       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4504       SDValue Store =
4505           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4506       MemOps.push_back(Store);
4507       // Increment the address by four for the next argument to store
4508       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4509       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4510     }
4511   }
4512 
4513   if (!MemOps.empty())
4514     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4515 
4516   return Chain;
4517 }
4518 
4519 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4520 /// adjusted to accommodate the arguments for the tailcall.
4521 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4522                                    unsigned ParamSize) {
4523 
4524   if (!isTailCall) return 0;
4525 
4526   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4527   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4528   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4529   // Remember only if the new adjustment is bigger.
4530   if (SPDiff < FI->getTailCallSPDelta())
4531     FI->setTailCallSPDelta(SPDiff);
4532 
4533   return SPDiff;
4534 }
4535 
4536 static bool isFunctionGlobalAddress(SDValue Callee);
4537 
4538 static bool
4539 callsShareTOCBase(const Function *Caller, SDValue Callee,
4540                     const TargetMachine &TM) {
4541    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4542    // don't have enough information to determine if the caller and calle share
4543    // the same  TOC base, so we have to pessimistically assume they don't for
4544    // correctness.
4545    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4546    if (!G)
4547      return false;
4548 
4549    const GlobalValue *GV = G->getGlobal();
4550   // The medium and large code models are expected to provide a sufficiently
4551   // large TOC to provide all data addressing needs of a module with a
4552   // single TOC. Since each module will be addressed with a single TOC then we
4553   // only need to check that caller and callee don't cross dso boundaries.
4554   if (CodeModel::Medium == TM.getCodeModel() ||
4555       CodeModel::Large == TM.getCodeModel())
4556     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4557 
4558   // Otherwise we need to ensure callee and caller are in the same section,
4559   // since the linker may allocate multiple TOCs, and we don't know which
4560   // sections will belong to the same TOC base.
4561 
4562   if (!GV->isStrongDefinitionForLinker())
4563     return false;
4564 
4565   // Any explicitly-specified sections and section prefixes must also match.
4566   // Also, if we're using -ffunction-sections, then each function is always in
4567   // a different section (the same is true for COMDAT functions).
4568   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4569       GV->getSection() != Caller->getSection())
4570     return false;
4571   if (const auto *F = dyn_cast<Function>(GV)) {
4572     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4573       return false;
4574   }
4575 
4576   // If the callee might be interposed, then we can't assume the ultimate call
4577   // target will be in the same section. Even in cases where we can assume that
4578   // interposition won't happen, in any case where the linker might insert a
4579   // stub to allow for interposition, we must generate code as though
4580   // interposition might occur. To understand why this matters, consider a
4581   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4582   // in the same section, but a is in a different module (i.e. has a different
4583   // TOC base pointer). If the linker allows for interposition between b and c,
4584   // then it will generate a stub for the call edge between b and c which will
4585   // save the TOC pointer into the designated stack slot allocated by b. If we
4586   // return true here, and therefore allow a tail call between b and c, that
4587   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4588   // pointer into the stack slot allocated by a (where the a -> b stub saved
4589   // a's TOC base pointer). If we're not considering a tail call, but rather,
4590   // whether a nop is needed after the call instruction in b, because the linker
4591   // will insert a stub, it might complain about a missing nop if we omit it
4592   // (although many don't complain in this case).
4593   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4594     return false;
4595 
4596   return true;
4597 }
4598 
4599 static bool
4600 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4601                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4602   assert(Subtarget.is64BitELFABI());
4603 
4604   const unsigned PtrByteSize = 8;
4605   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4606 
4607   static const MCPhysReg GPR[] = {
4608     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4609     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4610   };
4611   static const MCPhysReg VR[] = {
4612     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4613     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4614   };
4615 
4616   const unsigned NumGPRs = array_lengthof(GPR);
4617   const unsigned NumFPRs = 13;
4618   const unsigned NumVRs = array_lengthof(VR);
4619   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4620 
4621   unsigned NumBytes = LinkageSize;
4622   unsigned AvailableFPRs = NumFPRs;
4623   unsigned AvailableVRs = NumVRs;
4624 
4625   for (const ISD::OutputArg& Param : Outs) {
4626     if (Param.Flags.isNest()) continue;
4627 
4628     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4629                                PtrByteSize, LinkageSize, ParamAreaSize,
4630                                NumBytes, AvailableFPRs, AvailableVRs,
4631                                Subtarget.hasQPX()))
4632       return true;
4633   }
4634   return false;
4635 }
4636 
4637 static bool
4638 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4639   if (CS.arg_size() != CallerFn->arg_size())
4640     return false;
4641 
4642   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4643   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4644   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4645 
4646   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4647     const Value* CalleeArg = *CalleeArgIter;
4648     const Value* CallerArg = &(*CallerArgIter);
4649     if (CalleeArg == CallerArg)
4650       continue;
4651 
4652     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4653     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4654     //      }
4655     // 1st argument of callee is undef and has the same type as caller.
4656     if (CalleeArg->getType() == CallerArg->getType() &&
4657         isa<UndefValue>(CalleeArg))
4658       continue;
4659 
4660     return false;
4661   }
4662 
4663   return true;
4664 }
4665 
4666 // Returns true if TCO is possible between the callers and callees
4667 // calling conventions.
4668 static bool
4669 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4670                                     CallingConv::ID CalleeCC) {
4671   // Tail calls are possible with fastcc and ccc.
4672   auto isTailCallableCC  = [] (CallingConv::ID CC){
4673       return  CC == CallingConv::C || CC == CallingConv::Fast;
4674   };
4675   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4676     return false;
4677 
4678   // We can safely tail call both fastcc and ccc callees from a c calling
4679   // convention caller. If the caller is fastcc, we may have less stack space
4680   // than a non-fastcc caller with the same signature so disable tail-calls in
4681   // that case.
4682   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4683 }
4684 
4685 bool
4686 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4687                                     SDValue Callee,
4688                                     CallingConv::ID CalleeCC,
4689                                     ImmutableCallSite CS,
4690                                     bool isVarArg,
4691                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4692                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4693                                     SelectionDAG& DAG) const {
4694   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4695 
4696   if (DisableSCO && !TailCallOpt) return false;
4697 
4698   // Variadic argument functions are not supported.
4699   if (isVarArg) return false;
4700 
4701   auto &Caller = DAG.getMachineFunction().getFunction();
4702   // Check that the calling conventions are compatible for tco.
4703   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4704     return false;
4705 
4706   // Caller contains any byval parameter is not supported.
4707   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4708     return false;
4709 
4710   // Callee contains any byval parameter is not supported, too.
4711   // Note: This is a quick work around, because in some cases, e.g.
4712   // caller's stack size > callee's stack size, we are still able to apply
4713   // sibling call optimization. For example, gcc is able to do SCO for caller1
4714   // in the following example, but not for caller2.
4715   //   struct test {
4716   //     long int a;
4717   //     char ary[56];
4718   //   } gTest;
4719   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4720   //     b->a = v.a;
4721   //     return 0;
4722   //   }
4723   //   void caller1(struct test a, struct test c, struct test *b) {
4724   //     callee(gTest, b); }
4725   //   void caller2(struct test *b) { callee(gTest, b); }
4726   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4727     return false;
4728 
4729   // If callee and caller use different calling conventions, we cannot pass
4730   // parameters on stack since offsets for the parameter area may be different.
4731   if (Caller.getCallingConv() != CalleeCC &&
4732       needStackSlotPassParameters(Subtarget, Outs))
4733     return false;
4734 
4735   // No TCO/SCO on indirect call because Caller have to restore its TOC
4736   if (!isFunctionGlobalAddress(Callee) &&
4737       !isa<ExternalSymbolSDNode>(Callee))
4738     return false;
4739 
4740   // If the caller and callee potentially have different TOC bases then we
4741   // cannot tail call since we need to restore the TOC pointer after the call.
4742   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4743   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4744     return false;
4745 
4746   // TCO allows altering callee ABI, so we don't have to check further.
4747   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4748     return true;
4749 
4750   if (DisableSCO) return false;
4751 
4752   // If callee use the same argument list that caller is using, then we can
4753   // apply SCO on this case. If it is not, then we need to check if callee needs
4754   // stack for passing arguments.
4755   if (!hasSameArgumentList(&Caller, CS) &&
4756       needStackSlotPassParameters(Subtarget, Outs)) {
4757     return false;
4758   }
4759 
4760   return true;
4761 }
4762 
4763 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4764 /// for tail call optimization. Targets which want to do tail call
4765 /// optimization should implement this function.
4766 bool
4767 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4768                                                      CallingConv::ID CalleeCC,
4769                                                      bool isVarArg,
4770                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4771                                                      SelectionDAG& DAG) const {
4772   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4773     return false;
4774 
4775   // Variable argument functions are not supported.
4776   if (isVarArg)
4777     return false;
4778 
4779   MachineFunction &MF = DAG.getMachineFunction();
4780   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4781   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4782     // Functions containing by val parameters are not supported.
4783     for (unsigned i = 0; i != Ins.size(); i++) {
4784        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4785        if (Flags.isByVal()) return false;
4786     }
4787 
4788     // Non-PIC/GOT tail calls are supported.
4789     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4790       return true;
4791 
4792     // At the moment we can only do local tail calls (in same module, hidden
4793     // or protected) if we are generating PIC.
4794     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4795       return G->getGlobal()->hasHiddenVisibility()
4796           || G->getGlobal()->hasProtectedVisibility();
4797   }
4798 
4799   return false;
4800 }
4801 
4802 /// isCallCompatibleAddress - Return the immediate to use if the specified
4803 /// 32-bit value is representable in the immediate field of a BxA instruction.
4804 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4805   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4806   if (!C) return nullptr;
4807 
4808   int Addr = C->getZExtValue();
4809   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4810       SignExtend32<26>(Addr) != Addr)
4811     return nullptr;  // Top 6 bits have to be sext of immediate.
4812 
4813   return DAG
4814       .getConstant(
4815           (int)C->getZExtValue() >> 2, SDLoc(Op),
4816           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4817       .getNode();
4818 }
4819 
4820 namespace {
4821 
4822 struct TailCallArgumentInfo {
4823   SDValue Arg;
4824   SDValue FrameIdxOp;
4825   int FrameIdx = 0;
4826 
4827   TailCallArgumentInfo() = default;
4828 };
4829 
4830 } // end anonymous namespace
4831 
4832 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4833 static void StoreTailCallArgumentsToStackSlot(
4834     SelectionDAG &DAG, SDValue Chain,
4835     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4836     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4837   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4838     SDValue Arg = TailCallArgs[i].Arg;
4839     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4840     int FI = TailCallArgs[i].FrameIdx;
4841     // Store relative to framepointer.
4842     MemOpChains.push_back(DAG.getStore(
4843         Chain, dl, Arg, FIN,
4844         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4845   }
4846 }
4847 
4848 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4849 /// the appropriate stack slot for the tail call optimized function call.
4850 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4851                                              SDValue OldRetAddr, SDValue OldFP,
4852                                              int SPDiff, const SDLoc &dl) {
4853   if (SPDiff) {
4854     // Calculate the new stack slot for the return address.
4855     MachineFunction &MF = DAG.getMachineFunction();
4856     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4857     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4858     bool isPPC64 = Subtarget.isPPC64();
4859     int SlotSize = isPPC64 ? 8 : 4;
4860     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4861     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4862                                                          NewRetAddrLoc, true);
4863     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4864     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4865     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4866                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4867   }
4868   return Chain;
4869 }
4870 
4871 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4872 /// the position of the argument.
4873 static void
4874 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4875                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4876                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4877   int Offset = ArgOffset + SPDiff;
4878   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4879   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4880   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4881   SDValue FIN = DAG.getFrameIndex(FI, VT);
4882   TailCallArgumentInfo Info;
4883   Info.Arg = Arg;
4884   Info.FrameIdxOp = FIN;
4885   Info.FrameIdx = FI;
4886   TailCallArguments.push_back(Info);
4887 }
4888 
4889 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4890 /// stack slot. Returns the chain as result and the loaded frame pointers in
4891 /// LROpOut/FPOpout. Used when tail calling.
4892 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4893     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4894     SDValue &FPOpOut, const SDLoc &dl) const {
4895   if (SPDiff) {
4896     // Load the LR and FP stack slot for later adjusting.
4897     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4898     LROpOut = getReturnAddrFrameIndex(DAG);
4899     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4900     Chain = SDValue(LROpOut.getNode(), 1);
4901   }
4902   return Chain;
4903 }
4904 
4905 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4906 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4907 /// specified by the specific parameter attribute. The copy will be passed as
4908 /// a byval function parameter.
4909 /// Sometimes what we are copying is the end of a larger object, the part that
4910 /// does not fit in registers.
4911 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4912                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4913                                          SelectionDAG &DAG, const SDLoc &dl) {
4914   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4915   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4916                        Flags.getNonZeroByValAlign(), false, false, false,
4917                        MachinePointerInfo(), MachinePointerInfo());
4918 }
4919 
4920 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4921 /// tail calls.
4922 static void LowerMemOpCallTo(
4923     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4924     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4925     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4926     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4927   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4928   if (!isTailCall) {
4929     if (isVector) {
4930       SDValue StackPtr;
4931       if (isPPC64)
4932         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4933       else
4934         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4935       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4936                            DAG.getConstant(ArgOffset, dl, PtrVT));
4937     }
4938     MemOpChains.push_back(
4939         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4940     // Calculate and remember argument location.
4941   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4942                                   TailCallArguments);
4943 }
4944 
4945 static void
4946 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4947                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4948                 SDValue FPOp,
4949                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4950   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4951   // might overwrite each other in case of tail call optimization.
4952   SmallVector<SDValue, 8> MemOpChains2;
4953   // Do not flag preceding copytoreg stuff together with the following stuff.
4954   InFlag = SDValue();
4955   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4956                                     MemOpChains2, dl);
4957   if (!MemOpChains2.empty())
4958     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4959 
4960   // Store the return address to the appropriate stack slot.
4961   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4962 
4963   // Emit callseq_end just before tailcall node.
4964   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4965                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4966   InFlag = Chain.getValue(1);
4967 }
4968 
4969 // Is this global address that of a function that can be called by name? (as
4970 // opposed to something that must hold a descriptor for an indirect call).
4971 static bool isFunctionGlobalAddress(SDValue Callee) {
4972   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4973     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4974         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4975       return false;
4976 
4977     return G->getGlobal()->getValueType()->isFunctionTy();
4978   }
4979 
4980   return false;
4981 }
4982 
4983 SDValue PPCTargetLowering::LowerCallResult(
4984     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4985     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4986     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4987   SmallVector<CCValAssign, 16> RVLocs;
4988   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4989                     *DAG.getContext());
4990 
4991   CCRetInfo.AnalyzeCallResult(
4992       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4993                ? RetCC_PPC_Cold
4994                : RetCC_PPC);
4995 
4996   // Copy all of the result registers out of their specified physreg.
4997   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4998     CCValAssign &VA = RVLocs[i];
4999     assert(VA.isRegLoc() && "Can only return in registers!");
5000 
5001     SDValue Val;
5002 
5003     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5004       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5005                                       InFlag);
5006       Chain = Lo.getValue(1);
5007       InFlag = Lo.getValue(2);
5008       VA = RVLocs[++i]; // skip ahead to next loc
5009       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5010                                       InFlag);
5011       Chain = Hi.getValue(1);
5012       InFlag = Hi.getValue(2);
5013       if (!Subtarget.isLittleEndian())
5014         std::swap (Lo, Hi);
5015       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5016     } else {
5017       Val = DAG.getCopyFromReg(Chain, dl,
5018                                VA.getLocReg(), VA.getLocVT(), InFlag);
5019       Chain = Val.getValue(1);
5020       InFlag = Val.getValue(2);
5021     }
5022 
5023     switch (VA.getLocInfo()) {
5024     default: llvm_unreachable("Unknown loc info!");
5025     case CCValAssign::Full: break;
5026     case CCValAssign::AExt:
5027       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5028       break;
5029     case CCValAssign::ZExt:
5030       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5031                         DAG.getValueType(VA.getValVT()));
5032       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5033       break;
5034     case CCValAssign::SExt:
5035       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5036                         DAG.getValueType(VA.getValVT()));
5037       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5038       break;
5039     }
5040 
5041     InVals.push_back(Val);
5042   }
5043 
5044   return Chain;
5045 }
5046 
5047 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5048                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5049   // PatchPoint calls are not indirect.
5050   if (isPatchPoint)
5051     return false;
5052 
5053   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5054     return false;
5055 
5056   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5057   // becuase the immediate function pointer points to a descriptor instead of
5058   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5059   // pointer immediate points to the global entry point, while the BLA would
5060   // need to jump to the local entry point (see rL211174).
5061   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5062       isBLACompatibleAddress(Callee, DAG))
5063     return false;
5064 
5065   return true;
5066 }
5067 
5068 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5069                               const Function &Caller,
5070                               const SDValue &Callee,
5071                               const PPCSubtarget &Subtarget,
5072                               const TargetMachine &TM) {
5073   if (CFlags.IsTailCall)
5074     return PPCISD::TC_RETURN;
5075 
5076   // This is a call through a function pointer.
5077   if (CFlags.IsIndirect) {
5078     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5079     // indirect calls. The save of the caller's TOC pointer to the stack will be
5080     // inserted into the DAG as part of call lowering. The restore of the TOC
5081     // pointer is modeled by using a pseudo instruction for the call opcode that
5082     // represents the 2 instruction sequence of an indirect branch and link,
5083     // immediately followed by a load of the TOC pointer from the the stack save
5084     // slot into gpr2.
5085     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5086       return PPCISD::BCTRL_LOAD_TOC;
5087 
5088     // An indirect call that does not need a TOC restore.
5089     return PPCISD::BCTRL;
5090   }
5091 
5092   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5093   // immediately following the call instruction if the caller and callee may
5094   // have different TOC bases. At link time if the linker determines the calls
5095   // may not share a TOC base, the call is redirected to a trampoline inserted
5096   // by the linker. The trampoline will (among other things) save the callers
5097   // TOC pointer at an ABI designated offset in the linkage area and the linker
5098   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5099   // into gpr2.
5100   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5101     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5102                                                   : PPCISD::CALL_NOP;
5103 
5104   return PPCISD::CALL;
5105 }
5106 
5107 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5108                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5109   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5110     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5111       return SDValue(Dest, 0);
5112 
5113   // Returns true if the callee is local, and false otherwise.
5114   auto isLocalCallee = [&]() {
5115     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5116     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5117     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5118 
5119     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5120            !dyn_cast_or_null<GlobalIFunc>(GV);
5121   };
5122 
5123   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5124   // a static relocation model causes some versions of GNU LD (2.17.50, at
5125   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5126   // built with secure-PLT.
5127   bool UsePlt =
5128       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5129       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5130 
5131   // On AIX, direct function calls reference the symbol for the function's
5132   // entry point, which is named by prepending a "." before the function's
5133   // C-linkage name.
5134   const auto getAIXFuncEntryPointSymbolSDNode =
5135       [&](StringRef FuncName, bool IsDeclaration,
5136           const XCOFF::StorageClass &SC) {
5137         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5138 
5139         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5140             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5141 
5142         if (IsDeclaration && !S->hasContainingCsect()) {
5143           // On AIX, an undefined symbol needs to be associated with a
5144           // MCSectionXCOFF to get the correct storage mapping class.
5145           // In this case, XCOFF::XMC_PR.
5146           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5147               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5148               SectionKind::getMetadata());
5149           S->setContainingCsect(Sec);
5150         }
5151 
5152         MVT PtrVT =
5153             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5154         return DAG.getMCSymbol(S, PtrVT);
5155       };
5156 
5157   if (isFunctionGlobalAddress(Callee)) {
5158     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5159     const GlobalValue *GV = G->getGlobal();
5160 
5161     if (!Subtarget.isAIXABI())
5162       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5163                                         UsePlt ? PPCII::MO_PLT : 0);
5164 
5165     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5166     const GlobalObject *GO = cast<GlobalObject>(GV);
5167     const XCOFF::StorageClass SC =
5168         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5169     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5170                                             SC);
5171   }
5172 
5173   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5174     const char *SymName = S->getSymbol();
5175     if (!Subtarget.isAIXABI())
5176       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5177                                          UsePlt ? PPCII::MO_PLT : 0);
5178 
5179     // If there exists a user-declared function whose name is the same as the
5180     // ExternalSymbol's, then we pick up the user-declared version.
5181     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5182     if (const Function *F =
5183             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5184       const XCOFF::StorageClass SC =
5185           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5186       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5187                                               SC);
5188     }
5189 
5190     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5191   }
5192 
5193   // No transformation needed.
5194   assert(Callee.getNode() && "What no callee?");
5195   return Callee;
5196 }
5197 
5198 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5199   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5200          "Expected a CALLSEQ_STARTSDNode.");
5201 
5202   // The last operand is the chain, except when the node has glue. If the node
5203   // has glue, then the last operand is the glue, and the chain is the second
5204   // last operand.
5205   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5206   if (LastValue.getValueType() != MVT::Glue)
5207     return LastValue;
5208 
5209   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5210 }
5211 
5212 // Creates the node that moves a functions address into the count register
5213 // to prepare for an indirect call instruction.
5214 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5215                                 SDValue &Glue, SDValue &Chain,
5216                                 const SDLoc &dl) {
5217   SDValue MTCTROps[] = {Chain, Callee, Glue};
5218   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5219   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5220                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5221   // The glue is the second value produced.
5222   Glue = Chain.getValue(1);
5223 }
5224 
5225 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5226                                           SDValue &Glue, SDValue &Chain,
5227                                           SDValue CallSeqStart,
5228                                           ImmutableCallSite CS, const SDLoc &dl,
5229                                           bool hasNest,
5230                                           const PPCSubtarget &Subtarget) {
5231   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5232   // entry point, but to the function descriptor (the function entry point
5233   // address is part of the function descriptor though).
5234   // The function descriptor is a three doubleword structure with the
5235   // following fields: function entry point, TOC base address and
5236   // environment pointer.
5237   // Thus for a call through a function pointer, the following actions need
5238   // to be performed:
5239   //   1. Save the TOC of the caller in the TOC save area of its stack
5240   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5241   //   2. Load the address of the function entry point from the function
5242   //      descriptor.
5243   //   3. Load the TOC of the callee from the function descriptor into r2.
5244   //   4. Load the environment pointer from the function descriptor into
5245   //      r11.
5246   //   5. Branch to the function entry point address.
5247   //   6. On return of the callee, the TOC of the caller needs to be
5248   //      restored (this is done in FinishCall()).
5249   //
5250   // The loads are scheduled at the beginning of the call sequence, and the
5251   // register copies are flagged together to ensure that no other
5252   // operations can be scheduled in between. E.g. without flagging the
5253   // copies together, a TOC access in the caller could be scheduled between
5254   // the assignment of the callee TOC and the branch to the callee, which leads
5255   // to incorrect code.
5256 
5257   // Start by loading the function address from the descriptor.
5258   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5259   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5260                       ? (MachineMemOperand::MODereferenceable |
5261                          MachineMemOperand::MOInvariant)
5262                       : MachineMemOperand::MONone;
5263 
5264   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5265 
5266   // Registers used in building the DAG.
5267   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5268   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5269 
5270   // Offsets of descriptor members.
5271   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5272   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5273 
5274   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5275   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5276 
5277   // One load for the functions entry point address.
5278   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5279                                     Alignment, MMOFlags);
5280 
5281   // One for loading the TOC anchor for the module that contains the called
5282   // function.
5283   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5284   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5285   SDValue TOCPtr =
5286       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5287                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5288 
5289   // One for loading the environment pointer.
5290   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5291   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5292   SDValue LoadEnvPtr =
5293       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5294                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5295 
5296 
5297   // Then copy the newly loaded TOC anchor to the TOC pointer.
5298   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5299   Chain = TOCVal.getValue(0);
5300   Glue = TOCVal.getValue(1);
5301 
5302   // If the function call has an explicit 'nest' parameter, it takes the
5303   // place of the environment pointer.
5304   assert((!hasNest || !Subtarget.isAIXABI()) &&
5305          "Nest parameter is not supported on AIX.");
5306   if (!hasNest) {
5307     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5308     Chain = EnvVal.getValue(0);
5309     Glue = EnvVal.getValue(1);
5310   }
5311 
5312   // The rest of the indirect call sequence is the same as the non-descriptor
5313   // DAG.
5314   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5315 }
5316 
5317 static void
5318 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5319                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5320                   SelectionDAG &DAG,
5321                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5322                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5323                   const PPCSubtarget &Subtarget) {
5324   const bool IsPPC64 = Subtarget.isPPC64();
5325   // MVT for a general purpose register.
5326   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5327 
5328   // First operand is always the chain.
5329   Ops.push_back(Chain);
5330 
5331   // If it's a direct call pass the callee as the second operand.
5332   if (!CFlags.IsIndirect)
5333     Ops.push_back(Callee);
5334   else {
5335     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5336 
5337     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5338     // on the stack (this would have been done in `LowerCall_64SVR4` or
5339     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5340     // represents both the indirect branch and a load that restores the TOC
5341     // pointer from the linkage area. The operand for the TOC restore is an add
5342     // of the TOC save offset to the stack pointer. This must be the second
5343     // operand: after the chain input but before any other variadic arguments.
5344     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5345       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5346 
5347       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5348       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5349       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5350       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5351       Ops.push_back(AddTOC);
5352     }
5353 
5354     // Add the register used for the environment pointer.
5355     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5356       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5357                                     RegVT));
5358 
5359 
5360     // Add CTR register as callee so a bctr can be emitted later.
5361     if (CFlags.IsTailCall)
5362       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5363   }
5364 
5365   // If this is a tail call add stack pointer delta.
5366   if (CFlags.IsTailCall)
5367     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5368 
5369   // Add argument registers to the end of the list so that they are known live
5370   // into the call.
5371   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5372     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5373                                   RegsToPass[i].second.getValueType()));
5374 
5375   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5376   // no way to mark dependencies as implicit here.
5377   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5378   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5379       !CFlags.IsPatchPoint)
5380     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5381 
5382   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5383   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5384     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5385 
5386   // Add a register mask operand representing the call-preserved registers.
5387   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5388   const uint32_t *Mask =
5389       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5390   assert(Mask && "Missing call preserved mask for calling convention");
5391   Ops.push_back(DAG.getRegisterMask(Mask));
5392 
5393   // If the glue is valid, it is the last operand.
5394   if (Glue.getNode())
5395     Ops.push_back(Glue);
5396 }
5397 
5398 SDValue PPCTargetLowering::FinishCall(
5399     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5400     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5401     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5402     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5403     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5404 
5405   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5406     setUsesTOCBasePtr(DAG);
5407 
5408   unsigned CallOpc =
5409       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5410                     Subtarget, DAG.getTarget());
5411 
5412   if (!CFlags.IsIndirect)
5413     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5414   else if (Subtarget.usesFunctionDescriptors())
5415     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5416                                   dl, CFlags.HasNest, Subtarget);
5417   else
5418     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5419 
5420   // Build the operand list for the call instruction.
5421   SmallVector<SDValue, 8> Ops;
5422   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5423                     SPDiff, Subtarget);
5424 
5425   // Emit tail call.
5426   if (CFlags.IsTailCall) {
5427     assert(((Callee.getOpcode() == ISD::Register &&
5428              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5429             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5430             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5431             isa<ConstantSDNode>(Callee)) &&
5432            "Expecting a global address, external symbol, absolute value or "
5433            "register");
5434     assert(CallOpc == PPCISD::TC_RETURN &&
5435            "Unexpected call opcode for a tail call.");
5436     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5437     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5438   }
5439 
5440   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5441   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5442   Glue = Chain.getValue(1);
5443 
5444   // When performing tail call optimization the callee pops its arguments off
5445   // the stack. Account for this here so these bytes can be pushed back on in
5446   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5447   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5448                          getTargetMachine().Options.GuaranteedTailCallOpt)
5449                             ? NumBytes
5450                             : 0;
5451 
5452   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5453                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5454                              Glue, dl);
5455   Glue = Chain.getValue(1);
5456 
5457   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5458                          DAG, InVals);
5459 }
5460 
5461 SDValue
5462 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5463                              SmallVectorImpl<SDValue> &InVals) const {
5464   SelectionDAG &DAG                     = CLI.DAG;
5465   SDLoc &dl                             = CLI.DL;
5466   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5467   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5468   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5469   SDValue Chain                         = CLI.Chain;
5470   SDValue Callee                        = CLI.Callee;
5471   bool &isTailCall                      = CLI.IsTailCall;
5472   CallingConv::ID CallConv              = CLI.CallConv;
5473   bool isVarArg                         = CLI.IsVarArg;
5474   bool isPatchPoint                     = CLI.IsPatchPoint;
5475   ImmutableCallSite CS                  = CLI.CS;
5476 
5477   if (isTailCall) {
5478     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5479       isTailCall = false;
5480     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5481       isTailCall =
5482         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5483                                                  isVarArg, Outs, Ins, DAG);
5484     else
5485       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5486                                                      Ins, DAG);
5487     if (isTailCall) {
5488       ++NumTailCalls;
5489       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5490         ++NumSiblingCalls;
5491 
5492       assert(isa<GlobalAddressSDNode>(Callee) &&
5493              "Callee should be an llvm::Function object.");
5494       LLVM_DEBUG(
5495           const GlobalValue *GV =
5496               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5497           const unsigned Width =
5498               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5499           dbgs() << "TCO caller: "
5500                  << left_justify(DAG.getMachineFunction().getName(), Width)
5501                  << ", callee linkage: " << GV->getVisibility() << ", "
5502                  << GV->getLinkage() << "\n");
5503     }
5504   }
5505 
5506   if (!isTailCall && CS && CS.isMustTailCall())
5507     report_fatal_error("failed to perform tail call elimination on a call "
5508                        "site marked musttail");
5509 
5510   // When long calls (i.e. indirect calls) are always used, calls are always
5511   // made via function pointer. If we have a function name, first translate it
5512   // into a pointer.
5513   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5514       !isTailCall)
5515     Callee = LowerGlobalAddress(Callee, DAG);
5516 
5517   CallFlags CFlags(
5518       CallConv, isTailCall, isVarArg, isPatchPoint,
5519       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5520       // hasNest
5521       Subtarget.is64BitELFABI() &&
5522           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }));
5523 
5524   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5525     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5526                             InVals, CS);
5527 
5528   if (Subtarget.isSVR4ABI())
5529     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5530                             InVals, CS);
5531 
5532   if (Subtarget.isAIXABI())
5533     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5534                          InVals, CS);
5535 
5536   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5537                           InVals, CS);
5538 }
5539 
5540 SDValue PPCTargetLowering::LowerCall_32SVR4(
5541     SDValue Chain, SDValue Callee, CallFlags CFlags,
5542     const SmallVectorImpl<ISD::OutputArg> &Outs,
5543     const SmallVectorImpl<SDValue> &OutVals,
5544     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5545     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5546     ImmutableCallSite CS) const {
5547   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5548   // of the 32-bit SVR4 ABI stack frame layout.
5549 
5550   const CallingConv::ID CallConv = CFlags.CallConv;
5551   const bool IsVarArg = CFlags.IsVarArg;
5552   const bool IsTailCall = CFlags.IsTailCall;
5553 
5554   assert((CallConv == CallingConv::C ||
5555           CallConv == CallingConv::Cold ||
5556           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5557 
5558   unsigned PtrByteSize = 4;
5559 
5560   MachineFunction &MF = DAG.getMachineFunction();
5561 
5562   // Mark this function as potentially containing a function that contains a
5563   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5564   // and restoring the callers stack pointer in this functions epilog. This is
5565   // done because by tail calling the called function might overwrite the value
5566   // in this function's (MF) stack pointer stack slot 0(SP).
5567   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5568       CallConv == CallingConv::Fast)
5569     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5570 
5571   // Count how many bytes are to be pushed on the stack, including the linkage
5572   // area, parameter list area and the part of the local variable space which
5573   // contains copies of aggregates which are passed by value.
5574 
5575   // Assign locations to all of the outgoing arguments.
5576   SmallVector<CCValAssign, 16> ArgLocs;
5577   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5578 
5579   // Reserve space for the linkage area on the stack.
5580   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5581                        PtrByteSize);
5582   if (useSoftFloat())
5583     CCInfo.PreAnalyzeCallOperands(Outs);
5584 
5585   if (IsVarArg) {
5586     // Handle fixed and variable vector arguments differently.
5587     // Fixed vector arguments go into registers as long as registers are
5588     // available. Variable vector arguments always go into memory.
5589     unsigned NumArgs = Outs.size();
5590 
5591     for (unsigned i = 0; i != NumArgs; ++i) {
5592       MVT ArgVT = Outs[i].VT;
5593       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5594       bool Result;
5595 
5596       if (Outs[i].IsFixed) {
5597         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5598                                CCInfo);
5599       } else {
5600         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5601                                       ArgFlags, CCInfo);
5602       }
5603 
5604       if (Result) {
5605 #ifndef NDEBUG
5606         errs() << "Call operand #" << i << " has unhandled type "
5607              << EVT(ArgVT).getEVTString() << "\n";
5608 #endif
5609         llvm_unreachable(nullptr);
5610       }
5611     }
5612   } else {
5613     // All arguments are treated the same.
5614     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5615   }
5616   CCInfo.clearWasPPCF128();
5617 
5618   // Assign locations to all of the outgoing aggregate by value arguments.
5619   SmallVector<CCValAssign, 16> ByValArgLocs;
5620   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5621 
5622   // Reserve stack space for the allocations in CCInfo.
5623   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5624 
5625   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5626 
5627   // Size of the linkage area, parameter list area and the part of the local
5628   // space variable where copies of aggregates which are passed by value are
5629   // stored.
5630   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5631 
5632   // Calculate by how many bytes the stack has to be adjusted in case of tail
5633   // call optimization.
5634   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5635 
5636   // Adjust the stack pointer for the new arguments...
5637   // These operations are automatically eliminated by the prolog/epilog pass
5638   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5639   SDValue CallSeqStart = Chain;
5640 
5641   // Load the return address and frame pointer so it can be moved somewhere else
5642   // later.
5643   SDValue LROp, FPOp;
5644   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5645 
5646   // Set up a copy of the stack pointer for use loading and storing any
5647   // arguments that may not fit in the registers available for argument
5648   // passing.
5649   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5650 
5651   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5652   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5653   SmallVector<SDValue, 8> MemOpChains;
5654 
5655   bool seenFloatArg = false;
5656   // Walk the register/memloc assignments, inserting copies/loads.
5657   // i - Tracks the index into the list of registers allocated for the call
5658   // RealArgIdx - Tracks the index into the list of actual function arguments
5659   // j - Tracks the index into the list of byval arguments
5660   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5661        i != e;
5662        ++i, ++RealArgIdx) {
5663     CCValAssign &VA = ArgLocs[i];
5664     SDValue Arg = OutVals[RealArgIdx];
5665     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5666 
5667     if (Flags.isByVal()) {
5668       // Argument is an aggregate which is passed by value, thus we need to
5669       // create a copy of it in the local variable space of the current stack
5670       // frame (which is the stack frame of the caller) and pass the address of
5671       // this copy to the callee.
5672       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5673       CCValAssign &ByValVA = ByValArgLocs[j++];
5674       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5675 
5676       // Memory reserved in the local variable space of the callers stack frame.
5677       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5678 
5679       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5680       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5681                            StackPtr, PtrOff);
5682 
5683       // Create a copy of the argument in the local area of the current
5684       // stack frame.
5685       SDValue MemcpyCall =
5686         CreateCopyOfByValArgument(Arg, PtrOff,
5687                                   CallSeqStart.getNode()->getOperand(0),
5688                                   Flags, DAG, dl);
5689 
5690       // This must go outside the CALLSEQ_START..END.
5691       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5692                                                      SDLoc(MemcpyCall));
5693       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5694                              NewCallSeqStart.getNode());
5695       Chain = CallSeqStart = NewCallSeqStart;
5696 
5697       // Pass the address of the aggregate copy on the stack either in a
5698       // physical register or in the parameter list area of the current stack
5699       // frame to the callee.
5700       Arg = PtrOff;
5701     }
5702 
5703     // When useCRBits() is true, there can be i1 arguments.
5704     // It is because getRegisterType(MVT::i1) => MVT::i1,
5705     // and for other integer types getRegisterType() => MVT::i32.
5706     // Extend i1 and ensure callee will get i32.
5707     if (Arg.getValueType() == MVT::i1)
5708       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5709                         dl, MVT::i32, Arg);
5710 
5711     if (VA.isRegLoc()) {
5712       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5713       // Put argument in a physical register.
5714       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5715         bool IsLE = Subtarget.isLittleEndian();
5716         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5717                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5718         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5719         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5720                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5721         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5722                              SVal.getValue(0)));
5723       } else
5724         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5725     } else {
5726       // Put argument in the parameter list area of the current stack frame.
5727       assert(VA.isMemLoc());
5728       unsigned LocMemOffset = VA.getLocMemOffset();
5729 
5730       if (!IsTailCall) {
5731         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5732         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5733                              StackPtr, PtrOff);
5734 
5735         MemOpChains.push_back(
5736             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5737       } else {
5738         // Calculate and remember argument location.
5739         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5740                                  TailCallArguments);
5741       }
5742     }
5743   }
5744 
5745   if (!MemOpChains.empty())
5746     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5747 
5748   // Build a sequence of copy-to-reg nodes chained together with token chain
5749   // and flag operands which copy the outgoing args into the appropriate regs.
5750   SDValue InFlag;
5751   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5752     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5753                              RegsToPass[i].second, InFlag);
5754     InFlag = Chain.getValue(1);
5755   }
5756 
5757   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5758   // registers.
5759   if (IsVarArg) {
5760     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5761     SDValue Ops[] = { Chain, InFlag };
5762 
5763     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5764                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5765 
5766     InFlag = Chain.getValue(1);
5767   }
5768 
5769   if (IsTailCall)
5770     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5771                     TailCallArguments);
5772 
5773   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5774                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
5775 }
5776 
5777 // Copy an argument into memory, being careful to do this outside the
5778 // call sequence for the call to which the argument belongs.
5779 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5780     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5781     SelectionDAG &DAG, const SDLoc &dl) const {
5782   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5783                         CallSeqStart.getNode()->getOperand(0),
5784                         Flags, DAG, dl);
5785   // The MEMCPY must go outside the CALLSEQ_START..END.
5786   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5787   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5788                                                  SDLoc(MemcpyCall));
5789   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5790                          NewCallSeqStart.getNode());
5791   return NewCallSeqStart;
5792 }
5793 
5794 SDValue PPCTargetLowering::LowerCall_64SVR4(
5795     SDValue Chain, SDValue Callee, CallFlags CFlags,
5796     const SmallVectorImpl<ISD::OutputArg> &Outs,
5797     const SmallVectorImpl<SDValue> &OutVals,
5798     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5799     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5800     ImmutableCallSite CS) const {
5801   bool isELFv2ABI = Subtarget.isELFv2ABI();
5802   bool isLittleEndian = Subtarget.isLittleEndian();
5803   unsigned NumOps = Outs.size();
5804   bool IsSibCall = false;
5805   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5806 
5807   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5808   unsigned PtrByteSize = 8;
5809 
5810   MachineFunction &MF = DAG.getMachineFunction();
5811 
5812   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5813     IsSibCall = true;
5814 
5815   // Mark this function as potentially containing a function that contains a
5816   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5817   // and restoring the callers stack pointer in this functions epilog. This is
5818   // done because by tail calling the called function might overwrite the value
5819   // in this function's (MF) stack pointer stack slot 0(SP).
5820   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5821     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5822 
5823   assert(!(IsFastCall && CFlags.IsVarArg) &&
5824          "fastcc not supported on varargs functions");
5825 
5826   // Count how many bytes are to be pushed on the stack, including the linkage
5827   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5828   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5829   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5830   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5831   unsigned NumBytes = LinkageSize;
5832   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5833   unsigned &QFPR_idx = FPR_idx;
5834 
5835   static const MCPhysReg GPR[] = {
5836     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5837     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5838   };
5839   static const MCPhysReg VR[] = {
5840     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5841     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5842   };
5843 
5844   const unsigned NumGPRs = array_lengthof(GPR);
5845   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5846   const unsigned NumVRs  = array_lengthof(VR);
5847   const unsigned NumQFPRs = NumFPRs;
5848 
5849   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5850   // can be passed to the callee in registers.
5851   // For the fast calling convention, there is another check below.
5852   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5853   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5854   if (!HasParameterArea) {
5855     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5856     unsigned AvailableFPRs = NumFPRs;
5857     unsigned AvailableVRs = NumVRs;
5858     unsigned NumBytesTmp = NumBytes;
5859     for (unsigned i = 0; i != NumOps; ++i) {
5860       if (Outs[i].Flags.isNest()) continue;
5861       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5862                                 PtrByteSize, LinkageSize, ParamAreaSize,
5863                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5864                                 Subtarget.hasQPX()))
5865         HasParameterArea = true;
5866     }
5867   }
5868 
5869   // When using the fast calling convention, we don't provide backing for
5870   // arguments that will be in registers.
5871   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5872 
5873   // Avoid allocating parameter area for fastcc functions if all the arguments
5874   // can be passed in the registers.
5875   if (IsFastCall)
5876     HasParameterArea = false;
5877 
5878   // Add up all the space actually used.
5879   for (unsigned i = 0; i != NumOps; ++i) {
5880     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5881     EVT ArgVT = Outs[i].VT;
5882     EVT OrigVT = Outs[i].ArgVT;
5883 
5884     if (Flags.isNest())
5885       continue;
5886 
5887     if (IsFastCall) {
5888       if (Flags.isByVal()) {
5889         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5890         if (NumGPRsUsed > NumGPRs)
5891           HasParameterArea = true;
5892       } else {
5893         switch (ArgVT.getSimpleVT().SimpleTy) {
5894         default: llvm_unreachable("Unexpected ValueType for argument!");
5895         case MVT::i1:
5896         case MVT::i32:
5897         case MVT::i64:
5898           if (++NumGPRsUsed <= NumGPRs)
5899             continue;
5900           break;
5901         case MVT::v4i32:
5902         case MVT::v8i16:
5903         case MVT::v16i8:
5904         case MVT::v2f64:
5905         case MVT::v2i64:
5906         case MVT::v1i128:
5907         case MVT::f128:
5908           if (++NumVRsUsed <= NumVRs)
5909             continue;
5910           break;
5911         case MVT::v4f32:
5912           // When using QPX, this is handled like a FP register, otherwise, it
5913           // is an Altivec register.
5914           if (Subtarget.hasQPX()) {
5915             if (++NumFPRsUsed <= NumFPRs)
5916               continue;
5917           } else {
5918             if (++NumVRsUsed <= NumVRs)
5919               continue;
5920           }
5921           break;
5922         case MVT::f32:
5923         case MVT::f64:
5924         case MVT::v4f64: // QPX
5925         case MVT::v4i1:  // QPX
5926           if (++NumFPRsUsed <= NumFPRs)
5927             continue;
5928           break;
5929         }
5930         HasParameterArea = true;
5931       }
5932     }
5933 
5934     /* Respect alignment of argument on the stack.  */
5935     auto Alignement =
5936         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5937     NumBytes = alignTo(NumBytes, Alignement);
5938 
5939     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5940     if (Flags.isInConsecutiveRegsLast())
5941       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5942   }
5943 
5944   unsigned NumBytesActuallyUsed = NumBytes;
5945 
5946   // In the old ELFv1 ABI,
5947   // the prolog code of the callee may store up to 8 GPR argument registers to
5948   // the stack, allowing va_start to index over them in memory if its varargs.
5949   // Because we cannot tell if this is needed on the caller side, we have to
5950   // conservatively assume that it is needed.  As such, make sure we have at
5951   // least enough stack space for the caller to store the 8 GPRs.
5952   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5953   // really requires memory operands, e.g. a vararg function.
5954   if (HasParameterArea)
5955     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5956   else
5957     NumBytes = LinkageSize;
5958 
5959   // Tail call needs the stack to be aligned.
5960   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5961     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5962 
5963   int SPDiff = 0;
5964 
5965   // Calculate by how many bytes the stack has to be adjusted in case of tail
5966   // call optimization.
5967   if (!IsSibCall)
5968     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5969 
5970   // To protect arguments on the stack from being clobbered in a tail call,
5971   // force all the loads to happen before doing any other lowering.
5972   if (CFlags.IsTailCall)
5973     Chain = DAG.getStackArgumentTokenFactor(Chain);
5974 
5975   // Adjust the stack pointer for the new arguments...
5976   // These operations are automatically eliminated by the prolog/epilog pass
5977   if (!IsSibCall)
5978     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5979   SDValue CallSeqStart = Chain;
5980 
5981   // Load the return address and frame pointer so it can be move somewhere else
5982   // later.
5983   SDValue LROp, FPOp;
5984   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5985 
5986   // Set up a copy of the stack pointer for use loading and storing any
5987   // arguments that may not fit in the registers available for argument
5988   // passing.
5989   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5990 
5991   // Figure out which arguments are going to go in registers, and which in
5992   // memory.  Also, if this is a vararg function, floating point operations
5993   // must be stored to our stack, and loaded into integer regs as well, if
5994   // any integer regs are available for argument passing.
5995   unsigned ArgOffset = LinkageSize;
5996 
5997   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5998   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5999 
6000   SmallVector<SDValue, 8> MemOpChains;
6001   for (unsigned i = 0; i != NumOps; ++i) {
6002     SDValue Arg = OutVals[i];
6003     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6004     EVT ArgVT = Outs[i].VT;
6005     EVT OrigVT = Outs[i].ArgVT;
6006 
6007     // PtrOff will be used to store the current argument to the stack if a
6008     // register cannot be found for it.
6009     SDValue PtrOff;
6010 
6011     // We re-align the argument offset for each argument, except when using the
6012     // fast calling convention, when we need to make sure we do that only when
6013     // we'll actually use a stack slot.
6014     auto ComputePtrOff = [&]() {
6015       /* Respect alignment of argument on the stack.  */
6016       auto Alignment =
6017           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6018       ArgOffset = alignTo(ArgOffset, Alignment);
6019 
6020       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6021 
6022       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6023     };
6024 
6025     if (!IsFastCall) {
6026       ComputePtrOff();
6027 
6028       /* Compute GPR index associated with argument offset.  */
6029       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6030       GPR_idx = std::min(GPR_idx, NumGPRs);
6031     }
6032 
6033     // Promote integers to 64-bit values.
6034     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6035       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6036       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6037       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6038     }
6039 
6040     // FIXME memcpy is used way more than necessary.  Correctness first.
6041     // Note: "by value" is code for passing a structure by value, not
6042     // basic types.
6043     if (Flags.isByVal()) {
6044       // Note: Size includes alignment padding, so
6045       //   struct x { short a; char b; }
6046       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6047       // These are the proper values we need for right-justifying the
6048       // aggregate in a parameter register.
6049       unsigned Size = Flags.getByValSize();
6050 
6051       // An empty aggregate parameter takes up no storage and no
6052       // registers.
6053       if (Size == 0)
6054         continue;
6055 
6056       if (IsFastCall)
6057         ComputePtrOff();
6058 
6059       // All aggregates smaller than 8 bytes must be passed right-justified.
6060       if (Size==1 || Size==2 || Size==4) {
6061         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6062         if (GPR_idx != NumGPRs) {
6063           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6064                                         MachinePointerInfo(), VT);
6065           MemOpChains.push_back(Load.getValue(1));
6066           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6067 
6068           ArgOffset += PtrByteSize;
6069           continue;
6070         }
6071       }
6072 
6073       if (GPR_idx == NumGPRs && Size < 8) {
6074         SDValue AddPtr = PtrOff;
6075         if (!isLittleEndian) {
6076           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6077                                           PtrOff.getValueType());
6078           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6079         }
6080         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6081                                                           CallSeqStart,
6082                                                           Flags, DAG, dl);
6083         ArgOffset += PtrByteSize;
6084         continue;
6085       }
6086       // Copy entire object into memory.  There are cases where gcc-generated
6087       // code assumes it is there, even if it could be put entirely into
6088       // registers.  (This is not what the doc says.)
6089 
6090       // FIXME: The above statement is likely due to a misunderstanding of the
6091       // documents.  All arguments must be copied into the parameter area BY
6092       // THE CALLEE in the event that the callee takes the address of any
6093       // formal argument.  That has not yet been implemented.  However, it is
6094       // reasonable to use the stack area as a staging area for the register
6095       // load.
6096 
6097       // Skip this for small aggregates, as we will use the same slot for a
6098       // right-justified copy, below.
6099       if (Size >= 8)
6100         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6101                                                           CallSeqStart,
6102                                                           Flags, DAG, dl);
6103 
6104       // When a register is available, pass a small aggregate right-justified.
6105       if (Size < 8 && GPR_idx != NumGPRs) {
6106         // The easiest way to get this right-justified in a register
6107         // is to copy the structure into the rightmost portion of a
6108         // local variable slot, then load the whole slot into the
6109         // register.
6110         // FIXME: The memcpy seems to produce pretty awful code for
6111         // small aggregates, particularly for packed ones.
6112         // FIXME: It would be preferable to use the slot in the
6113         // parameter save area instead of a new local variable.
6114         SDValue AddPtr = PtrOff;
6115         if (!isLittleEndian) {
6116           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6117           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6118         }
6119         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6120                                                           CallSeqStart,
6121                                                           Flags, DAG, dl);
6122 
6123         // Load the slot into the register.
6124         SDValue Load =
6125             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6126         MemOpChains.push_back(Load.getValue(1));
6127         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6128 
6129         // Done with this argument.
6130         ArgOffset += PtrByteSize;
6131         continue;
6132       }
6133 
6134       // For aggregates larger than PtrByteSize, copy the pieces of the
6135       // object that fit into registers from the parameter save area.
6136       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6137         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6138         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6139         if (GPR_idx != NumGPRs) {
6140           SDValue Load =
6141               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6142           MemOpChains.push_back(Load.getValue(1));
6143           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6144           ArgOffset += PtrByteSize;
6145         } else {
6146           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6147           break;
6148         }
6149       }
6150       continue;
6151     }
6152 
6153     switch (Arg.getSimpleValueType().SimpleTy) {
6154     default: llvm_unreachable("Unexpected ValueType for argument!");
6155     case MVT::i1:
6156     case MVT::i32:
6157     case MVT::i64:
6158       if (Flags.isNest()) {
6159         // The 'nest' parameter, if any, is passed in R11.
6160         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6161         break;
6162       }
6163 
6164       // These can be scalar arguments or elements of an integer array type
6165       // passed directly.  Clang may use those instead of "byval" aggregate
6166       // types to avoid forcing arguments to memory unnecessarily.
6167       if (GPR_idx != NumGPRs) {
6168         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6169       } else {
6170         if (IsFastCall)
6171           ComputePtrOff();
6172 
6173         assert(HasParameterArea &&
6174                "Parameter area must exist to pass an argument in memory.");
6175         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6176                          true, CFlags.IsTailCall, false, MemOpChains,
6177                          TailCallArguments, dl);
6178         if (IsFastCall)
6179           ArgOffset += PtrByteSize;
6180       }
6181       if (!IsFastCall)
6182         ArgOffset += PtrByteSize;
6183       break;
6184     case MVT::f32:
6185     case MVT::f64: {
6186       // These can be scalar arguments or elements of a float array type
6187       // passed directly.  The latter are used to implement ELFv2 homogenous
6188       // float aggregates.
6189 
6190       // Named arguments go into FPRs first, and once they overflow, the
6191       // remaining arguments go into GPRs and then the parameter save area.
6192       // Unnamed arguments for vararg functions always go to GPRs and
6193       // then the parameter save area.  For now, put all arguments to vararg
6194       // routines always in both locations (FPR *and* GPR or stack slot).
6195       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6196       bool NeededLoad = false;
6197 
6198       // First load the argument into the next available FPR.
6199       if (FPR_idx != NumFPRs)
6200         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6201 
6202       // Next, load the argument into GPR or stack slot if needed.
6203       if (!NeedGPROrStack)
6204         ;
6205       else if (GPR_idx != NumGPRs && !IsFastCall) {
6206         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6207         // once we support fp <-> gpr moves.
6208 
6209         // In the non-vararg case, this can only ever happen in the
6210         // presence of f32 array types, since otherwise we never run
6211         // out of FPRs before running out of GPRs.
6212         SDValue ArgVal;
6213 
6214         // Double values are always passed in a single GPR.
6215         if (Arg.getValueType() != MVT::f32) {
6216           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6217 
6218         // Non-array float values are extended and passed in a GPR.
6219         } else if (!Flags.isInConsecutiveRegs()) {
6220           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6221           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6222 
6223         // If we have an array of floats, we collect every odd element
6224         // together with its predecessor into one GPR.
6225         } else if (ArgOffset % PtrByteSize != 0) {
6226           SDValue Lo, Hi;
6227           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6228           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6229           if (!isLittleEndian)
6230             std::swap(Lo, Hi);
6231           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6232 
6233         // The final element, if even, goes into the first half of a GPR.
6234         } else if (Flags.isInConsecutiveRegsLast()) {
6235           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6236           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6237           if (!isLittleEndian)
6238             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6239                                  DAG.getConstant(32, dl, MVT::i32));
6240 
6241         // Non-final even elements are skipped; they will be handled
6242         // together the with subsequent argument on the next go-around.
6243         } else
6244           ArgVal = SDValue();
6245 
6246         if (ArgVal.getNode())
6247           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6248       } else {
6249         if (IsFastCall)
6250           ComputePtrOff();
6251 
6252         // Single-precision floating-point values are mapped to the
6253         // second (rightmost) word of the stack doubleword.
6254         if (Arg.getValueType() == MVT::f32 &&
6255             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6256           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6257           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6258         }
6259 
6260         assert(HasParameterArea &&
6261                "Parameter area must exist to pass an argument in memory.");
6262         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6263                          true, CFlags.IsTailCall, false, MemOpChains,
6264                          TailCallArguments, dl);
6265 
6266         NeededLoad = true;
6267       }
6268       // When passing an array of floats, the array occupies consecutive
6269       // space in the argument area; only round up to the next doubleword
6270       // at the end of the array.  Otherwise, each float takes 8 bytes.
6271       if (!IsFastCall || NeededLoad) {
6272         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6273                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6274         if (Flags.isInConsecutiveRegsLast())
6275           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6276       }
6277       break;
6278     }
6279     case MVT::v4f32:
6280     case MVT::v4i32:
6281     case MVT::v8i16:
6282     case MVT::v16i8:
6283     case MVT::v2f64:
6284     case MVT::v2i64:
6285     case MVT::v1i128:
6286     case MVT::f128:
6287       if (!Subtarget.hasQPX()) {
6288       // These can be scalar arguments or elements of a vector array type
6289       // passed directly.  The latter are used to implement ELFv2 homogenous
6290       // vector aggregates.
6291 
6292       // For a varargs call, named arguments go into VRs or on the stack as
6293       // usual; unnamed arguments always go to the stack or the corresponding
6294       // GPRs when within range.  For now, we always put the value in both
6295       // locations (or even all three).
6296       if (CFlags.IsVarArg) {
6297         assert(HasParameterArea &&
6298                "Parameter area must exist if we have a varargs call.");
6299         // We could elide this store in the case where the object fits
6300         // entirely in R registers.  Maybe later.
6301         SDValue Store =
6302             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6303         MemOpChains.push_back(Store);
6304         if (VR_idx != NumVRs) {
6305           SDValue Load =
6306               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6307           MemOpChains.push_back(Load.getValue(1));
6308           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6309         }
6310         ArgOffset += 16;
6311         for (unsigned i=0; i<16; i+=PtrByteSize) {
6312           if (GPR_idx == NumGPRs)
6313             break;
6314           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6315                                    DAG.getConstant(i, dl, PtrVT));
6316           SDValue Load =
6317               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6318           MemOpChains.push_back(Load.getValue(1));
6319           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6320         }
6321         break;
6322       }
6323 
6324       // Non-varargs Altivec params go into VRs or on the stack.
6325       if (VR_idx != NumVRs) {
6326         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6327       } else {
6328         if (IsFastCall)
6329           ComputePtrOff();
6330 
6331         assert(HasParameterArea &&
6332                "Parameter area must exist to pass an argument in memory.");
6333         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6334                          true, CFlags.IsTailCall, true, MemOpChains,
6335                          TailCallArguments, dl);
6336         if (IsFastCall)
6337           ArgOffset += 16;
6338       }
6339 
6340       if (!IsFastCall)
6341         ArgOffset += 16;
6342       break;
6343       } // not QPX
6344 
6345       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6346              "Invalid QPX parameter type");
6347 
6348       LLVM_FALLTHROUGH;
6349     case MVT::v4f64:
6350     case MVT::v4i1: {
6351       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6352       if (CFlags.IsVarArg) {
6353         assert(HasParameterArea &&
6354                "Parameter area must exist if we have a varargs call.");
6355         // We could elide this store in the case where the object fits
6356         // entirely in R registers.  Maybe later.
6357         SDValue Store =
6358             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6359         MemOpChains.push_back(Store);
6360         if (QFPR_idx != NumQFPRs) {
6361           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6362                                      PtrOff, MachinePointerInfo());
6363           MemOpChains.push_back(Load.getValue(1));
6364           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6365         }
6366         ArgOffset += (IsF32 ? 16 : 32);
6367         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6368           if (GPR_idx == NumGPRs)
6369             break;
6370           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6371                                    DAG.getConstant(i, dl, PtrVT));
6372           SDValue Load =
6373               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6374           MemOpChains.push_back(Load.getValue(1));
6375           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6376         }
6377         break;
6378       }
6379 
6380       // Non-varargs QPX params go into registers or on the stack.
6381       if (QFPR_idx != NumQFPRs) {
6382         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6383       } else {
6384         if (IsFastCall)
6385           ComputePtrOff();
6386 
6387         assert(HasParameterArea &&
6388                "Parameter area must exist to pass an argument in memory.");
6389         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6390                          true, CFlags.IsTailCall, true, MemOpChains,
6391                          TailCallArguments, dl);
6392         if (IsFastCall)
6393           ArgOffset += (IsF32 ? 16 : 32);
6394       }
6395 
6396       if (!IsFastCall)
6397         ArgOffset += (IsF32 ? 16 : 32);
6398       break;
6399       }
6400     }
6401   }
6402 
6403   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6404          "mismatch in size of parameter area");
6405   (void)NumBytesActuallyUsed;
6406 
6407   if (!MemOpChains.empty())
6408     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6409 
6410   // Check if this is an indirect call (MTCTR/BCTRL).
6411   // See prepareDescriptorIndirectCall and buildCallOperands for more
6412   // information about calls through function pointers in the 64-bit SVR4 ABI.
6413   if (CFlags.IsIndirect) {
6414     assert(!CFlags.IsTailCall &&  "Indirect tails calls not supported");
6415     // Load r2 into a virtual register and store it to the TOC save area.
6416     setUsesTOCBasePtr(DAG);
6417     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6418     // TOC save area offset.
6419     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6420     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6421     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6422     Chain = DAG.getStore(
6423         Val.getValue(1), dl, Val, AddPtr,
6424         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6425     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6426     // This does not mean the MTCTR instruction must use R12; it's easier
6427     // to model this as an extra parameter, so do that.
6428     if (isELFv2ABI && !CFlags.IsPatchPoint)
6429       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6430   }
6431 
6432   // Build a sequence of copy-to-reg nodes chained together with token chain
6433   // and flag operands which copy the outgoing args into the appropriate regs.
6434   SDValue InFlag;
6435   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6436     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6437                              RegsToPass[i].second, InFlag);
6438     InFlag = Chain.getValue(1);
6439   }
6440 
6441   if (CFlags.IsTailCall && !IsSibCall)
6442     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6443                     TailCallArguments);
6444 
6445   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6446                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
6447 }
6448 
6449 SDValue PPCTargetLowering::LowerCall_Darwin(
6450     SDValue Chain, SDValue Callee, CallFlags CFlags,
6451     const SmallVectorImpl<ISD::OutputArg> &Outs,
6452     const SmallVectorImpl<SDValue> &OutVals,
6453     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6454     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6455     ImmutableCallSite CS) const {
6456   unsigned NumOps = Outs.size();
6457 
6458   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6459   bool isPPC64 = PtrVT == MVT::i64;
6460   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6461 
6462   MachineFunction &MF = DAG.getMachineFunction();
6463 
6464   // Mark this function as potentially containing a function that contains a
6465   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6466   // and restoring the callers stack pointer in this functions epilog. This is
6467   // done because by tail calling the called function might overwrite the value
6468   // in this function's (MF) stack pointer stack slot 0(SP).
6469   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6470       CFlags.CallConv == CallingConv::Fast)
6471     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6472 
6473   // Count how many bytes are to be pushed on the stack, including the linkage
6474   // area, and parameter passing area.  We start with 24/48 bytes, which is
6475   // prereserved space for [SP][CR][LR][3 x unused].
6476   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6477   unsigned NumBytes = LinkageSize;
6478 
6479   // Add up all the space actually used.
6480   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6481   // they all go in registers, but we must reserve stack space for them for
6482   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6483   // assigned stack space in order, with padding so Altivec parameters are
6484   // 16-byte aligned.
6485   unsigned nAltivecParamsAtEnd = 0;
6486   for (unsigned i = 0; i != NumOps; ++i) {
6487     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6488     EVT ArgVT = Outs[i].VT;
6489     // Varargs Altivec parameters are padded to a 16 byte boundary.
6490     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6491         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6492         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6493       if (!CFlags.IsVarArg && !isPPC64) {
6494         // Non-varargs Altivec parameters go after all the non-Altivec
6495         // parameters; handle those later so we know how much padding we need.
6496         nAltivecParamsAtEnd++;
6497         continue;
6498       }
6499       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6500       NumBytes = ((NumBytes+15)/16)*16;
6501     }
6502     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6503   }
6504 
6505   // Allow for Altivec parameters at the end, if needed.
6506   if (nAltivecParamsAtEnd) {
6507     NumBytes = ((NumBytes+15)/16)*16;
6508     NumBytes += 16*nAltivecParamsAtEnd;
6509   }
6510 
6511   // The prolog code of the callee may store up to 8 GPR argument registers to
6512   // the stack, allowing va_start to index over them in memory if its varargs.
6513   // Because we cannot tell if this is needed on the caller side, we have to
6514   // conservatively assume that it is needed.  As such, make sure we have at
6515   // least enough stack space for the caller to store the 8 GPRs.
6516   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6517 
6518   // Tail call needs the stack to be aligned.
6519   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6520       CFlags.CallConv == CallingConv::Fast)
6521     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6522 
6523   // Calculate by how many bytes the stack has to be adjusted in case of tail
6524   // call optimization.
6525   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6526 
6527   // To protect arguments on the stack from being clobbered in a tail call,
6528   // force all the loads to happen before doing any other lowering.
6529   if (CFlags.IsTailCall)
6530     Chain = DAG.getStackArgumentTokenFactor(Chain);
6531 
6532   // Adjust the stack pointer for the new arguments...
6533   // These operations are automatically eliminated by the prolog/epilog pass
6534   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6535   SDValue CallSeqStart = Chain;
6536 
6537   // Load the return address and frame pointer so it can be move somewhere else
6538   // later.
6539   SDValue LROp, FPOp;
6540   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6541 
6542   // Set up a copy of the stack pointer for use loading and storing any
6543   // arguments that may not fit in the registers available for argument
6544   // passing.
6545   SDValue StackPtr;
6546   if (isPPC64)
6547     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6548   else
6549     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6550 
6551   // Figure out which arguments are going to go in registers, and which in
6552   // memory.  Also, if this is a vararg function, floating point operations
6553   // must be stored to our stack, and loaded into integer regs as well, if
6554   // any integer regs are available for argument passing.
6555   unsigned ArgOffset = LinkageSize;
6556   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6557 
6558   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6559     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6560     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6561   };
6562   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6563     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6564     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6565   };
6566   static const MCPhysReg VR[] = {
6567     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6568     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6569   };
6570   const unsigned NumGPRs = array_lengthof(GPR_32);
6571   const unsigned NumFPRs = 13;
6572   const unsigned NumVRs  = array_lengthof(VR);
6573 
6574   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6575 
6576   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6577   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6578 
6579   SmallVector<SDValue, 8> MemOpChains;
6580   for (unsigned i = 0; i != NumOps; ++i) {
6581     SDValue Arg = OutVals[i];
6582     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6583 
6584     // PtrOff will be used to store the current argument to the stack if a
6585     // register cannot be found for it.
6586     SDValue PtrOff;
6587 
6588     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6589 
6590     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6591 
6592     // On PPC64, promote integers to 64-bit values.
6593     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6594       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6595       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6596       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6597     }
6598 
6599     // FIXME memcpy is used way more than necessary.  Correctness first.
6600     // Note: "by value" is code for passing a structure by value, not
6601     // basic types.
6602     if (Flags.isByVal()) {
6603       unsigned Size = Flags.getByValSize();
6604       // Very small objects are passed right-justified.  Everything else is
6605       // passed left-justified.
6606       if (Size==1 || Size==2) {
6607         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6608         if (GPR_idx != NumGPRs) {
6609           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6610                                         MachinePointerInfo(), VT);
6611           MemOpChains.push_back(Load.getValue(1));
6612           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6613 
6614           ArgOffset += PtrByteSize;
6615         } else {
6616           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6617                                           PtrOff.getValueType());
6618           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6619           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6620                                                             CallSeqStart,
6621                                                             Flags, DAG, dl);
6622           ArgOffset += PtrByteSize;
6623         }
6624         continue;
6625       }
6626       // Copy entire object into memory.  There are cases where gcc-generated
6627       // code assumes it is there, even if it could be put entirely into
6628       // registers.  (This is not what the doc says.)
6629       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6630                                                         CallSeqStart,
6631                                                         Flags, DAG, dl);
6632 
6633       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6634       // copy the pieces of the object that fit into registers from the
6635       // parameter save area.
6636       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6637         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6638         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6639         if (GPR_idx != NumGPRs) {
6640           SDValue Load =
6641               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6642           MemOpChains.push_back(Load.getValue(1));
6643           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6644           ArgOffset += PtrByteSize;
6645         } else {
6646           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6647           break;
6648         }
6649       }
6650       continue;
6651     }
6652 
6653     switch (Arg.getSimpleValueType().SimpleTy) {
6654     default: llvm_unreachable("Unexpected ValueType for argument!");
6655     case MVT::i1:
6656     case MVT::i32:
6657     case MVT::i64:
6658       if (GPR_idx != NumGPRs) {
6659         if (Arg.getValueType() == MVT::i1)
6660           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6661 
6662         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6663       } else {
6664         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6665                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6666                          TailCallArguments, dl);
6667       }
6668       ArgOffset += PtrByteSize;
6669       break;
6670     case MVT::f32:
6671     case MVT::f64:
6672       if (FPR_idx != NumFPRs) {
6673         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6674 
6675         if (CFlags.IsVarArg) {
6676           SDValue Store =
6677               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6678           MemOpChains.push_back(Store);
6679 
6680           // Float varargs are always shadowed in available integer registers
6681           if (GPR_idx != NumGPRs) {
6682             SDValue Load =
6683                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6684             MemOpChains.push_back(Load.getValue(1));
6685             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6686           }
6687           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6688             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6689             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6690             SDValue Load =
6691                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6692             MemOpChains.push_back(Load.getValue(1));
6693             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6694           }
6695         } else {
6696           // If we have any FPRs remaining, we may also have GPRs remaining.
6697           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6698           // GPRs.
6699           if (GPR_idx != NumGPRs)
6700             ++GPR_idx;
6701           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6702               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6703             ++GPR_idx;
6704         }
6705       } else
6706         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6707                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6708                          TailCallArguments, dl);
6709       if (isPPC64)
6710         ArgOffset += 8;
6711       else
6712         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6713       break;
6714     case MVT::v4f32:
6715     case MVT::v4i32:
6716     case MVT::v8i16:
6717     case MVT::v16i8:
6718       if (CFlags.IsVarArg) {
6719         // These go aligned on the stack, or in the corresponding R registers
6720         // when within range.  The Darwin PPC ABI doc claims they also go in
6721         // V registers; in fact gcc does this only for arguments that are
6722         // prototyped, not for those that match the ...  We do it for all
6723         // arguments, seems to work.
6724         while (ArgOffset % 16 !=0) {
6725           ArgOffset += PtrByteSize;
6726           if (GPR_idx != NumGPRs)
6727             GPR_idx++;
6728         }
6729         // We could elide this store in the case where the object fits
6730         // entirely in R registers.  Maybe later.
6731         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6732                              DAG.getConstant(ArgOffset, dl, PtrVT));
6733         SDValue Store =
6734             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6735         MemOpChains.push_back(Store);
6736         if (VR_idx != NumVRs) {
6737           SDValue Load =
6738               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6739           MemOpChains.push_back(Load.getValue(1));
6740           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6741         }
6742         ArgOffset += 16;
6743         for (unsigned i=0; i<16; i+=PtrByteSize) {
6744           if (GPR_idx == NumGPRs)
6745             break;
6746           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6747                                    DAG.getConstant(i, dl, PtrVT));
6748           SDValue Load =
6749               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6750           MemOpChains.push_back(Load.getValue(1));
6751           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6752         }
6753         break;
6754       }
6755 
6756       // Non-varargs Altivec params generally go in registers, but have
6757       // stack space allocated at the end.
6758       if (VR_idx != NumVRs) {
6759         // Doesn't have GPR space allocated.
6760         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6761       } else if (nAltivecParamsAtEnd==0) {
6762         // We are emitting Altivec params in order.
6763         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6764                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6765                          TailCallArguments, dl);
6766         ArgOffset += 16;
6767       }
6768       break;
6769     }
6770   }
6771   // If all Altivec parameters fit in registers, as they usually do,
6772   // they get stack space following the non-Altivec parameters.  We
6773   // don't track this here because nobody below needs it.
6774   // If there are more Altivec parameters than fit in registers emit
6775   // the stores here.
6776   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6777     unsigned j = 0;
6778     // Offset is aligned; skip 1st 12 params which go in V registers.
6779     ArgOffset = ((ArgOffset+15)/16)*16;
6780     ArgOffset += 12*16;
6781     for (unsigned i = 0; i != NumOps; ++i) {
6782       SDValue Arg = OutVals[i];
6783       EVT ArgType = Outs[i].VT;
6784       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6785           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6786         if (++j > NumVRs) {
6787           SDValue PtrOff;
6788           // We are emitting Altivec params in order.
6789           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6790                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6791                            TailCallArguments, dl);
6792           ArgOffset += 16;
6793         }
6794       }
6795     }
6796   }
6797 
6798   if (!MemOpChains.empty())
6799     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6800 
6801   // On Darwin, R12 must contain the address of an indirect callee.  This does
6802   // not mean the MTCTR instruction must use R12; it's easier to model this as
6803   // an extra parameter, so do that.
6804   if (CFlags.IsIndirect) {
6805     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6806     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6807                                                    PPC::R12), Callee));
6808   }
6809 
6810   // Build a sequence of copy-to-reg nodes chained together with token chain
6811   // and flag operands which copy the outgoing args into the appropriate regs.
6812   SDValue InFlag;
6813   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6814     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6815                              RegsToPass[i].second, InFlag);
6816     InFlag = Chain.getValue(1);
6817   }
6818 
6819   if (CFlags.IsTailCall)
6820     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6821                     TailCallArguments);
6822 
6823   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6824                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
6825 }
6826 
6827 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6828                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6829                    CCState &State) {
6830 
6831   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6832       State.getMachineFunction().getSubtarget());
6833   const bool IsPPC64 = Subtarget.isPPC64();
6834   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6835   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6836 
6837   assert((!ValVT.isInteger() ||
6838           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6839          "Integer argument exceeds register size: should have been legalized");
6840 
6841   if (ValVT == MVT::f128)
6842     report_fatal_error("f128 is unimplemented on AIX.");
6843 
6844   if (ArgFlags.isNest())
6845     report_fatal_error("Nest arguments are unimplemented.");
6846 
6847   if (ValVT.isVector() || LocVT.isVector())
6848     report_fatal_error("Vector arguments are unimplemented on AIX.");
6849 
6850   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6851                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6852                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6853   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6854                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6855                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6856 
6857   if (ArgFlags.isByVal()) {
6858     if (ArgFlags.getNonZeroByValAlign() > PtrByteSize)
6859       report_fatal_error("Pass-by-value arguments with alignment greater than "
6860                          "register width are not supported.");
6861 
6862     const unsigned ByValSize = ArgFlags.getByValSize();
6863 
6864     // An empty aggregate parameter takes up no storage and no registers.
6865     if (ByValSize == 0)
6866       return false;
6867 
6868     if (ByValSize <= PtrByteSize) {
6869       State.AllocateStack(PtrByteSize, PtrByteSize);
6870       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6871         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6872         return false;
6873       }
6874     }
6875 
6876     report_fatal_error(
6877         "Pass-by-value arguments are only supported in a single register.");
6878   }
6879 
6880   // Arguments always reserve parameter save area.
6881   switch (ValVT.SimpleTy) {
6882   default:
6883     report_fatal_error("Unhandled value type for argument.");
6884   case MVT::i64:
6885     // i64 arguments should have been split to i32 for PPC32.
6886     assert(IsPPC64 && "PPC32 should have split i64 values.");
6887     LLVM_FALLTHROUGH;
6888   case MVT::i1:
6889   case MVT::i32: {
6890     const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize);
6891     // AIX integer arguments are always passed in register width.
6892     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6893       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6894                                   : CCValAssign::LocInfo::ZExt;
6895     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6896       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6897     else
6898       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6899 
6900     return false;
6901   }
6902   case MVT::f32:
6903   case MVT::f64: {
6904     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6905     const unsigned StoreSize = LocVT.getStoreSize();
6906     // Floats are always 4-byte aligned in the PSA on AIX.
6907     // This includes f64 in 64-bit mode for ABI compatibility.
6908     const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6909     unsigned FReg = State.AllocateReg(FPR);
6910     if (FReg)
6911       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6912 
6913     // Reserve and initialize GPRs or initialize the PSA as required.
6914     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6915       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6916         assert(FReg && "An FPR should be available when a GPR is reserved.");
6917         if (State.isVarArg()) {
6918           // Successfully reserved GPRs are only initialized for vararg calls.
6919           // Custom handling is required for:
6920           //   f64 in PPC32 needs to be split into 2 GPRs.
6921           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6922           State.addLoc(
6923               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6924         }
6925       } else {
6926         // If there are insufficient GPRs, the PSA needs to be initialized.
6927         // Initialization occurs even if an FPR was initialized for
6928         // compatibility with the AIX XL compiler. The full memory for the
6929         // argument will be initialized even if a prior word is saved in GPR.
6930         // A custom memLoc is used when the argument also passes in FPR so
6931         // that the callee handling can skip over it easily.
6932         State.addLoc(
6933             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6934                                              LocInfo)
6935                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6936         break;
6937       }
6938     }
6939 
6940     return false;
6941   }
6942   }
6943   return true;
6944 }
6945 
6946 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6947                                                     bool IsPPC64) {
6948   assert((IsPPC64 || SVT != MVT::i64) &&
6949          "i64 should have been split for 32-bit codegen.");
6950 
6951   switch (SVT) {
6952   default:
6953     report_fatal_error("Unexpected value type for formal argument");
6954   case MVT::i1:
6955   case MVT::i32:
6956   case MVT::i64:
6957     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6958   case MVT::f32:
6959     return &PPC::F4RCRegClass;
6960   case MVT::f64:
6961     return &PPC::F8RCRegClass;
6962   }
6963 }
6964 
6965 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6966                                         SelectionDAG &DAG, SDValue ArgValue,
6967                                         MVT LocVT, const SDLoc &dl) {
6968   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6969   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6970 
6971   if (Flags.isSExt())
6972     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6973                            DAG.getValueType(ValVT));
6974   else if (Flags.isZExt())
6975     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6976                            DAG.getValueType(ValVT));
6977 
6978   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6979 }
6980 
6981 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6982     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6983     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6984     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6985 
6986   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6987           CallConv == CallingConv::Fast) &&
6988          "Unexpected calling convention!");
6989 
6990   if (isVarArg)
6991     report_fatal_error("This call type is unimplemented on AIX.");
6992 
6993   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6994     report_fatal_error("Tail call support is unimplemented on AIX.");
6995 
6996   if (useSoftFloat())
6997     report_fatal_error("Soft float support is unimplemented on AIX.");
6998 
6999   const PPCSubtarget &Subtarget =
7000       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7001   if (Subtarget.hasQPX())
7002     report_fatal_error("QPX support is not supported on AIX.");
7003 
7004   const bool IsPPC64 = Subtarget.isPPC64();
7005   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7006 
7007   // Assign locations to all of the incoming arguments.
7008   SmallVector<CCValAssign, 16> ArgLocs;
7009   MachineFunction &MF = DAG.getMachineFunction();
7010   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7011 
7012   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7013   // Reserve space for the linkage area on the stack.
7014   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7015   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7016   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7017 
7018   for (CCValAssign &VA : ArgLocs) {
7019     EVT ValVT = VA.getValVT();
7020     MVT LocVT = VA.getLocVT();
7021     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7022     assert(!Flags.isByVal() &&
7023            "Passing structure by value is unimplemented for formal arguments.");
7024     assert((VA.isRegLoc() || VA.isMemLoc()) &&
7025            "Unexpected location for function call argument.");
7026 
7027     // For compatibility with the AIX XL compiler, the float args in the
7028     // parameter save area are initialized even if the argument is available
7029     // in register.  The caller is required to initialize both the register
7030     // and memory, however, the callee can choose to expect it in either.
7031     // The memloc is dismissed here because the argument is retrieved from
7032     // the register.
7033     if (VA.isMemLoc() && VA.needsCustom())
7034       continue;
7035 
7036     if (VA.isRegLoc()) {
7037       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7038       unsigned VReg =
7039           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7040       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7041       if (ValVT.isScalarInteger() &&
7042           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7043         ArgValue =
7044             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7045       }
7046       InVals.push_back(ArgValue);
7047       continue;
7048     }
7049 
7050     const unsigned LocSize = LocVT.getStoreSize();
7051     const unsigned ValSize = ValVT.getStoreSize();
7052     assert((ValSize <= LocSize) && "Object size is larger than size of MemLoc");
7053     int CurArgOffset = VA.getLocMemOffset();
7054     // Objects are right-justified because AIX is big-endian.
7055     if (LocSize > ValSize)
7056       CurArgOffset += LocSize - ValSize;
7057     MachineFrameInfo &MFI = MF.getFrameInfo();
7058     // Potential tail calls could cause overwriting of argument stack slots.
7059     const bool IsImmutable =
7060         !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7061           (CallConv == CallingConv::Fast));
7062     int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7063     SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7064     SDValue ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7065     InVals.push_back(ArgValue);
7066   }
7067 
7068   // On AIX a minimum of 8 words is saved to the parameter save area.
7069   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7070   // Area that is at least reserved in the caller of this function.
7071   unsigned CallerReservedArea =
7072       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7073 
7074   // Set the size that is at least reserved in caller of this function. Tail
7075   // call optimized function's reserved stack space needs to be aligned so
7076   // that taking the difference between two stack areas will result in an
7077   // aligned stack.
7078   CallerReservedArea =
7079       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7080   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7081   FuncInfo->setMinReservedArea(CallerReservedArea);
7082 
7083   return Chain;
7084 }
7085 
7086 SDValue PPCTargetLowering::LowerCall_AIX(
7087     SDValue Chain, SDValue Callee, CallFlags CFlags,
7088     const SmallVectorImpl<ISD::OutputArg> &Outs,
7089     const SmallVectorImpl<SDValue> &OutVals,
7090     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7091     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7092     ImmutableCallSite CS) const {
7093 
7094   assert((CFlags.CallConv == CallingConv::C ||
7095           CFlags.CallConv == CallingConv::Cold ||
7096           CFlags.CallConv == CallingConv::Fast) &&
7097          "Unexpected calling convention!");
7098 
7099   if (CFlags.IsPatchPoint)
7100     report_fatal_error("This call type is unimplemented on AIX.");
7101 
7102   const PPCSubtarget& Subtarget =
7103       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7104   if (Subtarget.hasQPX())
7105     report_fatal_error("QPX is not supported on AIX.");
7106   if (Subtarget.hasAltivec())
7107     report_fatal_error("Altivec support is unimplemented on AIX.");
7108 
7109   MachineFunction &MF = DAG.getMachineFunction();
7110   SmallVector<CCValAssign, 16> ArgLocs;
7111   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7112                  *DAG.getContext());
7113 
7114   // Reserve space for the linkage save area (LSA) on the stack.
7115   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7116   //   [SP][CR][LR][2 x reserved][TOC].
7117   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7118   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7119   const bool IsPPC64 = Subtarget.isPPC64();
7120   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7121   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7122   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7123   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7124 
7125   // The prolog code of the callee may store up to 8 GPR argument registers to
7126   // the stack, allowing va_start to index over them in memory if the callee
7127   // is variadic.
7128   // Because we cannot tell if this is needed on the caller side, we have to
7129   // conservatively assume that it is needed.  As such, make sure we have at
7130   // least enough stack space for the caller to store the 8 GPRs.
7131   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7132   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7133                                      CCInfo.getNextStackOffset());
7134 
7135   // Adjust the stack pointer for the new arguments...
7136   // These operations are automatically eliminated by the prolog/epilog pass.
7137   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7138   SDValue CallSeqStart = Chain;
7139 
7140   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7141   SmallVector<SDValue, 8> MemOpChains;
7142 
7143   // Set up a copy of the stack pointer for loading and storing any
7144   // arguments that may not fit in the registers available for argument
7145   // passing.
7146   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7147                                    : DAG.getRegister(PPC::R1, MVT::i32);
7148 
7149   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7150     CCValAssign &VA = ArgLocs[I++];
7151 
7152     SDValue Arg = OutVals[VA.getValNo()];
7153     ISD::ArgFlagsTy Flags = Outs[VA.getValNo()].Flags;
7154     const MVT LocVT = VA.getLocVT();
7155     const MVT ValVT = VA.getValVT();
7156 
7157     if (Flags.isByVal()) {
7158       const unsigned ByValSize = Flags.getByValSize();
7159       assert(
7160           VA.isRegLoc() && ByValSize > 0 && ByValSize <= PtrByteSize &&
7161           "Pass-by-value arguments are only supported in a single register.");
7162 
7163       // Loads must be a power-of-2 size and cannot be larger than the
7164       // ByValSize. For example: a 7 byte by-val arg requires 4, 2 and 1 byte
7165       // loads.
7166       SDValue RegVal;
7167       for (unsigned Bytes = 0; Bytes != ByValSize;) {
7168         unsigned N = PowerOf2Floor(ByValSize - Bytes);
7169         const MVT VT =
7170             N == 1 ? MVT::i8
7171                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7172 
7173         SDValue LoadAddr = Arg;
7174         if (Bytes != 0) {
7175           // Adjust the load offset by the number of bytes read so far.
7176           SDNodeFlags Flags;
7177           Flags.setNoUnsignedWrap(true);
7178           LoadAddr = DAG.getNode(ISD::ADD, dl, LocVT, Arg,
7179                                  DAG.getConstant(Bytes, dl, LocVT), Flags);
7180         }
7181         SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, LoadAddr,
7182                                       MachinePointerInfo(), VT);
7183         MemOpChains.push_back(Load.getValue(1));
7184 
7185         Bytes += N;
7186         assert(LocVT.getSizeInBits() >= (Bytes * 8));
7187         if (unsigned NumSHLBits = LocVT.getSizeInBits() - (Bytes * 8)) {
7188           // By-val arguments are passed left-justfied in register.
7189           EVT ShiftAmountTy =
7190               getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7191           SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7192           SDValue ShiftedLoad =
7193               DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7194           RegVal = RegVal ? DAG.getNode(ISD::OR, dl, LocVT, RegVal, ShiftedLoad)
7195                           : ShiftedLoad;
7196         } else {
7197           assert(!RegVal && Bytes == ByValSize &&
7198                  "Pass-by-value argument handling unexpectedly incomplete.");
7199           RegVal = Load;
7200         }
7201       }
7202 
7203       RegsToPass.push_back(std::make_pair(VA.getLocReg(), RegVal));
7204       continue;
7205     }
7206 
7207     switch (VA.getLocInfo()) {
7208     default:
7209       report_fatal_error("Unexpected argument extension type.");
7210     case CCValAssign::Full:
7211       break;
7212     case CCValAssign::ZExt:
7213       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7214       break;
7215     case CCValAssign::SExt:
7216       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7217       break;
7218     }
7219 
7220     if (VA.isRegLoc() && !VA.needsCustom()) {
7221       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7222       continue;
7223     }
7224 
7225     if (VA.isMemLoc()) {
7226       SDValue PtrOff =
7227           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7228       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7229       MemOpChains.push_back(
7230           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7231 
7232       continue;
7233     }
7234 
7235     // Custom handling is used for GPR initializations for vararg float
7236     // arguments.
7237     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7238            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7239            "Unexpected register handling for calling convention.");
7240 
7241     SDValue ArgAsInt =
7242         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7243 
7244     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7245       // f32 in 32-bit GPR
7246       // f64 in 64-bit GPR
7247       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7248     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7249       // f32 in 64-bit GPR.
7250       RegsToPass.push_back(std::make_pair(
7251           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7252     else {
7253       // f64 in two 32-bit GPRs
7254       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7255       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7256              "Unexpected custom register for argument!");
7257       CCValAssign &GPR1 = VA;
7258       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7259                                      DAG.getConstant(32, dl, MVT::i8));
7260       RegsToPass.push_back(std::make_pair(
7261           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7262 
7263       if (I != E) {
7264         // If only 1 GPR was available, there will only be one custom GPR and
7265         // the argument will also pass in memory.
7266         CCValAssign &PeekArg = ArgLocs[I];
7267         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7268           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7269           CCValAssign &GPR2 = ArgLocs[I++];
7270           RegsToPass.push_back(std::make_pair(
7271               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7272         }
7273       }
7274     }
7275   }
7276 
7277   if (!MemOpChains.empty())
7278     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7279 
7280   // For indirect calls, we need to save the TOC base to the stack for
7281   // restoration after the call.
7282   if (CFlags.IsIndirect) {
7283     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7284     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7285     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7286     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7287     const unsigned TOCSaveOffset =
7288         Subtarget.getFrameLowering()->getTOCSaveOffset();
7289 
7290     setUsesTOCBasePtr(DAG);
7291     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7292     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7293     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7294     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7295     Chain = DAG.getStore(
7296         Val.getValue(1), dl, Val, AddPtr,
7297         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7298   }
7299 
7300   // Build a sequence of copy-to-reg nodes chained together with token chain
7301   // and flag operands which copy the outgoing args into the appropriate regs.
7302   SDValue InFlag;
7303   for (auto Reg : RegsToPass) {
7304     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7305     InFlag = Chain.getValue(1);
7306   }
7307 
7308   const int SPDiff = 0;
7309   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7310                     Callee, SPDiff, NumBytes, Ins, InVals, CS);
7311 }
7312 
7313 bool
7314 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7315                                   MachineFunction &MF, bool isVarArg,
7316                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7317                                   LLVMContext &Context) const {
7318   SmallVector<CCValAssign, 16> RVLocs;
7319   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7320   return CCInfo.CheckReturn(
7321       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7322                 ? RetCC_PPC_Cold
7323                 : RetCC_PPC);
7324 }
7325 
7326 SDValue
7327 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7328                                bool isVarArg,
7329                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7330                                const SmallVectorImpl<SDValue> &OutVals,
7331                                const SDLoc &dl, SelectionDAG &DAG) const {
7332   SmallVector<CCValAssign, 16> RVLocs;
7333   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7334                  *DAG.getContext());
7335   CCInfo.AnalyzeReturn(Outs,
7336                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7337                            ? RetCC_PPC_Cold
7338                            : RetCC_PPC);
7339 
7340   SDValue Flag;
7341   SmallVector<SDValue, 4> RetOps(1, Chain);
7342 
7343   // Copy the result values into the output registers.
7344   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7345     CCValAssign &VA = RVLocs[i];
7346     assert(VA.isRegLoc() && "Can only return in registers!");
7347 
7348     SDValue Arg = OutVals[RealResIdx];
7349 
7350     switch (VA.getLocInfo()) {
7351     default: llvm_unreachable("Unknown loc info!");
7352     case CCValAssign::Full: break;
7353     case CCValAssign::AExt:
7354       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7355       break;
7356     case CCValAssign::ZExt:
7357       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7358       break;
7359     case CCValAssign::SExt:
7360       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7361       break;
7362     }
7363     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7364       bool isLittleEndian = Subtarget.isLittleEndian();
7365       // Legalize ret f64 -> ret 2 x i32.
7366       SDValue SVal =
7367           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7368                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7369       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7370       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7371       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7372                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7373       Flag = Chain.getValue(1);
7374       VA = RVLocs[++i]; // skip ahead to next loc
7375       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7376     } else
7377       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7378     Flag = Chain.getValue(1);
7379     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7380   }
7381 
7382   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7383   const MCPhysReg *I =
7384     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7385   if (I) {
7386     for (; *I; ++I) {
7387 
7388       if (PPC::G8RCRegClass.contains(*I))
7389         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7390       else if (PPC::F8RCRegClass.contains(*I))
7391         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7392       else if (PPC::CRRCRegClass.contains(*I))
7393         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7394       else if (PPC::VRRCRegClass.contains(*I))
7395         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7396       else
7397         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7398     }
7399   }
7400 
7401   RetOps[0] = Chain;  // Update chain.
7402 
7403   // Add the flag if we have it.
7404   if (Flag.getNode())
7405     RetOps.push_back(Flag);
7406 
7407   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7408 }
7409 
7410 SDValue
7411 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7412                                                 SelectionDAG &DAG) const {
7413   SDLoc dl(Op);
7414 
7415   // Get the correct type for integers.
7416   EVT IntVT = Op.getValueType();
7417 
7418   // Get the inputs.
7419   SDValue Chain = Op.getOperand(0);
7420   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7421   // Build a DYNAREAOFFSET node.
7422   SDValue Ops[2] = {Chain, FPSIdx};
7423   SDVTList VTs = DAG.getVTList(IntVT);
7424   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7425 }
7426 
7427 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7428                                              SelectionDAG &DAG) const {
7429   // When we pop the dynamic allocation we need to restore the SP link.
7430   SDLoc dl(Op);
7431 
7432   // Get the correct type for pointers.
7433   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7434 
7435   // Construct the stack pointer operand.
7436   bool isPPC64 = Subtarget.isPPC64();
7437   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7438   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7439 
7440   // Get the operands for the STACKRESTORE.
7441   SDValue Chain = Op.getOperand(0);
7442   SDValue SaveSP = Op.getOperand(1);
7443 
7444   // Load the old link SP.
7445   SDValue LoadLinkSP =
7446       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7447 
7448   // Restore the stack pointer.
7449   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7450 
7451   // Store the old link SP.
7452   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7453 }
7454 
7455 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7456   MachineFunction &MF = DAG.getMachineFunction();
7457   bool isPPC64 = Subtarget.isPPC64();
7458   EVT PtrVT = getPointerTy(MF.getDataLayout());
7459 
7460   // Get current frame pointer save index.  The users of this index will be
7461   // primarily DYNALLOC instructions.
7462   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7463   int RASI = FI->getReturnAddrSaveIndex();
7464 
7465   // If the frame pointer save index hasn't been defined yet.
7466   if (!RASI) {
7467     // Find out what the fix offset of the frame pointer save area.
7468     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7469     // Allocate the frame index for frame pointer save area.
7470     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7471     // Save the result.
7472     FI->setReturnAddrSaveIndex(RASI);
7473   }
7474   return DAG.getFrameIndex(RASI, PtrVT);
7475 }
7476 
7477 SDValue
7478 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7479   MachineFunction &MF = DAG.getMachineFunction();
7480   bool isPPC64 = Subtarget.isPPC64();
7481   EVT PtrVT = getPointerTy(MF.getDataLayout());
7482 
7483   // Get current frame pointer save index.  The users of this index will be
7484   // primarily DYNALLOC instructions.
7485   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7486   int FPSI = FI->getFramePointerSaveIndex();
7487 
7488   // If the frame pointer save index hasn't been defined yet.
7489   if (!FPSI) {
7490     // Find out what the fix offset of the frame pointer save area.
7491     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7492     // Allocate the frame index for frame pointer save area.
7493     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7494     // Save the result.
7495     FI->setFramePointerSaveIndex(FPSI);
7496   }
7497   return DAG.getFrameIndex(FPSI, PtrVT);
7498 }
7499 
7500 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7501                                                    SelectionDAG &DAG) const {
7502   // Get the inputs.
7503   SDValue Chain = Op.getOperand(0);
7504   SDValue Size  = Op.getOperand(1);
7505   SDLoc dl(Op);
7506 
7507   // Get the correct type for pointers.
7508   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7509   // Negate the size.
7510   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7511                                 DAG.getConstant(0, dl, PtrVT), Size);
7512   // Construct a node for the frame pointer save index.
7513   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7514   // Build a DYNALLOC node.
7515   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7516   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7517   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7518 }
7519 
7520 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7521                                                      SelectionDAG &DAG) const {
7522   MachineFunction &MF = DAG.getMachineFunction();
7523 
7524   bool isPPC64 = Subtarget.isPPC64();
7525   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7526 
7527   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7528   return DAG.getFrameIndex(FI, PtrVT);
7529 }
7530 
7531 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7532                                                SelectionDAG &DAG) const {
7533   SDLoc DL(Op);
7534   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7535                      DAG.getVTList(MVT::i32, MVT::Other),
7536                      Op.getOperand(0), Op.getOperand(1));
7537 }
7538 
7539 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7540                                                 SelectionDAG &DAG) const {
7541   SDLoc DL(Op);
7542   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7543                      Op.getOperand(0), Op.getOperand(1));
7544 }
7545 
7546 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7547   if (Op.getValueType().isVector())
7548     return LowerVectorLoad(Op, DAG);
7549 
7550   assert(Op.getValueType() == MVT::i1 &&
7551          "Custom lowering only for i1 loads");
7552 
7553   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7554 
7555   SDLoc dl(Op);
7556   LoadSDNode *LD = cast<LoadSDNode>(Op);
7557 
7558   SDValue Chain = LD->getChain();
7559   SDValue BasePtr = LD->getBasePtr();
7560   MachineMemOperand *MMO = LD->getMemOperand();
7561 
7562   SDValue NewLD =
7563       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7564                      BasePtr, MVT::i8, MMO);
7565   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7566 
7567   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7568   return DAG.getMergeValues(Ops, dl);
7569 }
7570 
7571 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7572   if (Op.getOperand(1).getValueType().isVector())
7573     return LowerVectorStore(Op, DAG);
7574 
7575   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7576          "Custom lowering only for i1 stores");
7577 
7578   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7579 
7580   SDLoc dl(Op);
7581   StoreSDNode *ST = cast<StoreSDNode>(Op);
7582 
7583   SDValue Chain = ST->getChain();
7584   SDValue BasePtr = ST->getBasePtr();
7585   SDValue Value = ST->getValue();
7586   MachineMemOperand *MMO = ST->getMemOperand();
7587 
7588   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7589                       Value);
7590   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7591 }
7592 
7593 // FIXME: Remove this once the ANDI glue bug is fixed:
7594 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7595   assert(Op.getValueType() == MVT::i1 &&
7596          "Custom lowering only for i1 results");
7597 
7598   SDLoc DL(Op);
7599   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7600 }
7601 
7602 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7603                                                SelectionDAG &DAG) const {
7604 
7605   // Implements a vector truncate that fits in a vector register as a shuffle.
7606   // We want to legalize vector truncates down to where the source fits in
7607   // a vector register (and target is therefore smaller than vector register
7608   // size).  At that point legalization will try to custom lower the sub-legal
7609   // result and get here - where we can contain the truncate as a single target
7610   // operation.
7611 
7612   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7613   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7614   //
7615   // We will implement it for big-endian ordering as this (where x denotes
7616   // undefined):
7617   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7618   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7619   //
7620   // The same operation in little-endian ordering will be:
7621   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7622   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7623 
7624   assert(Op.getValueType().isVector() && "Vector type expected.");
7625 
7626   SDLoc DL(Op);
7627   SDValue N1 = Op.getOperand(0);
7628   unsigned SrcSize = N1.getValueType().getSizeInBits();
7629   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7630   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7631 
7632   EVT TrgVT = Op.getValueType();
7633   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7634   EVT EltVT = TrgVT.getVectorElementType();
7635   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7636   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7637 
7638   // First list the elements we want to keep.
7639   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7640   SmallVector<int, 16> ShuffV;
7641   if (Subtarget.isLittleEndian())
7642     for (unsigned i = 0; i < TrgNumElts; ++i)
7643       ShuffV.push_back(i * SizeMult);
7644   else
7645     for (unsigned i = 1; i <= TrgNumElts; ++i)
7646       ShuffV.push_back(i * SizeMult - 1);
7647 
7648   // Populate the remaining elements with undefs.
7649   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7650     // ShuffV.push_back(i + WideNumElts);
7651     ShuffV.push_back(WideNumElts + 1);
7652 
7653   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7654   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7655 }
7656 
7657 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7658 /// possible.
7659 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7660   // Not FP? Not a fsel.
7661   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7662       !Op.getOperand(2).getValueType().isFloatingPoint())
7663     return Op;
7664 
7665   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7666 
7667   EVT ResVT = Op.getValueType();
7668   EVT CmpVT = Op.getOperand(0).getValueType();
7669   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7670   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7671   SDLoc dl(Op);
7672 
7673   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7674   // presence of infinities.
7675   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7676     switch (CC) {
7677     default:
7678       break;
7679     case ISD::SETOGT:
7680     case ISD::SETGT:
7681       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7682     case ISD::SETOLT:
7683     case ISD::SETLT:
7684       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7685     }
7686   }
7687 
7688   // We might be able to do better than this under some circumstances, but in
7689   // general, fsel-based lowering of select is a finite-math-only optimization.
7690   // For more information, see section F.3 of the 2.06 ISA specification.
7691   // With ISA 3.0
7692   if (!DAG.getTarget().Options.NoInfsFPMath ||
7693       !DAG.getTarget().Options.NoNaNsFPMath)
7694     return Op;
7695 
7696   // TODO: Propagate flags from the select rather than global settings.
7697   SDNodeFlags Flags;
7698   Flags.setNoInfs(true);
7699   Flags.setNoNaNs(true);
7700 
7701   // If the RHS of the comparison is a 0.0, we don't need to do the
7702   // subtraction at all.
7703   SDValue Sel1;
7704   if (isFloatingPointZero(RHS))
7705     switch (CC) {
7706     default: break;       // SETUO etc aren't handled by fsel.
7707     case ISD::SETNE:
7708       std::swap(TV, FV);
7709       LLVM_FALLTHROUGH;
7710     case ISD::SETEQ:
7711       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7712         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7713       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7714       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7715         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7716       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7717                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7718     case ISD::SETULT:
7719     case ISD::SETLT:
7720       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7721       LLVM_FALLTHROUGH;
7722     case ISD::SETOGE:
7723     case ISD::SETGE:
7724       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7725         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7726       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7727     case ISD::SETUGT:
7728     case ISD::SETGT:
7729       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7730       LLVM_FALLTHROUGH;
7731     case ISD::SETOLE:
7732     case ISD::SETLE:
7733       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7734         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7735       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7736                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7737     }
7738 
7739   SDValue Cmp;
7740   switch (CC) {
7741   default: break;       // SETUO etc aren't handled by fsel.
7742   case ISD::SETNE:
7743     std::swap(TV, FV);
7744     LLVM_FALLTHROUGH;
7745   case ISD::SETEQ:
7746     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7747     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7748       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7749     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7750     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7751       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7752     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7753                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7754   case ISD::SETULT:
7755   case ISD::SETLT:
7756     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7757     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7758       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7759     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7760   case ISD::SETOGE:
7761   case ISD::SETGE:
7762     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7763     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7764       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7765     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7766   case ISD::SETUGT:
7767   case ISD::SETGT:
7768     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7769     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7770       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7771     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7772   case ISD::SETOLE:
7773   case ISD::SETLE:
7774     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7775     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7776       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7777     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7778   }
7779   return Op;
7780 }
7781 
7782 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7783                                                SelectionDAG &DAG,
7784                                                const SDLoc &dl) const {
7785   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7786   SDValue Src = Op.getOperand(0);
7787   if (Src.getValueType() == MVT::f32)
7788     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7789 
7790   SDValue Tmp;
7791   switch (Op.getSimpleValueType().SimpleTy) {
7792   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7793   case MVT::i32:
7794     Tmp = DAG.getNode(
7795         Op.getOpcode() == ISD::FP_TO_SINT
7796             ? PPCISD::FCTIWZ
7797             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7798         dl, MVT::f64, Src);
7799     break;
7800   case MVT::i64:
7801     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7802            "i64 FP_TO_UINT is supported only with FPCVT");
7803     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7804                                                         PPCISD::FCTIDUZ,
7805                       dl, MVT::f64, Src);
7806     break;
7807   }
7808 
7809   // Convert the FP value to an int value through memory.
7810   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7811     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7812   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7813   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7814   MachinePointerInfo MPI =
7815       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7816 
7817   // Emit a store to the stack slot.
7818   SDValue Chain;
7819   if (i32Stack) {
7820     MachineFunction &MF = DAG.getMachineFunction();
7821     MachineMemOperand *MMO =
7822       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7823     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7824     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7825               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7826   } else
7827     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7828 
7829   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7830   // add in a bias on big endian.
7831   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7832     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7833                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7834     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7835   }
7836 
7837   RLI.Chain = Chain;
7838   RLI.Ptr = FIPtr;
7839   RLI.MPI = MPI;
7840 }
7841 
7842 /// Custom lowers floating point to integer conversions to use
7843 /// the direct move instructions available in ISA 2.07 to avoid the
7844 /// need for load/store combinations.
7845 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7846                                                     SelectionDAG &DAG,
7847                                                     const SDLoc &dl) const {
7848   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7849   SDValue Src = Op.getOperand(0);
7850 
7851   if (Src.getValueType() == MVT::f32)
7852     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7853 
7854   SDValue Tmp;
7855   switch (Op.getSimpleValueType().SimpleTy) {
7856   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7857   case MVT::i32:
7858     Tmp = DAG.getNode(
7859         Op.getOpcode() == ISD::FP_TO_SINT
7860             ? PPCISD::FCTIWZ
7861             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7862         dl, MVT::f64, Src);
7863     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7864     break;
7865   case MVT::i64:
7866     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7867            "i64 FP_TO_UINT is supported only with FPCVT");
7868     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7869                                                         PPCISD::FCTIDUZ,
7870                       dl, MVT::f64, Src);
7871     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7872     break;
7873   }
7874   return Tmp;
7875 }
7876 
7877 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7878                                           const SDLoc &dl) const {
7879 
7880   // FP to INT conversions are legal for f128.
7881   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7882     return Op;
7883 
7884   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7885   // PPC (the libcall is not available).
7886   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7887     if (Op.getValueType() == MVT::i32) {
7888       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7889         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7890                                  MVT::f64, Op.getOperand(0),
7891                                  DAG.getIntPtrConstant(0, dl));
7892         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7893                                  MVT::f64, Op.getOperand(0),
7894                                  DAG.getIntPtrConstant(1, dl));
7895 
7896         // Add the two halves of the long double in round-to-zero mode.
7897         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7898 
7899         // Now use a smaller FP_TO_SINT.
7900         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7901       }
7902       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7903         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7904         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7905         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7906         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7907         // FIXME: generated code sucks.
7908         // TODO: Are there fast-math-flags to propagate to this FSUB?
7909         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7910                                    Op.getOperand(0), Tmp);
7911         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7912         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7913                            DAG.getConstant(0x80000000, dl, MVT::i32));
7914         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7915                                     Op.getOperand(0));
7916         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7917                                ISD::SETGE);
7918       }
7919     }
7920 
7921     return SDValue();
7922   }
7923 
7924   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7925     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7926 
7927   ReuseLoadInfo RLI;
7928   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7929 
7930   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7931                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7932 }
7933 
7934 // We're trying to insert a regular store, S, and then a load, L. If the
7935 // incoming value, O, is a load, we might just be able to have our load use the
7936 // address used by O. However, we don't know if anything else will store to
7937 // that address before we can load from it. To prevent this situation, we need
7938 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7939 // the same chain operand as O, we create a token factor from the chain results
7940 // of O and L, and we replace all uses of O's chain result with that token
7941 // factor (see spliceIntoChain below for this last part).
7942 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7943                                             ReuseLoadInfo &RLI,
7944                                             SelectionDAG &DAG,
7945                                             ISD::LoadExtType ET) const {
7946   SDLoc dl(Op);
7947   if (ET == ISD::NON_EXTLOAD &&
7948       (Op.getOpcode() == ISD::FP_TO_UINT ||
7949        Op.getOpcode() == ISD::FP_TO_SINT) &&
7950       isOperationLegalOrCustom(Op.getOpcode(),
7951                                Op.getOperand(0).getValueType())) {
7952 
7953     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7954     return true;
7955   }
7956 
7957   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7958   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7959       LD->isNonTemporal())
7960     return false;
7961   if (LD->getMemoryVT() != MemVT)
7962     return false;
7963 
7964   RLI.Ptr = LD->getBasePtr();
7965   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7966     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7967            "Non-pre-inc AM on PPC?");
7968     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7969                           LD->getOffset());
7970   }
7971 
7972   RLI.Chain = LD->getChain();
7973   RLI.MPI = LD->getPointerInfo();
7974   RLI.IsDereferenceable = LD->isDereferenceable();
7975   RLI.IsInvariant = LD->isInvariant();
7976   RLI.Alignment = LD->getAlignment();
7977   RLI.AAInfo = LD->getAAInfo();
7978   RLI.Ranges = LD->getRanges();
7979 
7980   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7981   return true;
7982 }
7983 
7984 // Given the head of the old chain, ResChain, insert a token factor containing
7985 // it and NewResChain, and make users of ResChain now be users of that token
7986 // factor.
7987 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7988 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7989                                         SDValue NewResChain,
7990                                         SelectionDAG &DAG) const {
7991   if (!ResChain)
7992     return;
7993 
7994   SDLoc dl(NewResChain);
7995 
7996   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7997                            NewResChain, DAG.getUNDEF(MVT::Other));
7998   assert(TF.getNode() != NewResChain.getNode() &&
7999          "A new TF really is required here");
8000 
8001   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8002   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8003 }
8004 
8005 /// Analyze profitability of direct move
8006 /// prefer float load to int load plus direct move
8007 /// when there is no integer use of int load
8008 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8009   SDNode *Origin = Op.getOperand(0).getNode();
8010   if (Origin->getOpcode() != ISD::LOAD)
8011     return true;
8012 
8013   // If there is no LXSIBZX/LXSIHZX, like Power8,
8014   // prefer direct move if the memory size is 1 or 2 bytes.
8015   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8016   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8017     return true;
8018 
8019   for (SDNode::use_iterator UI = Origin->use_begin(),
8020                             UE = Origin->use_end();
8021        UI != UE; ++UI) {
8022 
8023     // Only look at the users of the loaded value.
8024     if (UI.getUse().get().getResNo() != 0)
8025       continue;
8026 
8027     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8028         UI->getOpcode() != ISD::UINT_TO_FP)
8029       return true;
8030   }
8031 
8032   return false;
8033 }
8034 
8035 /// Custom lowers integer to floating point conversions to use
8036 /// the direct move instructions available in ISA 2.07 to avoid the
8037 /// need for load/store combinations.
8038 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8039                                                     SelectionDAG &DAG,
8040                                                     const SDLoc &dl) const {
8041   assert((Op.getValueType() == MVT::f32 ||
8042           Op.getValueType() == MVT::f64) &&
8043          "Invalid floating point type as target of conversion");
8044   assert(Subtarget.hasFPCVT() &&
8045          "Int to FP conversions with direct moves require FPCVT");
8046   SDValue FP;
8047   SDValue Src = Op.getOperand(0);
8048   bool SinglePrec = Op.getValueType() == MVT::f32;
8049   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8050   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8051   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8052                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8053 
8054   if (WordInt) {
8055     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8056                      dl, MVT::f64, Src);
8057     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8058   }
8059   else {
8060     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8061     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8062   }
8063 
8064   return FP;
8065 }
8066 
8067 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8068 
8069   EVT VecVT = Vec.getValueType();
8070   assert(VecVT.isVector() && "Expected a vector type.");
8071   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8072 
8073   EVT EltVT = VecVT.getVectorElementType();
8074   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8075   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8076 
8077   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8078   SmallVector<SDValue, 16> Ops(NumConcat);
8079   Ops[0] = Vec;
8080   SDValue UndefVec = DAG.getUNDEF(VecVT);
8081   for (unsigned i = 1; i < NumConcat; ++i)
8082     Ops[i] = UndefVec;
8083 
8084   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8085 }
8086 
8087 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8088                                                 const SDLoc &dl) const {
8089 
8090   unsigned Opc = Op.getOpcode();
8091   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8092          "Unexpected conversion type");
8093   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8094          "Supports conversions to v2f64/v4f32 only.");
8095 
8096   bool SignedConv = Opc == ISD::SINT_TO_FP;
8097   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8098 
8099   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8100   EVT WideVT = Wide.getValueType();
8101   unsigned WideNumElts = WideVT.getVectorNumElements();
8102   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8103 
8104   SmallVector<int, 16> ShuffV;
8105   for (unsigned i = 0; i < WideNumElts; ++i)
8106     ShuffV.push_back(i + WideNumElts);
8107 
8108   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8109   int SaveElts = FourEltRes ? 4 : 2;
8110   if (Subtarget.isLittleEndian())
8111     for (int i = 0; i < SaveElts; i++)
8112       ShuffV[i * Stride] = i;
8113   else
8114     for (int i = 1; i <= SaveElts; i++)
8115       ShuffV[i * Stride - 1] = i - 1;
8116 
8117   SDValue ShuffleSrc2 =
8118       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8119   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8120 
8121   SDValue Extend;
8122   if (SignedConv) {
8123     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8124     EVT ExtVT = Op.getOperand(0).getValueType();
8125     if (Subtarget.hasP9Altivec())
8126       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8127                                IntermediateVT.getVectorNumElements());
8128 
8129     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8130                          DAG.getValueType(ExtVT));
8131   } else
8132     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8133 
8134   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8135 }
8136 
8137 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8138                                           SelectionDAG &DAG) const {
8139   SDLoc dl(Op);
8140 
8141   EVT InVT = Op.getOperand(0).getValueType();
8142   EVT OutVT = Op.getValueType();
8143   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8144       isOperationCustom(Op.getOpcode(), InVT))
8145     return LowerINT_TO_FPVector(Op, DAG, dl);
8146 
8147   // Conversions to f128 are legal.
8148   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8149     return Op;
8150 
8151   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8152     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8153       return SDValue();
8154 
8155     SDValue Value = Op.getOperand(0);
8156     // The values are now known to be -1 (false) or 1 (true). To convert this
8157     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8158     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8159     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8160 
8161     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8162 
8163     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8164 
8165     if (Op.getValueType() != MVT::v4f64)
8166       Value = DAG.getNode(ISD::FP_ROUND, dl,
8167                           Op.getValueType(), Value,
8168                           DAG.getIntPtrConstant(1, dl));
8169     return Value;
8170   }
8171 
8172   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8173   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8174     return SDValue();
8175 
8176   if (Op.getOperand(0).getValueType() == MVT::i1)
8177     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8178                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8179                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8180 
8181   // If we have direct moves, we can do all the conversion, skip the store/load
8182   // however, without FPCVT we can't do most conversions.
8183   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8184       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8185     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8186 
8187   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8188          "UINT_TO_FP is supported only with FPCVT");
8189 
8190   // If we have FCFIDS, then use it when converting to single-precision.
8191   // Otherwise, convert to double-precision and then round.
8192   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8193                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8194                                                             : PPCISD::FCFIDS)
8195                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8196                                                             : PPCISD::FCFID);
8197   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8198                   ? MVT::f32
8199                   : MVT::f64;
8200 
8201   if (Op.getOperand(0).getValueType() == MVT::i64) {
8202     SDValue SINT = Op.getOperand(0);
8203     // When converting to single-precision, we actually need to convert
8204     // to double-precision first and then round to single-precision.
8205     // To avoid double-rounding effects during that operation, we have
8206     // to prepare the input operand.  Bits that might be truncated when
8207     // converting to double-precision are replaced by a bit that won't
8208     // be lost at this stage, but is below the single-precision rounding
8209     // position.
8210     //
8211     // However, if -enable-unsafe-fp-math is in effect, accept double
8212     // rounding to avoid the extra overhead.
8213     if (Op.getValueType() == MVT::f32 &&
8214         !Subtarget.hasFPCVT() &&
8215         !DAG.getTarget().Options.UnsafeFPMath) {
8216 
8217       // Twiddle input to make sure the low 11 bits are zero.  (If this
8218       // is the case, we are guaranteed the value will fit into the 53 bit
8219       // mantissa of an IEEE double-precision value without rounding.)
8220       // If any of those low 11 bits were not zero originally, make sure
8221       // bit 12 (value 2048) is set instead, so that the final rounding
8222       // to single-precision gets the correct result.
8223       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8224                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8225       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8226                           Round, DAG.getConstant(2047, dl, MVT::i64));
8227       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8228       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8229                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8230 
8231       // However, we cannot use that value unconditionally: if the magnitude
8232       // of the input value is small, the bit-twiddling we did above might
8233       // end up visibly changing the output.  Fortunately, in that case, we
8234       // don't need to twiddle bits since the original input will convert
8235       // exactly to double-precision floating-point already.  Therefore,
8236       // construct a conditional to use the original value if the top 11
8237       // bits are all sign-bit copies, and use the rounded value computed
8238       // above otherwise.
8239       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8240                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8241       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8242                          Cond, DAG.getConstant(1, dl, MVT::i64));
8243       Cond = DAG.getSetCC(
8244           dl,
8245           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8246           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8247 
8248       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8249     }
8250 
8251     ReuseLoadInfo RLI;
8252     SDValue Bits;
8253 
8254     MachineFunction &MF = DAG.getMachineFunction();
8255     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8256       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8257                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8258       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8259     } else if (Subtarget.hasLFIWAX() &&
8260                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8261       MachineMemOperand *MMO =
8262         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8263                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8264       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8265       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8266                                      DAG.getVTList(MVT::f64, MVT::Other),
8267                                      Ops, MVT::i32, MMO);
8268       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8269     } else if (Subtarget.hasFPCVT() &&
8270                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8271       MachineMemOperand *MMO =
8272         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8273                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8274       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8275       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8276                                      DAG.getVTList(MVT::f64, MVT::Other),
8277                                      Ops, MVT::i32, MMO);
8278       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8279     } else if (((Subtarget.hasLFIWAX() &&
8280                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8281                 (Subtarget.hasFPCVT() &&
8282                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8283                SINT.getOperand(0).getValueType() == MVT::i32) {
8284       MachineFrameInfo &MFI = MF.getFrameInfo();
8285       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8286 
8287       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8288       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8289 
8290       SDValue Store =
8291           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8292                        MachinePointerInfo::getFixedStack(
8293                            DAG.getMachineFunction(), FrameIdx));
8294 
8295       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8296              "Expected an i32 store");
8297 
8298       RLI.Ptr = FIdx;
8299       RLI.Chain = Store;
8300       RLI.MPI =
8301           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8302       RLI.Alignment = 4;
8303 
8304       MachineMemOperand *MMO =
8305         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8306                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8307       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8308       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8309                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8310                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8311                                      Ops, MVT::i32, MMO);
8312     } else
8313       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8314 
8315     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8316 
8317     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8318       FP = DAG.getNode(ISD::FP_ROUND, dl,
8319                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8320     return FP;
8321   }
8322 
8323   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8324          "Unhandled INT_TO_FP type in custom expander!");
8325   // Since we only generate this in 64-bit mode, we can take advantage of
8326   // 64-bit registers.  In particular, sign extend the input value into the
8327   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8328   // then lfd it and fcfid it.
8329   MachineFunction &MF = DAG.getMachineFunction();
8330   MachineFrameInfo &MFI = MF.getFrameInfo();
8331   EVT PtrVT = getPointerTy(MF.getDataLayout());
8332 
8333   SDValue Ld;
8334   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8335     ReuseLoadInfo RLI;
8336     bool ReusingLoad;
8337     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8338                                             DAG))) {
8339       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8340       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8341 
8342       SDValue Store =
8343           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8344                        MachinePointerInfo::getFixedStack(
8345                            DAG.getMachineFunction(), FrameIdx));
8346 
8347       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8348              "Expected an i32 store");
8349 
8350       RLI.Ptr = FIdx;
8351       RLI.Chain = Store;
8352       RLI.MPI =
8353           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8354       RLI.Alignment = 4;
8355     }
8356 
8357     MachineMemOperand *MMO =
8358       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8359                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8360     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8361     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8362                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8363                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8364                                  Ops, MVT::i32, MMO);
8365     if (ReusingLoad)
8366       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8367   } else {
8368     assert(Subtarget.isPPC64() &&
8369            "i32->FP without LFIWAX supported only on PPC64");
8370 
8371     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8372     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8373 
8374     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8375                                 Op.getOperand(0));
8376 
8377     // STD the extended value into the stack slot.
8378     SDValue Store = DAG.getStore(
8379         DAG.getEntryNode(), dl, Ext64, FIdx,
8380         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8381 
8382     // Load the value as a double.
8383     Ld = DAG.getLoad(
8384         MVT::f64, dl, Store, FIdx,
8385         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8386   }
8387 
8388   // FCFID it and return it.
8389   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8390   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8391     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8392                      DAG.getIntPtrConstant(0, dl));
8393   return FP;
8394 }
8395 
8396 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8397                                             SelectionDAG &DAG) const {
8398   SDLoc dl(Op);
8399   /*
8400    The rounding mode is in bits 30:31 of FPSR, and has the following
8401    settings:
8402      00 Round to nearest
8403      01 Round to 0
8404      10 Round to +inf
8405      11 Round to -inf
8406 
8407   FLT_ROUNDS, on the other hand, expects the following:
8408     -1 Undefined
8409      0 Round to 0
8410      1 Round to nearest
8411      2 Round to +inf
8412      3 Round to -inf
8413 
8414   To perform the conversion, we do:
8415     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8416   */
8417 
8418   MachineFunction &MF = DAG.getMachineFunction();
8419   EVT VT = Op.getValueType();
8420   EVT PtrVT = getPointerTy(MF.getDataLayout());
8421 
8422   // Save FP Control Word to register
8423   SDValue Chain = Op.getOperand(0);
8424   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8425   Chain = MFFS.getValue(1);
8426 
8427   // Save FP register to stack slot
8428   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8429   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8430   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8431 
8432   // Load FP Control Word from low 32 bits of stack slot.
8433   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8434   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8435   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8436   Chain = CWD.getValue(1);
8437 
8438   // Transform as necessary
8439   SDValue CWD1 =
8440     DAG.getNode(ISD::AND, dl, MVT::i32,
8441                 CWD, DAG.getConstant(3, dl, MVT::i32));
8442   SDValue CWD2 =
8443     DAG.getNode(ISD::SRL, dl, MVT::i32,
8444                 DAG.getNode(ISD::AND, dl, MVT::i32,
8445                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8446                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8447                             DAG.getConstant(3, dl, MVT::i32)),
8448                 DAG.getConstant(1, dl, MVT::i32));
8449 
8450   SDValue RetVal =
8451     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8452 
8453   RetVal =
8454       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8455                   dl, VT, RetVal);
8456 
8457   return DAG.getMergeValues({RetVal, Chain}, dl);
8458 }
8459 
8460 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8461   EVT VT = Op.getValueType();
8462   unsigned BitWidth = VT.getSizeInBits();
8463   SDLoc dl(Op);
8464   assert(Op.getNumOperands() == 3 &&
8465          VT == Op.getOperand(1).getValueType() &&
8466          "Unexpected SHL!");
8467 
8468   // Expand into a bunch of logical ops.  Note that these ops
8469   // depend on the PPC behavior for oversized shift amounts.
8470   SDValue Lo = Op.getOperand(0);
8471   SDValue Hi = Op.getOperand(1);
8472   SDValue Amt = Op.getOperand(2);
8473   EVT AmtVT = Amt.getValueType();
8474 
8475   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8476                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8477   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8478   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8479   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8480   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8481                              DAG.getConstant(-BitWidth, dl, AmtVT));
8482   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8483   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8484   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8485   SDValue OutOps[] = { OutLo, OutHi };
8486   return DAG.getMergeValues(OutOps, dl);
8487 }
8488 
8489 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8490   EVT VT = Op.getValueType();
8491   SDLoc dl(Op);
8492   unsigned BitWidth = VT.getSizeInBits();
8493   assert(Op.getNumOperands() == 3 &&
8494          VT == Op.getOperand(1).getValueType() &&
8495          "Unexpected SRL!");
8496 
8497   // Expand into a bunch of logical ops.  Note that these ops
8498   // depend on the PPC behavior for oversized shift amounts.
8499   SDValue Lo = Op.getOperand(0);
8500   SDValue Hi = Op.getOperand(1);
8501   SDValue Amt = Op.getOperand(2);
8502   EVT AmtVT = Amt.getValueType();
8503 
8504   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8505                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8506   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8507   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8508   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8509   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8510                              DAG.getConstant(-BitWidth, dl, AmtVT));
8511   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8512   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8513   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8514   SDValue OutOps[] = { OutLo, OutHi };
8515   return DAG.getMergeValues(OutOps, dl);
8516 }
8517 
8518 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8519   SDLoc dl(Op);
8520   EVT VT = Op.getValueType();
8521   unsigned BitWidth = VT.getSizeInBits();
8522   assert(Op.getNumOperands() == 3 &&
8523          VT == Op.getOperand(1).getValueType() &&
8524          "Unexpected SRA!");
8525 
8526   // Expand into a bunch of logical ops, followed by a select_cc.
8527   SDValue Lo = Op.getOperand(0);
8528   SDValue Hi = Op.getOperand(1);
8529   SDValue Amt = Op.getOperand(2);
8530   EVT AmtVT = Amt.getValueType();
8531 
8532   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8533                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8534   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8535   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8536   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8537   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8538                              DAG.getConstant(-BitWidth, dl, AmtVT));
8539   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8540   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8541   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8542                                   Tmp4, Tmp6, ISD::SETLE);
8543   SDValue OutOps[] = { OutLo, OutHi };
8544   return DAG.getMergeValues(OutOps, dl);
8545 }
8546 
8547 //===----------------------------------------------------------------------===//
8548 // Vector related lowering.
8549 //
8550 
8551 /// BuildSplatI - Build a canonical splati of Val with an element size of
8552 /// SplatSize.  Cast the result to VT.
8553 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8554                            SelectionDAG &DAG, const SDLoc &dl) {
8555   static const MVT VTys[] = { // canonical VT to use for each size.
8556     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8557   };
8558 
8559   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8560 
8561   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8562   if (Val == -1)
8563     SplatSize = 1;
8564 
8565   EVT CanonicalVT = VTys[SplatSize-1];
8566 
8567   // Build a canonical splat for this value.
8568   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8569 }
8570 
8571 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8572 /// specified intrinsic ID.
8573 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8574                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8575   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8576   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8577                      DAG.getConstant(IID, dl, MVT::i32), Op);
8578 }
8579 
8580 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8581 /// specified intrinsic ID.
8582 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8583                                 SelectionDAG &DAG, const SDLoc &dl,
8584                                 EVT DestVT = MVT::Other) {
8585   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8586   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8587                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8588 }
8589 
8590 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8591 /// specified intrinsic ID.
8592 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8593                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8594                                 EVT DestVT = MVT::Other) {
8595   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8596   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8597                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8598 }
8599 
8600 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8601 /// amount.  The result has the specified value type.
8602 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8603                            SelectionDAG &DAG, const SDLoc &dl) {
8604   // Force LHS/RHS to be the right type.
8605   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8606   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8607 
8608   int Ops[16];
8609   for (unsigned i = 0; i != 16; ++i)
8610     Ops[i] = i + Amt;
8611   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8612   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8613 }
8614 
8615 /// Do we have an efficient pattern in a .td file for this node?
8616 ///
8617 /// \param V - pointer to the BuildVectorSDNode being matched
8618 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8619 ///
8620 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8621 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8622 /// the opposite is true (expansion is beneficial) are:
8623 /// - The node builds a vector out of integers that are not 32 or 64-bits
8624 /// - The node builds a vector out of constants
8625 /// - The node is a "load-and-splat"
8626 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8627 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8628                                             bool HasDirectMove,
8629                                             bool HasP8Vector) {
8630   EVT VecVT = V->getValueType(0);
8631   bool RightType = VecVT == MVT::v2f64 ||
8632     (HasP8Vector && VecVT == MVT::v4f32) ||
8633     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8634   if (!RightType)
8635     return false;
8636 
8637   bool IsSplat = true;
8638   bool IsLoad = false;
8639   SDValue Op0 = V->getOperand(0);
8640 
8641   // This function is called in a block that confirms the node is not a constant
8642   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8643   // different constants.
8644   if (V->isConstant())
8645     return false;
8646   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8647     if (V->getOperand(i).isUndef())
8648       return false;
8649     // We want to expand nodes that represent load-and-splat even if the
8650     // loaded value is a floating point truncation or conversion to int.
8651     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8652         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8653          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8654         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8655          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8656         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8657          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8658       IsLoad = true;
8659     // If the operands are different or the input is not a load and has more
8660     // uses than just this BV node, then it isn't a splat.
8661     if (V->getOperand(i) != Op0 ||
8662         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8663       IsSplat = false;
8664   }
8665   return !(IsSplat && IsLoad);
8666 }
8667 
8668 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8669 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8670 
8671   SDLoc dl(Op);
8672   SDValue Op0 = Op->getOperand(0);
8673 
8674   if (!EnableQuadPrecision ||
8675       (Op.getValueType() != MVT::f128 ) ||
8676       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8677       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8678       (Op0.getOperand(1).getValueType() != MVT::i64))
8679     return SDValue();
8680 
8681   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8682                      Op0.getOperand(1));
8683 }
8684 
8685 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8686   const SDValue *InputLoad = &Op;
8687   if (InputLoad->getOpcode() == ISD::BITCAST)
8688     InputLoad = &InputLoad->getOperand(0);
8689   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8690     InputLoad = &InputLoad->getOperand(0);
8691   if (InputLoad->getOpcode() != ISD::LOAD)
8692     return nullptr;
8693   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8694   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8695 }
8696 
8697 // If this is a case we can't handle, return null and let the default
8698 // expansion code take care of it.  If we CAN select this case, and if it
8699 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8700 // this case more efficiently than a constant pool load, lower it to the
8701 // sequence of ops that should be used.
8702 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8703                                              SelectionDAG &DAG) const {
8704   SDLoc dl(Op);
8705   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8706   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8707 
8708   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8709     // We first build an i32 vector, load it into a QPX register,
8710     // then convert it to a floating-point vector and compare it
8711     // to a zero vector to get the boolean result.
8712     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8713     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8714     MachinePointerInfo PtrInfo =
8715         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8716     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8717     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8718 
8719     assert(BVN->getNumOperands() == 4 &&
8720       "BUILD_VECTOR for v4i1 does not have 4 operands");
8721 
8722     bool IsConst = true;
8723     for (unsigned i = 0; i < 4; ++i) {
8724       if (BVN->getOperand(i).isUndef()) continue;
8725       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8726         IsConst = false;
8727         break;
8728       }
8729     }
8730 
8731     if (IsConst) {
8732       Constant *One =
8733         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8734       Constant *NegOne =
8735         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8736 
8737       Constant *CV[4];
8738       for (unsigned i = 0; i < 4; ++i) {
8739         if (BVN->getOperand(i).isUndef())
8740           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8741         else if (isNullConstant(BVN->getOperand(i)))
8742           CV[i] = NegOne;
8743         else
8744           CV[i] = One;
8745       }
8746 
8747       Constant *CP = ConstantVector::get(CV);
8748       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8749                                           16 /* alignment */);
8750 
8751       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8752       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8753       return DAG.getMemIntrinsicNode(
8754           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8755           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8756     }
8757 
8758     SmallVector<SDValue, 4> Stores;
8759     for (unsigned i = 0; i < 4; ++i) {
8760       if (BVN->getOperand(i).isUndef()) continue;
8761 
8762       unsigned Offset = 4*i;
8763       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8764       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8765 
8766       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8767       if (StoreSize > 4) {
8768         Stores.push_back(
8769             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8770                               PtrInfo.getWithOffset(Offset), MVT::i32));
8771       } else {
8772         SDValue StoreValue = BVN->getOperand(i);
8773         if (StoreSize < 4)
8774           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8775 
8776         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8777                                       PtrInfo.getWithOffset(Offset)));
8778       }
8779     }
8780 
8781     SDValue StoreChain;
8782     if (!Stores.empty())
8783       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8784     else
8785       StoreChain = DAG.getEntryNode();
8786 
8787     // Now load from v4i32 into the QPX register; this will extend it to
8788     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8789     // is typed as v4f64 because the QPX register integer states are not
8790     // explicitly represented.
8791 
8792     SDValue Ops[] = {StoreChain,
8793                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8794                      FIdx};
8795     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8796 
8797     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8798       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8799     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8800       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8801       LoadedVect);
8802 
8803     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8804 
8805     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8806   }
8807 
8808   // All other QPX vectors are handled by generic code.
8809   if (Subtarget.hasQPX())
8810     return SDValue();
8811 
8812   // Check if this is a splat of a constant value.
8813   APInt APSplatBits, APSplatUndef;
8814   unsigned SplatBitSize;
8815   bool HasAnyUndefs;
8816   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8817                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8818       SplatBitSize > 32) {
8819 
8820     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8821     // Handle load-and-splat patterns as we have instructions that will do this
8822     // in one go.
8823     if (InputLoad && DAG.isSplatValue(Op, true)) {
8824       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8825 
8826       // We have handling for 4 and 8 byte elements.
8827       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8828 
8829       // Checking for a single use of this load, we have to check for vector
8830       // width (128 bits) / ElementSize uses (since each operand of the
8831       // BUILD_VECTOR is a separate use of the value.
8832       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8833           ((Subtarget.hasVSX() && ElementSize == 64) ||
8834            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8835         SDValue Ops[] = {
8836           LD->getChain(),    // Chain
8837           LD->getBasePtr(),  // Ptr
8838           DAG.getValueType(Op.getValueType()) // VT
8839         };
8840         return
8841           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8842                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8843                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8844       }
8845     }
8846 
8847     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8848     // lowered to VSX instructions under certain conditions.
8849     // Without VSX, there is no pattern more efficient than expanding the node.
8850     if (Subtarget.hasVSX() &&
8851         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8852                                         Subtarget.hasP8Vector()))
8853       return Op;
8854     return SDValue();
8855   }
8856 
8857   unsigned SplatBits = APSplatBits.getZExtValue();
8858   unsigned SplatUndef = APSplatUndef.getZExtValue();
8859   unsigned SplatSize = SplatBitSize / 8;
8860 
8861   // First, handle single instruction cases.
8862 
8863   // All zeros?
8864   if (SplatBits == 0) {
8865     // Canonicalize all zero vectors to be v4i32.
8866     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8867       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8868       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8869     }
8870     return Op;
8871   }
8872 
8873   // We have XXSPLTIB for constant splats one byte wide
8874   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8875   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8876   if (Subtarget.hasP9Vector() && SplatSize == 1)
8877     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8878 
8879   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8880   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8881                     (32-SplatBitSize));
8882   if (SextVal >= -16 && SextVal <= 15)
8883     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8884 
8885   // Two instruction sequences.
8886 
8887   // If this value is in the range [-32,30] and is even, use:
8888   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8889   // If this value is in the range [17,31] and is odd, use:
8890   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8891   // If this value is in the range [-31,-17] and is odd, use:
8892   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8893   // Note the last two are three-instruction sequences.
8894   if (SextVal >= -32 && SextVal <= 31) {
8895     // To avoid having these optimizations undone by constant folding,
8896     // we convert to a pseudo that will be expanded later into one of
8897     // the above forms.
8898     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8899     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8900               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8901     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8902     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8903     if (VT == Op.getValueType())
8904       return RetVal;
8905     else
8906       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8907   }
8908 
8909   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8910   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8911   // for fneg/fabs.
8912   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8913     // Make -1 and vspltisw -1:
8914     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8915 
8916     // Make the VSLW intrinsic, computing 0x8000_0000.
8917     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8918                                    OnesV, DAG, dl);
8919 
8920     // xor by OnesV to invert it.
8921     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8922     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8923   }
8924 
8925   // Check to see if this is a wide variety of vsplti*, binop self cases.
8926   static const signed char SplatCsts[] = {
8927     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8928     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8929   };
8930 
8931   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8932     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8933     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8934     int i = SplatCsts[idx];
8935 
8936     // Figure out what shift amount will be used by altivec if shifted by i in
8937     // this splat size.
8938     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8939 
8940     // vsplti + shl self.
8941     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8942       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8943       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8944         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8945         Intrinsic::ppc_altivec_vslw
8946       };
8947       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8948       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8949     }
8950 
8951     // vsplti + srl self.
8952     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8953       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8954       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8955         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8956         Intrinsic::ppc_altivec_vsrw
8957       };
8958       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8959       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8960     }
8961 
8962     // vsplti + sra self.
8963     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8964       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8965       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8966         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8967         Intrinsic::ppc_altivec_vsraw
8968       };
8969       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8970       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8971     }
8972 
8973     // vsplti + rol self.
8974     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8975                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8976       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8977       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8978         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8979         Intrinsic::ppc_altivec_vrlw
8980       };
8981       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8982       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8983     }
8984 
8985     // t = vsplti c, result = vsldoi t, t, 1
8986     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8987       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8988       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8989       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8990     }
8991     // t = vsplti c, result = vsldoi t, t, 2
8992     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8993       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8994       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8995       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8996     }
8997     // t = vsplti c, result = vsldoi t, t, 3
8998     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8999       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9000       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9001       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9002     }
9003   }
9004 
9005   return SDValue();
9006 }
9007 
9008 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9009 /// the specified operations to build the shuffle.
9010 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9011                                       SDValue RHS, SelectionDAG &DAG,
9012                                       const SDLoc &dl) {
9013   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9014   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9015   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9016 
9017   enum {
9018     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9019     OP_VMRGHW,
9020     OP_VMRGLW,
9021     OP_VSPLTISW0,
9022     OP_VSPLTISW1,
9023     OP_VSPLTISW2,
9024     OP_VSPLTISW3,
9025     OP_VSLDOI4,
9026     OP_VSLDOI8,
9027     OP_VSLDOI12
9028   };
9029 
9030   if (OpNum == OP_COPY) {
9031     if (LHSID == (1*9+2)*9+3) return LHS;
9032     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9033     return RHS;
9034   }
9035 
9036   SDValue OpLHS, OpRHS;
9037   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9038   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9039 
9040   int ShufIdxs[16];
9041   switch (OpNum) {
9042   default: llvm_unreachable("Unknown i32 permute!");
9043   case OP_VMRGHW:
9044     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9045     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9046     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9047     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9048     break;
9049   case OP_VMRGLW:
9050     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9051     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9052     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9053     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9054     break;
9055   case OP_VSPLTISW0:
9056     for (unsigned i = 0; i != 16; ++i)
9057       ShufIdxs[i] = (i&3)+0;
9058     break;
9059   case OP_VSPLTISW1:
9060     for (unsigned i = 0; i != 16; ++i)
9061       ShufIdxs[i] = (i&3)+4;
9062     break;
9063   case OP_VSPLTISW2:
9064     for (unsigned i = 0; i != 16; ++i)
9065       ShufIdxs[i] = (i&3)+8;
9066     break;
9067   case OP_VSPLTISW3:
9068     for (unsigned i = 0; i != 16; ++i)
9069       ShufIdxs[i] = (i&3)+12;
9070     break;
9071   case OP_VSLDOI4:
9072     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9073   case OP_VSLDOI8:
9074     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9075   case OP_VSLDOI12:
9076     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9077   }
9078   EVT VT = OpLHS.getValueType();
9079   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9080   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9081   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9082   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9083 }
9084 
9085 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9086 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9087 /// SDValue.
9088 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9089                                            SelectionDAG &DAG) const {
9090   const unsigned BytesInVector = 16;
9091   bool IsLE = Subtarget.isLittleEndian();
9092   SDLoc dl(N);
9093   SDValue V1 = N->getOperand(0);
9094   SDValue V2 = N->getOperand(1);
9095   unsigned ShiftElts = 0, InsertAtByte = 0;
9096   bool Swap = false;
9097 
9098   // Shifts required to get the byte we want at element 7.
9099   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9100                                    0, 15, 14, 13, 12, 11, 10, 9};
9101   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9102                                 1, 2,  3,  4,  5,  6,  7,  8};
9103 
9104   ArrayRef<int> Mask = N->getMask();
9105   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9106 
9107   // For each mask element, find out if we're just inserting something
9108   // from V2 into V1 or vice versa.
9109   // Possible permutations inserting an element from V2 into V1:
9110   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9111   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9112   //   ...
9113   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9114   // Inserting from V1 into V2 will be similar, except mask range will be
9115   // [16,31].
9116 
9117   bool FoundCandidate = false;
9118   // If both vector operands for the shuffle are the same vector, the mask
9119   // will contain only elements from the first one and the second one will be
9120   // undef.
9121   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9122   // Go through the mask of half-words to find an element that's being moved
9123   // from one vector to the other.
9124   for (unsigned i = 0; i < BytesInVector; ++i) {
9125     unsigned CurrentElement = Mask[i];
9126     // If 2nd operand is undefined, we should only look for element 7 in the
9127     // Mask.
9128     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9129       continue;
9130 
9131     bool OtherElementsInOrder = true;
9132     // Examine the other elements in the Mask to see if they're in original
9133     // order.
9134     for (unsigned j = 0; j < BytesInVector; ++j) {
9135       if (j == i)
9136         continue;
9137       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9138       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9139       // in which we always assume we're always picking from the 1st operand.
9140       int MaskOffset =
9141           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9142       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9143         OtherElementsInOrder = false;
9144         break;
9145       }
9146     }
9147     // If other elements are in original order, we record the number of shifts
9148     // we need to get the element we want into element 7. Also record which byte
9149     // in the vector we should insert into.
9150     if (OtherElementsInOrder) {
9151       // If 2nd operand is undefined, we assume no shifts and no swapping.
9152       if (V2.isUndef()) {
9153         ShiftElts = 0;
9154         Swap = false;
9155       } else {
9156         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9157         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9158                          : BigEndianShifts[CurrentElement & 0xF];
9159         Swap = CurrentElement < BytesInVector;
9160       }
9161       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9162       FoundCandidate = true;
9163       break;
9164     }
9165   }
9166 
9167   if (!FoundCandidate)
9168     return SDValue();
9169 
9170   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9171   // optionally with VECSHL if shift is required.
9172   if (Swap)
9173     std::swap(V1, V2);
9174   if (V2.isUndef())
9175     V2 = V1;
9176   if (ShiftElts) {
9177     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9178                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9179     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9180                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9181   }
9182   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9183                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9184 }
9185 
9186 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9187 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9188 /// SDValue.
9189 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9190                                            SelectionDAG &DAG) const {
9191   const unsigned NumHalfWords = 8;
9192   const unsigned BytesInVector = NumHalfWords * 2;
9193   // Check that the shuffle is on half-words.
9194   if (!isNByteElemShuffleMask(N, 2, 1))
9195     return SDValue();
9196 
9197   bool IsLE = Subtarget.isLittleEndian();
9198   SDLoc dl(N);
9199   SDValue V1 = N->getOperand(0);
9200   SDValue V2 = N->getOperand(1);
9201   unsigned ShiftElts = 0, InsertAtByte = 0;
9202   bool Swap = false;
9203 
9204   // Shifts required to get the half-word we want at element 3.
9205   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9206   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9207 
9208   uint32_t Mask = 0;
9209   uint32_t OriginalOrderLow = 0x1234567;
9210   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9211   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9212   // 32-bit space, only need 4-bit nibbles per element.
9213   for (unsigned i = 0; i < NumHalfWords; ++i) {
9214     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9215     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9216   }
9217 
9218   // For each mask element, find out if we're just inserting something
9219   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9220   // from V2 into V1:
9221   //   X, 1, 2, 3, 4, 5, 6, 7
9222   //   0, X, 2, 3, 4, 5, 6, 7
9223   //   0, 1, X, 3, 4, 5, 6, 7
9224   //   0, 1, 2, X, 4, 5, 6, 7
9225   //   0, 1, 2, 3, X, 5, 6, 7
9226   //   0, 1, 2, 3, 4, X, 6, 7
9227   //   0, 1, 2, 3, 4, 5, X, 7
9228   //   0, 1, 2, 3, 4, 5, 6, X
9229   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9230 
9231   bool FoundCandidate = false;
9232   // Go through the mask of half-words to find an element that's being moved
9233   // from one vector to the other.
9234   for (unsigned i = 0; i < NumHalfWords; ++i) {
9235     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9236     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9237     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9238     uint32_t TargetOrder = 0x0;
9239 
9240     // If both vector operands for the shuffle are the same vector, the mask
9241     // will contain only elements from the first one and the second one will be
9242     // undef.
9243     if (V2.isUndef()) {
9244       ShiftElts = 0;
9245       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9246       TargetOrder = OriginalOrderLow;
9247       Swap = false;
9248       // Skip if not the correct element or mask of other elements don't equal
9249       // to our expected order.
9250       if (MaskOneElt == VINSERTHSrcElem &&
9251           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9252         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9253         FoundCandidate = true;
9254         break;
9255       }
9256     } else { // If both operands are defined.
9257       // Target order is [8,15] if the current mask is between [0,7].
9258       TargetOrder =
9259           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9260       // Skip if mask of other elements don't equal our expected order.
9261       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9262         // We only need the last 3 bits for the number of shifts.
9263         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9264                          : BigEndianShifts[MaskOneElt & 0x7];
9265         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9266         Swap = MaskOneElt < NumHalfWords;
9267         FoundCandidate = true;
9268         break;
9269       }
9270     }
9271   }
9272 
9273   if (!FoundCandidate)
9274     return SDValue();
9275 
9276   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9277   // optionally with VECSHL if shift is required.
9278   if (Swap)
9279     std::swap(V1, V2);
9280   if (V2.isUndef())
9281     V2 = V1;
9282   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9283   if (ShiftElts) {
9284     // Double ShiftElts because we're left shifting on v16i8 type.
9285     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9286                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9287     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9288     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9289                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9290     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9291   }
9292   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9293   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9294                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9295   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9296 }
9297 
9298 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9299 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9300 /// return the code it can be lowered into.  Worst case, it can always be
9301 /// lowered into a vperm.
9302 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9303                                                SelectionDAG &DAG) const {
9304   SDLoc dl(Op);
9305   SDValue V1 = Op.getOperand(0);
9306   SDValue V2 = Op.getOperand(1);
9307   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9308   EVT VT = Op.getValueType();
9309   bool isLittleEndian = Subtarget.isLittleEndian();
9310 
9311   unsigned ShiftElts, InsertAtByte;
9312   bool Swap = false;
9313 
9314   // If this is a load-and-splat, we can do that with a single instruction
9315   // in some cases. However if the load has multiple uses, we don't want to
9316   // combine it because that will just produce multiple loads.
9317   const SDValue *InputLoad = getNormalLoadInput(V1);
9318   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9319       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9320       InputLoad->hasOneUse()) {
9321     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9322     int SplatIdx =
9323       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9324 
9325     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9326     // For 4-byte load-and-splat, we need Power9.
9327     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9328       uint64_t Offset = 0;
9329       if (IsFourByte)
9330         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9331       else
9332         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9333       SDValue BasePtr = LD->getBasePtr();
9334       if (Offset != 0)
9335         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9336                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9337       SDValue Ops[] = {
9338         LD->getChain(),    // Chain
9339         BasePtr,           // BasePtr
9340         DAG.getValueType(Op.getValueType()) // VT
9341       };
9342       SDVTList VTL =
9343         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9344       SDValue LdSplt =
9345         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9346                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9347       if (LdSplt.getValueType() != SVOp->getValueType(0))
9348         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9349       return LdSplt;
9350     }
9351   }
9352   if (Subtarget.hasP9Vector() &&
9353       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9354                            isLittleEndian)) {
9355     if (Swap)
9356       std::swap(V1, V2);
9357     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9358     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9359     if (ShiftElts) {
9360       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9361                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9362       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9363                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9364       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9365     }
9366     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9367                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9368     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9369   }
9370 
9371   if (Subtarget.hasP9Altivec()) {
9372     SDValue NewISDNode;
9373     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9374       return NewISDNode;
9375 
9376     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9377       return NewISDNode;
9378   }
9379 
9380   if (Subtarget.hasVSX() &&
9381       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9382     if (Swap)
9383       std::swap(V1, V2);
9384     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9385     SDValue Conv2 =
9386         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9387 
9388     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9389                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9390     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9391   }
9392 
9393   if (Subtarget.hasVSX() &&
9394     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9395     if (Swap)
9396       std::swap(V1, V2);
9397     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9398     SDValue Conv2 =
9399         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9400 
9401     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9402                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9403     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9404   }
9405 
9406   if (Subtarget.hasP9Vector()) {
9407      if (PPC::isXXBRHShuffleMask(SVOp)) {
9408       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9409       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9410       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9411     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9412       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9413       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9414       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9415     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9416       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9417       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9418       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9419     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9420       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9421       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9422       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9423     }
9424   }
9425 
9426   if (Subtarget.hasVSX()) {
9427     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9428       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9429 
9430       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9431       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9432                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9433       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9434     }
9435 
9436     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9437     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9438       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9439       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9440       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9441     }
9442   }
9443 
9444   if (Subtarget.hasQPX()) {
9445     if (VT.getVectorNumElements() != 4)
9446       return SDValue();
9447 
9448     if (V2.isUndef()) V2 = V1;
9449 
9450     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9451     if (AlignIdx != -1) {
9452       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9453                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9454     } else if (SVOp->isSplat()) {
9455       int SplatIdx = SVOp->getSplatIndex();
9456       if (SplatIdx >= 4) {
9457         std::swap(V1, V2);
9458         SplatIdx -= 4;
9459       }
9460 
9461       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9462                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9463     }
9464 
9465     // Lower this into a qvgpci/qvfperm pair.
9466 
9467     // Compute the qvgpci literal
9468     unsigned idx = 0;
9469     for (unsigned i = 0; i < 4; ++i) {
9470       int m = SVOp->getMaskElt(i);
9471       unsigned mm = m >= 0 ? (unsigned) m : i;
9472       idx |= mm << (3-i)*3;
9473     }
9474 
9475     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9476                              DAG.getConstant(idx, dl, MVT::i32));
9477     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9478   }
9479 
9480   // Cases that are handled by instructions that take permute immediates
9481   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9482   // selected by the instruction selector.
9483   if (V2.isUndef()) {
9484     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9485         PPC::isSplatShuffleMask(SVOp, 2) ||
9486         PPC::isSplatShuffleMask(SVOp, 4) ||
9487         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9488         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9489         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9490         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9491         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9492         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9493         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9494         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9495         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9496         (Subtarget.hasP8Altivec() && (
9497          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9498          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9499          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9500       return Op;
9501     }
9502   }
9503 
9504   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9505   // and produce a fixed permutation.  If any of these match, do not lower to
9506   // VPERM.
9507   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9508   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9509       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9510       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9511       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9512       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9513       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9514       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9515       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9516       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9517       (Subtarget.hasP8Altivec() && (
9518        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9519        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9520        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9521     return Op;
9522 
9523   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9524   // perfect shuffle table to emit an optimal matching sequence.
9525   ArrayRef<int> PermMask = SVOp->getMask();
9526 
9527   unsigned PFIndexes[4];
9528   bool isFourElementShuffle = true;
9529   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9530     unsigned EltNo = 8;   // Start out undef.
9531     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9532       if (PermMask[i*4+j] < 0)
9533         continue;   // Undef, ignore it.
9534 
9535       unsigned ByteSource = PermMask[i*4+j];
9536       if ((ByteSource & 3) != j) {
9537         isFourElementShuffle = false;
9538         break;
9539       }
9540 
9541       if (EltNo == 8) {
9542         EltNo = ByteSource/4;
9543       } else if (EltNo != ByteSource/4) {
9544         isFourElementShuffle = false;
9545         break;
9546       }
9547     }
9548     PFIndexes[i] = EltNo;
9549   }
9550 
9551   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9552   // perfect shuffle vector to determine if it is cost effective to do this as
9553   // discrete instructions, or whether we should use a vperm.
9554   // For now, we skip this for little endian until such time as we have a
9555   // little-endian perfect shuffle table.
9556   if (isFourElementShuffle && !isLittleEndian) {
9557     // Compute the index in the perfect shuffle table.
9558     unsigned PFTableIndex =
9559       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9560 
9561     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9562     unsigned Cost  = (PFEntry >> 30);
9563 
9564     // Determining when to avoid vperm is tricky.  Many things affect the cost
9565     // of vperm, particularly how many times the perm mask needs to be computed.
9566     // For example, if the perm mask can be hoisted out of a loop or is already
9567     // used (perhaps because there are multiple permutes with the same shuffle
9568     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9569     // the loop requires an extra register.
9570     //
9571     // As a compromise, we only emit discrete instructions if the shuffle can be
9572     // generated in 3 or fewer operations.  When we have loop information
9573     // available, if this block is within a loop, we should avoid using vperm
9574     // for 3-operation perms and use a constant pool load instead.
9575     if (Cost < 3)
9576       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9577   }
9578 
9579   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9580   // vector that will get spilled to the constant pool.
9581   if (V2.isUndef()) V2 = V1;
9582 
9583   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9584   // that it is in input element units, not in bytes.  Convert now.
9585 
9586   // For little endian, the order of the input vectors is reversed, and
9587   // the permutation mask is complemented with respect to 31.  This is
9588   // necessary to produce proper semantics with the big-endian-biased vperm
9589   // instruction.
9590   EVT EltVT = V1.getValueType().getVectorElementType();
9591   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9592 
9593   SmallVector<SDValue, 16> ResultMask;
9594   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9595     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9596 
9597     for (unsigned j = 0; j != BytesPerElement; ++j)
9598       if (isLittleEndian)
9599         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9600                                              dl, MVT::i32));
9601       else
9602         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9603                                              MVT::i32));
9604   }
9605 
9606   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9607   if (isLittleEndian)
9608     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9609                        V2, V1, VPermMask);
9610   else
9611     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9612                        V1, V2, VPermMask);
9613 }
9614 
9615 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9616 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9617 /// information about the intrinsic.
9618 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9619                                  bool &isDot, const PPCSubtarget &Subtarget) {
9620   unsigned IntrinsicID =
9621       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9622   CompareOpc = -1;
9623   isDot = false;
9624   switch (IntrinsicID) {
9625   default:
9626     return false;
9627   // Comparison predicates.
9628   case Intrinsic::ppc_altivec_vcmpbfp_p:
9629     CompareOpc = 966;
9630     isDot = true;
9631     break;
9632   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9633     CompareOpc = 198;
9634     isDot = true;
9635     break;
9636   case Intrinsic::ppc_altivec_vcmpequb_p:
9637     CompareOpc = 6;
9638     isDot = true;
9639     break;
9640   case Intrinsic::ppc_altivec_vcmpequh_p:
9641     CompareOpc = 70;
9642     isDot = true;
9643     break;
9644   case Intrinsic::ppc_altivec_vcmpequw_p:
9645     CompareOpc = 134;
9646     isDot = true;
9647     break;
9648   case Intrinsic::ppc_altivec_vcmpequd_p:
9649     if (Subtarget.hasP8Altivec()) {
9650       CompareOpc = 199;
9651       isDot = true;
9652     } else
9653       return false;
9654     break;
9655   case Intrinsic::ppc_altivec_vcmpneb_p:
9656   case Intrinsic::ppc_altivec_vcmpneh_p:
9657   case Intrinsic::ppc_altivec_vcmpnew_p:
9658   case Intrinsic::ppc_altivec_vcmpnezb_p:
9659   case Intrinsic::ppc_altivec_vcmpnezh_p:
9660   case Intrinsic::ppc_altivec_vcmpnezw_p:
9661     if (Subtarget.hasP9Altivec()) {
9662       switch (IntrinsicID) {
9663       default:
9664         llvm_unreachable("Unknown comparison intrinsic.");
9665       case Intrinsic::ppc_altivec_vcmpneb_p:
9666         CompareOpc = 7;
9667         break;
9668       case Intrinsic::ppc_altivec_vcmpneh_p:
9669         CompareOpc = 71;
9670         break;
9671       case Intrinsic::ppc_altivec_vcmpnew_p:
9672         CompareOpc = 135;
9673         break;
9674       case Intrinsic::ppc_altivec_vcmpnezb_p:
9675         CompareOpc = 263;
9676         break;
9677       case Intrinsic::ppc_altivec_vcmpnezh_p:
9678         CompareOpc = 327;
9679         break;
9680       case Intrinsic::ppc_altivec_vcmpnezw_p:
9681         CompareOpc = 391;
9682         break;
9683       }
9684       isDot = true;
9685     } else
9686       return false;
9687     break;
9688   case Intrinsic::ppc_altivec_vcmpgefp_p:
9689     CompareOpc = 454;
9690     isDot = true;
9691     break;
9692   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9693     CompareOpc = 710;
9694     isDot = true;
9695     break;
9696   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9697     CompareOpc = 774;
9698     isDot = true;
9699     break;
9700   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9701     CompareOpc = 838;
9702     isDot = true;
9703     break;
9704   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9705     CompareOpc = 902;
9706     isDot = true;
9707     break;
9708   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9709     if (Subtarget.hasP8Altivec()) {
9710       CompareOpc = 967;
9711       isDot = true;
9712     } else
9713       return false;
9714     break;
9715   case Intrinsic::ppc_altivec_vcmpgtub_p:
9716     CompareOpc = 518;
9717     isDot = true;
9718     break;
9719   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9720     CompareOpc = 582;
9721     isDot = true;
9722     break;
9723   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9724     CompareOpc = 646;
9725     isDot = true;
9726     break;
9727   case Intrinsic::ppc_altivec_vcmpgtud_p:
9728     if (Subtarget.hasP8Altivec()) {
9729       CompareOpc = 711;
9730       isDot = true;
9731     } else
9732       return false;
9733     break;
9734 
9735   // VSX predicate comparisons use the same infrastructure
9736   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9737   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9738   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9739   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9740   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9741   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9742     if (Subtarget.hasVSX()) {
9743       switch (IntrinsicID) {
9744       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9745         CompareOpc = 99;
9746         break;
9747       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9748         CompareOpc = 115;
9749         break;
9750       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9751         CompareOpc = 107;
9752         break;
9753       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9754         CompareOpc = 67;
9755         break;
9756       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9757         CompareOpc = 83;
9758         break;
9759       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9760         CompareOpc = 75;
9761         break;
9762       }
9763       isDot = true;
9764     } else
9765       return false;
9766     break;
9767 
9768   // Normal Comparisons.
9769   case Intrinsic::ppc_altivec_vcmpbfp:
9770     CompareOpc = 966;
9771     break;
9772   case Intrinsic::ppc_altivec_vcmpeqfp:
9773     CompareOpc = 198;
9774     break;
9775   case Intrinsic::ppc_altivec_vcmpequb:
9776     CompareOpc = 6;
9777     break;
9778   case Intrinsic::ppc_altivec_vcmpequh:
9779     CompareOpc = 70;
9780     break;
9781   case Intrinsic::ppc_altivec_vcmpequw:
9782     CompareOpc = 134;
9783     break;
9784   case Intrinsic::ppc_altivec_vcmpequd:
9785     if (Subtarget.hasP8Altivec())
9786       CompareOpc = 199;
9787     else
9788       return false;
9789     break;
9790   case Intrinsic::ppc_altivec_vcmpneb:
9791   case Intrinsic::ppc_altivec_vcmpneh:
9792   case Intrinsic::ppc_altivec_vcmpnew:
9793   case Intrinsic::ppc_altivec_vcmpnezb:
9794   case Intrinsic::ppc_altivec_vcmpnezh:
9795   case Intrinsic::ppc_altivec_vcmpnezw:
9796     if (Subtarget.hasP9Altivec())
9797       switch (IntrinsicID) {
9798       default:
9799         llvm_unreachable("Unknown comparison intrinsic.");
9800       case Intrinsic::ppc_altivec_vcmpneb:
9801         CompareOpc = 7;
9802         break;
9803       case Intrinsic::ppc_altivec_vcmpneh:
9804         CompareOpc = 71;
9805         break;
9806       case Intrinsic::ppc_altivec_vcmpnew:
9807         CompareOpc = 135;
9808         break;
9809       case Intrinsic::ppc_altivec_vcmpnezb:
9810         CompareOpc = 263;
9811         break;
9812       case Intrinsic::ppc_altivec_vcmpnezh:
9813         CompareOpc = 327;
9814         break;
9815       case Intrinsic::ppc_altivec_vcmpnezw:
9816         CompareOpc = 391;
9817         break;
9818       }
9819     else
9820       return false;
9821     break;
9822   case Intrinsic::ppc_altivec_vcmpgefp:
9823     CompareOpc = 454;
9824     break;
9825   case Intrinsic::ppc_altivec_vcmpgtfp:
9826     CompareOpc = 710;
9827     break;
9828   case Intrinsic::ppc_altivec_vcmpgtsb:
9829     CompareOpc = 774;
9830     break;
9831   case Intrinsic::ppc_altivec_vcmpgtsh:
9832     CompareOpc = 838;
9833     break;
9834   case Intrinsic::ppc_altivec_vcmpgtsw:
9835     CompareOpc = 902;
9836     break;
9837   case Intrinsic::ppc_altivec_vcmpgtsd:
9838     if (Subtarget.hasP8Altivec())
9839       CompareOpc = 967;
9840     else
9841       return false;
9842     break;
9843   case Intrinsic::ppc_altivec_vcmpgtub:
9844     CompareOpc = 518;
9845     break;
9846   case Intrinsic::ppc_altivec_vcmpgtuh:
9847     CompareOpc = 582;
9848     break;
9849   case Intrinsic::ppc_altivec_vcmpgtuw:
9850     CompareOpc = 646;
9851     break;
9852   case Intrinsic::ppc_altivec_vcmpgtud:
9853     if (Subtarget.hasP8Altivec())
9854       CompareOpc = 711;
9855     else
9856       return false;
9857     break;
9858   }
9859   return true;
9860 }
9861 
9862 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9863 /// lower, do it, otherwise return null.
9864 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9865                                                    SelectionDAG &DAG) const {
9866   unsigned IntrinsicID =
9867     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9868 
9869   SDLoc dl(Op);
9870 
9871   if (IntrinsicID == Intrinsic::thread_pointer) {
9872     // Reads the thread pointer register, used for __builtin_thread_pointer.
9873     if (Subtarget.isPPC64())
9874       return DAG.getRegister(PPC::X13, MVT::i64);
9875     return DAG.getRegister(PPC::R2, MVT::i32);
9876   }
9877 
9878   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9879   // opcode number of the comparison.
9880   int CompareOpc;
9881   bool isDot;
9882   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9883     return SDValue();    // Don't custom lower most intrinsics.
9884 
9885   // If this is a non-dot comparison, make the VCMP node and we are done.
9886   if (!isDot) {
9887     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9888                               Op.getOperand(1), Op.getOperand(2),
9889                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9890     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9891   }
9892 
9893   // Create the PPCISD altivec 'dot' comparison node.
9894   SDValue Ops[] = {
9895     Op.getOperand(2),  // LHS
9896     Op.getOperand(3),  // RHS
9897     DAG.getConstant(CompareOpc, dl, MVT::i32)
9898   };
9899   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9900   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9901 
9902   // Now that we have the comparison, emit a copy from the CR to a GPR.
9903   // This is flagged to the above dot comparison.
9904   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9905                                 DAG.getRegister(PPC::CR6, MVT::i32),
9906                                 CompNode.getValue(1));
9907 
9908   // Unpack the result based on how the target uses it.
9909   unsigned BitNo;   // Bit # of CR6.
9910   bool InvertBit;   // Invert result?
9911   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9912   default:  // Can't happen, don't crash on invalid number though.
9913   case 0:   // Return the value of the EQ bit of CR6.
9914     BitNo = 0; InvertBit = false;
9915     break;
9916   case 1:   // Return the inverted value of the EQ bit of CR6.
9917     BitNo = 0; InvertBit = true;
9918     break;
9919   case 2:   // Return the value of the LT bit of CR6.
9920     BitNo = 2; InvertBit = false;
9921     break;
9922   case 3:   // Return the inverted value of the LT bit of CR6.
9923     BitNo = 2; InvertBit = true;
9924     break;
9925   }
9926 
9927   // Shift the bit into the low position.
9928   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9929                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9930   // Isolate the bit.
9931   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9932                       DAG.getConstant(1, dl, MVT::i32));
9933 
9934   // If we are supposed to, toggle the bit.
9935   if (InvertBit)
9936     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9937                         DAG.getConstant(1, dl, MVT::i32));
9938   return Flags;
9939 }
9940 
9941 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9942                                                SelectionDAG &DAG) const {
9943   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9944   // the beginning of the argument list.
9945   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9946   SDLoc DL(Op);
9947   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9948   case Intrinsic::ppc_cfence: {
9949     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9950     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9951     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9952                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9953                                                   Op.getOperand(ArgStart + 1)),
9954                                       Op.getOperand(0)),
9955                    0);
9956   }
9957   default:
9958     break;
9959   }
9960   return SDValue();
9961 }
9962 
9963 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9964   // Check for a DIV with the same operands as this REM.
9965   for (auto UI : Op.getOperand(1)->uses()) {
9966     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9967         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9968       if (UI->getOperand(0) == Op.getOperand(0) &&
9969           UI->getOperand(1) == Op.getOperand(1))
9970         return SDValue();
9971   }
9972   return Op;
9973 }
9974 
9975 // Lower scalar BSWAP64 to xxbrd.
9976 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9977   SDLoc dl(Op);
9978   // MTVSRDD
9979   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9980                    Op.getOperand(0));
9981   // XXBRD
9982   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9983   // MFVSRD
9984   int VectorIndex = 0;
9985   if (Subtarget.isLittleEndian())
9986     VectorIndex = 1;
9987   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9988                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9989   return Op;
9990 }
9991 
9992 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9993 // compared to a value that is atomically loaded (atomic loads zero-extend).
9994 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9995                                                 SelectionDAG &DAG) const {
9996   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9997          "Expecting an atomic compare-and-swap here.");
9998   SDLoc dl(Op);
9999   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10000   EVT MemVT = AtomicNode->getMemoryVT();
10001   if (MemVT.getSizeInBits() >= 32)
10002     return Op;
10003 
10004   SDValue CmpOp = Op.getOperand(2);
10005   // If this is already correctly zero-extended, leave it alone.
10006   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10007   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10008     return Op;
10009 
10010   // Clear the high bits of the compare operand.
10011   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10012   SDValue NewCmpOp =
10013     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10014                 DAG.getConstant(MaskVal, dl, MVT::i32));
10015 
10016   // Replace the existing compare operand with the properly zero-extended one.
10017   SmallVector<SDValue, 4> Ops;
10018   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10019     Ops.push_back(AtomicNode->getOperand(i));
10020   Ops[2] = NewCmpOp;
10021   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10022   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10023   auto NodeTy =
10024     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10025   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10026 }
10027 
10028 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10029                                                  SelectionDAG &DAG) const {
10030   SDLoc dl(Op);
10031   // Create a stack slot that is 16-byte aligned.
10032   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10033   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10034   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10035   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10036 
10037   // Store the input value into Value#0 of the stack slot.
10038   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10039                                MachinePointerInfo());
10040   // Load it out.
10041   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10042 }
10043 
10044 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10045                                                   SelectionDAG &DAG) const {
10046   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10047          "Should only be called for ISD::INSERT_VECTOR_ELT");
10048 
10049   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10050   // We have legal lowering for constant indices but not for variable ones.
10051   if (!C)
10052     return SDValue();
10053 
10054   EVT VT = Op.getValueType();
10055   SDLoc dl(Op);
10056   SDValue V1 = Op.getOperand(0);
10057   SDValue V2 = Op.getOperand(1);
10058   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10059   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10060     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10061     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10062     unsigned InsertAtElement = C->getZExtValue();
10063     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10064     if (Subtarget.isLittleEndian()) {
10065       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10066     }
10067     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10068                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10069   }
10070   return Op;
10071 }
10072 
10073 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10074                                                    SelectionDAG &DAG) const {
10075   SDLoc dl(Op);
10076   SDNode *N = Op.getNode();
10077 
10078   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10079          "Unknown extract_vector_elt type");
10080 
10081   SDValue Value = N->getOperand(0);
10082 
10083   // The first part of this is like the store lowering except that we don't
10084   // need to track the chain.
10085 
10086   // The values are now known to be -1 (false) or 1 (true). To convert this
10087   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10088   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10089   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10090 
10091   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10092   // understand how to form the extending load.
10093   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10094 
10095   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10096 
10097   // Now convert to an integer and store.
10098   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10099     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10100     Value);
10101 
10102   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10103   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10104   MachinePointerInfo PtrInfo =
10105       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10106   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10107   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10108 
10109   SDValue StoreChain = DAG.getEntryNode();
10110   SDValue Ops[] = {StoreChain,
10111                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10112                    Value, FIdx};
10113   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10114 
10115   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10116     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10117 
10118   // Extract the value requested.
10119   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10120   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10121   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10122 
10123   SDValue IntVal =
10124       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10125 
10126   if (!Subtarget.useCRBits())
10127     return IntVal;
10128 
10129   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10130 }
10131 
10132 /// Lowering for QPX v4i1 loads
10133 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10134                                            SelectionDAG &DAG) const {
10135   SDLoc dl(Op);
10136   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10137   SDValue LoadChain = LN->getChain();
10138   SDValue BasePtr = LN->getBasePtr();
10139 
10140   if (Op.getValueType() == MVT::v4f64 ||
10141       Op.getValueType() == MVT::v4f32) {
10142     EVT MemVT = LN->getMemoryVT();
10143     unsigned Alignment = LN->getAlignment();
10144 
10145     // If this load is properly aligned, then it is legal.
10146     if (Alignment >= MemVT.getStoreSize())
10147       return Op;
10148 
10149     EVT ScalarVT = Op.getValueType().getScalarType(),
10150         ScalarMemVT = MemVT.getScalarType();
10151     unsigned Stride = ScalarMemVT.getStoreSize();
10152 
10153     SDValue Vals[4], LoadChains[4];
10154     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10155       SDValue Load;
10156       if (ScalarVT != ScalarMemVT)
10157         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10158                               BasePtr,
10159                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10160                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10161                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10162       else
10163         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10164                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10165                            MinAlign(Alignment, Idx * Stride),
10166                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10167 
10168       if (Idx == 0 && LN->isIndexed()) {
10169         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10170                "Unknown addressing mode on vector load");
10171         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10172                                   LN->getAddressingMode());
10173       }
10174 
10175       Vals[Idx] = Load;
10176       LoadChains[Idx] = Load.getValue(1);
10177 
10178       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10179                             DAG.getConstant(Stride, dl,
10180                                             BasePtr.getValueType()));
10181     }
10182 
10183     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10184     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10185 
10186     if (LN->isIndexed()) {
10187       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10188       return DAG.getMergeValues(RetOps, dl);
10189     }
10190 
10191     SDValue RetOps[] = { Value, TF };
10192     return DAG.getMergeValues(RetOps, dl);
10193   }
10194 
10195   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10196   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10197 
10198   // To lower v4i1 from a byte array, we load the byte elements of the
10199   // vector and then reuse the BUILD_VECTOR logic.
10200 
10201   SDValue VectElmts[4], VectElmtChains[4];
10202   for (unsigned i = 0; i < 4; ++i) {
10203     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10204     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10205 
10206     VectElmts[i] = DAG.getExtLoad(
10207         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10208         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10209         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10210     VectElmtChains[i] = VectElmts[i].getValue(1);
10211   }
10212 
10213   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10214   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10215 
10216   SDValue RVals[] = { Value, LoadChain };
10217   return DAG.getMergeValues(RVals, dl);
10218 }
10219 
10220 /// Lowering for QPX v4i1 stores
10221 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10222                                             SelectionDAG &DAG) const {
10223   SDLoc dl(Op);
10224   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10225   SDValue StoreChain = SN->getChain();
10226   SDValue BasePtr = SN->getBasePtr();
10227   SDValue Value = SN->getValue();
10228 
10229   if (Value.getValueType() == MVT::v4f64 ||
10230       Value.getValueType() == MVT::v4f32) {
10231     EVT MemVT = SN->getMemoryVT();
10232     unsigned Alignment = SN->getAlignment();
10233 
10234     // If this store is properly aligned, then it is legal.
10235     if (Alignment >= MemVT.getStoreSize())
10236       return Op;
10237 
10238     EVT ScalarVT = Value.getValueType().getScalarType(),
10239         ScalarMemVT = MemVT.getScalarType();
10240     unsigned Stride = ScalarMemVT.getStoreSize();
10241 
10242     SDValue Stores[4];
10243     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10244       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10245                                DAG.getVectorIdxConstant(Idx, dl));
10246       SDValue Store;
10247       if (ScalarVT != ScalarMemVT)
10248         Store =
10249             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10250                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10251                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10252                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10253       else
10254         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10255                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10256                              MinAlign(Alignment, Idx * Stride),
10257                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10258 
10259       if (Idx == 0 && SN->isIndexed()) {
10260         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10261                "Unknown addressing mode on vector store");
10262         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10263                                     SN->getAddressingMode());
10264       }
10265 
10266       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10267                             DAG.getConstant(Stride, dl,
10268                                             BasePtr.getValueType()));
10269       Stores[Idx] = Store;
10270     }
10271 
10272     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10273 
10274     if (SN->isIndexed()) {
10275       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10276       return DAG.getMergeValues(RetOps, dl);
10277     }
10278 
10279     return TF;
10280   }
10281 
10282   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10283   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10284 
10285   // The values are now known to be -1 (false) or 1 (true). To convert this
10286   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10287   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10288   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10289 
10290   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10291   // understand how to form the extending load.
10292   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10293 
10294   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10295 
10296   // Now convert to an integer and store.
10297   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10298     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10299     Value);
10300 
10301   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10302   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10303   MachinePointerInfo PtrInfo =
10304       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10305   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10306   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10307 
10308   SDValue Ops[] = {StoreChain,
10309                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10310                    Value, FIdx};
10311   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10312 
10313   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10314     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10315 
10316   // Move data into the byte array.
10317   SDValue Loads[4], LoadChains[4];
10318   for (unsigned i = 0; i < 4; ++i) {
10319     unsigned Offset = 4*i;
10320     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10321     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10322 
10323     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10324                            PtrInfo.getWithOffset(Offset));
10325     LoadChains[i] = Loads[i].getValue(1);
10326   }
10327 
10328   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10329 
10330   SDValue Stores[4];
10331   for (unsigned i = 0; i < 4; ++i) {
10332     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10333     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10334 
10335     Stores[i] = DAG.getTruncStore(
10336         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10337         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10338         SN->getAAInfo());
10339   }
10340 
10341   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10342 
10343   return StoreChain;
10344 }
10345 
10346 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10347   SDLoc dl(Op);
10348   if (Op.getValueType() == MVT::v4i32) {
10349     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10350 
10351     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10352     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10353 
10354     SDValue RHSSwap =   // = vrlw RHS, 16
10355       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10356 
10357     // Shrinkify inputs to v8i16.
10358     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10359     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10360     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10361 
10362     // Low parts multiplied together, generating 32-bit results (we ignore the
10363     // top parts).
10364     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10365                                         LHS, RHS, DAG, dl, MVT::v4i32);
10366 
10367     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10368                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10369     // Shift the high parts up 16 bits.
10370     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10371                               Neg16, DAG, dl);
10372     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10373   } else if (Op.getValueType() == MVT::v8i16) {
10374     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10375 
10376     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10377 
10378     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10379                             LHS, RHS, Zero, DAG, dl);
10380   } else if (Op.getValueType() == MVT::v16i8) {
10381     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10382     bool isLittleEndian = Subtarget.isLittleEndian();
10383 
10384     // Multiply the even 8-bit parts, producing 16-bit sums.
10385     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10386                                            LHS, RHS, DAG, dl, MVT::v8i16);
10387     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10388 
10389     // Multiply the odd 8-bit parts, producing 16-bit sums.
10390     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10391                                           LHS, RHS, DAG, dl, MVT::v8i16);
10392     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10393 
10394     // Merge the results together.  Because vmuleub and vmuloub are
10395     // instructions with a big-endian bias, we must reverse the
10396     // element numbering and reverse the meaning of "odd" and "even"
10397     // when generating little endian code.
10398     int Ops[16];
10399     for (unsigned i = 0; i != 8; ++i) {
10400       if (isLittleEndian) {
10401         Ops[i*2  ] = 2*i;
10402         Ops[i*2+1] = 2*i+16;
10403       } else {
10404         Ops[i*2  ] = 2*i+1;
10405         Ops[i*2+1] = 2*i+1+16;
10406       }
10407     }
10408     if (isLittleEndian)
10409       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10410     else
10411       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10412   } else {
10413     llvm_unreachable("Unknown mul to lower!");
10414   }
10415 }
10416 
10417 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10418 
10419   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10420 
10421   EVT VT = Op.getValueType();
10422   assert(VT.isVector() &&
10423          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10424   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10425           VT == MVT::v16i8) &&
10426          "Unexpected vector element type!");
10427   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10428          "Current subtarget doesn't support smax v2i64!");
10429 
10430   // For vector abs, it can be lowered to:
10431   // abs x
10432   // ==>
10433   // y = -x
10434   // smax(x, y)
10435 
10436   SDLoc dl(Op);
10437   SDValue X = Op.getOperand(0);
10438   SDValue Zero = DAG.getConstant(0, dl, VT);
10439   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10440 
10441   // SMAX patch https://reviews.llvm.org/D47332
10442   // hasn't landed yet, so use intrinsic first here.
10443   // TODO: Should use SMAX directly once SMAX patch landed
10444   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10445   if (VT == MVT::v2i64)
10446     BifID = Intrinsic::ppc_altivec_vmaxsd;
10447   else if (VT == MVT::v8i16)
10448     BifID = Intrinsic::ppc_altivec_vmaxsh;
10449   else if (VT == MVT::v16i8)
10450     BifID = Intrinsic::ppc_altivec_vmaxsb;
10451 
10452   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10453 }
10454 
10455 // Custom lowering for fpext vf32 to v2f64
10456 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10457 
10458   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10459          "Should only be called for ISD::FP_EXTEND");
10460 
10461   // We only want to custom lower an extend from v2f32 to v2f64.
10462   if (Op.getValueType() != MVT::v2f64 ||
10463       Op.getOperand(0).getValueType() != MVT::v2f32)
10464     return SDValue();
10465 
10466   SDLoc dl(Op);
10467   SDValue Op0 = Op.getOperand(0);
10468 
10469   switch (Op0.getOpcode()) {
10470   default:
10471     return SDValue();
10472   case ISD::EXTRACT_SUBVECTOR: {
10473     assert(Op0.getNumOperands() == 2 &&
10474            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10475            "Node should have 2 operands with second one being a constant!");
10476 
10477     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10478       return SDValue();
10479 
10480     // Custom lower is only done for high or low doubleword.
10481     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10482     if (Idx % 2 != 0)
10483       return SDValue();
10484 
10485     // Since input is v4f32, at this point Idx is either 0 or 2.
10486     // Shift to get the doubleword position we want.
10487     int DWord = Idx >> 1;
10488 
10489     // High and low word positions are different on little endian.
10490     if (Subtarget.isLittleEndian())
10491       DWord ^= 0x1;
10492 
10493     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10494                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10495   }
10496   case ISD::FADD:
10497   case ISD::FMUL:
10498   case ISD::FSUB: {
10499     SDValue NewLoad[2];
10500     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10501       // Ensure both input are loads.
10502       SDValue LdOp = Op0.getOperand(i);
10503       if (LdOp.getOpcode() != ISD::LOAD)
10504         return SDValue();
10505       // Generate new load node.
10506       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10507       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10508       NewLoad[i] = DAG.getMemIntrinsicNode(
10509           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10510           LD->getMemoryVT(), LD->getMemOperand());
10511     }
10512     SDValue NewOp =
10513         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10514                     NewLoad[1], Op0.getNode()->getFlags());
10515     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10516                        DAG.getConstant(0, dl, MVT::i32));
10517   }
10518   case ISD::LOAD: {
10519     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10520     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10521     SDValue NewLd = DAG.getMemIntrinsicNode(
10522         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10523         LD->getMemoryVT(), LD->getMemOperand());
10524     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10525                        DAG.getConstant(0, dl, MVT::i32));
10526   }
10527   }
10528   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10529 }
10530 
10531 /// LowerOperation - Provide custom lowering hooks for some operations.
10532 ///
10533 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10534   switch (Op.getOpcode()) {
10535   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10536   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10537   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10538   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10539   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10540   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10541   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10542   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10543   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10544 
10545   // Variable argument lowering.
10546   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10547   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10548   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10549 
10550   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10551   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10552   case ISD::GET_DYNAMIC_AREA_OFFSET:
10553     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10554 
10555   // Exception handling lowering.
10556   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10557   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10558   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10559 
10560   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10561   case ISD::STORE:              return LowerSTORE(Op, DAG);
10562   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10563   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10564   case ISD::FP_TO_UINT:
10565   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10566   case ISD::UINT_TO_FP:
10567   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10568   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10569 
10570   // Lower 64-bit shifts.
10571   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10572   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10573   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10574 
10575   // Vector-related lowering.
10576   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10577   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10578   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10579   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10580   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10581   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10582   case ISD::MUL:                return LowerMUL(Op, DAG);
10583   case ISD::ABS:                return LowerABS(Op, DAG);
10584   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10585 
10586   // For counter-based loop handling.
10587   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10588 
10589   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10590 
10591   // Frame & Return address.
10592   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10593   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10594 
10595   case ISD::INTRINSIC_VOID:
10596     return LowerINTRINSIC_VOID(Op, DAG);
10597   case ISD::SREM:
10598   case ISD::UREM:
10599     return LowerREM(Op, DAG);
10600   case ISD::BSWAP:
10601     return LowerBSWAP(Op, DAG);
10602   case ISD::ATOMIC_CMP_SWAP:
10603     return LowerATOMIC_CMP_SWAP(Op, DAG);
10604   }
10605 }
10606 
10607 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10608                                            SmallVectorImpl<SDValue>&Results,
10609                                            SelectionDAG &DAG) const {
10610   SDLoc dl(N);
10611   switch (N->getOpcode()) {
10612   default:
10613     llvm_unreachable("Do not know how to custom type legalize this operation!");
10614   case ISD::READCYCLECOUNTER: {
10615     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10616     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10617 
10618     Results.push_back(
10619         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10620     Results.push_back(RTB.getValue(2));
10621     break;
10622   }
10623   case ISD::INTRINSIC_W_CHAIN: {
10624     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10625         Intrinsic::loop_decrement)
10626       break;
10627 
10628     assert(N->getValueType(0) == MVT::i1 &&
10629            "Unexpected result type for CTR decrement intrinsic");
10630     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10631                                  N->getValueType(0));
10632     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10633     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10634                                  N->getOperand(1));
10635 
10636     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10637     Results.push_back(NewInt.getValue(1));
10638     break;
10639   }
10640   case ISD::VAARG: {
10641     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10642       return;
10643 
10644     EVT VT = N->getValueType(0);
10645 
10646     if (VT == MVT::i64) {
10647       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10648 
10649       Results.push_back(NewNode);
10650       Results.push_back(NewNode.getValue(1));
10651     }
10652     return;
10653   }
10654   case ISD::FP_TO_SINT:
10655   case ISD::FP_TO_UINT:
10656     // LowerFP_TO_INT() can only handle f32 and f64.
10657     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10658       return;
10659     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10660     return;
10661   case ISD::TRUNCATE: {
10662     EVT TrgVT = N->getValueType(0);
10663     EVT OpVT = N->getOperand(0).getValueType();
10664     if (TrgVT.isVector() &&
10665         isOperationCustom(N->getOpcode(), TrgVT) &&
10666         OpVT.getSizeInBits() <= 128 &&
10667         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10668       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10669     return;
10670   }
10671   case ISD::BITCAST:
10672     // Don't handle bitcast here.
10673     return;
10674   }
10675 }
10676 
10677 //===----------------------------------------------------------------------===//
10678 //  Other Lowering Code
10679 //===----------------------------------------------------------------------===//
10680 
10681 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10682   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10683   Function *Func = Intrinsic::getDeclaration(M, Id);
10684   return Builder.CreateCall(Func, {});
10685 }
10686 
10687 // The mappings for emitLeading/TrailingFence is taken from
10688 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10689 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10690                                                  Instruction *Inst,
10691                                                  AtomicOrdering Ord) const {
10692   if (Ord == AtomicOrdering::SequentiallyConsistent)
10693     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10694   if (isReleaseOrStronger(Ord))
10695     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10696   return nullptr;
10697 }
10698 
10699 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10700                                                   Instruction *Inst,
10701                                                   AtomicOrdering Ord) const {
10702   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10703     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10704     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10705     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10706     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10707       return Builder.CreateCall(
10708           Intrinsic::getDeclaration(
10709               Builder.GetInsertBlock()->getParent()->getParent(),
10710               Intrinsic::ppc_cfence, {Inst->getType()}),
10711           {Inst});
10712     // FIXME: Can use isync for rmw operation.
10713     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10714   }
10715   return nullptr;
10716 }
10717 
10718 MachineBasicBlock *
10719 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10720                                     unsigned AtomicSize,
10721                                     unsigned BinOpcode,
10722                                     unsigned CmpOpcode,
10723                                     unsigned CmpPred) const {
10724   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10725   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10726 
10727   auto LoadMnemonic = PPC::LDARX;
10728   auto StoreMnemonic = PPC::STDCX;
10729   switch (AtomicSize) {
10730   default:
10731     llvm_unreachable("Unexpected size of atomic entity");
10732   case 1:
10733     LoadMnemonic = PPC::LBARX;
10734     StoreMnemonic = PPC::STBCX;
10735     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10736     break;
10737   case 2:
10738     LoadMnemonic = PPC::LHARX;
10739     StoreMnemonic = PPC::STHCX;
10740     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10741     break;
10742   case 4:
10743     LoadMnemonic = PPC::LWARX;
10744     StoreMnemonic = PPC::STWCX;
10745     break;
10746   case 8:
10747     LoadMnemonic = PPC::LDARX;
10748     StoreMnemonic = PPC::STDCX;
10749     break;
10750   }
10751 
10752   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10753   MachineFunction *F = BB->getParent();
10754   MachineFunction::iterator It = ++BB->getIterator();
10755 
10756   Register dest = MI.getOperand(0).getReg();
10757   Register ptrA = MI.getOperand(1).getReg();
10758   Register ptrB = MI.getOperand(2).getReg();
10759   Register incr = MI.getOperand(3).getReg();
10760   DebugLoc dl = MI.getDebugLoc();
10761 
10762   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10763   MachineBasicBlock *loop2MBB =
10764     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10765   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10766   F->insert(It, loopMBB);
10767   if (CmpOpcode)
10768     F->insert(It, loop2MBB);
10769   F->insert(It, exitMBB);
10770   exitMBB->splice(exitMBB->begin(), BB,
10771                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10772   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10773 
10774   MachineRegisterInfo &RegInfo = F->getRegInfo();
10775   Register TmpReg = (!BinOpcode) ? incr :
10776     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10777                                            : &PPC::GPRCRegClass);
10778 
10779   //  thisMBB:
10780   //   ...
10781   //   fallthrough --> loopMBB
10782   BB->addSuccessor(loopMBB);
10783 
10784   //  loopMBB:
10785   //   l[wd]arx dest, ptr
10786   //   add r0, dest, incr
10787   //   st[wd]cx. r0, ptr
10788   //   bne- loopMBB
10789   //   fallthrough --> exitMBB
10790 
10791   // For max/min...
10792   //  loopMBB:
10793   //   l[wd]arx dest, ptr
10794   //   cmpl?[wd] incr, dest
10795   //   bgt exitMBB
10796   //  loop2MBB:
10797   //   st[wd]cx. dest, ptr
10798   //   bne- loopMBB
10799   //   fallthrough --> exitMBB
10800 
10801   BB = loopMBB;
10802   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10803     .addReg(ptrA).addReg(ptrB);
10804   if (BinOpcode)
10805     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10806   if (CmpOpcode) {
10807     // Signed comparisons of byte or halfword values must be sign-extended.
10808     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10809       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10810       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10811               ExtReg).addReg(dest);
10812       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10813         .addReg(incr).addReg(ExtReg);
10814     } else
10815       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10816         .addReg(incr).addReg(dest);
10817 
10818     BuildMI(BB, dl, TII->get(PPC::BCC))
10819       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10820     BB->addSuccessor(loop2MBB);
10821     BB->addSuccessor(exitMBB);
10822     BB = loop2MBB;
10823   }
10824   BuildMI(BB, dl, TII->get(StoreMnemonic))
10825     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10826   BuildMI(BB, dl, TII->get(PPC::BCC))
10827     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10828   BB->addSuccessor(loopMBB);
10829   BB->addSuccessor(exitMBB);
10830 
10831   //  exitMBB:
10832   //   ...
10833   BB = exitMBB;
10834   return BB;
10835 }
10836 
10837 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10838     MachineInstr &MI, MachineBasicBlock *BB,
10839     bool is8bit, // operation
10840     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10841   // If we support part-word atomic mnemonics, just use them
10842   if (Subtarget.hasPartwordAtomics())
10843     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10844                             CmpPred);
10845 
10846   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10847   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10848   // In 64 bit mode we have to use 64 bits for addresses, even though the
10849   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10850   // registers without caring whether they're 32 or 64, but here we're
10851   // doing actual arithmetic on the addresses.
10852   bool is64bit = Subtarget.isPPC64();
10853   bool isLittleEndian = Subtarget.isLittleEndian();
10854   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10855 
10856   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10857   MachineFunction *F = BB->getParent();
10858   MachineFunction::iterator It = ++BB->getIterator();
10859 
10860   Register dest = MI.getOperand(0).getReg();
10861   Register ptrA = MI.getOperand(1).getReg();
10862   Register ptrB = MI.getOperand(2).getReg();
10863   Register incr = MI.getOperand(3).getReg();
10864   DebugLoc dl = MI.getDebugLoc();
10865 
10866   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10867   MachineBasicBlock *loop2MBB =
10868       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10869   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10870   F->insert(It, loopMBB);
10871   if (CmpOpcode)
10872     F->insert(It, loop2MBB);
10873   F->insert(It, exitMBB);
10874   exitMBB->splice(exitMBB->begin(), BB,
10875                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10876   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10877 
10878   MachineRegisterInfo &RegInfo = F->getRegInfo();
10879   const TargetRegisterClass *RC =
10880       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10881   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10882 
10883   Register PtrReg = RegInfo.createVirtualRegister(RC);
10884   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10885   Register ShiftReg =
10886       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10887   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10888   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10889   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10890   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10891   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10892   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10893   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10894   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10895   Register Ptr1Reg;
10896   Register TmpReg =
10897       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10898 
10899   //  thisMBB:
10900   //   ...
10901   //   fallthrough --> loopMBB
10902   BB->addSuccessor(loopMBB);
10903 
10904   // The 4-byte load must be aligned, while a char or short may be
10905   // anywhere in the word.  Hence all this nasty bookkeeping code.
10906   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10907   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10908   //   xori shift, shift1, 24 [16]
10909   //   rlwinm ptr, ptr1, 0, 0, 29
10910   //   slw incr2, incr, shift
10911   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10912   //   slw mask, mask2, shift
10913   //  loopMBB:
10914   //   lwarx tmpDest, ptr
10915   //   add tmp, tmpDest, incr2
10916   //   andc tmp2, tmpDest, mask
10917   //   and tmp3, tmp, mask
10918   //   or tmp4, tmp3, tmp2
10919   //   stwcx. tmp4, ptr
10920   //   bne- loopMBB
10921   //   fallthrough --> exitMBB
10922   //   srw dest, tmpDest, shift
10923   if (ptrA != ZeroReg) {
10924     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10925     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10926         .addReg(ptrA)
10927         .addReg(ptrB);
10928   } else {
10929     Ptr1Reg = ptrB;
10930   }
10931   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10932   // mode.
10933   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10934       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10935       .addImm(3)
10936       .addImm(27)
10937       .addImm(is8bit ? 28 : 27);
10938   if (!isLittleEndian)
10939     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10940         .addReg(Shift1Reg)
10941         .addImm(is8bit ? 24 : 16);
10942   if (is64bit)
10943     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10944         .addReg(Ptr1Reg)
10945         .addImm(0)
10946         .addImm(61);
10947   else
10948     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10949         .addReg(Ptr1Reg)
10950         .addImm(0)
10951         .addImm(0)
10952         .addImm(29);
10953   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10954   if (is8bit)
10955     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10956   else {
10957     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10958     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10959         .addReg(Mask3Reg)
10960         .addImm(65535);
10961   }
10962   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10963       .addReg(Mask2Reg)
10964       .addReg(ShiftReg);
10965 
10966   BB = loopMBB;
10967   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10968       .addReg(ZeroReg)
10969       .addReg(PtrReg);
10970   if (BinOpcode)
10971     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10972         .addReg(Incr2Reg)
10973         .addReg(TmpDestReg);
10974   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10975       .addReg(TmpDestReg)
10976       .addReg(MaskReg);
10977   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10978   if (CmpOpcode) {
10979     // For unsigned comparisons, we can directly compare the shifted values.
10980     // For signed comparisons we shift and sign extend.
10981     Register SReg = RegInfo.createVirtualRegister(GPRC);
10982     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10983         .addReg(TmpDestReg)
10984         .addReg(MaskReg);
10985     unsigned ValueReg = SReg;
10986     unsigned CmpReg = Incr2Reg;
10987     if (CmpOpcode == PPC::CMPW) {
10988       ValueReg = RegInfo.createVirtualRegister(GPRC);
10989       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10990           .addReg(SReg)
10991           .addReg(ShiftReg);
10992       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10993       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10994           .addReg(ValueReg);
10995       ValueReg = ValueSReg;
10996       CmpReg = incr;
10997     }
10998     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10999         .addReg(CmpReg)
11000         .addReg(ValueReg);
11001     BuildMI(BB, dl, TII->get(PPC::BCC))
11002         .addImm(CmpPred)
11003         .addReg(PPC::CR0)
11004         .addMBB(exitMBB);
11005     BB->addSuccessor(loop2MBB);
11006     BB->addSuccessor(exitMBB);
11007     BB = loop2MBB;
11008   }
11009   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11010   BuildMI(BB, dl, TII->get(PPC::STWCX))
11011       .addReg(Tmp4Reg)
11012       .addReg(ZeroReg)
11013       .addReg(PtrReg);
11014   BuildMI(BB, dl, TII->get(PPC::BCC))
11015       .addImm(PPC::PRED_NE)
11016       .addReg(PPC::CR0)
11017       .addMBB(loopMBB);
11018   BB->addSuccessor(loopMBB);
11019   BB->addSuccessor(exitMBB);
11020 
11021   //  exitMBB:
11022   //   ...
11023   BB = exitMBB;
11024   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11025       .addReg(TmpDestReg)
11026       .addReg(ShiftReg);
11027   return BB;
11028 }
11029 
11030 llvm::MachineBasicBlock *
11031 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11032                                     MachineBasicBlock *MBB) const {
11033   DebugLoc DL = MI.getDebugLoc();
11034   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11035   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11036 
11037   MachineFunction *MF = MBB->getParent();
11038   MachineRegisterInfo &MRI = MF->getRegInfo();
11039 
11040   const BasicBlock *BB = MBB->getBasicBlock();
11041   MachineFunction::iterator I = ++MBB->getIterator();
11042 
11043   Register DstReg = MI.getOperand(0).getReg();
11044   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11045   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11046   Register mainDstReg = MRI.createVirtualRegister(RC);
11047   Register restoreDstReg = MRI.createVirtualRegister(RC);
11048 
11049   MVT PVT = getPointerTy(MF->getDataLayout());
11050   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11051          "Invalid Pointer Size!");
11052   // For v = setjmp(buf), we generate
11053   //
11054   // thisMBB:
11055   //  SjLjSetup mainMBB
11056   //  bl mainMBB
11057   //  v_restore = 1
11058   //  b sinkMBB
11059   //
11060   // mainMBB:
11061   //  buf[LabelOffset] = LR
11062   //  v_main = 0
11063   //
11064   // sinkMBB:
11065   //  v = phi(main, restore)
11066   //
11067 
11068   MachineBasicBlock *thisMBB = MBB;
11069   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11070   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11071   MF->insert(I, mainMBB);
11072   MF->insert(I, sinkMBB);
11073 
11074   MachineInstrBuilder MIB;
11075 
11076   // Transfer the remainder of BB and its successor edges to sinkMBB.
11077   sinkMBB->splice(sinkMBB->begin(), MBB,
11078                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11079   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11080 
11081   // Note that the structure of the jmp_buf used here is not compatible
11082   // with that used by libc, and is not designed to be. Specifically, it
11083   // stores only those 'reserved' registers that LLVM does not otherwise
11084   // understand how to spill. Also, by convention, by the time this
11085   // intrinsic is called, Clang has already stored the frame address in the
11086   // first slot of the buffer and stack address in the third. Following the
11087   // X86 target code, we'll store the jump address in the second slot. We also
11088   // need to save the TOC pointer (R2) to handle jumps between shared
11089   // libraries, and that will be stored in the fourth slot. The thread
11090   // identifier (R13) is not affected.
11091 
11092   // thisMBB:
11093   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11094   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11095   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11096 
11097   // Prepare IP either in reg.
11098   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11099   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11100   Register BufReg = MI.getOperand(1).getReg();
11101 
11102   if (Subtarget.is64BitELFABI()) {
11103     setUsesTOCBasePtr(*MBB->getParent());
11104     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11105               .addReg(PPC::X2)
11106               .addImm(TOCOffset)
11107               .addReg(BufReg)
11108               .cloneMemRefs(MI);
11109   }
11110 
11111   // Naked functions never have a base pointer, and so we use r1. For all
11112   // other functions, this decision must be delayed until during PEI.
11113   unsigned BaseReg;
11114   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11115     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11116   else
11117     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11118 
11119   MIB = BuildMI(*thisMBB, MI, DL,
11120                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11121             .addReg(BaseReg)
11122             .addImm(BPOffset)
11123             .addReg(BufReg)
11124             .cloneMemRefs(MI);
11125 
11126   // Setup
11127   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11128   MIB.addRegMask(TRI->getNoPreservedMask());
11129 
11130   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11131 
11132   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11133           .addMBB(mainMBB);
11134   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11135 
11136   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11137   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11138 
11139   // mainMBB:
11140   //  mainDstReg = 0
11141   MIB =
11142       BuildMI(mainMBB, DL,
11143               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11144 
11145   // Store IP
11146   if (Subtarget.isPPC64()) {
11147     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11148             .addReg(LabelReg)
11149             .addImm(LabelOffset)
11150             .addReg(BufReg);
11151   } else {
11152     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11153             .addReg(LabelReg)
11154             .addImm(LabelOffset)
11155             .addReg(BufReg);
11156   }
11157   MIB.cloneMemRefs(MI);
11158 
11159   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11160   mainMBB->addSuccessor(sinkMBB);
11161 
11162   // sinkMBB:
11163   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11164           TII->get(PPC::PHI), DstReg)
11165     .addReg(mainDstReg).addMBB(mainMBB)
11166     .addReg(restoreDstReg).addMBB(thisMBB);
11167 
11168   MI.eraseFromParent();
11169   return sinkMBB;
11170 }
11171 
11172 MachineBasicBlock *
11173 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11174                                      MachineBasicBlock *MBB) const {
11175   DebugLoc DL = MI.getDebugLoc();
11176   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11177 
11178   MachineFunction *MF = MBB->getParent();
11179   MachineRegisterInfo &MRI = MF->getRegInfo();
11180 
11181   MVT PVT = getPointerTy(MF->getDataLayout());
11182   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11183          "Invalid Pointer Size!");
11184 
11185   const TargetRegisterClass *RC =
11186     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11187   Register Tmp = MRI.createVirtualRegister(RC);
11188   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11189   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11190   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11191   unsigned BP =
11192       (PVT == MVT::i64)
11193           ? PPC::X30
11194           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11195                                                               : PPC::R30);
11196 
11197   MachineInstrBuilder MIB;
11198 
11199   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11200   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11201   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11202   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11203 
11204   Register BufReg = MI.getOperand(0).getReg();
11205 
11206   // Reload FP (the jumped-to function may not have had a
11207   // frame pointer, and if so, then its r31 will be restored
11208   // as necessary).
11209   if (PVT == MVT::i64) {
11210     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11211             .addImm(0)
11212             .addReg(BufReg);
11213   } else {
11214     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11215             .addImm(0)
11216             .addReg(BufReg);
11217   }
11218   MIB.cloneMemRefs(MI);
11219 
11220   // Reload IP
11221   if (PVT == MVT::i64) {
11222     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11223             .addImm(LabelOffset)
11224             .addReg(BufReg);
11225   } else {
11226     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11227             .addImm(LabelOffset)
11228             .addReg(BufReg);
11229   }
11230   MIB.cloneMemRefs(MI);
11231 
11232   // Reload SP
11233   if (PVT == MVT::i64) {
11234     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11235             .addImm(SPOffset)
11236             .addReg(BufReg);
11237   } else {
11238     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11239             .addImm(SPOffset)
11240             .addReg(BufReg);
11241   }
11242   MIB.cloneMemRefs(MI);
11243 
11244   // Reload BP
11245   if (PVT == MVT::i64) {
11246     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11247             .addImm(BPOffset)
11248             .addReg(BufReg);
11249   } else {
11250     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11251             .addImm(BPOffset)
11252             .addReg(BufReg);
11253   }
11254   MIB.cloneMemRefs(MI);
11255 
11256   // Reload TOC
11257   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11258     setUsesTOCBasePtr(*MBB->getParent());
11259     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11260               .addImm(TOCOffset)
11261               .addReg(BufReg)
11262               .cloneMemRefs(MI);
11263   }
11264 
11265   // Jump
11266   BuildMI(*MBB, MI, DL,
11267           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11268   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11269 
11270   MI.eraseFromParent();
11271   return MBB;
11272 }
11273 
11274 MachineBasicBlock *
11275 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11276                                                MachineBasicBlock *BB) const {
11277   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11278       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11279     if (Subtarget.is64BitELFABI() &&
11280         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11281       // Call lowering should have added an r2 operand to indicate a dependence
11282       // on the TOC base pointer value. It can't however, because there is no
11283       // way to mark the dependence as implicit there, and so the stackmap code
11284       // will confuse it with a regular operand. Instead, add the dependence
11285       // here.
11286       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11287     }
11288 
11289     return emitPatchPoint(MI, BB);
11290   }
11291 
11292   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11293       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11294     return emitEHSjLjSetJmp(MI, BB);
11295   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11296              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11297     return emitEHSjLjLongJmp(MI, BB);
11298   }
11299 
11300   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11301 
11302   // To "insert" these instructions we actually have to insert their
11303   // control-flow patterns.
11304   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11305   MachineFunction::iterator It = ++BB->getIterator();
11306 
11307   MachineFunction *F = BB->getParent();
11308 
11309   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11310       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11311       MI.getOpcode() == PPC::SELECT_I8) {
11312     SmallVector<MachineOperand, 2> Cond;
11313     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11314         MI.getOpcode() == PPC::SELECT_CC_I8)
11315       Cond.push_back(MI.getOperand(4));
11316     else
11317       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11318     Cond.push_back(MI.getOperand(1));
11319 
11320     DebugLoc dl = MI.getDebugLoc();
11321     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11322                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11323   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11324              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11325              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11326              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11327              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11328              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11329              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11330              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11331              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11332              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11333              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11334              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11335              MI.getOpcode() == PPC::SELECT_F4 ||
11336              MI.getOpcode() == PPC::SELECT_F8 ||
11337              MI.getOpcode() == PPC::SELECT_F16 ||
11338              MI.getOpcode() == PPC::SELECT_QFRC ||
11339              MI.getOpcode() == PPC::SELECT_QSRC ||
11340              MI.getOpcode() == PPC::SELECT_QBRC ||
11341              MI.getOpcode() == PPC::SELECT_SPE ||
11342              MI.getOpcode() == PPC::SELECT_SPE4 ||
11343              MI.getOpcode() == PPC::SELECT_VRRC ||
11344              MI.getOpcode() == PPC::SELECT_VSFRC ||
11345              MI.getOpcode() == PPC::SELECT_VSSRC ||
11346              MI.getOpcode() == PPC::SELECT_VSRC) {
11347     // The incoming instruction knows the destination vreg to set, the
11348     // condition code register to branch on, the true/false values to
11349     // select between, and a branch opcode to use.
11350 
11351     //  thisMBB:
11352     //  ...
11353     //   TrueVal = ...
11354     //   cmpTY ccX, r1, r2
11355     //   bCC copy1MBB
11356     //   fallthrough --> copy0MBB
11357     MachineBasicBlock *thisMBB = BB;
11358     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11359     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11360     DebugLoc dl = MI.getDebugLoc();
11361     F->insert(It, copy0MBB);
11362     F->insert(It, sinkMBB);
11363 
11364     // Transfer the remainder of BB and its successor edges to sinkMBB.
11365     sinkMBB->splice(sinkMBB->begin(), BB,
11366                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11367     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11368 
11369     // Next, add the true and fallthrough blocks as its successors.
11370     BB->addSuccessor(copy0MBB);
11371     BB->addSuccessor(sinkMBB);
11372 
11373     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11374         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11375         MI.getOpcode() == PPC::SELECT_F16 ||
11376         MI.getOpcode() == PPC::SELECT_SPE4 ||
11377         MI.getOpcode() == PPC::SELECT_SPE ||
11378         MI.getOpcode() == PPC::SELECT_QFRC ||
11379         MI.getOpcode() == PPC::SELECT_QSRC ||
11380         MI.getOpcode() == PPC::SELECT_QBRC ||
11381         MI.getOpcode() == PPC::SELECT_VRRC ||
11382         MI.getOpcode() == PPC::SELECT_VSFRC ||
11383         MI.getOpcode() == PPC::SELECT_VSSRC ||
11384         MI.getOpcode() == PPC::SELECT_VSRC) {
11385       BuildMI(BB, dl, TII->get(PPC::BC))
11386           .addReg(MI.getOperand(1).getReg())
11387           .addMBB(sinkMBB);
11388     } else {
11389       unsigned SelectPred = MI.getOperand(4).getImm();
11390       BuildMI(BB, dl, TII->get(PPC::BCC))
11391           .addImm(SelectPred)
11392           .addReg(MI.getOperand(1).getReg())
11393           .addMBB(sinkMBB);
11394     }
11395 
11396     //  copy0MBB:
11397     //   %FalseValue = ...
11398     //   # fallthrough to sinkMBB
11399     BB = copy0MBB;
11400 
11401     // Update machine-CFG edges
11402     BB->addSuccessor(sinkMBB);
11403 
11404     //  sinkMBB:
11405     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11406     //  ...
11407     BB = sinkMBB;
11408     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11409         .addReg(MI.getOperand(3).getReg())
11410         .addMBB(copy0MBB)
11411         .addReg(MI.getOperand(2).getReg())
11412         .addMBB(thisMBB);
11413   } else if (MI.getOpcode() == PPC::ReadTB) {
11414     // To read the 64-bit time-base register on a 32-bit target, we read the
11415     // two halves. Should the counter have wrapped while it was being read, we
11416     // need to try again.
11417     // ...
11418     // readLoop:
11419     // mfspr Rx,TBU # load from TBU
11420     // mfspr Ry,TB  # load from TB
11421     // mfspr Rz,TBU # load from TBU
11422     // cmpw crX,Rx,Rz # check if 'old'='new'
11423     // bne readLoop   # branch if they're not equal
11424     // ...
11425 
11426     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11427     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11428     DebugLoc dl = MI.getDebugLoc();
11429     F->insert(It, readMBB);
11430     F->insert(It, sinkMBB);
11431 
11432     // Transfer the remainder of BB and its successor edges to sinkMBB.
11433     sinkMBB->splice(sinkMBB->begin(), BB,
11434                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11435     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11436 
11437     BB->addSuccessor(readMBB);
11438     BB = readMBB;
11439 
11440     MachineRegisterInfo &RegInfo = F->getRegInfo();
11441     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11442     Register LoReg = MI.getOperand(0).getReg();
11443     Register HiReg = MI.getOperand(1).getReg();
11444 
11445     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11446     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11447     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11448 
11449     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11450 
11451     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11452         .addReg(HiReg)
11453         .addReg(ReadAgainReg);
11454     BuildMI(BB, dl, TII->get(PPC::BCC))
11455         .addImm(PPC::PRED_NE)
11456         .addReg(CmpReg)
11457         .addMBB(readMBB);
11458 
11459     BB->addSuccessor(readMBB);
11460     BB->addSuccessor(sinkMBB);
11461   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11462     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11463   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11464     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11465   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11466     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11467   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11468     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11469 
11470   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11471     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11472   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11473     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11474   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11475     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11476   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11477     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11478 
11479   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11480     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11481   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11482     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11483   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11484     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11485   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11486     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11487 
11488   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11489     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11490   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11491     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11492   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11493     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11494   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11495     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11496 
11497   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11498     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11499   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11500     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11501   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11502     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11503   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11504     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11505 
11506   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11507     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11508   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11509     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11510   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11511     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11512   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11513     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11514 
11515   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11516     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11517   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11518     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11519   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11520     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11521   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11522     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11523 
11524   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11525     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11526   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11527     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11528   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11529     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11530   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11531     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11532 
11533   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11534     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11535   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11536     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11537   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11538     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11539   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11540     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11541 
11542   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11543     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11544   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11545     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11546   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11547     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11548   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11549     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11550 
11551   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11552     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11553   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11554     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11555   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11556     BB = EmitAtomicBinary(MI, BB, 4, 0);
11557   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11558     BB = EmitAtomicBinary(MI, BB, 8, 0);
11559   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11560            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11561            (Subtarget.hasPartwordAtomics() &&
11562             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11563            (Subtarget.hasPartwordAtomics() &&
11564             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11565     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11566 
11567     auto LoadMnemonic = PPC::LDARX;
11568     auto StoreMnemonic = PPC::STDCX;
11569     switch (MI.getOpcode()) {
11570     default:
11571       llvm_unreachable("Compare and swap of unknown size");
11572     case PPC::ATOMIC_CMP_SWAP_I8:
11573       LoadMnemonic = PPC::LBARX;
11574       StoreMnemonic = PPC::STBCX;
11575       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11576       break;
11577     case PPC::ATOMIC_CMP_SWAP_I16:
11578       LoadMnemonic = PPC::LHARX;
11579       StoreMnemonic = PPC::STHCX;
11580       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11581       break;
11582     case PPC::ATOMIC_CMP_SWAP_I32:
11583       LoadMnemonic = PPC::LWARX;
11584       StoreMnemonic = PPC::STWCX;
11585       break;
11586     case PPC::ATOMIC_CMP_SWAP_I64:
11587       LoadMnemonic = PPC::LDARX;
11588       StoreMnemonic = PPC::STDCX;
11589       break;
11590     }
11591     Register dest = MI.getOperand(0).getReg();
11592     Register ptrA = MI.getOperand(1).getReg();
11593     Register ptrB = MI.getOperand(2).getReg();
11594     Register oldval = MI.getOperand(3).getReg();
11595     Register newval = MI.getOperand(4).getReg();
11596     DebugLoc dl = MI.getDebugLoc();
11597 
11598     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11599     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11600     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11601     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11602     F->insert(It, loop1MBB);
11603     F->insert(It, loop2MBB);
11604     F->insert(It, midMBB);
11605     F->insert(It, exitMBB);
11606     exitMBB->splice(exitMBB->begin(), BB,
11607                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11608     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11609 
11610     //  thisMBB:
11611     //   ...
11612     //   fallthrough --> loopMBB
11613     BB->addSuccessor(loop1MBB);
11614 
11615     // loop1MBB:
11616     //   l[bhwd]arx dest, ptr
11617     //   cmp[wd] dest, oldval
11618     //   bne- midMBB
11619     // loop2MBB:
11620     //   st[bhwd]cx. newval, ptr
11621     //   bne- loopMBB
11622     //   b exitBB
11623     // midMBB:
11624     //   st[bhwd]cx. dest, ptr
11625     // exitBB:
11626     BB = loop1MBB;
11627     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11628     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11629         .addReg(oldval)
11630         .addReg(dest);
11631     BuildMI(BB, dl, TII->get(PPC::BCC))
11632         .addImm(PPC::PRED_NE)
11633         .addReg(PPC::CR0)
11634         .addMBB(midMBB);
11635     BB->addSuccessor(loop2MBB);
11636     BB->addSuccessor(midMBB);
11637 
11638     BB = loop2MBB;
11639     BuildMI(BB, dl, TII->get(StoreMnemonic))
11640         .addReg(newval)
11641         .addReg(ptrA)
11642         .addReg(ptrB);
11643     BuildMI(BB, dl, TII->get(PPC::BCC))
11644         .addImm(PPC::PRED_NE)
11645         .addReg(PPC::CR0)
11646         .addMBB(loop1MBB);
11647     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11648     BB->addSuccessor(loop1MBB);
11649     BB->addSuccessor(exitMBB);
11650 
11651     BB = midMBB;
11652     BuildMI(BB, dl, TII->get(StoreMnemonic))
11653         .addReg(dest)
11654         .addReg(ptrA)
11655         .addReg(ptrB);
11656     BB->addSuccessor(exitMBB);
11657 
11658     //  exitMBB:
11659     //   ...
11660     BB = exitMBB;
11661   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11662              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11663     // We must use 64-bit registers for addresses when targeting 64-bit,
11664     // since we're actually doing arithmetic on them.  Other registers
11665     // can be 32-bit.
11666     bool is64bit = Subtarget.isPPC64();
11667     bool isLittleEndian = Subtarget.isLittleEndian();
11668     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11669 
11670     Register dest = MI.getOperand(0).getReg();
11671     Register ptrA = MI.getOperand(1).getReg();
11672     Register ptrB = MI.getOperand(2).getReg();
11673     Register oldval = MI.getOperand(3).getReg();
11674     Register newval = MI.getOperand(4).getReg();
11675     DebugLoc dl = MI.getDebugLoc();
11676 
11677     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11678     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11679     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11680     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11681     F->insert(It, loop1MBB);
11682     F->insert(It, loop2MBB);
11683     F->insert(It, midMBB);
11684     F->insert(It, exitMBB);
11685     exitMBB->splice(exitMBB->begin(), BB,
11686                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11687     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11688 
11689     MachineRegisterInfo &RegInfo = F->getRegInfo();
11690     const TargetRegisterClass *RC =
11691         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11692     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11693 
11694     Register PtrReg = RegInfo.createVirtualRegister(RC);
11695     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11696     Register ShiftReg =
11697         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11698     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11699     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11700     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11701     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11702     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11703     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11704     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11705     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11706     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11707     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11708     Register Ptr1Reg;
11709     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11710     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11711     //  thisMBB:
11712     //   ...
11713     //   fallthrough --> loopMBB
11714     BB->addSuccessor(loop1MBB);
11715 
11716     // The 4-byte load must be aligned, while a char or short may be
11717     // anywhere in the word.  Hence all this nasty bookkeeping code.
11718     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11719     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11720     //   xori shift, shift1, 24 [16]
11721     //   rlwinm ptr, ptr1, 0, 0, 29
11722     //   slw newval2, newval, shift
11723     //   slw oldval2, oldval,shift
11724     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11725     //   slw mask, mask2, shift
11726     //   and newval3, newval2, mask
11727     //   and oldval3, oldval2, mask
11728     // loop1MBB:
11729     //   lwarx tmpDest, ptr
11730     //   and tmp, tmpDest, mask
11731     //   cmpw tmp, oldval3
11732     //   bne- midMBB
11733     // loop2MBB:
11734     //   andc tmp2, tmpDest, mask
11735     //   or tmp4, tmp2, newval3
11736     //   stwcx. tmp4, ptr
11737     //   bne- loop1MBB
11738     //   b exitBB
11739     // midMBB:
11740     //   stwcx. tmpDest, ptr
11741     // exitBB:
11742     //   srw dest, tmpDest, shift
11743     if (ptrA != ZeroReg) {
11744       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11745       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11746           .addReg(ptrA)
11747           .addReg(ptrB);
11748     } else {
11749       Ptr1Reg = ptrB;
11750     }
11751 
11752     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11753     // mode.
11754     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11755         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11756         .addImm(3)
11757         .addImm(27)
11758         .addImm(is8bit ? 28 : 27);
11759     if (!isLittleEndian)
11760       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11761           .addReg(Shift1Reg)
11762           .addImm(is8bit ? 24 : 16);
11763     if (is64bit)
11764       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11765           .addReg(Ptr1Reg)
11766           .addImm(0)
11767           .addImm(61);
11768     else
11769       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11770           .addReg(Ptr1Reg)
11771           .addImm(0)
11772           .addImm(0)
11773           .addImm(29);
11774     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11775         .addReg(newval)
11776         .addReg(ShiftReg);
11777     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11778         .addReg(oldval)
11779         .addReg(ShiftReg);
11780     if (is8bit)
11781       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11782     else {
11783       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11784       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11785           .addReg(Mask3Reg)
11786           .addImm(65535);
11787     }
11788     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11789         .addReg(Mask2Reg)
11790         .addReg(ShiftReg);
11791     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11792         .addReg(NewVal2Reg)
11793         .addReg(MaskReg);
11794     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11795         .addReg(OldVal2Reg)
11796         .addReg(MaskReg);
11797 
11798     BB = loop1MBB;
11799     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11800         .addReg(ZeroReg)
11801         .addReg(PtrReg);
11802     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11803         .addReg(TmpDestReg)
11804         .addReg(MaskReg);
11805     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11806         .addReg(TmpReg)
11807         .addReg(OldVal3Reg);
11808     BuildMI(BB, dl, TII->get(PPC::BCC))
11809         .addImm(PPC::PRED_NE)
11810         .addReg(PPC::CR0)
11811         .addMBB(midMBB);
11812     BB->addSuccessor(loop2MBB);
11813     BB->addSuccessor(midMBB);
11814 
11815     BB = loop2MBB;
11816     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11817         .addReg(TmpDestReg)
11818         .addReg(MaskReg);
11819     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11820         .addReg(Tmp2Reg)
11821         .addReg(NewVal3Reg);
11822     BuildMI(BB, dl, TII->get(PPC::STWCX))
11823         .addReg(Tmp4Reg)
11824         .addReg(ZeroReg)
11825         .addReg(PtrReg);
11826     BuildMI(BB, dl, TII->get(PPC::BCC))
11827         .addImm(PPC::PRED_NE)
11828         .addReg(PPC::CR0)
11829         .addMBB(loop1MBB);
11830     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11831     BB->addSuccessor(loop1MBB);
11832     BB->addSuccessor(exitMBB);
11833 
11834     BB = midMBB;
11835     BuildMI(BB, dl, TII->get(PPC::STWCX))
11836         .addReg(TmpDestReg)
11837         .addReg(ZeroReg)
11838         .addReg(PtrReg);
11839     BB->addSuccessor(exitMBB);
11840 
11841     //  exitMBB:
11842     //   ...
11843     BB = exitMBB;
11844     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11845         .addReg(TmpReg)
11846         .addReg(ShiftReg);
11847   } else if (MI.getOpcode() == PPC::FADDrtz) {
11848     // This pseudo performs an FADD with rounding mode temporarily forced
11849     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11850     // is not modeled at the SelectionDAG level.
11851     Register Dest = MI.getOperand(0).getReg();
11852     Register Src1 = MI.getOperand(1).getReg();
11853     Register Src2 = MI.getOperand(2).getReg();
11854     DebugLoc dl = MI.getDebugLoc();
11855 
11856     MachineRegisterInfo &RegInfo = F->getRegInfo();
11857     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11858 
11859     // Save FPSCR value.
11860     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11861 
11862     // Set rounding mode to round-to-zero.
11863     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11864     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11865 
11866     // Perform addition.
11867     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11868 
11869     // Restore FPSCR value.
11870     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11871   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11872              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11873              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11874              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11875     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11876                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11877                           ? PPC::ANDI8_rec
11878                           : PPC::ANDI_rec;
11879     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11880                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11881 
11882     MachineRegisterInfo &RegInfo = F->getRegInfo();
11883     Register Dest = RegInfo.createVirtualRegister(
11884         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11885 
11886     DebugLoc Dl = MI.getDebugLoc();
11887     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11888         .addReg(MI.getOperand(1).getReg())
11889         .addImm(1);
11890     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11891             MI.getOperand(0).getReg())
11892         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11893   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11894     DebugLoc Dl = MI.getDebugLoc();
11895     MachineRegisterInfo &RegInfo = F->getRegInfo();
11896     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11897     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11898     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11899             MI.getOperand(0).getReg())
11900         .addReg(CRReg);
11901   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11902     DebugLoc Dl = MI.getDebugLoc();
11903     unsigned Imm = MI.getOperand(1).getImm();
11904     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11905     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11906             MI.getOperand(0).getReg())
11907         .addReg(PPC::CR0EQ);
11908   } else if (MI.getOpcode() == PPC::SETRNDi) {
11909     DebugLoc dl = MI.getDebugLoc();
11910     Register OldFPSCRReg = MI.getOperand(0).getReg();
11911 
11912     // Save FPSCR value.
11913     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11914 
11915     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11916     // the following settings:
11917     //   00 Round to nearest
11918     //   01 Round to 0
11919     //   10 Round to +inf
11920     //   11 Round to -inf
11921 
11922     // When the operand is immediate, using the two least significant bits of
11923     // the immediate to set the bits 62:63 of FPSCR.
11924     unsigned Mode = MI.getOperand(1).getImm();
11925     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11926       .addImm(31);
11927 
11928     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11929       .addImm(30);
11930   } else if (MI.getOpcode() == PPC::SETRND) {
11931     DebugLoc dl = MI.getDebugLoc();
11932 
11933     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11934     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11935     // If the target doesn't have DirectMove, we should use stack to do the
11936     // conversion, because the target doesn't have the instructions like mtvsrd
11937     // or mfvsrd to do this conversion directly.
11938     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11939       if (Subtarget.hasDirectMove()) {
11940         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11941           .addReg(SrcReg);
11942       } else {
11943         // Use stack to do the register copy.
11944         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11945         MachineRegisterInfo &RegInfo = F->getRegInfo();
11946         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11947         if (RC == &PPC::F8RCRegClass) {
11948           // Copy register from F8RCRegClass to G8RCRegclass.
11949           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11950                  "Unsupported RegClass.");
11951 
11952           StoreOp = PPC::STFD;
11953           LoadOp = PPC::LD;
11954         } else {
11955           // Copy register from G8RCRegClass to F8RCRegclass.
11956           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11957                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11958                  "Unsupported RegClass.");
11959         }
11960 
11961         MachineFrameInfo &MFI = F->getFrameInfo();
11962         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11963 
11964         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11965           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11966           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11967           MFI.getObjectAlignment(FrameIdx));
11968 
11969         // Store the SrcReg into the stack.
11970         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11971           .addReg(SrcReg)
11972           .addImm(0)
11973           .addFrameIndex(FrameIdx)
11974           .addMemOperand(MMOStore);
11975 
11976         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11977           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11978           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11979           MFI.getObjectAlignment(FrameIdx));
11980 
11981         // Load from the stack where SrcReg is stored, and save to DestReg,
11982         // so we have done the RegClass conversion from RegClass::SrcReg to
11983         // RegClass::DestReg.
11984         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11985           .addImm(0)
11986           .addFrameIndex(FrameIdx)
11987           .addMemOperand(MMOLoad);
11988       }
11989     };
11990 
11991     Register OldFPSCRReg = MI.getOperand(0).getReg();
11992 
11993     // Save FPSCR value.
11994     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11995 
11996     // When the operand is gprc register, use two least significant bits of the
11997     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11998     //
11999     // copy OldFPSCRTmpReg, OldFPSCRReg
12000     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12001     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12002     // copy NewFPSCRReg, NewFPSCRTmpReg
12003     // mtfsf 255, NewFPSCRReg
12004     MachineOperand SrcOp = MI.getOperand(1);
12005     MachineRegisterInfo &RegInfo = F->getRegInfo();
12006     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12007 
12008     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12009 
12010     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12011     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12012 
12013     // The first operand of INSERT_SUBREG should be a register which has
12014     // subregisters, we only care about its RegClass, so we should use an
12015     // IMPLICIT_DEF register.
12016     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12017     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12018       .addReg(ImDefReg)
12019       .add(SrcOp)
12020       .addImm(1);
12021 
12022     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12023     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12024       .addReg(OldFPSCRTmpReg)
12025       .addReg(ExtSrcReg)
12026       .addImm(0)
12027       .addImm(62);
12028 
12029     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12030     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12031 
12032     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12033     // bits of FPSCR.
12034     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12035       .addImm(255)
12036       .addReg(NewFPSCRReg)
12037       .addImm(0)
12038       .addImm(0);
12039   } else {
12040     llvm_unreachable("Unexpected instr type to insert");
12041   }
12042 
12043   MI.eraseFromParent(); // The pseudo instruction is gone now.
12044   return BB;
12045 }
12046 
12047 //===----------------------------------------------------------------------===//
12048 // Target Optimization Hooks
12049 //===----------------------------------------------------------------------===//
12050 
12051 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12052   // For the estimates, convergence is quadratic, so we essentially double the
12053   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12054   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12055   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12056   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12057   if (VT.getScalarType() == MVT::f64)
12058     RefinementSteps++;
12059   return RefinementSteps;
12060 }
12061 
12062 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12063                                            int Enabled, int &RefinementSteps,
12064                                            bool &UseOneConstNR,
12065                                            bool Reciprocal) const {
12066   EVT VT = Operand.getValueType();
12067   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12068       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12069       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12070       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12071       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12072       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12073     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12074       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12075 
12076     // The Newton-Raphson computation with a single constant does not provide
12077     // enough accuracy on some CPUs.
12078     UseOneConstNR = !Subtarget.needsTwoConstNR();
12079     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12080   }
12081   return SDValue();
12082 }
12083 
12084 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12085                                             int Enabled,
12086                                             int &RefinementSteps) const {
12087   EVT VT = Operand.getValueType();
12088   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12089       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12090       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12091       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12092       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12093       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12094     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12095       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12096     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12097   }
12098   return SDValue();
12099 }
12100 
12101 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12102   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12103   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12104   // enabled for division), this functionality is redundant with the default
12105   // combiner logic (once the division -> reciprocal/multiply transformation
12106   // has taken place). As a result, this matters more for older cores than for
12107   // newer ones.
12108 
12109   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12110   // reciprocal if there are two or more FDIVs (for embedded cores with only
12111   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12112   switch (Subtarget.getCPUDirective()) {
12113   default:
12114     return 3;
12115   case PPC::DIR_440:
12116   case PPC::DIR_A2:
12117   case PPC::DIR_E500:
12118   case PPC::DIR_E500mc:
12119   case PPC::DIR_E5500:
12120     return 2;
12121   }
12122 }
12123 
12124 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12125 // collapsed, and so we need to look through chains of them.
12126 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12127                                      int64_t& Offset, SelectionDAG &DAG) {
12128   if (DAG.isBaseWithConstantOffset(Loc)) {
12129     Base = Loc.getOperand(0);
12130     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12131 
12132     // The base might itself be a base plus an offset, and if so, accumulate
12133     // that as well.
12134     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12135   }
12136 }
12137 
12138 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12139                             unsigned Bytes, int Dist,
12140                             SelectionDAG &DAG) {
12141   if (VT.getSizeInBits() / 8 != Bytes)
12142     return false;
12143 
12144   SDValue BaseLoc = Base->getBasePtr();
12145   if (Loc.getOpcode() == ISD::FrameIndex) {
12146     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12147       return false;
12148     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12149     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12150     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12151     int FS  = MFI.getObjectSize(FI);
12152     int BFS = MFI.getObjectSize(BFI);
12153     if (FS != BFS || FS != (int)Bytes) return false;
12154     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12155   }
12156 
12157   SDValue Base1 = Loc, Base2 = BaseLoc;
12158   int64_t Offset1 = 0, Offset2 = 0;
12159   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12160   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12161   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12162     return true;
12163 
12164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12165   const GlobalValue *GV1 = nullptr;
12166   const GlobalValue *GV2 = nullptr;
12167   Offset1 = 0;
12168   Offset2 = 0;
12169   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12170   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12171   if (isGA1 && isGA2 && GV1 == GV2)
12172     return Offset1 == (Offset2 + Dist*Bytes);
12173   return false;
12174 }
12175 
12176 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12177 // not enforce equality of the chain operands.
12178 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12179                             unsigned Bytes, int Dist,
12180                             SelectionDAG &DAG) {
12181   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12182     EVT VT = LS->getMemoryVT();
12183     SDValue Loc = LS->getBasePtr();
12184     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12185   }
12186 
12187   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12188     EVT VT;
12189     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12190     default: return false;
12191     case Intrinsic::ppc_qpx_qvlfd:
12192     case Intrinsic::ppc_qpx_qvlfda:
12193       VT = MVT::v4f64;
12194       break;
12195     case Intrinsic::ppc_qpx_qvlfs:
12196     case Intrinsic::ppc_qpx_qvlfsa:
12197       VT = MVT::v4f32;
12198       break;
12199     case Intrinsic::ppc_qpx_qvlfcd:
12200     case Intrinsic::ppc_qpx_qvlfcda:
12201       VT = MVT::v2f64;
12202       break;
12203     case Intrinsic::ppc_qpx_qvlfcs:
12204     case Intrinsic::ppc_qpx_qvlfcsa:
12205       VT = MVT::v2f32;
12206       break;
12207     case Intrinsic::ppc_qpx_qvlfiwa:
12208     case Intrinsic::ppc_qpx_qvlfiwz:
12209     case Intrinsic::ppc_altivec_lvx:
12210     case Intrinsic::ppc_altivec_lvxl:
12211     case Intrinsic::ppc_vsx_lxvw4x:
12212     case Intrinsic::ppc_vsx_lxvw4x_be:
12213       VT = MVT::v4i32;
12214       break;
12215     case Intrinsic::ppc_vsx_lxvd2x:
12216     case Intrinsic::ppc_vsx_lxvd2x_be:
12217       VT = MVT::v2f64;
12218       break;
12219     case Intrinsic::ppc_altivec_lvebx:
12220       VT = MVT::i8;
12221       break;
12222     case Intrinsic::ppc_altivec_lvehx:
12223       VT = MVT::i16;
12224       break;
12225     case Intrinsic::ppc_altivec_lvewx:
12226       VT = MVT::i32;
12227       break;
12228     }
12229 
12230     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12231   }
12232 
12233   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12234     EVT VT;
12235     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12236     default: return false;
12237     case Intrinsic::ppc_qpx_qvstfd:
12238     case Intrinsic::ppc_qpx_qvstfda:
12239       VT = MVT::v4f64;
12240       break;
12241     case Intrinsic::ppc_qpx_qvstfs:
12242     case Intrinsic::ppc_qpx_qvstfsa:
12243       VT = MVT::v4f32;
12244       break;
12245     case Intrinsic::ppc_qpx_qvstfcd:
12246     case Intrinsic::ppc_qpx_qvstfcda:
12247       VT = MVT::v2f64;
12248       break;
12249     case Intrinsic::ppc_qpx_qvstfcs:
12250     case Intrinsic::ppc_qpx_qvstfcsa:
12251       VT = MVT::v2f32;
12252       break;
12253     case Intrinsic::ppc_qpx_qvstfiw:
12254     case Intrinsic::ppc_qpx_qvstfiwa:
12255     case Intrinsic::ppc_altivec_stvx:
12256     case Intrinsic::ppc_altivec_stvxl:
12257     case Intrinsic::ppc_vsx_stxvw4x:
12258       VT = MVT::v4i32;
12259       break;
12260     case Intrinsic::ppc_vsx_stxvd2x:
12261       VT = MVT::v2f64;
12262       break;
12263     case Intrinsic::ppc_vsx_stxvw4x_be:
12264       VT = MVT::v4i32;
12265       break;
12266     case Intrinsic::ppc_vsx_stxvd2x_be:
12267       VT = MVT::v2f64;
12268       break;
12269     case Intrinsic::ppc_altivec_stvebx:
12270       VT = MVT::i8;
12271       break;
12272     case Intrinsic::ppc_altivec_stvehx:
12273       VT = MVT::i16;
12274       break;
12275     case Intrinsic::ppc_altivec_stvewx:
12276       VT = MVT::i32;
12277       break;
12278     }
12279 
12280     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12281   }
12282 
12283   return false;
12284 }
12285 
12286 // Return true is there is a nearyby consecutive load to the one provided
12287 // (regardless of alignment). We search up and down the chain, looking though
12288 // token factors and other loads (but nothing else). As a result, a true result
12289 // indicates that it is safe to create a new consecutive load adjacent to the
12290 // load provided.
12291 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12292   SDValue Chain = LD->getChain();
12293   EVT VT = LD->getMemoryVT();
12294 
12295   SmallSet<SDNode *, 16> LoadRoots;
12296   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12297   SmallSet<SDNode *, 16> Visited;
12298 
12299   // First, search up the chain, branching to follow all token-factor operands.
12300   // If we find a consecutive load, then we're done, otherwise, record all
12301   // nodes just above the top-level loads and token factors.
12302   while (!Queue.empty()) {
12303     SDNode *ChainNext = Queue.pop_back_val();
12304     if (!Visited.insert(ChainNext).second)
12305       continue;
12306 
12307     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12308       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12309         return true;
12310 
12311       if (!Visited.count(ChainLD->getChain().getNode()))
12312         Queue.push_back(ChainLD->getChain().getNode());
12313     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12314       for (const SDUse &O : ChainNext->ops())
12315         if (!Visited.count(O.getNode()))
12316           Queue.push_back(O.getNode());
12317     } else
12318       LoadRoots.insert(ChainNext);
12319   }
12320 
12321   // Second, search down the chain, starting from the top-level nodes recorded
12322   // in the first phase. These top-level nodes are the nodes just above all
12323   // loads and token factors. Starting with their uses, recursively look though
12324   // all loads (just the chain uses) and token factors to find a consecutive
12325   // load.
12326   Visited.clear();
12327   Queue.clear();
12328 
12329   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12330        IE = LoadRoots.end(); I != IE; ++I) {
12331     Queue.push_back(*I);
12332 
12333     while (!Queue.empty()) {
12334       SDNode *LoadRoot = Queue.pop_back_val();
12335       if (!Visited.insert(LoadRoot).second)
12336         continue;
12337 
12338       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12339         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12340           return true;
12341 
12342       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12343            UE = LoadRoot->use_end(); UI != UE; ++UI)
12344         if (((isa<MemSDNode>(*UI) &&
12345             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12346             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12347           Queue.push_back(*UI);
12348     }
12349   }
12350 
12351   return false;
12352 }
12353 
12354 /// This function is called when we have proved that a SETCC node can be replaced
12355 /// by subtraction (and other supporting instructions) so that the result of
12356 /// comparison is kept in a GPR instead of CR. This function is purely for
12357 /// codegen purposes and has some flags to guide the codegen process.
12358 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12359                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12360   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12361 
12362   // Zero extend the operands to the largest legal integer. Originally, they
12363   // must be of a strictly smaller size.
12364   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12365                          DAG.getConstant(Size, DL, MVT::i32));
12366   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12367                          DAG.getConstant(Size, DL, MVT::i32));
12368 
12369   // Swap if needed. Depends on the condition code.
12370   if (Swap)
12371     std::swap(Op0, Op1);
12372 
12373   // Subtract extended integers.
12374   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12375 
12376   // Move the sign bit to the least significant position and zero out the rest.
12377   // Now the least significant bit carries the result of original comparison.
12378   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12379                              DAG.getConstant(Size - 1, DL, MVT::i32));
12380   auto Final = Shifted;
12381 
12382   // Complement the result if needed. Based on the condition code.
12383   if (Complement)
12384     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12385                         DAG.getConstant(1, DL, MVT::i64));
12386 
12387   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12388 }
12389 
12390 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12391                                                   DAGCombinerInfo &DCI) const {
12392   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12393 
12394   SelectionDAG &DAG = DCI.DAG;
12395   SDLoc DL(N);
12396 
12397   // Size of integers being compared has a critical role in the following
12398   // analysis, so we prefer to do this when all types are legal.
12399   if (!DCI.isAfterLegalizeDAG())
12400     return SDValue();
12401 
12402   // If all users of SETCC extend its value to a legal integer type
12403   // then we replace SETCC with a subtraction
12404   for (SDNode::use_iterator UI = N->use_begin(),
12405        UE = N->use_end(); UI != UE; ++UI) {
12406     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12407       return SDValue();
12408   }
12409 
12410   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12411   auto OpSize = N->getOperand(0).getValueSizeInBits();
12412 
12413   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12414 
12415   if (OpSize < Size) {
12416     switch (CC) {
12417     default: break;
12418     case ISD::SETULT:
12419       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12420     case ISD::SETULE:
12421       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12422     case ISD::SETUGT:
12423       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12424     case ISD::SETUGE:
12425       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12426     }
12427   }
12428 
12429   return SDValue();
12430 }
12431 
12432 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12433                                                   DAGCombinerInfo &DCI) const {
12434   SelectionDAG &DAG = DCI.DAG;
12435   SDLoc dl(N);
12436 
12437   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12438   // If we're tracking CR bits, we need to be careful that we don't have:
12439   //   trunc(binary-ops(zext(x), zext(y)))
12440   // or
12441   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12442   // such that we're unnecessarily moving things into GPRs when it would be
12443   // better to keep them in CR bits.
12444 
12445   // Note that trunc here can be an actual i1 trunc, or can be the effective
12446   // truncation that comes from a setcc or select_cc.
12447   if (N->getOpcode() == ISD::TRUNCATE &&
12448       N->getValueType(0) != MVT::i1)
12449     return SDValue();
12450 
12451   if (N->getOperand(0).getValueType() != MVT::i32 &&
12452       N->getOperand(0).getValueType() != MVT::i64)
12453     return SDValue();
12454 
12455   if (N->getOpcode() == ISD::SETCC ||
12456       N->getOpcode() == ISD::SELECT_CC) {
12457     // If we're looking at a comparison, then we need to make sure that the
12458     // high bits (all except for the first) don't matter the result.
12459     ISD::CondCode CC =
12460       cast<CondCodeSDNode>(N->getOperand(
12461         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12462     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12463 
12464     if (ISD::isSignedIntSetCC(CC)) {
12465       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12466           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12467         return SDValue();
12468     } else if (ISD::isUnsignedIntSetCC(CC)) {
12469       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12470                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12471           !DAG.MaskedValueIsZero(N->getOperand(1),
12472                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12473         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12474                                              : SDValue());
12475     } else {
12476       // This is neither a signed nor an unsigned comparison, just make sure
12477       // that the high bits are equal.
12478       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12479       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12480 
12481       // We don't really care about what is known about the first bit (if
12482       // anything), so clear it in all masks prior to comparing them.
12483       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12484       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12485 
12486       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12487         return SDValue();
12488     }
12489   }
12490 
12491   // We now know that the higher-order bits are irrelevant, we just need to
12492   // make sure that all of the intermediate operations are bit operations, and
12493   // all inputs are extensions.
12494   if (N->getOperand(0).getOpcode() != ISD::AND &&
12495       N->getOperand(0).getOpcode() != ISD::OR  &&
12496       N->getOperand(0).getOpcode() != ISD::XOR &&
12497       N->getOperand(0).getOpcode() != ISD::SELECT &&
12498       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12499       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12500       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12501       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12502       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12503     return SDValue();
12504 
12505   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12506       N->getOperand(1).getOpcode() != ISD::AND &&
12507       N->getOperand(1).getOpcode() != ISD::OR  &&
12508       N->getOperand(1).getOpcode() != ISD::XOR &&
12509       N->getOperand(1).getOpcode() != ISD::SELECT &&
12510       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12511       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12512       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12513       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12514       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12515     return SDValue();
12516 
12517   SmallVector<SDValue, 4> Inputs;
12518   SmallVector<SDValue, 8> BinOps, PromOps;
12519   SmallPtrSet<SDNode *, 16> Visited;
12520 
12521   for (unsigned i = 0; i < 2; ++i) {
12522     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12523           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12524           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12525           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12526         isa<ConstantSDNode>(N->getOperand(i)))
12527       Inputs.push_back(N->getOperand(i));
12528     else
12529       BinOps.push_back(N->getOperand(i));
12530 
12531     if (N->getOpcode() == ISD::TRUNCATE)
12532       break;
12533   }
12534 
12535   // Visit all inputs, collect all binary operations (and, or, xor and
12536   // select) that are all fed by extensions.
12537   while (!BinOps.empty()) {
12538     SDValue BinOp = BinOps.back();
12539     BinOps.pop_back();
12540 
12541     if (!Visited.insert(BinOp.getNode()).second)
12542       continue;
12543 
12544     PromOps.push_back(BinOp);
12545 
12546     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12547       // The condition of the select is not promoted.
12548       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12549         continue;
12550       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12551         continue;
12552 
12553       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12554             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12555             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12556            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12557           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12558         Inputs.push_back(BinOp.getOperand(i));
12559       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12560                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12561                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12562                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12563                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12564                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12565                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12566                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12567                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12568         BinOps.push_back(BinOp.getOperand(i));
12569       } else {
12570         // We have an input that is not an extension or another binary
12571         // operation; we'll abort this transformation.
12572         return SDValue();
12573       }
12574     }
12575   }
12576 
12577   // Make sure that this is a self-contained cluster of operations (which
12578   // is not quite the same thing as saying that everything has only one
12579   // use).
12580   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12581     if (isa<ConstantSDNode>(Inputs[i]))
12582       continue;
12583 
12584     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12585                               UE = Inputs[i].getNode()->use_end();
12586          UI != UE; ++UI) {
12587       SDNode *User = *UI;
12588       if (User != N && !Visited.count(User))
12589         return SDValue();
12590 
12591       // Make sure that we're not going to promote the non-output-value
12592       // operand(s) or SELECT or SELECT_CC.
12593       // FIXME: Although we could sometimes handle this, and it does occur in
12594       // practice that one of the condition inputs to the select is also one of
12595       // the outputs, we currently can't deal with this.
12596       if (User->getOpcode() == ISD::SELECT) {
12597         if (User->getOperand(0) == Inputs[i])
12598           return SDValue();
12599       } else if (User->getOpcode() == ISD::SELECT_CC) {
12600         if (User->getOperand(0) == Inputs[i] ||
12601             User->getOperand(1) == Inputs[i])
12602           return SDValue();
12603       }
12604     }
12605   }
12606 
12607   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12608     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12609                               UE = PromOps[i].getNode()->use_end();
12610          UI != UE; ++UI) {
12611       SDNode *User = *UI;
12612       if (User != N && !Visited.count(User))
12613         return SDValue();
12614 
12615       // Make sure that we're not going to promote the non-output-value
12616       // operand(s) or SELECT or SELECT_CC.
12617       // FIXME: Although we could sometimes handle this, and it does occur in
12618       // practice that one of the condition inputs to the select is also one of
12619       // the outputs, we currently can't deal with this.
12620       if (User->getOpcode() == ISD::SELECT) {
12621         if (User->getOperand(0) == PromOps[i])
12622           return SDValue();
12623       } else if (User->getOpcode() == ISD::SELECT_CC) {
12624         if (User->getOperand(0) == PromOps[i] ||
12625             User->getOperand(1) == PromOps[i])
12626           return SDValue();
12627       }
12628     }
12629   }
12630 
12631   // Replace all inputs with the extension operand.
12632   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12633     // Constants may have users outside the cluster of to-be-promoted nodes,
12634     // and so we need to replace those as we do the promotions.
12635     if (isa<ConstantSDNode>(Inputs[i]))
12636       continue;
12637     else
12638       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12639   }
12640 
12641   std::list<HandleSDNode> PromOpHandles;
12642   for (auto &PromOp : PromOps)
12643     PromOpHandles.emplace_back(PromOp);
12644 
12645   // Replace all operations (these are all the same, but have a different
12646   // (i1) return type). DAG.getNode will validate that the types of
12647   // a binary operator match, so go through the list in reverse so that
12648   // we've likely promoted both operands first. Any intermediate truncations or
12649   // extensions disappear.
12650   while (!PromOpHandles.empty()) {
12651     SDValue PromOp = PromOpHandles.back().getValue();
12652     PromOpHandles.pop_back();
12653 
12654     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12655         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12656         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12657         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12658       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12659           PromOp.getOperand(0).getValueType() != MVT::i1) {
12660         // The operand is not yet ready (see comment below).
12661         PromOpHandles.emplace_front(PromOp);
12662         continue;
12663       }
12664 
12665       SDValue RepValue = PromOp.getOperand(0);
12666       if (isa<ConstantSDNode>(RepValue))
12667         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12668 
12669       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12670       continue;
12671     }
12672 
12673     unsigned C;
12674     switch (PromOp.getOpcode()) {
12675     default:             C = 0; break;
12676     case ISD::SELECT:    C = 1; break;
12677     case ISD::SELECT_CC: C = 2; break;
12678     }
12679 
12680     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12681          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12682         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12683          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12684       // The to-be-promoted operands of this node have not yet been
12685       // promoted (this should be rare because we're going through the
12686       // list backward, but if one of the operands has several users in
12687       // this cluster of to-be-promoted nodes, it is possible).
12688       PromOpHandles.emplace_front(PromOp);
12689       continue;
12690     }
12691 
12692     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12693                                 PromOp.getNode()->op_end());
12694 
12695     // If there are any constant inputs, make sure they're replaced now.
12696     for (unsigned i = 0; i < 2; ++i)
12697       if (isa<ConstantSDNode>(Ops[C+i]))
12698         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12699 
12700     DAG.ReplaceAllUsesOfValueWith(PromOp,
12701       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12702   }
12703 
12704   // Now we're left with the initial truncation itself.
12705   if (N->getOpcode() == ISD::TRUNCATE)
12706     return N->getOperand(0);
12707 
12708   // Otherwise, this is a comparison. The operands to be compared have just
12709   // changed type (to i1), but everything else is the same.
12710   return SDValue(N, 0);
12711 }
12712 
12713 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12714                                                   DAGCombinerInfo &DCI) const {
12715   SelectionDAG &DAG = DCI.DAG;
12716   SDLoc dl(N);
12717 
12718   // If we're tracking CR bits, we need to be careful that we don't have:
12719   //   zext(binary-ops(trunc(x), trunc(y)))
12720   // or
12721   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12722   // such that we're unnecessarily moving things into CR bits that can more
12723   // efficiently stay in GPRs. Note that if we're not certain that the high
12724   // bits are set as required by the final extension, we still may need to do
12725   // some masking to get the proper behavior.
12726 
12727   // This same functionality is important on PPC64 when dealing with
12728   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12729   // the return values of functions. Because it is so similar, it is handled
12730   // here as well.
12731 
12732   if (N->getValueType(0) != MVT::i32 &&
12733       N->getValueType(0) != MVT::i64)
12734     return SDValue();
12735 
12736   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12737         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12738     return SDValue();
12739 
12740   if (N->getOperand(0).getOpcode() != ISD::AND &&
12741       N->getOperand(0).getOpcode() != ISD::OR  &&
12742       N->getOperand(0).getOpcode() != ISD::XOR &&
12743       N->getOperand(0).getOpcode() != ISD::SELECT &&
12744       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12745     return SDValue();
12746 
12747   SmallVector<SDValue, 4> Inputs;
12748   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12749   SmallPtrSet<SDNode *, 16> Visited;
12750 
12751   // Visit all inputs, collect all binary operations (and, or, xor and
12752   // select) that are all fed by truncations.
12753   while (!BinOps.empty()) {
12754     SDValue BinOp = BinOps.back();
12755     BinOps.pop_back();
12756 
12757     if (!Visited.insert(BinOp.getNode()).second)
12758       continue;
12759 
12760     PromOps.push_back(BinOp);
12761 
12762     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12763       // The condition of the select is not promoted.
12764       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12765         continue;
12766       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12767         continue;
12768 
12769       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12770           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12771         Inputs.push_back(BinOp.getOperand(i));
12772       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12773                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12774                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12775                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12776                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12777         BinOps.push_back(BinOp.getOperand(i));
12778       } else {
12779         // We have an input that is not a truncation or another binary
12780         // operation; we'll abort this transformation.
12781         return SDValue();
12782       }
12783     }
12784   }
12785 
12786   // The operands of a select that must be truncated when the select is
12787   // promoted because the operand is actually part of the to-be-promoted set.
12788   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12789 
12790   // Make sure that this is a self-contained cluster of operations (which
12791   // is not quite the same thing as saying that everything has only one
12792   // use).
12793   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12794     if (isa<ConstantSDNode>(Inputs[i]))
12795       continue;
12796 
12797     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12798                               UE = Inputs[i].getNode()->use_end();
12799          UI != UE; ++UI) {
12800       SDNode *User = *UI;
12801       if (User != N && !Visited.count(User))
12802         return SDValue();
12803 
12804       // If we're going to promote the non-output-value operand(s) or SELECT or
12805       // SELECT_CC, record them for truncation.
12806       if (User->getOpcode() == ISD::SELECT) {
12807         if (User->getOperand(0) == Inputs[i])
12808           SelectTruncOp[0].insert(std::make_pair(User,
12809                                     User->getOperand(0).getValueType()));
12810       } else if (User->getOpcode() == ISD::SELECT_CC) {
12811         if (User->getOperand(0) == Inputs[i])
12812           SelectTruncOp[0].insert(std::make_pair(User,
12813                                     User->getOperand(0).getValueType()));
12814         if (User->getOperand(1) == Inputs[i])
12815           SelectTruncOp[1].insert(std::make_pair(User,
12816                                     User->getOperand(1).getValueType()));
12817       }
12818     }
12819   }
12820 
12821   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12822     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12823                               UE = PromOps[i].getNode()->use_end();
12824          UI != UE; ++UI) {
12825       SDNode *User = *UI;
12826       if (User != N && !Visited.count(User))
12827         return SDValue();
12828 
12829       // If we're going to promote the non-output-value operand(s) or SELECT or
12830       // SELECT_CC, record them for truncation.
12831       if (User->getOpcode() == ISD::SELECT) {
12832         if (User->getOperand(0) == PromOps[i])
12833           SelectTruncOp[0].insert(std::make_pair(User,
12834                                     User->getOperand(0).getValueType()));
12835       } else if (User->getOpcode() == ISD::SELECT_CC) {
12836         if (User->getOperand(0) == PromOps[i])
12837           SelectTruncOp[0].insert(std::make_pair(User,
12838                                     User->getOperand(0).getValueType()));
12839         if (User->getOperand(1) == PromOps[i])
12840           SelectTruncOp[1].insert(std::make_pair(User,
12841                                     User->getOperand(1).getValueType()));
12842       }
12843     }
12844   }
12845 
12846   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12847   bool ReallyNeedsExt = false;
12848   if (N->getOpcode() != ISD::ANY_EXTEND) {
12849     // If all of the inputs are not already sign/zero extended, then
12850     // we'll still need to do that at the end.
12851     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12852       if (isa<ConstantSDNode>(Inputs[i]))
12853         continue;
12854 
12855       unsigned OpBits =
12856         Inputs[i].getOperand(0).getValueSizeInBits();
12857       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12858 
12859       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12860            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12861                                   APInt::getHighBitsSet(OpBits,
12862                                                         OpBits-PromBits))) ||
12863           (N->getOpcode() == ISD::SIGN_EXTEND &&
12864            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12865              (OpBits-(PromBits-1)))) {
12866         ReallyNeedsExt = true;
12867         break;
12868       }
12869     }
12870   }
12871 
12872   // Replace all inputs, either with the truncation operand, or a
12873   // truncation or extension to the final output type.
12874   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12875     // Constant inputs need to be replaced with the to-be-promoted nodes that
12876     // use them because they might have users outside of the cluster of
12877     // promoted nodes.
12878     if (isa<ConstantSDNode>(Inputs[i]))
12879       continue;
12880 
12881     SDValue InSrc = Inputs[i].getOperand(0);
12882     if (Inputs[i].getValueType() == N->getValueType(0))
12883       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12884     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12885       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12886         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12887     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12888       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12889         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12890     else
12891       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12892         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12893   }
12894 
12895   std::list<HandleSDNode> PromOpHandles;
12896   for (auto &PromOp : PromOps)
12897     PromOpHandles.emplace_back(PromOp);
12898 
12899   // Replace all operations (these are all the same, but have a different
12900   // (promoted) return type). DAG.getNode will validate that the types of
12901   // a binary operator match, so go through the list in reverse so that
12902   // we've likely promoted both operands first.
12903   while (!PromOpHandles.empty()) {
12904     SDValue PromOp = PromOpHandles.back().getValue();
12905     PromOpHandles.pop_back();
12906 
12907     unsigned C;
12908     switch (PromOp.getOpcode()) {
12909     default:             C = 0; break;
12910     case ISD::SELECT:    C = 1; break;
12911     case ISD::SELECT_CC: C = 2; break;
12912     }
12913 
12914     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12915          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12916         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12917          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12918       // The to-be-promoted operands of this node have not yet been
12919       // promoted (this should be rare because we're going through the
12920       // list backward, but if one of the operands has several users in
12921       // this cluster of to-be-promoted nodes, it is possible).
12922       PromOpHandles.emplace_front(PromOp);
12923       continue;
12924     }
12925 
12926     // For SELECT and SELECT_CC nodes, we do a similar check for any
12927     // to-be-promoted comparison inputs.
12928     if (PromOp.getOpcode() == ISD::SELECT ||
12929         PromOp.getOpcode() == ISD::SELECT_CC) {
12930       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12931            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12932           (SelectTruncOp[1].count(PromOp.getNode()) &&
12933            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12934         PromOpHandles.emplace_front(PromOp);
12935         continue;
12936       }
12937     }
12938 
12939     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12940                                 PromOp.getNode()->op_end());
12941 
12942     // If this node has constant inputs, then they'll need to be promoted here.
12943     for (unsigned i = 0; i < 2; ++i) {
12944       if (!isa<ConstantSDNode>(Ops[C+i]))
12945         continue;
12946       if (Ops[C+i].getValueType() == N->getValueType(0))
12947         continue;
12948 
12949       if (N->getOpcode() == ISD::SIGN_EXTEND)
12950         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12951       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12952         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12953       else
12954         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12955     }
12956 
12957     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12958     // truncate them again to the original value type.
12959     if (PromOp.getOpcode() == ISD::SELECT ||
12960         PromOp.getOpcode() == ISD::SELECT_CC) {
12961       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12962       if (SI0 != SelectTruncOp[0].end())
12963         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12964       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12965       if (SI1 != SelectTruncOp[1].end())
12966         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12967     }
12968 
12969     DAG.ReplaceAllUsesOfValueWith(PromOp,
12970       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12971   }
12972 
12973   // Now we're left with the initial extension itself.
12974   if (!ReallyNeedsExt)
12975     return N->getOperand(0);
12976 
12977   // To zero extend, just mask off everything except for the first bit (in the
12978   // i1 case).
12979   if (N->getOpcode() == ISD::ZERO_EXTEND)
12980     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12981                        DAG.getConstant(APInt::getLowBitsSet(
12982                                          N->getValueSizeInBits(0), PromBits),
12983                                        dl, N->getValueType(0)));
12984 
12985   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12986          "Invalid extension type");
12987   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12988   SDValue ShiftCst =
12989       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12990   return DAG.getNode(
12991       ISD::SRA, dl, N->getValueType(0),
12992       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12993       ShiftCst);
12994 }
12995 
12996 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12997                                         DAGCombinerInfo &DCI) const {
12998   assert(N->getOpcode() == ISD::SETCC &&
12999          "Should be called with a SETCC node");
13000 
13001   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13002   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13003     SDValue LHS = N->getOperand(0);
13004     SDValue RHS = N->getOperand(1);
13005 
13006     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13007     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13008         LHS.hasOneUse())
13009       std::swap(LHS, RHS);
13010 
13011     // x == 0-y --> x+y == 0
13012     // x != 0-y --> x+y != 0
13013     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13014         RHS.hasOneUse()) {
13015       SDLoc DL(N);
13016       SelectionDAG &DAG = DCI.DAG;
13017       EVT VT = N->getValueType(0);
13018       EVT OpVT = LHS.getValueType();
13019       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13020       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13021     }
13022   }
13023 
13024   return DAGCombineTruncBoolExt(N, DCI);
13025 }
13026 
13027 // Is this an extending load from an f32 to an f64?
13028 static bool isFPExtLoad(SDValue Op) {
13029   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13030     return LD->getExtensionType() == ISD::EXTLOAD &&
13031       Op.getValueType() == MVT::f64;
13032   return false;
13033 }
13034 
13035 /// Reduces the number of fp-to-int conversion when building a vector.
13036 ///
13037 /// If this vector is built out of floating to integer conversions,
13038 /// transform it to a vector built out of floating point values followed by a
13039 /// single floating to integer conversion of the vector.
13040 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13041 /// becomes (fptosi (build_vector ($A, $B, ...)))
13042 SDValue PPCTargetLowering::
13043 combineElementTruncationToVectorTruncation(SDNode *N,
13044                                            DAGCombinerInfo &DCI) const {
13045   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13046          "Should be called with a BUILD_VECTOR node");
13047 
13048   SelectionDAG &DAG = DCI.DAG;
13049   SDLoc dl(N);
13050 
13051   SDValue FirstInput = N->getOperand(0);
13052   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13053          "The input operand must be an fp-to-int conversion.");
13054 
13055   // This combine happens after legalization so the fp_to_[su]i nodes are
13056   // already converted to PPCSISD nodes.
13057   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13058   if (FirstConversion == PPCISD::FCTIDZ ||
13059       FirstConversion == PPCISD::FCTIDUZ ||
13060       FirstConversion == PPCISD::FCTIWZ ||
13061       FirstConversion == PPCISD::FCTIWUZ) {
13062     bool IsSplat = true;
13063     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13064       FirstConversion == PPCISD::FCTIWUZ;
13065     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13066     SmallVector<SDValue, 4> Ops;
13067     EVT TargetVT = N->getValueType(0);
13068     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13069       SDValue NextOp = N->getOperand(i);
13070       if (NextOp.getOpcode() != PPCISD::MFVSR)
13071         return SDValue();
13072       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13073       if (NextConversion != FirstConversion)
13074         return SDValue();
13075       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13076       // This is not valid if the input was originally double precision. It is
13077       // also not profitable to do unless this is an extending load in which
13078       // case doing this combine will allow us to combine consecutive loads.
13079       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13080         return SDValue();
13081       if (N->getOperand(i) != FirstInput)
13082         IsSplat = false;
13083     }
13084 
13085     // If this is a splat, we leave it as-is since there will be only a single
13086     // fp-to-int conversion followed by a splat of the integer. This is better
13087     // for 32-bit and smaller ints and neutral for 64-bit ints.
13088     if (IsSplat)
13089       return SDValue();
13090 
13091     // Now that we know we have the right type of node, get its operands
13092     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13093       SDValue In = N->getOperand(i).getOperand(0);
13094       if (Is32Bit) {
13095         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13096         // here, we know that all inputs are extending loads so this is safe).
13097         if (In.isUndef())
13098           Ops.push_back(DAG.getUNDEF(SrcVT));
13099         else {
13100           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13101                                       MVT::f32, In.getOperand(0),
13102                                       DAG.getIntPtrConstant(1, dl));
13103           Ops.push_back(Trunc);
13104         }
13105       } else
13106         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13107     }
13108 
13109     unsigned Opcode;
13110     if (FirstConversion == PPCISD::FCTIDZ ||
13111         FirstConversion == PPCISD::FCTIWZ)
13112       Opcode = ISD::FP_TO_SINT;
13113     else
13114       Opcode = ISD::FP_TO_UINT;
13115 
13116     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13117     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13118     return DAG.getNode(Opcode, dl, TargetVT, BV);
13119   }
13120   return SDValue();
13121 }
13122 
13123 /// Reduce the number of loads when building a vector.
13124 ///
13125 /// Building a vector out of multiple loads can be converted to a load
13126 /// of the vector type if the loads are consecutive. If the loads are
13127 /// consecutive but in descending order, a shuffle is added at the end
13128 /// to reorder the vector.
13129 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13130   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13131          "Should be called with a BUILD_VECTOR node");
13132 
13133   SDLoc dl(N);
13134 
13135   // Return early for non byte-sized type, as they can't be consecutive.
13136   if (!N->getValueType(0).getVectorElementType().isByteSized())
13137     return SDValue();
13138 
13139   bool InputsAreConsecutiveLoads = true;
13140   bool InputsAreReverseConsecutive = true;
13141   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13142   SDValue FirstInput = N->getOperand(0);
13143   bool IsRoundOfExtLoad = false;
13144 
13145   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13146       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13147     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13148     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13149   }
13150   // Not a build vector of (possibly fp_rounded) loads.
13151   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13152       N->getNumOperands() == 1)
13153     return SDValue();
13154 
13155   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13156     // If any inputs are fp_round(extload), they all must be.
13157     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13158       return SDValue();
13159 
13160     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13161       N->getOperand(i);
13162     if (NextInput.getOpcode() != ISD::LOAD)
13163       return SDValue();
13164 
13165     SDValue PreviousInput =
13166       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13167     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13168     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13169 
13170     // If any inputs are fp_round(extload), they all must be.
13171     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13172       return SDValue();
13173 
13174     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13175       InputsAreConsecutiveLoads = false;
13176     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13177       InputsAreReverseConsecutive = false;
13178 
13179     // Exit early if the loads are neither consecutive nor reverse consecutive.
13180     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13181       return SDValue();
13182   }
13183 
13184   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13185          "The loads cannot be both consecutive and reverse consecutive.");
13186 
13187   SDValue FirstLoadOp =
13188     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13189   SDValue LastLoadOp =
13190     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13191                        N->getOperand(N->getNumOperands()-1);
13192 
13193   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13194   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13195   if (InputsAreConsecutiveLoads) {
13196     assert(LD1 && "Input needs to be a LoadSDNode.");
13197     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13198                        LD1->getBasePtr(), LD1->getPointerInfo(),
13199                        LD1->getAlignment());
13200   }
13201   if (InputsAreReverseConsecutive) {
13202     assert(LDL && "Input needs to be a LoadSDNode.");
13203     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13204                                LDL->getBasePtr(), LDL->getPointerInfo(),
13205                                LDL->getAlignment());
13206     SmallVector<int, 16> Ops;
13207     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13208       Ops.push_back(i);
13209 
13210     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13211                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13212   }
13213   return SDValue();
13214 }
13215 
13216 // This function adds the required vector_shuffle needed to get
13217 // the elements of the vector extract in the correct position
13218 // as specified by the CorrectElems encoding.
13219 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13220                                       SDValue Input, uint64_t Elems,
13221                                       uint64_t CorrectElems) {
13222   SDLoc dl(N);
13223 
13224   unsigned NumElems = Input.getValueType().getVectorNumElements();
13225   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13226 
13227   // Knowing the element indices being extracted from the original
13228   // vector and the order in which they're being inserted, just put
13229   // them at element indices required for the instruction.
13230   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13231     if (DAG.getDataLayout().isLittleEndian())
13232       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13233     else
13234       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13235     CorrectElems = CorrectElems >> 8;
13236     Elems = Elems >> 8;
13237   }
13238 
13239   SDValue Shuffle =
13240       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13241                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13242 
13243   EVT VT = N->getValueType(0);
13244   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13245 
13246   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13247                                Input.getValueType().getVectorElementType(),
13248                                VT.getVectorNumElements());
13249   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13250                      DAG.getValueType(ExtVT));
13251 }
13252 
13253 // Look for build vector patterns where input operands come from sign
13254 // extended vector_extract elements of specific indices. If the correct indices
13255 // aren't used, add a vector shuffle to fix up the indices and create
13256 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13257 // during instruction selection.
13258 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13259   // This array encodes the indices that the vector sign extend instructions
13260   // extract from when extending from one type to another for both BE and LE.
13261   // The right nibble of each byte corresponds to the LE incides.
13262   // and the left nibble of each byte corresponds to the BE incides.
13263   // For example: 0x3074B8FC  byte->word
13264   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13265   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13266   // For example: 0x000070F8  byte->double word
13267   // For LE: the allowed indices are: 0x0,0x8
13268   // For BE: the allowed indices are: 0x7,0xF
13269   uint64_t TargetElems[] = {
13270       0x3074B8FC, // b->w
13271       0x000070F8, // b->d
13272       0x10325476, // h->w
13273       0x00003074, // h->d
13274       0x00001032, // w->d
13275   };
13276 
13277   uint64_t Elems = 0;
13278   int Index;
13279   SDValue Input;
13280 
13281   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13282     if (!Op)
13283       return false;
13284     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13285         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13286       return false;
13287 
13288     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13289     // of the right width.
13290     SDValue Extract = Op.getOperand(0);
13291     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13292       Extract = Extract.getOperand(0);
13293     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13294       return false;
13295 
13296     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13297     if (!ExtOp)
13298       return false;
13299 
13300     Index = ExtOp->getZExtValue();
13301     if (Input && Input != Extract.getOperand(0))
13302       return false;
13303 
13304     if (!Input)
13305       Input = Extract.getOperand(0);
13306 
13307     Elems = Elems << 8;
13308     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13309     Elems |= Index;
13310 
13311     return true;
13312   };
13313 
13314   // If the build vector operands aren't sign extended vector extracts,
13315   // of the same input vector, then return.
13316   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13317     if (!isSExtOfVecExtract(N->getOperand(i))) {
13318       return SDValue();
13319     }
13320   }
13321 
13322   // If the vector extract indicies are not correct, add the appropriate
13323   // vector_shuffle.
13324   int TgtElemArrayIdx;
13325   int InputSize = Input.getValueType().getScalarSizeInBits();
13326   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13327   if (InputSize + OutputSize == 40)
13328     TgtElemArrayIdx = 0;
13329   else if (InputSize + OutputSize == 72)
13330     TgtElemArrayIdx = 1;
13331   else if (InputSize + OutputSize == 48)
13332     TgtElemArrayIdx = 2;
13333   else if (InputSize + OutputSize == 80)
13334     TgtElemArrayIdx = 3;
13335   else if (InputSize + OutputSize == 96)
13336     TgtElemArrayIdx = 4;
13337   else
13338     return SDValue();
13339 
13340   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13341   CorrectElems = DAG.getDataLayout().isLittleEndian()
13342                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13343                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13344   if (Elems != CorrectElems) {
13345     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13346   }
13347 
13348   // Regular lowering will catch cases where a shuffle is not needed.
13349   return SDValue();
13350 }
13351 
13352 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13353                                                  DAGCombinerInfo &DCI) const {
13354   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13355          "Should be called with a BUILD_VECTOR node");
13356 
13357   SelectionDAG &DAG = DCI.DAG;
13358   SDLoc dl(N);
13359 
13360   if (!Subtarget.hasVSX())
13361     return SDValue();
13362 
13363   // The target independent DAG combiner will leave a build_vector of
13364   // float-to-int conversions intact. We can generate MUCH better code for
13365   // a float-to-int conversion of a vector of floats.
13366   SDValue FirstInput = N->getOperand(0);
13367   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13368     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13369     if (Reduced)
13370       return Reduced;
13371   }
13372 
13373   // If we're building a vector out of consecutive loads, just load that
13374   // vector type.
13375   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13376   if (Reduced)
13377     return Reduced;
13378 
13379   // If we're building a vector out of extended elements from another vector
13380   // we have P9 vector integer extend instructions. The code assumes legal
13381   // input types (i.e. it can't handle things like v4i16) so do not run before
13382   // legalization.
13383   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13384     Reduced = combineBVOfVecSExt(N, DAG);
13385     if (Reduced)
13386       return Reduced;
13387   }
13388 
13389 
13390   if (N->getValueType(0) != MVT::v2f64)
13391     return SDValue();
13392 
13393   // Looking for:
13394   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13395   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13396       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13397     return SDValue();
13398   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13399       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13400     return SDValue();
13401   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13402     return SDValue();
13403 
13404   SDValue Ext1 = FirstInput.getOperand(0);
13405   SDValue Ext2 = N->getOperand(1).getOperand(0);
13406   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13407      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13408     return SDValue();
13409 
13410   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13411   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13412   if (!Ext1Op || !Ext2Op)
13413     return SDValue();
13414   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13415       Ext1.getOperand(0) != Ext2.getOperand(0))
13416     return SDValue();
13417 
13418   int FirstElem = Ext1Op->getZExtValue();
13419   int SecondElem = Ext2Op->getZExtValue();
13420   int SubvecIdx;
13421   if (FirstElem == 0 && SecondElem == 1)
13422     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13423   else if (FirstElem == 2 && SecondElem == 3)
13424     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13425   else
13426     return SDValue();
13427 
13428   SDValue SrcVec = Ext1.getOperand(0);
13429   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13430     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13431   return DAG.getNode(NodeType, dl, MVT::v2f64,
13432                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13433 }
13434 
13435 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13436                                               DAGCombinerInfo &DCI) const {
13437   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13438           N->getOpcode() == ISD::UINT_TO_FP) &&
13439          "Need an int -> FP conversion node here");
13440 
13441   if (useSoftFloat() || !Subtarget.has64BitSupport())
13442     return SDValue();
13443 
13444   SelectionDAG &DAG = DCI.DAG;
13445   SDLoc dl(N);
13446   SDValue Op(N, 0);
13447 
13448   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13449   // from the hardware.
13450   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13451     return SDValue();
13452   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13453       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13454     return SDValue();
13455 
13456   SDValue FirstOperand(Op.getOperand(0));
13457   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13458     (FirstOperand.getValueType() == MVT::i8 ||
13459      FirstOperand.getValueType() == MVT::i16);
13460   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13461     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13462     bool DstDouble = Op.getValueType() == MVT::f64;
13463     unsigned ConvOp = Signed ?
13464       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13465       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13466     SDValue WidthConst =
13467       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13468                             dl, false);
13469     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13470     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13471     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13472                                          DAG.getVTList(MVT::f64, MVT::Other),
13473                                          Ops, MVT::i8, LDN->getMemOperand());
13474 
13475     // For signed conversion, we need to sign-extend the value in the VSR
13476     if (Signed) {
13477       SDValue ExtOps[] = { Ld, WidthConst };
13478       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13479       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13480     } else
13481       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13482   }
13483 
13484 
13485   // For i32 intermediate values, unfortunately, the conversion functions
13486   // leave the upper 32 bits of the value are undefined. Within the set of
13487   // scalar instructions, we have no method for zero- or sign-extending the
13488   // value. Thus, we cannot handle i32 intermediate values here.
13489   if (Op.getOperand(0).getValueType() == MVT::i32)
13490     return SDValue();
13491 
13492   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13493          "UINT_TO_FP is supported only with FPCVT");
13494 
13495   // If we have FCFIDS, then use it when converting to single-precision.
13496   // Otherwise, convert to double-precision and then round.
13497   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13498                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13499                                                             : PPCISD::FCFIDS)
13500                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13501                                                             : PPCISD::FCFID);
13502   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13503                   ? MVT::f32
13504                   : MVT::f64;
13505 
13506   // If we're converting from a float, to an int, and back to a float again,
13507   // then we don't need the store/load pair at all.
13508   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13509        Subtarget.hasFPCVT()) ||
13510       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13511     SDValue Src = Op.getOperand(0).getOperand(0);
13512     if (Src.getValueType() == MVT::f32) {
13513       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13514       DCI.AddToWorklist(Src.getNode());
13515     } else if (Src.getValueType() != MVT::f64) {
13516       // Make sure that we don't pick up a ppc_fp128 source value.
13517       return SDValue();
13518     }
13519 
13520     unsigned FCTOp =
13521       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13522                                                         PPCISD::FCTIDUZ;
13523 
13524     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13525     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13526 
13527     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13528       FP = DAG.getNode(ISD::FP_ROUND, dl,
13529                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13530       DCI.AddToWorklist(FP.getNode());
13531     }
13532 
13533     return FP;
13534   }
13535 
13536   return SDValue();
13537 }
13538 
13539 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13540 // builtins) into loads with swaps.
13541 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13542                                               DAGCombinerInfo &DCI) const {
13543   SelectionDAG &DAG = DCI.DAG;
13544   SDLoc dl(N);
13545   SDValue Chain;
13546   SDValue Base;
13547   MachineMemOperand *MMO;
13548 
13549   switch (N->getOpcode()) {
13550   default:
13551     llvm_unreachable("Unexpected opcode for little endian VSX load");
13552   case ISD::LOAD: {
13553     LoadSDNode *LD = cast<LoadSDNode>(N);
13554     Chain = LD->getChain();
13555     Base = LD->getBasePtr();
13556     MMO = LD->getMemOperand();
13557     // If the MMO suggests this isn't a load of a full vector, leave
13558     // things alone.  For a built-in, we have to make the change for
13559     // correctness, so if there is a size problem that will be a bug.
13560     if (MMO->getSize() < 16)
13561       return SDValue();
13562     break;
13563   }
13564   case ISD::INTRINSIC_W_CHAIN: {
13565     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13566     Chain = Intrin->getChain();
13567     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13568     // us what we want. Get operand 2 instead.
13569     Base = Intrin->getOperand(2);
13570     MMO = Intrin->getMemOperand();
13571     break;
13572   }
13573   }
13574 
13575   MVT VecTy = N->getValueType(0).getSimpleVT();
13576 
13577   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13578   // aligned and the type is a vector with elements up to 4 bytes
13579   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13580       && VecTy.getScalarSizeInBits() <= 32 ) {
13581     return SDValue();
13582   }
13583 
13584   SDValue LoadOps[] = { Chain, Base };
13585   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13586                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13587                                          LoadOps, MVT::v2f64, MMO);
13588 
13589   DCI.AddToWorklist(Load.getNode());
13590   Chain = Load.getValue(1);
13591   SDValue Swap = DAG.getNode(
13592       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13593   DCI.AddToWorklist(Swap.getNode());
13594 
13595   // Add a bitcast if the resulting load type doesn't match v2f64.
13596   if (VecTy != MVT::v2f64) {
13597     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13598     DCI.AddToWorklist(N.getNode());
13599     // Package {bitcast value, swap's chain} to match Load's shape.
13600     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13601                        N, Swap.getValue(1));
13602   }
13603 
13604   return Swap;
13605 }
13606 
13607 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13608 // builtins) into stores with swaps.
13609 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13610                                                DAGCombinerInfo &DCI) const {
13611   SelectionDAG &DAG = DCI.DAG;
13612   SDLoc dl(N);
13613   SDValue Chain;
13614   SDValue Base;
13615   unsigned SrcOpnd;
13616   MachineMemOperand *MMO;
13617 
13618   switch (N->getOpcode()) {
13619   default:
13620     llvm_unreachable("Unexpected opcode for little endian VSX store");
13621   case ISD::STORE: {
13622     StoreSDNode *ST = cast<StoreSDNode>(N);
13623     Chain = ST->getChain();
13624     Base = ST->getBasePtr();
13625     MMO = ST->getMemOperand();
13626     SrcOpnd = 1;
13627     // If the MMO suggests this isn't a store of a full vector, leave
13628     // things alone.  For a built-in, we have to make the change for
13629     // correctness, so if there is a size problem that will be a bug.
13630     if (MMO->getSize() < 16)
13631       return SDValue();
13632     break;
13633   }
13634   case ISD::INTRINSIC_VOID: {
13635     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13636     Chain = Intrin->getChain();
13637     // Intrin->getBasePtr() oddly does not get what we want.
13638     Base = Intrin->getOperand(3);
13639     MMO = Intrin->getMemOperand();
13640     SrcOpnd = 2;
13641     break;
13642   }
13643   }
13644 
13645   SDValue Src = N->getOperand(SrcOpnd);
13646   MVT VecTy = Src.getValueType().getSimpleVT();
13647 
13648   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13649   // aligned and the type is a vector with elements up to 4 bytes
13650   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13651       && VecTy.getScalarSizeInBits() <= 32 ) {
13652     return SDValue();
13653   }
13654 
13655   // All stores are done as v2f64 and possible bit cast.
13656   if (VecTy != MVT::v2f64) {
13657     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13658     DCI.AddToWorklist(Src.getNode());
13659   }
13660 
13661   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13662                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13663   DCI.AddToWorklist(Swap.getNode());
13664   Chain = Swap.getValue(1);
13665   SDValue StoreOps[] = { Chain, Swap, Base };
13666   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13667                                           DAG.getVTList(MVT::Other),
13668                                           StoreOps, VecTy, MMO);
13669   DCI.AddToWorklist(Store.getNode());
13670   return Store;
13671 }
13672 
13673 // Handle DAG combine for STORE (FP_TO_INT F).
13674 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13675                                                DAGCombinerInfo &DCI) const {
13676 
13677   SelectionDAG &DAG = DCI.DAG;
13678   SDLoc dl(N);
13679   unsigned Opcode = N->getOperand(1).getOpcode();
13680 
13681   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13682          && "Not a FP_TO_INT Instruction!");
13683 
13684   SDValue Val = N->getOperand(1).getOperand(0);
13685   EVT Op1VT = N->getOperand(1).getValueType();
13686   EVT ResVT = Val.getValueType();
13687 
13688   // Floating point types smaller than 32 bits are not legal on Power.
13689   if (ResVT.getScalarSizeInBits() < 32)
13690     return SDValue();
13691 
13692   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13693   bool ValidTypeForStoreFltAsInt =
13694         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13695          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13696 
13697   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13698       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13699     return SDValue();
13700 
13701   // Extend f32 values to f64
13702   if (ResVT.getScalarSizeInBits() == 32) {
13703     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13704     DCI.AddToWorklist(Val.getNode());
13705   }
13706 
13707   // Set signed or unsigned conversion opcode.
13708   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13709                           PPCISD::FP_TO_SINT_IN_VSR :
13710                           PPCISD::FP_TO_UINT_IN_VSR;
13711 
13712   Val = DAG.getNode(ConvOpcode,
13713                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13714   DCI.AddToWorklist(Val.getNode());
13715 
13716   // Set number of bytes being converted.
13717   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13718   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13719                     DAG.getIntPtrConstant(ByteSize, dl, false),
13720                     DAG.getValueType(Op1VT) };
13721 
13722   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13723           DAG.getVTList(MVT::Other), Ops,
13724           cast<StoreSDNode>(N)->getMemoryVT(),
13725           cast<StoreSDNode>(N)->getMemOperand());
13726 
13727   DCI.AddToWorklist(Val.getNode());
13728   return Val;
13729 }
13730 
13731 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13732                                                 LSBaseSDNode *LSBase,
13733                                                 DAGCombinerInfo &DCI) const {
13734   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13735         "Not a reverse memop pattern!");
13736 
13737   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13738     auto Mask = SVN->getMask();
13739     int i = 0;
13740     auto I = Mask.rbegin();
13741     auto E = Mask.rend();
13742 
13743     for (; I != E; ++I) {
13744       if (*I != i)
13745         return false;
13746       i++;
13747     }
13748     return true;
13749   };
13750 
13751   SelectionDAG &DAG = DCI.DAG;
13752   EVT VT = SVN->getValueType(0);
13753 
13754   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13755     return SDValue();
13756 
13757   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13758   // See comment in PPCVSXSwapRemoval.cpp.
13759   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13760   if (!Subtarget.hasP9Vector())
13761     return SDValue();
13762 
13763   if(!IsElementReverse(SVN))
13764     return SDValue();
13765 
13766   if (LSBase->getOpcode() == ISD::LOAD) {
13767     SDLoc dl(SVN);
13768     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13769     return DAG.getMemIntrinsicNode(
13770         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13771         LSBase->getMemoryVT(), LSBase->getMemOperand());
13772   }
13773 
13774   if (LSBase->getOpcode() == ISD::STORE) {
13775     SDLoc dl(LSBase);
13776     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13777                           LSBase->getBasePtr()};
13778     return DAG.getMemIntrinsicNode(
13779         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13780         LSBase->getMemoryVT(), LSBase->getMemOperand());
13781   }
13782 
13783   llvm_unreachable("Expected a load or store node here");
13784 }
13785 
13786 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13787                                              DAGCombinerInfo &DCI) const {
13788   SelectionDAG &DAG = DCI.DAG;
13789   SDLoc dl(N);
13790   switch (N->getOpcode()) {
13791   default: break;
13792   case ISD::ADD:
13793     return combineADD(N, DCI);
13794   case ISD::SHL:
13795     return combineSHL(N, DCI);
13796   case ISD::SRA:
13797     return combineSRA(N, DCI);
13798   case ISD::SRL:
13799     return combineSRL(N, DCI);
13800   case ISD::MUL:
13801     return combineMUL(N, DCI);
13802   case PPCISD::SHL:
13803     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13804         return N->getOperand(0);
13805     break;
13806   case PPCISD::SRL:
13807     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13808         return N->getOperand(0);
13809     break;
13810   case PPCISD::SRA:
13811     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13812       if (C->isNullValue() ||   //  0 >>s V -> 0.
13813           C->isAllOnesValue())    // -1 >>s V -> -1.
13814         return N->getOperand(0);
13815     }
13816     break;
13817   case ISD::SIGN_EXTEND:
13818   case ISD::ZERO_EXTEND:
13819   case ISD::ANY_EXTEND:
13820     return DAGCombineExtBoolTrunc(N, DCI);
13821   case ISD::TRUNCATE:
13822     return combineTRUNCATE(N, DCI);
13823   case ISD::SETCC:
13824     if (SDValue CSCC = combineSetCC(N, DCI))
13825       return CSCC;
13826     LLVM_FALLTHROUGH;
13827   case ISD::SELECT_CC:
13828     return DAGCombineTruncBoolExt(N, DCI);
13829   case ISD::SINT_TO_FP:
13830   case ISD::UINT_TO_FP:
13831     return combineFPToIntToFP(N, DCI);
13832   case ISD::VECTOR_SHUFFLE:
13833     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13834       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13835       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13836     }
13837     break;
13838   case ISD::STORE: {
13839 
13840     EVT Op1VT = N->getOperand(1).getValueType();
13841     unsigned Opcode = N->getOperand(1).getOpcode();
13842 
13843     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13844       SDValue Val= combineStoreFPToInt(N, DCI);
13845       if (Val)
13846         return Val;
13847     }
13848 
13849     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13850       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13851       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13852       if (Val)
13853         return Val;
13854     }
13855 
13856     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13857     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13858         N->getOperand(1).getNode()->hasOneUse() &&
13859         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13860          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13861 
13862       // STBRX can only handle simple types and it makes no sense to store less
13863       // two bytes in byte-reversed order.
13864       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13865       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13866         break;
13867 
13868       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13869       // Do an any-extend to 32-bits if this is a half-word input.
13870       if (BSwapOp.getValueType() == MVT::i16)
13871         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13872 
13873       // If the type of BSWAP operand is wider than stored memory width
13874       // it need to be shifted to the right side before STBRX.
13875       if (Op1VT.bitsGT(mVT)) {
13876         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13877         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13878                               DAG.getConstant(Shift, dl, MVT::i32));
13879         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13880         if (Op1VT == MVT::i64)
13881           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13882       }
13883 
13884       SDValue Ops[] = {
13885         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13886       };
13887       return
13888         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13889                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13890                                 cast<StoreSDNode>(N)->getMemOperand());
13891     }
13892 
13893     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13894     // So it can increase the chance of CSE constant construction.
13895     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13896         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13897       // Need to sign-extended to 64-bits to handle negative values.
13898       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13899       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13900                                     MemVT.getSizeInBits());
13901       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13902 
13903       // DAG.getTruncStore() can't be used here because it doesn't accept
13904       // the general (base + offset) addressing mode.
13905       // So we use UpdateNodeOperands and setTruncatingStore instead.
13906       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13907                              N->getOperand(3));
13908       cast<StoreSDNode>(N)->setTruncatingStore(true);
13909       return SDValue(N, 0);
13910     }
13911 
13912     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13913     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13914     if (Op1VT.isSimple()) {
13915       MVT StoreVT = Op1VT.getSimpleVT();
13916       if (Subtarget.needsSwapsForVSXMemOps() &&
13917           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13918            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13919         return expandVSXStoreForLE(N, DCI);
13920     }
13921     break;
13922   }
13923   case ISD::LOAD: {
13924     LoadSDNode *LD = cast<LoadSDNode>(N);
13925     EVT VT = LD->getValueType(0);
13926 
13927     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13928     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13929     if (VT.isSimple()) {
13930       MVT LoadVT = VT.getSimpleVT();
13931       if (Subtarget.needsSwapsForVSXMemOps() &&
13932           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13933            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13934         return expandVSXLoadForLE(N, DCI);
13935     }
13936 
13937     // We sometimes end up with a 64-bit integer load, from which we extract
13938     // two single-precision floating-point numbers. This happens with
13939     // std::complex<float>, and other similar structures, because of the way we
13940     // canonicalize structure copies. However, if we lack direct moves,
13941     // then the final bitcasts from the extracted integer values to the
13942     // floating-point numbers turn into store/load pairs. Even with direct moves,
13943     // just loading the two floating-point numbers is likely better.
13944     auto ReplaceTwoFloatLoad = [&]() {
13945       if (VT != MVT::i64)
13946         return false;
13947 
13948       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13949           LD->isVolatile())
13950         return false;
13951 
13952       //  We're looking for a sequence like this:
13953       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13954       //      t16: i64 = srl t13, Constant:i32<32>
13955       //    t17: i32 = truncate t16
13956       //  t18: f32 = bitcast t17
13957       //    t19: i32 = truncate t13
13958       //  t20: f32 = bitcast t19
13959 
13960       if (!LD->hasNUsesOfValue(2, 0))
13961         return false;
13962 
13963       auto UI = LD->use_begin();
13964       while (UI.getUse().getResNo() != 0) ++UI;
13965       SDNode *Trunc = *UI++;
13966       while (UI.getUse().getResNo() != 0) ++UI;
13967       SDNode *RightShift = *UI;
13968       if (Trunc->getOpcode() != ISD::TRUNCATE)
13969         std::swap(Trunc, RightShift);
13970 
13971       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13972           Trunc->getValueType(0) != MVT::i32 ||
13973           !Trunc->hasOneUse())
13974         return false;
13975       if (RightShift->getOpcode() != ISD::SRL ||
13976           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13977           RightShift->getConstantOperandVal(1) != 32 ||
13978           !RightShift->hasOneUse())
13979         return false;
13980 
13981       SDNode *Trunc2 = *RightShift->use_begin();
13982       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13983           Trunc2->getValueType(0) != MVT::i32 ||
13984           !Trunc2->hasOneUse())
13985         return false;
13986 
13987       SDNode *Bitcast = *Trunc->use_begin();
13988       SDNode *Bitcast2 = *Trunc2->use_begin();
13989 
13990       if (Bitcast->getOpcode() != ISD::BITCAST ||
13991           Bitcast->getValueType(0) != MVT::f32)
13992         return false;
13993       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13994           Bitcast2->getValueType(0) != MVT::f32)
13995         return false;
13996 
13997       if (Subtarget.isLittleEndian())
13998         std::swap(Bitcast, Bitcast2);
13999 
14000       // Bitcast has the second float (in memory-layout order) and Bitcast2
14001       // has the first one.
14002 
14003       SDValue BasePtr = LD->getBasePtr();
14004       if (LD->isIndexed()) {
14005         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14006                "Non-pre-inc AM on PPC?");
14007         BasePtr =
14008           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14009                       LD->getOffset());
14010       }
14011 
14012       auto MMOFlags =
14013           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14014       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14015                                       LD->getPointerInfo(), LD->getAlignment(),
14016                                       MMOFlags, LD->getAAInfo());
14017       SDValue AddPtr =
14018         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14019                     BasePtr, DAG.getIntPtrConstant(4, dl));
14020       SDValue FloatLoad2 = DAG.getLoad(
14021           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14022           LD->getPointerInfo().getWithOffset(4),
14023           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14024 
14025       if (LD->isIndexed()) {
14026         // Note that DAGCombine should re-form any pre-increment load(s) from
14027         // what is produced here if that makes sense.
14028         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14029       }
14030 
14031       DCI.CombineTo(Bitcast2, FloatLoad);
14032       DCI.CombineTo(Bitcast, FloatLoad2);
14033 
14034       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14035                                     SDValue(FloatLoad2.getNode(), 1));
14036       return true;
14037     };
14038 
14039     if (ReplaceTwoFloatLoad())
14040       return SDValue(N, 0);
14041 
14042     EVT MemVT = LD->getMemoryVT();
14043     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14044     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
14045     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
14046     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
14047     if (LD->isUnindexed() && VT.isVector() &&
14048         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14049           // P8 and later hardware should just use LOAD.
14050           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
14051                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
14052          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
14053           LD->getAlignment() >= ScalarABIAlignment)) &&
14054         LD->getAlignment() < ABIAlignment) {
14055       // This is a type-legal unaligned Altivec or QPX load.
14056       SDValue Chain = LD->getChain();
14057       SDValue Ptr = LD->getBasePtr();
14058       bool isLittleEndian = Subtarget.isLittleEndian();
14059 
14060       // This implements the loading of unaligned vectors as described in
14061       // the venerable Apple Velocity Engine overview. Specifically:
14062       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14063       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14064       //
14065       // The general idea is to expand a sequence of one or more unaligned
14066       // loads into an alignment-based permutation-control instruction (lvsl
14067       // or lvsr), a series of regular vector loads (which always truncate
14068       // their input address to an aligned address), and a series of
14069       // permutations.  The results of these permutations are the requested
14070       // loaded values.  The trick is that the last "extra" load is not taken
14071       // from the address you might suspect (sizeof(vector) bytes after the
14072       // last requested load), but rather sizeof(vector) - 1 bytes after the
14073       // last requested vector. The point of this is to avoid a page fault if
14074       // the base address happened to be aligned. This works because if the
14075       // base address is aligned, then adding less than a full vector length
14076       // will cause the last vector in the sequence to be (re)loaded.
14077       // Otherwise, the next vector will be fetched as you might suspect was
14078       // necessary.
14079 
14080       // We might be able to reuse the permutation generation from
14081       // a different base address offset from this one by an aligned amount.
14082       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14083       // optimization later.
14084       Intrinsic::ID Intr, IntrLD, IntrPerm;
14085       MVT PermCntlTy, PermTy, LDTy;
14086       if (Subtarget.hasAltivec()) {
14087         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14088                                  Intrinsic::ppc_altivec_lvsl;
14089         IntrLD = Intrinsic::ppc_altivec_lvx;
14090         IntrPerm = Intrinsic::ppc_altivec_vperm;
14091         PermCntlTy = MVT::v16i8;
14092         PermTy = MVT::v4i32;
14093         LDTy = MVT::v4i32;
14094       } else {
14095         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14096                                        Intrinsic::ppc_qpx_qvlpcls;
14097         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14098                                        Intrinsic::ppc_qpx_qvlfs;
14099         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14100         PermCntlTy = MVT::v4f64;
14101         PermTy = MVT::v4f64;
14102         LDTy = MemVT.getSimpleVT();
14103       }
14104 
14105       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14106 
14107       // Create the new MMO for the new base load. It is like the original MMO,
14108       // but represents an area in memory almost twice the vector size centered
14109       // on the original address. If the address is unaligned, we might start
14110       // reading up to (sizeof(vector)-1) bytes below the address of the
14111       // original unaligned load.
14112       MachineFunction &MF = DAG.getMachineFunction();
14113       MachineMemOperand *BaseMMO =
14114         MF.getMachineMemOperand(LD->getMemOperand(),
14115                                 -(long)MemVT.getStoreSize()+1,
14116                                 2*MemVT.getStoreSize()-1);
14117 
14118       // Create the new base load.
14119       SDValue LDXIntID =
14120           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14121       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14122       SDValue BaseLoad =
14123         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14124                                 DAG.getVTList(PermTy, MVT::Other),
14125                                 BaseLoadOps, LDTy, BaseMMO);
14126 
14127       // Note that the value of IncOffset (which is provided to the next
14128       // load's pointer info offset value, and thus used to calculate the
14129       // alignment), and the value of IncValue (which is actually used to
14130       // increment the pointer value) are different! This is because we
14131       // require the next load to appear to be aligned, even though it
14132       // is actually offset from the base pointer by a lesser amount.
14133       int IncOffset = VT.getSizeInBits() / 8;
14134       int IncValue = IncOffset;
14135 
14136       // Walk (both up and down) the chain looking for another load at the real
14137       // (aligned) offset (the alignment of the other load does not matter in
14138       // this case). If found, then do not use the offset reduction trick, as
14139       // that will prevent the loads from being later combined (as they would
14140       // otherwise be duplicates).
14141       if (!findConsecutiveLoad(LD, DAG))
14142         --IncValue;
14143 
14144       SDValue Increment =
14145           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14146       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14147 
14148       MachineMemOperand *ExtraMMO =
14149         MF.getMachineMemOperand(LD->getMemOperand(),
14150                                 1, 2*MemVT.getStoreSize()-1);
14151       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14152       SDValue ExtraLoad =
14153         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14154                                 DAG.getVTList(PermTy, MVT::Other),
14155                                 ExtraLoadOps, LDTy, ExtraMMO);
14156 
14157       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14158         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14159 
14160       // Because vperm has a big-endian bias, we must reverse the order
14161       // of the input vectors and complement the permute control vector
14162       // when generating little endian code.  We have already handled the
14163       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14164       // and ExtraLoad here.
14165       SDValue Perm;
14166       if (isLittleEndian)
14167         Perm = BuildIntrinsicOp(IntrPerm,
14168                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14169       else
14170         Perm = BuildIntrinsicOp(IntrPerm,
14171                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14172 
14173       if (VT != PermTy)
14174         Perm = Subtarget.hasAltivec() ?
14175                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14176                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14177                                DAG.getTargetConstant(1, dl, MVT::i64));
14178                                // second argument is 1 because this rounding
14179                                // is always exact.
14180 
14181       // The output of the permutation is our loaded result, the TokenFactor is
14182       // our new chain.
14183       DCI.CombineTo(N, Perm, TF);
14184       return SDValue(N, 0);
14185     }
14186     }
14187     break;
14188     case ISD::INTRINSIC_WO_CHAIN: {
14189       bool isLittleEndian = Subtarget.isLittleEndian();
14190       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14191       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14192                                            : Intrinsic::ppc_altivec_lvsl);
14193       if ((IID == Intr ||
14194            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14195            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14196         N->getOperand(1)->getOpcode() == ISD::ADD) {
14197         SDValue Add = N->getOperand(1);
14198 
14199         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14200                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14201 
14202         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14203                                   APInt::getAllOnesValue(Bits /* alignment */)
14204                                       .zext(Add.getScalarValueSizeInBits()))) {
14205           SDNode *BasePtr = Add->getOperand(0).getNode();
14206           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14207                                     UE = BasePtr->use_end();
14208                UI != UE; ++UI) {
14209             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14210                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14211               // We've found another LVSL/LVSR, and this address is an aligned
14212               // multiple of that one. The results will be the same, so use the
14213               // one we've just found instead.
14214 
14215               return SDValue(*UI, 0);
14216             }
14217           }
14218         }
14219 
14220         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14221           SDNode *BasePtr = Add->getOperand(0).getNode();
14222           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14223                UE = BasePtr->use_end(); UI != UE; ++UI) {
14224             if (UI->getOpcode() == ISD::ADD &&
14225                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14226                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14227                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14228                 (1ULL << Bits) == 0) {
14229               SDNode *OtherAdd = *UI;
14230               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14231                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14232                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14233                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14234                   return SDValue(*VI, 0);
14235                 }
14236               }
14237             }
14238           }
14239         }
14240       }
14241 
14242       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14243       // Expose the vabsduw/h/b opportunity for down stream
14244       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14245           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14246            IID == Intrinsic::ppc_altivec_vmaxsh ||
14247            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14248         SDValue V1 = N->getOperand(1);
14249         SDValue V2 = N->getOperand(2);
14250         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14251              V1.getSimpleValueType() == MVT::v8i16 ||
14252              V1.getSimpleValueType() == MVT::v16i8) &&
14253             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14254           // (0-a, a)
14255           if (V1.getOpcode() == ISD::SUB &&
14256               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14257               V1.getOperand(1) == V2) {
14258             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14259           }
14260           // (a, 0-a)
14261           if (V2.getOpcode() == ISD::SUB &&
14262               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14263               V2.getOperand(1) == V1) {
14264             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14265           }
14266           // (x-y, y-x)
14267           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14268               V1.getOperand(0) == V2.getOperand(1) &&
14269               V1.getOperand(1) == V2.getOperand(0)) {
14270             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14271           }
14272         }
14273       }
14274     }
14275 
14276     break;
14277   case ISD::INTRINSIC_W_CHAIN:
14278     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14279     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14280     if (Subtarget.needsSwapsForVSXMemOps()) {
14281       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14282       default:
14283         break;
14284       case Intrinsic::ppc_vsx_lxvw4x:
14285       case Intrinsic::ppc_vsx_lxvd2x:
14286         return expandVSXLoadForLE(N, DCI);
14287       }
14288     }
14289     break;
14290   case ISD::INTRINSIC_VOID:
14291     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14292     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14293     if (Subtarget.needsSwapsForVSXMemOps()) {
14294       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14295       default:
14296         break;
14297       case Intrinsic::ppc_vsx_stxvw4x:
14298       case Intrinsic::ppc_vsx_stxvd2x:
14299         return expandVSXStoreForLE(N, DCI);
14300       }
14301     }
14302     break;
14303   case ISD::BSWAP:
14304     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14305     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14306         N->getOperand(0).hasOneUse() &&
14307         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14308          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14309           N->getValueType(0) == MVT::i64))) {
14310       SDValue Load = N->getOperand(0);
14311       LoadSDNode *LD = cast<LoadSDNode>(Load);
14312       // Create the byte-swapping load.
14313       SDValue Ops[] = {
14314         LD->getChain(),    // Chain
14315         LD->getBasePtr(),  // Ptr
14316         DAG.getValueType(N->getValueType(0)) // VT
14317       };
14318       SDValue BSLoad =
14319         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14320                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14321                                               MVT::i64 : MVT::i32, MVT::Other),
14322                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14323 
14324       // If this is an i16 load, insert the truncate.
14325       SDValue ResVal = BSLoad;
14326       if (N->getValueType(0) == MVT::i16)
14327         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14328 
14329       // First, combine the bswap away.  This makes the value produced by the
14330       // load dead.
14331       DCI.CombineTo(N, ResVal);
14332 
14333       // Next, combine the load away, we give it a bogus result value but a real
14334       // chain result.  The result value is dead because the bswap is dead.
14335       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14336 
14337       // Return N so it doesn't get rechecked!
14338       return SDValue(N, 0);
14339     }
14340     break;
14341   case PPCISD::VCMP:
14342     // If a VCMPo node already exists with exactly the same operands as this
14343     // node, use its result instead of this node (VCMPo computes both a CR6 and
14344     // a normal output).
14345     //
14346     if (!N->getOperand(0).hasOneUse() &&
14347         !N->getOperand(1).hasOneUse() &&
14348         !N->getOperand(2).hasOneUse()) {
14349 
14350       // Scan all of the users of the LHS, looking for VCMPo's that match.
14351       SDNode *VCMPoNode = nullptr;
14352 
14353       SDNode *LHSN = N->getOperand(0).getNode();
14354       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14355            UI != E; ++UI)
14356         if (UI->getOpcode() == PPCISD::VCMPo &&
14357             UI->getOperand(1) == N->getOperand(1) &&
14358             UI->getOperand(2) == N->getOperand(2) &&
14359             UI->getOperand(0) == N->getOperand(0)) {
14360           VCMPoNode = *UI;
14361           break;
14362         }
14363 
14364       // If there is no VCMPo node, or if the flag value has a single use, don't
14365       // transform this.
14366       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14367         break;
14368 
14369       // Look at the (necessarily single) use of the flag value.  If it has a
14370       // chain, this transformation is more complex.  Note that multiple things
14371       // could use the value result, which we should ignore.
14372       SDNode *FlagUser = nullptr;
14373       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14374            FlagUser == nullptr; ++UI) {
14375         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14376         SDNode *User = *UI;
14377         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14378           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14379             FlagUser = User;
14380             break;
14381           }
14382         }
14383       }
14384 
14385       // If the user is a MFOCRF instruction, we know this is safe.
14386       // Otherwise we give up for right now.
14387       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14388         return SDValue(VCMPoNode, 0);
14389     }
14390     break;
14391   case ISD::BRCOND: {
14392     SDValue Cond = N->getOperand(1);
14393     SDValue Target = N->getOperand(2);
14394 
14395     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14396         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14397           Intrinsic::loop_decrement) {
14398 
14399       // We now need to make the intrinsic dead (it cannot be instruction
14400       // selected).
14401       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14402       assert(Cond.getNode()->hasOneUse() &&
14403              "Counter decrement has more than one use");
14404 
14405       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14406                          N->getOperand(0), Target);
14407     }
14408   }
14409   break;
14410   case ISD::BR_CC: {
14411     // If this is a branch on an altivec predicate comparison, lower this so
14412     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14413     // lowering is done pre-legalize, because the legalizer lowers the predicate
14414     // compare down to code that is difficult to reassemble.
14415     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14416     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14417 
14418     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14419     // value. If so, pass-through the AND to get to the intrinsic.
14420     if (LHS.getOpcode() == ISD::AND &&
14421         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14422         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14423           Intrinsic::loop_decrement &&
14424         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14425         !isNullConstant(LHS.getOperand(1)))
14426       LHS = LHS.getOperand(0);
14427 
14428     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14429         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14430           Intrinsic::loop_decrement &&
14431         isa<ConstantSDNode>(RHS)) {
14432       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14433              "Counter decrement comparison is not EQ or NE");
14434 
14435       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14436       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14437                     (CC == ISD::SETNE && !Val);
14438 
14439       // We now need to make the intrinsic dead (it cannot be instruction
14440       // selected).
14441       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14442       assert(LHS.getNode()->hasOneUse() &&
14443              "Counter decrement has more than one use");
14444 
14445       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14446                          N->getOperand(0), N->getOperand(4));
14447     }
14448 
14449     int CompareOpc;
14450     bool isDot;
14451 
14452     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14453         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14454         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14455       assert(isDot && "Can't compare against a vector result!");
14456 
14457       // If this is a comparison against something other than 0/1, then we know
14458       // that the condition is never/always true.
14459       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14460       if (Val != 0 && Val != 1) {
14461         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14462           return N->getOperand(0);
14463         // Always !=, turn it into an unconditional branch.
14464         return DAG.getNode(ISD::BR, dl, MVT::Other,
14465                            N->getOperand(0), N->getOperand(4));
14466       }
14467 
14468       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14469 
14470       // Create the PPCISD altivec 'dot' comparison node.
14471       SDValue Ops[] = {
14472         LHS.getOperand(2),  // LHS of compare
14473         LHS.getOperand(3),  // RHS of compare
14474         DAG.getConstant(CompareOpc, dl, MVT::i32)
14475       };
14476       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14477       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14478 
14479       // Unpack the result based on how the target uses it.
14480       PPC::Predicate CompOpc;
14481       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14482       default:  // Can't happen, don't crash on invalid number though.
14483       case 0:   // Branch on the value of the EQ bit of CR6.
14484         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14485         break;
14486       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14487         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14488         break;
14489       case 2:   // Branch on the value of the LT bit of CR6.
14490         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14491         break;
14492       case 3:   // Branch on the inverted value of the LT bit of CR6.
14493         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14494         break;
14495       }
14496 
14497       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14498                          DAG.getConstant(CompOpc, dl, MVT::i32),
14499                          DAG.getRegister(PPC::CR6, MVT::i32),
14500                          N->getOperand(4), CompNode.getValue(1));
14501     }
14502     break;
14503   }
14504   case ISD::BUILD_VECTOR:
14505     return DAGCombineBuildVector(N, DCI);
14506   case ISD::ABS:
14507     return combineABS(N, DCI);
14508   case ISD::VSELECT:
14509     return combineVSelect(N, DCI);
14510   }
14511 
14512   return SDValue();
14513 }
14514 
14515 SDValue
14516 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14517                                  SelectionDAG &DAG,
14518                                  SmallVectorImpl<SDNode *> &Created) const {
14519   // fold (sdiv X, pow2)
14520   EVT VT = N->getValueType(0);
14521   if (VT == MVT::i64 && !Subtarget.isPPC64())
14522     return SDValue();
14523   if ((VT != MVT::i32 && VT != MVT::i64) ||
14524       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14525     return SDValue();
14526 
14527   SDLoc DL(N);
14528   SDValue N0 = N->getOperand(0);
14529 
14530   bool IsNegPow2 = (-Divisor).isPowerOf2();
14531   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14532   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14533 
14534   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14535   Created.push_back(Op.getNode());
14536 
14537   if (IsNegPow2) {
14538     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14539     Created.push_back(Op.getNode());
14540   }
14541 
14542   return Op;
14543 }
14544 
14545 //===----------------------------------------------------------------------===//
14546 // Inline Assembly Support
14547 //===----------------------------------------------------------------------===//
14548 
14549 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14550                                                       KnownBits &Known,
14551                                                       const APInt &DemandedElts,
14552                                                       const SelectionDAG &DAG,
14553                                                       unsigned Depth) const {
14554   Known.resetAll();
14555   switch (Op.getOpcode()) {
14556   default: break;
14557   case PPCISD::LBRX: {
14558     // lhbrx is known to have the top bits cleared out.
14559     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14560       Known.Zero = 0xFFFF0000;
14561     break;
14562   }
14563   case ISD::INTRINSIC_WO_CHAIN: {
14564     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14565     default: break;
14566     case Intrinsic::ppc_altivec_vcmpbfp_p:
14567     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14568     case Intrinsic::ppc_altivec_vcmpequb_p:
14569     case Intrinsic::ppc_altivec_vcmpequh_p:
14570     case Intrinsic::ppc_altivec_vcmpequw_p:
14571     case Intrinsic::ppc_altivec_vcmpequd_p:
14572     case Intrinsic::ppc_altivec_vcmpgefp_p:
14573     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14574     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14575     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14576     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14577     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14578     case Intrinsic::ppc_altivec_vcmpgtub_p:
14579     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14580     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14581     case Intrinsic::ppc_altivec_vcmpgtud_p:
14582       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14583       break;
14584     }
14585   }
14586   }
14587 }
14588 
14589 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14590   switch (Subtarget.getCPUDirective()) {
14591   default: break;
14592   case PPC::DIR_970:
14593   case PPC::DIR_PWR4:
14594   case PPC::DIR_PWR5:
14595   case PPC::DIR_PWR5X:
14596   case PPC::DIR_PWR6:
14597   case PPC::DIR_PWR6X:
14598   case PPC::DIR_PWR7:
14599   case PPC::DIR_PWR8:
14600   case PPC::DIR_PWR9:
14601   case PPC::DIR_PWR_FUTURE: {
14602     if (!ML)
14603       break;
14604 
14605     if (!DisableInnermostLoopAlign32) {
14606       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14607       // so that we can decrease cache misses and branch-prediction misses.
14608       // Actual alignment of the loop will depend on the hotness check and other
14609       // logic in alignBlocks.
14610       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14611         return Align(32);
14612     }
14613 
14614     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14615 
14616     // For small loops (between 5 and 8 instructions), align to a 32-byte
14617     // boundary so that the entire loop fits in one instruction-cache line.
14618     uint64_t LoopSize = 0;
14619     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14620       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14621         LoopSize += TII->getInstSizeInBytes(*J);
14622         if (LoopSize > 32)
14623           break;
14624       }
14625 
14626     if (LoopSize > 16 && LoopSize <= 32)
14627       return Align(32);
14628 
14629     break;
14630   }
14631   }
14632 
14633   return TargetLowering::getPrefLoopAlignment(ML);
14634 }
14635 
14636 /// getConstraintType - Given a constraint, return the type of
14637 /// constraint it is for this target.
14638 PPCTargetLowering::ConstraintType
14639 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14640   if (Constraint.size() == 1) {
14641     switch (Constraint[0]) {
14642     default: break;
14643     case 'b':
14644     case 'r':
14645     case 'f':
14646     case 'd':
14647     case 'v':
14648     case 'y':
14649       return C_RegisterClass;
14650     case 'Z':
14651       // FIXME: While Z does indicate a memory constraint, it specifically
14652       // indicates an r+r address (used in conjunction with the 'y' modifier
14653       // in the replacement string). Currently, we're forcing the base
14654       // register to be r0 in the asm printer (which is interpreted as zero)
14655       // and forming the complete address in the second register. This is
14656       // suboptimal.
14657       return C_Memory;
14658     }
14659   } else if (Constraint == "wc") { // individual CR bits.
14660     return C_RegisterClass;
14661   } else if (Constraint == "wa" || Constraint == "wd" ||
14662              Constraint == "wf" || Constraint == "ws" ||
14663              Constraint == "wi" || Constraint == "ww") {
14664     return C_RegisterClass; // VSX registers.
14665   }
14666   return TargetLowering::getConstraintType(Constraint);
14667 }
14668 
14669 /// Examine constraint type and operand type and determine a weight value.
14670 /// This object must already have been set up with the operand type
14671 /// and the current alternative constraint selected.
14672 TargetLowering::ConstraintWeight
14673 PPCTargetLowering::getSingleConstraintMatchWeight(
14674     AsmOperandInfo &info, const char *constraint) const {
14675   ConstraintWeight weight = CW_Invalid;
14676   Value *CallOperandVal = info.CallOperandVal;
14677     // If we don't have a value, we can't do a match,
14678     // but allow it at the lowest weight.
14679   if (!CallOperandVal)
14680     return CW_Default;
14681   Type *type = CallOperandVal->getType();
14682 
14683   // Look at the constraint type.
14684   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14685     return CW_Register; // an individual CR bit.
14686   else if ((StringRef(constraint) == "wa" ||
14687             StringRef(constraint) == "wd" ||
14688             StringRef(constraint) == "wf") &&
14689            type->isVectorTy())
14690     return CW_Register;
14691   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14692     return CW_Register; // just hold 64-bit integers data.
14693   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14694     return CW_Register;
14695   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14696     return CW_Register;
14697 
14698   switch (*constraint) {
14699   default:
14700     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14701     break;
14702   case 'b':
14703     if (type->isIntegerTy())
14704       weight = CW_Register;
14705     break;
14706   case 'f':
14707     if (type->isFloatTy())
14708       weight = CW_Register;
14709     break;
14710   case 'd':
14711     if (type->isDoubleTy())
14712       weight = CW_Register;
14713     break;
14714   case 'v':
14715     if (type->isVectorTy())
14716       weight = CW_Register;
14717     break;
14718   case 'y':
14719     weight = CW_Register;
14720     break;
14721   case 'Z':
14722     weight = CW_Memory;
14723     break;
14724   }
14725   return weight;
14726 }
14727 
14728 std::pair<unsigned, const TargetRegisterClass *>
14729 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14730                                                 StringRef Constraint,
14731                                                 MVT VT) const {
14732   if (Constraint.size() == 1) {
14733     // GCC RS6000 Constraint Letters
14734     switch (Constraint[0]) {
14735     case 'b':   // R1-R31
14736       if (VT == MVT::i64 && Subtarget.isPPC64())
14737         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14738       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14739     case 'r':   // R0-R31
14740       if (VT == MVT::i64 && Subtarget.isPPC64())
14741         return std::make_pair(0U, &PPC::G8RCRegClass);
14742       return std::make_pair(0U, &PPC::GPRCRegClass);
14743     // 'd' and 'f' constraints are both defined to be "the floating point
14744     // registers", where one is for 32-bit and the other for 64-bit. We don't
14745     // really care overly much here so just give them all the same reg classes.
14746     case 'd':
14747     case 'f':
14748       if (Subtarget.hasSPE()) {
14749         if (VT == MVT::f32 || VT == MVT::i32)
14750           return std::make_pair(0U, &PPC::GPRCRegClass);
14751         if (VT == MVT::f64 || VT == MVT::i64)
14752           return std::make_pair(0U, &PPC::SPERCRegClass);
14753       } else {
14754         if (VT == MVT::f32 || VT == MVT::i32)
14755           return std::make_pair(0U, &PPC::F4RCRegClass);
14756         if (VT == MVT::f64 || VT == MVT::i64)
14757           return std::make_pair(0U, &PPC::F8RCRegClass);
14758         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14759           return std::make_pair(0U, &PPC::QFRCRegClass);
14760         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14761           return std::make_pair(0U, &PPC::QSRCRegClass);
14762       }
14763       break;
14764     case 'v':
14765       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14766         return std::make_pair(0U, &PPC::QFRCRegClass);
14767       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14768         return std::make_pair(0U, &PPC::QSRCRegClass);
14769       if (Subtarget.hasAltivec())
14770         return std::make_pair(0U, &PPC::VRRCRegClass);
14771       break;
14772     case 'y':   // crrc
14773       return std::make_pair(0U, &PPC::CRRCRegClass);
14774     }
14775   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14776     // An individual CR bit.
14777     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14778   } else if ((Constraint == "wa" || Constraint == "wd" ||
14779              Constraint == "wf" || Constraint == "wi") &&
14780              Subtarget.hasVSX()) {
14781     return std::make_pair(0U, &PPC::VSRCRegClass);
14782   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14783     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14784       return std::make_pair(0U, &PPC::VSSRCRegClass);
14785     else
14786       return std::make_pair(0U, &PPC::VSFRCRegClass);
14787   }
14788 
14789   // If we name a VSX register, we can't defer to the base class because it
14790   // will not recognize the correct register (their names will be VSL{0-31}
14791   // and V{0-31} so they won't match). So we match them here.
14792   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14793     int VSNum = atoi(Constraint.data() + 3);
14794     assert(VSNum >= 0 && VSNum <= 63 &&
14795            "Attempted to access a vsr out of range");
14796     if (VSNum < 32)
14797       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14798     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14799   }
14800   std::pair<unsigned, const TargetRegisterClass *> R =
14801       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14802 
14803   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14804   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14805   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14806   // register.
14807   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14808   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14809   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14810       PPC::GPRCRegClass.contains(R.first))
14811     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14812                             PPC::sub_32, &PPC::G8RCRegClass),
14813                           &PPC::G8RCRegClass);
14814 
14815   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14816   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14817     R.first = PPC::CR0;
14818     R.second = &PPC::CRRCRegClass;
14819   }
14820 
14821   return R;
14822 }
14823 
14824 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14825 /// vector.  If it is invalid, don't add anything to Ops.
14826 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14827                                                      std::string &Constraint,
14828                                                      std::vector<SDValue>&Ops,
14829                                                      SelectionDAG &DAG) const {
14830   SDValue Result;
14831 
14832   // Only support length 1 constraints.
14833   if (Constraint.length() > 1) return;
14834 
14835   char Letter = Constraint[0];
14836   switch (Letter) {
14837   default: break;
14838   case 'I':
14839   case 'J':
14840   case 'K':
14841   case 'L':
14842   case 'M':
14843   case 'N':
14844   case 'O':
14845   case 'P': {
14846     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14847     if (!CST) return; // Must be an immediate to match.
14848     SDLoc dl(Op);
14849     int64_t Value = CST->getSExtValue();
14850     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14851                          // numbers are printed as such.
14852     switch (Letter) {
14853     default: llvm_unreachable("Unknown constraint letter!");
14854     case 'I':  // "I" is a signed 16-bit constant.
14855       if (isInt<16>(Value))
14856         Result = DAG.getTargetConstant(Value, dl, TCVT);
14857       break;
14858     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14859       if (isShiftedUInt<16, 16>(Value))
14860         Result = DAG.getTargetConstant(Value, dl, TCVT);
14861       break;
14862     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14863       if (isShiftedInt<16, 16>(Value))
14864         Result = DAG.getTargetConstant(Value, dl, TCVT);
14865       break;
14866     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14867       if (isUInt<16>(Value))
14868         Result = DAG.getTargetConstant(Value, dl, TCVT);
14869       break;
14870     case 'M':  // "M" is a constant that is greater than 31.
14871       if (Value > 31)
14872         Result = DAG.getTargetConstant(Value, dl, TCVT);
14873       break;
14874     case 'N':  // "N" is a positive constant that is an exact power of two.
14875       if (Value > 0 && isPowerOf2_64(Value))
14876         Result = DAG.getTargetConstant(Value, dl, TCVT);
14877       break;
14878     case 'O':  // "O" is the constant zero.
14879       if (Value == 0)
14880         Result = DAG.getTargetConstant(Value, dl, TCVT);
14881       break;
14882     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14883       if (isInt<16>(-Value))
14884         Result = DAG.getTargetConstant(Value, dl, TCVT);
14885       break;
14886     }
14887     break;
14888   }
14889   }
14890 
14891   if (Result.getNode()) {
14892     Ops.push_back(Result);
14893     return;
14894   }
14895 
14896   // Handle standard constraint letters.
14897   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14898 }
14899 
14900 // isLegalAddressingMode - Return true if the addressing mode represented
14901 // by AM is legal for this target, for a load/store of the specified type.
14902 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14903                                               const AddrMode &AM, Type *Ty,
14904                                               unsigned AS, Instruction *I) const {
14905   // PPC does not allow r+i addressing modes for vectors!
14906   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14907     return false;
14908 
14909   // PPC allows a sign-extended 16-bit immediate field.
14910   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14911     return false;
14912 
14913   // No global is ever allowed as a base.
14914   if (AM.BaseGV)
14915     return false;
14916 
14917   // PPC only support r+r,
14918   switch (AM.Scale) {
14919   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14920     break;
14921   case 1:
14922     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14923       return false;
14924     // Otherwise we have r+r or r+i.
14925     break;
14926   case 2:
14927     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14928       return false;
14929     // Allow 2*r as r+r.
14930     break;
14931   default:
14932     // No other scales are supported.
14933     return false;
14934   }
14935 
14936   return true;
14937 }
14938 
14939 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14940                                            SelectionDAG &DAG) const {
14941   MachineFunction &MF = DAG.getMachineFunction();
14942   MachineFrameInfo &MFI = MF.getFrameInfo();
14943   MFI.setReturnAddressIsTaken(true);
14944 
14945   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14946     return SDValue();
14947 
14948   SDLoc dl(Op);
14949   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14950 
14951   // Make sure the function does not optimize away the store of the RA to
14952   // the stack.
14953   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14954   FuncInfo->setLRStoreRequired();
14955   bool isPPC64 = Subtarget.isPPC64();
14956   auto PtrVT = getPointerTy(MF.getDataLayout());
14957 
14958   if (Depth > 0) {
14959     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14960     SDValue Offset =
14961         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14962                         isPPC64 ? MVT::i64 : MVT::i32);
14963     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14964                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14965                        MachinePointerInfo());
14966   }
14967 
14968   // Just load the return address off the stack.
14969   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14970   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14971                      MachinePointerInfo());
14972 }
14973 
14974 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14975                                           SelectionDAG &DAG) const {
14976   SDLoc dl(Op);
14977   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14978 
14979   MachineFunction &MF = DAG.getMachineFunction();
14980   MachineFrameInfo &MFI = MF.getFrameInfo();
14981   MFI.setFrameAddressIsTaken(true);
14982 
14983   EVT PtrVT = getPointerTy(MF.getDataLayout());
14984   bool isPPC64 = PtrVT == MVT::i64;
14985 
14986   // Naked functions never have a frame pointer, and so we use r1. For all
14987   // other functions, this decision must be delayed until during PEI.
14988   unsigned FrameReg;
14989   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14990     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14991   else
14992     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14993 
14994   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14995                                          PtrVT);
14996   while (Depth--)
14997     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14998                             FrameAddr, MachinePointerInfo());
14999   return FrameAddr;
15000 }
15001 
15002 // FIXME? Maybe this could be a TableGen attribute on some registers and
15003 // this table could be generated automatically from RegInfo.
15004 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15005                                               const MachineFunction &MF) const {
15006   bool isPPC64 = Subtarget.isPPC64();
15007 
15008   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15009   if (!is64Bit && VT != LLT::scalar(32))
15010     report_fatal_error("Invalid register global variable type");
15011 
15012   Register Reg = StringSwitch<Register>(RegName)
15013                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15014                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15015                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15016                      .Default(Register());
15017 
15018   if (Reg)
15019     return Reg;
15020   report_fatal_error("Invalid register name global variable");
15021 }
15022 
15023 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15024   // 32-bit SVR4 ABI access everything as got-indirect.
15025   if (Subtarget.is32BitELFABI())
15026     return true;
15027 
15028   // AIX accesses everything indirectly through the TOC, which is similar to
15029   // the GOT.
15030   if (Subtarget.isAIXABI())
15031     return true;
15032 
15033   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15034   // If it is small or large code model, module locals are accessed
15035   // indirectly by loading their address from .toc/.got.
15036   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15037     return true;
15038 
15039   // JumpTable and BlockAddress are accessed as got-indirect.
15040   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15041     return true;
15042 
15043   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15044     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15045 
15046   return false;
15047 }
15048 
15049 bool
15050 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15051   // The PowerPC target isn't yet aware of offsets.
15052   return false;
15053 }
15054 
15055 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15056                                            const CallInst &I,
15057                                            MachineFunction &MF,
15058                                            unsigned Intrinsic) const {
15059   switch (Intrinsic) {
15060   case Intrinsic::ppc_qpx_qvlfd:
15061   case Intrinsic::ppc_qpx_qvlfs:
15062   case Intrinsic::ppc_qpx_qvlfcd:
15063   case Intrinsic::ppc_qpx_qvlfcs:
15064   case Intrinsic::ppc_qpx_qvlfiwa:
15065   case Intrinsic::ppc_qpx_qvlfiwz:
15066   case Intrinsic::ppc_altivec_lvx:
15067   case Intrinsic::ppc_altivec_lvxl:
15068   case Intrinsic::ppc_altivec_lvebx:
15069   case Intrinsic::ppc_altivec_lvehx:
15070   case Intrinsic::ppc_altivec_lvewx:
15071   case Intrinsic::ppc_vsx_lxvd2x:
15072   case Intrinsic::ppc_vsx_lxvw4x: {
15073     EVT VT;
15074     switch (Intrinsic) {
15075     case Intrinsic::ppc_altivec_lvebx:
15076       VT = MVT::i8;
15077       break;
15078     case Intrinsic::ppc_altivec_lvehx:
15079       VT = MVT::i16;
15080       break;
15081     case Intrinsic::ppc_altivec_lvewx:
15082       VT = MVT::i32;
15083       break;
15084     case Intrinsic::ppc_vsx_lxvd2x:
15085       VT = MVT::v2f64;
15086       break;
15087     case Intrinsic::ppc_qpx_qvlfd:
15088       VT = MVT::v4f64;
15089       break;
15090     case Intrinsic::ppc_qpx_qvlfs:
15091       VT = MVT::v4f32;
15092       break;
15093     case Intrinsic::ppc_qpx_qvlfcd:
15094       VT = MVT::v2f64;
15095       break;
15096     case Intrinsic::ppc_qpx_qvlfcs:
15097       VT = MVT::v2f32;
15098       break;
15099     default:
15100       VT = MVT::v4i32;
15101       break;
15102     }
15103 
15104     Info.opc = ISD::INTRINSIC_W_CHAIN;
15105     Info.memVT = VT;
15106     Info.ptrVal = I.getArgOperand(0);
15107     Info.offset = -VT.getStoreSize()+1;
15108     Info.size = 2*VT.getStoreSize()-1;
15109     Info.align = Align(1);
15110     Info.flags = MachineMemOperand::MOLoad;
15111     return true;
15112   }
15113   case Intrinsic::ppc_qpx_qvlfda:
15114   case Intrinsic::ppc_qpx_qvlfsa:
15115   case Intrinsic::ppc_qpx_qvlfcda:
15116   case Intrinsic::ppc_qpx_qvlfcsa:
15117   case Intrinsic::ppc_qpx_qvlfiwaa:
15118   case Intrinsic::ppc_qpx_qvlfiwza: {
15119     EVT VT;
15120     switch (Intrinsic) {
15121     case Intrinsic::ppc_qpx_qvlfda:
15122       VT = MVT::v4f64;
15123       break;
15124     case Intrinsic::ppc_qpx_qvlfsa:
15125       VT = MVT::v4f32;
15126       break;
15127     case Intrinsic::ppc_qpx_qvlfcda:
15128       VT = MVT::v2f64;
15129       break;
15130     case Intrinsic::ppc_qpx_qvlfcsa:
15131       VT = MVT::v2f32;
15132       break;
15133     default:
15134       VT = MVT::v4i32;
15135       break;
15136     }
15137 
15138     Info.opc = ISD::INTRINSIC_W_CHAIN;
15139     Info.memVT = VT;
15140     Info.ptrVal = I.getArgOperand(0);
15141     Info.offset = 0;
15142     Info.size = VT.getStoreSize();
15143     Info.align = Align(1);
15144     Info.flags = MachineMemOperand::MOLoad;
15145     return true;
15146   }
15147   case Intrinsic::ppc_qpx_qvstfd:
15148   case Intrinsic::ppc_qpx_qvstfs:
15149   case Intrinsic::ppc_qpx_qvstfcd:
15150   case Intrinsic::ppc_qpx_qvstfcs:
15151   case Intrinsic::ppc_qpx_qvstfiw:
15152   case Intrinsic::ppc_altivec_stvx:
15153   case Intrinsic::ppc_altivec_stvxl:
15154   case Intrinsic::ppc_altivec_stvebx:
15155   case Intrinsic::ppc_altivec_stvehx:
15156   case Intrinsic::ppc_altivec_stvewx:
15157   case Intrinsic::ppc_vsx_stxvd2x:
15158   case Intrinsic::ppc_vsx_stxvw4x: {
15159     EVT VT;
15160     switch (Intrinsic) {
15161     case Intrinsic::ppc_altivec_stvebx:
15162       VT = MVT::i8;
15163       break;
15164     case Intrinsic::ppc_altivec_stvehx:
15165       VT = MVT::i16;
15166       break;
15167     case Intrinsic::ppc_altivec_stvewx:
15168       VT = MVT::i32;
15169       break;
15170     case Intrinsic::ppc_vsx_stxvd2x:
15171       VT = MVT::v2f64;
15172       break;
15173     case Intrinsic::ppc_qpx_qvstfd:
15174       VT = MVT::v4f64;
15175       break;
15176     case Intrinsic::ppc_qpx_qvstfs:
15177       VT = MVT::v4f32;
15178       break;
15179     case Intrinsic::ppc_qpx_qvstfcd:
15180       VT = MVT::v2f64;
15181       break;
15182     case Intrinsic::ppc_qpx_qvstfcs:
15183       VT = MVT::v2f32;
15184       break;
15185     default:
15186       VT = MVT::v4i32;
15187       break;
15188     }
15189 
15190     Info.opc = ISD::INTRINSIC_VOID;
15191     Info.memVT = VT;
15192     Info.ptrVal = I.getArgOperand(1);
15193     Info.offset = -VT.getStoreSize()+1;
15194     Info.size = 2*VT.getStoreSize()-1;
15195     Info.align = Align(1);
15196     Info.flags = MachineMemOperand::MOStore;
15197     return true;
15198   }
15199   case Intrinsic::ppc_qpx_qvstfda:
15200   case Intrinsic::ppc_qpx_qvstfsa:
15201   case Intrinsic::ppc_qpx_qvstfcda:
15202   case Intrinsic::ppc_qpx_qvstfcsa:
15203   case Intrinsic::ppc_qpx_qvstfiwa: {
15204     EVT VT;
15205     switch (Intrinsic) {
15206     case Intrinsic::ppc_qpx_qvstfda:
15207       VT = MVT::v4f64;
15208       break;
15209     case Intrinsic::ppc_qpx_qvstfsa:
15210       VT = MVT::v4f32;
15211       break;
15212     case Intrinsic::ppc_qpx_qvstfcda:
15213       VT = MVT::v2f64;
15214       break;
15215     case Intrinsic::ppc_qpx_qvstfcsa:
15216       VT = MVT::v2f32;
15217       break;
15218     default:
15219       VT = MVT::v4i32;
15220       break;
15221     }
15222 
15223     Info.opc = ISD::INTRINSIC_VOID;
15224     Info.memVT = VT;
15225     Info.ptrVal = I.getArgOperand(1);
15226     Info.offset = 0;
15227     Info.size = VT.getStoreSize();
15228     Info.align = Align(1);
15229     Info.flags = MachineMemOperand::MOStore;
15230     return true;
15231   }
15232   default:
15233     break;
15234   }
15235 
15236   return false;
15237 }
15238 
15239 /// It returns EVT::Other if the type should be determined using generic
15240 /// target-independent logic.
15241 EVT PPCTargetLowering::getOptimalMemOpType(
15242     const MemOp &Op, const AttributeList &FuncAttributes) const {
15243   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15244     // When expanding a memset, require at least two QPX instructions to cover
15245     // the cost of loading the value to be stored from the constant pool.
15246     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15247         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15248         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15249       return MVT::v4f64;
15250     }
15251 
15252     // We should use Altivec/VSX loads and stores when available. For unaligned
15253     // addresses, unaligned VSX loads are only fast starting with the P8.
15254     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15255         (Op.isAligned(Align(16)) ||
15256          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15257       return MVT::v4i32;
15258   }
15259 
15260   if (Subtarget.isPPC64()) {
15261     return MVT::i64;
15262   }
15263 
15264   return MVT::i32;
15265 }
15266 
15267 /// Returns true if it is beneficial to convert a load of a constant
15268 /// to just the constant itself.
15269 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15270                                                           Type *Ty) const {
15271   assert(Ty->isIntegerTy());
15272 
15273   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15274   return !(BitSize == 0 || BitSize > 64);
15275 }
15276 
15277 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15278   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15279     return false;
15280   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15281   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15282   return NumBits1 == 64 && NumBits2 == 32;
15283 }
15284 
15285 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15286   if (!VT1.isInteger() || !VT2.isInteger())
15287     return false;
15288   unsigned NumBits1 = VT1.getSizeInBits();
15289   unsigned NumBits2 = VT2.getSizeInBits();
15290   return NumBits1 == 64 && NumBits2 == 32;
15291 }
15292 
15293 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15294   // Generally speaking, zexts are not free, but they are free when they can be
15295   // folded with other operations.
15296   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15297     EVT MemVT = LD->getMemoryVT();
15298     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15299          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15300         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15301          LD->getExtensionType() == ISD::ZEXTLOAD))
15302       return true;
15303   }
15304 
15305   // FIXME: Add other cases...
15306   //  - 32-bit shifts with a zext to i64
15307   //  - zext after ctlz, bswap, etc.
15308   //  - zext after and by a constant mask
15309 
15310   return TargetLowering::isZExtFree(Val, VT2);
15311 }
15312 
15313 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15314   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15315          "invalid fpext types");
15316   // Extending to float128 is not free.
15317   if (DestVT == MVT::f128)
15318     return false;
15319   return true;
15320 }
15321 
15322 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15323   return isInt<16>(Imm) || isUInt<16>(Imm);
15324 }
15325 
15326 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15327   return isInt<16>(Imm) || isUInt<16>(Imm);
15328 }
15329 
15330 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15331                                                        unsigned,
15332                                                        unsigned,
15333                                                        MachineMemOperand::Flags,
15334                                                        bool *Fast) const {
15335   if (DisablePPCUnaligned)
15336     return false;
15337 
15338   // PowerPC supports unaligned memory access for simple non-vector types.
15339   // Although accessing unaligned addresses is not as efficient as accessing
15340   // aligned addresses, it is generally more efficient than manual expansion,
15341   // and generally only traps for software emulation when crossing page
15342   // boundaries.
15343 
15344   if (!VT.isSimple())
15345     return false;
15346 
15347   if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess())
15348     return false;
15349 
15350   if (VT.getSimpleVT().isVector()) {
15351     if (Subtarget.hasVSX()) {
15352       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15353           VT != MVT::v4f32 && VT != MVT::v4i32)
15354         return false;
15355     } else {
15356       return false;
15357     }
15358   }
15359 
15360   if (VT == MVT::ppcf128)
15361     return false;
15362 
15363   if (Fast)
15364     *Fast = true;
15365 
15366   return true;
15367 }
15368 
15369 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15370                                                    EVT VT) const {
15371   return isFMAFasterThanFMulAndFAdd(
15372       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15373 }
15374 
15375 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15376                                                    Type *Ty) const {
15377   switch (Ty->getScalarType()->getTypeID()) {
15378   case Type::FloatTyID:
15379   case Type::DoubleTyID:
15380     return true;
15381   case Type::FP128TyID:
15382     return EnableQuadPrecision && Subtarget.hasP9Vector();
15383   default:
15384     return false;
15385   }
15386 }
15387 
15388 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
15389 // FIXME: add more patterns which are profitable to hoist.
15390 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15391   if (I->getOpcode() != Instruction::FMul)
15392     return true;
15393 
15394   if (!I->hasOneUse())
15395     return true;
15396 
15397   Instruction *User = I->user_back();
15398   assert(User && "A single use instruction with no uses.");
15399 
15400   if (User->getOpcode() != Instruction::FSub &&
15401       User->getOpcode() == Instruction::FAdd)
15402     return true;
15403 
15404   const TargetOptions &Options = getTargetMachine().Options;
15405   const Function *F = I->getFunction();
15406   const DataLayout &DL = F->getParent()->getDataLayout();
15407   Type *Ty = User->getOperand(0)->getType();
15408 
15409   return !(
15410       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15411       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15412       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15413 }
15414 
15415 const MCPhysReg *
15416 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15417   // LR is a callee-save register, but we must treat it as clobbered by any call
15418   // site. Hence we include LR in the scratch registers, which are in turn added
15419   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15420   // to CTR, which is used by any indirect call.
15421   static const MCPhysReg ScratchRegs[] = {
15422     PPC::X12, PPC::LR8, PPC::CTR8, 0
15423   };
15424 
15425   return ScratchRegs;
15426 }
15427 
15428 unsigned PPCTargetLowering::getExceptionPointerRegister(
15429     const Constant *PersonalityFn) const {
15430   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15431 }
15432 
15433 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15434     const Constant *PersonalityFn) const {
15435   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15436 }
15437 
15438 bool
15439 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15440                      EVT VT , unsigned DefinedValues) const {
15441   if (VT == MVT::v2i64)
15442     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15443 
15444   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15445     return true;
15446 
15447   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15448 }
15449 
15450 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15451   if (DisableILPPref || Subtarget.enableMachineScheduler())
15452     return TargetLowering::getSchedulingPreference(N);
15453 
15454   return Sched::ILP;
15455 }
15456 
15457 // Create a fast isel object.
15458 FastISel *
15459 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15460                                   const TargetLibraryInfo *LibInfo) const {
15461   return PPC::createFastISel(FuncInfo, LibInfo);
15462 }
15463 
15464 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15465   if (!Subtarget.isPPC64()) return;
15466 
15467   // Update IsSplitCSR in PPCFunctionInfo
15468   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15469   PFI->setIsSplitCSR(true);
15470 }
15471 
15472 void PPCTargetLowering::insertCopiesSplitCSR(
15473   MachineBasicBlock *Entry,
15474   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15475   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15476   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15477   if (!IStart)
15478     return;
15479 
15480   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15481   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15482   MachineBasicBlock::iterator MBBI = Entry->begin();
15483   for (const MCPhysReg *I = IStart; *I; ++I) {
15484     const TargetRegisterClass *RC = nullptr;
15485     if (PPC::G8RCRegClass.contains(*I))
15486       RC = &PPC::G8RCRegClass;
15487     else if (PPC::F8RCRegClass.contains(*I))
15488       RC = &PPC::F8RCRegClass;
15489     else if (PPC::CRRCRegClass.contains(*I))
15490       RC = &PPC::CRRCRegClass;
15491     else if (PPC::VRRCRegClass.contains(*I))
15492       RC = &PPC::VRRCRegClass;
15493     else
15494       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15495 
15496     Register NewVR = MRI->createVirtualRegister(RC);
15497     // Create copy from CSR to a virtual register.
15498     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15499     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15500     // nounwind. If we want to generalize this later, we may need to emit
15501     // CFI pseudo-instructions.
15502     assert(Entry->getParent()->getFunction().hasFnAttribute(
15503              Attribute::NoUnwind) &&
15504            "Function should be nounwind in insertCopiesSplitCSR!");
15505     Entry->addLiveIn(*I);
15506     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15507       .addReg(*I);
15508 
15509     // Insert the copy-back instructions right before the terminator.
15510     for (auto *Exit : Exits)
15511       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15512               TII->get(TargetOpcode::COPY), *I)
15513         .addReg(NewVR);
15514   }
15515 }
15516 
15517 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15518 bool PPCTargetLowering::useLoadStackGuardNode() const {
15519   if (!Subtarget.isTargetLinux())
15520     return TargetLowering::useLoadStackGuardNode();
15521   return true;
15522 }
15523 
15524 // Override to disable global variable loading on Linux.
15525 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15526   if (!Subtarget.isTargetLinux())
15527     return TargetLowering::insertSSPDeclarations(M);
15528 }
15529 
15530 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15531                                      bool ForCodeSize) const {
15532   if (!VT.isSimple() || !Subtarget.hasVSX())
15533     return false;
15534 
15535   switch(VT.getSimpleVT().SimpleTy) {
15536   default:
15537     // For FP types that are currently not supported by PPC backend, return
15538     // false. Examples: f16, f80.
15539     return false;
15540   case MVT::f32:
15541   case MVT::f64:
15542   case MVT::ppcf128:
15543     return Imm.isPosZero();
15544   }
15545 }
15546 
15547 // For vector shift operation op, fold
15548 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15549 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15550                                   SelectionDAG &DAG) {
15551   SDValue N0 = N->getOperand(0);
15552   SDValue N1 = N->getOperand(1);
15553   EVT VT = N0.getValueType();
15554   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15555   unsigned Opcode = N->getOpcode();
15556   unsigned TargetOpcode;
15557 
15558   switch (Opcode) {
15559   default:
15560     llvm_unreachable("Unexpected shift operation");
15561   case ISD::SHL:
15562     TargetOpcode = PPCISD::SHL;
15563     break;
15564   case ISD::SRL:
15565     TargetOpcode = PPCISD::SRL;
15566     break;
15567   case ISD::SRA:
15568     TargetOpcode = PPCISD::SRA;
15569     break;
15570   }
15571 
15572   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15573       N1->getOpcode() == ISD::AND)
15574     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15575       if (Mask->getZExtValue() == OpSizeInBits - 1)
15576         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15577 
15578   return SDValue();
15579 }
15580 
15581 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15582   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15583     return Value;
15584 
15585   SDValue N0 = N->getOperand(0);
15586   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15587   if (!Subtarget.isISA3_0() ||
15588       N0.getOpcode() != ISD::SIGN_EXTEND ||
15589       N0.getOperand(0).getValueType() != MVT::i32 ||
15590       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15591     return SDValue();
15592 
15593   // We can't save an operation here if the value is already extended, and
15594   // the existing shift is easier to combine.
15595   SDValue ExtsSrc = N0.getOperand(0);
15596   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15597       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15598     return SDValue();
15599 
15600   SDLoc DL(N0);
15601   SDValue ShiftBy = SDValue(CN1, 0);
15602   // We want the shift amount to be i32 on the extswli, but the shift could
15603   // have an i64.
15604   if (ShiftBy.getValueType() == MVT::i64)
15605     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15606 
15607   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15608                          ShiftBy);
15609 }
15610 
15611 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15612   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15613     return Value;
15614 
15615   return SDValue();
15616 }
15617 
15618 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15619   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15620     return Value;
15621 
15622   return SDValue();
15623 }
15624 
15625 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15626 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15627 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15628 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15629 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15630                                  const PPCSubtarget &Subtarget) {
15631   if (!Subtarget.isPPC64())
15632     return SDValue();
15633 
15634   SDValue LHS = N->getOperand(0);
15635   SDValue RHS = N->getOperand(1);
15636 
15637   auto isZextOfCompareWithConstant = [](SDValue Op) {
15638     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15639         Op.getValueType() != MVT::i64)
15640       return false;
15641 
15642     SDValue Cmp = Op.getOperand(0);
15643     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15644         Cmp.getOperand(0).getValueType() != MVT::i64)
15645       return false;
15646 
15647     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15648       int64_t NegConstant = 0 - Constant->getSExtValue();
15649       // Due to the limitations of the addi instruction,
15650       // -C is required to be [-32768, 32767].
15651       return isInt<16>(NegConstant);
15652     }
15653 
15654     return false;
15655   };
15656 
15657   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15658   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15659 
15660   // If there is a pattern, canonicalize a zext operand to the RHS.
15661   if (LHSHasPattern && !RHSHasPattern)
15662     std::swap(LHS, RHS);
15663   else if (!LHSHasPattern && !RHSHasPattern)
15664     return SDValue();
15665 
15666   SDLoc DL(N);
15667   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15668   SDValue Cmp = RHS.getOperand(0);
15669   SDValue Z = Cmp.getOperand(0);
15670   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15671 
15672   assert(Constant && "Constant Should not be a null pointer.");
15673   int64_t NegConstant = 0 - Constant->getSExtValue();
15674 
15675   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15676   default: break;
15677   case ISD::SETNE: {
15678     //                                 when C == 0
15679     //                             --> addze X, (addic Z, -1).carry
15680     //                            /
15681     // add X, (zext(setne Z, C))--
15682     //                            \    when -32768 <= -C <= 32767 && C != 0
15683     //                             --> addze X, (addic (addi Z, -C), -1).carry
15684     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15685                               DAG.getConstant(NegConstant, DL, MVT::i64));
15686     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15687     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15688                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15689     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15690                        SDValue(Addc.getNode(), 1));
15691     }
15692   case ISD::SETEQ: {
15693     //                                 when C == 0
15694     //                             --> addze X, (subfic Z, 0).carry
15695     //                            /
15696     // add X, (zext(sete  Z, C))--
15697     //                            \    when -32768 <= -C <= 32767 && C != 0
15698     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15699     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15700                               DAG.getConstant(NegConstant, DL, MVT::i64));
15701     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15702     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15703                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15704     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15705                        SDValue(Subc.getNode(), 1));
15706     }
15707   }
15708 
15709   return SDValue();
15710 }
15711 
15712 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15713   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15714     return Value;
15715 
15716   return SDValue();
15717 }
15718 
15719 // Detect TRUNCATE operations on bitcasts of float128 values.
15720 // What we are looking for here is the situtation where we extract a subset
15721 // of bits from a 128 bit float.
15722 // This can be of two forms:
15723 // 1) BITCAST of f128 feeding TRUNCATE
15724 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15725 // The reason this is required is because we do not have a legal i128 type
15726 // and so we want to prevent having to store the f128 and then reload part
15727 // of it.
15728 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15729                                            DAGCombinerInfo &DCI) const {
15730   // If we are using CRBits then try that first.
15731   if (Subtarget.useCRBits()) {
15732     // Check if CRBits did anything and return that if it did.
15733     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15734       return CRTruncValue;
15735   }
15736 
15737   SDLoc dl(N);
15738   SDValue Op0 = N->getOperand(0);
15739 
15740   // Looking for a truncate of i128 to i64.
15741   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15742     return SDValue();
15743 
15744   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15745 
15746   // SRL feeding TRUNCATE.
15747   if (Op0.getOpcode() == ISD::SRL) {
15748     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15749     // The right shift has to be by 64 bits.
15750     if (!ConstNode || ConstNode->getZExtValue() != 64)
15751       return SDValue();
15752 
15753     // Switch the element number to extract.
15754     EltToExtract = EltToExtract ? 0 : 1;
15755     // Update Op0 past the SRL.
15756     Op0 = Op0.getOperand(0);
15757   }
15758 
15759   // BITCAST feeding a TRUNCATE possibly via SRL.
15760   if (Op0.getOpcode() == ISD::BITCAST &&
15761       Op0.getValueType() == MVT::i128 &&
15762       Op0.getOperand(0).getValueType() == MVT::f128) {
15763     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15764     return DCI.DAG.getNode(
15765         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15766         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15767   }
15768   return SDValue();
15769 }
15770 
15771 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15772   SelectionDAG &DAG = DCI.DAG;
15773 
15774   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15775   if (!ConstOpOrElement)
15776     return SDValue();
15777 
15778   // An imul is usually smaller than the alternative sequence for legal type.
15779   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15780       isOperationLegal(ISD::MUL, N->getValueType(0)))
15781     return SDValue();
15782 
15783   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15784     switch (this->Subtarget.getCPUDirective()) {
15785     default:
15786       // TODO: enhance the condition for subtarget before pwr8
15787       return false;
15788     case PPC::DIR_PWR8:
15789       //  type        mul     add    shl
15790       // scalar        4       1      1
15791       // vector        7       2      2
15792       return true;
15793     case PPC::DIR_PWR9:
15794     case PPC::DIR_PWR_FUTURE:
15795       //  type        mul     add    shl
15796       // scalar        5       2      2
15797       // vector        7       2      2
15798 
15799       // The cycle RATIO of related operations are showed as a table above.
15800       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15801       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15802       // are 4, it is always profitable; but for 3 instrs patterns
15803       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15804       // So we should only do it for vector type.
15805       return IsAddOne && IsNeg ? VT.isVector() : true;
15806     }
15807   };
15808 
15809   EVT VT = N->getValueType(0);
15810   SDLoc DL(N);
15811 
15812   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15813   bool IsNeg = MulAmt.isNegative();
15814   APInt MulAmtAbs = MulAmt.abs();
15815 
15816   if ((MulAmtAbs - 1).isPowerOf2()) {
15817     // (mul x, 2^N + 1) => (add (shl x, N), x)
15818     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15819 
15820     if (!IsProfitable(IsNeg, true, VT))
15821       return SDValue();
15822 
15823     SDValue Op0 = N->getOperand(0);
15824     SDValue Op1 =
15825         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15826                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15827     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15828 
15829     if (!IsNeg)
15830       return Res;
15831 
15832     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15833   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15834     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15835     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15836 
15837     if (!IsProfitable(IsNeg, false, VT))
15838       return SDValue();
15839 
15840     SDValue Op0 = N->getOperand(0);
15841     SDValue Op1 =
15842         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15843                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15844 
15845     if (!IsNeg)
15846       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15847     else
15848       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15849 
15850   } else {
15851     return SDValue();
15852   }
15853 }
15854 
15855 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15856   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15857   if (!Subtarget.is64BitELFABI())
15858     return false;
15859 
15860   // If not a tail call then no need to proceed.
15861   if (!CI->isTailCall())
15862     return false;
15863 
15864   // If sibling calls have been disabled and tail-calls aren't guaranteed
15865   // there is no reason to duplicate.
15866   auto &TM = getTargetMachine();
15867   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15868     return false;
15869 
15870   // Can't tail call a function called indirectly, or if it has variadic args.
15871   const Function *Callee = CI->getCalledFunction();
15872   if (!Callee || Callee->isVarArg())
15873     return false;
15874 
15875   // Make sure the callee and caller calling conventions are eligible for tco.
15876   const Function *Caller = CI->getParent()->getParent();
15877   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15878                                            CI->getCallingConv()))
15879       return false;
15880 
15881   // If the function is local then we have a good chance at tail-calling it
15882   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15883 }
15884 
15885 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15886   if (!Subtarget.hasVSX())
15887     return false;
15888   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15889     return true;
15890   return VT == MVT::f32 || VT == MVT::f64 ||
15891     VT == MVT::v4f32 || VT == MVT::v2f64;
15892 }
15893 
15894 bool PPCTargetLowering::
15895 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15896   const Value *Mask = AndI.getOperand(1);
15897   // If the mask is suitable for andi. or andis. we should sink the and.
15898   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15899     // Can't handle constants wider than 64-bits.
15900     if (CI->getBitWidth() > 64)
15901       return false;
15902     int64_t ConstVal = CI->getZExtValue();
15903     return isUInt<16>(ConstVal) ||
15904       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15905   }
15906 
15907   // For non-constant masks, we can always use the record-form and.
15908   return true;
15909 }
15910 
15911 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15912 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15913 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15914 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15915 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15916 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15917   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15918   assert(Subtarget.hasP9Altivec() &&
15919          "Only combine this when P9 altivec supported!");
15920   EVT VT = N->getValueType(0);
15921   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15922     return SDValue();
15923 
15924   SelectionDAG &DAG = DCI.DAG;
15925   SDLoc dl(N);
15926   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15927     // Even for signed integers, if it's known to be positive (as signed
15928     // integer) due to zero-extended inputs.
15929     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15930     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15931     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15932          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15933         (SubOpcd1 == ISD::ZERO_EXTEND ||
15934          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15935       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15936                          N->getOperand(0)->getOperand(0),
15937                          N->getOperand(0)->getOperand(1),
15938                          DAG.getTargetConstant(0, dl, MVT::i32));
15939     }
15940 
15941     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15942     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15943         N->getOperand(0).hasOneUse()) {
15944       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15945                          N->getOperand(0)->getOperand(0),
15946                          N->getOperand(0)->getOperand(1),
15947                          DAG.getTargetConstant(1, dl, MVT::i32));
15948     }
15949   }
15950 
15951   return SDValue();
15952 }
15953 
15954 // For type v4i32/v8ii16/v16i8, transform
15955 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15956 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15957 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15958 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15959 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15960                                           DAGCombinerInfo &DCI) const {
15961   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15962   assert(Subtarget.hasP9Altivec() &&
15963          "Only combine this when P9 altivec supported!");
15964 
15965   SelectionDAG &DAG = DCI.DAG;
15966   SDLoc dl(N);
15967   SDValue Cond = N->getOperand(0);
15968   SDValue TrueOpnd = N->getOperand(1);
15969   SDValue FalseOpnd = N->getOperand(2);
15970   EVT VT = N->getOperand(1).getValueType();
15971 
15972   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15973       FalseOpnd.getOpcode() != ISD::SUB)
15974     return SDValue();
15975 
15976   // ABSD only available for type v4i32/v8i16/v16i8
15977   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15978     return SDValue();
15979 
15980   // At least to save one more dependent computation
15981   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15982     return SDValue();
15983 
15984   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15985 
15986   // Can only handle unsigned comparison here
15987   switch (CC) {
15988   default:
15989     return SDValue();
15990   case ISD::SETUGT:
15991   case ISD::SETUGE:
15992     break;
15993   case ISD::SETULT:
15994   case ISD::SETULE:
15995     std::swap(TrueOpnd, FalseOpnd);
15996     break;
15997   }
15998 
15999   SDValue CmpOpnd1 = Cond.getOperand(0);
16000   SDValue CmpOpnd2 = Cond.getOperand(1);
16001 
16002   // SETCC CmpOpnd1 CmpOpnd2 cond
16003   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16004   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16005   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16006       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16007       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16008       FalseOpnd.getOperand(1) == CmpOpnd1) {
16009     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16010                        CmpOpnd1, CmpOpnd2,
16011                        DAG.getTargetConstant(0, dl, MVT::i32));
16012   }
16013 
16014   return SDValue();
16015 }
16016