1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 171 172 // PowerPC has pre-inc load and store's. 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 183 if (!Subtarget.hasSPE()) { 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 185 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 187 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 188 } 189 190 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 192 for (MVT VT : ScalarIntVTs) { 193 setOperationAction(ISD::ADDC, VT, Legal); 194 setOperationAction(ISD::ADDE, VT, Legal); 195 setOperationAction(ISD::SUBC, VT, Legal); 196 setOperationAction(ISD::SUBE, VT, Legal); 197 } 198 199 if (Subtarget.useCRBits()) { 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 202 if (isPPC64 || Subtarget.hasFPCVT()) { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 204 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 205 isPPC64 ? MVT::i64 : MVT::i32); 206 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 207 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 208 isPPC64 ? MVT::i64 : MVT::i32); 209 } else { 210 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 211 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 212 } 213 214 // PowerPC does not support direct load/store of condition registers. 215 setOperationAction(ISD::LOAD, MVT::i1, Custom); 216 setOperationAction(ISD::STORE, MVT::i1, Custom); 217 218 // FIXME: Remove this once the ANDI glue bug is fixed: 219 if (ANDIGlueBug) 220 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 221 222 for (MVT VT : MVT::integer_valuetypes()) { 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 225 setTruncStoreAction(VT, MVT::i1, Expand); 226 } 227 228 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 229 } 230 231 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 232 // PPC (the libcall is not available). 233 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 234 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 235 236 // We do not currently implement these libm ops for PowerPC. 237 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 243 244 // PowerPC has no SREM/UREM instructions unless we are on P9 245 // On P9 we may use a hardware instruction to compute the remainder. 246 // The instructions are not legalized directly because in the cases where the 247 // result of both the remainder and the division is required it is more 248 // efficient to compute the remainder from the result of the division rather 249 // than use the remainder instruction. 250 if (Subtarget.isISA3_0()) { 251 setOperationAction(ISD::SREM, MVT::i32, Custom); 252 setOperationAction(ISD::UREM, MVT::i32, Custom); 253 setOperationAction(ISD::SREM, MVT::i64, Custom); 254 setOperationAction(ISD::UREM, MVT::i64, Custom); 255 } else { 256 setOperationAction(ISD::SREM, MVT::i32, Expand); 257 setOperationAction(ISD::UREM, MVT::i32, Expand); 258 setOperationAction(ISD::SREM, MVT::i64, Expand); 259 setOperationAction(ISD::UREM, MVT::i64, Expand); 260 } 261 262 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 263 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 265 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 269 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 270 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 271 272 // Handle constrained floating-point operations of scalar. 273 // TODO: Handle SPE specific operation. 274 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 275 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 276 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 277 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 278 279 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 280 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 281 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 282 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 283 284 // We don't support sin/cos/sqrt/fmod/pow 285 setOperationAction(ISD::FSIN , MVT::f64, Expand); 286 setOperationAction(ISD::FCOS , MVT::f64, Expand); 287 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 288 setOperationAction(ISD::FREM , MVT::f64, Expand); 289 setOperationAction(ISD::FPOW , MVT::f64, Expand); 290 setOperationAction(ISD::FSIN , MVT::f32, Expand); 291 setOperationAction(ISD::FCOS , MVT::f32, Expand); 292 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 293 setOperationAction(ISD::FREM , MVT::f32, Expand); 294 setOperationAction(ISD::FPOW , MVT::f32, Expand); 295 if (Subtarget.hasSPE()) { 296 setOperationAction(ISD::FMA , MVT::f64, Expand); 297 setOperationAction(ISD::FMA , MVT::f32, Expand); 298 } else { 299 setOperationAction(ISD::FMA , MVT::f64, Legal); 300 setOperationAction(ISD::FMA , MVT::f32, Legal); 301 } 302 303 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 304 305 // If we're enabling GP optimizations, use hardware square root 306 if (!Subtarget.hasFSQRT() && 307 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 308 Subtarget.hasFRE())) 309 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 310 311 if (!Subtarget.hasFSQRT() && 312 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 313 Subtarget.hasFRES())) 314 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 315 316 if (Subtarget.hasFCPSGN()) { 317 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 318 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 319 } else { 320 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 321 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 322 } 323 324 if (Subtarget.hasFPRND()) { 325 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 326 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 327 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 328 setOperationAction(ISD::FROUND, MVT::f64, Legal); 329 330 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::FROUND, MVT::f32, Legal); 334 } 335 336 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 337 // to speed up scalar BSWAP64. 338 // CTPOP or CTTZ were introduced in P8/P9 respectively 339 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 340 if (Subtarget.hasP9Vector()) 341 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 342 else 343 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 344 if (Subtarget.isISA3_0()) { 345 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 346 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 347 } else { 348 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 349 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 350 } 351 352 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 353 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 354 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 355 } else { 356 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 357 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 358 } 359 360 // PowerPC does not have ROTR 361 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 362 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 363 364 if (!Subtarget.useCRBits()) { 365 // PowerPC does not have Select 366 setOperationAction(ISD::SELECT, MVT::i32, Expand); 367 setOperationAction(ISD::SELECT, MVT::i64, Expand); 368 setOperationAction(ISD::SELECT, MVT::f32, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Expand); 370 } 371 372 // PowerPC wants to turn select_cc of FP into fsel when possible. 373 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 374 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 375 376 // PowerPC wants to optimize integer setcc a bit 377 if (!Subtarget.useCRBits()) 378 setOperationAction(ISD::SETCC, MVT::i32, Custom); 379 380 // PowerPC does not have BRCOND which requires SetCC 381 if (!Subtarget.useCRBits()) 382 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 383 384 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 385 386 if (Subtarget.hasSPE()) { 387 // SPE has built-in conversions 388 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 389 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 390 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 391 } else { 392 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 393 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 394 395 // PowerPC does not have [U|S]INT_TO_FP 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 398 } 399 400 if (Subtarget.hasDirectMove() && isPPC64) { 401 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 402 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 403 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 404 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 405 if (TM.Options.UnsafeFPMath) { 406 setOperationAction(ISD::LRINT, MVT::f64, Legal); 407 setOperationAction(ISD::LRINT, MVT::f32, Legal); 408 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 409 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 410 setOperationAction(ISD::LROUND, MVT::f64, Legal); 411 setOperationAction(ISD::LROUND, MVT::f32, Legal); 412 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 413 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 414 } 415 } else { 416 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 417 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 418 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 419 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 420 } 421 422 // We cannot sextinreg(i1). Expand to shifts. 423 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 424 425 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 426 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 427 // support continuation, user-level threading, and etc.. As a result, no 428 // other SjLj exception interfaces are implemented and please don't build 429 // your own exception handling based on them. 430 // LLVM/Clang supports zero-cost DWARF exception handling. 431 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 432 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 433 434 // We want to legalize GlobalAddress and ConstantPool nodes into the 435 // appropriate instructions to materialize the address. 436 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 437 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 438 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 439 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 440 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 441 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 442 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 443 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 444 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 445 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 446 447 // TRAP is legal. 448 setOperationAction(ISD::TRAP, MVT::Other, Legal); 449 450 // TRAMPOLINE is custom lowered. 451 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 452 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 453 454 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 455 setOperationAction(ISD::VASTART , MVT::Other, Custom); 456 457 if (Subtarget.is64BitELFABI()) { 458 // VAARG always uses double-word chunks, so promote anything smaller. 459 setOperationAction(ISD::VAARG, MVT::i1, Promote); 460 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 461 setOperationAction(ISD::VAARG, MVT::i8, Promote); 462 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 463 setOperationAction(ISD::VAARG, MVT::i16, Promote); 464 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 465 setOperationAction(ISD::VAARG, MVT::i32, Promote); 466 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 467 setOperationAction(ISD::VAARG, MVT::Other, Expand); 468 } else if (Subtarget.is32BitELFABI()) { 469 // VAARG is custom lowered with the 32-bit SVR4 ABI. 470 setOperationAction(ISD::VAARG, MVT::Other, Custom); 471 setOperationAction(ISD::VAARG, MVT::i64, Custom); 472 } else 473 setOperationAction(ISD::VAARG, MVT::Other, Expand); 474 475 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 476 if (Subtarget.is32BitELFABI()) 477 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 478 else 479 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 480 481 // Use the default implementation. 482 setOperationAction(ISD::VAEND , MVT::Other, Expand); 483 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 484 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 485 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 486 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 487 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 488 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 489 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 490 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 491 492 // We want to custom lower some of our intrinsics. 493 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 494 495 // To handle counter-based loop conditions. 496 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 497 498 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 499 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 500 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 501 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 502 503 // Comparisons that require checking two conditions. 504 if (Subtarget.hasSPE()) { 505 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 506 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 507 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 508 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 509 } 510 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 511 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 512 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 513 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 514 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 515 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 516 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 517 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 518 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 519 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 520 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 521 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 522 523 if (Subtarget.has64BitSupport()) { 524 // They also have instructions for converting between i64 and fp. 525 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 529 // This is just the low 32 bits of a (signed) fp->i64 conversion. 530 // We cannot do this with Promote because i64 is not a legal type. 531 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 532 533 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 534 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 535 } else { 536 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 537 if (Subtarget.hasSPE()) 538 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 539 else 540 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 541 } 542 543 // With the instructions enabled under FPCVT, we can do everything. 544 if (Subtarget.hasFPCVT()) { 545 if (Subtarget.has64BitSupport()) { 546 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 547 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 548 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 549 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 550 } 551 552 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 553 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 554 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 555 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 556 } 557 558 if (Subtarget.use64BitRegs()) { 559 // 64-bit PowerPC implementations can support i64 types directly 560 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 561 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 562 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 563 // 64-bit PowerPC wants to expand i128 shifts itself. 564 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 565 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 566 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 567 } else { 568 // 32-bit PowerPC wants to expand i64 shifts itself. 569 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 570 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 571 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 576 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 577 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 578 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 579 } 580 581 if (Subtarget.hasAltivec()) { 582 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 583 setOperationAction(ISD::SADDSAT, VT, Legal); 584 setOperationAction(ISD::SSUBSAT, VT, Legal); 585 setOperationAction(ISD::UADDSAT, VT, Legal); 586 setOperationAction(ISD::USUBSAT, VT, Legal); 587 } 588 // First set operation action for all vector types to expand. Then we 589 // will selectively turn on ones that can be effectively codegen'd. 590 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 591 // add/sub are legal for all supported vector VT's. 592 setOperationAction(ISD::ADD, VT, Legal); 593 setOperationAction(ISD::SUB, VT, Legal); 594 595 // For v2i64, these are only valid with P8Vector. This is corrected after 596 // the loop. 597 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 598 setOperationAction(ISD::SMAX, VT, Legal); 599 setOperationAction(ISD::SMIN, VT, Legal); 600 setOperationAction(ISD::UMAX, VT, Legal); 601 setOperationAction(ISD::UMIN, VT, Legal); 602 } 603 else { 604 setOperationAction(ISD::SMAX, VT, Expand); 605 setOperationAction(ISD::SMIN, VT, Expand); 606 setOperationAction(ISD::UMAX, VT, Expand); 607 setOperationAction(ISD::UMIN, VT, Expand); 608 } 609 610 if (Subtarget.hasVSX()) { 611 setOperationAction(ISD::FMAXNUM, VT, Legal); 612 setOperationAction(ISD::FMINNUM, VT, Legal); 613 } 614 615 // Vector instructions introduced in P8 616 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 617 setOperationAction(ISD::CTPOP, VT, Legal); 618 setOperationAction(ISD::CTLZ, VT, Legal); 619 } 620 else { 621 setOperationAction(ISD::CTPOP, VT, Expand); 622 setOperationAction(ISD::CTLZ, VT, Expand); 623 } 624 625 // Vector instructions introduced in P9 626 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 627 setOperationAction(ISD::CTTZ, VT, Legal); 628 else 629 setOperationAction(ISD::CTTZ, VT, Expand); 630 631 // We promote all shuffles to v16i8. 632 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 633 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 634 635 // We promote all non-typed operations to v4i32. 636 setOperationAction(ISD::AND , VT, Promote); 637 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 638 setOperationAction(ISD::OR , VT, Promote); 639 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 640 setOperationAction(ISD::XOR , VT, Promote); 641 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 642 setOperationAction(ISD::LOAD , VT, Promote); 643 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 644 setOperationAction(ISD::SELECT, VT, Promote); 645 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 646 setOperationAction(ISD::VSELECT, VT, Legal); 647 setOperationAction(ISD::SELECT_CC, VT, Promote); 648 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 649 setOperationAction(ISD::STORE, VT, Promote); 650 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 651 652 // No other operations are legal. 653 setOperationAction(ISD::MUL , VT, Expand); 654 setOperationAction(ISD::SDIV, VT, Expand); 655 setOperationAction(ISD::SREM, VT, Expand); 656 setOperationAction(ISD::UDIV, VT, Expand); 657 setOperationAction(ISD::UREM, VT, Expand); 658 setOperationAction(ISD::FDIV, VT, Expand); 659 setOperationAction(ISD::FREM, VT, Expand); 660 setOperationAction(ISD::FNEG, VT, Expand); 661 setOperationAction(ISD::FSQRT, VT, Expand); 662 setOperationAction(ISD::FLOG, VT, Expand); 663 setOperationAction(ISD::FLOG10, VT, Expand); 664 setOperationAction(ISD::FLOG2, VT, Expand); 665 setOperationAction(ISD::FEXP, VT, Expand); 666 setOperationAction(ISD::FEXP2, VT, Expand); 667 setOperationAction(ISD::FSIN, VT, Expand); 668 setOperationAction(ISD::FCOS, VT, Expand); 669 setOperationAction(ISD::FABS, VT, Expand); 670 setOperationAction(ISD::FFLOOR, VT, Expand); 671 setOperationAction(ISD::FCEIL, VT, Expand); 672 setOperationAction(ISD::FTRUNC, VT, Expand); 673 setOperationAction(ISD::FRINT, VT, Expand); 674 setOperationAction(ISD::FNEARBYINT, VT, Expand); 675 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 676 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 677 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 678 setOperationAction(ISD::MULHU, VT, Expand); 679 setOperationAction(ISD::MULHS, VT, Expand); 680 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 681 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 682 setOperationAction(ISD::UDIVREM, VT, Expand); 683 setOperationAction(ISD::SDIVREM, VT, Expand); 684 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 685 setOperationAction(ISD::FPOW, VT, Expand); 686 setOperationAction(ISD::BSWAP, VT, Expand); 687 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 688 setOperationAction(ISD::ROTL, VT, Expand); 689 setOperationAction(ISD::ROTR, VT, Expand); 690 691 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 692 setTruncStoreAction(VT, InnerVT, Expand); 693 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 694 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 695 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 696 } 697 } 698 if (!Subtarget.hasP8Vector()) { 699 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 700 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 701 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 702 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 703 } 704 705 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 706 setOperationAction(ISD::ABS, VT, Custom); 707 708 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 709 // with merges, splats, etc. 710 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 711 712 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 713 // are cheap, so handle them before they get expanded to scalar. 714 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 715 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 716 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 717 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 718 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 719 720 setOperationAction(ISD::AND , MVT::v4i32, Legal); 721 setOperationAction(ISD::OR , MVT::v4i32, Legal); 722 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 723 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 724 setOperationAction(ISD::SELECT, MVT::v4i32, 725 Subtarget.useCRBits() ? Legal : Expand); 726 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 727 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 728 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 729 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 730 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 731 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 732 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 733 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 734 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 735 736 // Without hasP8Altivec set, v2i64 SMAX isn't available. 737 // But ABS custom lowering requires SMAX support. 738 if (!Subtarget.hasP8Altivec()) 739 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 740 741 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 742 if (Subtarget.hasAltivec()) 743 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 744 setOperationAction(ISD::ROTL, VT, Legal); 745 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 746 if (Subtarget.hasP8Altivec()) 747 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 748 749 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 750 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 751 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 752 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 753 754 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 755 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 756 757 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 758 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 759 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 760 } 761 762 if (Subtarget.hasP8Altivec()) 763 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 764 else 765 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 766 767 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 768 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 769 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 771 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 772 773 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 774 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 775 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 776 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 777 778 // Altivec does not contain unordered floating-point compare instructions 779 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 780 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 781 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 782 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 783 784 if (Subtarget.hasVSX()) { 785 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 786 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 787 if (Subtarget.hasP8Vector()) { 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 789 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 790 } 791 if (Subtarget.hasDirectMove() && isPPC64) { 792 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 793 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 794 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 795 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 798 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 799 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 800 } 801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 802 803 // The nearbyint variants are not allowed to raise the inexact exception 804 // so we can only code-gen them with unsafe math. 805 if (TM.Options.UnsafeFPMath) { 806 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 807 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 808 } 809 810 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 811 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 812 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 813 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 814 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 815 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 816 setOperationAction(ISD::FROUND, MVT::f64, Legal); 817 setOperationAction(ISD::FRINT, MVT::f64, Legal); 818 819 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 820 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 821 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 822 setOperationAction(ISD::FROUND, MVT::f32, Legal); 823 setOperationAction(ISD::FRINT, MVT::f32, Legal); 824 825 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 826 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 827 828 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 829 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 830 831 // Share the Altivec comparison restrictions. 832 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 833 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 834 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 835 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 836 837 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 838 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 839 840 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 841 842 if (Subtarget.hasP8Vector()) 843 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 844 845 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 846 847 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 848 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 849 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 850 851 if (Subtarget.hasP8Altivec()) { 852 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 853 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 854 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 855 856 // 128 bit shifts can be accomplished via 3 instructions for SHL and 857 // SRL, but not for SRA because of the instructions available: 858 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 859 // doing 860 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 861 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 862 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 863 864 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 865 } 866 else { 867 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 868 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 869 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 870 871 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 872 873 // VSX v2i64 only supports non-arithmetic operations. 874 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 875 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 876 } 877 878 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 879 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 880 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 881 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 882 883 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 884 885 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 886 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 887 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 888 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 889 890 // Custom handling for partial vectors of integers converted to 891 // floating point. We already have optimal handling for v2i32 through 892 // the DAG combine, so those aren't necessary. 893 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 894 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 895 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 896 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 897 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 898 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 900 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 901 902 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 903 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 904 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 905 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 906 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 907 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 908 909 if (Subtarget.hasDirectMove()) 910 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 911 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 912 913 // Handle constrained floating-point operations of vector. 914 // The predictor is `hasVSX` because altivec instruction has 915 // no exception but VSX vector instruction has. 916 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 917 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 918 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 919 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 920 921 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 922 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 923 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 924 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 925 926 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 927 } 928 929 if (Subtarget.hasP8Altivec()) { 930 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 931 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 932 } 933 934 if (Subtarget.hasP9Vector()) { 935 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 936 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 937 938 // 128 bit shifts can be accomplished via 3 instructions for SHL and 939 // SRL, but not for SRA because of the instructions available: 940 // VS{RL} and VS{RL}O. 941 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 942 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 943 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 944 945 if (EnableQuadPrecision) { 946 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 947 setOperationAction(ISD::FADD, MVT::f128, Legal); 948 setOperationAction(ISD::FSUB, MVT::f128, Legal); 949 setOperationAction(ISD::FDIV, MVT::f128, Legal); 950 setOperationAction(ISD::FMUL, MVT::f128, Legal); 951 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 952 // No extending loads to f128 on PPC. 953 for (MVT FPT : MVT::fp_valuetypes()) 954 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 955 setOperationAction(ISD::FMA, MVT::f128, Legal); 956 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 957 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 958 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 959 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 960 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 961 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 962 963 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 964 setOperationAction(ISD::FRINT, MVT::f128, Legal); 965 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 966 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 967 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 968 setOperationAction(ISD::FROUND, MVT::f128, Legal); 969 970 setOperationAction(ISD::SELECT, MVT::f128, Expand); 971 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 972 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 973 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 974 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 975 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 976 // No implementation for these ops for PowerPC. 977 setOperationAction(ISD::FSIN , MVT::f128, Expand); 978 setOperationAction(ISD::FCOS , MVT::f128, Expand); 979 setOperationAction(ISD::FPOW, MVT::f128, Expand); 980 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 981 setOperationAction(ISD::FREM, MVT::f128, Expand); 982 983 // Handle constrained floating-point operations of fp128 984 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 985 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 986 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 987 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 988 } 989 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 990 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 991 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 992 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 993 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 994 } 995 996 if (Subtarget.hasP9Altivec()) { 997 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 998 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 999 1000 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1001 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1002 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1003 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1004 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1005 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1006 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1007 } 1008 } 1009 1010 if (Subtarget.hasQPX()) { 1011 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1012 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1013 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1015 1016 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1017 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1018 1019 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1020 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1021 1022 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1023 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1024 1025 if (!Subtarget.useCRBits()) 1026 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1027 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1028 1029 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1030 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1031 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1032 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1033 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1034 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1035 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1036 1037 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1038 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1039 1040 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1041 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1042 1043 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1044 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1045 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1046 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1047 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1048 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1049 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1050 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1051 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1052 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1053 1054 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1055 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1056 1057 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1058 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1059 1060 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1061 1062 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1063 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1066 1067 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1068 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1069 1070 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1071 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1072 1073 if (!Subtarget.useCRBits()) 1074 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1075 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1076 1077 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1078 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1079 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1080 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1081 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1082 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1083 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1084 1085 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1086 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1087 1088 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1089 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1090 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1091 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1092 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1093 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1094 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1095 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1096 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1097 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1098 1099 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1101 1102 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1103 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1104 1105 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1106 1107 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1108 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1109 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1110 1111 if (!Subtarget.useCRBits()) 1112 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1113 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1114 1115 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1116 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1117 1118 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1119 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1120 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1121 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1122 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1123 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1124 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1125 1126 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1127 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1128 1129 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1130 1131 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1132 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1133 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1134 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1135 1136 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1140 1141 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1142 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1143 1144 // These need to set FE_INEXACT, and so cannot be vectorized here. 1145 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1146 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1147 1148 if (TM.Options.UnsafeFPMath) { 1149 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1150 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1151 1152 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1153 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1154 } else { 1155 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1156 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1157 1158 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1159 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1160 } 1161 1162 // TODO: Handle constrained floating-point operations of v4f64 1163 } 1164 1165 if (Subtarget.has64BitSupport()) 1166 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1167 1168 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1169 1170 if (!isPPC64) { 1171 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1172 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1173 } 1174 1175 setBooleanContents(ZeroOrOneBooleanContent); 1176 1177 if (Subtarget.hasAltivec()) { 1178 // Altivec instructions set fields to all zeros or all ones. 1179 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1180 } 1181 1182 if (!isPPC64) { 1183 // These libcalls are not available in 32-bit. 1184 setLibcallName(RTLIB::SHL_I128, nullptr); 1185 setLibcallName(RTLIB::SRL_I128, nullptr); 1186 setLibcallName(RTLIB::SRA_I128, nullptr); 1187 } 1188 1189 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1190 1191 // We have target-specific dag combine patterns for the following nodes: 1192 setTargetDAGCombine(ISD::ADD); 1193 setTargetDAGCombine(ISD::SHL); 1194 setTargetDAGCombine(ISD::SRA); 1195 setTargetDAGCombine(ISD::SRL); 1196 setTargetDAGCombine(ISD::MUL); 1197 setTargetDAGCombine(ISD::SINT_TO_FP); 1198 setTargetDAGCombine(ISD::BUILD_VECTOR); 1199 if (Subtarget.hasFPCVT()) 1200 setTargetDAGCombine(ISD::UINT_TO_FP); 1201 setTargetDAGCombine(ISD::LOAD); 1202 setTargetDAGCombine(ISD::STORE); 1203 setTargetDAGCombine(ISD::BR_CC); 1204 if (Subtarget.useCRBits()) 1205 setTargetDAGCombine(ISD::BRCOND); 1206 setTargetDAGCombine(ISD::BSWAP); 1207 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1208 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1209 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1210 1211 setTargetDAGCombine(ISD::SIGN_EXTEND); 1212 setTargetDAGCombine(ISD::ZERO_EXTEND); 1213 setTargetDAGCombine(ISD::ANY_EXTEND); 1214 1215 setTargetDAGCombine(ISD::TRUNCATE); 1216 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1217 1218 1219 if (Subtarget.useCRBits()) { 1220 setTargetDAGCombine(ISD::TRUNCATE); 1221 setTargetDAGCombine(ISD::SETCC); 1222 setTargetDAGCombine(ISD::SELECT_CC); 1223 } 1224 1225 // Use reciprocal estimates. 1226 if (TM.Options.UnsafeFPMath) { 1227 setTargetDAGCombine(ISD::FDIV); 1228 setTargetDAGCombine(ISD::FSQRT); 1229 } 1230 1231 if (Subtarget.hasP9Altivec()) { 1232 setTargetDAGCombine(ISD::ABS); 1233 setTargetDAGCombine(ISD::VSELECT); 1234 } 1235 1236 if (EnableQuadPrecision) { 1237 setLibcallName(RTLIB::LOG_F128, "logf128"); 1238 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1239 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1240 setLibcallName(RTLIB::EXP_F128, "expf128"); 1241 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1242 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1243 setLibcallName(RTLIB::COS_F128, "cosf128"); 1244 setLibcallName(RTLIB::POW_F128, "powf128"); 1245 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1246 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1247 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1248 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1249 } 1250 1251 // With 32 condition bits, we don't need to sink (and duplicate) compares 1252 // aggressively in CodeGenPrep. 1253 if (Subtarget.useCRBits()) { 1254 setHasMultipleConditionRegisters(); 1255 setJumpIsExpensive(); 1256 } 1257 1258 setMinFunctionAlignment(Align(4)); 1259 1260 switch (Subtarget.getCPUDirective()) { 1261 default: break; 1262 case PPC::DIR_970: 1263 case PPC::DIR_A2: 1264 case PPC::DIR_E500: 1265 case PPC::DIR_E500mc: 1266 case PPC::DIR_E5500: 1267 case PPC::DIR_PWR4: 1268 case PPC::DIR_PWR5: 1269 case PPC::DIR_PWR5X: 1270 case PPC::DIR_PWR6: 1271 case PPC::DIR_PWR6X: 1272 case PPC::DIR_PWR7: 1273 case PPC::DIR_PWR8: 1274 case PPC::DIR_PWR9: 1275 case PPC::DIR_PWR_FUTURE: 1276 setPrefLoopAlignment(Align(16)); 1277 setPrefFunctionAlignment(Align(16)); 1278 break; 1279 } 1280 1281 if (Subtarget.enableMachineScheduler()) 1282 setSchedulingPreference(Sched::Source); 1283 else 1284 setSchedulingPreference(Sched::Hybrid); 1285 1286 computeRegisterProperties(STI.getRegisterInfo()); 1287 1288 // The Freescale cores do better with aggressive inlining of memcpy and 1289 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1290 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1291 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1292 MaxStoresPerMemset = 32; 1293 MaxStoresPerMemsetOptSize = 16; 1294 MaxStoresPerMemcpy = 32; 1295 MaxStoresPerMemcpyOptSize = 8; 1296 MaxStoresPerMemmove = 32; 1297 MaxStoresPerMemmoveOptSize = 8; 1298 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1299 // The A2 also benefits from (very) aggressive inlining of memcpy and 1300 // friends. The overhead of a the function call, even when warm, can be 1301 // over one hundred cycles. 1302 MaxStoresPerMemset = 128; 1303 MaxStoresPerMemcpy = 128; 1304 MaxStoresPerMemmove = 128; 1305 MaxLoadsPerMemcmp = 128; 1306 } else { 1307 MaxLoadsPerMemcmp = 8; 1308 MaxLoadsPerMemcmpOptSize = 4; 1309 } 1310 } 1311 1312 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1313 /// the desired ByVal argument alignment. 1314 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1315 unsigned MaxMaxAlign) { 1316 if (MaxAlign == MaxMaxAlign) 1317 return; 1318 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1319 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1320 MaxAlign = 32; 1321 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1322 MaxAlign = 16; 1323 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1324 unsigned EltAlign = 0; 1325 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1326 if (EltAlign > MaxAlign) 1327 MaxAlign = EltAlign; 1328 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1329 for (auto *EltTy : STy->elements()) { 1330 unsigned EltAlign = 0; 1331 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1332 if (EltAlign > MaxAlign) 1333 MaxAlign = EltAlign; 1334 if (MaxAlign == MaxMaxAlign) 1335 break; 1336 } 1337 } 1338 } 1339 1340 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1341 /// function arguments in the caller parameter area. 1342 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1343 const DataLayout &DL) const { 1344 // 16byte and wider vectors are passed on 16byte boundary. 1345 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1346 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1347 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1348 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1349 return Align; 1350 } 1351 1352 bool PPCTargetLowering::useSoftFloat() const { 1353 return Subtarget.useSoftFloat(); 1354 } 1355 1356 bool PPCTargetLowering::hasSPE() const { 1357 return Subtarget.hasSPE(); 1358 } 1359 1360 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1361 return VT.isScalarInteger(); 1362 } 1363 1364 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1365 switch ((PPCISD::NodeType)Opcode) { 1366 case PPCISD::FIRST_NUMBER: break; 1367 case PPCISD::FSEL: return "PPCISD::FSEL"; 1368 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1369 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1370 case PPCISD::FCFID: return "PPCISD::FCFID"; 1371 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1372 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1373 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1374 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1375 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1376 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1377 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1378 case PPCISD::FP_TO_UINT_IN_VSR: 1379 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1380 case PPCISD::FP_TO_SINT_IN_VSR: 1381 return "PPCISD::FP_TO_SINT_IN_VSR"; 1382 case PPCISD::FRE: return "PPCISD::FRE"; 1383 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1384 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1385 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1386 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1387 case PPCISD::VPERM: return "PPCISD::VPERM"; 1388 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1389 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1390 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1391 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1392 case PPCISD::CMPB: return "PPCISD::CMPB"; 1393 case PPCISD::Hi: return "PPCISD::Hi"; 1394 case PPCISD::Lo: return "PPCISD::Lo"; 1395 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1396 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1397 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1398 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1399 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1400 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1401 case PPCISD::SRL: return "PPCISD::SRL"; 1402 case PPCISD::SRA: return "PPCISD::SRA"; 1403 case PPCISD::SHL: return "PPCISD::SHL"; 1404 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1405 case PPCISD::CALL: return "PPCISD::CALL"; 1406 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1407 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1408 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1409 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1410 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1411 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1412 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1413 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1414 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1415 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1416 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1417 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1418 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1419 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1420 case PPCISD::ANDI_rec_1_EQ_BIT: 1421 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1422 case PPCISD::ANDI_rec_1_GT_BIT: 1423 return "PPCISD::ANDI_rec_1_GT_BIT"; 1424 case PPCISD::VCMP: return "PPCISD::VCMP"; 1425 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1426 case PPCISD::LBRX: return "PPCISD::LBRX"; 1427 case PPCISD::STBRX: return "PPCISD::STBRX"; 1428 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1429 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1430 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1431 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1432 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1433 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1434 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1435 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1436 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1437 case PPCISD::ST_VSR_SCAL_INT: 1438 return "PPCISD::ST_VSR_SCAL_INT"; 1439 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1440 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1441 case PPCISD::BDZ: return "PPCISD::BDZ"; 1442 case PPCISD::MFFS: return "PPCISD::MFFS"; 1443 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1444 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1445 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1446 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1447 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1448 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1449 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1450 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1451 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1452 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1453 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1454 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1455 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1456 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1457 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1458 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1459 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1460 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1461 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1462 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1463 case PPCISD::SC: return "PPCISD::SC"; 1464 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1465 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1466 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1467 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1468 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1469 case PPCISD::VABSD: return "PPCISD::VABSD"; 1470 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1471 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1472 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1473 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1474 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1475 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1476 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1477 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1478 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1479 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1480 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1481 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1482 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1483 } 1484 return nullptr; 1485 } 1486 1487 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1488 EVT VT) const { 1489 if (!VT.isVector()) 1490 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1491 1492 if (Subtarget.hasQPX()) 1493 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1494 1495 return VT.changeVectorElementTypeToInteger(); 1496 } 1497 1498 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1499 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1500 return true; 1501 } 1502 1503 //===----------------------------------------------------------------------===// 1504 // Node matching predicates, for use by the tblgen matching code. 1505 //===----------------------------------------------------------------------===// 1506 1507 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1508 static bool isFloatingPointZero(SDValue Op) { 1509 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1510 return CFP->getValueAPF().isZero(); 1511 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1512 // Maybe this has already been legalized into the constant pool? 1513 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1514 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1515 return CFP->getValueAPF().isZero(); 1516 } 1517 return false; 1518 } 1519 1520 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1521 /// true if Op is undef or if it matches the specified value. 1522 static bool isConstantOrUndef(int Op, int Val) { 1523 return Op < 0 || Op == Val; 1524 } 1525 1526 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1527 /// VPKUHUM instruction. 1528 /// The ShuffleKind distinguishes between big-endian operations with 1529 /// two different inputs (0), either-endian operations with two identical 1530 /// inputs (1), and little-endian operations with two different inputs (2). 1531 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1532 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1533 SelectionDAG &DAG) { 1534 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1535 if (ShuffleKind == 0) { 1536 if (IsLE) 1537 return false; 1538 for (unsigned i = 0; i != 16; ++i) 1539 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1540 return false; 1541 } else if (ShuffleKind == 2) { 1542 if (!IsLE) 1543 return false; 1544 for (unsigned i = 0; i != 16; ++i) 1545 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1546 return false; 1547 } else if (ShuffleKind == 1) { 1548 unsigned j = IsLE ? 0 : 1; 1549 for (unsigned i = 0; i != 8; ++i) 1550 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1551 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1552 return false; 1553 } 1554 return true; 1555 } 1556 1557 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1558 /// VPKUWUM instruction. 1559 /// The ShuffleKind distinguishes between big-endian operations with 1560 /// two different inputs (0), either-endian operations with two identical 1561 /// inputs (1), and little-endian operations with two different inputs (2). 1562 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1563 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1564 SelectionDAG &DAG) { 1565 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1566 if (ShuffleKind == 0) { 1567 if (IsLE) 1568 return false; 1569 for (unsigned i = 0; i != 16; i += 2) 1570 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1571 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1572 return false; 1573 } else if (ShuffleKind == 2) { 1574 if (!IsLE) 1575 return false; 1576 for (unsigned i = 0; i != 16; i += 2) 1577 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1578 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1579 return false; 1580 } else if (ShuffleKind == 1) { 1581 unsigned j = IsLE ? 0 : 2; 1582 for (unsigned i = 0; i != 8; i += 2) 1583 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1584 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1585 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1586 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1587 return false; 1588 } 1589 return true; 1590 } 1591 1592 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1593 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1594 /// current subtarget. 1595 /// 1596 /// The ShuffleKind distinguishes between big-endian operations with 1597 /// two different inputs (0), either-endian operations with two identical 1598 /// inputs (1), and little-endian operations with two different inputs (2). 1599 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1600 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1601 SelectionDAG &DAG) { 1602 const PPCSubtarget& Subtarget = 1603 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1604 if (!Subtarget.hasP8Vector()) 1605 return false; 1606 1607 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1608 if (ShuffleKind == 0) { 1609 if (IsLE) 1610 return false; 1611 for (unsigned i = 0; i != 16; i += 4) 1612 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1613 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1614 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1615 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1616 return false; 1617 } else if (ShuffleKind == 2) { 1618 if (!IsLE) 1619 return false; 1620 for (unsigned i = 0; i != 16; i += 4) 1621 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1622 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1623 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1624 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1625 return false; 1626 } else if (ShuffleKind == 1) { 1627 unsigned j = IsLE ? 0 : 4; 1628 for (unsigned i = 0; i != 8; i += 4) 1629 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1630 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1631 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1632 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1633 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1634 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1635 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1636 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1637 return false; 1638 } 1639 return true; 1640 } 1641 1642 /// isVMerge - Common function, used to match vmrg* shuffles. 1643 /// 1644 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1645 unsigned LHSStart, unsigned RHSStart) { 1646 if (N->getValueType(0) != MVT::v16i8) 1647 return false; 1648 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1649 "Unsupported merge size!"); 1650 1651 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1652 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1653 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1654 LHSStart+j+i*UnitSize) || 1655 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1656 RHSStart+j+i*UnitSize)) 1657 return false; 1658 } 1659 return true; 1660 } 1661 1662 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1663 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1664 /// The ShuffleKind distinguishes between big-endian merges with two 1665 /// different inputs (0), either-endian merges with two identical inputs (1), 1666 /// and little-endian merges with two different inputs (2). For the latter, 1667 /// the input operands are swapped (see PPCInstrAltivec.td). 1668 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1669 unsigned ShuffleKind, SelectionDAG &DAG) { 1670 if (DAG.getDataLayout().isLittleEndian()) { 1671 if (ShuffleKind == 1) // unary 1672 return isVMerge(N, UnitSize, 0, 0); 1673 else if (ShuffleKind == 2) // swapped 1674 return isVMerge(N, UnitSize, 0, 16); 1675 else 1676 return false; 1677 } else { 1678 if (ShuffleKind == 1) // unary 1679 return isVMerge(N, UnitSize, 8, 8); 1680 else if (ShuffleKind == 0) // normal 1681 return isVMerge(N, UnitSize, 8, 24); 1682 else 1683 return false; 1684 } 1685 } 1686 1687 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1688 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1689 /// The ShuffleKind distinguishes between big-endian merges with two 1690 /// different inputs (0), either-endian merges with two identical inputs (1), 1691 /// and little-endian merges with two different inputs (2). For the latter, 1692 /// the input operands are swapped (see PPCInstrAltivec.td). 1693 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1694 unsigned ShuffleKind, SelectionDAG &DAG) { 1695 if (DAG.getDataLayout().isLittleEndian()) { 1696 if (ShuffleKind == 1) // unary 1697 return isVMerge(N, UnitSize, 8, 8); 1698 else if (ShuffleKind == 2) // swapped 1699 return isVMerge(N, UnitSize, 8, 24); 1700 else 1701 return false; 1702 } else { 1703 if (ShuffleKind == 1) // unary 1704 return isVMerge(N, UnitSize, 0, 0); 1705 else if (ShuffleKind == 0) // normal 1706 return isVMerge(N, UnitSize, 0, 16); 1707 else 1708 return false; 1709 } 1710 } 1711 1712 /** 1713 * Common function used to match vmrgew and vmrgow shuffles 1714 * 1715 * The indexOffset determines whether to look for even or odd words in 1716 * the shuffle mask. This is based on the of the endianness of the target 1717 * machine. 1718 * - Little Endian: 1719 * - Use offset of 0 to check for odd elements 1720 * - Use offset of 4 to check for even elements 1721 * - Big Endian: 1722 * - Use offset of 0 to check for even elements 1723 * - Use offset of 4 to check for odd elements 1724 * A detailed description of the vector element ordering for little endian and 1725 * big endian can be found at 1726 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1727 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1728 * compiler differences mean to you 1729 * 1730 * The mask to the shuffle vector instruction specifies the indices of the 1731 * elements from the two input vectors to place in the result. The elements are 1732 * numbered in array-access order, starting with the first vector. These vectors 1733 * are always of type v16i8, thus each vector will contain 16 elements of size 1734 * 8. More info on the shuffle vector can be found in the 1735 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1736 * Language Reference. 1737 * 1738 * The RHSStartValue indicates whether the same input vectors are used (unary) 1739 * or two different input vectors are used, based on the following: 1740 * - If the instruction uses the same vector for both inputs, the range of the 1741 * indices will be 0 to 15. In this case, the RHSStart value passed should 1742 * be 0. 1743 * - If the instruction has two different vectors then the range of the 1744 * indices will be 0 to 31. In this case, the RHSStart value passed should 1745 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1746 * to 31 specify elements in the second vector). 1747 * 1748 * \param[in] N The shuffle vector SD Node to analyze 1749 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1750 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1751 * vector to the shuffle_vector instruction 1752 * \return true iff this shuffle vector represents an even or odd word merge 1753 */ 1754 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1755 unsigned RHSStartValue) { 1756 if (N->getValueType(0) != MVT::v16i8) 1757 return false; 1758 1759 for (unsigned i = 0; i < 2; ++i) 1760 for (unsigned j = 0; j < 4; ++j) 1761 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1762 i*RHSStartValue+j+IndexOffset) || 1763 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1764 i*RHSStartValue+j+IndexOffset+8)) 1765 return false; 1766 return true; 1767 } 1768 1769 /** 1770 * Determine if the specified shuffle mask is suitable for the vmrgew or 1771 * vmrgow instructions. 1772 * 1773 * \param[in] N The shuffle vector SD Node to analyze 1774 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1775 * \param[in] ShuffleKind Identify the type of merge: 1776 * - 0 = big-endian merge with two different inputs; 1777 * - 1 = either-endian merge with two identical inputs; 1778 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1779 * little-endian merges). 1780 * \param[in] DAG The current SelectionDAG 1781 * \return true iff this shuffle mask 1782 */ 1783 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1784 unsigned ShuffleKind, SelectionDAG &DAG) { 1785 if (DAG.getDataLayout().isLittleEndian()) { 1786 unsigned indexOffset = CheckEven ? 4 : 0; 1787 if (ShuffleKind == 1) // Unary 1788 return isVMerge(N, indexOffset, 0); 1789 else if (ShuffleKind == 2) // swapped 1790 return isVMerge(N, indexOffset, 16); 1791 else 1792 return false; 1793 } 1794 else { 1795 unsigned indexOffset = CheckEven ? 0 : 4; 1796 if (ShuffleKind == 1) // Unary 1797 return isVMerge(N, indexOffset, 0); 1798 else if (ShuffleKind == 0) // Normal 1799 return isVMerge(N, indexOffset, 16); 1800 else 1801 return false; 1802 } 1803 return false; 1804 } 1805 1806 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1807 /// amount, otherwise return -1. 1808 /// The ShuffleKind distinguishes between big-endian operations with two 1809 /// different inputs (0), either-endian operations with two identical inputs 1810 /// (1), and little-endian operations with two different inputs (2). For the 1811 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1812 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1813 SelectionDAG &DAG) { 1814 if (N->getValueType(0) != MVT::v16i8) 1815 return -1; 1816 1817 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1818 1819 // Find the first non-undef value in the shuffle mask. 1820 unsigned i; 1821 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1822 /*search*/; 1823 1824 if (i == 16) return -1; // all undef. 1825 1826 // Otherwise, check to see if the rest of the elements are consecutively 1827 // numbered from this value. 1828 unsigned ShiftAmt = SVOp->getMaskElt(i); 1829 if (ShiftAmt < i) return -1; 1830 1831 ShiftAmt -= i; 1832 bool isLE = DAG.getDataLayout().isLittleEndian(); 1833 1834 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1835 // Check the rest of the elements to see if they are consecutive. 1836 for (++i; i != 16; ++i) 1837 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1838 return -1; 1839 } else if (ShuffleKind == 1) { 1840 // Check the rest of the elements to see if they are consecutive. 1841 for (++i; i != 16; ++i) 1842 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1843 return -1; 1844 } else 1845 return -1; 1846 1847 if (isLE) 1848 ShiftAmt = 16 - ShiftAmt; 1849 1850 return ShiftAmt; 1851 } 1852 1853 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1854 /// specifies a splat of a single element that is suitable for input to 1855 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1856 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1857 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1858 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1859 1860 // The consecutive indices need to specify an element, not part of two 1861 // different elements. So abandon ship early if this isn't the case. 1862 if (N->getMaskElt(0) % EltSize != 0) 1863 return false; 1864 1865 // This is a splat operation if each element of the permute is the same, and 1866 // if the value doesn't reference the second vector. 1867 unsigned ElementBase = N->getMaskElt(0); 1868 1869 // FIXME: Handle UNDEF elements too! 1870 if (ElementBase >= 16) 1871 return false; 1872 1873 // Check that the indices are consecutive, in the case of a multi-byte element 1874 // splatted with a v16i8 mask. 1875 for (unsigned i = 1; i != EltSize; ++i) 1876 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1877 return false; 1878 1879 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1880 if (N->getMaskElt(i) < 0) continue; 1881 for (unsigned j = 0; j != EltSize; ++j) 1882 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1883 return false; 1884 } 1885 return true; 1886 } 1887 1888 /// Check that the mask is shuffling N byte elements. Within each N byte 1889 /// element of the mask, the indices could be either in increasing or 1890 /// decreasing order as long as they are consecutive. 1891 /// \param[in] N the shuffle vector SD Node to analyze 1892 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1893 /// Word/DoubleWord/QuadWord). 1894 /// \param[in] StepLen the delta indices number among the N byte element, if 1895 /// the mask is in increasing/decreasing order then it is 1/-1. 1896 /// \return true iff the mask is shuffling N byte elements. 1897 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1898 int StepLen) { 1899 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1900 "Unexpected element width."); 1901 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1902 1903 unsigned NumOfElem = 16 / Width; 1904 unsigned MaskVal[16]; // Width is never greater than 16 1905 for (unsigned i = 0; i < NumOfElem; ++i) { 1906 MaskVal[0] = N->getMaskElt(i * Width); 1907 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1908 return false; 1909 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1910 return false; 1911 } 1912 1913 for (unsigned int j = 1; j < Width; ++j) { 1914 MaskVal[j] = N->getMaskElt(i * Width + j); 1915 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1916 return false; 1917 } 1918 } 1919 } 1920 1921 return true; 1922 } 1923 1924 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1925 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1926 if (!isNByteElemShuffleMask(N, 4, 1)) 1927 return false; 1928 1929 // Now we look at mask elements 0,4,8,12 1930 unsigned M0 = N->getMaskElt(0) / 4; 1931 unsigned M1 = N->getMaskElt(4) / 4; 1932 unsigned M2 = N->getMaskElt(8) / 4; 1933 unsigned M3 = N->getMaskElt(12) / 4; 1934 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1935 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1936 1937 // Below, let H and L be arbitrary elements of the shuffle mask 1938 // where H is in the range [4,7] and L is in the range [0,3]. 1939 // H, 1, 2, 3 or L, 5, 6, 7 1940 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1941 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1942 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1943 InsertAtByte = IsLE ? 12 : 0; 1944 Swap = M0 < 4; 1945 return true; 1946 } 1947 // 0, H, 2, 3 or 4, L, 6, 7 1948 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1949 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1950 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1951 InsertAtByte = IsLE ? 8 : 4; 1952 Swap = M1 < 4; 1953 return true; 1954 } 1955 // 0, 1, H, 3 or 4, 5, L, 7 1956 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1957 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1958 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1959 InsertAtByte = IsLE ? 4 : 8; 1960 Swap = M2 < 4; 1961 return true; 1962 } 1963 // 0, 1, 2, H or 4, 5, 6, L 1964 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1965 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1966 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1967 InsertAtByte = IsLE ? 0 : 12; 1968 Swap = M3 < 4; 1969 return true; 1970 } 1971 1972 // If both vector operands for the shuffle are the same vector, the mask will 1973 // contain only elements from the first one and the second one will be undef. 1974 if (N->getOperand(1).isUndef()) { 1975 ShiftElts = 0; 1976 Swap = true; 1977 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1978 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1979 InsertAtByte = IsLE ? 12 : 0; 1980 return true; 1981 } 1982 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1983 InsertAtByte = IsLE ? 8 : 4; 1984 return true; 1985 } 1986 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1987 InsertAtByte = IsLE ? 4 : 8; 1988 return true; 1989 } 1990 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1991 InsertAtByte = IsLE ? 0 : 12; 1992 return true; 1993 } 1994 } 1995 1996 return false; 1997 } 1998 1999 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2000 bool &Swap, bool IsLE) { 2001 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2002 // Ensure each byte index of the word is consecutive. 2003 if (!isNByteElemShuffleMask(N, 4, 1)) 2004 return false; 2005 2006 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2007 unsigned M0 = N->getMaskElt(0) / 4; 2008 unsigned M1 = N->getMaskElt(4) / 4; 2009 unsigned M2 = N->getMaskElt(8) / 4; 2010 unsigned M3 = N->getMaskElt(12) / 4; 2011 2012 // If both vector operands for the shuffle are the same vector, the mask will 2013 // contain only elements from the first one and the second one will be undef. 2014 if (N->getOperand(1).isUndef()) { 2015 assert(M0 < 4 && "Indexing into an undef vector?"); 2016 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2017 return false; 2018 2019 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2020 Swap = false; 2021 return true; 2022 } 2023 2024 // Ensure each word index of the ShuffleVector Mask is consecutive. 2025 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2026 return false; 2027 2028 if (IsLE) { 2029 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2030 // Input vectors don't need to be swapped if the leading element 2031 // of the result is one of the 3 left elements of the second vector 2032 // (or if there is no shift to be done at all). 2033 Swap = false; 2034 ShiftElts = (8 - M0) % 8; 2035 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2036 // Input vectors need to be swapped if the leading element 2037 // of the result is one of the 3 left elements of the first vector 2038 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2039 Swap = true; 2040 ShiftElts = (4 - M0) % 4; 2041 } 2042 2043 return true; 2044 } else { // BE 2045 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2046 // Input vectors don't need to be swapped if the leading element 2047 // of the result is one of the 4 elements of the first vector. 2048 Swap = false; 2049 ShiftElts = M0; 2050 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2051 // Input vectors need to be swapped if the leading element 2052 // of the result is one of the 4 elements of the right vector. 2053 Swap = true; 2054 ShiftElts = M0 - 4; 2055 } 2056 2057 return true; 2058 } 2059 } 2060 2061 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2062 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2063 2064 if (!isNByteElemShuffleMask(N, Width, -1)) 2065 return false; 2066 2067 for (int i = 0; i < 16; i += Width) 2068 if (N->getMaskElt(i) != i + Width - 1) 2069 return false; 2070 2071 return true; 2072 } 2073 2074 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2075 return isXXBRShuffleMaskHelper(N, 2); 2076 } 2077 2078 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2079 return isXXBRShuffleMaskHelper(N, 4); 2080 } 2081 2082 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2083 return isXXBRShuffleMaskHelper(N, 8); 2084 } 2085 2086 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2087 return isXXBRShuffleMaskHelper(N, 16); 2088 } 2089 2090 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2091 /// if the inputs to the instruction should be swapped and set \p DM to the 2092 /// value for the immediate. 2093 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2094 /// AND element 0 of the result comes from the first input (LE) or second input 2095 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2096 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2097 /// mask. 2098 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2099 bool &Swap, bool IsLE) { 2100 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2101 2102 // Ensure each byte index of the double word is consecutive. 2103 if (!isNByteElemShuffleMask(N, 8, 1)) 2104 return false; 2105 2106 unsigned M0 = N->getMaskElt(0) / 8; 2107 unsigned M1 = N->getMaskElt(8) / 8; 2108 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2109 2110 // If both vector operands for the shuffle are the same vector, the mask will 2111 // contain only elements from the first one and the second one will be undef. 2112 if (N->getOperand(1).isUndef()) { 2113 if ((M0 | M1) < 2) { 2114 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2115 Swap = false; 2116 return true; 2117 } else 2118 return false; 2119 } 2120 2121 if (IsLE) { 2122 if (M0 > 1 && M1 < 2) { 2123 Swap = false; 2124 } else if (M0 < 2 && M1 > 1) { 2125 M0 = (M0 + 2) % 4; 2126 M1 = (M1 + 2) % 4; 2127 Swap = true; 2128 } else 2129 return false; 2130 2131 // Note: if control flow comes here that means Swap is already set above 2132 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2133 return true; 2134 } else { // BE 2135 if (M0 < 2 && M1 > 1) { 2136 Swap = false; 2137 } else if (M0 > 1 && M1 < 2) { 2138 M0 = (M0 + 2) % 4; 2139 M1 = (M1 + 2) % 4; 2140 Swap = true; 2141 } else 2142 return false; 2143 2144 // Note: if control flow comes here that means Swap is already set above 2145 DM = (M0 << 1) + (M1 & 1); 2146 return true; 2147 } 2148 } 2149 2150 2151 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2152 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2153 /// elements are counted from the left of the vector register). 2154 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2155 SelectionDAG &DAG) { 2156 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2157 assert(isSplatShuffleMask(SVOp, EltSize)); 2158 if (DAG.getDataLayout().isLittleEndian()) 2159 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2160 else 2161 return SVOp->getMaskElt(0) / EltSize; 2162 } 2163 2164 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2165 /// by using a vspltis[bhw] instruction of the specified element size, return 2166 /// the constant being splatted. The ByteSize field indicates the number of 2167 /// bytes of each element [124] -> [bhw]. 2168 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2169 SDValue OpVal(nullptr, 0); 2170 2171 // If ByteSize of the splat is bigger than the element size of the 2172 // build_vector, then we have a case where we are checking for a splat where 2173 // multiple elements of the buildvector are folded together into a single 2174 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2175 unsigned EltSize = 16/N->getNumOperands(); 2176 if (EltSize < ByteSize) { 2177 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2178 SDValue UniquedVals[4]; 2179 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2180 2181 // See if all of the elements in the buildvector agree across. 2182 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2183 if (N->getOperand(i).isUndef()) continue; 2184 // If the element isn't a constant, bail fully out. 2185 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2186 2187 if (!UniquedVals[i&(Multiple-1)].getNode()) 2188 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2189 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2190 return SDValue(); // no match. 2191 } 2192 2193 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2194 // either constant or undef values that are identical for each chunk. See 2195 // if these chunks can form into a larger vspltis*. 2196 2197 // Check to see if all of the leading entries are either 0 or -1. If 2198 // neither, then this won't fit into the immediate field. 2199 bool LeadingZero = true; 2200 bool LeadingOnes = true; 2201 for (unsigned i = 0; i != Multiple-1; ++i) { 2202 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2203 2204 LeadingZero &= isNullConstant(UniquedVals[i]); 2205 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2206 } 2207 // Finally, check the least significant entry. 2208 if (LeadingZero) { 2209 if (!UniquedVals[Multiple-1].getNode()) 2210 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2211 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2212 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2213 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2214 } 2215 if (LeadingOnes) { 2216 if (!UniquedVals[Multiple-1].getNode()) 2217 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2218 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2219 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2220 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2221 } 2222 2223 return SDValue(); 2224 } 2225 2226 // Check to see if this buildvec has a single non-undef value in its elements. 2227 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2228 if (N->getOperand(i).isUndef()) continue; 2229 if (!OpVal.getNode()) 2230 OpVal = N->getOperand(i); 2231 else if (OpVal != N->getOperand(i)) 2232 return SDValue(); 2233 } 2234 2235 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2236 2237 unsigned ValSizeInBytes = EltSize; 2238 uint64_t Value = 0; 2239 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2240 Value = CN->getZExtValue(); 2241 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2242 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2243 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2244 } 2245 2246 // If the splat value is larger than the element value, then we can never do 2247 // this splat. The only case that we could fit the replicated bits into our 2248 // immediate field for would be zero, and we prefer to use vxor for it. 2249 if (ValSizeInBytes < ByteSize) return SDValue(); 2250 2251 // If the element value is larger than the splat value, check if it consists 2252 // of a repeated bit pattern of size ByteSize. 2253 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2254 return SDValue(); 2255 2256 // Properly sign extend the value. 2257 int MaskVal = SignExtend32(Value, ByteSize * 8); 2258 2259 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2260 if (MaskVal == 0) return SDValue(); 2261 2262 // Finally, if this value fits in a 5 bit sext field, return it 2263 if (SignExtend32<5>(MaskVal) == MaskVal) 2264 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2265 return SDValue(); 2266 } 2267 2268 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2269 /// amount, otherwise return -1. 2270 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2271 EVT VT = N->getValueType(0); 2272 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2273 return -1; 2274 2275 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2276 2277 // Find the first non-undef value in the shuffle mask. 2278 unsigned i; 2279 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2280 /*search*/; 2281 2282 if (i == 4) return -1; // all undef. 2283 2284 // Otherwise, check to see if the rest of the elements are consecutively 2285 // numbered from this value. 2286 unsigned ShiftAmt = SVOp->getMaskElt(i); 2287 if (ShiftAmt < i) return -1; 2288 ShiftAmt -= i; 2289 2290 // Check the rest of the elements to see if they are consecutive. 2291 for (++i; i != 4; ++i) 2292 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2293 return -1; 2294 2295 return ShiftAmt; 2296 } 2297 2298 //===----------------------------------------------------------------------===// 2299 // Addressing Mode Selection 2300 //===----------------------------------------------------------------------===// 2301 2302 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2303 /// or 64-bit immediate, and if the value can be accurately represented as a 2304 /// sign extension from a 16-bit value. If so, this returns true and the 2305 /// immediate. 2306 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2307 if (!isa<ConstantSDNode>(N)) 2308 return false; 2309 2310 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2311 if (N->getValueType(0) == MVT::i32) 2312 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2313 else 2314 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2315 } 2316 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2317 return isIntS16Immediate(Op.getNode(), Imm); 2318 } 2319 2320 2321 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2322 /// be represented as an indexed [r+r] operation. 2323 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2324 SDValue &Index, 2325 SelectionDAG &DAG) const { 2326 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2327 UI != E; ++UI) { 2328 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2329 if (Memop->getMemoryVT() == MVT::f64) { 2330 Base = N.getOperand(0); 2331 Index = N.getOperand(1); 2332 return true; 2333 } 2334 } 2335 } 2336 return false; 2337 } 2338 2339 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2340 /// can be represented as an indexed [r+r] operation. Returns false if it 2341 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2342 /// non-zero and N can be represented by a base register plus a signed 16-bit 2343 /// displacement, make a more precise judgement by checking (displacement % \p 2344 /// EncodingAlignment). 2345 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2346 SDValue &Index, SelectionDAG &DAG, 2347 unsigned EncodingAlignment) const { 2348 int16_t imm = 0; 2349 if (N.getOpcode() == ISD::ADD) { 2350 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2351 // SPE load/store can only handle 8-bit offsets. 2352 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2353 return true; 2354 if (isIntS16Immediate(N.getOperand(1), imm) && 2355 (!EncodingAlignment || !(imm % EncodingAlignment))) 2356 return false; // r+i 2357 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2358 return false; // r+i 2359 2360 Base = N.getOperand(0); 2361 Index = N.getOperand(1); 2362 return true; 2363 } else if (N.getOpcode() == ISD::OR) { 2364 if (isIntS16Immediate(N.getOperand(1), imm) && 2365 (!EncodingAlignment || !(imm % EncodingAlignment))) 2366 return false; // r+i can fold it if we can. 2367 2368 // If this is an or of disjoint bitfields, we can codegen this as an add 2369 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2370 // disjoint. 2371 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2372 2373 if (LHSKnown.Zero.getBoolValue()) { 2374 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2375 // If all of the bits are known zero on the LHS or RHS, the add won't 2376 // carry. 2377 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2378 Base = N.getOperand(0); 2379 Index = N.getOperand(1); 2380 return true; 2381 } 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 // If we happen to be doing an i64 load or store into a stack slot that has 2389 // less than a 4-byte alignment, then the frame-index elimination may need to 2390 // use an indexed load or store instruction (because the offset may not be a 2391 // multiple of 4). The extra register needed to hold the offset comes from the 2392 // register scavenger, and it is possible that the scavenger will need to use 2393 // an emergency spill slot. As a result, we need to make sure that a spill slot 2394 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2395 // stack slot. 2396 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2397 // FIXME: This does not handle the LWA case. 2398 if (VT != MVT::i64) 2399 return; 2400 2401 // NOTE: We'll exclude negative FIs here, which come from argument 2402 // lowering, because there are no known test cases triggering this problem 2403 // using packed structures (or similar). We can remove this exclusion if 2404 // we find such a test case. The reason why this is so test-case driven is 2405 // because this entire 'fixup' is only to prevent crashes (from the 2406 // register scavenger) on not-really-valid inputs. For example, if we have: 2407 // %a = alloca i1 2408 // %b = bitcast i1* %a to i64* 2409 // store i64* a, i64 b 2410 // then the store should really be marked as 'align 1', but is not. If it 2411 // were marked as 'align 1' then the indexed form would have been 2412 // instruction-selected initially, and the problem this 'fixup' is preventing 2413 // won't happen regardless. 2414 if (FrameIdx < 0) 2415 return; 2416 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 MachineFrameInfo &MFI = MF.getFrameInfo(); 2419 2420 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2421 if (Align >= 4) 2422 return; 2423 2424 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2425 FuncInfo->setHasNonRISpills(); 2426 } 2427 2428 /// Returns true if the address N can be represented by a base register plus 2429 /// a signed 16-bit displacement [r+imm], and if it is not better 2430 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2431 /// displacements that are multiples of that value. 2432 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2433 SDValue &Base, 2434 SelectionDAG &DAG, 2435 unsigned EncodingAlignment) const { 2436 // FIXME dl should come from parent load or store, not from address 2437 SDLoc dl(N); 2438 // If this can be more profitably realized as r+r, fail. 2439 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2440 return false; 2441 2442 if (N.getOpcode() == ISD::ADD) { 2443 int16_t imm = 0; 2444 if (isIntS16Immediate(N.getOperand(1), imm) && 2445 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2446 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2447 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2448 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2449 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2450 } else { 2451 Base = N.getOperand(0); 2452 } 2453 return true; // [r+i] 2454 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2455 // Match LOAD (ADD (X, Lo(G))). 2456 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2457 && "Cannot handle constant offsets yet!"); 2458 Disp = N.getOperand(1).getOperand(0); // The global address. 2459 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2460 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2461 Disp.getOpcode() == ISD::TargetConstantPool || 2462 Disp.getOpcode() == ISD::TargetJumpTable); 2463 Base = N.getOperand(0); 2464 return true; // [&g+r] 2465 } 2466 } else if (N.getOpcode() == ISD::OR) { 2467 int16_t imm = 0; 2468 if (isIntS16Immediate(N.getOperand(1), imm) && 2469 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2470 // If this is an or of disjoint bitfields, we can codegen this as an add 2471 // (for better address arithmetic) if the LHS and RHS of the OR are 2472 // provably disjoint. 2473 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2474 2475 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2476 // If all of the bits are known zero on the LHS or RHS, the add won't 2477 // carry. 2478 if (FrameIndexSDNode *FI = 2479 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2480 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2481 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2482 } else { 2483 Base = N.getOperand(0); 2484 } 2485 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2486 return true; 2487 } 2488 } 2489 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2490 // Loading from a constant address. 2491 2492 // If this address fits entirely in a 16-bit sext immediate field, codegen 2493 // this as "d, 0" 2494 int16_t Imm; 2495 if (isIntS16Immediate(CN, Imm) && 2496 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2497 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2498 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2499 CN->getValueType(0)); 2500 return true; 2501 } 2502 2503 // Handle 32-bit sext immediates with LIS + addr mode. 2504 if ((CN->getValueType(0) == MVT::i32 || 2505 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2506 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2507 int Addr = (int)CN->getZExtValue(); 2508 2509 // Otherwise, break this down into an LIS + disp. 2510 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2511 2512 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2513 MVT::i32); 2514 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2515 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2516 return true; 2517 } 2518 } 2519 2520 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2521 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2522 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2523 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2524 } else 2525 Base = N; 2526 return true; // [r+0] 2527 } 2528 2529 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2530 /// represented as an indexed [r+r] operation. 2531 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2532 SDValue &Index, 2533 SelectionDAG &DAG) const { 2534 // Check to see if we can easily represent this as an [r+r] address. This 2535 // will fail if it thinks that the address is more profitably represented as 2536 // reg+imm, e.g. where imm = 0. 2537 if (SelectAddressRegReg(N, Base, Index, DAG)) 2538 return true; 2539 2540 // If the address is the result of an add, we will utilize the fact that the 2541 // address calculation includes an implicit add. However, we can reduce 2542 // register pressure if we do not materialize a constant just for use as the 2543 // index register. We only get rid of the add if it is not an add of a 2544 // value and a 16-bit signed constant and both have a single use. 2545 int16_t imm = 0; 2546 if (N.getOpcode() == ISD::ADD && 2547 (!isIntS16Immediate(N.getOperand(1), imm) || 2548 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2549 Base = N.getOperand(0); 2550 Index = N.getOperand(1); 2551 return true; 2552 } 2553 2554 // Otherwise, do it the hard way, using R0 as the base register. 2555 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2556 N.getValueType()); 2557 Index = N; 2558 return true; 2559 } 2560 2561 /// Returns true if we should use a direct load into vector instruction 2562 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2563 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2564 2565 // If there are any other uses other than scalar to vector, then we should 2566 // keep it as a scalar load -> direct move pattern to prevent multiple 2567 // loads. 2568 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2569 if (!LD) 2570 return false; 2571 2572 EVT MemVT = LD->getMemoryVT(); 2573 if (!MemVT.isSimple()) 2574 return false; 2575 switch(MemVT.getSimpleVT().SimpleTy) { 2576 case MVT::i64: 2577 break; 2578 case MVT::i32: 2579 if (!ST.hasP8Vector()) 2580 return false; 2581 break; 2582 case MVT::i16: 2583 case MVT::i8: 2584 if (!ST.hasP9Vector()) 2585 return false; 2586 break; 2587 default: 2588 return false; 2589 } 2590 2591 SDValue LoadedVal(N, 0); 2592 if (!LoadedVal.hasOneUse()) 2593 return false; 2594 2595 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2596 UI != UE; ++UI) 2597 if (UI.getUse().get().getResNo() == 0 && 2598 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 /// getPreIndexedAddressParts - returns true by value, base pointer and 2605 /// offset pointer and addressing mode by reference if the node's address 2606 /// can be legally represented as pre-indexed load / store address. 2607 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2608 SDValue &Offset, 2609 ISD::MemIndexedMode &AM, 2610 SelectionDAG &DAG) const { 2611 if (DisablePPCPreinc) return false; 2612 2613 bool isLoad = true; 2614 SDValue Ptr; 2615 EVT VT; 2616 unsigned Alignment; 2617 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2618 Ptr = LD->getBasePtr(); 2619 VT = LD->getMemoryVT(); 2620 Alignment = LD->getAlignment(); 2621 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2622 Ptr = ST->getBasePtr(); 2623 VT = ST->getMemoryVT(); 2624 Alignment = ST->getAlignment(); 2625 isLoad = false; 2626 } else 2627 return false; 2628 2629 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2630 // instructions because we can fold these into a more efficient instruction 2631 // instead, (such as LXSD). 2632 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2633 return false; 2634 } 2635 2636 // PowerPC doesn't have preinc load/store instructions for vectors (except 2637 // for QPX, which does have preinc r+r forms). 2638 if (VT.isVector()) { 2639 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2640 return false; 2641 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2642 AM = ISD::PRE_INC; 2643 return true; 2644 } 2645 } 2646 2647 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2648 // Common code will reject creating a pre-inc form if the base pointer 2649 // is a frame index, or if N is a store and the base pointer is either 2650 // the same as or a predecessor of the value being stored. Check for 2651 // those situations here, and try with swapped Base/Offset instead. 2652 bool Swap = false; 2653 2654 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2655 Swap = true; 2656 else if (!isLoad) { 2657 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2658 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2659 Swap = true; 2660 } 2661 2662 if (Swap) 2663 std::swap(Base, Offset); 2664 2665 AM = ISD::PRE_INC; 2666 return true; 2667 } 2668 2669 // LDU/STU can only handle immediates that are a multiple of 4. 2670 if (VT != MVT::i64) { 2671 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2672 return false; 2673 } else { 2674 // LDU/STU need an address with at least 4-byte alignment. 2675 if (Alignment < 4) 2676 return false; 2677 2678 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2679 return false; 2680 } 2681 2682 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2683 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2684 // sext i32 to i64 when addr mode is r+i. 2685 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2686 LD->getExtensionType() == ISD::SEXTLOAD && 2687 isa<ConstantSDNode>(Offset)) 2688 return false; 2689 } 2690 2691 AM = ISD::PRE_INC; 2692 return true; 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // LowerOperation implementation 2697 //===----------------------------------------------------------------------===// 2698 2699 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2700 /// and LoOpFlags to the target MO flags. 2701 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2702 unsigned &HiOpFlags, unsigned &LoOpFlags, 2703 const GlobalValue *GV = nullptr) { 2704 HiOpFlags = PPCII::MO_HA; 2705 LoOpFlags = PPCII::MO_LO; 2706 2707 // Don't use the pic base if not in PIC relocation model. 2708 if (IsPIC) { 2709 HiOpFlags |= PPCII::MO_PIC_FLAG; 2710 LoOpFlags |= PPCII::MO_PIC_FLAG; 2711 } 2712 } 2713 2714 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2715 SelectionDAG &DAG) { 2716 SDLoc DL(HiPart); 2717 EVT PtrVT = HiPart.getValueType(); 2718 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2719 2720 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2721 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2722 2723 // With PIC, the first instruction is actually "GR+hi(&G)". 2724 if (isPIC) 2725 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2726 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2727 2728 // Generate non-pic code that has direct accesses to the constant pool. 2729 // The address of the global is just (hi(&g)+lo(&g)). 2730 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2731 } 2732 2733 static void setUsesTOCBasePtr(MachineFunction &MF) { 2734 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2735 FuncInfo->setUsesTOCBasePtr(); 2736 } 2737 2738 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2739 setUsesTOCBasePtr(DAG.getMachineFunction()); 2740 } 2741 2742 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2743 SDValue GA) const { 2744 const bool Is64Bit = Subtarget.isPPC64(); 2745 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2746 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2747 : Subtarget.isAIXABI() 2748 ? DAG.getRegister(PPC::R2, VT) 2749 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2750 SDValue Ops[] = { GA, Reg }; 2751 return DAG.getMemIntrinsicNode( 2752 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2753 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2754 MachineMemOperand::MOLoad); 2755 } 2756 2757 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2758 SelectionDAG &DAG) const { 2759 EVT PtrVT = Op.getValueType(); 2760 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2761 const Constant *C = CP->getConstVal(); 2762 2763 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2764 // The actual address of the GlobalValue is stored in the TOC. 2765 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2766 setUsesTOCBasePtr(DAG); 2767 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2768 return getTOCEntry(DAG, SDLoc(CP), GA); 2769 } 2770 2771 unsigned MOHiFlag, MOLoFlag; 2772 bool IsPIC = isPositionIndependent(); 2773 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2774 2775 if (IsPIC && Subtarget.isSVR4ABI()) { 2776 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2777 PPCII::MO_PIC_FLAG); 2778 return getTOCEntry(DAG, SDLoc(CP), GA); 2779 } 2780 2781 SDValue CPIHi = 2782 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2783 SDValue CPILo = 2784 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2785 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2786 } 2787 2788 // For 64-bit PowerPC, prefer the more compact relative encodings. 2789 // This trades 32 bits per jump table entry for one or two instructions 2790 // on the jump site. 2791 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2792 if (isJumpTableRelative()) 2793 return MachineJumpTableInfo::EK_LabelDifference32; 2794 2795 return TargetLowering::getJumpTableEncoding(); 2796 } 2797 2798 bool PPCTargetLowering::isJumpTableRelative() const { 2799 if (UseAbsoluteJumpTables) 2800 return false; 2801 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2802 return true; 2803 return TargetLowering::isJumpTableRelative(); 2804 } 2805 2806 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2807 SelectionDAG &DAG) const { 2808 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2809 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2810 2811 switch (getTargetMachine().getCodeModel()) { 2812 case CodeModel::Small: 2813 case CodeModel::Medium: 2814 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2815 default: 2816 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2817 getPointerTy(DAG.getDataLayout())); 2818 } 2819 } 2820 2821 const MCExpr * 2822 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2823 unsigned JTI, 2824 MCContext &Ctx) const { 2825 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2826 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2827 2828 switch (getTargetMachine().getCodeModel()) { 2829 case CodeModel::Small: 2830 case CodeModel::Medium: 2831 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2832 default: 2833 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2834 } 2835 } 2836 2837 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2838 EVT PtrVT = Op.getValueType(); 2839 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2840 2841 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2842 // The actual address of the GlobalValue is stored in the TOC. 2843 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2844 setUsesTOCBasePtr(DAG); 2845 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2846 return getTOCEntry(DAG, SDLoc(JT), GA); 2847 } 2848 2849 unsigned MOHiFlag, MOLoFlag; 2850 bool IsPIC = isPositionIndependent(); 2851 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2852 2853 if (IsPIC && Subtarget.isSVR4ABI()) { 2854 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2855 PPCII::MO_PIC_FLAG); 2856 return getTOCEntry(DAG, SDLoc(GA), GA); 2857 } 2858 2859 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2860 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2861 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2862 } 2863 2864 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 EVT PtrVT = Op.getValueType(); 2867 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2868 const BlockAddress *BA = BASDN->getBlockAddress(); 2869 2870 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2871 // The actual BlockAddress is stored in the TOC. 2872 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2873 setUsesTOCBasePtr(DAG); 2874 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2875 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2876 } 2877 2878 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2879 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2880 return getTOCEntry( 2881 DAG, SDLoc(BASDN), 2882 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2883 2884 unsigned MOHiFlag, MOLoFlag; 2885 bool IsPIC = isPositionIndependent(); 2886 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2887 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2888 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2889 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2890 } 2891 2892 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 // FIXME: TLS addresses currently use medium model code sequences, 2895 // which is the most useful form. Eventually support for small and 2896 // large models could be added if users need it, at the cost of 2897 // additional complexity. 2898 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2899 if (DAG.getTarget().useEmulatedTLS()) 2900 return LowerToTLSEmulatedModel(GA, DAG); 2901 2902 SDLoc dl(GA); 2903 const GlobalValue *GV = GA->getGlobal(); 2904 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2905 bool is64bit = Subtarget.isPPC64(); 2906 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2907 PICLevel::Level picLevel = M->getPICLevel(); 2908 2909 const TargetMachine &TM = getTargetMachine(); 2910 TLSModel::Model Model = TM.getTLSModel(GV); 2911 2912 if (Model == TLSModel::LocalExec) { 2913 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2914 PPCII::MO_TPREL_HA); 2915 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2916 PPCII::MO_TPREL_LO); 2917 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2918 : DAG.getRegister(PPC::R2, MVT::i32); 2919 2920 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2921 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2922 } 2923 2924 if (Model == TLSModel::InitialExec) { 2925 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2926 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2927 PPCII::MO_TLS); 2928 SDValue GOTPtr; 2929 if (is64bit) { 2930 setUsesTOCBasePtr(DAG); 2931 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2932 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2933 PtrVT, GOTReg, TGA); 2934 } else { 2935 if (!TM.isPositionIndependent()) 2936 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2937 else if (picLevel == PICLevel::SmallPIC) 2938 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2939 else 2940 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2941 } 2942 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2943 PtrVT, TGA, GOTPtr); 2944 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2945 } 2946 2947 if (Model == TLSModel::GeneralDynamic) { 2948 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2949 SDValue GOTPtr; 2950 if (is64bit) { 2951 setUsesTOCBasePtr(DAG); 2952 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2953 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2954 GOTReg, TGA); 2955 } else { 2956 if (picLevel == PICLevel::SmallPIC) 2957 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2958 else 2959 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2960 } 2961 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2962 GOTPtr, TGA, TGA); 2963 } 2964 2965 if (Model == TLSModel::LocalDynamic) { 2966 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2967 SDValue GOTPtr; 2968 if (is64bit) { 2969 setUsesTOCBasePtr(DAG); 2970 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2971 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2972 GOTReg, TGA); 2973 } else { 2974 if (picLevel == PICLevel::SmallPIC) 2975 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2976 else 2977 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2978 } 2979 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2980 PtrVT, GOTPtr, TGA, TGA); 2981 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2982 PtrVT, TLSAddr, TGA); 2983 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2984 } 2985 2986 llvm_unreachable("Unknown TLS model!"); 2987 } 2988 2989 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2990 SelectionDAG &DAG) const { 2991 EVT PtrVT = Op.getValueType(); 2992 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2993 SDLoc DL(GSDN); 2994 const GlobalValue *GV = GSDN->getGlobal(); 2995 2996 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2997 // The actual address of the GlobalValue is stored in the TOC. 2998 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2999 setUsesTOCBasePtr(DAG); 3000 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3001 return getTOCEntry(DAG, DL, GA); 3002 } 3003 3004 unsigned MOHiFlag, MOLoFlag; 3005 bool IsPIC = isPositionIndependent(); 3006 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3007 3008 if (IsPIC && Subtarget.isSVR4ABI()) { 3009 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3010 GSDN->getOffset(), 3011 PPCII::MO_PIC_FLAG); 3012 return getTOCEntry(DAG, DL, GA); 3013 } 3014 3015 SDValue GAHi = 3016 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3017 SDValue GALo = 3018 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3019 3020 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3021 } 3022 3023 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3024 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3025 SDLoc dl(Op); 3026 3027 if (Op.getValueType() == MVT::v2i64) { 3028 // When the operands themselves are v2i64 values, we need to do something 3029 // special because VSX has no underlying comparison operations for these. 3030 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3031 // Equality can be handled by casting to the legal type for Altivec 3032 // comparisons, everything else needs to be expanded. 3033 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3034 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3035 DAG.getSetCC(dl, MVT::v4i32, 3036 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3037 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3038 CC)); 3039 } 3040 3041 return SDValue(); 3042 } 3043 3044 // We handle most of these in the usual way. 3045 return Op; 3046 } 3047 3048 // If we're comparing for equality to zero, expose the fact that this is 3049 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3050 // fold the new nodes. 3051 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3052 return V; 3053 3054 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3055 // Leave comparisons against 0 and -1 alone for now, since they're usually 3056 // optimized. FIXME: revisit this when we can custom lower all setcc 3057 // optimizations. 3058 if (C->isAllOnesValue() || C->isNullValue()) 3059 return SDValue(); 3060 } 3061 3062 // If we have an integer seteq/setne, turn it into a compare against zero 3063 // by xor'ing the rhs with the lhs, which is faster than setting a 3064 // condition register, reading it back out, and masking the correct bit. The 3065 // normal approach here uses sub to do this instead of xor. Using xor exposes 3066 // the result to other bit-twiddling opportunities. 3067 EVT LHSVT = Op.getOperand(0).getValueType(); 3068 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3069 EVT VT = Op.getValueType(); 3070 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3071 Op.getOperand(1)); 3072 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3073 } 3074 return SDValue(); 3075 } 3076 3077 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3078 SDNode *Node = Op.getNode(); 3079 EVT VT = Node->getValueType(0); 3080 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3081 SDValue InChain = Node->getOperand(0); 3082 SDValue VAListPtr = Node->getOperand(1); 3083 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3084 SDLoc dl(Node); 3085 3086 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3087 3088 // gpr_index 3089 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3090 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3091 InChain = GprIndex.getValue(1); 3092 3093 if (VT == MVT::i64) { 3094 // Check if GprIndex is even 3095 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3096 DAG.getConstant(1, dl, MVT::i32)); 3097 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3098 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3099 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3100 DAG.getConstant(1, dl, MVT::i32)); 3101 // Align GprIndex to be even if it isn't 3102 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3103 GprIndex); 3104 } 3105 3106 // fpr index is 1 byte after gpr 3107 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3108 DAG.getConstant(1, dl, MVT::i32)); 3109 3110 // fpr 3111 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3112 FprPtr, MachinePointerInfo(SV), MVT::i8); 3113 InChain = FprIndex.getValue(1); 3114 3115 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3116 DAG.getConstant(8, dl, MVT::i32)); 3117 3118 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3119 DAG.getConstant(4, dl, MVT::i32)); 3120 3121 // areas 3122 SDValue OverflowArea = 3123 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3124 InChain = OverflowArea.getValue(1); 3125 3126 SDValue RegSaveArea = 3127 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3128 InChain = RegSaveArea.getValue(1); 3129 3130 // select overflow_area if index > 8 3131 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3132 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3133 3134 // adjustment constant gpr_index * 4/8 3135 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3136 VT.isInteger() ? GprIndex : FprIndex, 3137 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3138 MVT::i32)); 3139 3140 // OurReg = RegSaveArea + RegConstant 3141 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3142 RegConstant); 3143 3144 // Floating types are 32 bytes into RegSaveArea 3145 if (VT.isFloatingPoint()) 3146 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3147 DAG.getConstant(32, dl, MVT::i32)); 3148 3149 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3150 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3151 VT.isInteger() ? GprIndex : FprIndex, 3152 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3153 MVT::i32)); 3154 3155 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3156 VT.isInteger() ? VAListPtr : FprPtr, 3157 MachinePointerInfo(SV), MVT::i8); 3158 3159 // determine if we should load from reg_save_area or overflow_area 3160 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3161 3162 // increase overflow_area by 4/8 if gpr/fpr > 8 3163 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3164 DAG.getConstant(VT.isInteger() ? 4 : 8, 3165 dl, MVT::i32)); 3166 3167 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3168 OverflowAreaPlusN); 3169 3170 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3171 MachinePointerInfo(), MVT::i32); 3172 3173 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3174 } 3175 3176 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3177 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3178 3179 // We have to copy the entire va_list struct: 3180 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3181 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3182 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3183 false, true, false, MachinePointerInfo(), 3184 MachinePointerInfo()); 3185 } 3186 3187 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3188 SelectionDAG &DAG) const { 3189 if (Subtarget.isAIXABI()) 3190 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3191 3192 return Op.getOperand(0); 3193 } 3194 3195 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3196 SelectionDAG &DAG) const { 3197 if (Subtarget.isAIXABI()) 3198 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3199 3200 SDValue Chain = Op.getOperand(0); 3201 SDValue Trmp = Op.getOperand(1); // trampoline 3202 SDValue FPtr = Op.getOperand(2); // nested function 3203 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3204 SDLoc dl(Op); 3205 3206 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3207 bool isPPC64 = (PtrVT == MVT::i64); 3208 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3209 3210 TargetLowering::ArgListTy Args; 3211 TargetLowering::ArgListEntry Entry; 3212 3213 Entry.Ty = IntPtrTy; 3214 Entry.Node = Trmp; Args.push_back(Entry); 3215 3216 // TrampSize == (isPPC64 ? 48 : 40); 3217 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3218 isPPC64 ? MVT::i64 : MVT::i32); 3219 Args.push_back(Entry); 3220 3221 Entry.Node = FPtr; Args.push_back(Entry); 3222 Entry.Node = Nest; Args.push_back(Entry); 3223 3224 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3225 TargetLowering::CallLoweringInfo CLI(DAG); 3226 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3227 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3228 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3229 3230 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3231 return CallResult.second; 3232 } 3233 3234 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3235 MachineFunction &MF = DAG.getMachineFunction(); 3236 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3237 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3238 3239 SDLoc dl(Op); 3240 3241 if (Subtarget.isPPC64()) { 3242 // vastart just stores the address of the VarArgsFrameIndex slot into the 3243 // memory location argument. 3244 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3245 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3246 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3247 MachinePointerInfo(SV)); 3248 } 3249 3250 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3251 // We suppose the given va_list is already allocated. 3252 // 3253 // typedef struct { 3254 // char gpr; /* index into the array of 8 GPRs 3255 // * stored in the register save area 3256 // * gpr=0 corresponds to r3, 3257 // * gpr=1 to r4, etc. 3258 // */ 3259 // char fpr; /* index into the array of 8 FPRs 3260 // * stored in the register save area 3261 // * fpr=0 corresponds to f1, 3262 // * fpr=1 to f2, etc. 3263 // */ 3264 // char *overflow_arg_area; 3265 // /* location on stack that holds 3266 // * the next overflow argument 3267 // */ 3268 // char *reg_save_area; 3269 // /* where r3:r10 and f1:f8 (if saved) 3270 // * are stored 3271 // */ 3272 // } va_list[1]; 3273 3274 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3275 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3276 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3277 PtrVT); 3278 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3279 PtrVT); 3280 3281 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3282 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3283 3284 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3285 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3286 3287 uint64_t FPROffset = 1; 3288 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3289 3290 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3291 3292 // Store first byte : number of int regs 3293 SDValue firstStore = 3294 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3295 MachinePointerInfo(SV), MVT::i8); 3296 uint64_t nextOffset = FPROffset; 3297 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3298 ConstFPROffset); 3299 3300 // Store second byte : number of float regs 3301 SDValue secondStore = 3302 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3303 MachinePointerInfo(SV, nextOffset), MVT::i8); 3304 nextOffset += StackOffset; 3305 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3306 3307 // Store second word : arguments given on stack 3308 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3309 MachinePointerInfo(SV, nextOffset)); 3310 nextOffset += FrameOffset; 3311 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3312 3313 // Store third word : arguments given in registers 3314 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3315 MachinePointerInfo(SV, nextOffset)); 3316 } 3317 3318 /// FPR - The set of FP registers that should be allocated for arguments 3319 /// on Darwin and AIX. 3320 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3321 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3322 PPC::F11, PPC::F12, PPC::F13}; 3323 3324 /// QFPR - The set of QPX registers that should be allocated for arguments. 3325 static const MCPhysReg QFPR[] = { 3326 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3327 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3328 3329 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3330 /// the stack. 3331 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3332 unsigned PtrByteSize) { 3333 unsigned ArgSize = ArgVT.getStoreSize(); 3334 if (Flags.isByVal()) 3335 ArgSize = Flags.getByValSize(); 3336 3337 // Round up to multiples of the pointer size, except for array members, 3338 // which are always packed. 3339 if (!Flags.isInConsecutiveRegs()) 3340 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3341 3342 return ArgSize; 3343 } 3344 3345 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3346 /// on the stack. 3347 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3348 ISD::ArgFlagsTy Flags, 3349 unsigned PtrByteSize) { 3350 Align Alignment(PtrByteSize); 3351 3352 // Altivec parameters are padded to a 16 byte boundary. 3353 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3354 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3355 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3356 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3357 Alignment = Align(16); 3358 // QPX vector types stored in double-precision are padded to a 32 byte 3359 // boundary. 3360 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3361 Alignment = Align(32); 3362 3363 // ByVal parameters are aligned as requested. 3364 if (Flags.isByVal()) { 3365 auto BVAlign = Flags.getNonZeroByValAlign(); 3366 if (BVAlign > PtrByteSize) { 3367 if (BVAlign.value() % PtrByteSize != 0) 3368 llvm_unreachable( 3369 "ByVal alignment is not a multiple of the pointer size"); 3370 3371 Alignment = BVAlign; 3372 } 3373 } 3374 3375 // Array members are always packed to their original alignment. 3376 if (Flags.isInConsecutiveRegs()) { 3377 // If the array member was split into multiple registers, the first 3378 // needs to be aligned to the size of the full type. (Except for 3379 // ppcf128, which is only aligned as its f64 components.) 3380 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3381 Alignment = Align(OrigVT.getStoreSize()); 3382 else 3383 Alignment = Align(ArgVT.getStoreSize()); 3384 } 3385 3386 return Alignment; 3387 } 3388 3389 /// CalculateStackSlotUsed - Return whether this argument will use its 3390 /// stack slot (instead of being passed in registers). ArgOffset, 3391 /// AvailableFPRs, and AvailableVRs must hold the current argument 3392 /// position, and will be updated to account for this argument. 3393 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3394 ISD::ArgFlagsTy Flags, 3395 unsigned PtrByteSize, 3396 unsigned LinkageSize, 3397 unsigned ParamAreaSize, 3398 unsigned &ArgOffset, 3399 unsigned &AvailableFPRs, 3400 unsigned &AvailableVRs, bool HasQPX) { 3401 bool UseMemory = false; 3402 3403 // Respect alignment of argument on the stack. 3404 Align Alignment = 3405 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3406 ArgOffset = alignTo(ArgOffset, Alignment); 3407 // If there's no space left in the argument save area, we must 3408 // use memory (this check also catches zero-sized arguments). 3409 if (ArgOffset >= LinkageSize + ParamAreaSize) 3410 UseMemory = true; 3411 3412 // Allocate argument on the stack. 3413 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3414 if (Flags.isInConsecutiveRegsLast()) 3415 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3416 // If we overran the argument save area, we must use memory 3417 // (this check catches arguments passed partially in memory) 3418 if (ArgOffset > LinkageSize + ParamAreaSize) 3419 UseMemory = true; 3420 3421 // However, if the argument is actually passed in an FPR or a VR, 3422 // we don't use memory after all. 3423 if (!Flags.isByVal()) { 3424 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3425 // QPX registers overlap with the scalar FP registers. 3426 (HasQPX && (ArgVT == MVT::v4f32 || 3427 ArgVT == MVT::v4f64 || 3428 ArgVT == MVT::v4i1))) 3429 if (AvailableFPRs > 0) { 3430 --AvailableFPRs; 3431 return false; 3432 } 3433 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3434 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3435 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3436 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3437 if (AvailableVRs > 0) { 3438 --AvailableVRs; 3439 return false; 3440 } 3441 } 3442 3443 return UseMemory; 3444 } 3445 3446 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3447 /// ensure minimum alignment required for target. 3448 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3449 unsigned NumBytes) { 3450 unsigned TargetAlign = Lowering->getStackAlignment(); 3451 unsigned AlignMask = TargetAlign - 1; 3452 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3453 return NumBytes; 3454 } 3455 3456 SDValue PPCTargetLowering::LowerFormalArguments( 3457 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3458 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3459 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3460 if (Subtarget.isAIXABI()) 3461 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3462 InVals); 3463 if (Subtarget.is64BitELFABI()) 3464 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3465 InVals); 3466 if (Subtarget.is32BitELFABI()) 3467 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3468 InVals); 3469 3470 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3471 InVals); 3472 } 3473 3474 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3475 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3476 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3477 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3478 3479 // 32-bit SVR4 ABI Stack Frame Layout: 3480 // +-----------------------------------+ 3481 // +--> | Back chain | 3482 // | +-----------------------------------+ 3483 // | | Floating-point register save area | 3484 // | +-----------------------------------+ 3485 // | | General register save area | 3486 // | +-----------------------------------+ 3487 // | | CR save word | 3488 // | +-----------------------------------+ 3489 // | | VRSAVE save word | 3490 // | +-----------------------------------+ 3491 // | | Alignment padding | 3492 // | +-----------------------------------+ 3493 // | | Vector register save area | 3494 // | +-----------------------------------+ 3495 // | | Local variable space | 3496 // | +-----------------------------------+ 3497 // | | Parameter list area | 3498 // | +-----------------------------------+ 3499 // | | LR save word | 3500 // | +-----------------------------------+ 3501 // SP--> +--- | Back chain | 3502 // +-----------------------------------+ 3503 // 3504 // Specifications: 3505 // System V Application Binary Interface PowerPC Processor Supplement 3506 // AltiVec Technology Programming Interface Manual 3507 3508 MachineFunction &MF = DAG.getMachineFunction(); 3509 MachineFrameInfo &MFI = MF.getFrameInfo(); 3510 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3511 3512 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3513 // Potential tail calls could cause overwriting of argument stack slots. 3514 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3515 (CallConv == CallingConv::Fast)); 3516 unsigned PtrByteSize = 4; 3517 3518 // Assign locations to all of the incoming arguments. 3519 SmallVector<CCValAssign, 16> ArgLocs; 3520 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3521 *DAG.getContext()); 3522 3523 // Reserve space for the linkage area on the stack. 3524 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3525 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3526 if (useSoftFloat()) 3527 CCInfo.PreAnalyzeFormalArguments(Ins); 3528 3529 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3530 CCInfo.clearWasPPCF128(); 3531 3532 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3533 CCValAssign &VA = ArgLocs[i]; 3534 3535 // Arguments stored in registers. 3536 if (VA.isRegLoc()) { 3537 const TargetRegisterClass *RC; 3538 EVT ValVT = VA.getValVT(); 3539 3540 switch (ValVT.getSimpleVT().SimpleTy) { 3541 default: 3542 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3543 case MVT::i1: 3544 case MVT::i32: 3545 RC = &PPC::GPRCRegClass; 3546 break; 3547 case MVT::f32: 3548 if (Subtarget.hasP8Vector()) 3549 RC = &PPC::VSSRCRegClass; 3550 else if (Subtarget.hasSPE()) 3551 RC = &PPC::GPRCRegClass; 3552 else 3553 RC = &PPC::F4RCRegClass; 3554 break; 3555 case MVT::f64: 3556 if (Subtarget.hasVSX()) 3557 RC = &PPC::VSFRCRegClass; 3558 else if (Subtarget.hasSPE()) 3559 // SPE passes doubles in GPR pairs. 3560 RC = &PPC::GPRCRegClass; 3561 else 3562 RC = &PPC::F8RCRegClass; 3563 break; 3564 case MVT::v16i8: 3565 case MVT::v8i16: 3566 case MVT::v4i32: 3567 RC = &PPC::VRRCRegClass; 3568 break; 3569 case MVT::v4f32: 3570 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3571 break; 3572 case MVT::v2f64: 3573 case MVT::v2i64: 3574 RC = &PPC::VRRCRegClass; 3575 break; 3576 case MVT::v4f64: 3577 RC = &PPC::QFRCRegClass; 3578 break; 3579 case MVT::v4i1: 3580 RC = &PPC::QBRCRegClass; 3581 break; 3582 } 3583 3584 SDValue ArgValue; 3585 // Transform the arguments stored in physical registers into 3586 // virtual ones. 3587 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3588 assert(i + 1 < e && "No second half of double precision argument"); 3589 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3590 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3591 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3592 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3593 if (!Subtarget.isLittleEndian()) 3594 std::swap (ArgValueLo, ArgValueHi); 3595 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3596 ArgValueHi); 3597 } else { 3598 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3599 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3600 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3601 if (ValVT == MVT::i1) 3602 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3603 } 3604 3605 InVals.push_back(ArgValue); 3606 } else { 3607 // Argument stored in memory. 3608 assert(VA.isMemLoc()); 3609 3610 // Get the extended size of the argument type in stack 3611 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3612 // Get the actual size of the argument type 3613 unsigned ObjSize = VA.getValVT().getStoreSize(); 3614 unsigned ArgOffset = VA.getLocMemOffset(); 3615 // Stack objects in PPC32 are right justified. 3616 ArgOffset += ArgSize - ObjSize; 3617 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3618 3619 // Create load nodes to retrieve arguments from the stack. 3620 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3621 InVals.push_back( 3622 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3623 } 3624 } 3625 3626 // Assign locations to all of the incoming aggregate by value arguments. 3627 // Aggregates passed by value are stored in the local variable space of the 3628 // caller's stack frame, right above the parameter list area. 3629 SmallVector<CCValAssign, 16> ByValArgLocs; 3630 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3631 ByValArgLocs, *DAG.getContext()); 3632 3633 // Reserve stack space for the allocations in CCInfo. 3634 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3635 3636 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3637 3638 // Area that is at least reserved in the caller of this function. 3639 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3640 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3641 3642 // Set the size that is at least reserved in caller of this function. Tail 3643 // call optimized function's reserved stack space needs to be aligned so that 3644 // taking the difference between two stack areas will result in an aligned 3645 // stack. 3646 MinReservedArea = 3647 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3648 FuncInfo->setMinReservedArea(MinReservedArea); 3649 3650 SmallVector<SDValue, 8> MemOps; 3651 3652 // If the function takes variable number of arguments, make a frame index for 3653 // the start of the first vararg value... for expansion of llvm.va_start. 3654 if (isVarArg) { 3655 static const MCPhysReg GPArgRegs[] = { 3656 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3657 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3658 }; 3659 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3660 3661 static const MCPhysReg FPArgRegs[] = { 3662 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3663 PPC::F8 3664 }; 3665 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3666 3667 if (useSoftFloat() || hasSPE()) 3668 NumFPArgRegs = 0; 3669 3670 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3671 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3672 3673 // Make room for NumGPArgRegs and NumFPArgRegs. 3674 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3675 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3676 3677 FuncInfo->setVarArgsStackOffset( 3678 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3679 CCInfo.getNextStackOffset(), true)); 3680 3681 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3682 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3683 3684 // The fixed integer arguments of a variadic function are stored to the 3685 // VarArgsFrameIndex on the stack so that they may be loaded by 3686 // dereferencing the result of va_next. 3687 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3688 // Get an existing live-in vreg, or add a new one. 3689 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3690 if (!VReg) 3691 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3692 3693 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3694 SDValue Store = 3695 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3696 MemOps.push_back(Store); 3697 // Increment the address by four for the next argument to store 3698 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3699 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3700 } 3701 3702 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3703 // is set. 3704 // The double arguments are stored to the VarArgsFrameIndex 3705 // on the stack. 3706 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3707 // Get an existing live-in vreg, or add a new one. 3708 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3709 if (!VReg) 3710 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3711 3712 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3713 SDValue Store = 3714 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3715 MemOps.push_back(Store); 3716 // Increment the address by eight for the next argument to store 3717 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3718 PtrVT); 3719 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3720 } 3721 } 3722 3723 if (!MemOps.empty()) 3724 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3725 3726 return Chain; 3727 } 3728 3729 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3730 // value to MVT::i64 and then truncate to the correct register size. 3731 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3732 EVT ObjectVT, SelectionDAG &DAG, 3733 SDValue ArgVal, 3734 const SDLoc &dl) const { 3735 if (Flags.isSExt()) 3736 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3737 DAG.getValueType(ObjectVT)); 3738 else if (Flags.isZExt()) 3739 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3740 DAG.getValueType(ObjectVT)); 3741 3742 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3743 } 3744 3745 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3746 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3747 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3748 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3749 // TODO: add description of PPC stack frame format, or at least some docs. 3750 // 3751 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3752 bool isLittleEndian = Subtarget.isLittleEndian(); 3753 MachineFunction &MF = DAG.getMachineFunction(); 3754 MachineFrameInfo &MFI = MF.getFrameInfo(); 3755 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3756 3757 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3758 "fastcc not supported on varargs functions"); 3759 3760 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3761 // Potential tail calls could cause overwriting of argument stack slots. 3762 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3763 (CallConv == CallingConv::Fast)); 3764 unsigned PtrByteSize = 8; 3765 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3766 3767 static const MCPhysReg GPR[] = { 3768 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3769 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3770 }; 3771 static const MCPhysReg VR[] = { 3772 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3773 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3774 }; 3775 3776 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3777 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3778 const unsigned Num_VR_Regs = array_lengthof(VR); 3779 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3780 3781 // Do a first pass over the arguments to determine whether the ABI 3782 // guarantees that our caller has allocated the parameter save area 3783 // on its stack frame. In the ELFv1 ABI, this is always the case; 3784 // in the ELFv2 ABI, it is true if this is a vararg function or if 3785 // any parameter is located in a stack slot. 3786 3787 bool HasParameterArea = !isELFv2ABI || isVarArg; 3788 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3789 unsigned NumBytes = LinkageSize; 3790 unsigned AvailableFPRs = Num_FPR_Regs; 3791 unsigned AvailableVRs = Num_VR_Regs; 3792 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3793 if (Ins[i].Flags.isNest()) 3794 continue; 3795 3796 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3797 PtrByteSize, LinkageSize, ParamAreaSize, 3798 NumBytes, AvailableFPRs, AvailableVRs, 3799 Subtarget.hasQPX())) 3800 HasParameterArea = true; 3801 } 3802 3803 // Add DAG nodes to load the arguments or copy them out of registers. On 3804 // entry to a function on PPC, the arguments start after the linkage area, 3805 // although the first ones are often in registers. 3806 3807 unsigned ArgOffset = LinkageSize; 3808 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3809 unsigned &QFPR_idx = FPR_idx; 3810 SmallVector<SDValue, 8> MemOps; 3811 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3812 unsigned CurArgIdx = 0; 3813 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3814 SDValue ArgVal; 3815 bool needsLoad = false; 3816 EVT ObjectVT = Ins[ArgNo].VT; 3817 EVT OrigVT = Ins[ArgNo].ArgVT; 3818 unsigned ObjSize = ObjectVT.getStoreSize(); 3819 unsigned ArgSize = ObjSize; 3820 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3821 if (Ins[ArgNo].isOrigArg()) { 3822 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3823 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3824 } 3825 // We re-align the argument offset for each argument, except when using the 3826 // fast calling convention, when we need to make sure we do that only when 3827 // we'll actually use a stack slot. 3828 unsigned CurArgOffset; 3829 Align Alignment; 3830 auto ComputeArgOffset = [&]() { 3831 /* Respect alignment of argument on the stack. */ 3832 Alignment = 3833 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3834 ArgOffset = alignTo(ArgOffset, Alignment); 3835 CurArgOffset = ArgOffset; 3836 }; 3837 3838 if (CallConv != CallingConv::Fast) { 3839 ComputeArgOffset(); 3840 3841 /* Compute GPR index associated with argument offset. */ 3842 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3843 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3844 } 3845 3846 // FIXME the codegen can be much improved in some cases. 3847 // We do not have to keep everything in memory. 3848 if (Flags.isByVal()) { 3849 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3850 3851 if (CallConv == CallingConv::Fast) 3852 ComputeArgOffset(); 3853 3854 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3855 ObjSize = Flags.getByValSize(); 3856 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3857 // Empty aggregate parameters do not take up registers. Examples: 3858 // struct { } a; 3859 // union { } b; 3860 // int c[0]; 3861 // etc. However, we have to provide a place-holder in InVals, so 3862 // pretend we have an 8-byte item at the current address for that 3863 // purpose. 3864 if (!ObjSize) { 3865 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3866 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3867 InVals.push_back(FIN); 3868 continue; 3869 } 3870 3871 // Create a stack object covering all stack doublewords occupied 3872 // by the argument. If the argument is (fully or partially) on 3873 // the stack, or if the argument is fully in registers but the 3874 // caller has allocated the parameter save anyway, we can refer 3875 // directly to the caller's stack frame. Otherwise, create a 3876 // local copy in our own frame. 3877 int FI; 3878 if (HasParameterArea || 3879 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3880 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3881 else 3882 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3883 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3884 3885 // Handle aggregates smaller than 8 bytes. 3886 if (ObjSize < PtrByteSize) { 3887 // The value of the object is its address, which differs from the 3888 // address of the enclosing doubleword on big-endian systems. 3889 SDValue Arg = FIN; 3890 if (!isLittleEndian) { 3891 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3892 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3893 } 3894 InVals.push_back(Arg); 3895 3896 if (GPR_idx != Num_GPR_Regs) { 3897 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3898 FuncInfo->addLiveInAttr(VReg, Flags); 3899 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3900 SDValue Store; 3901 3902 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3903 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3904 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3905 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3906 MachinePointerInfo(&*FuncArg), ObjType); 3907 } else { 3908 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3909 // store the whole register as-is to the parameter save area 3910 // slot. 3911 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3912 MachinePointerInfo(&*FuncArg)); 3913 } 3914 3915 MemOps.push_back(Store); 3916 } 3917 // Whether we copied from a register or not, advance the offset 3918 // into the parameter save area by a full doubleword. 3919 ArgOffset += PtrByteSize; 3920 continue; 3921 } 3922 3923 // The value of the object is its address, which is the address of 3924 // its first stack doubleword. 3925 InVals.push_back(FIN); 3926 3927 // Store whatever pieces of the object are in registers to memory. 3928 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3929 if (GPR_idx == Num_GPR_Regs) 3930 break; 3931 3932 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3933 FuncInfo->addLiveInAttr(VReg, Flags); 3934 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3935 SDValue Addr = FIN; 3936 if (j) { 3937 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3938 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3939 } 3940 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3941 MachinePointerInfo(&*FuncArg, j)); 3942 MemOps.push_back(Store); 3943 ++GPR_idx; 3944 } 3945 ArgOffset += ArgSize; 3946 continue; 3947 } 3948 3949 switch (ObjectVT.getSimpleVT().SimpleTy) { 3950 default: llvm_unreachable("Unhandled argument type!"); 3951 case MVT::i1: 3952 case MVT::i32: 3953 case MVT::i64: 3954 if (Flags.isNest()) { 3955 // The 'nest' parameter, if any, is passed in R11. 3956 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3957 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3958 3959 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3960 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3961 3962 break; 3963 } 3964 3965 // These can be scalar arguments or elements of an integer array type 3966 // passed directly. Clang may use those instead of "byval" aggregate 3967 // types to avoid forcing arguments to memory unnecessarily. 3968 if (GPR_idx != Num_GPR_Regs) { 3969 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3970 FuncInfo->addLiveInAttr(VReg, Flags); 3971 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3972 3973 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3974 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3975 // value to MVT::i64 and then truncate to the correct register size. 3976 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3977 } else { 3978 if (CallConv == CallingConv::Fast) 3979 ComputeArgOffset(); 3980 3981 needsLoad = true; 3982 ArgSize = PtrByteSize; 3983 } 3984 if (CallConv != CallingConv::Fast || needsLoad) 3985 ArgOffset += 8; 3986 break; 3987 3988 case MVT::f32: 3989 case MVT::f64: 3990 // These can be scalar arguments or elements of a float array type 3991 // passed directly. The latter are used to implement ELFv2 homogenous 3992 // float aggregates. 3993 if (FPR_idx != Num_FPR_Regs) { 3994 unsigned VReg; 3995 3996 if (ObjectVT == MVT::f32) 3997 VReg = MF.addLiveIn(FPR[FPR_idx], 3998 Subtarget.hasP8Vector() 3999 ? &PPC::VSSRCRegClass 4000 : &PPC::F4RCRegClass); 4001 else 4002 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4003 ? &PPC::VSFRCRegClass 4004 : &PPC::F8RCRegClass); 4005 4006 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4007 ++FPR_idx; 4008 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4009 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4010 // once we support fp <-> gpr moves. 4011 4012 // This can only ever happen in the presence of f32 array types, 4013 // since otherwise we never run out of FPRs before running out 4014 // of GPRs. 4015 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4016 FuncInfo->addLiveInAttr(VReg, Flags); 4017 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4018 4019 if (ObjectVT == MVT::f32) { 4020 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4021 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4022 DAG.getConstant(32, dl, MVT::i32)); 4023 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4024 } 4025 4026 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4027 } else { 4028 if (CallConv == CallingConv::Fast) 4029 ComputeArgOffset(); 4030 4031 needsLoad = true; 4032 } 4033 4034 // When passing an array of floats, the array occupies consecutive 4035 // space in the argument area; only round up to the next doubleword 4036 // at the end of the array. Otherwise, each float takes 8 bytes. 4037 if (CallConv != CallingConv::Fast || needsLoad) { 4038 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4039 ArgOffset += ArgSize; 4040 if (Flags.isInConsecutiveRegsLast()) 4041 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4042 } 4043 break; 4044 case MVT::v4f32: 4045 case MVT::v4i32: 4046 case MVT::v8i16: 4047 case MVT::v16i8: 4048 case MVT::v2f64: 4049 case MVT::v2i64: 4050 case MVT::v1i128: 4051 case MVT::f128: 4052 if (!Subtarget.hasQPX()) { 4053 // These can be scalar arguments or elements of a vector array type 4054 // passed directly. The latter are used to implement ELFv2 homogenous 4055 // vector aggregates. 4056 if (VR_idx != Num_VR_Regs) { 4057 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4058 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4059 ++VR_idx; 4060 } else { 4061 if (CallConv == CallingConv::Fast) 4062 ComputeArgOffset(); 4063 needsLoad = true; 4064 } 4065 if (CallConv != CallingConv::Fast || needsLoad) 4066 ArgOffset += 16; 4067 break; 4068 } // not QPX 4069 4070 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4071 "Invalid QPX parameter type"); 4072 LLVM_FALLTHROUGH; 4073 4074 case MVT::v4f64: 4075 case MVT::v4i1: 4076 // QPX vectors are treated like their scalar floating-point subregisters 4077 // (except that they're larger). 4078 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4079 if (QFPR_idx != Num_QFPR_Regs) { 4080 const TargetRegisterClass *RC; 4081 switch (ObjectVT.getSimpleVT().SimpleTy) { 4082 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4083 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4084 default: RC = &PPC::QBRCRegClass; break; 4085 } 4086 4087 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4088 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4089 ++QFPR_idx; 4090 } else { 4091 if (CallConv == CallingConv::Fast) 4092 ComputeArgOffset(); 4093 needsLoad = true; 4094 } 4095 if (CallConv != CallingConv::Fast || needsLoad) 4096 ArgOffset += Sz; 4097 break; 4098 } 4099 4100 // We need to load the argument to a virtual register if we determined 4101 // above that we ran out of physical registers of the appropriate type. 4102 if (needsLoad) { 4103 if (ObjSize < ArgSize && !isLittleEndian) 4104 CurArgOffset += ArgSize - ObjSize; 4105 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4106 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4107 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4108 } 4109 4110 InVals.push_back(ArgVal); 4111 } 4112 4113 // Area that is at least reserved in the caller of this function. 4114 unsigned MinReservedArea; 4115 if (HasParameterArea) 4116 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4117 else 4118 MinReservedArea = LinkageSize; 4119 4120 // Set the size that is at least reserved in caller of this function. Tail 4121 // call optimized functions' reserved stack space needs to be aligned so that 4122 // taking the difference between two stack areas will result in an aligned 4123 // stack. 4124 MinReservedArea = 4125 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4126 FuncInfo->setMinReservedArea(MinReservedArea); 4127 4128 // If the function takes variable number of arguments, make a frame index for 4129 // the start of the first vararg value... for expansion of llvm.va_start. 4130 if (isVarArg) { 4131 int Depth = ArgOffset; 4132 4133 FuncInfo->setVarArgsFrameIndex( 4134 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4135 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4136 4137 // If this function is vararg, store any remaining integer argument regs 4138 // to their spots on the stack so that they may be loaded by dereferencing 4139 // the result of va_next. 4140 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4141 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4142 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4143 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4144 SDValue Store = 4145 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4146 MemOps.push_back(Store); 4147 // Increment the address by four for the next argument to store 4148 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4149 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4150 } 4151 } 4152 4153 if (!MemOps.empty()) 4154 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4155 4156 return Chain; 4157 } 4158 4159 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4160 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4161 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4162 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4163 // TODO: add description of PPC stack frame format, or at least some docs. 4164 // 4165 MachineFunction &MF = DAG.getMachineFunction(); 4166 MachineFrameInfo &MFI = MF.getFrameInfo(); 4167 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4168 4169 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4170 bool isPPC64 = PtrVT == MVT::i64; 4171 // Potential tail calls could cause overwriting of argument stack slots. 4172 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4173 (CallConv == CallingConv::Fast)); 4174 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4175 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4176 unsigned ArgOffset = LinkageSize; 4177 // Area that is at least reserved in caller of this function. 4178 unsigned MinReservedArea = ArgOffset; 4179 4180 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4181 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4182 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4183 }; 4184 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4185 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4186 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4187 }; 4188 static const MCPhysReg VR[] = { 4189 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4190 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4191 }; 4192 4193 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4194 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4195 const unsigned Num_VR_Regs = array_lengthof( VR); 4196 4197 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4198 4199 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4200 4201 // In 32-bit non-varargs functions, the stack space for vectors is after the 4202 // stack space for non-vectors. We do not use this space unless we have 4203 // too many vectors to fit in registers, something that only occurs in 4204 // constructed examples:), but we have to walk the arglist to figure 4205 // that out...for the pathological case, compute VecArgOffset as the 4206 // start of the vector parameter area. Computing VecArgOffset is the 4207 // entire point of the following loop. 4208 unsigned VecArgOffset = ArgOffset; 4209 if (!isVarArg && !isPPC64) { 4210 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4211 ++ArgNo) { 4212 EVT ObjectVT = Ins[ArgNo].VT; 4213 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4214 4215 if (Flags.isByVal()) { 4216 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4217 unsigned ObjSize = Flags.getByValSize(); 4218 unsigned ArgSize = 4219 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4220 VecArgOffset += ArgSize; 4221 continue; 4222 } 4223 4224 switch(ObjectVT.getSimpleVT().SimpleTy) { 4225 default: llvm_unreachable("Unhandled argument type!"); 4226 case MVT::i1: 4227 case MVT::i32: 4228 case MVT::f32: 4229 VecArgOffset += 4; 4230 break; 4231 case MVT::i64: // PPC64 4232 case MVT::f64: 4233 // FIXME: We are guaranteed to be !isPPC64 at this point. 4234 // Does MVT::i64 apply? 4235 VecArgOffset += 8; 4236 break; 4237 case MVT::v4f32: 4238 case MVT::v4i32: 4239 case MVT::v8i16: 4240 case MVT::v16i8: 4241 // Nothing to do, we're only looking at Nonvector args here. 4242 break; 4243 } 4244 } 4245 } 4246 // We've found where the vector parameter area in memory is. Skip the 4247 // first 12 parameters; these don't use that memory. 4248 VecArgOffset = ((VecArgOffset+15)/16)*16; 4249 VecArgOffset += 12*16; 4250 4251 // Add DAG nodes to load the arguments or copy them out of registers. On 4252 // entry to a function on PPC, the arguments start after the linkage area, 4253 // although the first ones are often in registers. 4254 4255 SmallVector<SDValue, 8> MemOps; 4256 unsigned nAltivecParamsAtEnd = 0; 4257 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4258 unsigned CurArgIdx = 0; 4259 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4260 SDValue ArgVal; 4261 bool needsLoad = false; 4262 EVT ObjectVT = Ins[ArgNo].VT; 4263 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4264 unsigned ArgSize = ObjSize; 4265 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4266 if (Ins[ArgNo].isOrigArg()) { 4267 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4268 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4269 } 4270 unsigned CurArgOffset = ArgOffset; 4271 4272 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4273 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4274 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4275 if (isVarArg || isPPC64) { 4276 MinReservedArea = ((MinReservedArea+15)/16)*16; 4277 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4278 Flags, 4279 PtrByteSize); 4280 } else nAltivecParamsAtEnd++; 4281 } else 4282 // Calculate min reserved area. 4283 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4284 Flags, 4285 PtrByteSize); 4286 4287 // FIXME the codegen can be much improved in some cases. 4288 // We do not have to keep everything in memory. 4289 if (Flags.isByVal()) { 4290 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4291 4292 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4293 ObjSize = Flags.getByValSize(); 4294 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4295 // Objects of size 1 and 2 are right justified, everything else is 4296 // left justified. This means the memory address is adjusted forwards. 4297 if (ObjSize==1 || ObjSize==2) { 4298 CurArgOffset = CurArgOffset + (4 - ObjSize); 4299 } 4300 // The value of the object is its address. 4301 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4302 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4303 InVals.push_back(FIN); 4304 if (ObjSize==1 || ObjSize==2) { 4305 if (GPR_idx != Num_GPR_Regs) { 4306 unsigned VReg; 4307 if (isPPC64) 4308 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4309 else 4310 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4311 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4312 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4313 SDValue Store = 4314 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4315 MachinePointerInfo(&*FuncArg), ObjType); 4316 MemOps.push_back(Store); 4317 ++GPR_idx; 4318 } 4319 4320 ArgOffset += PtrByteSize; 4321 4322 continue; 4323 } 4324 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4325 // Store whatever pieces of the object are in registers 4326 // to memory. ArgOffset will be the address of the beginning 4327 // of the object. 4328 if (GPR_idx != Num_GPR_Regs) { 4329 unsigned VReg; 4330 if (isPPC64) 4331 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4332 else 4333 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4334 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4335 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4336 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4337 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4338 MachinePointerInfo(&*FuncArg, j)); 4339 MemOps.push_back(Store); 4340 ++GPR_idx; 4341 ArgOffset += PtrByteSize; 4342 } else { 4343 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4344 break; 4345 } 4346 } 4347 continue; 4348 } 4349 4350 switch (ObjectVT.getSimpleVT().SimpleTy) { 4351 default: llvm_unreachable("Unhandled argument type!"); 4352 case MVT::i1: 4353 case MVT::i32: 4354 if (!isPPC64) { 4355 if (GPR_idx != Num_GPR_Regs) { 4356 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4357 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4358 4359 if (ObjectVT == MVT::i1) 4360 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4361 4362 ++GPR_idx; 4363 } else { 4364 needsLoad = true; 4365 ArgSize = PtrByteSize; 4366 } 4367 // All int arguments reserve stack space in the Darwin ABI. 4368 ArgOffset += PtrByteSize; 4369 break; 4370 } 4371 LLVM_FALLTHROUGH; 4372 case MVT::i64: // PPC64 4373 if (GPR_idx != Num_GPR_Regs) { 4374 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4375 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4376 4377 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4378 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4379 // value to MVT::i64 and then truncate to the correct register size. 4380 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4381 4382 ++GPR_idx; 4383 } else { 4384 needsLoad = true; 4385 ArgSize = PtrByteSize; 4386 } 4387 // All int arguments reserve stack space in the Darwin ABI. 4388 ArgOffset += 8; 4389 break; 4390 4391 case MVT::f32: 4392 case MVT::f64: 4393 // Every 4 bytes of argument space consumes one of the GPRs available for 4394 // argument passing. 4395 if (GPR_idx != Num_GPR_Regs) { 4396 ++GPR_idx; 4397 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4398 ++GPR_idx; 4399 } 4400 if (FPR_idx != Num_FPR_Regs) { 4401 unsigned VReg; 4402 4403 if (ObjectVT == MVT::f32) 4404 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4405 else 4406 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4407 4408 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4409 ++FPR_idx; 4410 } else { 4411 needsLoad = true; 4412 } 4413 4414 // All FP arguments reserve stack space in the Darwin ABI. 4415 ArgOffset += isPPC64 ? 8 : ObjSize; 4416 break; 4417 case MVT::v4f32: 4418 case MVT::v4i32: 4419 case MVT::v8i16: 4420 case MVT::v16i8: 4421 // Note that vector arguments in registers don't reserve stack space, 4422 // except in varargs functions. 4423 if (VR_idx != Num_VR_Regs) { 4424 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4425 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4426 if (isVarArg) { 4427 while ((ArgOffset % 16) != 0) { 4428 ArgOffset += PtrByteSize; 4429 if (GPR_idx != Num_GPR_Regs) 4430 GPR_idx++; 4431 } 4432 ArgOffset += 16; 4433 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4434 } 4435 ++VR_idx; 4436 } else { 4437 if (!isVarArg && !isPPC64) { 4438 // Vectors go after all the nonvectors. 4439 CurArgOffset = VecArgOffset; 4440 VecArgOffset += 16; 4441 } else { 4442 // Vectors are aligned. 4443 ArgOffset = ((ArgOffset+15)/16)*16; 4444 CurArgOffset = ArgOffset; 4445 ArgOffset += 16; 4446 } 4447 needsLoad = true; 4448 } 4449 break; 4450 } 4451 4452 // We need to load the argument to a virtual register if we determined above 4453 // that we ran out of physical registers of the appropriate type. 4454 if (needsLoad) { 4455 int FI = MFI.CreateFixedObject(ObjSize, 4456 CurArgOffset + (ArgSize - ObjSize), 4457 isImmutable); 4458 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4459 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4460 } 4461 4462 InVals.push_back(ArgVal); 4463 } 4464 4465 // Allow for Altivec parameters at the end, if needed. 4466 if (nAltivecParamsAtEnd) { 4467 MinReservedArea = ((MinReservedArea+15)/16)*16; 4468 MinReservedArea += 16*nAltivecParamsAtEnd; 4469 } 4470 4471 // Area that is at least reserved in the caller of this function. 4472 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4473 4474 // Set the size that is at least reserved in caller of this function. Tail 4475 // call optimized functions' reserved stack space needs to be aligned so that 4476 // taking the difference between two stack areas will result in an aligned 4477 // stack. 4478 MinReservedArea = 4479 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4480 FuncInfo->setMinReservedArea(MinReservedArea); 4481 4482 // If the function takes variable number of arguments, make a frame index for 4483 // the start of the first vararg value... for expansion of llvm.va_start. 4484 if (isVarArg) { 4485 int Depth = ArgOffset; 4486 4487 FuncInfo->setVarArgsFrameIndex( 4488 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4489 Depth, true)); 4490 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4491 4492 // If this function is vararg, store any remaining integer argument regs 4493 // to their spots on the stack so that they may be loaded by dereferencing 4494 // the result of va_next. 4495 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4496 unsigned VReg; 4497 4498 if (isPPC64) 4499 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4500 else 4501 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4502 4503 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4504 SDValue Store = 4505 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4506 MemOps.push_back(Store); 4507 // Increment the address by four for the next argument to store 4508 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4509 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4510 } 4511 } 4512 4513 if (!MemOps.empty()) 4514 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4515 4516 return Chain; 4517 } 4518 4519 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4520 /// adjusted to accommodate the arguments for the tailcall. 4521 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4522 unsigned ParamSize) { 4523 4524 if (!isTailCall) return 0; 4525 4526 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4527 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4528 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4529 // Remember only if the new adjustment is bigger. 4530 if (SPDiff < FI->getTailCallSPDelta()) 4531 FI->setTailCallSPDelta(SPDiff); 4532 4533 return SPDiff; 4534 } 4535 4536 static bool isFunctionGlobalAddress(SDValue Callee); 4537 4538 static bool 4539 callsShareTOCBase(const Function *Caller, SDValue Callee, 4540 const TargetMachine &TM) { 4541 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4542 // don't have enough information to determine if the caller and calle share 4543 // the same TOC base, so we have to pessimistically assume they don't for 4544 // correctness. 4545 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4546 if (!G) 4547 return false; 4548 4549 const GlobalValue *GV = G->getGlobal(); 4550 // The medium and large code models are expected to provide a sufficiently 4551 // large TOC to provide all data addressing needs of a module with a 4552 // single TOC. Since each module will be addressed with a single TOC then we 4553 // only need to check that caller and callee don't cross dso boundaries. 4554 if (CodeModel::Medium == TM.getCodeModel() || 4555 CodeModel::Large == TM.getCodeModel()) 4556 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4557 4558 // Otherwise we need to ensure callee and caller are in the same section, 4559 // since the linker may allocate multiple TOCs, and we don't know which 4560 // sections will belong to the same TOC base. 4561 4562 if (!GV->isStrongDefinitionForLinker()) 4563 return false; 4564 4565 // Any explicitly-specified sections and section prefixes must also match. 4566 // Also, if we're using -ffunction-sections, then each function is always in 4567 // a different section (the same is true for COMDAT functions). 4568 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4569 GV->getSection() != Caller->getSection()) 4570 return false; 4571 if (const auto *F = dyn_cast<Function>(GV)) { 4572 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4573 return false; 4574 } 4575 4576 // If the callee might be interposed, then we can't assume the ultimate call 4577 // target will be in the same section. Even in cases where we can assume that 4578 // interposition won't happen, in any case where the linker might insert a 4579 // stub to allow for interposition, we must generate code as though 4580 // interposition might occur. To understand why this matters, consider a 4581 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4582 // in the same section, but a is in a different module (i.e. has a different 4583 // TOC base pointer). If the linker allows for interposition between b and c, 4584 // then it will generate a stub for the call edge between b and c which will 4585 // save the TOC pointer into the designated stack slot allocated by b. If we 4586 // return true here, and therefore allow a tail call between b and c, that 4587 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4588 // pointer into the stack slot allocated by a (where the a -> b stub saved 4589 // a's TOC base pointer). If we're not considering a tail call, but rather, 4590 // whether a nop is needed after the call instruction in b, because the linker 4591 // will insert a stub, it might complain about a missing nop if we omit it 4592 // (although many don't complain in this case). 4593 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4594 return false; 4595 4596 return true; 4597 } 4598 4599 static bool 4600 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4601 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4602 assert(Subtarget.is64BitELFABI()); 4603 4604 const unsigned PtrByteSize = 8; 4605 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4606 4607 static const MCPhysReg GPR[] = { 4608 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4609 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4610 }; 4611 static const MCPhysReg VR[] = { 4612 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4613 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4614 }; 4615 4616 const unsigned NumGPRs = array_lengthof(GPR); 4617 const unsigned NumFPRs = 13; 4618 const unsigned NumVRs = array_lengthof(VR); 4619 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4620 4621 unsigned NumBytes = LinkageSize; 4622 unsigned AvailableFPRs = NumFPRs; 4623 unsigned AvailableVRs = NumVRs; 4624 4625 for (const ISD::OutputArg& Param : Outs) { 4626 if (Param.Flags.isNest()) continue; 4627 4628 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4629 PtrByteSize, LinkageSize, ParamAreaSize, 4630 NumBytes, AvailableFPRs, AvailableVRs, 4631 Subtarget.hasQPX())) 4632 return true; 4633 } 4634 return false; 4635 } 4636 4637 static bool 4638 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4639 if (CS.arg_size() != CallerFn->arg_size()) 4640 return false; 4641 4642 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4643 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4644 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4645 4646 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4647 const Value* CalleeArg = *CalleeArgIter; 4648 const Value* CallerArg = &(*CallerArgIter); 4649 if (CalleeArg == CallerArg) 4650 continue; 4651 4652 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4653 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4654 // } 4655 // 1st argument of callee is undef and has the same type as caller. 4656 if (CalleeArg->getType() == CallerArg->getType() && 4657 isa<UndefValue>(CalleeArg)) 4658 continue; 4659 4660 return false; 4661 } 4662 4663 return true; 4664 } 4665 4666 // Returns true if TCO is possible between the callers and callees 4667 // calling conventions. 4668 static bool 4669 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4670 CallingConv::ID CalleeCC) { 4671 // Tail calls are possible with fastcc and ccc. 4672 auto isTailCallableCC = [] (CallingConv::ID CC){ 4673 return CC == CallingConv::C || CC == CallingConv::Fast; 4674 }; 4675 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4676 return false; 4677 4678 // We can safely tail call both fastcc and ccc callees from a c calling 4679 // convention caller. If the caller is fastcc, we may have less stack space 4680 // than a non-fastcc caller with the same signature so disable tail-calls in 4681 // that case. 4682 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4683 } 4684 4685 bool 4686 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4687 SDValue Callee, 4688 CallingConv::ID CalleeCC, 4689 ImmutableCallSite CS, 4690 bool isVarArg, 4691 const SmallVectorImpl<ISD::OutputArg> &Outs, 4692 const SmallVectorImpl<ISD::InputArg> &Ins, 4693 SelectionDAG& DAG) const { 4694 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4695 4696 if (DisableSCO && !TailCallOpt) return false; 4697 4698 // Variadic argument functions are not supported. 4699 if (isVarArg) return false; 4700 4701 auto &Caller = DAG.getMachineFunction().getFunction(); 4702 // Check that the calling conventions are compatible for tco. 4703 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4704 return false; 4705 4706 // Caller contains any byval parameter is not supported. 4707 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4708 return false; 4709 4710 // Callee contains any byval parameter is not supported, too. 4711 // Note: This is a quick work around, because in some cases, e.g. 4712 // caller's stack size > callee's stack size, we are still able to apply 4713 // sibling call optimization. For example, gcc is able to do SCO for caller1 4714 // in the following example, but not for caller2. 4715 // struct test { 4716 // long int a; 4717 // char ary[56]; 4718 // } gTest; 4719 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4720 // b->a = v.a; 4721 // return 0; 4722 // } 4723 // void caller1(struct test a, struct test c, struct test *b) { 4724 // callee(gTest, b); } 4725 // void caller2(struct test *b) { callee(gTest, b); } 4726 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4727 return false; 4728 4729 // If callee and caller use different calling conventions, we cannot pass 4730 // parameters on stack since offsets for the parameter area may be different. 4731 if (Caller.getCallingConv() != CalleeCC && 4732 needStackSlotPassParameters(Subtarget, Outs)) 4733 return false; 4734 4735 // No TCO/SCO on indirect call because Caller have to restore its TOC 4736 if (!isFunctionGlobalAddress(Callee) && 4737 !isa<ExternalSymbolSDNode>(Callee)) 4738 return false; 4739 4740 // If the caller and callee potentially have different TOC bases then we 4741 // cannot tail call since we need to restore the TOC pointer after the call. 4742 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4743 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4744 return false; 4745 4746 // TCO allows altering callee ABI, so we don't have to check further. 4747 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4748 return true; 4749 4750 if (DisableSCO) return false; 4751 4752 // If callee use the same argument list that caller is using, then we can 4753 // apply SCO on this case. If it is not, then we need to check if callee needs 4754 // stack for passing arguments. 4755 if (!hasSameArgumentList(&Caller, CS) && 4756 needStackSlotPassParameters(Subtarget, Outs)) { 4757 return false; 4758 } 4759 4760 return true; 4761 } 4762 4763 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4764 /// for tail call optimization. Targets which want to do tail call 4765 /// optimization should implement this function. 4766 bool 4767 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4768 CallingConv::ID CalleeCC, 4769 bool isVarArg, 4770 const SmallVectorImpl<ISD::InputArg> &Ins, 4771 SelectionDAG& DAG) const { 4772 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4773 return false; 4774 4775 // Variable argument functions are not supported. 4776 if (isVarArg) 4777 return false; 4778 4779 MachineFunction &MF = DAG.getMachineFunction(); 4780 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4781 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4782 // Functions containing by val parameters are not supported. 4783 for (unsigned i = 0; i != Ins.size(); i++) { 4784 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4785 if (Flags.isByVal()) return false; 4786 } 4787 4788 // Non-PIC/GOT tail calls are supported. 4789 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4790 return true; 4791 4792 // At the moment we can only do local tail calls (in same module, hidden 4793 // or protected) if we are generating PIC. 4794 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4795 return G->getGlobal()->hasHiddenVisibility() 4796 || G->getGlobal()->hasProtectedVisibility(); 4797 } 4798 4799 return false; 4800 } 4801 4802 /// isCallCompatibleAddress - Return the immediate to use if the specified 4803 /// 32-bit value is representable in the immediate field of a BxA instruction. 4804 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4805 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4806 if (!C) return nullptr; 4807 4808 int Addr = C->getZExtValue(); 4809 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4810 SignExtend32<26>(Addr) != Addr) 4811 return nullptr; // Top 6 bits have to be sext of immediate. 4812 4813 return DAG 4814 .getConstant( 4815 (int)C->getZExtValue() >> 2, SDLoc(Op), 4816 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4817 .getNode(); 4818 } 4819 4820 namespace { 4821 4822 struct TailCallArgumentInfo { 4823 SDValue Arg; 4824 SDValue FrameIdxOp; 4825 int FrameIdx = 0; 4826 4827 TailCallArgumentInfo() = default; 4828 }; 4829 4830 } // end anonymous namespace 4831 4832 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4833 static void StoreTailCallArgumentsToStackSlot( 4834 SelectionDAG &DAG, SDValue Chain, 4835 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4836 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4837 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4838 SDValue Arg = TailCallArgs[i].Arg; 4839 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4840 int FI = TailCallArgs[i].FrameIdx; 4841 // Store relative to framepointer. 4842 MemOpChains.push_back(DAG.getStore( 4843 Chain, dl, Arg, FIN, 4844 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4845 } 4846 } 4847 4848 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4849 /// the appropriate stack slot for the tail call optimized function call. 4850 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4851 SDValue OldRetAddr, SDValue OldFP, 4852 int SPDiff, const SDLoc &dl) { 4853 if (SPDiff) { 4854 // Calculate the new stack slot for the return address. 4855 MachineFunction &MF = DAG.getMachineFunction(); 4856 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4857 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4858 bool isPPC64 = Subtarget.isPPC64(); 4859 int SlotSize = isPPC64 ? 8 : 4; 4860 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4861 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4862 NewRetAddrLoc, true); 4863 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4864 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4865 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4866 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4867 } 4868 return Chain; 4869 } 4870 4871 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4872 /// the position of the argument. 4873 static void 4874 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4875 SDValue Arg, int SPDiff, unsigned ArgOffset, 4876 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4877 int Offset = ArgOffset + SPDiff; 4878 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4879 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4880 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4881 SDValue FIN = DAG.getFrameIndex(FI, VT); 4882 TailCallArgumentInfo Info; 4883 Info.Arg = Arg; 4884 Info.FrameIdxOp = FIN; 4885 Info.FrameIdx = FI; 4886 TailCallArguments.push_back(Info); 4887 } 4888 4889 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4890 /// stack slot. Returns the chain as result and the loaded frame pointers in 4891 /// LROpOut/FPOpout. Used when tail calling. 4892 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4893 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4894 SDValue &FPOpOut, const SDLoc &dl) const { 4895 if (SPDiff) { 4896 // Load the LR and FP stack slot for later adjusting. 4897 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4898 LROpOut = getReturnAddrFrameIndex(DAG); 4899 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4900 Chain = SDValue(LROpOut.getNode(), 1); 4901 } 4902 return Chain; 4903 } 4904 4905 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4906 /// by "Src" to address "Dst" of size "Size". Alignment information is 4907 /// specified by the specific parameter attribute. The copy will be passed as 4908 /// a byval function parameter. 4909 /// Sometimes what we are copying is the end of a larger object, the part that 4910 /// does not fit in registers. 4911 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4912 SDValue Chain, ISD::ArgFlagsTy Flags, 4913 SelectionDAG &DAG, const SDLoc &dl) { 4914 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4915 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4916 Flags.getNonZeroByValAlign(), false, false, false, 4917 MachinePointerInfo(), MachinePointerInfo()); 4918 } 4919 4920 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4921 /// tail calls. 4922 static void LowerMemOpCallTo( 4923 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4924 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4925 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4926 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4927 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4928 if (!isTailCall) { 4929 if (isVector) { 4930 SDValue StackPtr; 4931 if (isPPC64) 4932 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4933 else 4934 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4935 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4936 DAG.getConstant(ArgOffset, dl, PtrVT)); 4937 } 4938 MemOpChains.push_back( 4939 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4940 // Calculate and remember argument location. 4941 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4942 TailCallArguments); 4943 } 4944 4945 static void 4946 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4947 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4948 SDValue FPOp, 4949 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4950 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4951 // might overwrite each other in case of tail call optimization. 4952 SmallVector<SDValue, 8> MemOpChains2; 4953 // Do not flag preceding copytoreg stuff together with the following stuff. 4954 InFlag = SDValue(); 4955 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4956 MemOpChains2, dl); 4957 if (!MemOpChains2.empty()) 4958 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4959 4960 // Store the return address to the appropriate stack slot. 4961 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4962 4963 // Emit callseq_end just before tailcall node. 4964 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4965 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4966 InFlag = Chain.getValue(1); 4967 } 4968 4969 // Is this global address that of a function that can be called by name? (as 4970 // opposed to something that must hold a descriptor for an indirect call). 4971 static bool isFunctionGlobalAddress(SDValue Callee) { 4972 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4973 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4974 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4975 return false; 4976 4977 return G->getGlobal()->getValueType()->isFunctionTy(); 4978 } 4979 4980 return false; 4981 } 4982 4983 SDValue PPCTargetLowering::LowerCallResult( 4984 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4985 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4986 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4987 SmallVector<CCValAssign, 16> RVLocs; 4988 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4989 *DAG.getContext()); 4990 4991 CCRetInfo.AnalyzeCallResult( 4992 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4993 ? RetCC_PPC_Cold 4994 : RetCC_PPC); 4995 4996 // Copy all of the result registers out of their specified physreg. 4997 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4998 CCValAssign &VA = RVLocs[i]; 4999 assert(VA.isRegLoc() && "Can only return in registers!"); 5000 5001 SDValue Val; 5002 5003 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5004 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5005 InFlag); 5006 Chain = Lo.getValue(1); 5007 InFlag = Lo.getValue(2); 5008 VA = RVLocs[++i]; // skip ahead to next loc 5009 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5010 InFlag); 5011 Chain = Hi.getValue(1); 5012 InFlag = Hi.getValue(2); 5013 if (!Subtarget.isLittleEndian()) 5014 std::swap (Lo, Hi); 5015 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5016 } else { 5017 Val = DAG.getCopyFromReg(Chain, dl, 5018 VA.getLocReg(), VA.getLocVT(), InFlag); 5019 Chain = Val.getValue(1); 5020 InFlag = Val.getValue(2); 5021 } 5022 5023 switch (VA.getLocInfo()) { 5024 default: llvm_unreachable("Unknown loc info!"); 5025 case CCValAssign::Full: break; 5026 case CCValAssign::AExt: 5027 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5028 break; 5029 case CCValAssign::ZExt: 5030 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5031 DAG.getValueType(VA.getValVT())); 5032 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5033 break; 5034 case CCValAssign::SExt: 5035 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5036 DAG.getValueType(VA.getValVT())); 5037 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5038 break; 5039 } 5040 5041 InVals.push_back(Val); 5042 } 5043 5044 return Chain; 5045 } 5046 5047 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5048 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5049 // PatchPoint calls are not indirect. 5050 if (isPatchPoint) 5051 return false; 5052 5053 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5054 return false; 5055 5056 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5057 // becuase the immediate function pointer points to a descriptor instead of 5058 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5059 // pointer immediate points to the global entry point, while the BLA would 5060 // need to jump to the local entry point (see rL211174). 5061 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5062 isBLACompatibleAddress(Callee, DAG)) 5063 return false; 5064 5065 return true; 5066 } 5067 5068 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5069 const Function &Caller, 5070 const SDValue &Callee, 5071 const PPCSubtarget &Subtarget, 5072 const TargetMachine &TM) { 5073 if (CFlags.IsTailCall) 5074 return PPCISD::TC_RETURN; 5075 5076 // This is a call through a function pointer. 5077 if (CFlags.IsIndirect) { 5078 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5079 // indirect calls. The save of the caller's TOC pointer to the stack will be 5080 // inserted into the DAG as part of call lowering. The restore of the TOC 5081 // pointer is modeled by using a pseudo instruction for the call opcode that 5082 // represents the 2 instruction sequence of an indirect branch and link, 5083 // immediately followed by a load of the TOC pointer from the the stack save 5084 // slot into gpr2. 5085 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5086 return PPCISD::BCTRL_LOAD_TOC; 5087 5088 // An indirect call that does not need a TOC restore. 5089 return PPCISD::BCTRL; 5090 } 5091 5092 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5093 // immediately following the call instruction if the caller and callee may 5094 // have different TOC bases. At link time if the linker determines the calls 5095 // may not share a TOC base, the call is redirected to a trampoline inserted 5096 // by the linker. The trampoline will (among other things) save the callers 5097 // TOC pointer at an ABI designated offset in the linkage area and the linker 5098 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5099 // into gpr2. 5100 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5101 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5102 : PPCISD::CALL_NOP; 5103 5104 return PPCISD::CALL; 5105 } 5106 5107 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5108 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5109 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5110 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5111 return SDValue(Dest, 0); 5112 5113 // Returns true if the callee is local, and false otherwise. 5114 auto isLocalCallee = [&]() { 5115 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5116 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5117 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5118 5119 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5120 !dyn_cast_or_null<GlobalIFunc>(GV); 5121 }; 5122 5123 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5124 // a static relocation model causes some versions of GNU LD (2.17.50, at 5125 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5126 // built with secure-PLT. 5127 bool UsePlt = 5128 Subtarget.is32BitELFABI() && !isLocalCallee() && 5129 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5130 5131 // On AIX, direct function calls reference the symbol for the function's 5132 // entry point, which is named by prepending a "." before the function's 5133 // C-linkage name. 5134 const auto getAIXFuncEntryPointSymbolSDNode = 5135 [&](StringRef FuncName, bool IsDeclaration, 5136 const XCOFF::StorageClass &SC) { 5137 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5138 5139 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5140 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5141 5142 if (IsDeclaration && !S->hasContainingCsect()) { 5143 // On AIX, an undefined symbol needs to be associated with a 5144 // MCSectionXCOFF to get the correct storage mapping class. 5145 // In this case, XCOFF::XMC_PR. 5146 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5147 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5148 SectionKind::getMetadata()); 5149 S->setContainingCsect(Sec); 5150 } 5151 5152 MVT PtrVT = 5153 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5154 return DAG.getMCSymbol(S, PtrVT); 5155 }; 5156 5157 if (isFunctionGlobalAddress(Callee)) { 5158 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5159 const GlobalValue *GV = G->getGlobal(); 5160 5161 if (!Subtarget.isAIXABI()) 5162 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5163 UsePlt ? PPCII::MO_PLT : 0); 5164 5165 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5166 const GlobalObject *GO = cast<GlobalObject>(GV); 5167 const XCOFF::StorageClass SC = 5168 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5169 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5170 SC); 5171 } 5172 5173 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5174 const char *SymName = S->getSymbol(); 5175 if (!Subtarget.isAIXABI()) 5176 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5177 UsePlt ? PPCII::MO_PLT : 0); 5178 5179 // If there exists a user-declared function whose name is the same as the 5180 // ExternalSymbol's, then we pick up the user-declared version. 5181 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5182 if (const Function *F = 5183 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5184 const XCOFF::StorageClass SC = 5185 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5186 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5187 SC); 5188 } 5189 5190 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5191 } 5192 5193 // No transformation needed. 5194 assert(Callee.getNode() && "What no callee?"); 5195 return Callee; 5196 } 5197 5198 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5199 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5200 "Expected a CALLSEQ_STARTSDNode."); 5201 5202 // The last operand is the chain, except when the node has glue. If the node 5203 // has glue, then the last operand is the glue, and the chain is the second 5204 // last operand. 5205 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5206 if (LastValue.getValueType() != MVT::Glue) 5207 return LastValue; 5208 5209 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5210 } 5211 5212 // Creates the node that moves a functions address into the count register 5213 // to prepare for an indirect call instruction. 5214 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5215 SDValue &Glue, SDValue &Chain, 5216 const SDLoc &dl) { 5217 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5218 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5219 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5220 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5221 // The glue is the second value produced. 5222 Glue = Chain.getValue(1); 5223 } 5224 5225 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5226 SDValue &Glue, SDValue &Chain, 5227 SDValue CallSeqStart, 5228 ImmutableCallSite CS, const SDLoc &dl, 5229 bool hasNest, 5230 const PPCSubtarget &Subtarget) { 5231 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5232 // entry point, but to the function descriptor (the function entry point 5233 // address is part of the function descriptor though). 5234 // The function descriptor is a three doubleword structure with the 5235 // following fields: function entry point, TOC base address and 5236 // environment pointer. 5237 // Thus for a call through a function pointer, the following actions need 5238 // to be performed: 5239 // 1. Save the TOC of the caller in the TOC save area of its stack 5240 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5241 // 2. Load the address of the function entry point from the function 5242 // descriptor. 5243 // 3. Load the TOC of the callee from the function descriptor into r2. 5244 // 4. Load the environment pointer from the function descriptor into 5245 // r11. 5246 // 5. Branch to the function entry point address. 5247 // 6. On return of the callee, the TOC of the caller needs to be 5248 // restored (this is done in FinishCall()). 5249 // 5250 // The loads are scheduled at the beginning of the call sequence, and the 5251 // register copies are flagged together to ensure that no other 5252 // operations can be scheduled in between. E.g. without flagging the 5253 // copies together, a TOC access in the caller could be scheduled between 5254 // the assignment of the callee TOC and the branch to the callee, which leads 5255 // to incorrect code. 5256 5257 // Start by loading the function address from the descriptor. 5258 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5259 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5260 ? (MachineMemOperand::MODereferenceable | 5261 MachineMemOperand::MOInvariant) 5262 : MachineMemOperand::MONone; 5263 5264 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5265 5266 // Registers used in building the DAG. 5267 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5268 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5269 5270 // Offsets of descriptor members. 5271 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5272 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5273 5274 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5275 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5276 5277 // One load for the functions entry point address. 5278 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5279 Alignment, MMOFlags); 5280 5281 // One for loading the TOC anchor for the module that contains the called 5282 // function. 5283 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5284 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5285 SDValue TOCPtr = 5286 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5287 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5288 5289 // One for loading the environment pointer. 5290 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5291 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5292 SDValue LoadEnvPtr = 5293 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5294 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5295 5296 5297 // Then copy the newly loaded TOC anchor to the TOC pointer. 5298 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5299 Chain = TOCVal.getValue(0); 5300 Glue = TOCVal.getValue(1); 5301 5302 // If the function call has an explicit 'nest' parameter, it takes the 5303 // place of the environment pointer. 5304 assert((!hasNest || !Subtarget.isAIXABI()) && 5305 "Nest parameter is not supported on AIX."); 5306 if (!hasNest) { 5307 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5308 Chain = EnvVal.getValue(0); 5309 Glue = EnvVal.getValue(1); 5310 } 5311 5312 // The rest of the indirect call sequence is the same as the non-descriptor 5313 // DAG. 5314 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5315 } 5316 5317 static void 5318 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5319 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5320 SelectionDAG &DAG, 5321 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5322 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5323 const PPCSubtarget &Subtarget) { 5324 const bool IsPPC64 = Subtarget.isPPC64(); 5325 // MVT for a general purpose register. 5326 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5327 5328 // First operand is always the chain. 5329 Ops.push_back(Chain); 5330 5331 // If it's a direct call pass the callee as the second operand. 5332 if (!CFlags.IsIndirect) 5333 Ops.push_back(Callee); 5334 else { 5335 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5336 5337 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5338 // on the stack (this would have been done in `LowerCall_64SVR4` or 5339 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5340 // represents both the indirect branch and a load that restores the TOC 5341 // pointer from the linkage area. The operand for the TOC restore is an add 5342 // of the TOC save offset to the stack pointer. This must be the second 5343 // operand: after the chain input but before any other variadic arguments. 5344 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5345 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5346 5347 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5348 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5349 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5350 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5351 Ops.push_back(AddTOC); 5352 } 5353 5354 // Add the register used for the environment pointer. 5355 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5356 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5357 RegVT)); 5358 5359 5360 // Add CTR register as callee so a bctr can be emitted later. 5361 if (CFlags.IsTailCall) 5362 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5363 } 5364 5365 // If this is a tail call add stack pointer delta. 5366 if (CFlags.IsTailCall) 5367 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5368 5369 // Add argument registers to the end of the list so that they are known live 5370 // into the call. 5371 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5372 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5373 RegsToPass[i].second.getValueType())); 5374 5375 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5376 // no way to mark dependencies as implicit here. 5377 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5378 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5379 !CFlags.IsPatchPoint) 5380 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5381 5382 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5383 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5384 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5385 5386 // Add a register mask operand representing the call-preserved registers. 5387 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5388 const uint32_t *Mask = 5389 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5390 assert(Mask && "Missing call preserved mask for calling convention"); 5391 Ops.push_back(DAG.getRegisterMask(Mask)); 5392 5393 // If the glue is valid, it is the last operand. 5394 if (Glue.getNode()) 5395 Ops.push_back(Glue); 5396 } 5397 5398 SDValue PPCTargetLowering::FinishCall( 5399 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5400 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5401 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5402 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5403 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5404 5405 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5406 setUsesTOCBasePtr(DAG); 5407 5408 unsigned CallOpc = 5409 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5410 Subtarget, DAG.getTarget()); 5411 5412 if (!CFlags.IsIndirect) 5413 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5414 else if (Subtarget.usesFunctionDescriptors()) 5415 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5416 dl, CFlags.HasNest, Subtarget); 5417 else 5418 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5419 5420 // Build the operand list for the call instruction. 5421 SmallVector<SDValue, 8> Ops; 5422 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5423 SPDiff, Subtarget); 5424 5425 // Emit tail call. 5426 if (CFlags.IsTailCall) { 5427 assert(((Callee.getOpcode() == ISD::Register && 5428 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5429 Callee.getOpcode() == ISD::TargetExternalSymbol || 5430 Callee.getOpcode() == ISD::TargetGlobalAddress || 5431 isa<ConstantSDNode>(Callee)) && 5432 "Expecting a global address, external symbol, absolute value or " 5433 "register"); 5434 assert(CallOpc == PPCISD::TC_RETURN && 5435 "Unexpected call opcode for a tail call."); 5436 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5437 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5438 } 5439 5440 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5441 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5442 Glue = Chain.getValue(1); 5443 5444 // When performing tail call optimization the callee pops its arguments off 5445 // the stack. Account for this here so these bytes can be pushed back on in 5446 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5447 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5448 getTargetMachine().Options.GuaranteedTailCallOpt) 5449 ? NumBytes 5450 : 0; 5451 5452 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5453 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5454 Glue, dl); 5455 Glue = Chain.getValue(1); 5456 5457 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5458 DAG, InVals); 5459 } 5460 5461 SDValue 5462 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5463 SmallVectorImpl<SDValue> &InVals) const { 5464 SelectionDAG &DAG = CLI.DAG; 5465 SDLoc &dl = CLI.DL; 5466 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5467 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5468 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5469 SDValue Chain = CLI.Chain; 5470 SDValue Callee = CLI.Callee; 5471 bool &isTailCall = CLI.IsTailCall; 5472 CallingConv::ID CallConv = CLI.CallConv; 5473 bool isVarArg = CLI.IsVarArg; 5474 bool isPatchPoint = CLI.IsPatchPoint; 5475 ImmutableCallSite CS = CLI.CS; 5476 5477 if (isTailCall) { 5478 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5479 isTailCall = false; 5480 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5481 isTailCall = 5482 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5483 isVarArg, Outs, Ins, DAG); 5484 else 5485 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5486 Ins, DAG); 5487 if (isTailCall) { 5488 ++NumTailCalls; 5489 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5490 ++NumSiblingCalls; 5491 5492 assert(isa<GlobalAddressSDNode>(Callee) && 5493 "Callee should be an llvm::Function object."); 5494 LLVM_DEBUG( 5495 const GlobalValue *GV = 5496 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5497 const unsigned Width = 5498 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5499 dbgs() << "TCO caller: " 5500 << left_justify(DAG.getMachineFunction().getName(), Width) 5501 << ", callee linkage: " << GV->getVisibility() << ", " 5502 << GV->getLinkage() << "\n"); 5503 } 5504 } 5505 5506 if (!isTailCall && CS && CS.isMustTailCall()) 5507 report_fatal_error("failed to perform tail call elimination on a call " 5508 "site marked musttail"); 5509 5510 // When long calls (i.e. indirect calls) are always used, calls are always 5511 // made via function pointer. If we have a function name, first translate it 5512 // into a pointer. 5513 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5514 !isTailCall) 5515 Callee = LowerGlobalAddress(Callee, DAG); 5516 5517 CallFlags CFlags( 5518 CallConv, isTailCall, isVarArg, isPatchPoint, 5519 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5520 // hasNest 5521 Subtarget.is64BitELFABI() && 5522 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); })); 5523 5524 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5525 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5526 InVals, CS); 5527 5528 if (Subtarget.isSVR4ABI()) 5529 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5530 InVals, CS); 5531 5532 if (Subtarget.isAIXABI()) 5533 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5534 InVals, CS); 5535 5536 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5537 InVals, CS); 5538 } 5539 5540 SDValue PPCTargetLowering::LowerCall_32SVR4( 5541 SDValue Chain, SDValue Callee, CallFlags CFlags, 5542 const SmallVectorImpl<ISD::OutputArg> &Outs, 5543 const SmallVectorImpl<SDValue> &OutVals, 5544 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5545 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5546 ImmutableCallSite CS) const { 5547 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5548 // of the 32-bit SVR4 ABI stack frame layout. 5549 5550 const CallingConv::ID CallConv = CFlags.CallConv; 5551 const bool IsVarArg = CFlags.IsVarArg; 5552 const bool IsTailCall = CFlags.IsTailCall; 5553 5554 assert((CallConv == CallingConv::C || 5555 CallConv == CallingConv::Cold || 5556 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5557 5558 unsigned PtrByteSize = 4; 5559 5560 MachineFunction &MF = DAG.getMachineFunction(); 5561 5562 // Mark this function as potentially containing a function that contains a 5563 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5564 // and restoring the callers stack pointer in this functions epilog. This is 5565 // done because by tail calling the called function might overwrite the value 5566 // in this function's (MF) stack pointer stack slot 0(SP). 5567 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5568 CallConv == CallingConv::Fast) 5569 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5570 5571 // Count how many bytes are to be pushed on the stack, including the linkage 5572 // area, parameter list area and the part of the local variable space which 5573 // contains copies of aggregates which are passed by value. 5574 5575 // Assign locations to all of the outgoing arguments. 5576 SmallVector<CCValAssign, 16> ArgLocs; 5577 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5578 5579 // Reserve space for the linkage area on the stack. 5580 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5581 PtrByteSize); 5582 if (useSoftFloat()) 5583 CCInfo.PreAnalyzeCallOperands(Outs); 5584 5585 if (IsVarArg) { 5586 // Handle fixed and variable vector arguments differently. 5587 // Fixed vector arguments go into registers as long as registers are 5588 // available. Variable vector arguments always go into memory. 5589 unsigned NumArgs = Outs.size(); 5590 5591 for (unsigned i = 0; i != NumArgs; ++i) { 5592 MVT ArgVT = Outs[i].VT; 5593 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5594 bool Result; 5595 5596 if (Outs[i].IsFixed) { 5597 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5598 CCInfo); 5599 } else { 5600 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5601 ArgFlags, CCInfo); 5602 } 5603 5604 if (Result) { 5605 #ifndef NDEBUG 5606 errs() << "Call operand #" << i << " has unhandled type " 5607 << EVT(ArgVT).getEVTString() << "\n"; 5608 #endif 5609 llvm_unreachable(nullptr); 5610 } 5611 } 5612 } else { 5613 // All arguments are treated the same. 5614 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5615 } 5616 CCInfo.clearWasPPCF128(); 5617 5618 // Assign locations to all of the outgoing aggregate by value arguments. 5619 SmallVector<CCValAssign, 16> ByValArgLocs; 5620 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5621 5622 // Reserve stack space for the allocations in CCInfo. 5623 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5624 5625 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5626 5627 // Size of the linkage area, parameter list area and the part of the local 5628 // space variable where copies of aggregates which are passed by value are 5629 // stored. 5630 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5631 5632 // Calculate by how many bytes the stack has to be adjusted in case of tail 5633 // call optimization. 5634 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5635 5636 // Adjust the stack pointer for the new arguments... 5637 // These operations are automatically eliminated by the prolog/epilog pass 5638 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5639 SDValue CallSeqStart = Chain; 5640 5641 // Load the return address and frame pointer so it can be moved somewhere else 5642 // later. 5643 SDValue LROp, FPOp; 5644 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5645 5646 // Set up a copy of the stack pointer for use loading and storing any 5647 // arguments that may not fit in the registers available for argument 5648 // passing. 5649 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5650 5651 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5652 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5653 SmallVector<SDValue, 8> MemOpChains; 5654 5655 bool seenFloatArg = false; 5656 // Walk the register/memloc assignments, inserting copies/loads. 5657 // i - Tracks the index into the list of registers allocated for the call 5658 // RealArgIdx - Tracks the index into the list of actual function arguments 5659 // j - Tracks the index into the list of byval arguments 5660 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5661 i != e; 5662 ++i, ++RealArgIdx) { 5663 CCValAssign &VA = ArgLocs[i]; 5664 SDValue Arg = OutVals[RealArgIdx]; 5665 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5666 5667 if (Flags.isByVal()) { 5668 // Argument is an aggregate which is passed by value, thus we need to 5669 // create a copy of it in the local variable space of the current stack 5670 // frame (which is the stack frame of the caller) and pass the address of 5671 // this copy to the callee. 5672 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5673 CCValAssign &ByValVA = ByValArgLocs[j++]; 5674 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5675 5676 // Memory reserved in the local variable space of the callers stack frame. 5677 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5678 5679 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5680 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5681 StackPtr, PtrOff); 5682 5683 // Create a copy of the argument in the local area of the current 5684 // stack frame. 5685 SDValue MemcpyCall = 5686 CreateCopyOfByValArgument(Arg, PtrOff, 5687 CallSeqStart.getNode()->getOperand(0), 5688 Flags, DAG, dl); 5689 5690 // This must go outside the CALLSEQ_START..END. 5691 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5692 SDLoc(MemcpyCall)); 5693 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5694 NewCallSeqStart.getNode()); 5695 Chain = CallSeqStart = NewCallSeqStart; 5696 5697 // Pass the address of the aggregate copy on the stack either in a 5698 // physical register or in the parameter list area of the current stack 5699 // frame to the callee. 5700 Arg = PtrOff; 5701 } 5702 5703 // When useCRBits() is true, there can be i1 arguments. 5704 // It is because getRegisterType(MVT::i1) => MVT::i1, 5705 // and for other integer types getRegisterType() => MVT::i32. 5706 // Extend i1 and ensure callee will get i32. 5707 if (Arg.getValueType() == MVT::i1) 5708 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5709 dl, MVT::i32, Arg); 5710 5711 if (VA.isRegLoc()) { 5712 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5713 // Put argument in a physical register. 5714 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5715 bool IsLE = Subtarget.isLittleEndian(); 5716 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5717 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5718 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5719 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5720 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5721 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5722 SVal.getValue(0))); 5723 } else 5724 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5725 } else { 5726 // Put argument in the parameter list area of the current stack frame. 5727 assert(VA.isMemLoc()); 5728 unsigned LocMemOffset = VA.getLocMemOffset(); 5729 5730 if (!IsTailCall) { 5731 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5732 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5733 StackPtr, PtrOff); 5734 5735 MemOpChains.push_back( 5736 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5737 } else { 5738 // Calculate and remember argument location. 5739 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5740 TailCallArguments); 5741 } 5742 } 5743 } 5744 5745 if (!MemOpChains.empty()) 5746 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5747 5748 // Build a sequence of copy-to-reg nodes chained together with token chain 5749 // and flag operands which copy the outgoing args into the appropriate regs. 5750 SDValue InFlag; 5751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5752 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5753 RegsToPass[i].second, InFlag); 5754 InFlag = Chain.getValue(1); 5755 } 5756 5757 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5758 // registers. 5759 if (IsVarArg) { 5760 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5761 SDValue Ops[] = { Chain, InFlag }; 5762 5763 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5764 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5765 5766 InFlag = Chain.getValue(1); 5767 } 5768 5769 if (IsTailCall) 5770 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5771 TailCallArguments); 5772 5773 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5774 Callee, SPDiff, NumBytes, Ins, InVals, CS); 5775 } 5776 5777 // Copy an argument into memory, being careful to do this outside the 5778 // call sequence for the call to which the argument belongs. 5779 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5780 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5781 SelectionDAG &DAG, const SDLoc &dl) const { 5782 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5783 CallSeqStart.getNode()->getOperand(0), 5784 Flags, DAG, dl); 5785 // The MEMCPY must go outside the CALLSEQ_START..END. 5786 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5787 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5788 SDLoc(MemcpyCall)); 5789 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5790 NewCallSeqStart.getNode()); 5791 return NewCallSeqStart; 5792 } 5793 5794 SDValue PPCTargetLowering::LowerCall_64SVR4( 5795 SDValue Chain, SDValue Callee, CallFlags CFlags, 5796 const SmallVectorImpl<ISD::OutputArg> &Outs, 5797 const SmallVectorImpl<SDValue> &OutVals, 5798 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5799 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5800 ImmutableCallSite CS) const { 5801 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5802 bool isLittleEndian = Subtarget.isLittleEndian(); 5803 unsigned NumOps = Outs.size(); 5804 bool IsSibCall = false; 5805 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5806 5807 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5808 unsigned PtrByteSize = 8; 5809 5810 MachineFunction &MF = DAG.getMachineFunction(); 5811 5812 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5813 IsSibCall = true; 5814 5815 // Mark this function as potentially containing a function that contains a 5816 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5817 // and restoring the callers stack pointer in this functions epilog. This is 5818 // done because by tail calling the called function might overwrite the value 5819 // in this function's (MF) stack pointer stack slot 0(SP). 5820 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5821 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5822 5823 assert(!(IsFastCall && CFlags.IsVarArg) && 5824 "fastcc not supported on varargs functions"); 5825 5826 // Count how many bytes are to be pushed on the stack, including the linkage 5827 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5828 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5829 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5830 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5831 unsigned NumBytes = LinkageSize; 5832 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5833 unsigned &QFPR_idx = FPR_idx; 5834 5835 static const MCPhysReg GPR[] = { 5836 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5837 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5838 }; 5839 static const MCPhysReg VR[] = { 5840 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5841 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5842 }; 5843 5844 const unsigned NumGPRs = array_lengthof(GPR); 5845 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5846 const unsigned NumVRs = array_lengthof(VR); 5847 const unsigned NumQFPRs = NumFPRs; 5848 5849 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5850 // can be passed to the callee in registers. 5851 // For the fast calling convention, there is another check below. 5852 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5853 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5854 if (!HasParameterArea) { 5855 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5856 unsigned AvailableFPRs = NumFPRs; 5857 unsigned AvailableVRs = NumVRs; 5858 unsigned NumBytesTmp = NumBytes; 5859 for (unsigned i = 0; i != NumOps; ++i) { 5860 if (Outs[i].Flags.isNest()) continue; 5861 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5862 PtrByteSize, LinkageSize, ParamAreaSize, 5863 NumBytesTmp, AvailableFPRs, AvailableVRs, 5864 Subtarget.hasQPX())) 5865 HasParameterArea = true; 5866 } 5867 } 5868 5869 // When using the fast calling convention, we don't provide backing for 5870 // arguments that will be in registers. 5871 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5872 5873 // Avoid allocating parameter area for fastcc functions if all the arguments 5874 // can be passed in the registers. 5875 if (IsFastCall) 5876 HasParameterArea = false; 5877 5878 // Add up all the space actually used. 5879 for (unsigned i = 0; i != NumOps; ++i) { 5880 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5881 EVT ArgVT = Outs[i].VT; 5882 EVT OrigVT = Outs[i].ArgVT; 5883 5884 if (Flags.isNest()) 5885 continue; 5886 5887 if (IsFastCall) { 5888 if (Flags.isByVal()) { 5889 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5890 if (NumGPRsUsed > NumGPRs) 5891 HasParameterArea = true; 5892 } else { 5893 switch (ArgVT.getSimpleVT().SimpleTy) { 5894 default: llvm_unreachable("Unexpected ValueType for argument!"); 5895 case MVT::i1: 5896 case MVT::i32: 5897 case MVT::i64: 5898 if (++NumGPRsUsed <= NumGPRs) 5899 continue; 5900 break; 5901 case MVT::v4i32: 5902 case MVT::v8i16: 5903 case MVT::v16i8: 5904 case MVT::v2f64: 5905 case MVT::v2i64: 5906 case MVT::v1i128: 5907 case MVT::f128: 5908 if (++NumVRsUsed <= NumVRs) 5909 continue; 5910 break; 5911 case MVT::v4f32: 5912 // When using QPX, this is handled like a FP register, otherwise, it 5913 // is an Altivec register. 5914 if (Subtarget.hasQPX()) { 5915 if (++NumFPRsUsed <= NumFPRs) 5916 continue; 5917 } else { 5918 if (++NumVRsUsed <= NumVRs) 5919 continue; 5920 } 5921 break; 5922 case MVT::f32: 5923 case MVT::f64: 5924 case MVT::v4f64: // QPX 5925 case MVT::v4i1: // QPX 5926 if (++NumFPRsUsed <= NumFPRs) 5927 continue; 5928 break; 5929 } 5930 HasParameterArea = true; 5931 } 5932 } 5933 5934 /* Respect alignment of argument on the stack. */ 5935 auto Alignement = 5936 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5937 NumBytes = alignTo(NumBytes, Alignement); 5938 5939 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5940 if (Flags.isInConsecutiveRegsLast()) 5941 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5942 } 5943 5944 unsigned NumBytesActuallyUsed = NumBytes; 5945 5946 // In the old ELFv1 ABI, 5947 // the prolog code of the callee may store up to 8 GPR argument registers to 5948 // the stack, allowing va_start to index over them in memory if its varargs. 5949 // Because we cannot tell if this is needed on the caller side, we have to 5950 // conservatively assume that it is needed. As such, make sure we have at 5951 // least enough stack space for the caller to store the 8 GPRs. 5952 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5953 // really requires memory operands, e.g. a vararg function. 5954 if (HasParameterArea) 5955 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5956 else 5957 NumBytes = LinkageSize; 5958 5959 // Tail call needs the stack to be aligned. 5960 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5961 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5962 5963 int SPDiff = 0; 5964 5965 // Calculate by how many bytes the stack has to be adjusted in case of tail 5966 // call optimization. 5967 if (!IsSibCall) 5968 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5969 5970 // To protect arguments on the stack from being clobbered in a tail call, 5971 // force all the loads to happen before doing any other lowering. 5972 if (CFlags.IsTailCall) 5973 Chain = DAG.getStackArgumentTokenFactor(Chain); 5974 5975 // Adjust the stack pointer for the new arguments... 5976 // These operations are automatically eliminated by the prolog/epilog pass 5977 if (!IsSibCall) 5978 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5979 SDValue CallSeqStart = Chain; 5980 5981 // Load the return address and frame pointer so it can be move somewhere else 5982 // later. 5983 SDValue LROp, FPOp; 5984 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5985 5986 // Set up a copy of the stack pointer for use loading and storing any 5987 // arguments that may not fit in the registers available for argument 5988 // passing. 5989 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5990 5991 // Figure out which arguments are going to go in registers, and which in 5992 // memory. Also, if this is a vararg function, floating point operations 5993 // must be stored to our stack, and loaded into integer regs as well, if 5994 // any integer regs are available for argument passing. 5995 unsigned ArgOffset = LinkageSize; 5996 5997 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5998 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5999 6000 SmallVector<SDValue, 8> MemOpChains; 6001 for (unsigned i = 0; i != NumOps; ++i) { 6002 SDValue Arg = OutVals[i]; 6003 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6004 EVT ArgVT = Outs[i].VT; 6005 EVT OrigVT = Outs[i].ArgVT; 6006 6007 // PtrOff will be used to store the current argument to the stack if a 6008 // register cannot be found for it. 6009 SDValue PtrOff; 6010 6011 // We re-align the argument offset for each argument, except when using the 6012 // fast calling convention, when we need to make sure we do that only when 6013 // we'll actually use a stack slot. 6014 auto ComputePtrOff = [&]() { 6015 /* Respect alignment of argument on the stack. */ 6016 auto Alignment = 6017 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6018 ArgOffset = alignTo(ArgOffset, Alignment); 6019 6020 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6021 6022 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6023 }; 6024 6025 if (!IsFastCall) { 6026 ComputePtrOff(); 6027 6028 /* Compute GPR index associated with argument offset. */ 6029 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6030 GPR_idx = std::min(GPR_idx, NumGPRs); 6031 } 6032 6033 // Promote integers to 64-bit values. 6034 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6035 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6036 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6037 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6038 } 6039 6040 // FIXME memcpy is used way more than necessary. Correctness first. 6041 // Note: "by value" is code for passing a structure by value, not 6042 // basic types. 6043 if (Flags.isByVal()) { 6044 // Note: Size includes alignment padding, so 6045 // struct x { short a; char b; } 6046 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6047 // These are the proper values we need for right-justifying the 6048 // aggregate in a parameter register. 6049 unsigned Size = Flags.getByValSize(); 6050 6051 // An empty aggregate parameter takes up no storage and no 6052 // registers. 6053 if (Size == 0) 6054 continue; 6055 6056 if (IsFastCall) 6057 ComputePtrOff(); 6058 6059 // All aggregates smaller than 8 bytes must be passed right-justified. 6060 if (Size==1 || Size==2 || Size==4) { 6061 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6062 if (GPR_idx != NumGPRs) { 6063 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6064 MachinePointerInfo(), VT); 6065 MemOpChains.push_back(Load.getValue(1)); 6066 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6067 6068 ArgOffset += PtrByteSize; 6069 continue; 6070 } 6071 } 6072 6073 if (GPR_idx == NumGPRs && Size < 8) { 6074 SDValue AddPtr = PtrOff; 6075 if (!isLittleEndian) { 6076 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6077 PtrOff.getValueType()); 6078 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6079 } 6080 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6081 CallSeqStart, 6082 Flags, DAG, dl); 6083 ArgOffset += PtrByteSize; 6084 continue; 6085 } 6086 // Copy entire object into memory. There are cases where gcc-generated 6087 // code assumes it is there, even if it could be put entirely into 6088 // registers. (This is not what the doc says.) 6089 6090 // FIXME: The above statement is likely due to a misunderstanding of the 6091 // documents. All arguments must be copied into the parameter area BY 6092 // THE CALLEE in the event that the callee takes the address of any 6093 // formal argument. That has not yet been implemented. However, it is 6094 // reasonable to use the stack area as a staging area for the register 6095 // load. 6096 6097 // Skip this for small aggregates, as we will use the same slot for a 6098 // right-justified copy, below. 6099 if (Size >= 8) 6100 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6101 CallSeqStart, 6102 Flags, DAG, dl); 6103 6104 // When a register is available, pass a small aggregate right-justified. 6105 if (Size < 8 && GPR_idx != NumGPRs) { 6106 // The easiest way to get this right-justified in a register 6107 // is to copy the structure into the rightmost portion of a 6108 // local variable slot, then load the whole slot into the 6109 // register. 6110 // FIXME: The memcpy seems to produce pretty awful code for 6111 // small aggregates, particularly for packed ones. 6112 // FIXME: It would be preferable to use the slot in the 6113 // parameter save area instead of a new local variable. 6114 SDValue AddPtr = PtrOff; 6115 if (!isLittleEndian) { 6116 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6117 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6118 } 6119 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6120 CallSeqStart, 6121 Flags, DAG, dl); 6122 6123 // Load the slot into the register. 6124 SDValue Load = 6125 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6126 MemOpChains.push_back(Load.getValue(1)); 6127 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6128 6129 // Done with this argument. 6130 ArgOffset += PtrByteSize; 6131 continue; 6132 } 6133 6134 // For aggregates larger than PtrByteSize, copy the pieces of the 6135 // object that fit into registers from the parameter save area. 6136 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6137 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6138 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6139 if (GPR_idx != NumGPRs) { 6140 SDValue Load = 6141 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6142 MemOpChains.push_back(Load.getValue(1)); 6143 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6144 ArgOffset += PtrByteSize; 6145 } else { 6146 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6147 break; 6148 } 6149 } 6150 continue; 6151 } 6152 6153 switch (Arg.getSimpleValueType().SimpleTy) { 6154 default: llvm_unreachable("Unexpected ValueType for argument!"); 6155 case MVT::i1: 6156 case MVT::i32: 6157 case MVT::i64: 6158 if (Flags.isNest()) { 6159 // The 'nest' parameter, if any, is passed in R11. 6160 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6161 break; 6162 } 6163 6164 // These can be scalar arguments or elements of an integer array type 6165 // passed directly. Clang may use those instead of "byval" aggregate 6166 // types to avoid forcing arguments to memory unnecessarily. 6167 if (GPR_idx != NumGPRs) { 6168 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6169 } else { 6170 if (IsFastCall) 6171 ComputePtrOff(); 6172 6173 assert(HasParameterArea && 6174 "Parameter area must exist to pass an argument in memory."); 6175 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6176 true, CFlags.IsTailCall, false, MemOpChains, 6177 TailCallArguments, dl); 6178 if (IsFastCall) 6179 ArgOffset += PtrByteSize; 6180 } 6181 if (!IsFastCall) 6182 ArgOffset += PtrByteSize; 6183 break; 6184 case MVT::f32: 6185 case MVT::f64: { 6186 // These can be scalar arguments or elements of a float array type 6187 // passed directly. The latter are used to implement ELFv2 homogenous 6188 // float aggregates. 6189 6190 // Named arguments go into FPRs first, and once they overflow, the 6191 // remaining arguments go into GPRs and then the parameter save area. 6192 // Unnamed arguments for vararg functions always go to GPRs and 6193 // then the parameter save area. For now, put all arguments to vararg 6194 // routines always in both locations (FPR *and* GPR or stack slot). 6195 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6196 bool NeededLoad = false; 6197 6198 // First load the argument into the next available FPR. 6199 if (FPR_idx != NumFPRs) 6200 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6201 6202 // Next, load the argument into GPR or stack slot if needed. 6203 if (!NeedGPROrStack) 6204 ; 6205 else if (GPR_idx != NumGPRs && !IsFastCall) { 6206 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6207 // once we support fp <-> gpr moves. 6208 6209 // In the non-vararg case, this can only ever happen in the 6210 // presence of f32 array types, since otherwise we never run 6211 // out of FPRs before running out of GPRs. 6212 SDValue ArgVal; 6213 6214 // Double values are always passed in a single GPR. 6215 if (Arg.getValueType() != MVT::f32) { 6216 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6217 6218 // Non-array float values are extended and passed in a GPR. 6219 } else if (!Flags.isInConsecutiveRegs()) { 6220 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6221 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6222 6223 // If we have an array of floats, we collect every odd element 6224 // together with its predecessor into one GPR. 6225 } else if (ArgOffset % PtrByteSize != 0) { 6226 SDValue Lo, Hi; 6227 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6228 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6229 if (!isLittleEndian) 6230 std::swap(Lo, Hi); 6231 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6232 6233 // The final element, if even, goes into the first half of a GPR. 6234 } else if (Flags.isInConsecutiveRegsLast()) { 6235 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6236 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6237 if (!isLittleEndian) 6238 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6239 DAG.getConstant(32, dl, MVT::i32)); 6240 6241 // Non-final even elements are skipped; they will be handled 6242 // together the with subsequent argument on the next go-around. 6243 } else 6244 ArgVal = SDValue(); 6245 6246 if (ArgVal.getNode()) 6247 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6248 } else { 6249 if (IsFastCall) 6250 ComputePtrOff(); 6251 6252 // Single-precision floating-point values are mapped to the 6253 // second (rightmost) word of the stack doubleword. 6254 if (Arg.getValueType() == MVT::f32 && 6255 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6256 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6257 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6258 } 6259 6260 assert(HasParameterArea && 6261 "Parameter area must exist to pass an argument in memory."); 6262 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6263 true, CFlags.IsTailCall, false, MemOpChains, 6264 TailCallArguments, dl); 6265 6266 NeededLoad = true; 6267 } 6268 // When passing an array of floats, the array occupies consecutive 6269 // space in the argument area; only round up to the next doubleword 6270 // at the end of the array. Otherwise, each float takes 8 bytes. 6271 if (!IsFastCall || NeededLoad) { 6272 ArgOffset += (Arg.getValueType() == MVT::f32 && 6273 Flags.isInConsecutiveRegs()) ? 4 : 8; 6274 if (Flags.isInConsecutiveRegsLast()) 6275 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6276 } 6277 break; 6278 } 6279 case MVT::v4f32: 6280 case MVT::v4i32: 6281 case MVT::v8i16: 6282 case MVT::v16i8: 6283 case MVT::v2f64: 6284 case MVT::v2i64: 6285 case MVT::v1i128: 6286 case MVT::f128: 6287 if (!Subtarget.hasQPX()) { 6288 // These can be scalar arguments or elements of a vector array type 6289 // passed directly. The latter are used to implement ELFv2 homogenous 6290 // vector aggregates. 6291 6292 // For a varargs call, named arguments go into VRs or on the stack as 6293 // usual; unnamed arguments always go to the stack or the corresponding 6294 // GPRs when within range. For now, we always put the value in both 6295 // locations (or even all three). 6296 if (CFlags.IsVarArg) { 6297 assert(HasParameterArea && 6298 "Parameter area must exist if we have a varargs call."); 6299 // We could elide this store in the case where the object fits 6300 // entirely in R registers. Maybe later. 6301 SDValue Store = 6302 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6303 MemOpChains.push_back(Store); 6304 if (VR_idx != NumVRs) { 6305 SDValue Load = 6306 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6307 MemOpChains.push_back(Load.getValue(1)); 6308 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6309 } 6310 ArgOffset += 16; 6311 for (unsigned i=0; i<16; i+=PtrByteSize) { 6312 if (GPR_idx == NumGPRs) 6313 break; 6314 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6315 DAG.getConstant(i, dl, PtrVT)); 6316 SDValue Load = 6317 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6318 MemOpChains.push_back(Load.getValue(1)); 6319 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6320 } 6321 break; 6322 } 6323 6324 // Non-varargs Altivec params go into VRs or on the stack. 6325 if (VR_idx != NumVRs) { 6326 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6327 } else { 6328 if (IsFastCall) 6329 ComputePtrOff(); 6330 6331 assert(HasParameterArea && 6332 "Parameter area must exist to pass an argument in memory."); 6333 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6334 true, CFlags.IsTailCall, true, MemOpChains, 6335 TailCallArguments, dl); 6336 if (IsFastCall) 6337 ArgOffset += 16; 6338 } 6339 6340 if (!IsFastCall) 6341 ArgOffset += 16; 6342 break; 6343 } // not QPX 6344 6345 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6346 "Invalid QPX parameter type"); 6347 6348 LLVM_FALLTHROUGH; 6349 case MVT::v4f64: 6350 case MVT::v4i1: { 6351 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6352 if (CFlags.IsVarArg) { 6353 assert(HasParameterArea && 6354 "Parameter area must exist if we have a varargs call."); 6355 // We could elide this store in the case where the object fits 6356 // entirely in R registers. Maybe later. 6357 SDValue Store = 6358 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6359 MemOpChains.push_back(Store); 6360 if (QFPR_idx != NumQFPRs) { 6361 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6362 PtrOff, MachinePointerInfo()); 6363 MemOpChains.push_back(Load.getValue(1)); 6364 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6365 } 6366 ArgOffset += (IsF32 ? 16 : 32); 6367 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6368 if (GPR_idx == NumGPRs) 6369 break; 6370 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6371 DAG.getConstant(i, dl, PtrVT)); 6372 SDValue Load = 6373 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6374 MemOpChains.push_back(Load.getValue(1)); 6375 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6376 } 6377 break; 6378 } 6379 6380 // Non-varargs QPX params go into registers or on the stack. 6381 if (QFPR_idx != NumQFPRs) { 6382 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6383 } else { 6384 if (IsFastCall) 6385 ComputePtrOff(); 6386 6387 assert(HasParameterArea && 6388 "Parameter area must exist to pass an argument in memory."); 6389 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6390 true, CFlags.IsTailCall, true, MemOpChains, 6391 TailCallArguments, dl); 6392 if (IsFastCall) 6393 ArgOffset += (IsF32 ? 16 : 32); 6394 } 6395 6396 if (!IsFastCall) 6397 ArgOffset += (IsF32 ? 16 : 32); 6398 break; 6399 } 6400 } 6401 } 6402 6403 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6404 "mismatch in size of parameter area"); 6405 (void)NumBytesActuallyUsed; 6406 6407 if (!MemOpChains.empty()) 6408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6409 6410 // Check if this is an indirect call (MTCTR/BCTRL). 6411 // See prepareDescriptorIndirectCall and buildCallOperands for more 6412 // information about calls through function pointers in the 64-bit SVR4 ABI. 6413 if (CFlags.IsIndirect) { 6414 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6415 // Load r2 into a virtual register and store it to the TOC save area. 6416 setUsesTOCBasePtr(DAG); 6417 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6418 // TOC save area offset. 6419 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6420 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6421 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6422 Chain = DAG.getStore( 6423 Val.getValue(1), dl, Val, AddPtr, 6424 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6425 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6426 // This does not mean the MTCTR instruction must use R12; it's easier 6427 // to model this as an extra parameter, so do that. 6428 if (isELFv2ABI && !CFlags.IsPatchPoint) 6429 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6430 } 6431 6432 // Build a sequence of copy-to-reg nodes chained together with token chain 6433 // and flag operands which copy the outgoing args into the appropriate regs. 6434 SDValue InFlag; 6435 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6436 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6437 RegsToPass[i].second, InFlag); 6438 InFlag = Chain.getValue(1); 6439 } 6440 6441 if (CFlags.IsTailCall && !IsSibCall) 6442 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6443 TailCallArguments); 6444 6445 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6446 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6447 } 6448 6449 SDValue PPCTargetLowering::LowerCall_Darwin( 6450 SDValue Chain, SDValue Callee, CallFlags CFlags, 6451 const SmallVectorImpl<ISD::OutputArg> &Outs, 6452 const SmallVectorImpl<SDValue> &OutVals, 6453 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6454 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6455 ImmutableCallSite CS) const { 6456 unsigned NumOps = Outs.size(); 6457 6458 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6459 bool isPPC64 = PtrVT == MVT::i64; 6460 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6461 6462 MachineFunction &MF = DAG.getMachineFunction(); 6463 6464 // Mark this function as potentially containing a function that contains a 6465 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6466 // and restoring the callers stack pointer in this functions epilog. This is 6467 // done because by tail calling the called function might overwrite the value 6468 // in this function's (MF) stack pointer stack slot 0(SP). 6469 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6470 CFlags.CallConv == CallingConv::Fast) 6471 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6472 6473 // Count how many bytes are to be pushed on the stack, including the linkage 6474 // area, and parameter passing area. We start with 24/48 bytes, which is 6475 // prereserved space for [SP][CR][LR][3 x unused]. 6476 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6477 unsigned NumBytes = LinkageSize; 6478 6479 // Add up all the space actually used. 6480 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6481 // they all go in registers, but we must reserve stack space for them for 6482 // possible use by the caller. In varargs or 64-bit calls, parameters are 6483 // assigned stack space in order, with padding so Altivec parameters are 6484 // 16-byte aligned. 6485 unsigned nAltivecParamsAtEnd = 0; 6486 for (unsigned i = 0; i != NumOps; ++i) { 6487 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6488 EVT ArgVT = Outs[i].VT; 6489 // Varargs Altivec parameters are padded to a 16 byte boundary. 6490 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6491 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6492 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6493 if (!CFlags.IsVarArg && !isPPC64) { 6494 // Non-varargs Altivec parameters go after all the non-Altivec 6495 // parameters; handle those later so we know how much padding we need. 6496 nAltivecParamsAtEnd++; 6497 continue; 6498 } 6499 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6500 NumBytes = ((NumBytes+15)/16)*16; 6501 } 6502 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6503 } 6504 6505 // Allow for Altivec parameters at the end, if needed. 6506 if (nAltivecParamsAtEnd) { 6507 NumBytes = ((NumBytes+15)/16)*16; 6508 NumBytes += 16*nAltivecParamsAtEnd; 6509 } 6510 6511 // The prolog code of the callee may store up to 8 GPR argument registers to 6512 // the stack, allowing va_start to index over them in memory if its varargs. 6513 // Because we cannot tell if this is needed on the caller side, we have to 6514 // conservatively assume that it is needed. As such, make sure we have at 6515 // least enough stack space for the caller to store the 8 GPRs. 6516 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6517 6518 // Tail call needs the stack to be aligned. 6519 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6520 CFlags.CallConv == CallingConv::Fast) 6521 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6522 6523 // Calculate by how many bytes the stack has to be adjusted in case of tail 6524 // call optimization. 6525 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6526 6527 // To protect arguments on the stack from being clobbered in a tail call, 6528 // force all the loads to happen before doing any other lowering. 6529 if (CFlags.IsTailCall) 6530 Chain = DAG.getStackArgumentTokenFactor(Chain); 6531 6532 // Adjust the stack pointer for the new arguments... 6533 // These operations are automatically eliminated by the prolog/epilog pass 6534 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6535 SDValue CallSeqStart = Chain; 6536 6537 // Load the return address and frame pointer so it can be move somewhere else 6538 // later. 6539 SDValue LROp, FPOp; 6540 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6541 6542 // Set up a copy of the stack pointer for use loading and storing any 6543 // arguments that may not fit in the registers available for argument 6544 // passing. 6545 SDValue StackPtr; 6546 if (isPPC64) 6547 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6548 else 6549 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6550 6551 // Figure out which arguments are going to go in registers, and which in 6552 // memory. Also, if this is a vararg function, floating point operations 6553 // must be stored to our stack, and loaded into integer regs as well, if 6554 // any integer regs are available for argument passing. 6555 unsigned ArgOffset = LinkageSize; 6556 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6557 6558 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6559 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6560 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6561 }; 6562 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6563 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6564 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6565 }; 6566 static const MCPhysReg VR[] = { 6567 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6568 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6569 }; 6570 const unsigned NumGPRs = array_lengthof(GPR_32); 6571 const unsigned NumFPRs = 13; 6572 const unsigned NumVRs = array_lengthof(VR); 6573 6574 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6575 6576 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6577 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6578 6579 SmallVector<SDValue, 8> MemOpChains; 6580 for (unsigned i = 0; i != NumOps; ++i) { 6581 SDValue Arg = OutVals[i]; 6582 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6583 6584 // PtrOff will be used to store the current argument to the stack if a 6585 // register cannot be found for it. 6586 SDValue PtrOff; 6587 6588 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6589 6590 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6591 6592 // On PPC64, promote integers to 64-bit values. 6593 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6594 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6595 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6596 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6597 } 6598 6599 // FIXME memcpy is used way more than necessary. Correctness first. 6600 // Note: "by value" is code for passing a structure by value, not 6601 // basic types. 6602 if (Flags.isByVal()) { 6603 unsigned Size = Flags.getByValSize(); 6604 // Very small objects are passed right-justified. Everything else is 6605 // passed left-justified. 6606 if (Size==1 || Size==2) { 6607 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6608 if (GPR_idx != NumGPRs) { 6609 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6610 MachinePointerInfo(), VT); 6611 MemOpChains.push_back(Load.getValue(1)); 6612 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6613 6614 ArgOffset += PtrByteSize; 6615 } else { 6616 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6617 PtrOff.getValueType()); 6618 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6619 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6620 CallSeqStart, 6621 Flags, DAG, dl); 6622 ArgOffset += PtrByteSize; 6623 } 6624 continue; 6625 } 6626 // Copy entire object into memory. There are cases where gcc-generated 6627 // code assumes it is there, even if it could be put entirely into 6628 // registers. (This is not what the doc says.) 6629 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6630 CallSeqStart, 6631 Flags, DAG, dl); 6632 6633 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6634 // copy the pieces of the object that fit into registers from the 6635 // parameter save area. 6636 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6637 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6638 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6639 if (GPR_idx != NumGPRs) { 6640 SDValue Load = 6641 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6642 MemOpChains.push_back(Load.getValue(1)); 6643 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6644 ArgOffset += PtrByteSize; 6645 } else { 6646 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6647 break; 6648 } 6649 } 6650 continue; 6651 } 6652 6653 switch (Arg.getSimpleValueType().SimpleTy) { 6654 default: llvm_unreachable("Unexpected ValueType for argument!"); 6655 case MVT::i1: 6656 case MVT::i32: 6657 case MVT::i64: 6658 if (GPR_idx != NumGPRs) { 6659 if (Arg.getValueType() == MVT::i1) 6660 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6661 6662 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6663 } else { 6664 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6665 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6666 TailCallArguments, dl); 6667 } 6668 ArgOffset += PtrByteSize; 6669 break; 6670 case MVT::f32: 6671 case MVT::f64: 6672 if (FPR_idx != NumFPRs) { 6673 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6674 6675 if (CFlags.IsVarArg) { 6676 SDValue Store = 6677 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6678 MemOpChains.push_back(Store); 6679 6680 // Float varargs are always shadowed in available integer registers 6681 if (GPR_idx != NumGPRs) { 6682 SDValue Load = 6683 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6684 MemOpChains.push_back(Load.getValue(1)); 6685 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6686 } 6687 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6688 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6689 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6690 SDValue Load = 6691 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6692 MemOpChains.push_back(Load.getValue(1)); 6693 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6694 } 6695 } else { 6696 // If we have any FPRs remaining, we may also have GPRs remaining. 6697 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6698 // GPRs. 6699 if (GPR_idx != NumGPRs) 6700 ++GPR_idx; 6701 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6702 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6703 ++GPR_idx; 6704 } 6705 } else 6706 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6707 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6708 TailCallArguments, dl); 6709 if (isPPC64) 6710 ArgOffset += 8; 6711 else 6712 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6713 break; 6714 case MVT::v4f32: 6715 case MVT::v4i32: 6716 case MVT::v8i16: 6717 case MVT::v16i8: 6718 if (CFlags.IsVarArg) { 6719 // These go aligned on the stack, or in the corresponding R registers 6720 // when within range. The Darwin PPC ABI doc claims they also go in 6721 // V registers; in fact gcc does this only for arguments that are 6722 // prototyped, not for those that match the ... We do it for all 6723 // arguments, seems to work. 6724 while (ArgOffset % 16 !=0) { 6725 ArgOffset += PtrByteSize; 6726 if (GPR_idx != NumGPRs) 6727 GPR_idx++; 6728 } 6729 // We could elide this store in the case where the object fits 6730 // entirely in R registers. Maybe later. 6731 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6732 DAG.getConstant(ArgOffset, dl, PtrVT)); 6733 SDValue Store = 6734 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6735 MemOpChains.push_back(Store); 6736 if (VR_idx != NumVRs) { 6737 SDValue Load = 6738 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6739 MemOpChains.push_back(Load.getValue(1)); 6740 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6741 } 6742 ArgOffset += 16; 6743 for (unsigned i=0; i<16; i+=PtrByteSize) { 6744 if (GPR_idx == NumGPRs) 6745 break; 6746 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6747 DAG.getConstant(i, dl, PtrVT)); 6748 SDValue Load = 6749 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6750 MemOpChains.push_back(Load.getValue(1)); 6751 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6752 } 6753 break; 6754 } 6755 6756 // Non-varargs Altivec params generally go in registers, but have 6757 // stack space allocated at the end. 6758 if (VR_idx != NumVRs) { 6759 // Doesn't have GPR space allocated. 6760 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6761 } else if (nAltivecParamsAtEnd==0) { 6762 // We are emitting Altivec params in order. 6763 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6764 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6765 TailCallArguments, dl); 6766 ArgOffset += 16; 6767 } 6768 break; 6769 } 6770 } 6771 // If all Altivec parameters fit in registers, as they usually do, 6772 // they get stack space following the non-Altivec parameters. We 6773 // don't track this here because nobody below needs it. 6774 // If there are more Altivec parameters than fit in registers emit 6775 // the stores here. 6776 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6777 unsigned j = 0; 6778 // Offset is aligned; skip 1st 12 params which go in V registers. 6779 ArgOffset = ((ArgOffset+15)/16)*16; 6780 ArgOffset += 12*16; 6781 for (unsigned i = 0; i != NumOps; ++i) { 6782 SDValue Arg = OutVals[i]; 6783 EVT ArgType = Outs[i].VT; 6784 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6785 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6786 if (++j > NumVRs) { 6787 SDValue PtrOff; 6788 // We are emitting Altivec params in order. 6789 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6790 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6791 TailCallArguments, dl); 6792 ArgOffset += 16; 6793 } 6794 } 6795 } 6796 } 6797 6798 if (!MemOpChains.empty()) 6799 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6800 6801 // On Darwin, R12 must contain the address of an indirect callee. This does 6802 // not mean the MTCTR instruction must use R12; it's easier to model this as 6803 // an extra parameter, so do that. 6804 if (CFlags.IsIndirect) { 6805 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6806 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6807 PPC::R12), Callee)); 6808 } 6809 6810 // Build a sequence of copy-to-reg nodes chained together with token chain 6811 // and flag operands which copy the outgoing args into the appropriate regs. 6812 SDValue InFlag; 6813 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6814 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6815 RegsToPass[i].second, InFlag); 6816 InFlag = Chain.getValue(1); 6817 } 6818 6819 if (CFlags.IsTailCall) 6820 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6821 TailCallArguments); 6822 6823 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6824 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6825 } 6826 6827 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6828 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6829 CCState &State) { 6830 6831 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6832 State.getMachineFunction().getSubtarget()); 6833 const bool IsPPC64 = Subtarget.isPPC64(); 6834 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6835 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6836 6837 assert((!ValVT.isInteger() || 6838 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6839 "Integer argument exceeds register size: should have been legalized"); 6840 6841 if (ValVT == MVT::f128) 6842 report_fatal_error("f128 is unimplemented on AIX."); 6843 6844 if (ArgFlags.isNest()) 6845 report_fatal_error("Nest arguments are unimplemented."); 6846 6847 if (ValVT.isVector() || LocVT.isVector()) 6848 report_fatal_error("Vector arguments are unimplemented on AIX."); 6849 6850 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6851 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6852 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6853 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6854 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6855 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6856 6857 if (ArgFlags.isByVal()) { 6858 if (ArgFlags.getNonZeroByValAlign() > PtrByteSize) 6859 report_fatal_error("Pass-by-value arguments with alignment greater than " 6860 "register width are not supported."); 6861 6862 const unsigned ByValSize = ArgFlags.getByValSize(); 6863 6864 // An empty aggregate parameter takes up no storage and no registers. 6865 if (ByValSize == 0) 6866 return false; 6867 6868 if (ByValSize <= PtrByteSize) { 6869 State.AllocateStack(PtrByteSize, PtrByteSize); 6870 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6871 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6872 return false; 6873 } 6874 } 6875 6876 report_fatal_error( 6877 "Pass-by-value arguments are only supported in a single register."); 6878 } 6879 6880 // Arguments always reserve parameter save area. 6881 switch (ValVT.SimpleTy) { 6882 default: 6883 report_fatal_error("Unhandled value type for argument."); 6884 case MVT::i64: 6885 // i64 arguments should have been split to i32 for PPC32. 6886 assert(IsPPC64 && "PPC32 should have split i64 values."); 6887 LLVM_FALLTHROUGH; 6888 case MVT::i1: 6889 case MVT::i32: { 6890 const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize); 6891 // AIX integer arguments are always passed in register width. 6892 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6893 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6894 : CCValAssign::LocInfo::ZExt; 6895 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6896 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6897 else 6898 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6899 6900 return false; 6901 } 6902 case MVT::f32: 6903 case MVT::f64: { 6904 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6905 const unsigned StoreSize = LocVT.getStoreSize(); 6906 // Floats are always 4-byte aligned in the PSA on AIX. 6907 // This includes f64 in 64-bit mode for ABI compatibility. 6908 const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6909 unsigned FReg = State.AllocateReg(FPR); 6910 if (FReg) 6911 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6912 6913 // Reserve and initialize GPRs or initialize the PSA as required. 6914 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 6915 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6916 assert(FReg && "An FPR should be available when a GPR is reserved."); 6917 if (State.isVarArg()) { 6918 // Successfully reserved GPRs are only initialized for vararg calls. 6919 // Custom handling is required for: 6920 // f64 in PPC32 needs to be split into 2 GPRs. 6921 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6922 State.addLoc( 6923 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6924 } 6925 } else { 6926 // If there are insufficient GPRs, the PSA needs to be initialized. 6927 // Initialization occurs even if an FPR was initialized for 6928 // compatibility with the AIX XL compiler. The full memory for the 6929 // argument will be initialized even if a prior word is saved in GPR. 6930 // A custom memLoc is used when the argument also passes in FPR so 6931 // that the callee handling can skip over it easily. 6932 State.addLoc( 6933 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6934 LocInfo) 6935 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6936 break; 6937 } 6938 } 6939 6940 return false; 6941 } 6942 } 6943 return true; 6944 } 6945 6946 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6947 bool IsPPC64) { 6948 assert((IsPPC64 || SVT != MVT::i64) && 6949 "i64 should have been split for 32-bit codegen."); 6950 6951 switch (SVT) { 6952 default: 6953 report_fatal_error("Unexpected value type for formal argument"); 6954 case MVT::i1: 6955 case MVT::i32: 6956 case MVT::i64: 6957 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6958 case MVT::f32: 6959 return &PPC::F4RCRegClass; 6960 case MVT::f64: 6961 return &PPC::F8RCRegClass; 6962 } 6963 } 6964 6965 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6966 SelectionDAG &DAG, SDValue ArgValue, 6967 MVT LocVT, const SDLoc &dl) { 6968 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6969 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6970 6971 if (Flags.isSExt()) 6972 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6973 DAG.getValueType(ValVT)); 6974 else if (Flags.isZExt()) 6975 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6976 DAG.getValueType(ValVT)); 6977 6978 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6979 } 6980 6981 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6982 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6983 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6984 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6985 6986 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6987 CallConv == CallingConv::Fast) && 6988 "Unexpected calling convention!"); 6989 6990 if (isVarArg) 6991 report_fatal_error("This call type is unimplemented on AIX."); 6992 6993 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6994 report_fatal_error("Tail call support is unimplemented on AIX."); 6995 6996 if (useSoftFloat()) 6997 report_fatal_error("Soft float support is unimplemented on AIX."); 6998 6999 const PPCSubtarget &Subtarget = 7000 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7001 if (Subtarget.hasQPX()) 7002 report_fatal_error("QPX support is not supported on AIX."); 7003 7004 const bool IsPPC64 = Subtarget.isPPC64(); 7005 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7006 7007 // Assign locations to all of the incoming arguments. 7008 SmallVector<CCValAssign, 16> ArgLocs; 7009 MachineFunction &MF = DAG.getMachineFunction(); 7010 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7011 7012 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7013 // Reserve space for the linkage area on the stack. 7014 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7015 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7016 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7017 7018 for (CCValAssign &VA : ArgLocs) { 7019 EVT ValVT = VA.getValVT(); 7020 MVT LocVT = VA.getLocVT(); 7021 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7022 assert(!Flags.isByVal() && 7023 "Passing structure by value is unimplemented for formal arguments."); 7024 assert((VA.isRegLoc() || VA.isMemLoc()) && 7025 "Unexpected location for function call argument."); 7026 7027 // For compatibility with the AIX XL compiler, the float args in the 7028 // parameter save area are initialized even if the argument is available 7029 // in register. The caller is required to initialize both the register 7030 // and memory, however, the callee can choose to expect it in either. 7031 // The memloc is dismissed here because the argument is retrieved from 7032 // the register. 7033 if (VA.isMemLoc() && VA.needsCustom()) 7034 continue; 7035 7036 if (VA.isRegLoc()) { 7037 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7038 unsigned VReg = 7039 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7040 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7041 if (ValVT.isScalarInteger() && 7042 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7043 ArgValue = 7044 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7045 } 7046 InVals.push_back(ArgValue); 7047 continue; 7048 } 7049 7050 const unsigned LocSize = LocVT.getStoreSize(); 7051 const unsigned ValSize = ValVT.getStoreSize(); 7052 assert((ValSize <= LocSize) && "Object size is larger than size of MemLoc"); 7053 int CurArgOffset = VA.getLocMemOffset(); 7054 // Objects are right-justified because AIX is big-endian. 7055 if (LocSize > ValSize) 7056 CurArgOffset += LocSize - ValSize; 7057 MachineFrameInfo &MFI = MF.getFrameInfo(); 7058 // Potential tail calls could cause overwriting of argument stack slots. 7059 const bool IsImmutable = 7060 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7061 (CallConv == CallingConv::Fast)); 7062 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7063 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7064 SDValue ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7065 InVals.push_back(ArgValue); 7066 } 7067 7068 // On AIX a minimum of 8 words is saved to the parameter save area. 7069 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7070 // Area that is at least reserved in the caller of this function. 7071 unsigned CallerReservedArea = 7072 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7073 7074 // Set the size that is at least reserved in caller of this function. Tail 7075 // call optimized function's reserved stack space needs to be aligned so 7076 // that taking the difference between two stack areas will result in an 7077 // aligned stack. 7078 CallerReservedArea = 7079 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7080 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7081 FuncInfo->setMinReservedArea(CallerReservedArea); 7082 7083 return Chain; 7084 } 7085 7086 SDValue PPCTargetLowering::LowerCall_AIX( 7087 SDValue Chain, SDValue Callee, CallFlags CFlags, 7088 const SmallVectorImpl<ISD::OutputArg> &Outs, 7089 const SmallVectorImpl<SDValue> &OutVals, 7090 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7091 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7092 ImmutableCallSite CS) const { 7093 7094 assert((CFlags.CallConv == CallingConv::C || 7095 CFlags.CallConv == CallingConv::Cold || 7096 CFlags.CallConv == CallingConv::Fast) && 7097 "Unexpected calling convention!"); 7098 7099 if (CFlags.IsPatchPoint) 7100 report_fatal_error("This call type is unimplemented on AIX."); 7101 7102 const PPCSubtarget& Subtarget = 7103 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7104 if (Subtarget.hasQPX()) 7105 report_fatal_error("QPX is not supported on AIX."); 7106 if (Subtarget.hasAltivec()) 7107 report_fatal_error("Altivec support is unimplemented on AIX."); 7108 7109 MachineFunction &MF = DAG.getMachineFunction(); 7110 SmallVector<CCValAssign, 16> ArgLocs; 7111 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7112 *DAG.getContext()); 7113 7114 // Reserve space for the linkage save area (LSA) on the stack. 7115 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7116 // [SP][CR][LR][2 x reserved][TOC]. 7117 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7118 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7119 const bool IsPPC64 = Subtarget.isPPC64(); 7120 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7121 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7122 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7123 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7124 7125 // The prolog code of the callee may store up to 8 GPR argument registers to 7126 // the stack, allowing va_start to index over them in memory if the callee 7127 // is variadic. 7128 // Because we cannot tell if this is needed on the caller side, we have to 7129 // conservatively assume that it is needed. As such, make sure we have at 7130 // least enough stack space for the caller to store the 8 GPRs. 7131 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7132 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7133 CCInfo.getNextStackOffset()); 7134 7135 // Adjust the stack pointer for the new arguments... 7136 // These operations are automatically eliminated by the prolog/epilog pass. 7137 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7138 SDValue CallSeqStart = Chain; 7139 7140 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7141 SmallVector<SDValue, 8> MemOpChains; 7142 7143 // Set up a copy of the stack pointer for loading and storing any 7144 // arguments that may not fit in the registers available for argument 7145 // passing. 7146 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7147 : DAG.getRegister(PPC::R1, MVT::i32); 7148 7149 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7150 CCValAssign &VA = ArgLocs[I++]; 7151 7152 SDValue Arg = OutVals[VA.getValNo()]; 7153 ISD::ArgFlagsTy Flags = Outs[VA.getValNo()].Flags; 7154 const MVT LocVT = VA.getLocVT(); 7155 const MVT ValVT = VA.getValVT(); 7156 7157 if (Flags.isByVal()) { 7158 const unsigned ByValSize = Flags.getByValSize(); 7159 assert( 7160 VA.isRegLoc() && ByValSize > 0 && ByValSize <= PtrByteSize && 7161 "Pass-by-value arguments are only supported in a single register."); 7162 7163 // Loads must be a power-of-2 size and cannot be larger than the 7164 // ByValSize. For example: a 7 byte by-val arg requires 4, 2 and 1 byte 7165 // loads. 7166 SDValue RegVal; 7167 for (unsigned Bytes = 0; Bytes != ByValSize;) { 7168 unsigned N = PowerOf2Floor(ByValSize - Bytes); 7169 const MVT VT = 7170 N == 1 ? MVT::i8 7171 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7172 7173 SDValue LoadAddr = Arg; 7174 if (Bytes != 0) { 7175 // Adjust the load offset by the number of bytes read so far. 7176 SDNodeFlags Flags; 7177 Flags.setNoUnsignedWrap(true); 7178 LoadAddr = DAG.getNode(ISD::ADD, dl, LocVT, Arg, 7179 DAG.getConstant(Bytes, dl, LocVT), Flags); 7180 } 7181 SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, LoadAddr, 7182 MachinePointerInfo(), VT); 7183 MemOpChains.push_back(Load.getValue(1)); 7184 7185 Bytes += N; 7186 assert(LocVT.getSizeInBits() >= (Bytes * 8)); 7187 if (unsigned NumSHLBits = LocVT.getSizeInBits() - (Bytes * 8)) { 7188 // By-val arguments are passed left-justfied in register. 7189 EVT ShiftAmountTy = 7190 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7191 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7192 SDValue ShiftedLoad = 7193 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7194 RegVal = RegVal ? DAG.getNode(ISD::OR, dl, LocVT, RegVal, ShiftedLoad) 7195 : ShiftedLoad; 7196 } else { 7197 assert(!RegVal && Bytes == ByValSize && 7198 "Pass-by-value argument handling unexpectedly incomplete."); 7199 RegVal = Load; 7200 } 7201 } 7202 7203 RegsToPass.push_back(std::make_pair(VA.getLocReg(), RegVal)); 7204 continue; 7205 } 7206 7207 switch (VA.getLocInfo()) { 7208 default: 7209 report_fatal_error("Unexpected argument extension type."); 7210 case CCValAssign::Full: 7211 break; 7212 case CCValAssign::ZExt: 7213 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7214 break; 7215 case CCValAssign::SExt: 7216 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7217 break; 7218 } 7219 7220 if (VA.isRegLoc() && !VA.needsCustom()) { 7221 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7222 continue; 7223 } 7224 7225 if (VA.isMemLoc()) { 7226 SDValue PtrOff = 7227 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7228 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7229 MemOpChains.push_back( 7230 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7231 7232 continue; 7233 } 7234 7235 // Custom handling is used for GPR initializations for vararg float 7236 // arguments. 7237 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7238 ValVT.isFloatingPoint() && LocVT.isInteger() && 7239 "Unexpected register handling for calling convention."); 7240 7241 SDValue ArgAsInt = 7242 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7243 7244 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7245 // f32 in 32-bit GPR 7246 // f64 in 64-bit GPR 7247 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7248 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7249 // f32 in 64-bit GPR. 7250 RegsToPass.push_back(std::make_pair( 7251 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7252 else { 7253 // f64 in two 32-bit GPRs 7254 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7255 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7256 "Unexpected custom register for argument!"); 7257 CCValAssign &GPR1 = VA; 7258 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7259 DAG.getConstant(32, dl, MVT::i8)); 7260 RegsToPass.push_back(std::make_pair( 7261 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7262 7263 if (I != E) { 7264 // If only 1 GPR was available, there will only be one custom GPR and 7265 // the argument will also pass in memory. 7266 CCValAssign &PeekArg = ArgLocs[I]; 7267 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7268 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7269 CCValAssign &GPR2 = ArgLocs[I++]; 7270 RegsToPass.push_back(std::make_pair( 7271 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7272 } 7273 } 7274 } 7275 } 7276 7277 if (!MemOpChains.empty()) 7278 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7279 7280 // For indirect calls, we need to save the TOC base to the stack for 7281 // restoration after the call. 7282 if (CFlags.IsIndirect) { 7283 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7284 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7285 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7286 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7287 const unsigned TOCSaveOffset = 7288 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7289 7290 setUsesTOCBasePtr(DAG); 7291 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7292 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7293 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7294 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7295 Chain = DAG.getStore( 7296 Val.getValue(1), dl, Val, AddPtr, 7297 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7298 } 7299 7300 // Build a sequence of copy-to-reg nodes chained together with token chain 7301 // and flag operands which copy the outgoing args into the appropriate regs. 7302 SDValue InFlag; 7303 for (auto Reg : RegsToPass) { 7304 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7305 InFlag = Chain.getValue(1); 7306 } 7307 7308 const int SPDiff = 0; 7309 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7310 Callee, SPDiff, NumBytes, Ins, InVals, CS); 7311 } 7312 7313 bool 7314 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7315 MachineFunction &MF, bool isVarArg, 7316 const SmallVectorImpl<ISD::OutputArg> &Outs, 7317 LLVMContext &Context) const { 7318 SmallVector<CCValAssign, 16> RVLocs; 7319 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7320 return CCInfo.CheckReturn( 7321 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7322 ? RetCC_PPC_Cold 7323 : RetCC_PPC); 7324 } 7325 7326 SDValue 7327 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7328 bool isVarArg, 7329 const SmallVectorImpl<ISD::OutputArg> &Outs, 7330 const SmallVectorImpl<SDValue> &OutVals, 7331 const SDLoc &dl, SelectionDAG &DAG) const { 7332 SmallVector<CCValAssign, 16> RVLocs; 7333 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7334 *DAG.getContext()); 7335 CCInfo.AnalyzeReturn(Outs, 7336 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7337 ? RetCC_PPC_Cold 7338 : RetCC_PPC); 7339 7340 SDValue Flag; 7341 SmallVector<SDValue, 4> RetOps(1, Chain); 7342 7343 // Copy the result values into the output registers. 7344 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7345 CCValAssign &VA = RVLocs[i]; 7346 assert(VA.isRegLoc() && "Can only return in registers!"); 7347 7348 SDValue Arg = OutVals[RealResIdx]; 7349 7350 switch (VA.getLocInfo()) { 7351 default: llvm_unreachable("Unknown loc info!"); 7352 case CCValAssign::Full: break; 7353 case CCValAssign::AExt: 7354 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7355 break; 7356 case CCValAssign::ZExt: 7357 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7358 break; 7359 case CCValAssign::SExt: 7360 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7361 break; 7362 } 7363 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7364 bool isLittleEndian = Subtarget.isLittleEndian(); 7365 // Legalize ret f64 -> ret 2 x i32. 7366 SDValue SVal = 7367 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7368 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7369 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7370 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7371 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7372 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7373 Flag = Chain.getValue(1); 7374 VA = RVLocs[++i]; // skip ahead to next loc 7375 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7376 } else 7377 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7378 Flag = Chain.getValue(1); 7379 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7380 } 7381 7382 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7383 const MCPhysReg *I = 7384 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7385 if (I) { 7386 for (; *I; ++I) { 7387 7388 if (PPC::G8RCRegClass.contains(*I)) 7389 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7390 else if (PPC::F8RCRegClass.contains(*I)) 7391 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7392 else if (PPC::CRRCRegClass.contains(*I)) 7393 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7394 else if (PPC::VRRCRegClass.contains(*I)) 7395 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7396 else 7397 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7398 } 7399 } 7400 7401 RetOps[0] = Chain; // Update chain. 7402 7403 // Add the flag if we have it. 7404 if (Flag.getNode()) 7405 RetOps.push_back(Flag); 7406 7407 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7408 } 7409 7410 SDValue 7411 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7412 SelectionDAG &DAG) const { 7413 SDLoc dl(Op); 7414 7415 // Get the correct type for integers. 7416 EVT IntVT = Op.getValueType(); 7417 7418 // Get the inputs. 7419 SDValue Chain = Op.getOperand(0); 7420 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7421 // Build a DYNAREAOFFSET node. 7422 SDValue Ops[2] = {Chain, FPSIdx}; 7423 SDVTList VTs = DAG.getVTList(IntVT); 7424 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7425 } 7426 7427 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7428 SelectionDAG &DAG) const { 7429 // When we pop the dynamic allocation we need to restore the SP link. 7430 SDLoc dl(Op); 7431 7432 // Get the correct type for pointers. 7433 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7434 7435 // Construct the stack pointer operand. 7436 bool isPPC64 = Subtarget.isPPC64(); 7437 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7438 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7439 7440 // Get the operands for the STACKRESTORE. 7441 SDValue Chain = Op.getOperand(0); 7442 SDValue SaveSP = Op.getOperand(1); 7443 7444 // Load the old link SP. 7445 SDValue LoadLinkSP = 7446 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7447 7448 // Restore the stack pointer. 7449 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7450 7451 // Store the old link SP. 7452 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7453 } 7454 7455 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7456 MachineFunction &MF = DAG.getMachineFunction(); 7457 bool isPPC64 = Subtarget.isPPC64(); 7458 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7459 7460 // Get current frame pointer save index. The users of this index will be 7461 // primarily DYNALLOC instructions. 7462 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7463 int RASI = FI->getReturnAddrSaveIndex(); 7464 7465 // If the frame pointer save index hasn't been defined yet. 7466 if (!RASI) { 7467 // Find out what the fix offset of the frame pointer save area. 7468 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7469 // Allocate the frame index for frame pointer save area. 7470 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7471 // Save the result. 7472 FI->setReturnAddrSaveIndex(RASI); 7473 } 7474 return DAG.getFrameIndex(RASI, PtrVT); 7475 } 7476 7477 SDValue 7478 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7479 MachineFunction &MF = DAG.getMachineFunction(); 7480 bool isPPC64 = Subtarget.isPPC64(); 7481 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7482 7483 // Get current frame pointer save index. The users of this index will be 7484 // primarily DYNALLOC instructions. 7485 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7486 int FPSI = FI->getFramePointerSaveIndex(); 7487 7488 // If the frame pointer save index hasn't been defined yet. 7489 if (!FPSI) { 7490 // Find out what the fix offset of the frame pointer save area. 7491 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7492 // Allocate the frame index for frame pointer save area. 7493 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7494 // Save the result. 7495 FI->setFramePointerSaveIndex(FPSI); 7496 } 7497 return DAG.getFrameIndex(FPSI, PtrVT); 7498 } 7499 7500 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7501 SelectionDAG &DAG) const { 7502 // Get the inputs. 7503 SDValue Chain = Op.getOperand(0); 7504 SDValue Size = Op.getOperand(1); 7505 SDLoc dl(Op); 7506 7507 // Get the correct type for pointers. 7508 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7509 // Negate the size. 7510 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7511 DAG.getConstant(0, dl, PtrVT), Size); 7512 // Construct a node for the frame pointer save index. 7513 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7514 // Build a DYNALLOC node. 7515 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7516 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7517 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7518 } 7519 7520 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7521 SelectionDAG &DAG) const { 7522 MachineFunction &MF = DAG.getMachineFunction(); 7523 7524 bool isPPC64 = Subtarget.isPPC64(); 7525 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7526 7527 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7528 return DAG.getFrameIndex(FI, PtrVT); 7529 } 7530 7531 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7532 SelectionDAG &DAG) const { 7533 SDLoc DL(Op); 7534 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7535 DAG.getVTList(MVT::i32, MVT::Other), 7536 Op.getOperand(0), Op.getOperand(1)); 7537 } 7538 7539 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7540 SelectionDAG &DAG) const { 7541 SDLoc DL(Op); 7542 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7543 Op.getOperand(0), Op.getOperand(1)); 7544 } 7545 7546 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7547 if (Op.getValueType().isVector()) 7548 return LowerVectorLoad(Op, DAG); 7549 7550 assert(Op.getValueType() == MVT::i1 && 7551 "Custom lowering only for i1 loads"); 7552 7553 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7554 7555 SDLoc dl(Op); 7556 LoadSDNode *LD = cast<LoadSDNode>(Op); 7557 7558 SDValue Chain = LD->getChain(); 7559 SDValue BasePtr = LD->getBasePtr(); 7560 MachineMemOperand *MMO = LD->getMemOperand(); 7561 7562 SDValue NewLD = 7563 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7564 BasePtr, MVT::i8, MMO); 7565 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7566 7567 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7568 return DAG.getMergeValues(Ops, dl); 7569 } 7570 7571 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7572 if (Op.getOperand(1).getValueType().isVector()) 7573 return LowerVectorStore(Op, DAG); 7574 7575 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7576 "Custom lowering only for i1 stores"); 7577 7578 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7579 7580 SDLoc dl(Op); 7581 StoreSDNode *ST = cast<StoreSDNode>(Op); 7582 7583 SDValue Chain = ST->getChain(); 7584 SDValue BasePtr = ST->getBasePtr(); 7585 SDValue Value = ST->getValue(); 7586 MachineMemOperand *MMO = ST->getMemOperand(); 7587 7588 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7589 Value); 7590 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7591 } 7592 7593 // FIXME: Remove this once the ANDI glue bug is fixed: 7594 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7595 assert(Op.getValueType() == MVT::i1 && 7596 "Custom lowering only for i1 results"); 7597 7598 SDLoc DL(Op); 7599 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7600 } 7601 7602 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7603 SelectionDAG &DAG) const { 7604 7605 // Implements a vector truncate that fits in a vector register as a shuffle. 7606 // We want to legalize vector truncates down to where the source fits in 7607 // a vector register (and target is therefore smaller than vector register 7608 // size). At that point legalization will try to custom lower the sub-legal 7609 // result and get here - where we can contain the truncate as a single target 7610 // operation. 7611 7612 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7613 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7614 // 7615 // We will implement it for big-endian ordering as this (where x denotes 7616 // undefined): 7617 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7618 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7619 // 7620 // The same operation in little-endian ordering will be: 7621 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7622 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7623 7624 assert(Op.getValueType().isVector() && "Vector type expected."); 7625 7626 SDLoc DL(Op); 7627 SDValue N1 = Op.getOperand(0); 7628 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7629 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7630 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7631 7632 EVT TrgVT = Op.getValueType(); 7633 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7634 EVT EltVT = TrgVT.getVectorElementType(); 7635 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7636 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7637 7638 // First list the elements we want to keep. 7639 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7640 SmallVector<int, 16> ShuffV; 7641 if (Subtarget.isLittleEndian()) 7642 for (unsigned i = 0; i < TrgNumElts; ++i) 7643 ShuffV.push_back(i * SizeMult); 7644 else 7645 for (unsigned i = 1; i <= TrgNumElts; ++i) 7646 ShuffV.push_back(i * SizeMult - 1); 7647 7648 // Populate the remaining elements with undefs. 7649 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7650 // ShuffV.push_back(i + WideNumElts); 7651 ShuffV.push_back(WideNumElts + 1); 7652 7653 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7654 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7655 } 7656 7657 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7658 /// possible. 7659 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7660 // Not FP? Not a fsel. 7661 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7662 !Op.getOperand(2).getValueType().isFloatingPoint()) 7663 return Op; 7664 7665 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7666 7667 EVT ResVT = Op.getValueType(); 7668 EVT CmpVT = Op.getOperand(0).getValueType(); 7669 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7670 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7671 SDLoc dl(Op); 7672 7673 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7674 // presence of infinities. 7675 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7676 switch (CC) { 7677 default: 7678 break; 7679 case ISD::SETOGT: 7680 case ISD::SETGT: 7681 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7682 case ISD::SETOLT: 7683 case ISD::SETLT: 7684 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7685 } 7686 } 7687 7688 // We might be able to do better than this under some circumstances, but in 7689 // general, fsel-based lowering of select is a finite-math-only optimization. 7690 // For more information, see section F.3 of the 2.06 ISA specification. 7691 // With ISA 3.0 7692 if (!DAG.getTarget().Options.NoInfsFPMath || 7693 !DAG.getTarget().Options.NoNaNsFPMath) 7694 return Op; 7695 7696 // TODO: Propagate flags from the select rather than global settings. 7697 SDNodeFlags Flags; 7698 Flags.setNoInfs(true); 7699 Flags.setNoNaNs(true); 7700 7701 // If the RHS of the comparison is a 0.0, we don't need to do the 7702 // subtraction at all. 7703 SDValue Sel1; 7704 if (isFloatingPointZero(RHS)) 7705 switch (CC) { 7706 default: break; // SETUO etc aren't handled by fsel. 7707 case ISD::SETNE: 7708 std::swap(TV, FV); 7709 LLVM_FALLTHROUGH; 7710 case ISD::SETEQ: 7711 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7712 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7713 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7714 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7715 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7716 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7717 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7718 case ISD::SETULT: 7719 case ISD::SETLT: 7720 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7721 LLVM_FALLTHROUGH; 7722 case ISD::SETOGE: 7723 case ISD::SETGE: 7724 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7725 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7726 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7727 case ISD::SETUGT: 7728 case ISD::SETGT: 7729 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7730 LLVM_FALLTHROUGH; 7731 case ISD::SETOLE: 7732 case ISD::SETLE: 7733 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7734 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7735 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7736 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7737 } 7738 7739 SDValue Cmp; 7740 switch (CC) { 7741 default: break; // SETUO etc aren't handled by fsel. 7742 case ISD::SETNE: 7743 std::swap(TV, FV); 7744 LLVM_FALLTHROUGH; 7745 case ISD::SETEQ: 7746 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7747 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7748 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7749 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7750 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7751 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7752 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7753 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7754 case ISD::SETULT: 7755 case ISD::SETLT: 7756 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7757 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7758 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7759 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7760 case ISD::SETOGE: 7761 case ISD::SETGE: 7762 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7763 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7764 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7765 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7766 case ISD::SETUGT: 7767 case ISD::SETGT: 7768 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7769 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7770 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7771 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7772 case ISD::SETOLE: 7773 case ISD::SETLE: 7774 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7775 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7776 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7777 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7778 } 7779 return Op; 7780 } 7781 7782 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7783 SelectionDAG &DAG, 7784 const SDLoc &dl) const { 7785 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7786 SDValue Src = Op.getOperand(0); 7787 if (Src.getValueType() == MVT::f32) 7788 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7789 7790 SDValue Tmp; 7791 switch (Op.getSimpleValueType().SimpleTy) { 7792 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7793 case MVT::i32: 7794 Tmp = DAG.getNode( 7795 Op.getOpcode() == ISD::FP_TO_SINT 7796 ? PPCISD::FCTIWZ 7797 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7798 dl, MVT::f64, Src); 7799 break; 7800 case MVT::i64: 7801 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7802 "i64 FP_TO_UINT is supported only with FPCVT"); 7803 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7804 PPCISD::FCTIDUZ, 7805 dl, MVT::f64, Src); 7806 break; 7807 } 7808 7809 // Convert the FP value to an int value through memory. 7810 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7811 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7812 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7813 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7814 MachinePointerInfo MPI = 7815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7816 7817 // Emit a store to the stack slot. 7818 SDValue Chain; 7819 if (i32Stack) { 7820 MachineFunction &MF = DAG.getMachineFunction(); 7821 MachineMemOperand *MMO = 7822 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7823 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7824 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7825 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7826 } else 7827 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7828 7829 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7830 // add in a bias on big endian. 7831 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7832 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7833 DAG.getConstant(4, dl, FIPtr.getValueType())); 7834 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7835 } 7836 7837 RLI.Chain = Chain; 7838 RLI.Ptr = FIPtr; 7839 RLI.MPI = MPI; 7840 } 7841 7842 /// Custom lowers floating point to integer conversions to use 7843 /// the direct move instructions available in ISA 2.07 to avoid the 7844 /// need for load/store combinations. 7845 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7846 SelectionDAG &DAG, 7847 const SDLoc &dl) const { 7848 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7849 SDValue Src = Op.getOperand(0); 7850 7851 if (Src.getValueType() == MVT::f32) 7852 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7853 7854 SDValue Tmp; 7855 switch (Op.getSimpleValueType().SimpleTy) { 7856 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7857 case MVT::i32: 7858 Tmp = DAG.getNode( 7859 Op.getOpcode() == ISD::FP_TO_SINT 7860 ? PPCISD::FCTIWZ 7861 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7862 dl, MVT::f64, Src); 7863 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7864 break; 7865 case MVT::i64: 7866 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7867 "i64 FP_TO_UINT is supported only with FPCVT"); 7868 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7869 PPCISD::FCTIDUZ, 7870 dl, MVT::f64, Src); 7871 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7872 break; 7873 } 7874 return Tmp; 7875 } 7876 7877 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7878 const SDLoc &dl) const { 7879 7880 // FP to INT conversions are legal for f128. 7881 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7882 return Op; 7883 7884 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7885 // PPC (the libcall is not available). 7886 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7887 if (Op.getValueType() == MVT::i32) { 7888 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7889 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7890 MVT::f64, Op.getOperand(0), 7891 DAG.getIntPtrConstant(0, dl)); 7892 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7893 MVT::f64, Op.getOperand(0), 7894 DAG.getIntPtrConstant(1, dl)); 7895 7896 // Add the two halves of the long double in round-to-zero mode. 7897 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7898 7899 // Now use a smaller FP_TO_SINT. 7900 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7901 } 7902 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7903 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7904 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7905 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7906 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7907 // FIXME: generated code sucks. 7908 // TODO: Are there fast-math-flags to propagate to this FSUB? 7909 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7910 Op.getOperand(0), Tmp); 7911 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7912 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7913 DAG.getConstant(0x80000000, dl, MVT::i32)); 7914 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7915 Op.getOperand(0)); 7916 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7917 ISD::SETGE); 7918 } 7919 } 7920 7921 return SDValue(); 7922 } 7923 7924 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7925 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7926 7927 ReuseLoadInfo RLI; 7928 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7929 7930 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7931 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7932 } 7933 7934 // We're trying to insert a regular store, S, and then a load, L. If the 7935 // incoming value, O, is a load, we might just be able to have our load use the 7936 // address used by O. However, we don't know if anything else will store to 7937 // that address before we can load from it. To prevent this situation, we need 7938 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7939 // the same chain operand as O, we create a token factor from the chain results 7940 // of O and L, and we replace all uses of O's chain result with that token 7941 // factor (see spliceIntoChain below for this last part). 7942 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7943 ReuseLoadInfo &RLI, 7944 SelectionDAG &DAG, 7945 ISD::LoadExtType ET) const { 7946 SDLoc dl(Op); 7947 if (ET == ISD::NON_EXTLOAD && 7948 (Op.getOpcode() == ISD::FP_TO_UINT || 7949 Op.getOpcode() == ISD::FP_TO_SINT) && 7950 isOperationLegalOrCustom(Op.getOpcode(), 7951 Op.getOperand(0).getValueType())) { 7952 7953 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7954 return true; 7955 } 7956 7957 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7958 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7959 LD->isNonTemporal()) 7960 return false; 7961 if (LD->getMemoryVT() != MemVT) 7962 return false; 7963 7964 RLI.Ptr = LD->getBasePtr(); 7965 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7966 assert(LD->getAddressingMode() == ISD::PRE_INC && 7967 "Non-pre-inc AM on PPC?"); 7968 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7969 LD->getOffset()); 7970 } 7971 7972 RLI.Chain = LD->getChain(); 7973 RLI.MPI = LD->getPointerInfo(); 7974 RLI.IsDereferenceable = LD->isDereferenceable(); 7975 RLI.IsInvariant = LD->isInvariant(); 7976 RLI.Alignment = LD->getAlignment(); 7977 RLI.AAInfo = LD->getAAInfo(); 7978 RLI.Ranges = LD->getRanges(); 7979 7980 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7981 return true; 7982 } 7983 7984 // Given the head of the old chain, ResChain, insert a token factor containing 7985 // it and NewResChain, and make users of ResChain now be users of that token 7986 // factor. 7987 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7988 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7989 SDValue NewResChain, 7990 SelectionDAG &DAG) const { 7991 if (!ResChain) 7992 return; 7993 7994 SDLoc dl(NewResChain); 7995 7996 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7997 NewResChain, DAG.getUNDEF(MVT::Other)); 7998 assert(TF.getNode() != NewResChain.getNode() && 7999 "A new TF really is required here"); 8000 8001 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8002 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8003 } 8004 8005 /// Analyze profitability of direct move 8006 /// prefer float load to int load plus direct move 8007 /// when there is no integer use of int load 8008 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8009 SDNode *Origin = Op.getOperand(0).getNode(); 8010 if (Origin->getOpcode() != ISD::LOAD) 8011 return true; 8012 8013 // If there is no LXSIBZX/LXSIHZX, like Power8, 8014 // prefer direct move if the memory size is 1 or 2 bytes. 8015 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8016 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8017 return true; 8018 8019 for (SDNode::use_iterator UI = Origin->use_begin(), 8020 UE = Origin->use_end(); 8021 UI != UE; ++UI) { 8022 8023 // Only look at the users of the loaded value. 8024 if (UI.getUse().get().getResNo() != 0) 8025 continue; 8026 8027 if (UI->getOpcode() != ISD::SINT_TO_FP && 8028 UI->getOpcode() != ISD::UINT_TO_FP) 8029 return true; 8030 } 8031 8032 return false; 8033 } 8034 8035 /// Custom lowers integer to floating point conversions to use 8036 /// the direct move instructions available in ISA 2.07 to avoid the 8037 /// need for load/store combinations. 8038 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8039 SelectionDAG &DAG, 8040 const SDLoc &dl) const { 8041 assert((Op.getValueType() == MVT::f32 || 8042 Op.getValueType() == MVT::f64) && 8043 "Invalid floating point type as target of conversion"); 8044 assert(Subtarget.hasFPCVT() && 8045 "Int to FP conversions with direct moves require FPCVT"); 8046 SDValue FP; 8047 SDValue Src = Op.getOperand(0); 8048 bool SinglePrec = Op.getValueType() == MVT::f32; 8049 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8050 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8051 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8052 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8053 8054 if (WordInt) { 8055 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8056 dl, MVT::f64, Src); 8057 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8058 } 8059 else { 8060 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8061 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8062 } 8063 8064 return FP; 8065 } 8066 8067 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8068 8069 EVT VecVT = Vec.getValueType(); 8070 assert(VecVT.isVector() && "Expected a vector type."); 8071 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8072 8073 EVT EltVT = VecVT.getVectorElementType(); 8074 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8075 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8076 8077 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8078 SmallVector<SDValue, 16> Ops(NumConcat); 8079 Ops[0] = Vec; 8080 SDValue UndefVec = DAG.getUNDEF(VecVT); 8081 for (unsigned i = 1; i < NumConcat; ++i) 8082 Ops[i] = UndefVec; 8083 8084 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8085 } 8086 8087 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8088 const SDLoc &dl) const { 8089 8090 unsigned Opc = Op.getOpcode(); 8091 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8092 "Unexpected conversion type"); 8093 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8094 "Supports conversions to v2f64/v4f32 only."); 8095 8096 bool SignedConv = Opc == ISD::SINT_TO_FP; 8097 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8098 8099 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8100 EVT WideVT = Wide.getValueType(); 8101 unsigned WideNumElts = WideVT.getVectorNumElements(); 8102 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8103 8104 SmallVector<int, 16> ShuffV; 8105 for (unsigned i = 0; i < WideNumElts; ++i) 8106 ShuffV.push_back(i + WideNumElts); 8107 8108 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8109 int SaveElts = FourEltRes ? 4 : 2; 8110 if (Subtarget.isLittleEndian()) 8111 for (int i = 0; i < SaveElts; i++) 8112 ShuffV[i * Stride] = i; 8113 else 8114 for (int i = 1; i <= SaveElts; i++) 8115 ShuffV[i * Stride - 1] = i - 1; 8116 8117 SDValue ShuffleSrc2 = 8118 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8119 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8120 8121 SDValue Extend; 8122 if (SignedConv) { 8123 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8124 EVT ExtVT = Op.getOperand(0).getValueType(); 8125 if (Subtarget.hasP9Altivec()) 8126 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8127 IntermediateVT.getVectorNumElements()); 8128 8129 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8130 DAG.getValueType(ExtVT)); 8131 } else 8132 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8133 8134 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8135 } 8136 8137 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8138 SelectionDAG &DAG) const { 8139 SDLoc dl(Op); 8140 8141 EVT InVT = Op.getOperand(0).getValueType(); 8142 EVT OutVT = Op.getValueType(); 8143 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8144 isOperationCustom(Op.getOpcode(), InVT)) 8145 return LowerINT_TO_FPVector(Op, DAG, dl); 8146 8147 // Conversions to f128 are legal. 8148 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8149 return Op; 8150 8151 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8152 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8153 return SDValue(); 8154 8155 SDValue Value = Op.getOperand(0); 8156 // The values are now known to be -1 (false) or 1 (true). To convert this 8157 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8158 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8159 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8160 8161 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8162 8163 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8164 8165 if (Op.getValueType() != MVT::v4f64) 8166 Value = DAG.getNode(ISD::FP_ROUND, dl, 8167 Op.getValueType(), Value, 8168 DAG.getIntPtrConstant(1, dl)); 8169 return Value; 8170 } 8171 8172 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8173 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8174 return SDValue(); 8175 8176 if (Op.getOperand(0).getValueType() == MVT::i1) 8177 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8178 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8179 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8180 8181 // If we have direct moves, we can do all the conversion, skip the store/load 8182 // however, without FPCVT we can't do most conversions. 8183 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8184 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8185 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8186 8187 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8188 "UINT_TO_FP is supported only with FPCVT"); 8189 8190 // If we have FCFIDS, then use it when converting to single-precision. 8191 // Otherwise, convert to double-precision and then round. 8192 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8193 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8194 : PPCISD::FCFIDS) 8195 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8196 : PPCISD::FCFID); 8197 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8198 ? MVT::f32 8199 : MVT::f64; 8200 8201 if (Op.getOperand(0).getValueType() == MVT::i64) { 8202 SDValue SINT = Op.getOperand(0); 8203 // When converting to single-precision, we actually need to convert 8204 // to double-precision first and then round to single-precision. 8205 // To avoid double-rounding effects during that operation, we have 8206 // to prepare the input operand. Bits that might be truncated when 8207 // converting to double-precision are replaced by a bit that won't 8208 // be lost at this stage, but is below the single-precision rounding 8209 // position. 8210 // 8211 // However, if -enable-unsafe-fp-math is in effect, accept double 8212 // rounding to avoid the extra overhead. 8213 if (Op.getValueType() == MVT::f32 && 8214 !Subtarget.hasFPCVT() && 8215 !DAG.getTarget().Options.UnsafeFPMath) { 8216 8217 // Twiddle input to make sure the low 11 bits are zero. (If this 8218 // is the case, we are guaranteed the value will fit into the 53 bit 8219 // mantissa of an IEEE double-precision value without rounding.) 8220 // If any of those low 11 bits were not zero originally, make sure 8221 // bit 12 (value 2048) is set instead, so that the final rounding 8222 // to single-precision gets the correct result. 8223 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8224 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8225 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8226 Round, DAG.getConstant(2047, dl, MVT::i64)); 8227 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8228 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8229 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8230 8231 // However, we cannot use that value unconditionally: if the magnitude 8232 // of the input value is small, the bit-twiddling we did above might 8233 // end up visibly changing the output. Fortunately, in that case, we 8234 // don't need to twiddle bits since the original input will convert 8235 // exactly to double-precision floating-point already. Therefore, 8236 // construct a conditional to use the original value if the top 11 8237 // bits are all sign-bit copies, and use the rounded value computed 8238 // above otherwise. 8239 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8240 SINT, DAG.getConstant(53, dl, MVT::i32)); 8241 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8242 Cond, DAG.getConstant(1, dl, MVT::i64)); 8243 Cond = DAG.getSetCC( 8244 dl, 8245 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8246 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8247 8248 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8249 } 8250 8251 ReuseLoadInfo RLI; 8252 SDValue Bits; 8253 8254 MachineFunction &MF = DAG.getMachineFunction(); 8255 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8256 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8257 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8258 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8259 } else if (Subtarget.hasLFIWAX() && 8260 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8261 MachineMemOperand *MMO = 8262 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8263 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8264 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8265 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8266 DAG.getVTList(MVT::f64, MVT::Other), 8267 Ops, MVT::i32, MMO); 8268 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8269 } else if (Subtarget.hasFPCVT() && 8270 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8271 MachineMemOperand *MMO = 8272 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8273 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8274 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8275 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8276 DAG.getVTList(MVT::f64, MVT::Other), 8277 Ops, MVT::i32, MMO); 8278 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8279 } else if (((Subtarget.hasLFIWAX() && 8280 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8281 (Subtarget.hasFPCVT() && 8282 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8283 SINT.getOperand(0).getValueType() == MVT::i32) { 8284 MachineFrameInfo &MFI = MF.getFrameInfo(); 8285 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8286 8287 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8288 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8289 8290 SDValue Store = 8291 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8292 MachinePointerInfo::getFixedStack( 8293 DAG.getMachineFunction(), FrameIdx)); 8294 8295 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8296 "Expected an i32 store"); 8297 8298 RLI.Ptr = FIdx; 8299 RLI.Chain = Store; 8300 RLI.MPI = 8301 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8302 RLI.Alignment = 4; 8303 8304 MachineMemOperand *MMO = 8305 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8306 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8307 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8308 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8309 PPCISD::LFIWZX : PPCISD::LFIWAX, 8310 dl, DAG.getVTList(MVT::f64, MVT::Other), 8311 Ops, MVT::i32, MMO); 8312 } else 8313 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8314 8315 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8316 8317 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8318 FP = DAG.getNode(ISD::FP_ROUND, dl, 8319 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8320 return FP; 8321 } 8322 8323 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8324 "Unhandled INT_TO_FP type in custom expander!"); 8325 // Since we only generate this in 64-bit mode, we can take advantage of 8326 // 64-bit registers. In particular, sign extend the input value into the 8327 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8328 // then lfd it and fcfid it. 8329 MachineFunction &MF = DAG.getMachineFunction(); 8330 MachineFrameInfo &MFI = MF.getFrameInfo(); 8331 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8332 8333 SDValue Ld; 8334 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8335 ReuseLoadInfo RLI; 8336 bool ReusingLoad; 8337 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8338 DAG))) { 8339 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8340 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8341 8342 SDValue Store = 8343 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8344 MachinePointerInfo::getFixedStack( 8345 DAG.getMachineFunction(), FrameIdx)); 8346 8347 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8348 "Expected an i32 store"); 8349 8350 RLI.Ptr = FIdx; 8351 RLI.Chain = Store; 8352 RLI.MPI = 8353 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8354 RLI.Alignment = 4; 8355 } 8356 8357 MachineMemOperand *MMO = 8358 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8359 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8360 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8361 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8362 PPCISD::LFIWZX : PPCISD::LFIWAX, 8363 dl, DAG.getVTList(MVT::f64, MVT::Other), 8364 Ops, MVT::i32, MMO); 8365 if (ReusingLoad) 8366 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8367 } else { 8368 assert(Subtarget.isPPC64() && 8369 "i32->FP without LFIWAX supported only on PPC64"); 8370 8371 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8372 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8373 8374 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8375 Op.getOperand(0)); 8376 8377 // STD the extended value into the stack slot. 8378 SDValue Store = DAG.getStore( 8379 DAG.getEntryNode(), dl, Ext64, FIdx, 8380 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8381 8382 // Load the value as a double. 8383 Ld = DAG.getLoad( 8384 MVT::f64, dl, Store, FIdx, 8385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8386 } 8387 8388 // FCFID it and return it. 8389 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8390 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8391 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8392 DAG.getIntPtrConstant(0, dl)); 8393 return FP; 8394 } 8395 8396 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8397 SelectionDAG &DAG) const { 8398 SDLoc dl(Op); 8399 /* 8400 The rounding mode is in bits 30:31 of FPSR, and has the following 8401 settings: 8402 00 Round to nearest 8403 01 Round to 0 8404 10 Round to +inf 8405 11 Round to -inf 8406 8407 FLT_ROUNDS, on the other hand, expects the following: 8408 -1 Undefined 8409 0 Round to 0 8410 1 Round to nearest 8411 2 Round to +inf 8412 3 Round to -inf 8413 8414 To perform the conversion, we do: 8415 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8416 */ 8417 8418 MachineFunction &MF = DAG.getMachineFunction(); 8419 EVT VT = Op.getValueType(); 8420 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8421 8422 // Save FP Control Word to register 8423 SDValue Chain = Op.getOperand(0); 8424 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8425 Chain = MFFS.getValue(1); 8426 8427 // Save FP register to stack slot 8428 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8429 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8430 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8431 8432 // Load FP Control Word from low 32 bits of stack slot. 8433 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8434 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8435 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8436 Chain = CWD.getValue(1); 8437 8438 // Transform as necessary 8439 SDValue CWD1 = 8440 DAG.getNode(ISD::AND, dl, MVT::i32, 8441 CWD, DAG.getConstant(3, dl, MVT::i32)); 8442 SDValue CWD2 = 8443 DAG.getNode(ISD::SRL, dl, MVT::i32, 8444 DAG.getNode(ISD::AND, dl, MVT::i32, 8445 DAG.getNode(ISD::XOR, dl, MVT::i32, 8446 CWD, DAG.getConstant(3, dl, MVT::i32)), 8447 DAG.getConstant(3, dl, MVT::i32)), 8448 DAG.getConstant(1, dl, MVT::i32)); 8449 8450 SDValue RetVal = 8451 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8452 8453 RetVal = 8454 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8455 dl, VT, RetVal); 8456 8457 return DAG.getMergeValues({RetVal, Chain}, dl); 8458 } 8459 8460 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8461 EVT VT = Op.getValueType(); 8462 unsigned BitWidth = VT.getSizeInBits(); 8463 SDLoc dl(Op); 8464 assert(Op.getNumOperands() == 3 && 8465 VT == Op.getOperand(1).getValueType() && 8466 "Unexpected SHL!"); 8467 8468 // Expand into a bunch of logical ops. Note that these ops 8469 // depend on the PPC behavior for oversized shift amounts. 8470 SDValue Lo = Op.getOperand(0); 8471 SDValue Hi = Op.getOperand(1); 8472 SDValue Amt = Op.getOperand(2); 8473 EVT AmtVT = Amt.getValueType(); 8474 8475 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8476 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8477 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8478 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8479 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8480 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8481 DAG.getConstant(-BitWidth, dl, AmtVT)); 8482 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8483 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8484 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8485 SDValue OutOps[] = { OutLo, OutHi }; 8486 return DAG.getMergeValues(OutOps, dl); 8487 } 8488 8489 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8490 EVT VT = Op.getValueType(); 8491 SDLoc dl(Op); 8492 unsigned BitWidth = VT.getSizeInBits(); 8493 assert(Op.getNumOperands() == 3 && 8494 VT == Op.getOperand(1).getValueType() && 8495 "Unexpected SRL!"); 8496 8497 // Expand into a bunch of logical ops. Note that these ops 8498 // depend on the PPC behavior for oversized shift amounts. 8499 SDValue Lo = Op.getOperand(0); 8500 SDValue Hi = Op.getOperand(1); 8501 SDValue Amt = Op.getOperand(2); 8502 EVT AmtVT = Amt.getValueType(); 8503 8504 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8505 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8506 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8507 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8508 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8509 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8510 DAG.getConstant(-BitWidth, dl, AmtVT)); 8511 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8512 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8513 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8514 SDValue OutOps[] = { OutLo, OutHi }; 8515 return DAG.getMergeValues(OutOps, dl); 8516 } 8517 8518 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8519 SDLoc dl(Op); 8520 EVT VT = Op.getValueType(); 8521 unsigned BitWidth = VT.getSizeInBits(); 8522 assert(Op.getNumOperands() == 3 && 8523 VT == Op.getOperand(1).getValueType() && 8524 "Unexpected SRA!"); 8525 8526 // Expand into a bunch of logical ops, followed by a select_cc. 8527 SDValue Lo = Op.getOperand(0); 8528 SDValue Hi = Op.getOperand(1); 8529 SDValue Amt = Op.getOperand(2); 8530 EVT AmtVT = Amt.getValueType(); 8531 8532 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8533 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8534 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8535 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8536 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8537 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8538 DAG.getConstant(-BitWidth, dl, AmtVT)); 8539 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8540 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8541 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8542 Tmp4, Tmp6, ISD::SETLE); 8543 SDValue OutOps[] = { OutLo, OutHi }; 8544 return DAG.getMergeValues(OutOps, dl); 8545 } 8546 8547 //===----------------------------------------------------------------------===// 8548 // Vector related lowering. 8549 // 8550 8551 /// BuildSplatI - Build a canonical splati of Val with an element size of 8552 /// SplatSize. Cast the result to VT. 8553 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8554 SelectionDAG &DAG, const SDLoc &dl) { 8555 static const MVT VTys[] = { // canonical VT to use for each size. 8556 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8557 }; 8558 8559 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8560 8561 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8562 if (Val == -1) 8563 SplatSize = 1; 8564 8565 EVT CanonicalVT = VTys[SplatSize-1]; 8566 8567 // Build a canonical splat for this value. 8568 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8569 } 8570 8571 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8572 /// specified intrinsic ID. 8573 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8574 const SDLoc &dl, EVT DestVT = MVT::Other) { 8575 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8576 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8577 DAG.getConstant(IID, dl, MVT::i32), Op); 8578 } 8579 8580 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8581 /// specified intrinsic ID. 8582 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8583 SelectionDAG &DAG, const SDLoc &dl, 8584 EVT DestVT = MVT::Other) { 8585 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8586 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8587 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8588 } 8589 8590 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8591 /// specified intrinsic ID. 8592 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8593 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8594 EVT DestVT = MVT::Other) { 8595 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8596 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8597 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8598 } 8599 8600 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8601 /// amount. The result has the specified value type. 8602 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8603 SelectionDAG &DAG, const SDLoc &dl) { 8604 // Force LHS/RHS to be the right type. 8605 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8606 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8607 8608 int Ops[16]; 8609 for (unsigned i = 0; i != 16; ++i) 8610 Ops[i] = i + Amt; 8611 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8612 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8613 } 8614 8615 /// Do we have an efficient pattern in a .td file for this node? 8616 /// 8617 /// \param V - pointer to the BuildVectorSDNode being matched 8618 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8619 /// 8620 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8621 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8622 /// the opposite is true (expansion is beneficial) are: 8623 /// - The node builds a vector out of integers that are not 32 or 64-bits 8624 /// - The node builds a vector out of constants 8625 /// - The node is a "load-and-splat" 8626 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8627 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8628 bool HasDirectMove, 8629 bool HasP8Vector) { 8630 EVT VecVT = V->getValueType(0); 8631 bool RightType = VecVT == MVT::v2f64 || 8632 (HasP8Vector && VecVT == MVT::v4f32) || 8633 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8634 if (!RightType) 8635 return false; 8636 8637 bool IsSplat = true; 8638 bool IsLoad = false; 8639 SDValue Op0 = V->getOperand(0); 8640 8641 // This function is called in a block that confirms the node is not a constant 8642 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8643 // different constants. 8644 if (V->isConstant()) 8645 return false; 8646 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8647 if (V->getOperand(i).isUndef()) 8648 return false; 8649 // We want to expand nodes that represent load-and-splat even if the 8650 // loaded value is a floating point truncation or conversion to int. 8651 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8652 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8653 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8654 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8655 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8656 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8657 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8658 IsLoad = true; 8659 // If the operands are different or the input is not a load and has more 8660 // uses than just this BV node, then it isn't a splat. 8661 if (V->getOperand(i) != Op0 || 8662 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8663 IsSplat = false; 8664 } 8665 return !(IsSplat && IsLoad); 8666 } 8667 8668 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8669 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8670 8671 SDLoc dl(Op); 8672 SDValue Op0 = Op->getOperand(0); 8673 8674 if (!EnableQuadPrecision || 8675 (Op.getValueType() != MVT::f128 ) || 8676 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8677 (Op0.getOperand(0).getValueType() != MVT::i64) || 8678 (Op0.getOperand(1).getValueType() != MVT::i64)) 8679 return SDValue(); 8680 8681 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8682 Op0.getOperand(1)); 8683 } 8684 8685 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8686 const SDValue *InputLoad = &Op; 8687 if (InputLoad->getOpcode() == ISD::BITCAST) 8688 InputLoad = &InputLoad->getOperand(0); 8689 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8690 InputLoad = &InputLoad->getOperand(0); 8691 if (InputLoad->getOpcode() != ISD::LOAD) 8692 return nullptr; 8693 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8694 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8695 } 8696 8697 // If this is a case we can't handle, return null and let the default 8698 // expansion code take care of it. If we CAN select this case, and if it 8699 // selects to a single instruction, return Op. Otherwise, if we can codegen 8700 // this case more efficiently than a constant pool load, lower it to the 8701 // sequence of ops that should be used. 8702 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8703 SelectionDAG &DAG) const { 8704 SDLoc dl(Op); 8705 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8706 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8707 8708 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8709 // We first build an i32 vector, load it into a QPX register, 8710 // then convert it to a floating-point vector and compare it 8711 // to a zero vector to get the boolean result. 8712 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8713 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8714 MachinePointerInfo PtrInfo = 8715 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8716 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8717 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8718 8719 assert(BVN->getNumOperands() == 4 && 8720 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8721 8722 bool IsConst = true; 8723 for (unsigned i = 0; i < 4; ++i) { 8724 if (BVN->getOperand(i).isUndef()) continue; 8725 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8726 IsConst = false; 8727 break; 8728 } 8729 } 8730 8731 if (IsConst) { 8732 Constant *One = 8733 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8734 Constant *NegOne = 8735 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8736 8737 Constant *CV[4]; 8738 for (unsigned i = 0; i < 4; ++i) { 8739 if (BVN->getOperand(i).isUndef()) 8740 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8741 else if (isNullConstant(BVN->getOperand(i))) 8742 CV[i] = NegOne; 8743 else 8744 CV[i] = One; 8745 } 8746 8747 Constant *CP = ConstantVector::get(CV); 8748 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8749 16 /* alignment */); 8750 8751 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8752 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8753 return DAG.getMemIntrinsicNode( 8754 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8755 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8756 } 8757 8758 SmallVector<SDValue, 4> Stores; 8759 for (unsigned i = 0; i < 4; ++i) { 8760 if (BVN->getOperand(i).isUndef()) continue; 8761 8762 unsigned Offset = 4*i; 8763 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8764 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8765 8766 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8767 if (StoreSize > 4) { 8768 Stores.push_back( 8769 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8770 PtrInfo.getWithOffset(Offset), MVT::i32)); 8771 } else { 8772 SDValue StoreValue = BVN->getOperand(i); 8773 if (StoreSize < 4) 8774 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8775 8776 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8777 PtrInfo.getWithOffset(Offset))); 8778 } 8779 } 8780 8781 SDValue StoreChain; 8782 if (!Stores.empty()) 8783 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8784 else 8785 StoreChain = DAG.getEntryNode(); 8786 8787 // Now load from v4i32 into the QPX register; this will extend it to 8788 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8789 // is typed as v4f64 because the QPX register integer states are not 8790 // explicitly represented. 8791 8792 SDValue Ops[] = {StoreChain, 8793 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8794 FIdx}; 8795 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8796 8797 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8798 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8799 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8800 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8801 LoadedVect); 8802 8803 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8804 8805 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8806 } 8807 8808 // All other QPX vectors are handled by generic code. 8809 if (Subtarget.hasQPX()) 8810 return SDValue(); 8811 8812 // Check if this is a splat of a constant value. 8813 APInt APSplatBits, APSplatUndef; 8814 unsigned SplatBitSize; 8815 bool HasAnyUndefs; 8816 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8817 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8818 SplatBitSize > 32) { 8819 8820 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8821 // Handle load-and-splat patterns as we have instructions that will do this 8822 // in one go. 8823 if (InputLoad && DAG.isSplatValue(Op, true)) { 8824 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8825 8826 // We have handling for 4 and 8 byte elements. 8827 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8828 8829 // Checking for a single use of this load, we have to check for vector 8830 // width (128 bits) / ElementSize uses (since each operand of the 8831 // BUILD_VECTOR is a separate use of the value. 8832 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8833 ((Subtarget.hasVSX() && ElementSize == 64) || 8834 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8835 SDValue Ops[] = { 8836 LD->getChain(), // Chain 8837 LD->getBasePtr(), // Ptr 8838 DAG.getValueType(Op.getValueType()) // VT 8839 }; 8840 return 8841 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8842 DAG.getVTList(Op.getValueType(), MVT::Other), 8843 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8844 } 8845 } 8846 8847 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8848 // lowered to VSX instructions under certain conditions. 8849 // Without VSX, there is no pattern more efficient than expanding the node. 8850 if (Subtarget.hasVSX() && 8851 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8852 Subtarget.hasP8Vector())) 8853 return Op; 8854 return SDValue(); 8855 } 8856 8857 unsigned SplatBits = APSplatBits.getZExtValue(); 8858 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8859 unsigned SplatSize = SplatBitSize / 8; 8860 8861 // First, handle single instruction cases. 8862 8863 // All zeros? 8864 if (SplatBits == 0) { 8865 // Canonicalize all zero vectors to be v4i32. 8866 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8867 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8868 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8869 } 8870 return Op; 8871 } 8872 8873 // We have XXSPLTIB for constant splats one byte wide 8874 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 8875 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 8876 if (Subtarget.hasP9Vector() && SplatSize == 1) 8877 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 8878 8879 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8880 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8881 (32-SplatBitSize)); 8882 if (SextVal >= -16 && SextVal <= 15) 8883 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8884 8885 // Two instruction sequences. 8886 8887 // If this value is in the range [-32,30] and is even, use: 8888 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8889 // If this value is in the range [17,31] and is odd, use: 8890 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8891 // If this value is in the range [-31,-17] and is odd, use: 8892 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8893 // Note the last two are three-instruction sequences. 8894 if (SextVal >= -32 && SextVal <= 31) { 8895 // To avoid having these optimizations undone by constant folding, 8896 // we convert to a pseudo that will be expanded later into one of 8897 // the above forms. 8898 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8899 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8900 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8901 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8902 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8903 if (VT == Op.getValueType()) 8904 return RetVal; 8905 else 8906 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8907 } 8908 8909 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8910 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8911 // for fneg/fabs. 8912 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8913 // Make -1 and vspltisw -1: 8914 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8915 8916 // Make the VSLW intrinsic, computing 0x8000_0000. 8917 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8918 OnesV, DAG, dl); 8919 8920 // xor by OnesV to invert it. 8921 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8922 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8923 } 8924 8925 // Check to see if this is a wide variety of vsplti*, binop self cases. 8926 static const signed char SplatCsts[] = { 8927 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8928 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8929 }; 8930 8931 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8932 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8933 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8934 int i = SplatCsts[idx]; 8935 8936 // Figure out what shift amount will be used by altivec if shifted by i in 8937 // this splat size. 8938 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8939 8940 // vsplti + shl self. 8941 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8942 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8943 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8944 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8945 Intrinsic::ppc_altivec_vslw 8946 }; 8947 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8948 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8949 } 8950 8951 // vsplti + srl self. 8952 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8953 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8954 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8955 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8956 Intrinsic::ppc_altivec_vsrw 8957 }; 8958 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8959 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8960 } 8961 8962 // vsplti + sra self. 8963 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8964 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8965 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8966 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8967 Intrinsic::ppc_altivec_vsraw 8968 }; 8969 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8970 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8971 } 8972 8973 // vsplti + rol self. 8974 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8975 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8976 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8977 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8978 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8979 Intrinsic::ppc_altivec_vrlw 8980 }; 8981 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8982 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8983 } 8984 8985 // t = vsplti c, result = vsldoi t, t, 1 8986 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8987 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8988 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8989 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8990 } 8991 // t = vsplti c, result = vsldoi t, t, 2 8992 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8993 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8994 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8995 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8996 } 8997 // t = vsplti c, result = vsldoi t, t, 3 8998 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8999 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9000 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9001 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9002 } 9003 } 9004 9005 return SDValue(); 9006 } 9007 9008 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9009 /// the specified operations to build the shuffle. 9010 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9011 SDValue RHS, SelectionDAG &DAG, 9012 const SDLoc &dl) { 9013 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9014 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9015 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9016 9017 enum { 9018 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9019 OP_VMRGHW, 9020 OP_VMRGLW, 9021 OP_VSPLTISW0, 9022 OP_VSPLTISW1, 9023 OP_VSPLTISW2, 9024 OP_VSPLTISW3, 9025 OP_VSLDOI4, 9026 OP_VSLDOI8, 9027 OP_VSLDOI12 9028 }; 9029 9030 if (OpNum == OP_COPY) { 9031 if (LHSID == (1*9+2)*9+3) return LHS; 9032 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9033 return RHS; 9034 } 9035 9036 SDValue OpLHS, OpRHS; 9037 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9038 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9039 9040 int ShufIdxs[16]; 9041 switch (OpNum) { 9042 default: llvm_unreachable("Unknown i32 permute!"); 9043 case OP_VMRGHW: 9044 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9045 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9046 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9047 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9048 break; 9049 case OP_VMRGLW: 9050 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9051 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9052 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9053 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9054 break; 9055 case OP_VSPLTISW0: 9056 for (unsigned i = 0; i != 16; ++i) 9057 ShufIdxs[i] = (i&3)+0; 9058 break; 9059 case OP_VSPLTISW1: 9060 for (unsigned i = 0; i != 16; ++i) 9061 ShufIdxs[i] = (i&3)+4; 9062 break; 9063 case OP_VSPLTISW2: 9064 for (unsigned i = 0; i != 16; ++i) 9065 ShufIdxs[i] = (i&3)+8; 9066 break; 9067 case OP_VSPLTISW3: 9068 for (unsigned i = 0; i != 16; ++i) 9069 ShufIdxs[i] = (i&3)+12; 9070 break; 9071 case OP_VSLDOI4: 9072 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9073 case OP_VSLDOI8: 9074 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9075 case OP_VSLDOI12: 9076 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9077 } 9078 EVT VT = OpLHS.getValueType(); 9079 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9080 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9081 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9082 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9083 } 9084 9085 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9086 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9087 /// SDValue. 9088 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9089 SelectionDAG &DAG) const { 9090 const unsigned BytesInVector = 16; 9091 bool IsLE = Subtarget.isLittleEndian(); 9092 SDLoc dl(N); 9093 SDValue V1 = N->getOperand(0); 9094 SDValue V2 = N->getOperand(1); 9095 unsigned ShiftElts = 0, InsertAtByte = 0; 9096 bool Swap = false; 9097 9098 // Shifts required to get the byte we want at element 7. 9099 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9100 0, 15, 14, 13, 12, 11, 10, 9}; 9101 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9102 1, 2, 3, 4, 5, 6, 7, 8}; 9103 9104 ArrayRef<int> Mask = N->getMask(); 9105 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9106 9107 // For each mask element, find out if we're just inserting something 9108 // from V2 into V1 or vice versa. 9109 // Possible permutations inserting an element from V2 into V1: 9110 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9111 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9112 // ... 9113 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9114 // Inserting from V1 into V2 will be similar, except mask range will be 9115 // [16,31]. 9116 9117 bool FoundCandidate = false; 9118 // If both vector operands for the shuffle are the same vector, the mask 9119 // will contain only elements from the first one and the second one will be 9120 // undef. 9121 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9122 // Go through the mask of half-words to find an element that's being moved 9123 // from one vector to the other. 9124 for (unsigned i = 0; i < BytesInVector; ++i) { 9125 unsigned CurrentElement = Mask[i]; 9126 // If 2nd operand is undefined, we should only look for element 7 in the 9127 // Mask. 9128 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9129 continue; 9130 9131 bool OtherElementsInOrder = true; 9132 // Examine the other elements in the Mask to see if they're in original 9133 // order. 9134 for (unsigned j = 0; j < BytesInVector; ++j) { 9135 if (j == i) 9136 continue; 9137 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9138 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9139 // in which we always assume we're always picking from the 1st operand. 9140 int MaskOffset = 9141 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9142 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9143 OtherElementsInOrder = false; 9144 break; 9145 } 9146 } 9147 // If other elements are in original order, we record the number of shifts 9148 // we need to get the element we want into element 7. Also record which byte 9149 // in the vector we should insert into. 9150 if (OtherElementsInOrder) { 9151 // If 2nd operand is undefined, we assume no shifts and no swapping. 9152 if (V2.isUndef()) { 9153 ShiftElts = 0; 9154 Swap = false; 9155 } else { 9156 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9157 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9158 : BigEndianShifts[CurrentElement & 0xF]; 9159 Swap = CurrentElement < BytesInVector; 9160 } 9161 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9162 FoundCandidate = true; 9163 break; 9164 } 9165 } 9166 9167 if (!FoundCandidate) 9168 return SDValue(); 9169 9170 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9171 // optionally with VECSHL if shift is required. 9172 if (Swap) 9173 std::swap(V1, V2); 9174 if (V2.isUndef()) 9175 V2 = V1; 9176 if (ShiftElts) { 9177 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9178 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9179 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9180 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9181 } 9182 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9183 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9184 } 9185 9186 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9187 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9188 /// SDValue. 9189 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9190 SelectionDAG &DAG) const { 9191 const unsigned NumHalfWords = 8; 9192 const unsigned BytesInVector = NumHalfWords * 2; 9193 // Check that the shuffle is on half-words. 9194 if (!isNByteElemShuffleMask(N, 2, 1)) 9195 return SDValue(); 9196 9197 bool IsLE = Subtarget.isLittleEndian(); 9198 SDLoc dl(N); 9199 SDValue V1 = N->getOperand(0); 9200 SDValue V2 = N->getOperand(1); 9201 unsigned ShiftElts = 0, InsertAtByte = 0; 9202 bool Swap = false; 9203 9204 // Shifts required to get the half-word we want at element 3. 9205 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9206 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9207 9208 uint32_t Mask = 0; 9209 uint32_t OriginalOrderLow = 0x1234567; 9210 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9211 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9212 // 32-bit space, only need 4-bit nibbles per element. 9213 for (unsigned i = 0; i < NumHalfWords; ++i) { 9214 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9215 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9216 } 9217 9218 // For each mask element, find out if we're just inserting something 9219 // from V2 into V1 or vice versa. Possible permutations inserting an element 9220 // from V2 into V1: 9221 // X, 1, 2, 3, 4, 5, 6, 7 9222 // 0, X, 2, 3, 4, 5, 6, 7 9223 // 0, 1, X, 3, 4, 5, 6, 7 9224 // 0, 1, 2, X, 4, 5, 6, 7 9225 // 0, 1, 2, 3, X, 5, 6, 7 9226 // 0, 1, 2, 3, 4, X, 6, 7 9227 // 0, 1, 2, 3, 4, 5, X, 7 9228 // 0, 1, 2, 3, 4, 5, 6, X 9229 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9230 9231 bool FoundCandidate = false; 9232 // Go through the mask of half-words to find an element that's being moved 9233 // from one vector to the other. 9234 for (unsigned i = 0; i < NumHalfWords; ++i) { 9235 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9236 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9237 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9238 uint32_t TargetOrder = 0x0; 9239 9240 // If both vector operands for the shuffle are the same vector, the mask 9241 // will contain only elements from the first one and the second one will be 9242 // undef. 9243 if (V2.isUndef()) { 9244 ShiftElts = 0; 9245 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9246 TargetOrder = OriginalOrderLow; 9247 Swap = false; 9248 // Skip if not the correct element or mask of other elements don't equal 9249 // to our expected order. 9250 if (MaskOneElt == VINSERTHSrcElem && 9251 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9252 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9253 FoundCandidate = true; 9254 break; 9255 } 9256 } else { // If both operands are defined. 9257 // Target order is [8,15] if the current mask is between [0,7]. 9258 TargetOrder = 9259 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9260 // Skip if mask of other elements don't equal our expected order. 9261 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9262 // We only need the last 3 bits for the number of shifts. 9263 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9264 : BigEndianShifts[MaskOneElt & 0x7]; 9265 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9266 Swap = MaskOneElt < NumHalfWords; 9267 FoundCandidate = true; 9268 break; 9269 } 9270 } 9271 } 9272 9273 if (!FoundCandidate) 9274 return SDValue(); 9275 9276 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9277 // optionally with VECSHL if shift is required. 9278 if (Swap) 9279 std::swap(V1, V2); 9280 if (V2.isUndef()) 9281 V2 = V1; 9282 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9283 if (ShiftElts) { 9284 // Double ShiftElts because we're left shifting on v16i8 type. 9285 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9286 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9287 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9288 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9289 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9290 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9291 } 9292 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9293 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9294 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9295 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9296 } 9297 9298 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9299 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9300 /// return the code it can be lowered into. Worst case, it can always be 9301 /// lowered into a vperm. 9302 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9303 SelectionDAG &DAG) const { 9304 SDLoc dl(Op); 9305 SDValue V1 = Op.getOperand(0); 9306 SDValue V2 = Op.getOperand(1); 9307 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9308 EVT VT = Op.getValueType(); 9309 bool isLittleEndian = Subtarget.isLittleEndian(); 9310 9311 unsigned ShiftElts, InsertAtByte; 9312 bool Swap = false; 9313 9314 // If this is a load-and-splat, we can do that with a single instruction 9315 // in some cases. However if the load has multiple uses, we don't want to 9316 // combine it because that will just produce multiple loads. 9317 const SDValue *InputLoad = getNormalLoadInput(V1); 9318 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9319 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9320 InputLoad->hasOneUse()) { 9321 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9322 int SplatIdx = 9323 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9324 9325 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9326 // For 4-byte load-and-splat, we need Power9. 9327 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9328 uint64_t Offset = 0; 9329 if (IsFourByte) 9330 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9331 else 9332 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9333 SDValue BasePtr = LD->getBasePtr(); 9334 if (Offset != 0) 9335 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9336 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9337 SDValue Ops[] = { 9338 LD->getChain(), // Chain 9339 BasePtr, // BasePtr 9340 DAG.getValueType(Op.getValueType()) // VT 9341 }; 9342 SDVTList VTL = 9343 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9344 SDValue LdSplt = 9345 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9346 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9347 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9348 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9349 return LdSplt; 9350 } 9351 } 9352 if (Subtarget.hasP9Vector() && 9353 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9354 isLittleEndian)) { 9355 if (Swap) 9356 std::swap(V1, V2); 9357 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9358 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9359 if (ShiftElts) { 9360 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9361 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9362 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9363 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9364 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9365 } 9366 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9367 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9368 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9369 } 9370 9371 if (Subtarget.hasP9Altivec()) { 9372 SDValue NewISDNode; 9373 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9374 return NewISDNode; 9375 9376 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9377 return NewISDNode; 9378 } 9379 9380 if (Subtarget.hasVSX() && 9381 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9382 if (Swap) 9383 std::swap(V1, V2); 9384 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9385 SDValue Conv2 = 9386 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9387 9388 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9389 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9390 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9391 } 9392 9393 if (Subtarget.hasVSX() && 9394 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9395 if (Swap) 9396 std::swap(V1, V2); 9397 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9398 SDValue Conv2 = 9399 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9400 9401 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9402 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9403 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9404 } 9405 9406 if (Subtarget.hasP9Vector()) { 9407 if (PPC::isXXBRHShuffleMask(SVOp)) { 9408 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9409 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9410 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9411 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9412 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9413 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9414 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9415 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9416 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9417 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9418 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9419 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9420 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9421 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9422 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9423 } 9424 } 9425 9426 if (Subtarget.hasVSX()) { 9427 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9428 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9429 9430 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9431 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9432 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9433 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9434 } 9435 9436 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9437 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9438 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9439 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9440 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9441 } 9442 } 9443 9444 if (Subtarget.hasQPX()) { 9445 if (VT.getVectorNumElements() != 4) 9446 return SDValue(); 9447 9448 if (V2.isUndef()) V2 = V1; 9449 9450 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9451 if (AlignIdx != -1) { 9452 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9453 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9454 } else if (SVOp->isSplat()) { 9455 int SplatIdx = SVOp->getSplatIndex(); 9456 if (SplatIdx >= 4) { 9457 std::swap(V1, V2); 9458 SplatIdx -= 4; 9459 } 9460 9461 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9462 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9463 } 9464 9465 // Lower this into a qvgpci/qvfperm pair. 9466 9467 // Compute the qvgpci literal 9468 unsigned idx = 0; 9469 for (unsigned i = 0; i < 4; ++i) { 9470 int m = SVOp->getMaskElt(i); 9471 unsigned mm = m >= 0 ? (unsigned) m : i; 9472 idx |= mm << (3-i)*3; 9473 } 9474 9475 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9476 DAG.getConstant(idx, dl, MVT::i32)); 9477 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9478 } 9479 9480 // Cases that are handled by instructions that take permute immediates 9481 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9482 // selected by the instruction selector. 9483 if (V2.isUndef()) { 9484 if (PPC::isSplatShuffleMask(SVOp, 1) || 9485 PPC::isSplatShuffleMask(SVOp, 2) || 9486 PPC::isSplatShuffleMask(SVOp, 4) || 9487 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9488 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9489 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9490 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9491 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9492 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9493 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9494 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9495 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9496 (Subtarget.hasP8Altivec() && ( 9497 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9498 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9499 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9500 return Op; 9501 } 9502 } 9503 9504 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9505 // and produce a fixed permutation. If any of these match, do not lower to 9506 // VPERM. 9507 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9508 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9509 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9510 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9511 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9512 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9513 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9514 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9515 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9516 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9517 (Subtarget.hasP8Altivec() && ( 9518 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9519 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9520 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9521 return Op; 9522 9523 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9524 // perfect shuffle table to emit an optimal matching sequence. 9525 ArrayRef<int> PermMask = SVOp->getMask(); 9526 9527 unsigned PFIndexes[4]; 9528 bool isFourElementShuffle = true; 9529 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9530 unsigned EltNo = 8; // Start out undef. 9531 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9532 if (PermMask[i*4+j] < 0) 9533 continue; // Undef, ignore it. 9534 9535 unsigned ByteSource = PermMask[i*4+j]; 9536 if ((ByteSource & 3) != j) { 9537 isFourElementShuffle = false; 9538 break; 9539 } 9540 9541 if (EltNo == 8) { 9542 EltNo = ByteSource/4; 9543 } else if (EltNo != ByteSource/4) { 9544 isFourElementShuffle = false; 9545 break; 9546 } 9547 } 9548 PFIndexes[i] = EltNo; 9549 } 9550 9551 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9552 // perfect shuffle vector to determine if it is cost effective to do this as 9553 // discrete instructions, or whether we should use a vperm. 9554 // For now, we skip this for little endian until such time as we have a 9555 // little-endian perfect shuffle table. 9556 if (isFourElementShuffle && !isLittleEndian) { 9557 // Compute the index in the perfect shuffle table. 9558 unsigned PFTableIndex = 9559 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9560 9561 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9562 unsigned Cost = (PFEntry >> 30); 9563 9564 // Determining when to avoid vperm is tricky. Many things affect the cost 9565 // of vperm, particularly how many times the perm mask needs to be computed. 9566 // For example, if the perm mask can be hoisted out of a loop or is already 9567 // used (perhaps because there are multiple permutes with the same shuffle 9568 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9569 // the loop requires an extra register. 9570 // 9571 // As a compromise, we only emit discrete instructions if the shuffle can be 9572 // generated in 3 or fewer operations. When we have loop information 9573 // available, if this block is within a loop, we should avoid using vperm 9574 // for 3-operation perms and use a constant pool load instead. 9575 if (Cost < 3) 9576 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9577 } 9578 9579 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9580 // vector that will get spilled to the constant pool. 9581 if (V2.isUndef()) V2 = V1; 9582 9583 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9584 // that it is in input element units, not in bytes. Convert now. 9585 9586 // For little endian, the order of the input vectors is reversed, and 9587 // the permutation mask is complemented with respect to 31. This is 9588 // necessary to produce proper semantics with the big-endian-biased vperm 9589 // instruction. 9590 EVT EltVT = V1.getValueType().getVectorElementType(); 9591 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9592 9593 SmallVector<SDValue, 16> ResultMask; 9594 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9595 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9596 9597 for (unsigned j = 0; j != BytesPerElement; ++j) 9598 if (isLittleEndian) 9599 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9600 dl, MVT::i32)); 9601 else 9602 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9603 MVT::i32)); 9604 } 9605 9606 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9607 if (isLittleEndian) 9608 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9609 V2, V1, VPermMask); 9610 else 9611 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9612 V1, V2, VPermMask); 9613 } 9614 9615 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9616 /// vector comparison. If it is, return true and fill in Opc/isDot with 9617 /// information about the intrinsic. 9618 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9619 bool &isDot, const PPCSubtarget &Subtarget) { 9620 unsigned IntrinsicID = 9621 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9622 CompareOpc = -1; 9623 isDot = false; 9624 switch (IntrinsicID) { 9625 default: 9626 return false; 9627 // Comparison predicates. 9628 case Intrinsic::ppc_altivec_vcmpbfp_p: 9629 CompareOpc = 966; 9630 isDot = true; 9631 break; 9632 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9633 CompareOpc = 198; 9634 isDot = true; 9635 break; 9636 case Intrinsic::ppc_altivec_vcmpequb_p: 9637 CompareOpc = 6; 9638 isDot = true; 9639 break; 9640 case Intrinsic::ppc_altivec_vcmpequh_p: 9641 CompareOpc = 70; 9642 isDot = true; 9643 break; 9644 case Intrinsic::ppc_altivec_vcmpequw_p: 9645 CompareOpc = 134; 9646 isDot = true; 9647 break; 9648 case Intrinsic::ppc_altivec_vcmpequd_p: 9649 if (Subtarget.hasP8Altivec()) { 9650 CompareOpc = 199; 9651 isDot = true; 9652 } else 9653 return false; 9654 break; 9655 case Intrinsic::ppc_altivec_vcmpneb_p: 9656 case Intrinsic::ppc_altivec_vcmpneh_p: 9657 case Intrinsic::ppc_altivec_vcmpnew_p: 9658 case Intrinsic::ppc_altivec_vcmpnezb_p: 9659 case Intrinsic::ppc_altivec_vcmpnezh_p: 9660 case Intrinsic::ppc_altivec_vcmpnezw_p: 9661 if (Subtarget.hasP9Altivec()) { 9662 switch (IntrinsicID) { 9663 default: 9664 llvm_unreachable("Unknown comparison intrinsic."); 9665 case Intrinsic::ppc_altivec_vcmpneb_p: 9666 CompareOpc = 7; 9667 break; 9668 case Intrinsic::ppc_altivec_vcmpneh_p: 9669 CompareOpc = 71; 9670 break; 9671 case Intrinsic::ppc_altivec_vcmpnew_p: 9672 CompareOpc = 135; 9673 break; 9674 case Intrinsic::ppc_altivec_vcmpnezb_p: 9675 CompareOpc = 263; 9676 break; 9677 case Intrinsic::ppc_altivec_vcmpnezh_p: 9678 CompareOpc = 327; 9679 break; 9680 case Intrinsic::ppc_altivec_vcmpnezw_p: 9681 CompareOpc = 391; 9682 break; 9683 } 9684 isDot = true; 9685 } else 9686 return false; 9687 break; 9688 case Intrinsic::ppc_altivec_vcmpgefp_p: 9689 CompareOpc = 454; 9690 isDot = true; 9691 break; 9692 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9693 CompareOpc = 710; 9694 isDot = true; 9695 break; 9696 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9697 CompareOpc = 774; 9698 isDot = true; 9699 break; 9700 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9701 CompareOpc = 838; 9702 isDot = true; 9703 break; 9704 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9705 CompareOpc = 902; 9706 isDot = true; 9707 break; 9708 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9709 if (Subtarget.hasP8Altivec()) { 9710 CompareOpc = 967; 9711 isDot = true; 9712 } else 9713 return false; 9714 break; 9715 case Intrinsic::ppc_altivec_vcmpgtub_p: 9716 CompareOpc = 518; 9717 isDot = true; 9718 break; 9719 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9720 CompareOpc = 582; 9721 isDot = true; 9722 break; 9723 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9724 CompareOpc = 646; 9725 isDot = true; 9726 break; 9727 case Intrinsic::ppc_altivec_vcmpgtud_p: 9728 if (Subtarget.hasP8Altivec()) { 9729 CompareOpc = 711; 9730 isDot = true; 9731 } else 9732 return false; 9733 break; 9734 9735 // VSX predicate comparisons use the same infrastructure 9736 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9737 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9738 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9739 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9740 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9741 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9742 if (Subtarget.hasVSX()) { 9743 switch (IntrinsicID) { 9744 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9745 CompareOpc = 99; 9746 break; 9747 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9748 CompareOpc = 115; 9749 break; 9750 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9751 CompareOpc = 107; 9752 break; 9753 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9754 CompareOpc = 67; 9755 break; 9756 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9757 CompareOpc = 83; 9758 break; 9759 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9760 CompareOpc = 75; 9761 break; 9762 } 9763 isDot = true; 9764 } else 9765 return false; 9766 break; 9767 9768 // Normal Comparisons. 9769 case Intrinsic::ppc_altivec_vcmpbfp: 9770 CompareOpc = 966; 9771 break; 9772 case Intrinsic::ppc_altivec_vcmpeqfp: 9773 CompareOpc = 198; 9774 break; 9775 case Intrinsic::ppc_altivec_vcmpequb: 9776 CompareOpc = 6; 9777 break; 9778 case Intrinsic::ppc_altivec_vcmpequh: 9779 CompareOpc = 70; 9780 break; 9781 case Intrinsic::ppc_altivec_vcmpequw: 9782 CompareOpc = 134; 9783 break; 9784 case Intrinsic::ppc_altivec_vcmpequd: 9785 if (Subtarget.hasP8Altivec()) 9786 CompareOpc = 199; 9787 else 9788 return false; 9789 break; 9790 case Intrinsic::ppc_altivec_vcmpneb: 9791 case Intrinsic::ppc_altivec_vcmpneh: 9792 case Intrinsic::ppc_altivec_vcmpnew: 9793 case Intrinsic::ppc_altivec_vcmpnezb: 9794 case Intrinsic::ppc_altivec_vcmpnezh: 9795 case Intrinsic::ppc_altivec_vcmpnezw: 9796 if (Subtarget.hasP9Altivec()) 9797 switch (IntrinsicID) { 9798 default: 9799 llvm_unreachable("Unknown comparison intrinsic."); 9800 case Intrinsic::ppc_altivec_vcmpneb: 9801 CompareOpc = 7; 9802 break; 9803 case Intrinsic::ppc_altivec_vcmpneh: 9804 CompareOpc = 71; 9805 break; 9806 case Intrinsic::ppc_altivec_vcmpnew: 9807 CompareOpc = 135; 9808 break; 9809 case Intrinsic::ppc_altivec_vcmpnezb: 9810 CompareOpc = 263; 9811 break; 9812 case Intrinsic::ppc_altivec_vcmpnezh: 9813 CompareOpc = 327; 9814 break; 9815 case Intrinsic::ppc_altivec_vcmpnezw: 9816 CompareOpc = 391; 9817 break; 9818 } 9819 else 9820 return false; 9821 break; 9822 case Intrinsic::ppc_altivec_vcmpgefp: 9823 CompareOpc = 454; 9824 break; 9825 case Intrinsic::ppc_altivec_vcmpgtfp: 9826 CompareOpc = 710; 9827 break; 9828 case Intrinsic::ppc_altivec_vcmpgtsb: 9829 CompareOpc = 774; 9830 break; 9831 case Intrinsic::ppc_altivec_vcmpgtsh: 9832 CompareOpc = 838; 9833 break; 9834 case Intrinsic::ppc_altivec_vcmpgtsw: 9835 CompareOpc = 902; 9836 break; 9837 case Intrinsic::ppc_altivec_vcmpgtsd: 9838 if (Subtarget.hasP8Altivec()) 9839 CompareOpc = 967; 9840 else 9841 return false; 9842 break; 9843 case Intrinsic::ppc_altivec_vcmpgtub: 9844 CompareOpc = 518; 9845 break; 9846 case Intrinsic::ppc_altivec_vcmpgtuh: 9847 CompareOpc = 582; 9848 break; 9849 case Intrinsic::ppc_altivec_vcmpgtuw: 9850 CompareOpc = 646; 9851 break; 9852 case Intrinsic::ppc_altivec_vcmpgtud: 9853 if (Subtarget.hasP8Altivec()) 9854 CompareOpc = 711; 9855 else 9856 return false; 9857 break; 9858 } 9859 return true; 9860 } 9861 9862 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9863 /// lower, do it, otherwise return null. 9864 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9865 SelectionDAG &DAG) const { 9866 unsigned IntrinsicID = 9867 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9868 9869 SDLoc dl(Op); 9870 9871 if (IntrinsicID == Intrinsic::thread_pointer) { 9872 // Reads the thread pointer register, used for __builtin_thread_pointer. 9873 if (Subtarget.isPPC64()) 9874 return DAG.getRegister(PPC::X13, MVT::i64); 9875 return DAG.getRegister(PPC::R2, MVT::i32); 9876 } 9877 9878 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9879 // opcode number of the comparison. 9880 int CompareOpc; 9881 bool isDot; 9882 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9883 return SDValue(); // Don't custom lower most intrinsics. 9884 9885 // If this is a non-dot comparison, make the VCMP node and we are done. 9886 if (!isDot) { 9887 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9888 Op.getOperand(1), Op.getOperand(2), 9889 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9890 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9891 } 9892 9893 // Create the PPCISD altivec 'dot' comparison node. 9894 SDValue Ops[] = { 9895 Op.getOperand(2), // LHS 9896 Op.getOperand(3), // RHS 9897 DAG.getConstant(CompareOpc, dl, MVT::i32) 9898 }; 9899 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9900 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9901 9902 // Now that we have the comparison, emit a copy from the CR to a GPR. 9903 // This is flagged to the above dot comparison. 9904 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9905 DAG.getRegister(PPC::CR6, MVT::i32), 9906 CompNode.getValue(1)); 9907 9908 // Unpack the result based on how the target uses it. 9909 unsigned BitNo; // Bit # of CR6. 9910 bool InvertBit; // Invert result? 9911 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9912 default: // Can't happen, don't crash on invalid number though. 9913 case 0: // Return the value of the EQ bit of CR6. 9914 BitNo = 0; InvertBit = false; 9915 break; 9916 case 1: // Return the inverted value of the EQ bit of CR6. 9917 BitNo = 0; InvertBit = true; 9918 break; 9919 case 2: // Return the value of the LT bit of CR6. 9920 BitNo = 2; InvertBit = false; 9921 break; 9922 case 3: // Return the inverted value of the LT bit of CR6. 9923 BitNo = 2; InvertBit = true; 9924 break; 9925 } 9926 9927 // Shift the bit into the low position. 9928 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9929 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9930 // Isolate the bit. 9931 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9932 DAG.getConstant(1, dl, MVT::i32)); 9933 9934 // If we are supposed to, toggle the bit. 9935 if (InvertBit) 9936 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9937 DAG.getConstant(1, dl, MVT::i32)); 9938 return Flags; 9939 } 9940 9941 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9942 SelectionDAG &DAG) const { 9943 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9944 // the beginning of the argument list. 9945 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9946 SDLoc DL(Op); 9947 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9948 case Intrinsic::ppc_cfence: { 9949 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9950 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9951 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9952 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9953 Op.getOperand(ArgStart + 1)), 9954 Op.getOperand(0)), 9955 0); 9956 } 9957 default: 9958 break; 9959 } 9960 return SDValue(); 9961 } 9962 9963 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9964 // Check for a DIV with the same operands as this REM. 9965 for (auto UI : Op.getOperand(1)->uses()) { 9966 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9967 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9968 if (UI->getOperand(0) == Op.getOperand(0) && 9969 UI->getOperand(1) == Op.getOperand(1)) 9970 return SDValue(); 9971 } 9972 return Op; 9973 } 9974 9975 // Lower scalar BSWAP64 to xxbrd. 9976 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9977 SDLoc dl(Op); 9978 // MTVSRDD 9979 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9980 Op.getOperand(0)); 9981 // XXBRD 9982 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 9983 // MFVSRD 9984 int VectorIndex = 0; 9985 if (Subtarget.isLittleEndian()) 9986 VectorIndex = 1; 9987 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9988 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9989 return Op; 9990 } 9991 9992 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9993 // compared to a value that is atomically loaded (atomic loads zero-extend). 9994 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9995 SelectionDAG &DAG) const { 9996 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9997 "Expecting an atomic compare-and-swap here."); 9998 SDLoc dl(Op); 9999 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10000 EVT MemVT = AtomicNode->getMemoryVT(); 10001 if (MemVT.getSizeInBits() >= 32) 10002 return Op; 10003 10004 SDValue CmpOp = Op.getOperand(2); 10005 // If this is already correctly zero-extended, leave it alone. 10006 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10007 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10008 return Op; 10009 10010 // Clear the high bits of the compare operand. 10011 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10012 SDValue NewCmpOp = 10013 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10014 DAG.getConstant(MaskVal, dl, MVT::i32)); 10015 10016 // Replace the existing compare operand with the properly zero-extended one. 10017 SmallVector<SDValue, 4> Ops; 10018 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10019 Ops.push_back(AtomicNode->getOperand(i)); 10020 Ops[2] = NewCmpOp; 10021 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10022 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10023 auto NodeTy = 10024 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10025 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10026 } 10027 10028 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10029 SelectionDAG &DAG) const { 10030 SDLoc dl(Op); 10031 // Create a stack slot that is 16-byte aligned. 10032 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10033 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10034 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10035 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10036 10037 // Store the input value into Value#0 of the stack slot. 10038 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10039 MachinePointerInfo()); 10040 // Load it out. 10041 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10042 } 10043 10044 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10045 SelectionDAG &DAG) const { 10046 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10047 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10048 10049 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10050 // We have legal lowering for constant indices but not for variable ones. 10051 if (!C) 10052 return SDValue(); 10053 10054 EVT VT = Op.getValueType(); 10055 SDLoc dl(Op); 10056 SDValue V1 = Op.getOperand(0); 10057 SDValue V2 = Op.getOperand(1); 10058 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10059 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10060 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10061 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10062 unsigned InsertAtElement = C->getZExtValue(); 10063 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10064 if (Subtarget.isLittleEndian()) { 10065 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10066 } 10067 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10068 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10069 } 10070 return Op; 10071 } 10072 10073 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10074 SelectionDAG &DAG) const { 10075 SDLoc dl(Op); 10076 SDNode *N = Op.getNode(); 10077 10078 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10079 "Unknown extract_vector_elt type"); 10080 10081 SDValue Value = N->getOperand(0); 10082 10083 // The first part of this is like the store lowering except that we don't 10084 // need to track the chain. 10085 10086 // The values are now known to be -1 (false) or 1 (true). To convert this 10087 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10088 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10089 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10090 10091 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10092 // understand how to form the extending load. 10093 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10094 10095 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10096 10097 // Now convert to an integer and store. 10098 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10099 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10100 Value); 10101 10102 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10103 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10104 MachinePointerInfo PtrInfo = 10105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10106 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10107 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10108 10109 SDValue StoreChain = DAG.getEntryNode(); 10110 SDValue Ops[] = {StoreChain, 10111 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10112 Value, FIdx}; 10113 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10114 10115 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10116 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10117 10118 // Extract the value requested. 10119 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10120 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10121 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10122 10123 SDValue IntVal = 10124 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10125 10126 if (!Subtarget.useCRBits()) 10127 return IntVal; 10128 10129 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10130 } 10131 10132 /// Lowering for QPX v4i1 loads 10133 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10134 SelectionDAG &DAG) const { 10135 SDLoc dl(Op); 10136 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10137 SDValue LoadChain = LN->getChain(); 10138 SDValue BasePtr = LN->getBasePtr(); 10139 10140 if (Op.getValueType() == MVT::v4f64 || 10141 Op.getValueType() == MVT::v4f32) { 10142 EVT MemVT = LN->getMemoryVT(); 10143 unsigned Alignment = LN->getAlignment(); 10144 10145 // If this load is properly aligned, then it is legal. 10146 if (Alignment >= MemVT.getStoreSize()) 10147 return Op; 10148 10149 EVT ScalarVT = Op.getValueType().getScalarType(), 10150 ScalarMemVT = MemVT.getScalarType(); 10151 unsigned Stride = ScalarMemVT.getStoreSize(); 10152 10153 SDValue Vals[4], LoadChains[4]; 10154 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10155 SDValue Load; 10156 if (ScalarVT != ScalarMemVT) 10157 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10158 BasePtr, 10159 LN->getPointerInfo().getWithOffset(Idx * Stride), 10160 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10161 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10162 else 10163 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10164 LN->getPointerInfo().getWithOffset(Idx * Stride), 10165 MinAlign(Alignment, Idx * Stride), 10166 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10167 10168 if (Idx == 0 && LN->isIndexed()) { 10169 assert(LN->getAddressingMode() == ISD::PRE_INC && 10170 "Unknown addressing mode on vector load"); 10171 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10172 LN->getAddressingMode()); 10173 } 10174 10175 Vals[Idx] = Load; 10176 LoadChains[Idx] = Load.getValue(1); 10177 10178 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10179 DAG.getConstant(Stride, dl, 10180 BasePtr.getValueType())); 10181 } 10182 10183 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10184 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10185 10186 if (LN->isIndexed()) { 10187 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10188 return DAG.getMergeValues(RetOps, dl); 10189 } 10190 10191 SDValue RetOps[] = { Value, TF }; 10192 return DAG.getMergeValues(RetOps, dl); 10193 } 10194 10195 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10196 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10197 10198 // To lower v4i1 from a byte array, we load the byte elements of the 10199 // vector and then reuse the BUILD_VECTOR logic. 10200 10201 SDValue VectElmts[4], VectElmtChains[4]; 10202 for (unsigned i = 0; i < 4; ++i) { 10203 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10204 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10205 10206 VectElmts[i] = DAG.getExtLoad( 10207 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10208 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10209 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10210 VectElmtChains[i] = VectElmts[i].getValue(1); 10211 } 10212 10213 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10214 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10215 10216 SDValue RVals[] = { Value, LoadChain }; 10217 return DAG.getMergeValues(RVals, dl); 10218 } 10219 10220 /// Lowering for QPX v4i1 stores 10221 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10222 SelectionDAG &DAG) const { 10223 SDLoc dl(Op); 10224 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10225 SDValue StoreChain = SN->getChain(); 10226 SDValue BasePtr = SN->getBasePtr(); 10227 SDValue Value = SN->getValue(); 10228 10229 if (Value.getValueType() == MVT::v4f64 || 10230 Value.getValueType() == MVT::v4f32) { 10231 EVT MemVT = SN->getMemoryVT(); 10232 unsigned Alignment = SN->getAlignment(); 10233 10234 // If this store is properly aligned, then it is legal. 10235 if (Alignment >= MemVT.getStoreSize()) 10236 return Op; 10237 10238 EVT ScalarVT = Value.getValueType().getScalarType(), 10239 ScalarMemVT = MemVT.getScalarType(); 10240 unsigned Stride = ScalarMemVT.getStoreSize(); 10241 10242 SDValue Stores[4]; 10243 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10244 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10245 DAG.getVectorIdxConstant(Idx, dl)); 10246 SDValue Store; 10247 if (ScalarVT != ScalarMemVT) 10248 Store = 10249 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10250 SN->getPointerInfo().getWithOffset(Idx * Stride), 10251 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10252 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10253 else 10254 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10255 SN->getPointerInfo().getWithOffset(Idx * Stride), 10256 MinAlign(Alignment, Idx * Stride), 10257 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10258 10259 if (Idx == 0 && SN->isIndexed()) { 10260 assert(SN->getAddressingMode() == ISD::PRE_INC && 10261 "Unknown addressing mode on vector store"); 10262 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10263 SN->getAddressingMode()); 10264 } 10265 10266 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10267 DAG.getConstant(Stride, dl, 10268 BasePtr.getValueType())); 10269 Stores[Idx] = Store; 10270 } 10271 10272 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10273 10274 if (SN->isIndexed()) { 10275 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10276 return DAG.getMergeValues(RetOps, dl); 10277 } 10278 10279 return TF; 10280 } 10281 10282 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10283 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10284 10285 // The values are now known to be -1 (false) or 1 (true). To convert this 10286 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10287 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10288 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10289 10290 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10291 // understand how to form the extending load. 10292 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10293 10294 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10295 10296 // Now convert to an integer and store. 10297 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10298 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10299 Value); 10300 10301 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10302 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10303 MachinePointerInfo PtrInfo = 10304 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10305 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10306 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10307 10308 SDValue Ops[] = {StoreChain, 10309 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10310 Value, FIdx}; 10311 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10312 10313 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10314 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10315 10316 // Move data into the byte array. 10317 SDValue Loads[4], LoadChains[4]; 10318 for (unsigned i = 0; i < 4; ++i) { 10319 unsigned Offset = 4*i; 10320 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10321 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10322 10323 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10324 PtrInfo.getWithOffset(Offset)); 10325 LoadChains[i] = Loads[i].getValue(1); 10326 } 10327 10328 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10329 10330 SDValue Stores[4]; 10331 for (unsigned i = 0; i < 4; ++i) { 10332 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10333 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10334 10335 Stores[i] = DAG.getTruncStore( 10336 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10337 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10338 SN->getAAInfo()); 10339 } 10340 10341 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10342 10343 return StoreChain; 10344 } 10345 10346 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10347 SDLoc dl(Op); 10348 if (Op.getValueType() == MVT::v4i32) { 10349 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10350 10351 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10352 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10353 10354 SDValue RHSSwap = // = vrlw RHS, 16 10355 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10356 10357 // Shrinkify inputs to v8i16. 10358 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10359 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10360 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10361 10362 // Low parts multiplied together, generating 32-bit results (we ignore the 10363 // top parts). 10364 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10365 LHS, RHS, DAG, dl, MVT::v4i32); 10366 10367 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10368 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10369 // Shift the high parts up 16 bits. 10370 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10371 Neg16, DAG, dl); 10372 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10373 } else if (Op.getValueType() == MVT::v8i16) { 10374 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10375 10376 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10377 10378 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10379 LHS, RHS, Zero, DAG, dl); 10380 } else if (Op.getValueType() == MVT::v16i8) { 10381 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10382 bool isLittleEndian = Subtarget.isLittleEndian(); 10383 10384 // Multiply the even 8-bit parts, producing 16-bit sums. 10385 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10386 LHS, RHS, DAG, dl, MVT::v8i16); 10387 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10388 10389 // Multiply the odd 8-bit parts, producing 16-bit sums. 10390 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10391 LHS, RHS, DAG, dl, MVT::v8i16); 10392 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10393 10394 // Merge the results together. Because vmuleub and vmuloub are 10395 // instructions with a big-endian bias, we must reverse the 10396 // element numbering and reverse the meaning of "odd" and "even" 10397 // when generating little endian code. 10398 int Ops[16]; 10399 for (unsigned i = 0; i != 8; ++i) { 10400 if (isLittleEndian) { 10401 Ops[i*2 ] = 2*i; 10402 Ops[i*2+1] = 2*i+16; 10403 } else { 10404 Ops[i*2 ] = 2*i+1; 10405 Ops[i*2+1] = 2*i+1+16; 10406 } 10407 } 10408 if (isLittleEndian) 10409 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10410 else 10411 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10412 } else { 10413 llvm_unreachable("Unknown mul to lower!"); 10414 } 10415 } 10416 10417 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10418 10419 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10420 10421 EVT VT = Op.getValueType(); 10422 assert(VT.isVector() && 10423 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10424 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10425 VT == MVT::v16i8) && 10426 "Unexpected vector element type!"); 10427 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10428 "Current subtarget doesn't support smax v2i64!"); 10429 10430 // For vector abs, it can be lowered to: 10431 // abs x 10432 // ==> 10433 // y = -x 10434 // smax(x, y) 10435 10436 SDLoc dl(Op); 10437 SDValue X = Op.getOperand(0); 10438 SDValue Zero = DAG.getConstant(0, dl, VT); 10439 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10440 10441 // SMAX patch https://reviews.llvm.org/D47332 10442 // hasn't landed yet, so use intrinsic first here. 10443 // TODO: Should use SMAX directly once SMAX patch landed 10444 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10445 if (VT == MVT::v2i64) 10446 BifID = Intrinsic::ppc_altivec_vmaxsd; 10447 else if (VT == MVT::v8i16) 10448 BifID = Intrinsic::ppc_altivec_vmaxsh; 10449 else if (VT == MVT::v16i8) 10450 BifID = Intrinsic::ppc_altivec_vmaxsb; 10451 10452 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10453 } 10454 10455 // Custom lowering for fpext vf32 to v2f64 10456 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10457 10458 assert(Op.getOpcode() == ISD::FP_EXTEND && 10459 "Should only be called for ISD::FP_EXTEND"); 10460 10461 // We only want to custom lower an extend from v2f32 to v2f64. 10462 if (Op.getValueType() != MVT::v2f64 || 10463 Op.getOperand(0).getValueType() != MVT::v2f32) 10464 return SDValue(); 10465 10466 SDLoc dl(Op); 10467 SDValue Op0 = Op.getOperand(0); 10468 10469 switch (Op0.getOpcode()) { 10470 default: 10471 return SDValue(); 10472 case ISD::EXTRACT_SUBVECTOR: { 10473 assert(Op0.getNumOperands() == 2 && 10474 isa<ConstantSDNode>(Op0->getOperand(1)) && 10475 "Node should have 2 operands with second one being a constant!"); 10476 10477 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10478 return SDValue(); 10479 10480 // Custom lower is only done for high or low doubleword. 10481 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10482 if (Idx % 2 != 0) 10483 return SDValue(); 10484 10485 // Since input is v4f32, at this point Idx is either 0 or 2. 10486 // Shift to get the doubleword position we want. 10487 int DWord = Idx >> 1; 10488 10489 // High and low word positions are different on little endian. 10490 if (Subtarget.isLittleEndian()) 10491 DWord ^= 0x1; 10492 10493 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10494 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10495 } 10496 case ISD::FADD: 10497 case ISD::FMUL: 10498 case ISD::FSUB: { 10499 SDValue NewLoad[2]; 10500 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10501 // Ensure both input are loads. 10502 SDValue LdOp = Op0.getOperand(i); 10503 if (LdOp.getOpcode() != ISD::LOAD) 10504 return SDValue(); 10505 // Generate new load node. 10506 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10507 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10508 NewLoad[i] = DAG.getMemIntrinsicNode( 10509 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10510 LD->getMemoryVT(), LD->getMemOperand()); 10511 } 10512 SDValue NewOp = 10513 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10514 NewLoad[1], Op0.getNode()->getFlags()); 10515 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10516 DAG.getConstant(0, dl, MVT::i32)); 10517 } 10518 case ISD::LOAD: { 10519 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10520 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10521 SDValue NewLd = DAG.getMemIntrinsicNode( 10522 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10523 LD->getMemoryVT(), LD->getMemOperand()); 10524 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10525 DAG.getConstant(0, dl, MVT::i32)); 10526 } 10527 } 10528 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10529 } 10530 10531 /// LowerOperation - Provide custom lowering hooks for some operations. 10532 /// 10533 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10534 switch (Op.getOpcode()) { 10535 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10536 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10537 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10538 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10539 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10540 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10541 case ISD::SETCC: return LowerSETCC(Op, DAG); 10542 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10543 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10544 10545 // Variable argument lowering. 10546 case ISD::VASTART: return LowerVASTART(Op, DAG); 10547 case ISD::VAARG: return LowerVAARG(Op, DAG); 10548 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10549 10550 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10551 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10552 case ISD::GET_DYNAMIC_AREA_OFFSET: 10553 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10554 10555 // Exception handling lowering. 10556 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10557 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10558 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10559 10560 case ISD::LOAD: return LowerLOAD(Op, DAG); 10561 case ISD::STORE: return LowerSTORE(Op, DAG); 10562 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10563 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10564 case ISD::FP_TO_UINT: 10565 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10566 case ISD::UINT_TO_FP: 10567 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10568 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10569 10570 // Lower 64-bit shifts. 10571 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10572 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10573 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10574 10575 // Vector-related lowering. 10576 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10577 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10578 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10579 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10580 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10581 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10582 case ISD::MUL: return LowerMUL(Op, DAG); 10583 case ISD::ABS: return LowerABS(Op, DAG); 10584 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10585 10586 // For counter-based loop handling. 10587 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10588 10589 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10590 10591 // Frame & Return address. 10592 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10593 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10594 10595 case ISD::INTRINSIC_VOID: 10596 return LowerINTRINSIC_VOID(Op, DAG); 10597 case ISD::SREM: 10598 case ISD::UREM: 10599 return LowerREM(Op, DAG); 10600 case ISD::BSWAP: 10601 return LowerBSWAP(Op, DAG); 10602 case ISD::ATOMIC_CMP_SWAP: 10603 return LowerATOMIC_CMP_SWAP(Op, DAG); 10604 } 10605 } 10606 10607 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10608 SmallVectorImpl<SDValue>&Results, 10609 SelectionDAG &DAG) const { 10610 SDLoc dl(N); 10611 switch (N->getOpcode()) { 10612 default: 10613 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10614 case ISD::READCYCLECOUNTER: { 10615 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10616 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10617 10618 Results.push_back( 10619 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10620 Results.push_back(RTB.getValue(2)); 10621 break; 10622 } 10623 case ISD::INTRINSIC_W_CHAIN: { 10624 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10625 Intrinsic::loop_decrement) 10626 break; 10627 10628 assert(N->getValueType(0) == MVT::i1 && 10629 "Unexpected result type for CTR decrement intrinsic"); 10630 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10631 N->getValueType(0)); 10632 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10633 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10634 N->getOperand(1)); 10635 10636 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10637 Results.push_back(NewInt.getValue(1)); 10638 break; 10639 } 10640 case ISD::VAARG: { 10641 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10642 return; 10643 10644 EVT VT = N->getValueType(0); 10645 10646 if (VT == MVT::i64) { 10647 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10648 10649 Results.push_back(NewNode); 10650 Results.push_back(NewNode.getValue(1)); 10651 } 10652 return; 10653 } 10654 case ISD::FP_TO_SINT: 10655 case ISD::FP_TO_UINT: 10656 // LowerFP_TO_INT() can only handle f32 and f64. 10657 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10658 return; 10659 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10660 return; 10661 case ISD::TRUNCATE: { 10662 EVT TrgVT = N->getValueType(0); 10663 EVT OpVT = N->getOperand(0).getValueType(); 10664 if (TrgVT.isVector() && 10665 isOperationCustom(N->getOpcode(), TrgVT) && 10666 OpVT.getSizeInBits() <= 128 && 10667 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10668 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10669 return; 10670 } 10671 case ISD::BITCAST: 10672 // Don't handle bitcast here. 10673 return; 10674 } 10675 } 10676 10677 //===----------------------------------------------------------------------===// 10678 // Other Lowering Code 10679 //===----------------------------------------------------------------------===// 10680 10681 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10682 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10683 Function *Func = Intrinsic::getDeclaration(M, Id); 10684 return Builder.CreateCall(Func, {}); 10685 } 10686 10687 // The mappings for emitLeading/TrailingFence is taken from 10688 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10689 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10690 Instruction *Inst, 10691 AtomicOrdering Ord) const { 10692 if (Ord == AtomicOrdering::SequentiallyConsistent) 10693 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10694 if (isReleaseOrStronger(Ord)) 10695 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10696 return nullptr; 10697 } 10698 10699 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10700 Instruction *Inst, 10701 AtomicOrdering Ord) const { 10702 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10703 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10704 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10705 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10706 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10707 return Builder.CreateCall( 10708 Intrinsic::getDeclaration( 10709 Builder.GetInsertBlock()->getParent()->getParent(), 10710 Intrinsic::ppc_cfence, {Inst->getType()}), 10711 {Inst}); 10712 // FIXME: Can use isync for rmw operation. 10713 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10714 } 10715 return nullptr; 10716 } 10717 10718 MachineBasicBlock * 10719 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10720 unsigned AtomicSize, 10721 unsigned BinOpcode, 10722 unsigned CmpOpcode, 10723 unsigned CmpPred) const { 10724 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10725 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10726 10727 auto LoadMnemonic = PPC::LDARX; 10728 auto StoreMnemonic = PPC::STDCX; 10729 switch (AtomicSize) { 10730 default: 10731 llvm_unreachable("Unexpected size of atomic entity"); 10732 case 1: 10733 LoadMnemonic = PPC::LBARX; 10734 StoreMnemonic = PPC::STBCX; 10735 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10736 break; 10737 case 2: 10738 LoadMnemonic = PPC::LHARX; 10739 StoreMnemonic = PPC::STHCX; 10740 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10741 break; 10742 case 4: 10743 LoadMnemonic = PPC::LWARX; 10744 StoreMnemonic = PPC::STWCX; 10745 break; 10746 case 8: 10747 LoadMnemonic = PPC::LDARX; 10748 StoreMnemonic = PPC::STDCX; 10749 break; 10750 } 10751 10752 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10753 MachineFunction *F = BB->getParent(); 10754 MachineFunction::iterator It = ++BB->getIterator(); 10755 10756 Register dest = MI.getOperand(0).getReg(); 10757 Register ptrA = MI.getOperand(1).getReg(); 10758 Register ptrB = MI.getOperand(2).getReg(); 10759 Register incr = MI.getOperand(3).getReg(); 10760 DebugLoc dl = MI.getDebugLoc(); 10761 10762 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10763 MachineBasicBlock *loop2MBB = 10764 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10765 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10766 F->insert(It, loopMBB); 10767 if (CmpOpcode) 10768 F->insert(It, loop2MBB); 10769 F->insert(It, exitMBB); 10770 exitMBB->splice(exitMBB->begin(), BB, 10771 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10772 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10773 10774 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10775 Register TmpReg = (!BinOpcode) ? incr : 10776 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10777 : &PPC::GPRCRegClass); 10778 10779 // thisMBB: 10780 // ... 10781 // fallthrough --> loopMBB 10782 BB->addSuccessor(loopMBB); 10783 10784 // loopMBB: 10785 // l[wd]arx dest, ptr 10786 // add r0, dest, incr 10787 // st[wd]cx. r0, ptr 10788 // bne- loopMBB 10789 // fallthrough --> exitMBB 10790 10791 // For max/min... 10792 // loopMBB: 10793 // l[wd]arx dest, ptr 10794 // cmpl?[wd] incr, dest 10795 // bgt exitMBB 10796 // loop2MBB: 10797 // st[wd]cx. dest, ptr 10798 // bne- loopMBB 10799 // fallthrough --> exitMBB 10800 10801 BB = loopMBB; 10802 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10803 .addReg(ptrA).addReg(ptrB); 10804 if (BinOpcode) 10805 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10806 if (CmpOpcode) { 10807 // Signed comparisons of byte or halfword values must be sign-extended. 10808 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10809 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10810 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10811 ExtReg).addReg(dest); 10812 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10813 .addReg(incr).addReg(ExtReg); 10814 } else 10815 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10816 .addReg(incr).addReg(dest); 10817 10818 BuildMI(BB, dl, TII->get(PPC::BCC)) 10819 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10820 BB->addSuccessor(loop2MBB); 10821 BB->addSuccessor(exitMBB); 10822 BB = loop2MBB; 10823 } 10824 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10825 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10826 BuildMI(BB, dl, TII->get(PPC::BCC)) 10827 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10828 BB->addSuccessor(loopMBB); 10829 BB->addSuccessor(exitMBB); 10830 10831 // exitMBB: 10832 // ... 10833 BB = exitMBB; 10834 return BB; 10835 } 10836 10837 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10838 MachineInstr &MI, MachineBasicBlock *BB, 10839 bool is8bit, // operation 10840 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10841 // If we support part-word atomic mnemonics, just use them 10842 if (Subtarget.hasPartwordAtomics()) 10843 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10844 CmpPred); 10845 10846 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10847 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10848 // In 64 bit mode we have to use 64 bits for addresses, even though the 10849 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10850 // registers without caring whether they're 32 or 64, but here we're 10851 // doing actual arithmetic on the addresses. 10852 bool is64bit = Subtarget.isPPC64(); 10853 bool isLittleEndian = Subtarget.isLittleEndian(); 10854 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10855 10856 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10857 MachineFunction *F = BB->getParent(); 10858 MachineFunction::iterator It = ++BB->getIterator(); 10859 10860 Register dest = MI.getOperand(0).getReg(); 10861 Register ptrA = MI.getOperand(1).getReg(); 10862 Register ptrB = MI.getOperand(2).getReg(); 10863 Register incr = MI.getOperand(3).getReg(); 10864 DebugLoc dl = MI.getDebugLoc(); 10865 10866 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10867 MachineBasicBlock *loop2MBB = 10868 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10869 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10870 F->insert(It, loopMBB); 10871 if (CmpOpcode) 10872 F->insert(It, loop2MBB); 10873 F->insert(It, exitMBB); 10874 exitMBB->splice(exitMBB->begin(), BB, 10875 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10876 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10877 10878 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10879 const TargetRegisterClass *RC = 10880 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10881 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10882 10883 Register PtrReg = RegInfo.createVirtualRegister(RC); 10884 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10885 Register ShiftReg = 10886 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10887 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10888 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10889 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10890 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10891 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10892 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10893 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10894 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10895 Register Ptr1Reg; 10896 Register TmpReg = 10897 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10898 10899 // thisMBB: 10900 // ... 10901 // fallthrough --> loopMBB 10902 BB->addSuccessor(loopMBB); 10903 10904 // The 4-byte load must be aligned, while a char or short may be 10905 // anywhere in the word. Hence all this nasty bookkeeping code. 10906 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10907 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10908 // xori shift, shift1, 24 [16] 10909 // rlwinm ptr, ptr1, 0, 0, 29 10910 // slw incr2, incr, shift 10911 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10912 // slw mask, mask2, shift 10913 // loopMBB: 10914 // lwarx tmpDest, ptr 10915 // add tmp, tmpDest, incr2 10916 // andc tmp2, tmpDest, mask 10917 // and tmp3, tmp, mask 10918 // or tmp4, tmp3, tmp2 10919 // stwcx. tmp4, ptr 10920 // bne- loopMBB 10921 // fallthrough --> exitMBB 10922 // srw dest, tmpDest, shift 10923 if (ptrA != ZeroReg) { 10924 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10925 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10926 .addReg(ptrA) 10927 .addReg(ptrB); 10928 } else { 10929 Ptr1Reg = ptrB; 10930 } 10931 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10932 // mode. 10933 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10934 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10935 .addImm(3) 10936 .addImm(27) 10937 .addImm(is8bit ? 28 : 27); 10938 if (!isLittleEndian) 10939 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10940 .addReg(Shift1Reg) 10941 .addImm(is8bit ? 24 : 16); 10942 if (is64bit) 10943 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10944 .addReg(Ptr1Reg) 10945 .addImm(0) 10946 .addImm(61); 10947 else 10948 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10949 .addReg(Ptr1Reg) 10950 .addImm(0) 10951 .addImm(0) 10952 .addImm(29); 10953 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10954 if (is8bit) 10955 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10956 else { 10957 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10958 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10959 .addReg(Mask3Reg) 10960 .addImm(65535); 10961 } 10962 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10963 .addReg(Mask2Reg) 10964 .addReg(ShiftReg); 10965 10966 BB = loopMBB; 10967 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10968 .addReg(ZeroReg) 10969 .addReg(PtrReg); 10970 if (BinOpcode) 10971 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10972 .addReg(Incr2Reg) 10973 .addReg(TmpDestReg); 10974 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10975 .addReg(TmpDestReg) 10976 .addReg(MaskReg); 10977 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10978 if (CmpOpcode) { 10979 // For unsigned comparisons, we can directly compare the shifted values. 10980 // For signed comparisons we shift and sign extend. 10981 Register SReg = RegInfo.createVirtualRegister(GPRC); 10982 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10983 .addReg(TmpDestReg) 10984 .addReg(MaskReg); 10985 unsigned ValueReg = SReg; 10986 unsigned CmpReg = Incr2Reg; 10987 if (CmpOpcode == PPC::CMPW) { 10988 ValueReg = RegInfo.createVirtualRegister(GPRC); 10989 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10990 .addReg(SReg) 10991 .addReg(ShiftReg); 10992 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10993 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10994 .addReg(ValueReg); 10995 ValueReg = ValueSReg; 10996 CmpReg = incr; 10997 } 10998 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10999 .addReg(CmpReg) 11000 .addReg(ValueReg); 11001 BuildMI(BB, dl, TII->get(PPC::BCC)) 11002 .addImm(CmpPred) 11003 .addReg(PPC::CR0) 11004 .addMBB(exitMBB); 11005 BB->addSuccessor(loop2MBB); 11006 BB->addSuccessor(exitMBB); 11007 BB = loop2MBB; 11008 } 11009 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11010 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11011 .addReg(Tmp4Reg) 11012 .addReg(ZeroReg) 11013 .addReg(PtrReg); 11014 BuildMI(BB, dl, TII->get(PPC::BCC)) 11015 .addImm(PPC::PRED_NE) 11016 .addReg(PPC::CR0) 11017 .addMBB(loopMBB); 11018 BB->addSuccessor(loopMBB); 11019 BB->addSuccessor(exitMBB); 11020 11021 // exitMBB: 11022 // ... 11023 BB = exitMBB; 11024 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11025 .addReg(TmpDestReg) 11026 .addReg(ShiftReg); 11027 return BB; 11028 } 11029 11030 llvm::MachineBasicBlock * 11031 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11032 MachineBasicBlock *MBB) const { 11033 DebugLoc DL = MI.getDebugLoc(); 11034 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11035 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11036 11037 MachineFunction *MF = MBB->getParent(); 11038 MachineRegisterInfo &MRI = MF->getRegInfo(); 11039 11040 const BasicBlock *BB = MBB->getBasicBlock(); 11041 MachineFunction::iterator I = ++MBB->getIterator(); 11042 11043 Register DstReg = MI.getOperand(0).getReg(); 11044 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11045 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11046 Register mainDstReg = MRI.createVirtualRegister(RC); 11047 Register restoreDstReg = MRI.createVirtualRegister(RC); 11048 11049 MVT PVT = getPointerTy(MF->getDataLayout()); 11050 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11051 "Invalid Pointer Size!"); 11052 // For v = setjmp(buf), we generate 11053 // 11054 // thisMBB: 11055 // SjLjSetup mainMBB 11056 // bl mainMBB 11057 // v_restore = 1 11058 // b sinkMBB 11059 // 11060 // mainMBB: 11061 // buf[LabelOffset] = LR 11062 // v_main = 0 11063 // 11064 // sinkMBB: 11065 // v = phi(main, restore) 11066 // 11067 11068 MachineBasicBlock *thisMBB = MBB; 11069 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11070 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11071 MF->insert(I, mainMBB); 11072 MF->insert(I, sinkMBB); 11073 11074 MachineInstrBuilder MIB; 11075 11076 // Transfer the remainder of BB and its successor edges to sinkMBB. 11077 sinkMBB->splice(sinkMBB->begin(), MBB, 11078 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11079 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11080 11081 // Note that the structure of the jmp_buf used here is not compatible 11082 // with that used by libc, and is not designed to be. Specifically, it 11083 // stores only those 'reserved' registers that LLVM does not otherwise 11084 // understand how to spill. Also, by convention, by the time this 11085 // intrinsic is called, Clang has already stored the frame address in the 11086 // first slot of the buffer and stack address in the third. Following the 11087 // X86 target code, we'll store the jump address in the second slot. We also 11088 // need to save the TOC pointer (R2) to handle jumps between shared 11089 // libraries, and that will be stored in the fourth slot. The thread 11090 // identifier (R13) is not affected. 11091 11092 // thisMBB: 11093 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11094 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11095 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11096 11097 // Prepare IP either in reg. 11098 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11099 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11100 Register BufReg = MI.getOperand(1).getReg(); 11101 11102 if (Subtarget.is64BitELFABI()) { 11103 setUsesTOCBasePtr(*MBB->getParent()); 11104 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11105 .addReg(PPC::X2) 11106 .addImm(TOCOffset) 11107 .addReg(BufReg) 11108 .cloneMemRefs(MI); 11109 } 11110 11111 // Naked functions never have a base pointer, and so we use r1. For all 11112 // other functions, this decision must be delayed until during PEI. 11113 unsigned BaseReg; 11114 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11115 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11116 else 11117 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11118 11119 MIB = BuildMI(*thisMBB, MI, DL, 11120 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11121 .addReg(BaseReg) 11122 .addImm(BPOffset) 11123 .addReg(BufReg) 11124 .cloneMemRefs(MI); 11125 11126 // Setup 11127 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11128 MIB.addRegMask(TRI->getNoPreservedMask()); 11129 11130 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11131 11132 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11133 .addMBB(mainMBB); 11134 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11135 11136 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11137 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11138 11139 // mainMBB: 11140 // mainDstReg = 0 11141 MIB = 11142 BuildMI(mainMBB, DL, 11143 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11144 11145 // Store IP 11146 if (Subtarget.isPPC64()) { 11147 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11148 .addReg(LabelReg) 11149 .addImm(LabelOffset) 11150 .addReg(BufReg); 11151 } else { 11152 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11153 .addReg(LabelReg) 11154 .addImm(LabelOffset) 11155 .addReg(BufReg); 11156 } 11157 MIB.cloneMemRefs(MI); 11158 11159 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11160 mainMBB->addSuccessor(sinkMBB); 11161 11162 // sinkMBB: 11163 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11164 TII->get(PPC::PHI), DstReg) 11165 .addReg(mainDstReg).addMBB(mainMBB) 11166 .addReg(restoreDstReg).addMBB(thisMBB); 11167 11168 MI.eraseFromParent(); 11169 return sinkMBB; 11170 } 11171 11172 MachineBasicBlock * 11173 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11174 MachineBasicBlock *MBB) const { 11175 DebugLoc DL = MI.getDebugLoc(); 11176 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11177 11178 MachineFunction *MF = MBB->getParent(); 11179 MachineRegisterInfo &MRI = MF->getRegInfo(); 11180 11181 MVT PVT = getPointerTy(MF->getDataLayout()); 11182 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11183 "Invalid Pointer Size!"); 11184 11185 const TargetRegisterClass *RC = 11186 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11187 Register Tmp = MRI.createVirtualRegister(RC); 11188 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11189 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11190 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11191 unsigned BP = 11192 (PVT == MVT::i64) 11193 ? PPC::X30 11194 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11195 : PPC::R30); 11196 11197 MachineInstrBuilder MIB; 11198 11199 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11200 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11201 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11202 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11203 11204 Register BufReg = MI.getOperand(0).getReg(); 11205 11206 // Reload FP (the jumped-to function may not have had a 11207 // frame pointer, and if so, then its r31 will be restored 11208 // as necessary). 11209 if (PVT == MVT::i64) { 11210 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11211 .addImm(0) 11212 .addReg(BufReg); 11213 } else { 11214 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11215 .addImm(0) 11216 .addReg(BufReg); 11217 } 11218 MIB.cloneMemRefs(MI); 11219 11220 // Reload IP 11221 if (PVT == MVT::i64) { 11222 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11223 .addImm(LabelOffset) 11224 .addReg(BufReg); 11225 } else { 11226 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11227 .addImm(LabelOffset) 11228 .addReg(BufReg); 11229 } 11230 MIB.cloneMemRefs(MI); 11231 11232 // Reload SP 11233 if (PVT == MVT::i64) { 11234 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11235 .addImm(SPOffset) 11236 .addReg(BufReg); 11237 } else { 11238 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11239 .addImm(SPOffset) 11240 .addReg(BufReg); 11241 } 11242 MIB.cloneMemRefs(MI); 11243 11244 // Reload BP 11245 if (PVT == MVT::i64) { 11246 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11247 .addImm(BPOffset) 11248 .addReg(BufReg); 11249 } else { 11250 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11251 .addImm(BPOffset) 11252 .addReg(BufReg); 11253 } 11254 MIB.cloneMemRefs(MI); 11255 11256 // Reload TOC 11257 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11258 setUsesTOCBasePtr(*MBB->getParent()); 11259 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11260 .addImm(TOCOffset) 11261 .addReg(BufReg) 11262 .cloneMemRefs(MI); 11263 } 11264 11265 // Jump 11266 BuildMI(*MBB, MI, DL, 11267 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11268 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11269 11270 MI.eraseFromParent(); 11271 return MBB; 11272 } 11273 11274 MachineBasicBlock * 11275 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11276 MachineBasicBlock *BB) const { 11277 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11278 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11279 if (Subtarget.is64BitELFABI() && 11280 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11281 // Call lowering should have added an r2 operand to indicate a dependence 11282 // on the TOC base pointer value. It can't however, because there is no 11283 // way to mark the dependence as implicit there, and so the stackmap code 11284 // will confuse it with a regular operand. Instead, add the dependence 11285 // here. 11286 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11287 } 11288 11289 return emitPatchPoint(MI, BB); 11290 } 11291 11292 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11293 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11294 return emitEHSjLjSetJmp(MI, BB); 11295 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11296 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11297 return emitEHSjLjLongJmp(MI, BB); 11298 } 11299 11300 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11301 11302 // To "insert" these instructions we actually have to insert their 11303 // control-flow patterns. 11304 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11305 MachineFunction::iterator It = ++BB->getIterator(); 11306 11307 MachineFunction *F = BB->getParent(); 11308 11309 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11310 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11311 MI.getOpcode() == PPC::SELECT_I8) { 11312 SmallVector<MachineOperand, 2> Cond; 11313 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11314 MI.getOpcode() == PPC::SELECT_CC_I8) 11315 Cond.push_back(MI.getOperand(4)); 11316 else 11317 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11318 Cond.push_back(MI.getOperand(1)); 11319 11320 DebugLoc dl = MI.getDebugLoc(); 11321 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11322 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11323 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11324 MI.getOpcode() == PPC::SELECT_CC_F8 || 11325 MI.getOpcode() == PPC::SELECT_CC_F16 || 11326 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11327 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11328 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11329 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11330 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11331 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11332 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11333 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11334 MI.getOpcode() == PPC::SELECT_CC_SPE || 11335 MI.getOpcode() == PPC::SELECT_F4 || 11336 MI.getOpcode() == PPC::SELECT_F8 || 11337 MI.getOpcode() == PPC::SELECT_F16 || 11338 MI.getOpcode() == PPC::SELECT_QFRC || 11339 MI.getOpcode() == PPC::SELECT_QSRC || 11340 MI.getOpcode() == PPC::SELECT_QBRC || 11341 MI.getOpcode() == PPC::SELECT_SPE || 11342 MI.getOpcode() == PPC::SELECT_SPE4 || 11343 MI.getOpcode() == PPC::SELECT_VRRC || 11344 MI.getOpcode() == PPC::SELECT_VSFRC || 11345 MI.getOpcode() == PPC::SELECT_VSSRC || 11346 MI.getOpcode() == PPC::SELECT_VSRC) { 11347 // The incoming instruction knows the destination vreg to set, the 11348 // condition code register to branch on, the true/false values to 11349 // select between, and a branch opcode to use. 11350 11351 // thisMBB: 11352 // ... 11353 // TrueVal = ... 11354 // cmpTY ccX, r1, r2 11355 // bCC copy1MBB 11356 // fallthrough --> copy0MBB 11357 MachineBasicBlock *thisMBB = BB; 11358 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11359 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11360 DebugLoc dl = MI.getDebugLoc(); 11361 F->insert(It, copy0MBB); 11362 F->insert(It, sinkMBB); 11363 11364 // Transfer the remainder of BB and its successor edges to sinkMBB. 11365 sinkMBB->splice(sinkMBB->begin(), BB, 11366 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11367 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11368 11369 // Next, add the true and fallthrough blocks as its successors. 11370 BB->addSuccessor(copy0MBB); 11371 BB->addSuccessor(sinkMBB); 11372 11373 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11374 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11375 MI.getOpcode() == PPC::SELECT_F16 || 11376 MI.getOpcode() == PPC::SELECT_SPE4 || 11377 MI.getOpcode() == PPC::SELECT_SPE || 11378 MI.getOpcode() == PPC::SELECT_QFRC || 11379 MI.getOpcode() == PPC::SELECT_QSRC || 11380 MI.getOpcode() == PPC::SELECT_QBRC || 11381 MI.getOpcode() == PPC::SELECT_VRRC || 11382 MI.getOpcode() == PPC::SELECT_VSFRC || 11383 MI.getOpcode() == PPC::SELECT_VSSRC || 11384 MI.getOpcode() == PPC::SELECT_VSRC) { 11385 BuildMI(BB, dl, TII->get(PPC::BC)) 11386 .addReg(MI.getOperand(1).getReg()) 11387 .addMBB(sinkMBB); 11388 } else { 11389 unsigned SelectPred = MI.getOperand(4).getImm(); 11390 BuildMI(BB, dl, TII->get(PPC::BCC)) 11391 .addImm(SelectPred) 11392 .addReg(MI.getOperand(1).getReg()) 11393 .addMBB(sinkMBB); 11394 } 11395 11396 // copy0MBB: 11397 // %FalseValue = ... 11398 // # fallthrough to sinkMBB 11399 BB = copy0MBB; 11400 11401 // Update machine-CFG edges 11402 BB->addSuccessor(sinkMBB); 11403 11404 // sinkMBB: 11405 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11406 // ... 11407 BB = sinkMBB; 11408 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11409 .addReg(MI.getOperand(3).getReg()) 11410 .addMBB(copy0MBB) 11411 .addReg(MI.getOperand(2).getReg()) 11412 .addMBB(thisMBB); 11413 } else if (MI.getOpcode() == PPC::ReadTB) { 11414 // To read the 64-bit time-base register on a 32-bit target, we read the 11415 // two halves. Should the counter have wrapped while it was being read, we 11416 // need to try again. 11417 // ... 11418 // readLoop: 11419 // mfspr Rx,TBU # load from TBU 11420 // mfspr Ry,TB # load from TB 11421 // mfspr Rz,TBU # load from TBU 11422 // cmpw crX,Rx,Rz # check if 'old'='new' 11423 // bne readLoop # branch if they're not equal 11424 // ... 11425 11426 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11427 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11428 DebugLoc dl = MI.getDebugLoc(); 11429 F->insert(It, readMBB); 11430 F->insert(It, sinkMBB); 11431 11432 // Transfer the remainder of BB and its successor edges to sinkMBB. 11433 sinkMBB->splice(sinkMBB->begin(), BB, 11434 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11435 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11436 11437 BB->addSuccessor(readMBB); 11438 BB = readMBB; 11439 11440 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11441 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11442 Register LoReg = MI.getOperand(0).getReg(); 11443 Register HiReg = MI.getOperand(1).getReg(); 11444 11445 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11446 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11447 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11448 11449 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11450 11451 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11452 .addReg(HiReg) 11453 .addReg(ReadAgainReg); 11454 BuildMI(BB, dl, TII->get(PPC::BCC)) 11455 .addImm(PPC::PRED_NE) 11456 .addReg(CmpReg) 11457 .addMBB(readMBB); 11458 11459 BB->addSuccessor(readMBB); 11460 BB->addSuccessor(sinkMBB); 11461 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11462 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11463 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11464 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11465 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11466 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11467 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11468 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11469 11470 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11471 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11472 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11473 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11474 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11475 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11476 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11477 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11478 11479 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11480 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11481 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11482 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11483 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11484 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11485 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11486 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11487 11488 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11489 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11490 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11491 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11492 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11493 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11494 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11495 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11496 11497 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11498 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11499 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11500 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11501 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11502 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11503 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11504 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11505 11506 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11507 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11508 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11509 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11510 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11511 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11512 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11513 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11514 11515 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11516 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11517 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11518 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11519 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11520 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11521 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11522 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11523 11524 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11525 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11526 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11527 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11528 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11529 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11530 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11531 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11532 11533 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11534 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11535 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11536 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11537 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11538 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11539 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11540 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11541 11542 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11543 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11544 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11545 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11546 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11547 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11548 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11549 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11550 11551 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11552 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11553 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11554 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11555 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11556 BB = EmitAtomicBinary(MI, BB, 4, 0); 11557 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11558 BB = EmitAtomicBinary(MI, BB, 8, 0); 11559 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11560 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11561 (Subtarget.hasPartwordAtomics() && 11562 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11563 (Subtarget.hasPartwordAtomics() && 11564 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11565 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11566 11567 auto LoadMnemonic = PPC::LDARX; 11568 auto StoreMnemonic = PPC::STDCX; 11569 switch (MI.getOpcode()) { 11570 default: 11571 llvm_unreachable("Compare and swap of unknown size"); 11572 case PPC::ATOMIC_CMP_SWAP_I8: 11573 LoadMnemonic = PPC::LBARX; 11574 StoreMnemonic = PPC::STBCX; 11575 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11576 break; 11577 case PPC::ATOMIC_CMP_SWAP_I16: 11578 LoadMnemonic = PPC::LHARX; 11579 StoreMnemonic = PPC::STHCX; 11580 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11581 break; 11582 case PPC::ATOMIC_CMP_SWAP_I32: 11583 LoadMnemonic = PPC::LWARX; 11584 StoreMnemonic = PPC::STWCX; 11585 break; 11586 case PPC::ATOMIC_CMP_SWAP_I64: 11587 LoadMnemonic = PPC::LDARX; 11588 StoreMnemonic = PPC::STDCX; 11589 break; 11590 } 11591 Register dest = MI.getOperand(0).getReg(); 11592 Register ptrA = MI.getOperand(1).getReg(); 11593 Register ptrB = MI.getOperand(2).getReg(); 11594 Register oldval = MI.getOperand(3).getReg(); 11595 Register newval = MI.getOperand(4).getReg(); 11596 DebugLoc dl = MI.getDebugLoc(); 11597 11598 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11599 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11600 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11601 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11602 F->insert(It, loop1MBB); 11603 F->insert(It, loop2MBB); 11604 F->insert(It, midMBB); 11605 F->insert(It, exitMBB); 11606 exitMBB->splice(exitMBB->begin(), BB, 11607 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11608 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11609 11610 // thisMBB: 11611 // ... 11612 // fallthrough --> loopMBB 11613 BB->addSuccessor(loop1MBB); 11614 11615 // loop1MBB: 11616 // l[bhwd]arx dest, ptr 11617 // cmp[wd] dest, oldval 11618 // bne- midMBB 11619 // loop2MBB: 11620 // st[bhwd]cx. newval, ptr 11621 // bne- loopMBB 11622 // b exitBB 11623 // midMBB: 11624 // st[bhwd]cx. dest, ptr 11625 // exitBB: 11626 BB = loop1MBB; 11627 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11628 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11629 .addReg(oldval) 11630 .addReg(dest); 11631 BuildMI(BB, dl, TII->get(PPC::BCC)) 11632 .addImm(PPC::PRED_NE) 11633 .addReg(PPC::CR0) 11634 .addMBB(midMBB); 11635 BB->addSuccessor(loop2MBB); 11636 BB->addSuccessor(midMBB); 11637 11638 BB = loop2MBB; 11639 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11640 .addReg(newval) 11641 .addReg(ptrA) 11642 .addReg(ptrB); 11643 BuildMI(BB, dl, TII->get(PPC::BCC)) 11644 .addImm(PPC::PRED_NE) 11645 .addReg(PPC::CR0) 11646 .addMBB(loop1MBB); 11647 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11648 BB->addSuccessor(loop1MBB); 11649 BB->addSuccessor(exitMBB); 11650 11651 BB = midMBB; 11652 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11653 .addReg(dest) 11654 .addReg(ptrA) 11655 .addReg(ptrB); 11656 BB->addSuccessor(exitMBB); 11657 11658 // exitMBB: 11659 // ... 11660 BB = exitMBB; 11661 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11662 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11663 // We must use 64-bit registers for addresses when targeting 64-bit, 11664 // since we're actually doing arithmetic on them. Other registers 11665 // can be 32-bit. 11666 bool is64bit = Subtarget.isPPC64(); 11667 bool isLittleEndian = Subtarget.isLittleEndian(); 11668 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11669 11670 Register dest = MI.getOperand(0).getReg(); 11671 Register ptrA = MI.getOperand(1).getReg(); 11672 Register ptrB = MI.getOperand(2).getReg(); 11673 Register oldval = MI.getOperand(3).getReg(); 11674 Register newval = MI.getOperand(4).getReg(); 11675 DebugLoc dl = MI.getDebugLoc(); 11676 11677 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11678 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11679 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11680 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11681 F->insert(It, loop1MBB); 11682 F->insert(It, loop2MBB); 11683 F->insert(It, midMBB); 11684 F->insert(It, exitMBB); 11685 exitMBB->splice(exitMBB->begin(), BB, 11686 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11687 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11688 11689 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11690 const TargetRegisterClass *RC = 11691 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11692 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11693 11694 Register PtrReg = RegInfo.createVirtualRegister(RC); 11695 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11696 Register ShiftReg = 11697 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11698 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11699 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11700 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11701 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11702 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11703 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11704 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11705 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11706 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11707 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11708 Register Ptr1Reg; 11709 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11710 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11711 // thisMBB: 11712 // ... 11713 // fallthrough --> loopMBB 11714 BB->addSuccessor(loop1MBB); 11715 11716 // The 4-byte load must be aligned, while a char or short may be 11717 // anywhere in the word. Hence all this nasty bookkeeping code. 11718 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11719 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11720 // xori shift, shift1, 24 [16] 11721 // rlwinm ptr, ptr1, 0, 0, 29 11722 // slw newval2, newval, shift 11723 // slw oldval2, oldval,shift 11724 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11725 // slw mask, mask2, shift 11726 // and newval3, newval2, mask 11727 // and oldval3, oldval2, mask 11728 // loop1MBB: 11729 // lwarx tmpDest, ptr 11730 // and tmp, tmpDest, mask 11731 // cmpw tmp, oldval3 11732 // bne- midMBB 11733 // loop2MBB: 11734 // andc tmp2, tmpDest, mask 11735 // or tmp4, tmp2, newval3 11736 // stwcx. tmp4, ptr 11737 // bne- loop1MBB 11738 // b exitBB 11739 // midMBB: 11740 // stwcx. tmpDest, ptr 11741 // exitBB: 11742 // srw dest, tmpDest, shift 11743 if (ptrA != ZeroReg) { 11744 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11745 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11746 .addReg(ptrA) 11747 .addReg(ptrB); 11748 } else { 11749 Ptr1Reg = ptrB; 11750 } 11751 11752 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11753 // mode. 11754 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11755 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11756 .addImm(3) 11757 .addImm(27) 11758 .addImm(is8bit ? 28 : 27); 11759 if (!isLittleEndian) 11760 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11761 .addReg(Shift1Reg) 11762 .addImm(is8bit ? 24 : 16); 11763 if (is64bit) 11764 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11765 .addReg(Ptr1Reg) 11766 .addImm(0) 11767 .addImm(61); 11768 else 11769 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11770 .addReg(Ptr1Reg) 11771 .addImm(0) 11772 .addImm(0) 11773 .addImm(29); 11774 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11775 .addReg(newval) 11776 .addReg(ShiftReg); 11777 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11778 .addReg(oldval) 11779 .addReg(ShiftReg); 11780 if (is8bit) 11781 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11782 else { 11783 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11784 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11785 .addReg(Mask3Reg) 11786 .addImm(65535); 11787 } 11788 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11789 .addReg(Mask2Reg) 11790 .addReg(ShiftReg); 11791 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11792 .addReg(NewVal2Reg) 11793 .addReg(MaskReg); 11794 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11795 .addReg(OldVal2Reg) 11796 .addReg(MaskReg); 11797 11798 BB = loop1MBB; 11799 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11800 .addReg(ZeroReg) 11801 .addReg(PtrReg); 11802 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11803 .addReg(TmpDestReg) 11804 .addReg(MaskReg); 11805 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11806 .addReg(TmpReg) 11807 .addReg(OldVal3Reg); 11808 BuildMI(BB, dl, TII->get(PPC::BCC)) 11809 .addImm(PPC::PRED_NE) 11810 .addReg(PPC::CR0) 11811 .addMBB(midMBB); 11812 BB->addSuccessor(loop2MBB); 11813 BB->addSuccessor(midMBB); 11814 11815 BB = loop2MBB; 11816 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11817 .addReg(TmpDestReg) 11818 .addReg(MaskReg); 11819 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11820 .addReg(Tmp2Reg) 11821 .addReg(NewVal3Reg); 11822 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11823 .addReg(Tmp4Reg) 11824 .addReg(ZeroReg) 11825 .addReg(PtrReg); 11826 BuildMI(BB, dl, TII->get(PPC::BCC)) 11827 .addImm(PPC::PRED_NE) 11828 .addReg(PPC::CR0) 11829 .addMBB(loop1MBB); 11830 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11831 BB->addSuccessor(loop1MBB); 11832 BB->addSuccessor(exitMBB); 11833 11834 BB = midMBB; 11835 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11836 .addReg(TmpDestReg) 11837 .addReg(ZeroReg) 11838 .addReg(PtrReg); 11839 BB->addSuccessor(exitMBB); 11840 11841 // exitMBB: 11842 // ... 11843 BB = exitMBB; 11844 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11845 .addReg(TmpReg) 11846 .addReg(ShiftReg); 11847 } else if (MI.getOpcode() == PPC::FADDrtz) { 11848 // This pseudo performs an FADD with rounding mode temporarily forced 11849 // to round-to-zero. We emit this via custom inserter since the FPSCR 11850 // is not modeled at the SelectionDAG level. 11851 Register Dest = MI.getOperand(0).getReg(); 11852 Register Src1 = MI.getOperand(1).getReg(); 11853 Register Src2 = MI.getOperand(2).getReg(); 11854 DebugLoc dl = MI.getDebugLoc(); 11855 11856 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11857 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11858 11859 // Save FPSCR value. 11860 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11861 11862 // Set rounding mode to round-to-zero. 11863 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11864 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11865 11866 // Perform addition. 11867 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11868 11869 // Restore FPSCR value. 11870 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11871 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11872 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11873 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11874 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11875 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11876 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11877 ? PPC::ANDI8_rec 11878 : PPC::ANDI_rec; 11879 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11880 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11881 11882 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11883 Register Dest = RegInfo.createVirtualRegister( 11884 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11885 11886 DebugLoc Dl = MI.getDebugLoc(); 11887 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11888 .addReg(MI.getOperand(1).getReg()) 11889 .addImm(1); 11890 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11891 MI.getOperand(0).getReg()) 11892 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11893 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11894 DebugLoc Dl = MI.getDebugLoc(); 11895 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11896 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11897 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11898 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11899 MI.getOperand(0).getReg()) 11900 .addReg(CRReg); 11901 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11902 DebugLoc Dl = MI.getDebugLoc(); 11903 unsigned Imm = MI.getOperand(1).getImm(); 11904 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11905 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11906 MI.getOperand(0).getReg()) 11907 .addReg(PPC::CR0EQ); 11908 } else if (MI.getOpcode() == PPC::SETRNDi) { 11909 DebugLoc dl = MI.getDebugLoc(); 11910 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11911 11912 // Save FPSCR value. 11913 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11914 11915 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11916 // the following settings: 11917 // 00 Round to nearest 11918 // 01 Round to 0 11919 // 10 Round to +inf 11920 // 11 Round to -inf 11921 11922 // When the operand is immediate, using the two least significant bits of 11923 // the immediate to set the bits 62:63 of FPSCR. 11924 unsigned Mode = MI.getOperand(1).getImm(); 11925 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11926 .addImm(31); 11927 11928 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11929 .addImm(30); 11930 } else if (MI.getOpcode() == PPC::SETRND) { 11931 DebugLoc dl = MI.getDebugLoc(); 11932 11933 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11934 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11935 // If the target doesn't have DirectMove, we should use stack to do the 11936 // conversion, because the target doesn't have the instructions like mtvsrd 11937 // or mfvsrd to do this conversion directly. 11938 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11939 if (Subtarget.hasDirectMove()) { 11940 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11941 .addReg(SrcReg); 11942 } else { 11943 // Use stack to do the register copy. 11944 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11945 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11946 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11947 if (RC == &PPC::F8RCRegClass) { 11948 // Copy register from F8RCRegClass to G8RCRegclass. 11949 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11950 "Unsupported RegClass."); 11951 11952 StoreOp = PPC::STFD; 11953 LoadOp = PPC::LD; 11954 } else { 11955 // Copy register from G8RCRegClass to F8RCRegclass. 11956 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11957 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11958 "Unsupported RegClass."); 11959 } 11960 11961 MachineFrameInfo &MFI = F->getFrameInfo(); 11962 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11963 11964 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11965 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11966 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11967 MFI.getObjectAlignment(FrameIdx)); 11968 11969 // Store the SrcReg into the stack. 11970 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11971 .addReg(SrcReg) 11972 .addImm(0) 11973 .addFrameIndex(FrameIdx) 11974 .addMemOperand(MMOStore); 11975 11976 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11977 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11978 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11979 MFI.getObjectAlignment(FrameIdx)); 11980 11981 // Load from the stack where SrcReg is stored, and save to DestReg, 11982 // so we have done the RegClass conversion from RegClass::SrcReg to 11983 // RegClass::DestReg. 11984 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11985 .addImm(0) 11986 .addFrameIndex(FrameIdx) 11987 .addMemOperand(MMOLoad); 11988 } 11989 }; 11990 11991 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11992 11993 // Save FPSCR value. 11994 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11995 11996 // When the operand is gprc register, use two least significant bits of the 11997 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11998 // 11999 // copy OldFPSCRTmpReg, OldFPSCRReg 12000 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12001 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12002 // copy NewFPSCRReg, NewFPSCRTmpReg 12003 // mtfsf 255, NewFPSCRReg 12004 MachineOperand SrcOp = MI.getOperand(1); 12005 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12006 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12007 12008 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12009 12010 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12011 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12012 12013 // The first operand of INSERT_SUBREG should be a register which has 12014 // subregisters, we only care about its RegClass, so we should use an 12015 // IMPLICIT_DEF register. 12016 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12017 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12018 .addReg(ImDefReg) 12019 .add(SrcOp) 12020 .addImm(1); 12021 12022 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12023 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12024 .addReg(OldFPSCRTmpReg) 12025 .addReg(ExtSrcReg) 12026 .addImm(0) 12027 .addImm(62); 12028 12029 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12030 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12031 12032 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12033 // bits of FPSCR. 12034 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12035 .addImm(255) 12036 .addReg(NewFPSCRReg) 12037 .addImm(0) 12038 .addImm(0); 12039 } else { 12040 llvm_unreachable("Unexpected instr type to insert"); 12041 } 12042 12043 MI.eraseFromParent(); // The pseudo instruction is gone now. 12044 return BB; 12045 } 12046 12047 //===----------------------------------------------------------------------===// 12048 // Target Optimization Hooks 12049 //===----------------------------------------------------------------------===// 12050 12051 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12052 // For the estimates, convergence is quadratic, so we essentially double the 12053 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12054 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12055 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12056 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12057 if (VT.getScalarType() == MVT::f64) 12058 RefinementSteps++; 12059 return RefinementSteps; 12060 } 12061 12062 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12063 int Enabled, int &RefinementSteps, 12064 bool &UseOneConstNR, 12065 bool Reciprocal) const { 12066 EVT VT = Operand.getValueType(); 12067 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12068 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12069 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12070 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12071 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12072 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12073 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12074 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12075 12076 // The Newton-Raphson computation with a single constant does not provide 12077 // enough accuracy on some CPUs. 12078 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12079 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12080 } 12081 return SDValue(); 12082 } 12083 12084 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12085 int Enabled, 12086 int &RefinementSteps) const { 12087 EVT VT = Operand.getValueType(); 12088 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12089 (VT == MVT::f64 && Subtarget.hasFRE()) || 12090 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12091 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12092 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12093 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12094 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12095 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12096 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12097 } 12098 return SDValue(); 12099 } 12100 12101 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12102 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12103 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12104 // enabled for division), this functionality is redundant with the default 12105 // combiner logic (once the division -> reciprocal/multiply transformation 12106 // has taken place). As a result, this matters more for older cores than for 12107 // newer ones. 12108 12109 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12110 // reciprocal if there are two or more FDIVs (for embedded cores with only 12111 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12112 switch (Subtarget.getCPUDirective()) { 12113 default: 12114 return 3; 12115 case PPC::DIR_440: 12116 case PPC::DIR_A2: 12117 case PPC::DIR_E500: 12118 case PPC::DIR_E500mc: 12119 case PPC::DIR_E5500: 12120 return 2; 12121 } 12122 } 12123 12124 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12125 // collapsed, and so we need to look through chains of them. 12126 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12127 int64_t& Offset, SelectionDAG &DAG) { 12128 if (DAG.isBaseWithConstantOffset(Loc)) { 12129 Base = Loc.getOperand(0); 12130 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12131 12132 // The base might itself be a base plus an offset, and if so, accumulate 12133 // that as well. 12134 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12135 } 12136 } 12137 12138 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12139 unsigned Bytes, int Dist, 12140 SelectionDAG &DAG) { 12141 if (VT.getSizeInBits() / 8 != Bytes) 12142 return false; 12143 12144 SDValue BaseLoc = Base->getBasePtr(); 12145 if (Loc.getOpcode() == ISD::FrameIndex) { 12146 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12147 return false; 12148 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12149 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12150 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12151 int FS = MFI.getObjectSize(FI); 12152 int BFS = MFI.getObjectSize(BFI); 12153 if (FS != BFS || FS != (int)Bytes) return false; 12154 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12155 } 12156 12157 SDValue Base1 = Loc, Base2 = BaseLoc; 12158 int64_t Offset1 = 0, Offset2 = 0; 12159 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12160 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12161 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12162 return true; 12163 12164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12165 const GlobalValue *GV1 = nullptr; 12166 const GlobalValue *GV2 = nullptr; 12167 Offset1 = 0; 12168 Offset2 = 0; 12169 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12170 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12171 if (isGA1 && isGA2 && GV1 == GV2) 12172 return Offset1 == (Offset2 + Dist*Bytes); 12173 return false; 12174 } 12175 12176 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12177 // not enforce equality of the chain operands. 12178 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12179 unsigned Bytes, int Dist, 12180 SelectionDAG &DAG) { 12181 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12182 EVT VT = LS->getMemoryVT(); 12183 SDValue Loc = LS->getBasePtr(); 12184 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12185 } 12186 12187 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12188 EVT VT; 12189 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12190 default: return false; 12191 case Intrinsic::ppc_qpx_qvlfd: 12192 case Intrinsic::ppc_qpx_qvlfda: 12193 VT = MVT::v4f64; 12194 break; 12195 case Intrinsic::ppc_qpx_qvlfs: 12196 case Intrinsic::ppc_qpx_qvlfsa: 12197 VT = MVT::v4f32; 12198 break; 12199 case Intrinsic::ppc_qpx_qvlfcd: 12200 case Intrinsic::ppc_qpx_qvlfcda: 12201 VT = MVT::v2f64; 12202 break; 12203 case Intrinsic::ppc_qpx_qvlfcs: 12204 case Intrinsic::ppc_qpx_qvlfcsa: 12205 VT = MVT::v2f32; 12206 break; 12207 case Intrinsic::ppc_qpx_qvlfiwa: 12208 case Intrinsic::ppc_qpx_qvlfiwz: 12209 case Intrinsic::ppc_altivec_lvx: 12210 case Intrinsic::ppc_altivec_lvxl: 12211 case Intrinsic::ppc_vsx_lxvw4x: 12212 case Intrinsic::ppc_vsx_lxvw4x_be: 12213 VT = MVT::v4i32; 12214 break; 12215 case Intrinsic::ppc_vsx_lxvd2x: 12216 case Intrinsic::ppc_vsx_lxvd2x_be: 12217 VT = MVT::v2f64; 12218 break; 12219 case Intrinsic::ppc_altivec_lvebx: 12220 VT = MVT::i8; 12221 break; 12222 case Intrinsic::ppc_altivec_lvehx: 12223 VT = MVT::i16; 12224 break; 12225 case Intrinsic::ppc_altivec_lvewx: 12226 VT = MVT::i32; 12227 break; 12228 } 12229 12230 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12231 } 12232 12233 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12234 EVT VT; 12235 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12236 default: return false; 12237 case Intrinsic::ppc_qpx_qvstfd: 12238 case Intrinsic::ppc_qpx_qvstfda: 12239 VT = MVT::v4f64; 12240 break; 12241 case Intrinsic::ppc_qpx_qvstfs: 12242 case Intrinsic::ppc_qpx_qvstfsa: 12243 VT = MVT::v4f32; 12244 break; 12245 case Intrinsic::ppc_qpx_qvstfcd: 12246 case Intrinsic::ppc_qpx_qvstfcda: 12247 VT = MVT::v2f64; 12248 break; 12249 case Intrinsic::ppc_qpx_qvstfcs: 12250 case Intrinsic::ppc_qpx_qvstfcsa: 12251 VT = MVT::v2f32; 12252 break; 12253 case Intrinsic::ppc_qpx_qvstfiw: 12254 case Intrinsic::ppc_qpx_qvstfiwa: 12255 case Intrinsic::ppc_altivec_stvx: 12256 case Intrinsic::ppc_altivec_stvxl: 12257 case Intrinsic::ppc_vsx_stxvw4x: 12258 VT = MVT::v4i32; 12259 break; 12260 case Intrinsic::ppc_vsx_stxvd2x: 12261 VT = MVT::v2f64; 12262 break; 12263 case Intrinsic::ppc_vsx_stxvw4x_be: 12264 VT = MVT::v4i32; 12265 break; 12266 case Intrinsic::ppc_vsx_stxvd2x_be: 12267 VT = MVT::v2f64; 12268 break; 12269 case Intrinsic::ppc_altivec_stvebx: 12270 VT = MVT::i8; 12271 break; 12272 case Intrinsic::ppc_altivec_stvehx: 12273 VT = MVT::i16; 12274 break; 12275 case Intrinsic::ppc_altivec_stvewx: 12276 VT = MVT::i32; 12277 break; 12278 } 12279 12280 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12281 } 12282 12283 return false; 12284 } 12285 12286 // Return true is there is a nearyby consecutive load to the one provided 12287 // (regardless of alignment). We search up and down the chain, looking though 12288 // token factors and other loads (but nothing else). As a result, a true result 12289 // indicates that it is safe to create a new consecutive load adjacent to the 12290 // load provided. 12291 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12292 SDValue Chain = LD->getChain(); 12293 EVT VT = LD->getMemoryVT(); 12294 12295 SmallSet<SDNode *, 16> LoadRoots; 12296 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12297 SmallSet<SDNode *, 16> Visited; 12298 12299 // First, search up the chain, branching to follow all token-factor operands. 12300 // If we find a consecutive load, then we're done, otherwise, record all 12301 // nodes just above the top-level loads and token factors. 12302 while (!Queue.empty()) { 12303 SDNode *ChainNext = Queue.pop_back_val(); 12304 if (!Visited.insert(ChainNext).second) 12305 continue; 12306 12307 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12308 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12309 return true; 12310 12311 if (!Visited.count(ChainLD->getChain().getNode())) 12312 Queue.push_back(ChainLD->getChain().getNode()); 12313 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12314 for (const SDUse &O : ChainNext->ops()) 12315 if (!Visited.count(O.getNode())) 12316 Queue.push_back(O.getNode()); 12317 } else 12318 LoadRoots.insert(ChainNext); 12319 } 12320 12321 // Second, search down the chain, starting from the top-level nodes recorded 12322 // in the first phase. These top-level nodes are the nodes just above all 12323 // loads and token factors. Starting with their uses, recursively look though 12324 // all loads (just the chain uses) and token factors to find a consecutive 12325 // load. 12326 Visited.clear(); 12327 Queue.clear(); 12328 12329 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12330 IE = LoadRoots.end(); I != IE; ++I) { 12331 Queue.push_back(*I); 12332 12333 while (!Queue.empty()) { 12334 SDNode *LoadRoot = Queue.pop_back_val(); 12335 if (!Visited.insert(LoadRoot).second) 12336 continue; 12337 12338 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12339 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12340 return true; 12341 12342 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12343 UE = LoadRoot->use_end(); UI != UE; ++UI) 12344 if (((isa<MemSDNode>(*UI) && 12345 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12346 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12347 Queue.push_back(*UI); 12348 } 12349 } 12350 12351 return false; 12352 } 12353 12354 /// This function is called when we have proved that a SETCC node can be replaced 12355 /// by subtraction (and other supporting instructions) so that the result of 12356 /// comparison is kept in a GPR instead of CR. This function is purely for 12357 /// codegen purposes and has some flags to guide the codegen process. 12358 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12359 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12360 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12361 12362 // Zero extend the operands to the largest legal integer. Originally, they 12363 // must be of a strictly smaller size. 12364 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12365 DAG.getConstant(Size, DL, MVT::i32)); 12366 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12367 DAG.getConstant(Size, DL, MVT::i32)); 12368 12369 // Swap if needed. Depends on the condition code. 12370 if (Swap) 12371 std::swap(Op0, Op1); 12372 12373 // Subtract extended integers. 12374 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12375 12376 // Move the sign bit to the least significant position and zero out the rest. 12377 // Now the least significant bit carries the result of original comparison. 12378 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12379 DAG.getConstant(Size - 1, DL, MVT::i32)); 12380 auto Final = Shifted; 12381 12382 // Complement the result if needed. Based on the condition code. 12383 if (Complement) 12384 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12385 DAG.getConstant(1, DL, MVT::i64)); 12386 12387 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12388 } 12389 12390 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12391 DAGCombinerInfo &DCI) const { 12392 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12393 12394 SelectionDAG &DAG = DCI.DAG; 12395 SDLoc DL(N); 12396 12397 // Size of integers being compared has a critical role in the following 12398 // analysis, so we prefer to do this when all types are legal. 12399 if (!DCI.isAfterLegalizeDAG()) 12400 return SDValue(); 12401 12402 // If all users of SETCC extend its value to a legal integer type 12403 // then we replace SETCC with a subtraction 12404 for (SDNode::use_iterator UI = N->use_begin(), 12405 UE = N->use_end(); UI != UE; ++UI) { 12406 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12407 return SDValue(); 12408 } 12409 12410 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12411 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12412 12413 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12414 12415 if (OpSize < Size) { 12416 switch (CC) { 12417 default: break; 12418 case ISD::SETULT: 12419 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12420 case ISD::SETULE: 12421 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12422 case ISD::SETUGT: 12423 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12424 case ISD::SETUGE: 12425 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12426 } 12427 } 12428 12429 return SDValue(); 12430 } 12431 12432 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12433 DAGCombinerInfo &DCI) const { 12434 SelectionDAG &DAG = DCI.DAG; 12435 SDLoc dl(N); 12436 12437 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12438 // If we're tracking CR bits, we need to be careful that we don't have: 12439 // trunc(binary-ops(zext(x), zext(y))) 12440 // or 12441 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12442 // such that we're unnecessarily moving things into GPRs when it would be 12443 // better to keep them in CR bits. 12444 12445 // Note that trunc here can be an actual i1 trunc, or can be the effective 12446 // truncation that comes from a setcc or select_cc. 12447 if (N->getOpcode() == ISD::TRUNCATE && 12448 N->getValueType(0) != MVT::i1) 12449 return SDValue(); 12450 12451 if (N->getOperand(0).getValueType() != MVT::i32 && 12452 N->getOperand(0).getValueType() != MVT::i64) 12453 return SDValue(); 12454 12455 if (N->getOpcode() == ISD::SETCC || 12456 N->getOpcode() == ISD::SELECT_CC) { 12457 // If we're looking at a comparison, then we need to make sure that the 12458 // high bits (all except for the first) don't matter the result. 12459 ISD::CondCode CC = 12460 cast<CondCodeSDNode>(N->getOperand( 12461 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12462 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12463 12464 if (ISD::isSignedIntSetCC(CC)) { 12465 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12466 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12467 return SDValue(); 12468 } else if (ISD::isUnsignedIntSetCC(CC)) { 12469 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12470 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12471 !DAG.MaskedValueIsZero(N->getOperand(1), 12472 APInt::getHighBitsSet(OpBits, OpBits-1))) 12473 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12474 : SDValue()); 12475 } else { 12476 // This is neither a signed nor an unsigned comparison, just make sure 12477 // that the high bits are equal. 12478 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12479 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12480 12481 // We don't really care about what is known about the first bit (if 12482 // anything), so clear it in all masks prior to comparing them. 12483 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12484 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12485 12486 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12487 return SDValue(); 12488 } 12489 } 12490 12491 // We now know that the higher-order bits are irrelevant, we just need to 12492 // make sure that all of the intermediate operations are bit operations, and 12493 // all inputs are extensions. 12494 if (N->getOperand(0).getOpcode() != ISD::AND && 12495 N->getOperand(0).getOpcode() != ISD::OR && 12496 N->getOperand(0).getOpcode() != ISD::XOR && 12497 N->getOperand(0).getOpcode() != ISD::SELECT && 12498 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12499 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12500 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12501 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12502 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12503 return SDValue(); 12504 12505 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12506 N->getOperand(1).getOpcode() != ISD::AND && 12507 N->getOperand(1).getOpcode() != ISD::OR && 12508 N->getOperand(1).getOpcode() != ISD::XOR && 12509 N->getOperand(1).getOpcode() != ISD::SELECT && 12510 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12511 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12512 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12513 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12514 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12515 return SDValue(); 12516 12517 SmallVector<SDValue, 4> Inputs; 12518 SmallVector<SDValue, 8> BinOps, PromOps; 12519 SmallPtrSet<SDNode *, 16> Visited; 12520 12521 for (unsigned i = 0; i < 2; ++i) { 12522 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12523 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12524 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12525 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12526 isa<ConstantSDNode>(N->getOperand(i))) 12527 Inputs.push_back(N->getOperand(i)); 12528 else 12529 BinOps.push_back(N->getOperand(i)); 12530 12531 if (N->getOpcode() == ISD::TRUNCATE) 12532 break; 12533 } 12534 12535 // Visit all inputs, collect all binary operations (and, or, xor and 12536 // select) that are all fed by extensions. 12537 while (!BinOps.empty()) { 12538 SDValue BinOp = BinOps.back(); 12539 BinOps.pop_back(); 12540 12541 if (!Visited.insert(BinOp.getNode()).second) 12542 continue; 12543 12544 PromOps.push_back(BinOp); 12545 12546 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12547 // The condition of the select is not promoted. 12548 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12549 continue; 12550 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12551 continue; 12552 12553 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12554 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12555 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12556 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12557 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12558 Inputs.push_back(BinOp.getOperand(i)); 12559 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12560 BinOp.getOperand(i).getOpcode() == ISD::OR || 12561 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12562 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12563 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12564 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12565 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12566 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12567 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12568 BinOps.push_back(BinOp.getOperand(i)); 12569 } else { 12570 // We have an input that is not an extension or another binary 12571 // operation; we'll abort this transformation. 12572 return SDValue(); 12573 } 12574 } 12575 } 12576 12577 // Make sure that this is a self-contained cluster of operations (which 12578 // is not quite the same thing as saying that everything has only one 12579 // use). 12580 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12581 if (isa<ConstantSDNode>(Inputs[i])) 12582 continue; 12583 12584 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12585 UE = Inputs[i].getNode()->use_end(); 12586 UI != UE; ++UI) { 12587 SDNode *User = *UI; 12588 if (User != N && !Visited.count(User)) 12589 return SDValue(); 12590 12591 // Make sure that we're not going to promote the non-output-value 12592 // operand(s) or SELECT or SELECT_CC. 12593 // FIXME: Although we could sometimes handle this, and it does occur in 12594 // practice that one of the condition inputs to the select is also one of 12595 // the outputs, we currently can't deal with this. 12596 if (User->getOpcode() == ISD::SELECT) { 12597 if (User->getOperand(0) == Inputs[i]) 12598 return SDValue(); 12599 } else if (User->getOpcode() == ISD::SELECT_CC) { 12600 if (User->getOperand(0) == Inputs[i] || 12601 User->getOperand(1) == Inputs[i]) 12602 return SDValue(); 12603 } 12604 } 12605 } 12606 12607 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12608 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12609 UE = PromOps[i].getNode()->use_end(); 12610 UI != UE; ++UI) { 12611 SDNode *User = *UI; 12612 if (User != N && !Visited.count(User)) 12613 return SDValue(); 12614 12615 // Make sure that we're not going to promote the non-output-value 12616 // operand(s) or SELECT or SELECT_CC. 12617 // FIXME: Although we could sometimes handle this, and it does occur in 12618 // practice that one of the condition inputs to the select is also one of 12619 // the outputs, we currently can't deal with this. 12620 if (User->getOpcode() == ISD::SELECT) { 12621 if (User->getOperand(0) == PromOps[i]) 12622 return SDValue(); 12623 } else if (User->getOpcode() == ISD::SELECT_CC) { 12624 if (User->getOperand(0) == PromOps[i] || 12625 User->getOperand(1) == PromOps[i]) 12626 return SDValue(); 12627 } 12628 } 12629 } 12630 12631 // Replace all inputs with the extension operand. 12632 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12633 // Constants may have users outside the cluster of to-be-promoted nodes, 12634 // and so we need to replace those as we do the promotions. 12635 if (isa<ConstantSDNode>(Inputs[i])) 12636 continue; 12637 else 12638 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12639 } 12640 12641 std::list<HandleSDNode> PromOpHandles; 12642 for (auto &PromOp : PromOps) 12643 PromOpHandles.emplace_back(PromOp); 12644 12645 // Replace all operations (these are all the same, but have a different 12646 // (i1) return type). DAG.getNode will validate that the types of 12647 // a binary operator match, so go through the list in reverse so that 12648 // we've likely promoted both operands first. Any intermediate truncations or 12649 // extensions disappear. 12650 while (!PromOpHandles.empty()) { 12651 SDValue PromOp = PromOpHandles.back().getValue(); 12652 PromOpHandles.pop_back(); 12653 12654 if (PromOp.getOpcode() == ISD::TRUNCATE || 12655 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12656 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12657 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12658 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12659 PromOp.getOperand(0).getValueType() != MVT::i1) { 12660 // The operand is not yet ready (see comment below). 12661 PromOpHandles.emplace_front(PromOp); 12662 continue; 12663 } 12664 12665 SDValue RepValue = PromOp.getOperand(0); 12666 if (isa<ConstantSDNode>(RepValue)) 12667 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12668 12669 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12670 continue; 12671 } 12672 12673 unsigned C; 12674 switch (PromOp.getOpcode()) { 12675 default: C = 0; break; 12676 case ISD::SELECT: C = 1; break; 12677 case ISD::SELECT_CC: C = 2; break; 12678 } 12679 12680 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12681 PromOp.getOperand(C).getValueType() != MVT::i1) || 12682 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12683 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12684 // The to-be-promoted operands of this node have not yet been 12685 // promoted (this should be rare because we're going through the 12686 // list backward, but if one of the operands has several users in 12687 // this cluster of to-be-promoted nodes, it is possible). 12688 PromOpHandles.emplace_front(PromOp); 12689 continue; 12690 } 12691 12692 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12693 PromOp.getNode()->op_end()); 12694 12695 // If there are any constant inputs, make sure they're replaced now. 12696 for (unsigned i = 0; i < 2; ++i) 12697 if (isa<ConstantSDNode>(Ops[C+i])) 12698 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12699 12700 DAG.ReplaceAllUsesOfValueWith(PromOp, 12701 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12702 } 12703 12704 // Now we're left with the initial truncation itself. 12705 if (N->getOpcode() == ISD::TRUNCATE) 12706 return N->getOperand(0); 12707 12708 // Otherwise, this is a comparison. The operands to be compared have just 12709 // changed type (to i1), but everything else is the same. 12710 return SDValue(N, 0); 12711 } 12712 12713 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12714 DAGCombinerInfo &DCI) const { 12715 SelectionDAG &DAG = DCI.DAG; 12716 SDLoc dl(N); 12717 12718 // If we're tracking CR bits, we need to be careful that we don't have: 12719 // zext(binary-ops(trunc(x), trunc(y))) 12720 // or 12721 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12722 // such that we're unnecessarily moving things into CR bits that can more 12723 // efficiently stay in GPRs. Note that if we're not certain that the high 12724 // bits are set as required by the final extension, we still may need to do 12725 // some masking to get the proper behavior. 12726 12727 // This same functionality is important on PPC64 when dealing with 12728 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12729 // the return values of functions. Because it is so similar, it is handled 12730 // here as well. 12731 12732 if (N->getValueType(0) != MVT::i32 && 12733 N->getValueType(0) != MVT::i64) 12734 return SDValue(); 12735 12736 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12737 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12738 return SDValue(); 12739 12740 if (N->getOperand(0).getOpcode() != ISD::AND && 12741 N->getOperand(0).getOpcode() != ISD::OR && 12742 N->getOperand(0).getOpcode() != ISD::XOR && 12743 N->getOperand(0).getOpcode() != ISD::SELECT && 12744 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12745 return SDValue(); 12746 12747 SmallVector<SDValue, 4> Inputs; 12748 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12749 SmallPtrSet<SDNode *, 16> Visited; 12750 12751 // Visit all inputs, collect all binary operations (and, or, xor and 12752 // select) that are all fed by truncations. 12753 while (!BinOps.empty()) { 12754 SDValue BinOp = BinOps.back(); 12755 BinOps.pop_back(); 12756 12757 if (!Visited.insert(BinOp.getNode()).second) 12758 continue; 12759 12760 PromOps.push_back(BinOp); 12761 12762 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12763 // The condition of the select is not promoted. 12764 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12765 continue; 12766 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12767 continue; 12768 12769 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12770 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12771 Inputs.push_back(BinOp.getOperand(i)); 12772 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12773 BinOp.getOperand(i).getOpcode() == ISD::OR || 12774 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12775 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12776 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12777 BinOps.push_back(BinOp.getOperand(i)); 12778 } else { 12779 // We have an input that is not a truncation or another binary 12780 // operation; we'll abort this transformation. 12781 return SDValue(); 12782 } 12783 } 12784 } 12785 12786 // The operands of a select that must be truncated when the select is 12787 // promoted because the operand is actually part of the to-be-promoted set. 12788 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12789 12790 // Make sure that this is a self-contained cluster of operations (which 12791 // is not quite the same thing as saying that everything has only one 12792 // use). 12793 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12794 if (isa<ConstantSDNode>(Inputs[i])) 12795 continue; 12796 12797 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12798 UE = Inputs[i].getNode()->use_end(); 12799 UI != UE; ++UI) { 12800 SDNode *User = *UI; 12801 if (User != N && !Visited.count(User)) 12802 return SDValue(); 12803 12804 // If we're going to promote the non-output-value operand(s) or SELECT or 12805 // SELECT_CC, record them for truncation. 12806 if (User->getOpcode() == ISD::SELECT) { 12807 if (User->getOperand(0) == Inputs[i]) 12808 SelectTruncOp[0].insert(std::make_pair(User, 12809 User->getOperand(0).getValueType())); 12810 } else if (User->getOpcode() == ISD::SELECT_CC) { 12811 if (User->getOperand(0) == Inputs[i]) 12812 SelectTruncOp[0].insert(std::make_pair(User, 12813 User->getOperand(0).getValueType())); 12814 if (User->getOperand(1) == Inputs[i]) 12815 SelectTruncOp[1].insert(std::make_pair(User, 12816 User->getOperand(1).getValueType())); 12817 } 12818 } 12819 } 12820 12821 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12822 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12823 UE = PromOps[i].getNode()->use_end(); 12824 UI != UE; ++UI) { 12825 SDNode *User = *UI; 12826 if (User != N && !Visited.count(User)) 12827 return SDValue(); 12828 12829 // If we're going to promote the non-output-value operand(s) or SELECT or 12830 // SELECT_CC, record them for truncation. 12831 if (User->getOpcode() == ISD::SELECT) { 12832 if (User->getOperand(0) == PromOps[i]) 12833 SelectTruncOp[0].insert(std::make_pair(User, 12834 User->getOperand(0).getValueType())); 12835 } else if (User->getOpcode() == ISD::SELECT_CC) { 12836 if (User->getOperand(0) == PromOps[i]) 12837 SelectTruncOp[0].insert(std::make_pair(User, 12838 User->getOperand(0).getValueType())); 12839 if (User->getOperand(1) == PromOps[i]) 12840 SelectTruncOp[1].insert(std::make_pair(User, 12841 User->getOperand(1).getValueType())); 12842 } 12843 } 12844 } 12845 12846 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12847 bool ReallyNeedsExt = false; 12848 if (N->getOpcode() != ISD::ANY_EXTEND) { 12849 // If all of the inputs are not already sign/zero extended, then 12850 // we'll still need to do that at the end. 12851 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12852 if (isa<ConstantSDNode>(Inputs[i])) 12853 continue; 12854 12855 unsigned OpBits = 12856 Inputs[i].getOperand(0).getValueSizeInBits(); 12857 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12858 12859 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12860 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12861 APInt::getHighBitsSet(OpBits, 12862 OpBits-PromBits))) || 12863 (N->getOpcode() == ISD::SIGN_EXTEND && 12864 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12865 (OpBits-(PromBits-1)))) { 12866 ReallyNeedsExt = true; 12867 break; 12868 } 12869 } 12870 } 12871 12872 // Replace all inputs, either with the truncation operand, or a 12873 // truncation or extension to the final output type. 12874 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12875 // Constant inputs need to be replaced with the to-be-promoted nodes that 12876 // use them because they might have users outside of the cluster of 12877 // promoted nodes. 12878 if (isa<ConstantSDNode>(Inputs[i])) 12879 continue; 12880 12881 SDValue InSrc = Inputs[i].getOperand(0); 12882 if (Inputs[i].getValueType() == N->getValueType(0)) 12883 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12884 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12885 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12886 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12887 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12888 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12889 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12890 else 12891 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12892 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12893 } 12894 12895 std::list<HandleSDNode> PromOpHandles; 12896 for (auto &PromOp : PromOps) 12897 PromOpHandles.emplace_back(PromOp); 12898 12899 // Replace all operations (these are all the same, but have a different 12900 // (promoted) return type). DAG.getNode will validate that the types of 12901 // a binary operator match, so go through the list in reverse so that 12902 // we've likely promoted both operands first. 12903 while (!PromOpHandles.empty()) { 12904 SDValue PromOp = PromOpHandles.back().getValue(); 12905 PromOpHandles.pop_back(); 12906 12907 unsigned C; 12908 switch (PromOp.getOpcode()) { 12909 default: C = 0; break; 12910 case ISD::SELECT: C = 1; break; 12911 case ISD::SELECT_CC: C = 2; break; 12912 } 12913 12914 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12915 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12916 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12917 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12918 // The to-be-promoted operands of this node have not yet been 12919 // promoted (this should be rare because we're going through the 12920 // list backward, but if one of the operands has several users in 12921 // this cluster of to-be-promoted nodes, it is possible). 12922 PromOpHandles.emplace_front(PromOp); 12923 continue; 12924 } 12925 12926 // For SELECT and SELECT_CC nodes, we do a similar check for any 12927 // to-be-promoted comparison inputs. 12928 if (PromOp.getOpcode() == ISD::SELECT || 12929 PromOp.getOpcode() == ISD::SELECT_CC) { 12930 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12931 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12932 (SelectTruncOp[1].count(PromOp.getNode()) && 12933 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12934 PromOpHandles.emplace_front(PromOp); 12935 continue; 12936 } 12937 } 12938 12939 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12940 PromOp.getNode()->op_end()); 12941 12942 // If this node has constant inputs, then they'll need to be promoted here. 12943 for (unsigned i = 0; i < 2; ++i) { 12944 if (!isa<ConstantSDNode>(Ops[C+i])) 12945 continue; 12946 if (Ops[C+i].getValueType() == N->getValueType(0)) 12947 continue; 12948 12949 if (N->getOpcode() == ISD::SIGN_EXTEND) 12950 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12951 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12952 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12953 else 12954 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12955 } 12956 12957 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12958 // truncate them again to the original value type. 12959 if (PromOp.getOpcode() == ISD::SELECT || 12960 PromOp.getOpcode() == ISD::SELECT_CC) { 12961 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12962 if (SI0 != SelectTruncOp[0].end()) 12963 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12964 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12965 if (SI1 != SelectTruncOp[1].end()) 12966 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12967 } 12968 12969 DAG.ReplaceAllUsesOfValueWith(PromOp, 12970 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12971 } 12972 12973 // Now we're left with the initial extension itself. 12974 if (!ReallyNeedsExt) 12975 return N->getOperand(0); 12976 12977 // To zero extend, just mask off everything except for the first bit (in the 12978 // i1 case). 12979 if (N->getOpcode() == ISD::ZERO_EXTEND) 12980 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12981 DAG.getConstant(APInt::getLowBitsSet( 12982 N->getValueSizeInBits(0), PromBits), 12983 dl, N->getValueType(0))); 12984 12985 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12986 "Invalid extension type"); 12987 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12988 SDValue ShiftCst = 12989 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12990 return DAG.getNode( 12991 ISD::SRA, dl, N->getValueType(0), 12992 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12993 ShiftCst); 12994 } 12995 12996 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12997 DAGCombinerInfo &DCI) const { 12998 assert(N->getOpcode() == ISD::SETCC && 12999 "Should be called with a SETCC node"); 13000 13001 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13002 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13003 SDValue LHS = N->getOperand(0); 13004 SDValue RHS = N->getOperand(1); 13005 13006 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13007 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13008 LHS.hasOneUse()) 13009 std::swap(LHS, RHS); 13010 13011 // x == 0-y --> x+y == 0 13012 // x != 0-y --> x+y != 0 13013 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13014 RHS.hasOneUse()) { 13015 SDLoc DL(N); 13016 SelectionDAG &DAG = DCI.DAG; 13017 EVT VT = N->getValueType(0); 13018 EVT OpVT = LHS.getValueType(); 13019 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13020 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13021 } 13022 } 13023 13024 return DAGCombineTruncBoolExt(N, DCI); 13025 } 13026 13027 // Is this an extending load from an f32 to an f64? 13028 static bool isFPExtLoad(SDValue Op) { 13029 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13030 return LD->getExtensionType() == ISD::EXTLOAD && 13031 Op.getValueType() == MVT::f64; 13032 return false; 13033 } 13034 13035 /// Reduces the number of fp-to-int conversion when building a vector. 13036 /// 13037 /// If this vector is built out of floating to integer conversions, 13038 /// transform it to a vector built out of floating point values followed by a 13039 /// single floating to integer conversion of the vector. 13040 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13041 /// becomes (fptosi (build_vector ($A, $B, ...))) 13042 SDValue PPCTargetLowering:: 13043 combineElementTruncationToVectorTruncation(SDNode *N, 13044 DAGCombinerInfo &DCI) const { 13045 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13046 "Should be called with a BUILD_VECTOR node"); 13047 13048 SelectionDAG &DAG = DCI.DAG; 13049 SDLoc dl(N); 13050 13051 SDValue FirstInput = N->getOperand(0); 13052 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13053 "The input operand must be an fp-to-int conversion."); 13054 13055 // This combine happens after legalization so the fp_to_[su]i nodes are 13056 // already converted to PPCSISD nodes. 13057 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13058 if (FirstConversion == PPCISD::FCTIDZ || 13059 FirstConversion == PPCISD::FCTIDUZ || 13060 FirstConversion == PPCISD::FCTIWZ || 13061 FirstConversion == PPCISD::FCTIWUZ) { 13062 bool IsSplat = true; 13063 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13064 FirstConversion == PPCISD::FCTIWUZ; 13065 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13066 SmallVector<SDValue, 4> Ops; 13067 EVT TargetVT = N->getValueType(0); 13068 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13069 SDValue NextOp = N->getOperand(i); 13070 if (NextOp.getOpcode() != PPCISD::MFVSR) 13071 return SDValue(); 13072 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13073 if (NextConversion != FirstConversion) 13074 return SDValue(); 13075 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13076 // This is not valid if the input was originally double precision. It is 13077 // also not profitable to do unless this is an extending load in which 13078 // case doing this combine will allow us to combine consecutive loads. 13079 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13080 return SDValue(); 13081 if (N->getOperand(i) != FirstInput) 13082 IsSplat = false; 13083 } 13084 13085 // If this is a splat, we leave it as-is since there will be only a single 13086 // fp-to-int conversion followed by a splat of the integer. This is better 13087 // for 32-bit and smaller ints and neutral for 64-bit ints. 13088 if (IsSplat) 13089 return SDValue(); 13090 13091 // Now that we know we have the right type of node, get its operands 13092 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13093 SDValue In = N->getOperand(i).getOperand(0); 13094 if (Is32Bit) { 13095 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13096 // here, we know that all inputs are extending loads so this is safe). 13097 if (In.isUndef()) 13098 Ops.push_back(DAG.getUNDEF(SrcVT)); 13099 else { 13100 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13101 MVT::f32, In.getOperand(0), 13102 DAG.getIntPtrConstant(1, dl)); 13103 Ops.push_back(Trunc); 13104 } 13105 } else 13106 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13107 } 13108 13109 unsigned Opcode; 13110 if (FirstConversion == PPCISD::FCTIDZ || 13111 FirstConversion == PPCISD::FCTIWZ) 13112 Opcode = ISD::FP_TO_SINT; 13113 else 13114 Opcode = ISD::FP_TO_UINT; 13115 13116 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13117 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13118 return DAG.getNode(Opcode, dl, TargetVT, BV); 13119 } 13120 return SDValue(); 13121 } 13122 13123 /// Reduce the number of loads when building a vector. 13124 /// 13125 /// Building a vector out of multiple loads can be converted to a load 13126 /// of the vector type if the loads are consecutive. If the loads are 13127 /// consecutive but in descending order, a shuffle is added at the end 13128 /// to reorder the vector. 13129 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13130 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13131 "Should be called with a BUILD_VECTOR node"); 13132 13133 SDLoc dl(N); 13134 13135 // Return early for non byte-sized type, as they can't be consecutive. 13136 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13137 return SDValue(); 13138 13139 bool InputsAreConsecutiveLoads = true; 13140 bool InputsAreReverseConsecutive = true; 13141 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13142 SDValue FirstInput = N->getOperand(0); 13143 bool IsRoundOfExtLoad = false; 13144 13145 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13146 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13147 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13148 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13149 } 13150 // Not a build vector of (possibly fp_rounded) loads. 13151 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13152 N->getNumOperands() == 1) 13153 return SDValue(); 13154 13155 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13156 // If any inputs are fp_round(extload), they all must be. 13157 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13158 return SDValue(); 13159 13160 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13161 N->getOperand(i); 13162 if (NextInput.getOpcode() != ISD::LOAD) 13163 return SDValue(); 13164 13165 SDValue PreviousInput = 13166 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13167 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13168 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13169 13170 // If any inputs are fp_round(extload), they all must be. 13171 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13172 return SDValue(); 13173 13174 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13175 InputsAreConsecutiveLoads = false; 13176 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13177 InputsAreReverseConsecutive = false; 13178 13179 // Exit early if the loads are neither consecutive nor reverse consecutive. 13180 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13181 return SDValue(); 13182 } 13183 13184 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13185 "The loads cannot be both consecutive and reverse consecutive."); 13186 13187 SDValue FirstLoadOp = 13188 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13189 SDValue LastLoadOp = 13190 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13191 N->getOperand(N->getNumOperands()-1); 13192 13193 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13194 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13195 if (InputsAreConsecutiveLoads) { 13196 assert(LD1 && "Input needs to be a LoadSDNode."); 13197 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13198 LD1->getBasePtr(), LD1->getPointerInfo(), 13199 LD1->getAlignment()); 13200 } 13201 if (InputsAreReverseConsecutive) { 13202 assert(LDL && "Input needs to be a LoadSDNode."); 13203 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13204 LDL->getBasePtr(), LDL->getPointerInfo(), 13205 LDL->getAlignment()); 13206 SmallVector<int, 16> Ops; 13207 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13208 Ops.push_back(i); 13209 13210 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13211 DAG.getUNDEF(N->getValueType(0)), Ops); 13212 } 13213 return SDValue(); 13214 } 13215 13216 // This function adds the required vector_shuffle needed to get 13217 // the elements of the vector extract in the correct position 13218 // as specified by the CorrectElems encoding. 13219 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13220 SDValue Input, uint64_t Elems, 13221 uint64_t CorrectElems) { 13222 SDLoc dl(N); 13223 13224 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13225 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13226 13227 // Knowing the element indices being extracted from the original 13228 // vector and the order in which they're being inserted, just put 13229 // them at element indices required for the instruction. 13230 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13231 if (DAG.getDataLayout().isLittleEndian()) 13232 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13233 else 13234 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13235 CorrectElems = CorrectElems >> 8; 13236 Elems = Elems >> 8; 13237 } 13238 13239 SDValue Shuffle = 13240 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13241 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13242 13243 EVT VT = N->getValueType(0); 13244 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13245 13246 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13247 Input.getValueType().getVectorElementType(), 13248 VT.getVectorNumElements()); 13249 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13250 DAG.getValueType(ExtVT)); 13251 } 13252 13253 // Look for build vector patterns where input operands come from sign 13254 // extended vector_extract elements of specific indices. If the correct indices 13255 // aren't used, add a vector shuffle to fix up the indices and create 13256 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13257 // during instruction selection. 13258 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13259 // This array encodes the indices that the vector sign extend instructions 13260 // extract from when extending from one type to another for both BE and LE. 13261 // The right nibble of each byte corresponds to the LE incides. 13262 // and the left nibble of each byte corresponds to the BE incides. 13263 // For example: 0x3074B8FC byte->word 13264 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13265 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13266 // For example: 0x000070F8 byte->double word 13267 // For LE: the allowed indices are: 0x0,0x8 13268 // For BE: the allowed indices are: 0x7,0xF 13269 uint64_t TargetElems[] = { 13270 0x3074B8FC, // b->w 13271 0x000070F8, // b->d 13272 0x10325476, // h->w 13273 0x00003074, // h->d 13274 0x00001032, // w->d 13275 }; 13276 13277 uint64_t Elems = 0; 13278 int Index; 13279 SDValue Input; 13280 13281 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13282 if (!Op) 13283 return false; 13284 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13285 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13286 return false; 13287 13288 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13289 // of the right width. 13290 SDValue Extract = Op.getOperand(0); 13291 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13292 Extract = Extract.getOperand(0); 13293 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13294 return false; 13295 13296 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13297 if (!ExtOp) 13298 return false; 13299 13300 Index = ExtOp->getZExtValue(); 13301 if (Input && Input != Extract.getOperand(0)) 13302 return false; 13303 13304 if (!Input) 13305 Input = Extract.getOperand(0); 13306 13307 Elems = Elems << 8; 13308 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13309 Elems |= Index; 13310 13311 return true; 13312 }; 13313 13314 // If the build vector operands aren't sign extended vector extracts, 13315 // of the same input vector, then return. 13316 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13317 if (!isSExtOfVecExtract(N->getOperand(i))) { 13318 return SDValue(); 13319 } 13320 } 13321 13322 // If the vector extract indicies are not correct, add the appropriate 13323 // vector_shuffle. 13324 int TgtElemArrayIdx; 13325 int InputSize = Input.getValueType().getScalarSizeInBits(); 13326 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13327 if (InputSize + OutputSize == 40) 13328 TgtElemArrayIdx = 0; 13329 else if (InputSize + OutputSize == 72) 13330 TgtElemArrayIdx = 1; 13331 else if (InputSize + OutputSize == 48) 13332 TgtElemArrayIdx = 2; 13333 else if (InputSize + OutputSize == 80) 13334 TgtElemArrayIdx = 3; 13335 else if (InputSize + OutputSize == 96) 13336 TgtElemArrayIdx = 4; 13337 else 13338 return SDValue(); 13339 13340 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13341 CorrectElems = DAG.getDataLayout().isLittleEndian() 13342 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13343 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13344 if (Elems != CorrectElems) { 13345 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13346 } 13347 13348 // Regular lowering will catch cases where a shuffle is not needed. 13349 return SDValue(); 13350 } 13351 13352 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13353 DAGCombinerInfo &DCI) const { 13354 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13355 "Should be called with a BUILD_VECTOR node"); 13356 13357 SelectionDAG &DAG = DCI.DAG; 13358 SDLoc dl(N); 13359 13360 if (!Subtarget.hasVSX()) 13361 return SDValue(); 13362 13363 // The target independent DAG combiner will leave a build_vector of 13364 // float-to-int conversions intact. We can generate MUCH better code for 13365 // a float-to-int conversion of a vector of floats. 13366 SDValue FirstInput = N->getOperand(0); 13367 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13368 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13369 if (Reduced) 13370 return Reduced; 13371 } 13372 13373 // If we're building a vector out of consecutive loads, just load that 13374 // vector type. 13375 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13376 if (Reduced) 13377 return Reduced; 13378 13379 // If we're building a vector out of extended elements from another vector 13380 // we have P9 vector integer extend instructions. The code assumes legal 13381 // input types (i.e. it can't handle things like v4i16) so do not run before 13382 // legalization. 13383 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13384 Reduced = combineBVOfVecSExt(N, DAG); 13385 if (Reduced) 13386 return Reduced; 13387 } 13388 13389 13390 if (N->getValueType(0) != MVT::v2f64) 13391 return SDValue(); 13392 13393 // Looking for: 13394 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13395 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13396 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13397 return SDValue(); 13398 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13399 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13400 return SDValue(); 13401 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13402 return SDValue(); 13403 13404 SDValue Ext1 = FirstInput.getOperand(0); 13405 SDValue Ext2 = N->getOperand(1).getOperand(0); 13406 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13407 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13408 return SDValue(); 13409 13410 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13411 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13412 if (!Ext1Op || !Ext2Op) 13413 return SDValue(); 13414 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13415 Ext1.getOperand(0) != Ext2.getOperand(0)) 13416 return SDValue(); 13417 13418 int FirstElem = Ext1Op->getZExtValue(); 13419 int SecondElem = Ext2Op->getZExtValue(); 13420 int SubvecIdx; 13421 if (FirstElem == 0 && SecondElem == 1) 13422 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13423 else if (FirstElem == 2 && SecondElem == 3) 13424 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13425 else 13426 return SDValue(); 13427 13428 SDValue SrcVec = Ext1.getOperand(0); 13429 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13430 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13431 return DAG.getNode(NodeType, dl, MVT::v2f64, 13432 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13433 } 13434 13435 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13436 DAGCombinerInfo &DCI) const { 13437 assert((N->getOpcode() == ISD::SINT_TO_FP || 13438 N->getOpcode() == ISD::UINT_TO_FP) && 13439 "Need an int -> FP conversion node here"); 13440 13441 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13442 return SDValue(); 13443 13444 SelectionDAG &DAG = DCI.DAG; 13445 SDLoc dl(N); 13446 SDValue Op(N, 0); 13447 13448 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13449 // from the hardware. 13450 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13451 return SDValue(); 13452 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13453 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13454 return SDValue(); 13455 13456 SDValue FirstOperand(Op.getOperand(0)); 13457 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13458 (FirstOperand.getValueType() == MVT::i8 || 13459 FirstOperand.getValueType() == MVT::i16); 13460 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13461 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13462 bool DstDouble = Op.getValueType() == MVT::f64; 13463 unsigned ConvOp = Signed ? 13464 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13465 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13466 SDValue WidthConst = 13467 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13468 dl, false); 13469 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13470 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13471 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13472 DAG.getVTList(MVT::f64, MVT::Other), 13473 Ops, MVT::i8, LDN->getMemOperand()); 13474 13475 // For signed conversion, we need to sign-extend the value in the VSR 13476 if (Signed) { 13477 SDValue ExtOps[] = { Ld, WidthConst }; 13478 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13479 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13480 } else 13481 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13482 } 13483 13484 13485 // For i32 intermediate values, unfortunately, the conversion functions 13486 // leave the upper 32 bits of the value are undefined. Within the set of 13487 // scalar instructions, we have no method for zero- or sign-extending the 13488 // value. Thus, we cannot handle i32 intermediate values here. 13489 if (Op.getOperand(0).getValueType() == MVT::i32) 13490 return SDValue(); 13491 13492 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13493 "UINT_TO_FP is supported only with FPCVT"); 13494 13495 // If we have FCFIDS, then use it when converting to single-precision. 13496 // Otherwise, convert to double-precision and then round. 13497 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13498 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13499 : PPCISD::FCFIDS) 13500 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13501 : PPCISD::FCFID); 13502 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13503 ? MVT::f32 13504 : MVT::f64; 13505 13506 // If we're converting from a float, to an int, and back to a float again, 13507 // then we don't need the store/load pair at all. 13508 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13509 Subtarget.hasFPCVT()) || 13510 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13511 SDValue Src = Op.getOperand(0).getOperand(0); 13512 if (Src.getValueType() == MVT::f32) { 13513 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13514 DCI.AddToWorklist(Src.getNode()); 13515 } else if (Src.getValueType() != MVT::f64) { 13516 // Make sure that we don't pick up a ppc_fp128 source value. 13517 return SDValue(); 13518 } 13519 13520 unsigned FCTOp = 13521 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13522 PPCISD::FCTIDUZ; 13523 13524 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13525 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13526 13527 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13528 FP = DAG.getNode(ISD::FP_ROUND, dl, 13529 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13530 DCI.AddToWorklist(FP.getNode()); 13531 } 13532 13533 return FP; 13534 } 13535 13536 return SDValue(); 13537 } 13538 13539 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13540 // builtins) into loads with swaps. 13541 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13542 DAGCombinerInfo &DCI) const { 13543 SelectionDAG &DAG = DCI.DAG; 13544 SDLoc dl(N); 13545 SDValue Chain; 13546 SDValue Base; 13547 MachineMemOperand *MMO; 13548 13549 switch (N->getOpcode()) { 13550 default: 13551 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13552 case ISD::LOAD: { 13553 LoadSDNode *LD = cast<LoadSDNode>(N); 13554 Chain = LD->getChain(); 13555 Base = LD->getBasePtr(); 13556 MMO = LD->getMemOperand(); 13557 // If the MMO suggests this isn't a load of a full vector, leave 13558 // things alone. For a built-in, we have to make the change for 13559 // correctness, so if there is a size problem that will be a bug. 13560 if (MMO->getSize() < 16) 13561 return SDValue(); 13562 break; 13563 } 13564 case ISD::INTRINSIC_W_CHAIN: { 13565 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13566 Chain = Intrin->getChain(); 13567 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13568 // us what we want. Get operand 2 instead. 13569 Base = Intrin->getOperand(2); 13570 MMO = Intrin->getMemOperand(); 13571 break; 13572 } 13573 } 13574 13575 MVT VecTy = N->getValueType(0).getSimpleVT(); 13576 13577 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13578 // aligned and the type is a vector with elements up to 4 bytes 13579 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13580 && VecTy.getScalarSizeInBits() <= 32 ) { 13581 return SDValue(); 13582 } 13583 13584 SDValue LoadOps[] = { Chain, Base }; 13585 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13586 DAG.getVTList(MVT::v2f64, MVT::Other), 13587 LoadOps, MVT::v2f64, MMO); 13588 13589 DCI.AddToWorklist(Load.getNode()); 13590 Chain = Load.getValue(1); 13591 SDValue Swap = DAG.getNode( 13592 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13593 DCI.AddToWorklist(Swap.getNode()); 13594 13595 // Add a bitcast if the resulting load type doesn't match v2f64. 13596 if (VecTy != MVT::v2f64) { 13597 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13598 DCI.AddToWorklist(N.getNode()); 13599 // Package {bitcast value, swap's chain} to match Load's shape. 13600 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13601 N, Swap.getValue(1)); 13602 } 13603 13604 return Swap; 13605 } 13606 13607 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13608 // builtins) into stores with swaps. 13609 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13610 DAGCombinerInfo &DCI) const { 13611 SelectionDAG &DAG = DCI.DAG; 13612 SDLoc dl(N); 13613 SDValue Chain; 13614 SDValue Base; 13615 unsigned SrcOpnd; 13616 MachineMemOperand *MMO; 13617 13618 switch (N->getOpcode()) { 13619 default: 13620 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13621 case ISD::STORE: { 13622 StoreSDNode *ST = cast<StoreSDNode>(N); 13623 Chain = ST->getChain(); 13624 Base = ST->getBasePtr(); 13625 MMO = ST->getMemOperand(); 13626 SrcOpnd = 1; 13627 // If the MMO suggests this isn't a store of a full vector, leave 13628 // things alone. For a built-in, we have to make the change for 13629 // correctness, so if there is a size problem that will be a bug. 13630 if (MMO->getSize() < 16) 13631 return SDValue(); 13632 break; 13633 } 13634 case ISD::INTRINSIC_VOID: { 13635 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13636 Chain = Intrin->getChain(); 13637 // Intrin->getBasePtr() oddly does not get what we want. 13638 Base = Intrin->getOperand(3); 13639 MMO = Intrin->getMemOperand(); 13640 SrcOpnd = 2; 13641 break; 13642 } 13643 } 13644 13645 SDValue Src = N->getOperand(SrcOpnd); 13646 MVT VecTy = Src.getValueType().getSimpleVT(); 13647 13648 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13649 // aligned and the type is a vector with elements up to 4 bytes 13650 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13651 && VecTy.getScalarSizeInBits() <= 32 ) { 13652 return SDValue(); 13653 } 13654 13655 // All stores are done as v2f64 and possible bit cast. 13656 if (VecTy != MVT::v2f64) { 13657 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13658 DCI.AddToWorklist(Src.getNode()); 13659 } 13660 13661 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13662 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13663 DCI.AddToWorklist(Swap.getNode()); 13664 Chain = Swap.getValue(1); 13665 SDValue StoreOps[] = { Chain, Swap, Base }; 13666 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13667 DAG.getVTList(MVT::Other), 13668 StoreOps, VecTy, MMO); 13669 DCI.AddToWorklist(Store.getNode()); 13670 return Store; 13671 } 13672 13673 // Handle DAG combine for STORE (FP_TO_INT F). 13674 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13675 DAGCombinerInfo &DCI) const { 13676 13677 SelectionDAG &DAG = DCI.DAG; 13678 SDLoc dl(N); 13679 unsigned Opcode = N->getOperand(1).getOpcode(); 13680 13681 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13682 && "Not a FP_TO_INT Instruction!"); 13683 13684 SDValue Val = N->getOperand(1).getOperand(0); 13685 EVT Op1VT = N->getOperand(1).getValueType(); 13686 EVT ResVT = Val.getValueType(); 13687 13688 // Floating point types smaller than 32 bits are not legal on Power. 13689 if (ResVT.getScalarSizeInBits() < 32) 13690 return SDValue(); 13691 13692 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13693 bool ValidTypeForStoreFltAsInt = 13694 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13695 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13696 13697 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13698 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13699 return SDValue(); 13700 13701 // Extend f32 values to f64 13702 if (ResVT.getScalarSizeInBits() == 32) { 13703 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13704 DCI.AddToWorklist(Val.getNode()); 13705 } 13706 13707 // Set signed or unsigned conversion opcode. 13708 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13709 PPCISD::FP_TO_SINT_IN_VSR : 13710 PPCISD::FP_TO_UINT_IN_VSR; 13711 13712 Val = DAG.getNode(ConvOpcode, 13713 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13714 DCI.AddToWorklist(Val.getNode()); 13715 13716 // Set number of bytes being converted. 13717 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13718 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13719 DAG.getIntPtrConstant(ByteSize, dl, false), 13720 DAG.getValueType(Op1VT) }; 13721 13722 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13723 DAG.getVTList(MVT::Other), Ops, 13724 cast<StoreSDNode>(N)->getMemoryVT(), 13725 cast<StoreSDNode>(N)->getMemOperand()); 13726 13727 DCI.AddToWorklist(Val.getNode()); 13728 return Val; 13729 } 13730 13731 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13732 LSBaseSDNode *LSBase, 13733 DAGCombinerInfo &DCI) const { 13734 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13735 "Not a reverse memop pattern!"); 13736 13737 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13738 auto Mask = SVN->getMask(); 13739 int i = 0; 13740 auto I = Mask.rbegin(); 13741 auto E = Mask.rend(); 13742 13743 for (; I != E; ++I) { 13744 if (*I != i) 13745 return false; 13746 i++; 13747 } 13748 return true; 13749 }; 13750 13751 SelectionDAG &DAG = DCI.DAG; 13752 EVT VT = SVN->getValueType(0); 13753 13754 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13755 return SDValue(); 13756 13757 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13758 // See comment in PPCVSXSwapRemoval.cpp. 13759 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13760 if (!Subtarget.hasP9Vector()) 13761 return SDValue(); 13762 13763 if(!IsElementReverse(SVN)) 13764 return SDValue(); 13765 13766 if (LSBase->getOpcode() == ISD::LOAD) { 13767 SDLoc dl(SVN); 13768 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13769 return DAG.getMemIntrinsicNode( 13770 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13771 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13772 } 13773 13774 if (LSBase->getOpcode() == ISD::STORE) { 13775 SDLoc dl(LSBase); 13776 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13777 LSBase->getBasePtr()}; 13778 return DAG.getMemIntrinsicNode( 13779 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13780 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13781 } 13782 13783 llvm_unreachable("Expected a load or store node here"); 13784 } 13785 13786 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13787 DAGCombinerInfo &DCI) const { 13788 SelectionDAG &DAG = DCI.DAG; 13789 SDLoc dl(N); 13790 switch (N->getOpcode()) { 13791 default: break; 13792 case ISD::ADD: 13793 return combineADD(N, DCI); 13794 case ISD::SHL: 13795 return combineSHL(N, DCI); 13796 case ISD::SRA: 13797 return combineSRA(N, DCI); 13798 case ISD::SRL: 13799 return combineSRL(N, DCI); 13800 case ISD::MUL: 13801 return combineMUL(N, DCI); 13802 case PPCISD::SHL: 13803 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13804 return N->getOperand(0); 13805 break; 13806 case PPCISD::SRL: 13807 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13808 return N->getOperand(0); 13809 break; 13810 case PPCISD::SRA: 13811 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13812 if (C->isNullValue() || // 0 >>s V -> 0. 13813 C->isAllOnesValue()) // -1 >>s V -> -1. 13814 return N->getOperand(0); 13815 } 13816 break; 13817 case ISD::SIGN_EXTEND: 13818 case ISD::ZERO_EXTEND: 13819 case ISD::ANY_EXTEND: 13820 return DAGCombineExtBoolTrunc(N, DCI); 13821 case ISD::TRUNCATE: 13822 return combineTRUNCATE(N, DCI); 13823 case ISD::SETCC: 13824 if (SDValue CSCC = combineSetCC(N, DCI)) 13825 return CSCC; 13826 LLVM_FALLTHROUGH; 13827 case ISD::SELECT_CC: 13828 return DAGCombineTruncBoolExt(N, DCI); 13829 case ISD::SINT_TO_FP: 13830 case ISD::UINT_TO_FP: 13831 return combineFPToIntToFP(N, DCI); 13832 case ISD::VECTOR_SHUFFLE: 13833 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13834 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13835 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13836 } 13837 break; 13838 case ISD::STORE: { 13839 13840 EVT Op1VT = N->getOperand(1).getValueType(); 13841 unsigned Opcode = N->getOperand(1).getOpcode(); 13842 13843 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13844 SDValue Val= combineStoreFPToInt(N, DCI); 13845 if (Val) 13846 return Val; 13847 } 13848 13849 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13850 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13851 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13852 if (Val) 13853 return Val; 13854 } 13855 13856 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13857 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13858 N->getOperand(1).getNode()->hasOneUse() && 13859 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13860 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13861 13862 // STBRX can only handle simple types and it makes no sense to store less 13863 // two bytes in byte-reversed order. 13864 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13865 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13866 break; 13867 13868 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13869 // Do an any-extend to 32-bits if this is a half-word input. 13870 if (BSwapOp.getValueType() == MVT::i16) 13871 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13872 13873 // If the type of BSWAP operand is wider than stored memory width 13874 // it need to be shifted to the right side before STBRX. 13875 if (Op1VT.bitsGT(mVT)) { 13876 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13877 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13878 DAG.getConstant(Shift, dl, MVT::i32)); 13879 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13880 if (Op1VT == MVT::i64) 13881 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13882 } 13883 13884 SDValue Ops[] = { 13885 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13886 }; 13887 return 13888 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13889 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13890 cast<StoreSDNode>(N)->getMemOperand()); 13891 } 13892 13893 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13894 // So it can increase the chance of CSE constant construction. 13895 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13896 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13897 // Need to sign-extended to 64-bits to handle negative values. 13898 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13899 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13900 MemVT.getSizeInBits()); 13901 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13902 13903 // DAG.getTruncStore() can't be used here because it doesn't accept 13904 // the general (base + offset) addressing mode. 13905 // So we use UpdateNodeOperands and setTruncatingStore instead. 13906 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13907 N->getOperand(3)); 13908 cast<StoreSDNode>(N)->setTruncatingStore(true); 13909 return SDValue(N, 0); 13910 } 13911 13912 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13913 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13914 if (Op1VT.isSimple()) { 13915 MVT StoreVT = Op1VT.getSimpleVT(); 13916 if (Subtarget.needsSwapsForVSXMemOps() && 13917 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13918 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13919 return expandVSXStoreForLE(N, DCI); 13920 } 13921 break; 13922 } 13923 case ISD::LOAD: { 13924 LoadSDNode *LD = cast<LoadSDNode>(N); 13925 EVT VT = LD->getValueType(0); 13926 13927 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13928 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13929 if (VT.isSimple()) { 13930 MVT LoadVT = VT.getSimpleVT(); 13931 if (Subtarget.needsSwapsForVSXMemOps() && 13932 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13933 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13934 return expandVSXLoadForLE(N, DCI); 13935 } 13936 13937 // We sometimes end up with a 64-bit integer load, from which we extract 13938 // two single-precision floating-point numbers. This happens with 13939 // std::complex<float>, and other similar structures, because of the way we 13940 // canonicalize structure copies. However, if we lack direct moves, 13941 // then the final bitcasts from the extracted integer values to the 13942 // floating-point numbers turn into store/load pairs. Even with direct moves, 13943 // just loading the two floating-point numbers is likely better. 13944 auto ReplaceTwoFloatLoad = [&]() { 13945 if (VT != MVT::i64) 13946 return false; 13947 13948 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13949 LD->isVolatile()) 13950 return false; 13951 13952 // We're looking for a sequence like this: 13953 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13954 // t16: i64 = srl t13, Constant:i32<32> 13955 // t17: i32 = truncate t16 13956 // t18: f32 = bitcast t17 13957 // t19: i32 = truncate t13 13958 // t20: f32 = bitcast t19 13959 13960 if (!LD->hasNUsesOfValue(2, 0)) 13961 return false; 13962 13963 auto UI = LD->use_begin(); 13964 while (UI.getUse().getResNo() != 0) ++UI; 13965 SDNode *Trunc = *UI++; 13966 while (UI.getUse().getResNo() != 0) ++UI; 13967 SDNode *RightShift = *UI; 13968 if (Trunc->getOpcode() != ISD::TRUNCATE) 13969 std::swap(Trunc, RightShift); 13970 13971 if (Trunc->getOpcode() != ISD::TRUNCATE || 13972 Trunc->getValueType(0) != MVT::i32 || 13973 !Trunc->hasOneUse()) 13974 return false; 13975 if (RightShift->getOpcode() != ISD::SRL || 13976 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13977 RightShift->getConstantOperandVal(1) != 32 || 13978 !RightShift->hasOneUse()) 13979 return false; 13980 13981 SDNode *Trunc2 = *RightShift->use_begin(); 13982 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13983 Trunc2->getValueType(0) != MVT::i32 || 13984 !Trunc2->hasOneUse()) 13985 return false; 13986 13987 SDNode *Bitcast = *Trunc->use_begin(); 13988 SDNode *Bitcast2 = *Trunc2->use_begin(); 13989 13990 if (Bitcast->getOpcode() != ISD::BITCAST || 13991 Bitcast->getValueType(0) != MVT::f32) 13992 return false; 13993 if (Bitcast2->getOpcode() != ISD::BITCAST || 13994 Bitcast2->getValueType(0) != MVT::f32) 13995 return false; 13996 13997 if (Subtarget.isLittleEndian()) 13998 std::swap(Bitcast, Bitcast2); 13999 14000 // Bitcast has the second float (in memory-layout order) and Bitcast2 14001 // has the first one. 14002 14003 SDValue BasePtr = LD->getBasePtr(); 14004 if (LD->isIndexed()) { 14005 assert(LD->getAddressingMode() == ISD::PRE_INC && 14006 "Non-pre-inc AM on PPC?"); 14007 BasePtr = 14008 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14009 LD->getOffset()); 14010 } 14011 14012 auto MMOFlags = 14013 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14014 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14015 LD->getPointerInfo(), LD->getAlignment(), 14016 MMOFlags, LD->getAAInfo()); 14017 SDValue AddPtr = 14018 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14019 BasePtr, DAG.getIntPtrConstant(4, dl)); 14020 SDValue FloatLoad2 = DAG.getLoad( 14021 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14022 LD->getPointerInfo().getWithOffset(4), 14023 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14024 14025 if (LD->isIndexed()) { 14026 // Note that DAGCombine should re-form any pre-increment load(s) from 14027 // what is produced here if that makes sense. 14028 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14029 } 14030 14031 DCI.CombineTo(Bitcast2, FloatLoad); 14032 DCI.CombineTo(Bitcast, FloatLoad2); 14033 14034 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14035 SDValue(FloatLoad2.getNode(), 1)); 14036 return true; 14037 }; 14038 14039 if (ReplaceTwoFloatLoad()) 14040 return SDValue(N, 0); 14041 14042 EVT MemVT = LD->getMemoryVT(); 14043 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14044 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14045 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14046 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14047 if (LD->isUnindexed() && VT.isVector() && 14048 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14049 // P8 and later hardware should just use LOAD. 14050 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14051 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14052 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14053 LD->getAlignment() >= ScalarABIAlignment)) && 14054 LD->getAlignment() < ABIAlignment) { 14055 // This is a type-legal unaligned Altivec or QPX load. 14056 SDValue Chain = LD->getChain(); 14057 SDValue Ptr = LD->getBasePtr(); 14058 bool isLittleEndian = Subtarget.isLittleEndian(); 14059 14060 // This implements the loading of unaligned vectors as described in 14061 // the venerable Apple Velocity Engine overview. Specifically: 14062 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14063 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14064 // 14065 // The general idea is to expand a sequence of one or more unaligned 14066 // loads into an alignment-based permutation-control instruction (lvsl 14067 // or lvsr), a series of regular vector loads (which always truncate 14068 // their input address to an aligned address), and a series of 14069 // permutations. The results of these permutations are the requested 14070 // loaded values. The trick is that the last "extra" load is not taken 14071 // from the address you might suspect (sizeof(vector) bytes after the 14072 // last requested load), but rather sizeof(vector) - 1 bytes after the 14073 // last requested vector. The point of this is to avoid a page fault if 14074 // the base address happened to be aligned. This works because if the 14075 // base address is aligned, then adding less than a full vector length 14076 // will cause the last vector in the sequence to be (re)loaded. 14077 // Otherwise, the next vector will be fetched as you might suspect was 14078 // necessary. 14079 14080 // We might be able to reuse the permutation generation from 14081 // a different base address offset from this one by an aligned amount. 14082 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14083 // optimization later. 14084 Intrinsic::ID Intr, IntrLD, IntrPerm; 14085 MVT PermCntlTy, PermTy, LDTy; 14086 if (Subtarget.hasAltivec()) { 14087 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14088 Intrinsic::ppc_altivec_lvsl; 14089 IntrLD = Intrinsic::ppc_altivec_lvx; 14090 IntrPerm = Intrinsic::ppc_altivec_vperm; 14091 PermCntlTy = MVT::v16i8; 14092 PermTy = MVT::v4i32; 14093 LDTy = MVT::v4i32; 14094 } else { 14095 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14096 Intrinsic::ppc_qpx_qvlpcls; 14097 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14098 Intrinsic::ppc_qpx_qvlfs; 14099 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14100 PermCntlTy = MVT::v4f64; 14101 PermTy = MVT::v4f64; 14102 LDTy = MemVT.getSimpleVT(); 14103 } 14104 14105 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14106 14107 // Create the new MMO for the new base load. It is like the original MMO, 14108 // but represents an area in memory almost twice the vector size centered 14109 // on the original address. If the address is unaligned, we might start 14110 // reading up to (sizeof(vector)-1) bytes below the address of the 14111 // original unaligned load. 14112 MachineFunction &MF = DAG.getMachineFunction(); 14113 MachineMemOperand *BaseMMO = 14114 MF.getMachineMemOperand(LD->getMemOperand(), 14115 -(long)MemVT.getStoreSize()+1, 14116 2*MemVT.getStoreSize()-1); 14117 14118 // Create the new base load. 14119 SDValue LDXIntID = 14120 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14121 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14122 SDValue BaseLoad = 14123 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14124 DAG.getVTList(PermTy, MVT::Other), 14125 BaseLoadOps, LDTy, BaseMMO); 14126 14127 // Note that the value of IncOffset (which is provided to the next 14128 // load's pointer info offset value, and thus used to calculate the 14129 // alignment), and the value of IncValue (which is actually used to 14130 // increment the pointer value) are different! This is because we 14131 // require the next load to appear to be aligned, even though it 14132 // is actually offset from the base pointer by a lesser amount. 14133 int IncOffset = VT.getSizeInBits() / 8; 14134 int IncValue = IncOffset; 14135 14136 // Walk (both up and down) the chain looking for another load at the real 14137 // (aligned) offset (the alignment of the other load does not matter in 14138 // this case). If found, then do not use the offset reduction trick, as 14139 // that will prevent the loads from being later combined (as they would 14140 // otherwise be duplicates). 14141 if (!findConsecutiveLoad(LD, DAG)) 14142 --IncValue; 14143 14144 SDValue Increment = 14145 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14146 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14147 14148 MachineMemOperand *ExtraMMO = 14149 MF.getMachineMemOperand(LD->getMemOperand(), 14150 1, 2*MemVT.getStoreSize()-1); 14151 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14152 SDValue ExtraLoad = 14153 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14154 DAG.getVTList(PermTy, MVT::Other), 14155 ExtraLoadOps, LDTy, ExtraMMO); 14156 14157 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14158 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14159 14160 // Because vperm has a big-endian bias, we must reverse the order 14161 // of the input vectors and complement the permute control vector 14162 // when generating little endian code. We have already handled the 14163 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14164 // and ExtraLoad here. 14165 SDValue Perm; 14166 if (isLittleEndian) 14167 Perm = BuildIntrinsicOp(IntrPerm, 14168 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14169 else 14170 Perm = BuildIntrinsicOp(IntrPerm, 14171 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14172 14173 if (VT != PermTy) 14174 Perm = Subtarget.hasAltivec() ? 14175 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14176 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14177 DAG.getTargetConstant(1, dl, MVT::i64)); 14178 // second argument is 1 because this rounding 14179 // is always exact. 14180 14181 // The output of the permutation is our loaded result, the TokenFactor is 14182 // our new chain. 14183 DCI.CombineTo(N, Perm, TF); 14184 return SDValue(N, 0); 14185 } 14186 } 14187 break; 14188 case ISD::INTRINSIC_WO_CHAIN: { 14189 bool isLittleEndian = Subtarget.isLittleEndian(); 14190 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14191 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14192 : Intrinsic::ppc_altivec_lvsl); 14193 if ((IID == Intr || 14194 IID == Intrinsic::ppc_qpx_qvlpcld || 14195 IID == Intrinsic::ppc_qpx_qvlpcls) && 14196 N->getOperand(1)->getOpcode() == ISD::ADD) { 14197 SDValue Add = N->getOperand(1); 14198 14199 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14200 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14201 14202 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14203 APInt::getAllOnesValue(Bits /* alignment */) 14204 .zext(Add.getScalarValueSizeInBits()))) { 14205 SDNode *BasePtr = Add->getOperand(0).getNode(); 14206 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14207 UE = BasePtr->use_end(); 14208 UI != UE; ++UI) { 14209 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14210 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14211 // We've found another LVSL/LVSR, and this address is an aligned 14212 // multiple of that one. The results will be the same, so use the 14213 // one we've just found instead. 14214 14215 return SDValue(*UI, 0); 14216 } 14217 } 14218 } 14219 14220 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14221 SDNode *BasePtr = Add->getOperand(0).getNode(); 14222 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14223 UE = BasePtr->use_end(); UI != UE; ++UI) { 14224 if (UI->getOpcode() == ISD::ADD && 14225 isa<ConstantSDNode>(UI->getOperand(1)) && 14226 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14227 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14228 (1ULL << Bits) == 0) { 14229 SDNode *OtherAdd = *UI; 14230 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14231 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14232 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14233 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14234 return SDValue(*VI, 0); 14235 } 14236 } 14237 } 14238 } 14239 } 14240 } 14241 14242 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14243 // Expose the vabsduw/h/b opportunity for down stream 14244 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14245 (IID == Intrinsic::ppc_altivec_vmaxsw || 14246 IID == Intrinsic::ppc_altivec_vmaxsh || 14247 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14248 SDValue V1 = N->getOperand(1); 14249 SDValue V2 = N->getOperand(2); 14250 if ((V1.getSimpleValueType() == MVT::v4i32 || 14251 V1.getSimpleValueType() == MVT::v8i16 || 14252 V1.getSimpleValueType() == MVT::v16i8) && 14253 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14254 // (0-a, a) 14255 if (V1.getOpcode() == ISD::SUB && 14256 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14257 V1.getOperand(1) == V2) { 14258 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14259 } 14260 // (a, 0-a) 14261 if (V2.getOpcode() == ISD::SUB && 14262 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14263 V2.getOperand(1) == V1) { 14264 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14265 } 14266 // (x-y, y-x) 14267 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14268 V1.getOperand(0) == V2.getOperand(1) && 14269 V1.getOperand(1) == V2.getOperand(0)) { 14270 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14271 } 14272 } 14273 } 14274 } 14275 14276 break; 14277 case ISD::INTRINSIC_W_CHAIN: 14278 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14279 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14280 if (Subtarget.needsSwapsForVSXMemOps()) { 14281 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14282 default: 14283 break; 14284 case Intrinsic::ppc_vsx_lxvw4x: 14285 case Intrinsic::ppc_vsx_lxvd2x: 14286 return expandVSXLoadForLE(N, DCI); 14287 } 14288 } 14289 break; 14290 case ISD::INTRINSIC_VOID: 14291 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14292 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14293 if (Subtarget.needsSwapsForVSXMemOps()) { 14294 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14295 default: 14296 break; 14297 case Intrinsic::ppc_vsx_stxvw4x: 14298 case Intrinsic::ppc_vsx_stxvd2x: 14299 return expandVSXStoreForLE(N, DCI); 14300 } 14301 } 14302 break; 14303 case ISD::BSWAP: 14304 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14305 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14306 N->getOperand(0).hasOneUse() && 14307 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14308 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14309 N->getValueType(0) == MVT::i64))) { 14310 SDValue Load = N->getOperand(0); 14311 LoadSDNode *LD = cast<LoadSDNode>(Load); 14312 // Create the byte-swapping load. 14313 SDValue Ops[] = { 14314 LD->getChain(), // Chain 14315 LD->getBasePtr(), // Ptr 14316 DAG.getValueType(N->getValueType(0)) // VT 14317 }; 14318 SDValue BSLoad = 14319 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14320 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14321 MVT::i64 : MVT::i32, MVT::Other), 14322 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14323 14324 // If this is an i16 load, insert the truncate. 14325 SDValue ResVal = BSLoad; 14326 if (N->getValueType(0) == MVT::i16) 14327 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14328 14329 // First, combine the bswap away. This makes the value produced by the 14330 // load dead. 14331 DCI.CombineTo(N, ResVal); 14332 14333 // Next, combine the load away, we give it a bogus result value but a real 14334 // chain result. The result value is dead because the bswap is dead. 14335 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14336 14337 // Return N so it doesn't get rechecked! 14338 return SDValue(N, 0); 14339 } 14340 break; 14341 case PPCISD::VCMP: 14342 // If a VCMPo node already exists with exactly the same operands as this 14343 // node, use its result instead of this node (VCMPo computes both a CR6 and 14344 // a normal output). 14345 // 14346 if (!N->getOperand(0).hasOneUse() && 14347 !N->getOperand(1).hasOneUse() && 14348 !N->getOperand(2).hasOneUse()) { 14349 14350 // Scan all of the users of the LHS, looking for VCMPo's that match. 14351 SDNode *VCMPoNode = nullptr; 14352 14353 SDNode *LHSN = N->getOperand(0).getNode(); 14354 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14355 UI != E; ++UI) 14356 if (UI->getOpcode() == PPCISD::VCMPo && 14357 UI->getOperand(1) == N->getOperand(1) && 14358 UI->getOperand(2) == N->getOperand(2) && 14359 UI->getOperand(0) == N->getOperand(0)) { 14360 VCMPoNode = *UI; 14361 break; 14362 } 14363 14364 // If there is no VCMPo node, or if the flag value has a single use, don't 14365 // transform this. 14366 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14367 break; 14368 14369 // Look at the (necessarily single) use of the flag value. If it has a 14370 // chain, this transformation is more complex. Note that multiple things 14371 // could use the value result, which we should ignore. 14372 SDNode *FlagUser = nullptr; 14373 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14374 FlagUser == nullptr; ++UI) { 14375 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14376 SDNode *User = *UI; 14377 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14378 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14379 FlagUser = User; 14380 break; 14381 } 14382 } 14383 } 14384 14385 // If the user is a MFOCRF instruction, we know this is safe. 14386 // Otherwise we give up for right now. 14387 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14388 return SDValue(VCMPoNode, 0); 14389 } 14390 break; 14391 case ISD::BRCOND: { 14392 SDValue Cond = N->getOperand(1); 14393 SDValue Target = N->getOperand(2); 14394 14395 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14396 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14397 Intrinsic::loop_decrement) { 14398 14399 // We now need to make the intrinsic dead (it cannot be instruction 14400 // selected). 14401 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14402 assert(Cond.getNode()->hasOneUse() && 14403 "Counter decrement has more than one use"); 14404 14405 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14406 N->getOperand(0), Target); 14407 } 14408 } 14409 break; 14410 case ISD::BR_CC: { 14411 // If this is a branch on an altivec predicate comparison, lower this so 14412 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14413 // lowering is done pre-legalize, because the legalizer lowers the predicate 14414 // compare down to code that is difficult to reassemble. 14415 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14416 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14417 14418 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14419 // value. If so, pass-through the AND to get to the intrinsic. 14420 if (LHS.getOpcode() == ISD::AND && 14421 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14422 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14423 Intrinsic::loop_decrement && 14424 isa<ConstantSDNode>(LHS.getOperand(1)) && 14425 !isNullConstant(LHS.getOperand(1))) 14426 LHS = LHS.getOperand(0); 14427 14428 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14429 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14430 Intrinsic::loop_decrement && 14431 isa<ConstantSDNode>(RHS)) { 14432 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14433 "Counter decrement comparison is not EQ or NE"); 14434 14435 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14436 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14437 (CC == ISD::SETNE && !Val); 14438 14439 // We now need to make the intrinsic dead (it cannot be instruction 14440 // selected). 14441 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14442 assert(LHS.getNode()->hasOneUse() && 14443 "Counter decrement has more than one use"); 14444 14445 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14446 N->getOperand(0), N->getOperand(4)); 14447 } 14448 14449 int CompareOpc; 14450 bool isDot; 14451 14452 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14453 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14454 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14455 assert(isDot && "Can't compare against a vector result!"); 14456 14457 // If this is a comparison against something other than 0/1, then we know 14458 // that the condition is never/always true. 14459 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14460 if (Val != 0 && Val != 1) { 14461 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14462 return N->getOperand(0); 14463 // Always !=, turn it into an unconditional branch. 14464 return DAG.getNode(ISD::BR, dl, MVT::Other, 14465 N->getOperand(0), N->getOperand(4)); 14466 } 14467 14468 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14469 14470 // Create the PPCISD altivec 'dot' comparison node. 14471 SDValue Ops[] = { 14472 LHS.getOperand(2), // LHS of compare 14473 LHS.getOperand(3), // RHS of compare 14474 DAG.getConstant(CompareOpc, dl, MVT::i32) 14475 }; 14476 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14477 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14478 14479 // Unpack the result based on how the target uses it. 14480 PPC::Predicate CompOpc; 14481 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14482 default: // Can't happen, don't crash on invalid number though. 14483 case 0: // Branch on the value of the EQ bit of CR6. 14484 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14485 break; 14486 case 1: // Branch on the inverted value of the EQ bit of CR6. 14487 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14488 break; 14489 case 2: // Branch on the value of the LT bit of CR6. 14490 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14491 break; 14492 case 3: // Branch on the inverted value of the LT bit of CR6. 14493 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14494 break; 14495 } 14496 14497 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14498 DAG.getConstant(CompOpc, dl, MVT::i32), 14499 DAG.getRegister(PPC::CR6, MVT::i32), 14500 N->getOperand(4), CompNode.getValue(1)); 14501 } 14502 break; 14503 } 14504 case ISD::BUILD_VECTOR: 14505 return DAGCombineBuildVector(N, DCI); 14506 case ISD::ABS: 14507 return combineABS(N, DCI); 14508 case ISD::VSELECT: 14509 return combineVSelect(N, DCI); 14510 } 14511 14512 return SDValue(); 14513 } 14514 14515 SDValue 14516 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14517 SelectionDAG &DAG, 14518 SmallVectorImpl<SDNode *> &Created) const { 14519 // fold (sdiv X, pow2) 14520 EVT VT = N->getValueType(0); 14521 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14522 return SDValue(); 14523 if ((VT != MVT::i32 && VT != MVT::i64) || 14524 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14525 return SDValue(); 14526 14527 SDLoc DL(N); 14528 SDValue N0 = N->getOperand(0); 14529 14530 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14531 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14532 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14533 14534 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14535 Created.push_back(Op.getNode()); 14536 14537 if (IsNegPow2) { 14538 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14539 Created.push_back(Op.getNode()); 14540 } 14541 14542 return Op; 14543 } 14544 14545 //===----------------------------------------------------------------------===// 14546 // Inline Assembly Support 14547 //===----------------------------------------------------------------------===// 14548 14549 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14550 KnownBits &Known, 14551 const APInt &DemandedElts, 14552 const SelectionDAG &DAG, 14553 unsigned Depth) const { 14554 Known.resetAll(); 14555 switch (Op.getOpcode()) { 14556 default: break; 14557 case PPCISD::LBRX: { 14558 // lhbrx is known to have the top bits cleared out. 14559 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14560 Known.Zero = 0xFFFF0000; 14561 break; 14562 } 14563 case ISD::INTRINSIC_WO_CHAIN: { 14564 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14565 default: break; 14566 case Intrinsic::ppc_altivec_vcmpbfp_p: 14567 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14568 case Intrinsic::ppc_altivec_vcmpequb_p: 14569 case Intrinsic::ppc_altivec_vcmpequh_p: 14570 case Intrinsic::ppc_altivec_vcmpequw_p: 14571 case Intrinsic::ppc_altivec_vcmpequd_p: 14572 case Intrinsic::ppc_altivec_vcmpgefp_p: 14573 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14574 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14575 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14576 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14577 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14578 case Intrinsic::ppc_altivec_vcmpgtub_p: 14579 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14580 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14581 case Intrinsic::ppc_altivec_vcmpgtud_p: 14582 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14583 break; 14584 } 14585 } 14586 } 14587 } 14588 14589 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14590 switch (Subtarget.getCPUDirective()) { 14591 default: break; 14592 case PPC::DIR_970: 14593 case PPC::DIR_PWR4: 14594 case PPC::DIR_PWR5: 14595 case PPC::DIR_PWR5X: 14596 case PPC::DIR_PWR6: 14597 case PPC::DIR_PWR6X: 14598 case PPC::DIR_PWR7: 14599 case PPC::DIR_PWR8: 14600 case PPC::DIR_PWR9: 14601 case PPC::DIR_PWR_FUTURE: { 14602 if (!ML) 14603 break; 14604 14605 if (!DisableInnermostLoopAlign32) { 14606 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14607 // so that we can decrease cache misses and branch-prediction misses. 14608 // Actual alignment of the loop will depend on the hotness check and other 14609 // logic in alignBlocks. 14610 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14611 return Align(32); 14612 } 14613 14614 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14615 14616 // For small loops (between 5 and 8 instructions), align to a 32-byte 14617 // boundary so that the entire loop fits in one instruction-cache line. 14618 uint64_t LoopSize = 0; 14619 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14620 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14621 LoopSize += TII->getInstSizeInBytes(*J); 14622 if (LoopSize > 32) 14623 break; 14624 } 14625 14626 if (LoopSize > 16 && LoopSize <= 32) 14627 return Align(32); 14628 14629 break; 14630 } 14631 } 14632 14633 return TargetLowering::getPrefLoopAlignment(ML); 14634 } 14635 14636 /// getConstraintType - Given a constraint, return the type of 14637 /// constraint it is for this target. 14638 PPCTargetLowering::ConstraintType 14639 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14640 if (Constraint.size() == 1) { 14641 switch (Constraint[0]) { 14642 default: break; 14643 case 'b': 14644 case 'r': 14645 case 'f': 14646 case 'd': 14647 case 'v': 14648 case 'y': 14649 return C_RegisterClass; 14650 case 'Z': 14651 // FIXME: While Z does indicate a memory constraint, it specifically 14652 // indicates an r+r address (used in conjunction with the 'y' modifier 14653 // in the replacement string). Currently, we're forcing the base 14654 // register to be r0 in the asm printer (which is interpreted as zero) 14655 // and forming the complete address in the second register. This is 14656 // suboptimal. 14657 return C_Memory; 14658 } 14659 } else if (Constraint == "wc") { // individual CR bits. 14660 return C_RegisterClass; 14661 } else if (Constraint == "wa" || Constraint == "wd" || 14662 Constraint == "wf" || Constraint == "ws" || 14663 Constraint == "wi" || Constraint == "ww") { 14664 return C_RegisterClass; // VSX registers. 14665 } 14666 return TargetLowering::getConstraintType(Constraint); 14667 } 14668 14669 /// Examine constraint type and operand type and determine a weight value. 14670 /// This object must already have been set up with the operand type 14671 /// and the current alternative constraint selected. 14672 TargetLowering::ConstraintWeight 14673 PPCTargetLowering::getSingleConstraintMatchWeight( 14674 AsmOperandInfo &info, const char *constraint) const { 14675 ConstraintWeight weight = CW_Invalid; 14676 Value *CallOperandVal = info.CallOperandVal; 14677 // If we don't have a value, we can't do a match, 14678 // but allow it at the lowest weight. 14679 if (!CallOperandVal) 14680 return CW_Default; 14681 Type *type = CallOperandVal->getType(); 14682 14683 // Look at the constraint type. 14684 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14685 return CW_Register; // an individual CR bit. 14686 else if ((StringRef(constraint) == "wa" || 14687 StringRef(constraint) == "wd" || 14688 StringRef(constraint) == "wf") && 14689 type->isVectorTy()) 14690 return CW_Register; 14691 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14692 return CW_Register; // just hold 64-bit integers data. 14693 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14694 return CW_Register; 14695 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14696 return CW_Register; 14697 14698 switch (*constraint) { 14699 default: 14700 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14701 break; 14702 case 'b': 14703 if (type->isIntegerTy()) 14704 weight = CW_Register; 14705 break; 14706 case 'f': 14707 if (type->isFloatTy()) 14708 weight = CW_Register; 14709 break; 14710 case 'd': 14711 if (type->isDoubleTy()) 14712 weight = CW_Register; 14713 break; 14714 case 'v': 14715 if (type->isVectorTy()) 14716 weight = CW_Register; 14717 break; 14718 case 'y': 14719 weight = CW_Register; 14720 break; 14721 case 'Z': 14722 weight = CW_Memory; 14723 break; 14724 } 14725 return weight; 14726 } 14727 14728 std::pair<unsigned, const TargetRegisterClass *> 14729 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14730 StringRef Constraint, 14731 MVT VT) const { 14732 if (Constraint.size() == 1) { 14733 // GCC RS6000 Constraint Letters 14734 switch (Constraint[0]) { 14735 case 'b': // R1-R31 14736 if (VT == MVT::i64 && Subtarget.isPPC64()) 14737 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14738 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14739 case 'r': // R0-R31 14740 if (VT == MVT::i64 && Subtarget.isPPC64()) 14741 return std::make_pair(0U, &PPC::G8RCRegClass); 14742 return std::make_pair(0U, &PPC::GPRCRegClass); 14743 // 'd' and 'f' constraints are both defined to be "the floating point 14744 // registers", where one is for 32-bit and the other for 64-bit. We don't 14745 // really care overly much here so just give them all the same reg classes. 14746 case 'd': 14747 case 'f': 14748 if (Subtarget.hasSPE()) { 14749 if (VT == MVT::f32 || VT == MVT::i32) 14750 return std::make_pair(0U, &PPC::GPRCRegClass); 14751 if (VT == MVT::f64 || VT == MVT::i64) 14752 return std::make_pair(0U, &PPC::SPERCRegClass); 14753 } else { 14754 if (VT == MVT::f32 || VT == MVT::i32) 14755 return std::make_pair(0U, &PPC::F4RCRegClass); 14756 if (VT == MVT::f64 || VT == MVT::i64) 14757 return std::make_pair(0U, &PPC::F8RCRegClass); 14758 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14759 return std::make_pair(0U, &PPC::QFRCRegClass); 14760 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14761 return std::make_pair(0U, &PPC::QSRCRegClass); 14762 } 14763 break; 14764 case 'v': 14765 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14766 return std::make_pair(0U, &PPC::QFRCRegClass); 14767 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14768 return std::make_pair(0U, &PPC::QSRCRegClass); 14769 if (Subtarget.hasAltivec()) 14770 return std::make_pair(0U, &PPC::VRRCRegClass); 14771 break; 14772 case 'y': // crrc 14773 return std::make_pair(0U, &PPC::CRRCRegClass); 14774 } 14775 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14776 // An individual CR bit. 14777 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14778 } else if ((Constraint == "wa" || Constraint == "wd" || 14779 Constraint == "wf" || Constraint == "wi") && 14780 Subtarget.hasVSX()) { 14781 return std::make_pair(0U, &PPC::VSRCRegClass); 14782 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14783 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14784 return std::make_pair(0U, &PPC::VSSRCRegClass); 14785 else 14786 return std::make_pair(0U, &PPC::VSFRCRegClass); 14787 } 14788 14789 // If we name a VSX register, we can't defer to the base class because it 14790 // will not recognize the correct register (their names will be VSL{0-31} 14791 // and V{0-31} so they won't match). So we match them here. 14792 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14793 int VSNum = atoi(Constraint.data() + 3); 14794 assert(VSNum >= 0 && VSNum <= 63 && 14795 "Attempted to access a vsr out of range"); 14796 if (VSNum < 32) 14797 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14798 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14799 } 14800 std::pair<unsigned, const TargetRegisterClass *> R = 14801 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14802 14803 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14804 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14805 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14806 // register. 14807 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14808 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14809 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14810 PPC::GPRCRegClass.contains(R.first)) 14811 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14812 PPC::sub_32, &PPC::G8RCRegClass), 14813 &PPC::G8RCRegClass); 14814 14815 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14816 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14817 R.first = PPC::CR0; 14818 R.second = &PPC::CRRCRegClass; 14819 } 14820 14821 return R; 14822 } 14823 14824 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14825 /// vector. If it is invalid, don't add anything to Ops. 14826 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14827 std::string &Constraint, 14828 std::vector<SDValue>&Ops, 14829 SelectionDAG &DAG) const { 14830 SDValue Result; 14831 14832 // Only support length 1 constraints. 14833 if (Constraint.length() > 1) return; 14834 14835 char Letter = Constraint[0]; 14836 switch (Letter) { 14837 default: break; 14838 case 'I': 14839 case 'J': 14840 case 'K': 14841 case 'L': 14842 case 'M': 14843 case 'N': 14844 case 'O': 14845 case 'P': { 14846 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14847 if (!CST) return; // Must be an immediate to match. 14848 SDLoc dl(Op); 14849 int64_t Value = CST->getSExtValue(); 14850 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14851 // numbers are printed as such. 14852 switch (Letter) { 14853 default: llvm_unreachable("Unknown constraint letter!"); 14854 case 'I': // "I" is a signed 16-bit constant. 14855 if (isInt<16>(Value)) 14856 Result = DAG.getTargetConstant(Value, dl, TCVT); 14857 break; 14858 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14859 if (isShiftedUInt<16, 16>(Value)) 14860 Result = DAG.getTargetConstant(Value, dl, TCVT); 14861 break; 14862 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14863 if (isShiftedInt<16, 16>(Value)) 14864 Result = DAG.getTargetConstant(Value, dl, TCVT); 14865 break; 14866 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14867 if (isUInt<16>(Value)) 14868 Result = DAG.getTargetConstant(Value, dl, TCVT); 14869 break; 14870 case 'M': // "M" is a constant that is greater than 31. 14871 if (Value > 31) 14872 Result = DAG.getTargetConstant(Value, dl, TCVT); 14873 break; 14874 case 'N': // "N" is a positive constant that is an exact power of two. 14875 if (Value > 0 && isPowerOf2_64(Value)) 14876 Result = DAG.getTargetConstant(Value, dl, TCVT); 14877 break; 14878 case 'O': // "O" is the constant zero. 14879 if (Value == 0) 14880 Result = DAG.getTargetConstant(Value, dl, TCVT); 14881 break; 14882 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14883 if (isInt<16>(-Value)) 14884 Result = DAG.getTargetConstant(Value, dl, TCVT); 14885 break; 14886 } 14887 break; 14888 } 14889 } 14890 14891 if (Result.getNode()) { 14892 Ops.push_back(Result); 14893 return; 14894 } 14895 14896 // Handle standard constraint letters. 14897 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14898 } 14899 14900 // isLegalAddressingMode - Return true if the addressing mode represented 14901 // by AM is legal for this target, for a load/store of the specified type. 14902 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14903 const AddrMode &AM, Type *Ty, 14904 unsigned AS, Instruction *I) const { 14905 // PPC does not allow r+i addressing modes for vectors! 14906 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14907 return false; 14908 14909 // PPC allows a sign-extended 16-bit immediate field. 14910 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14911 return false; 14912 14913 // No global is ever allowed as a base. 14914 if (AM.BaseGV) 14915 return false; 14916 14917 // PPC only support r+r, 14918 switch (AM.Scale) { 14919 case 0: // "r+i" or just "i", depending on HasBaseReg. 14920 break; 14921 case 1: 14922 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14923 return false; 14924 // Otherwise we have r+r or r+i. 14925 break; 14926 case 2: 14927 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14928 return false; 14929 // Allow 2*r as r+r. 14930 break; 14931 default: 14932 // No other scales are supported. 14933 return false; 14934 } 14935 14936 return true; 14937 } 14938 14939 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14940 SelectionDAG &DAG) const { 14941 MachineFunction &MF = DAG.getMachineFunction(); 14942 MachineFrameInfo &MFI = MF.getFrameInfo(); 14943 MFI.setReturnAddressIsTaken(true); 14944 14945 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14946 return SDValue(); 14947 14948 SDLoc dl(Op); 14949 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14950 14951 // Make sure the function does not optimize away the store of the RA to 14952 // the stack. 14953 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14954 FuncInfo->setLRStoreRequired(); 14955 bool isPPC64 = Subtarget.isPPC64(); 14956 auto PtrVT = getPointerTy(MF.getDataLayout()); 14957 14958 if (Depth > 0) { 14959 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14960 SDValue Offset = 14961 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14962 isPPC64 ? MVT::i64 : MVT::i32); 14963 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14964 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14965 MachinePointerInfo()); 14966 } 14967 14968 // Just load the return address off the stack. 14969 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14970 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14971 MachinePointerInfo()); 14972 } 14973 14974 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14975 SelectionDAG &DAG) const { 14976 SDLoc dl(Op); 14977 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14978 14979 MachineFunction &MF = DAG.getMachineFunction(); 14980 MachineFrameInfo &MFI = MF.getFrameInfo(); 14981 MFI.setFrameAddressIsTaken(true); 14982 14983 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14984 bool isPPC64 = PtrVT == MVT::i64; 14985 14986 // Naked functions never have a frame pointer, and so we use r1. For all 14987 // other functions, this decision must be delayed until during PEI. 14988 unsigned FrameReg; 14989 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14990 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14991 else 14992 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14993 14994 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14995 PtrVT); 14996 while (Depth--) 14997 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14998 FrameAddr, MachinePointerInfo()); 14999 return FrameAddr; 15000 } 15001 15002 // FIXME? Maybe this could be a TableGen attribute on some registers and 15003 // this table could be generated automatically from RegInfo. 15004 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15005 const MachineFunction &MF) const { 15006 bool isPPC64 = Subtarget.isPPC64(); 15007 15008 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15009 if (!is64Bit && VT != LLT::scalar(32)) 15010 report_fatal_error("Invalid register global variable type"); 15011 15012 Register Reg = StringSwitch<Register>(RegName) 15013 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15014 .Case("r2", isPPC64 ? Register() : PPC::R2) 15015 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15016 .Default(Register()); 15017 15018 if (Reg) 15019 return Reg; 15020 report_fatal_error("Invalid register name global variable"); 15021 } 15022 15023 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15024 // 32-bit SVR4 ABI access everything as got-indirect. 15025 if (Subtarget.is32BitELFABI()) 15026 return true; 15027 15028 // AIX accesses everything indirectly through the TOC, which is similar to 15029 // the GOT. 15030 if (Subtarget.isAIXABI()) 15031 return true; 15032 15033 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15034 // If it is small or large code model, module locals are accessed 15035 // indirectly by loading their address from .toc/.got. 15036 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15037 return true; 15038 15039 // JumpTable and BlockAddress are accessed as got-indirect. 15040 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15041 return true; 15042 15043 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15044 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15045 15046 return false; 15047 } 15048 15049 bool 15050 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15051 // The PowerPC target isn't yet aware of offsets. 15052 return false; 15053 } 15054 15055 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15056 const CallInst &I, 15057 MachineFunction &MF, 15058 unsigned Intrinsic) const { 15059 switch (Intrinsic) { 15060 case Intrinsic::ppc_qpx_qvlfd: 15061 case Intrinsic::ppc_qpx_qvlfs: 15062 case Intrinsic::ppc_qpx_qvlfcd: 15063 case Intrinsic::ppc_qpx_qvlfcs: 15064 case Intrinsic::ppc_qpx_qvlfiwa: 15065 case Intrinsic::ppc_qpx_qvlfiwz: 15066 case Intrinsic::ppc_altivec_lvx: 15067 case Intrinsic::ppc_altivec_lvxl: 15068 case Intrinsic::ppc_altivec_lvebx: 15069 case Intrinsic::ppc_altivec_lvehx: 15070 case Intrinsic::ppc_altivec_lvewx: 15071 case Intrinsic::ppc_vsx_lxvd2x: 15072 case Intrinsic::ppc_vsx_lxvw4x: { 15073 EVT VT; 15074 switch (Intrinsic) { 15075 case Intrinsic::ppc_altivec_lvebx: 15076 VT = MVT::i8; 15077 break; 15078 case Intrinsic::ppc_altivec_lvehx: 15079 VT = MVT::i16; 15080 break; 15081 case Intrinsic::ppc_altivec_lvewx: 15082 VT = MVT::i32; 15083 break; 15084 case Intrinsic::ppc_vsx_lxvd2x: 15085 VT = MVT::v2f64; 15086 break; 15087 case Intrinsic::ppc_qpx_qvlfd: 15088 VT = MVT::v4f64; 15089 break; 15090 case Intrinsic::ppc_qpx_qvlfs: 15091 VT = MVT::v4f32; 15092 break; 15093 case Intrinsic::ppc_qpx_qvlfcd: 15094 VT = MVT::v2f64; 15095 break; 15096 case Intrinsic::ppc_qpx_qvlfcs: 15097 VT = MVT::v2f32; 15098 break; 15099 default: 15100 VT = MVT::v4i32; 15101 break; 15102 } 15103 15104 Info.opc = ISD::INTRINSIC_W_CHAIN; 15105 Info.memVT = VT; 15106 Info.ptrVal = I.getArgOperand(0); 15107 Info.offset = -VT.getStoreSize()+1; 15108 Info.size = 2*VT.getStoreSize()-1; 15109 Info.align = Align(1); 15110 Info.flags = MachineMemOperand::MOLoad; 15111 return true; 15112 } 15113 case Intrinsic::ppc_qpx_qvlfda: 15114 case Intrinsic::ppc_qpx_qvlfsa: 15115 case Intrinsic::ppc_qpx_qvlfcda: 15116 case Intrinsic::ppc_qpx_qvlfcsa: 15117 case Intrinsic::ppc_qpx_qvlfiwaa: 15118 case Intrinsic::ppc_qpx_qvlfiwza: { 15119 EVT VT; 15120 switch (Intrinsic) { 15121 case Intrinsic::ppc_qpx_qvlfda: 15122 VT = MVT::v4f64; 15123 break; 15124 case Intrinsic::ppc_qpx_qvlfsa: 15125 VT = MVT::v4f32; 15126 break; 15127 case Intrinsic::ppc_qpx_qvlfcda: 15128 VT = MVT::v2f64; 15129 break; 15130 case Intrinsic::ppc_qpx_qvlfcsa: 15131 VT = MVT::v2f32; 15132 break; 15133 default: 15134 VT = MVT::v4i32; 15135 break; 15136 } 15137 15138 Info.opc = ISD::INTRINSIC_W_CHAIN; 15139 Info.memVT = VT; 15140 Info.ptrVal = I.getArgOperand(0); 15141 Info.offset = 0; 15142 Info.size = VT.getStoreSize(); 15143 Info.align = Align(1); 15144 Info.flags = MachineMemOperand::MOLoad; 15145 return true; 15146 } 15147 case Intrinsic::ppc_qpx_qvstfd: 15148 case Intrinsic::ppc_qpx_qvstfs: 15149 case Intrinsic::ppc_qpx_qvstfcd: 15150 case Intrinsic::ppc_qpx_qvstfcs: 15151 case Intrinsic::ppc_qpx_qvstfiw: 15152 case Intrinsic::ppc_altivec_stvx: 15153 case Intrinsic::ppc_altivec_stvxl: 15154 case Intrinsic::ppc_altivec_stvebx: 15155 case Intrinsic::ppc_altivec_stvehx: 15156 case Intrinsic::ppc_altivec_stvewx: 15157 case Intrinsic::ppc_vsx_stxvd2x: 15158 case Intrinsic::ppc_vsx_stxvw4x: { 15159 EVT VT; 15160 switch (Intrinsic) { 15161 case Intrinsic::ppc_altivec_stvebx: 15162 VT = MVT::i8; 15163 break; 15164 case Intrinsic::ppc_altivec_stvehx: 15165 VT = MVT::i16; 15166 break; 15167 case Intrinsic::ppc_altivec_stvewx: 15168 VT = MVT::i32; 15169 break; 15170 case Intrinsic::ppc_vsx_stxvd2x: 15171 VT = MVT::v2f64; 15172 break; 15173 case Intrinsic::ppc_qpx_qvstfd: 15174 VT = MVT::v4f64; 15175 break; 15176 case Intrinsic::ppc_qpx_qvstfs: 15177 VT = MVT::v4f32; 15178 break; 15179 case Intrinsic::ppc_qpx_qvstfcd: 15180 VT = MVT::v2f64; 15181 break; 15182 case Intrinsic::ppc_qpx_qvstfcs: 15183 VT = MVT::v2f32; 15184 break; 15185 default: 15186 VT = MVT::v4i32; 15187 break; 15188 } 15189 15190 Info.opc = ISD::INTRINSIC_VOID; 15191 Info.memVT = VT; 15192 Info.ptrVal = I.getArgOperand(1); 15193 Info.offset = -VT.getStoreSize()+1; 15194 Info.size = 2*VT.getStoreSize()-1; 15195 Info.align = Align(1); 15196 Info.flags = MachineMemOperand::MOStore; 15197 return true; 15198 } 15199 case Intrinsic::ppc_qpx_qvstfda: 15200 case Intrinsic::ppc_qpx_qvstfsa: 15201 case Intrinsic::ppc_qpx_qvstfcda: 15202 case Intrinsic::ppc_qpx_qvstfcsa: 15203 case Intrinsic::ppc_qpx_qvstfiwa: { 15204 EVT VT; 15205 switch (Intrinsic) { 15206 case Intrinsic::ppc_qpx_qvstfda: 15207 VT = MVT::v4f64; 15208 break; 15209 case Intrinsic::ppc_qpx_qvstfsa: 15210 VT = MVT::v4f32; 15211 break; 15212 case Intrinsic::ppc_qpx_qvstfcda: 15213 VT = MVT::v2f64; 15214 break; 15215 case Intrinsic::ppc_qpx_qvstfcsa: 15216 VT = MVT::v2f32; 15217 break; 15218 default: 15219 VT = MVT::v4i32; 15220 break; 15221 } 15222 15223 Info.opc = ISD::INTRINSIC_VOID; 15224 Info.memVT = VT; 15225 Info.ptrVal = I.getArgOperand(1); 15226 Info.offset = 0; 15227 Info.size = VT.getStoreSize(); 15228 Info.align = Align(1); 15229 Info.flags = MachineMemOperand::MOStore; 15230 return true; 15231 } 15232 default: 15233 break; 15234 } 15235 15236 return false; 15237 } 15238 15239 /// It returns EVT::Other if the type should be determined using generic 15240 /// target-independent logic. 15241 EVT PPCTargetLowering::getOptimalMemOpType( 15242 const MemOp &Op, const AttributeList &FuncAttributes) const { 15243 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15244 // When expanding a memset, require at least two QPX instructions to cover 15245 // the cost of loading the value to be stored from the constant pool. 15246 if (Subtarget.hasQPX() && Op.size() >= 32 && 15247 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15248 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15249 return MVT::v4f64; 15250 } 15251 15252 // We should use Altivec/VSX loads and stores when available. For unaligned 15253 // addresses, unaligned VSX loads are only fast starting with the P8. 15254 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15255 (Op.isAligned(Align(16)) || 15256 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15257 return MVT::v4i32; 15258 } 15259 15260 if (Subtarget.isPPC64()) { 15261 return MVT::i64; 15262 } 15263 15264 return MVT::i32; 15265 } 15266 15267 /// Returns true if it is beneficial to convert a load of a constant 15268 /// to just the constant itself. 15269 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15270 Type *Ty) const { 15271 assert(Ty->isIntegerTy()); 15272 15273 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15274 return !(BitSize == 0 || BitSize > 64); 15275 } 15276 15277 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15278 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15279 return false; 15280 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15281 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15282 return NumBits1 == 64 && NumBits2 == 32; 15283 } 15284 15285 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15286 if (!VT1.isInteger() || !VT2.isInteger()) 15287 return false; 15288 unsigned NumBits1 = VT1.getSizeInBits(); 15289 unsigned NumBits2 = VT2.getSizeInBits(); 15290 return NumBits1 == 64 && NumBits2 == 32; 15291 } 15292 15293 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15294 // Generally speaking, zexts are not free, but they are free when they can be 15295 // folded with other operations. 15296 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15297 EVT MemVT = LD->getMemoryVT(); 15298 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15299 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15300 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15301 LD->getExtensionType() == ISD::ZEXTLOAD)) 15302 return true; 15303 } 15304 15305 // FIXME: Add other cases... 15306 // - 32-bit shifts with a zext to i64 15307 // - zext after ctlz, bswap, etc. 15308 // - zext after and by a constant mask 15309 15310 return TargetLowering::isZExtFree(Val, VT2); 15311 } 15312 15313 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15314 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15315 "invalid fpext types"); 15316 // Extending to float128 is not free. 15317 if (DestVT == MVT::f128) 15318 return false; 15319 return true; 15320 } 15321 15322 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15323 return isInt<16>(Imm) || isUInt<16>(Imm); 15324 } 15325 15326 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15327 return isInt<16>(Imm) || isUInt<16>(Imm); 15328 } 15329 15330 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15331 unsigned, 15332 unsigned, 15333 MachineMemOperand::Flags, 15334 bool *Fast) const { 15335 if (DisablePPCUnaligned) 15336 return false; 15337 15338 // PowerPC supports unaligned memory access for simple non-vector types. 15339 // Although accessing unaligned addresses is not as efficient as accessing 15340 // aligned addresses, it is generally more efficient than manual expansion, 15341 // and generally only traps for software emulation when crossing page 15342 // boundaries. 15343 15344 if (!VT.isSimple()) 15345 return false; 15346 15347 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15348 return false; 15349 15350 if (VT.getSimpleVT().isVector()) { 15351 if (Subtarget.hasVSX()) { 15352 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15353 VT != MVT::v4f32 && VT != MVT::v4i32) 15354 return false; 15355 } else { 15356 return false; 15357 } 15358 } 15359 15360 if (VT == MVT::ppcf128) 15361 return false; 15362 15363 if (Fast) 15364 *Fast = true; 15365 15366 return true; 15367 } 15368 15369 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15370 EVT VT) const { 15371 return isFMAFasterThanFMulAndFAdd( 15372 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15373 } 15374 15375 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15376 Type *Ty) const { 15377 switch (Ty->getScalarType()->getTypeID()) { 15378 case Type::FloatTyID: 15379 case Type::DoubleTyID: 15380 return true; 15381 case Type::FP128TyID: 15382 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15383 default: 15384 return false; 15385 } 15386 } 15387 15388 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15389 // FIXME: add more patterns which are profitable to hoist. 15390 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15391 if (I->getOpcode() != Instruction::FMul) 15392 return true; 15393 15394 if (!I->hasOneUse()) 15395 return true; 15396 15397 Instruction *User = I->user_back(); 15398 assert(User && "A single use instruction with no uses."); 15399 15400 if (User->getOpcode() != Instruction::FSub && 15401 User->getOpcode() == Instruction::FAdd) 15402 return true; 15403 15404 const TargetOptions &Options = getTargetMachine().Options; 15405 const Function *F = I->getFunction(); 15406 const DataLayout &DL = F->getParent()->getDataLayout(); 15407 Type *Ty = User->getOperand(0)->getType(); 15408 15409 return !( 15410 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15411 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15412 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15413 } 15414 15415 const MCPhysReg * 15416 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15417 // LR is a callee-save register, but we must treat it as clobbered by any call 15418 // site. Hence we include LR in the scratch registers, which are in turn added 15419 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15420 // to CTR, which is used by any indirect call. 15421 static const MCPhysReg ScratchRegs[] = { 15422 PPC::X12, PPC::LR8, PPC::CTR8, 0 15423 }; 15424 15425 return ScratchRegs; 15426 } 15427 15428 unsigned PPCTargetLowering::getExceptionPointerRegister( 15429 const Constant *PersonalityFn) const { 15430 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15431 } 15432 15433 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15434 const Constant *PersonalityFn) const { 15435 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15436 } 15437 15438 bool 15439 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15440 EVT VT , unsigned DefinedValues) const { 15441 if (VT == MVT::v2i64) 15442 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15443 15444 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15445 return true; 15446 15447 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15448 } 15449 15450 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15451 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15452 return TargetLowering::getSchedulingPreference(N); 15453 15454 return Sched::ILP; 15455 } 15456 15457 // Create a fast isel object. 15458 FastISel * 15459 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15460 const TargetLibraryInfo *LibInfo) const { 15461 return PPC::createFastISel(FuncInfo, LibInfo); 15462 } 15463 15464 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15465 if (!Subtarget.isPPC64()) return; 15466 15467 // Update IsSplitCSR in PPCFunctionInfo 15468 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15469 PFI->setIsSplitCSR(true); 15470 } 15471 15472 void PPCTargetLowering::insertCopiesSplitCSR( 15473 MachineBasicBlock *Entry, 15474 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15475 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15476 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15477 if (!IStart) 15478 return; 15479 15480 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15481 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15482 MachineBasicBlock::iterator MBBI = Entry->begin(); 15483 for (const MCPhysReg *I = IStart; *I; ++I) { 15484 const TargetRegisterClass *RC = nullptr; 15485 if (PPC::G8RCRegClass.contains(*I)) 15486 RC = &PPC::G8RCRegClass; 15487 else if (PPC::F8RCRegClass.contains(*I)) 15488 RC = &PPC::F8RCRegClass; 15489 else if (PPC::CRRCRegClass.contains(*I)) 15490 RC = &PPC::CRRCRegClass; 15491 else if (PPC::VRRCRegClass.contains(*I)) 15492 RC = &PPC::VRRCRegClass; 15493 else 15494 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15495 15496 Register NewVR = MRI->createVirtualRegister(RC); 15497 // Create copy from CSR to a virtual register. 15498 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15499 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15500 // nounwind. If we want to generalize this later, we may need to emit 15501 // CFI pseudo-instructions. 15502 assert(Entry->getParent()->getFunction().hasFnAttribute( 15503 Attribute::NoUnwind) && 15504 "Function should be nounwind in insertCopiesSplitCSR!"); 15505 Entry->addLiveIn(*I); 15506 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15507 .addReg(*I); 15508 15509 // Insert the copy-back instructions right before the terminator. 15510 for (auto *Exit : Exits) 15511 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15512 TII->get(TargetOpcode::COPY), *I) 15513 .addReg(NewVR); 15514 } 15515 } 15516 15517 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15518 bool PPCTargetLowering::useLoadStackGuardNode() const { 15519 if (!Subtarget.isTargetLinux()) 15520 return TargetLowering::useLoadStackGuardNode(); 15521 return true; 15522 } 15523 15524 // Override to disable global variable loading on Linux. 15525 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15526 if (!Subtarget.isTargetLinux()) 15527 return TargetLowering::insertSSPDeclarations(M); 15528 } 15529 15530 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15531 bool ForCodeSize) const { 15532 if (!VT.isSimple() || !Subtarget.hasVSX()) 15533 return false; 15534 15535 switch(VT.getSimpleVT().SimpleTy) { 15536 default: 15537 // For FP types that are currently not supported by PPC backend, return 15538 // false. Examples: f16, f80. 15539 return false; 15540 case MVT::f32: 15541 case MVT::f64: 15542 case MVT::ppcf128: 15543 return Imm.isPosZero(); 15544 } 15545 } 15546 15547 // For vector shift operation op, fold 15548 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15549 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15550 SelectionDAG &DAG) { 15551 SDValue N0 = N->getOperand(0); 15552 SDValue N1 = N->getOperand(1); 15553 EVT VT = N0.getValueType(); 15554 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15555 unsigned Opcode = N->getOpcode(); 15556 unsigned TargetOpcode; 15557 15558 switch (Opcode) { 15559 default: 15560 llvm_unreachable("Unexpected shift operation"); 15561 case ISD::SHL: 15562 TargetOpcode = PPCISD::SHL; 15563 break; 15564 case ISD::SRL: 15565 TargetOpcode = PPCISD::SRL; 15566 break; 15567 case ISD::SRA: 15568 TargetOpcode = PPCISD::SRA; 15569 break; 15570 } 15571 15572 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15573 N1->getOpcode() == ISD::AND) 15574 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15575 if (Mask->getZExtValue() == OpSizeInBits - 1) 15576 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15577 15578 return SDValue(); 15579 } 15580 15581 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15582 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15583 return Value; 15584 15585 SDValue N0 = N->getOperand(0); 15586 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15587 if (!Subtarget.isISA3_0() || 15588 N0.getOpcode() != ISD::SIGN_EXTEND || 15589 N0.getOperand(0).getValueType() != MVT::i32 || 15590 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15591 return SDValue(); 15592 15593 // We can't save an operation here if the value is already extended, and 15594 // the existing shift is easier to combine. 15595 SDValue ExtsSrc = N0.getOperand(0); 15596 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15597 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15598 return SDValue(); 15599 15600 SDLoc DL(N0); 15601 SDValue ShiftBy = SDValue(CN1, 0); 15602 // We want the shift amount to be i32 on the extswli, but the shift could 15603 // have an i64. 15604 if (ShiftBy.getValueType() == MVT::i64) 15605 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15606 15607 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15608 ShiftBy); 15609 } 15610 15611 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15612 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15613 return Value; 15614 15615 return SDValue(); 15616 } 15617 15618 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15619 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15620 return Value; 15621 15622 return SDValue(); 15623 } 15624 15625 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15626 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15627 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15628 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15629 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15630 const PPCSubtarget &Subtarget) { 15631 if (!Subtarget.isPPC64()) 15632 return SDValue(); 15633 15634 SDValue LHS = N->getOperand(0); 15635 SDValue RHS = N->getOperand(1); 15636 15637 auto isZextOfCompareWithConstant = [](SDValue Op) { 15638 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15639 Op.getValueType() != MVT::i64) 15640 return false; 15641 15642 SDValue Cmp = Op.getOperand(0); 15643 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15644 Cmp.getOperand(0).getValueType() != MVT::i64) 15645 return false; 15646 15647 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15648 int64_t NegConstant = 0 - Constant->getSExtValue(); 15649 // Due to the limitations of the addi instruction, 15650 // -C is required to be [-32768, 32767]. 15651 return isInt<16>(NegConstant); 15652 } 15653 15654 return false; 15655 }; 15656 15657 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15658 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15659 15660 // If there is a pattern, canonicalize a zext operand to the RHS. 15661 if (LHSHasPattern && !RHSHasPattern) 15662 std::swap(LHS, RHS); 15663 else if (!LHSHasPattern && !RHSHasPattern) 15664 return SDValue(); 15665 15666 SDLoc DL(N); 15667 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15668 SDValue Cmp = RHS.getOperand(0); 15669 SDValue Z = Cmp.getOperand(0); 15670 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15671 15672 assert(Constant && "Constant Should not be a null pointer."); 15673 int64_t NegConstant = 0 - Constant->getSExtValue(); 15674 15675 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15676 default: break; 15677 case ISD::SETNE: { 15678 // when C == 0 15679 // --> addze X, (addic Z, -1).carry 15680 // / 15681 // add X, (zext(setne Z, C))-- 15682 // \ when -32768 <= -C <= 32767 && C != 0 15683 // --> addze X, (addic (addi Z, -C), -1).carry 15684 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15685 DAG.getConstant(NegConstant, DL, MVT::i64)); 15686 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15687 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15688 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15689 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15690 SDValue(Addc.getNode(), 1)); 15691 } 15692 case ISD::SETEQ: { 15693 // when C == 0 15694 // --> addze X, (subfic Z, 0).carry 15695 // / 15696 // add X, (zext(sete Z, C))-- 15697 // \ when -32768 <= -C <= 32767 && C != 0 15698 // --> addze X, (subfic (addi Z, -C), 0).carry 15699 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15700 DAG.getConstant(NegConstant, DL, MVT::i64)); 15701 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15702 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15703 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15704 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15705 SDValue(Subc.getNode(), 1)); 15706 } 15707 } 15708 15709 return SDValue(); 15710 } 15711 15712 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15713 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15714 return Value; 15715 15716 return SDValue(); 15717 } 15718 15719 // Detect TRUNCATE operations on bitcasts of float128 values. 15720 // What we are looking for here is the situtation where we extract a subset 15721 // of bits from a 128 bit float. 15722 // This can be of two forms: 15723 // 1) BITCAST of f128 feeding TRUNCATE 15724 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15725 // The reason this is required is because we do not have a legal i128 type 15726 // and so we want to prevent having to store the f128 and then reload part 15727 // of it. 15728 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15729 DAGCombinerInfo &DCI) const { 15730 // If we are using CRBits then try that first. 15731 if (Subtarget.useCRBits()) { 15732 // Check if CRBits did anything and return that if it did. 15733 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15734 return CRTruncValue; 15735 } 15736 15737 SDLoc dl(N); 15738 SDValue Op0 = N->getOperand(0); 15739 15740 // Looking for a truncate of i128 to i64. 15741 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15742 return SDValue(); 15743 15744 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15745 15746 // SRL feeding TRUNCATE. 15747 if (Op0.getOpcode() == ISD::SRL) { 15748 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15749 // The right shift has to be by 64 bits. 15750 if (!ConstNode || ConstNode->getZExtValue() != 64) 15751 return SDValue(); 15752 15753 // Switch the element number to extract. 15754 EltToExtract = EltToExtract ? 0 : 1; 15755 // Update Op0 past the SRL. 15756 Op0 = Op0.getOperand(0); 15757 } 15758 15759 // BITCAST feeding a TRUNCATE possibly via SRL. 15760 if (Op0.getOpcode() == ISD::BITCAST && 15761 Op0.getValueType() == MVT::i128 && 15762 Op0.getOperand(0).getValueType() == MVT::f128) { 15763 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15764 return DCI.DAG.getNode( 15765 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15766 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15767 } 15768 return SDValue(); 15769 } 15770 15771 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15772 SelectionDAG &DAG = DCI.DAG; 15773 15774 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15775 if (!ConstOpOrElement) 15776 return SDValue(); 15777 15778 // An imul is usually smaller than the alternative sequence for legal type. 15779 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15780 isOperationLegal(ISD::MUL, N->getValueType(0))) 15781 return SDValue(); 15782 15783 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15784 switch (this->Subtarget.getCPUDirective()) { 15785 default: 15786 // TODO: enhance the condition for subtarget before pwr8 15787 return false; 15788 case PPC::DIR_PWR8: 15789 // type mul add shl 15790 // scalar 4 1 1 15791 // vector 7 2 2 15792 return true; 15793 case PPC::DIR_PWR9: 15794 case PPC::DIR_PWR_FUTURE: 15795 // type mul add shl 15796 // scalar 5 2 2 15797 // vector 7 2 2 15798 15799 // The cycle RATIO of related operations are showed as a table above. 15800 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15801 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15802 // are 4, it is always profitable; but for 3 instrs patterns 15803 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15804 // So we should only do it for vector type. 15805 return IsAddOne && IsNeg ? VT.isVector() : true; 15806 } 15807 }; 15808 15809 EVT VT = N->getValueType(0); 15810 SDLoc DL(N); 15811 15812 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15813 bool IsNeg = MulAmt.isNegative(); 15814 APInt MulAmtAbs = MulAmt.abs(); 15815 15816 if ((MulAmtAbs - 1).isPowerOf2()) { 15817 // (mul x, 2^N + 1) => (add (shl x, N), x) 15818 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15819 15820 if (!IsProfitable(IsNeg, true, VT)) 15821 return SDValue(); 15822 15823 SDValue Op0 = N->getOperand(0); 15824 SDValue Op1 = 15825 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15826 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15827 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15828 15829 if (!IsNeg) 15830 return Res; 15831 15832 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15833 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15834 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15835 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15836 15837 if (!IsProfitable(IsNeg, false, VT)) 15838 return SDValue(); 15839 15840 SDValue Op0 = N->getOperand(0); 15841 SDValue Op1 = 15842 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15843 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15844 15845 if (!IsNeg) 15846 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15847 else 15848 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15849 15850 } else { 15851 return SDValue(); 15852 } 15853 } 15854 15855 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15856 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15857 if (!Subtarget.is64BitELFABI()) 15858 return false; 15859 15860 // If not a tail call then no need to proceed. 15861 if (!CI->isTailCall()) 15862 return false; 15863 15864 // If sibling calls have been disabled and tail-calls aren't guaranteed 15865 // there is no reason to duplicate. 15866 auto &TM = getTargetMachine(); 15867 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15868 return false; 15869 15870 // Can't tail call a function called indirectly, or if it has variadic args. 15871 const Function *Callee = CI->getCalledFunction(); 15872 if (!Callee || Callee->isVarArg()) 15873 return false; 15874 15875 // Make sure the callee and caller calling conventions are eligible for tco. 15876 const Function *Caller = CI->getParent()->getParent(); 15877 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15878 CI->getCallingConv())) 15879 return false; 15880 15881 // If the function is local then we have a good chance at tail-calling it 15882 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15883 } 15884 15885 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15886 if (!Subtarget.hasVSX()) 15887 return false; 15888 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15889 return true; 15890 return VT == MVT::f32 || VT == MVT::f64 || 15891 VT == MVT::v4f32 || VT == MVT::v2f64; 15892 } 15893 15894 bool PPCTargetLowering:: 15895 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15896 const Value *Mask = AndI.getOperand(1); 15897 // If the mask is suitable for andi. or andis. we should sink the and. 15898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15899 // Can't handle constants wider than 64-bits. 15900 if (CI->getBitWidth() > 64) 15901 return false; 15902 int64_t ConstVal = CI->getZExtValue(); 15903 return isUInt<16>(ConstVal) || 15904 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15905 } 15906 15907 // For non-constant masks, we can always use the record-form and. 15908 return true; 15909 } 15910 15911 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15912 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15913 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15914 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15915 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15916 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15917 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15918 assert(Subtarget.hasP9Altivec() && 15919 "Only combine this when P9 altivec supported!"); 15920 EVT VT = N->getValueType(0); 15921 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15922 return SDValue(); 15923 15924 SelectionDAG &DAG = DCI.DAG; 15925 SDLoc dl(N); 15926 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15927 // Even for signed integers, if it's known to be positive (as signed 15928 // integer) due to zero-extended inputs. 15929 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15930 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15931 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15932 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15933 (SubOpcd1 == ISD::ZERO_EXTEND || 15934 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15935 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15936 N->getOperand(0)->getOperand(0), 15937 N->getOperand(0)->getOperand(1), 15938 DAG.getTargetConstant(0, dl, MVT::i32)); 15939 } 15940 15941 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15942 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15943 N->getOperand(0).hasOneUse()) { 15944 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15945 N->getOperand(0)->getOperand(0), 15946 N->getOperand(0)->getOperand(1), 15947 DAG.getTargetConstant(1, dl, MVT::i32)); 15948 } 15949 } 15950 15951 return SDValue(); 15952 } 15953 15954 // For type v4i32/v8ii16/v16i8, transform 15955 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15956 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15957 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15958 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15959 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15960 DAGCombinerInfo &DCI) const { 15961 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15962 assert(Subtarget.hasP9Altivec() && 15963 "Only combine this when P9 altivec supported!"); 15964 15965 SelectionDAG &DAG = DCI.DAG; 15966 SDLoc dl(N); 15967 SDValue Cond = N->getOperand(0); 15968 SDValue TrueOpnd = N->getOperand(1); 15969 SDValue FalseOpnd = N->getOperand(2); 15970 EVT VT = N->getOperand(1).getValueType(); 15971 15972 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15973 FalseOpnd.getOpcode() != ISD::SUB) 15974 return SDValue(); 15975 15976 // ABSD only available for type v4i32/v8i16/v16i8 15977 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15978 return SDValue(); 15979 15980 // At least to save one more dependent computation 15981 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15982 return SDValue(); 15983 15984 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15985 15986 // Can only handle unsigned comparison here 15987 switch (CC) { 15988 default: 15989 return SDValue(); 15990 case ISD::SETUGT: 15991 case ISD::SETUGE: 15992 break; 15993 case ISD::SETULT: 15994 case ISD::SETULE: 15995 std::swap(TrueOpnd, FalseOpnd); 15996 break; 15997 } 15998 15999 SDValue CmpOpnd1 = Cond.getOperand(0); 16000 SDValue CmpOpnd2 = Cond.getOperand(1); 16001 16002 // SETCC CmpOpnd1 CmpOpnd2 cond 16003 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16004 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16005 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16006 TrueOpnd.getOperand(1) == CmpOpnd2 && 16007 FalseOpnd.getOperand(0) == CmpOpnd2 && 16008 FalseOpnd.getOperand(1) == CmpOpnd1) { 16009 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16010 CmpOpnd1, CmpOpnd2, 16011 DAG.getTargetConstant(0, dl, MVT::i32)); 16012 } 16013 16014 return SDValue(); 16015 } 16016