1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnablePPCPCRelTLS( 125 "enable-ppc-pcrel-tls", 126 cl::desc("enable the use of PC relative memops in TLS instructions on PPC"), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 } else { 238 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 240 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 242 } 243 244 // PowerPC does not support direct load/store of condition registers. 245 setOperationAction(ISD::LOAD, MVT::i1, Custom); 246 setOperationAction(ISD::STORE, MVT::i1, Custom); 247 248 // FIXME: Remove this once the ANDI glue bug is fixed: 249 if (ANDIGlueBug) 250 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 251 252 for (MVT VT : MVT::integer_valuetypes()) { 253 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 254 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 255 setTruncStoreAction(VT, MVT::i1, Expand); 256 } 257 258 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 259 } 260 261 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 262 // PPC (the libcall is not available). 263 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 264 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 265 266 // We do not currently implement these libm ops for PowerPC. 267 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 268 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 269 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 270 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 271 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 272 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 273 274 // PowerPC has no SREM/UREM instructions unless we are on P9 275 // On P9 we may use a hardware instruction to compute the remainder. 276 // When the result of both the remainder and the division is required it is 277 // more efficient to compute the remainder from the result of the division 278 // rather than use the remainder instruction. The instructions are legalized 279 // directly because the DivRemPairsPass performs the transformation at the IR 280 // level. 281 if (Subtarget.isISA3_0()) { 282 setOperationAction(ISD::SREM, MVT::i32, Legal); 283 setOperationAction(ISD::UREM, MVT::i32, Legal); 284 setOperationAction(ISD::SREM, MVT::i64, Legal); 285 setOperationAction(ISD::UREM, MVT::i64, Legal); 286 } else { 287 setOperationAction(ISD::SREM, MVT::i32, Expand); 288 setOperationAction(ISD::UREM, MVT::i32, Expand); 289 setOperationAction(ISD::SREM, MVT::i64, Expand); 290 setOperationAction(ISD::UREM, MVT::i64, Expand); 291 } 292 293 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 294 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 295 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 296 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 297 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 298 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 299 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 300 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 301 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 302 303 // Handle constrained floating-point operations of scalar. 304 // TODO: Handle SPE specific operation. 305 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 306 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 307 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 309 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 311 312 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 313 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 314 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 315 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 316 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 317 if (Subtarget.hasVSX()) 318 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 319 320 if (Subtarget.hasFSQRT()) { 321 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 322 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 323 } 324 325 if (Subtarget.hasFPRND()) { 326 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 329 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 330 331 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 335 } 336 337 // We don't support sin/cos/sqrt/fmod/pow 338 setOperationAction(ISD::FSIN , MVT::f64, Expand); 339 setOperationAction(ISD::FCOS , MVT::f64, Expand); 340 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 341 setOperationAction(ISD::FREM , MVT::f64, Expand); 342 setOperationAction(ISD::FPOW , MVT::f64, Expand); 343 setOperationAction(ISD::FSIN , MVT::f32, Expand); 344 setOperationAction(ISD::FCOS , MVT::f32, Expand); 345 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 346 setOperationAction(ISD::FREM , MVT::f32, Expand); 347 setOperationAction(ISD::FPOW , MVT::f32, Expand); 348 if (Subtarget.hasSPE()) { 349 setOperationAction(ISD::FMA , MVT::f64, Expand); 350 setOperationAction(ISD::FMA , MVT::f32, Expand); 351 } else { 352 setOperationAction(ISD::FMA , MVT::f64, Legal); 353 setOperationAction(ISD::FMA , MVT::f32, Legal); 354 } 355 356 if (Subtarget.hasSPE()) 357 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 358 359 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 360 361 // If we're enabling GP optimizations, use hardware square root 362 if (!Subtarget.hasFSQRT() && 363 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 364 Subtarget.hasFRE())) 365 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 366 367 if (!Subtarget.hasFSQRT() && 368 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 369 Subtarget.hasFRES())) 370 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 371 372 if (Subtarget.hasFCPSGN()) { 373 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 374 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 375 } else { 376 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 377 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 378 } 379 380 if (Subtarget.hasFPRND()) { 381 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 382 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 383 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 384 setOperationAction(ISD::FROUND, MVT::f64, Legal); 385 386 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 387 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 388 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 389 setOperationAction(ISD::FROUND, MVT::f32, Legal); 390 } 391 392 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 393 // to speed up scalar BSWAP64. 394 // CTPOP or CTTZ were introduced in P8/P9 respectively 395 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 396 if (Subtarget.hasP9Vector()) 397 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 398 else 399 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 400 if (Subtarget.isISA3_0()) { 401 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 402 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 403 } else { 404 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 405 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 406 } 407 408 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 409 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 410 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 411 } else { 412 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 413 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 414 } 415 416 // PowerPC does not have ROTR 417 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 418 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 419 420 if (!Subtarget.useCRBits()) { 421 // PowerPC does not have Select 422 setOperationAction(ISD::SELECT, MVT::i32, Expand); 423 setOperationAction(ISD::SELECT, MVT::i64, Expand); 424 setOperationAction(ISD::SELECT, MVT::f32, Expand); 425 setOperationAction(ISD::SELECT, MVT::f64, Expand); 426 } 427 428 // PowerPC wants to turn select_cc of FP into fsel when possible. 429 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 430 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 431 432 // PowerPC wants to optimize integer setcc a bit 433 if (!Subtarget.useCRBits()) 434 setOperationAction(ISD::SETCC, MVT::i32, Custom); 435 436 if (Subtarget.hasFPU()) { 437 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 438 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 439 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 440 441 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 442 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 443 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 444 } 445 446 // PowerPC does not have BRCOND which requires SetCC 447 if (!Subtarget.useCRBits()) 448 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 449 450 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 451 452 if (Subtarget.hasSPE()) { 453 // SPE has built-in conversions 454 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 455 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 456 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 457 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 458 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 459 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 460 } else { 461 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 462 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 463 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 464 465 // PowerPC does not have [U|S]INT_TO_FP 466 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 467 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 468 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 469 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 470 } 471 472 if (Subtarget.hasDirectMove() && isPPC64) { 473 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 474 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 475 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 476 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 477 if (TM.Options.UnsafeFPMath) { 478 setOperationAction(ISD::LRINT, MVT::f64, Legal); 479 setOperationAction(ISD::LRINT, MVT::f32, Legal); 480 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 481 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 482 setOperationAction(ISD::LROUND, MVT::f64, Legal); 483 setOperationAction(ISD::LROUND, MVT::f32, Legal); 484 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 485 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 486 } 487 } else { 488 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 489 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 490 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 491 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 492 } 493 494 // We cannot sextinreg(i1). Expand to shifts. 495 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 496 497 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 498 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 499 // support continuation, user-level threading, and etc.. As a result, no 500 // other SjLj exception interfaces are implemented and please don't build 501 // your own exception handling based on them. 502 // LLVM/Clang supports zero-cost DWARF exception handling. 503 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 504 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 505 506 // We want to legalize GlobalAddress and ConstantPool nodes into the 507 // appropriate instructions to materialize the address. 508 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 509 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 510 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 511 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 512 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 513 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 514 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 515 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 516 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 517 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 518 519 // TRAP is legal. 520 setOperationAction(ISD::TRAP, MVT::Other, Legal); 521 522 // TRAMPOLINE is custom lowered. 523 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 524 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 525 526 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 527 setOperationAction(ISD::VASTART , MVT::Other, Custom); 528 529 if (Subtarget.is64BitELFABI()) { 530 // VAARG always uses double-word chunks, so promote anything smaller. 531 setOperationAction(ISD::VAARG, MVT::i1, Promote); 532 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 533 setOperationAction(ISD::VAARG, MVT::i8, Promote); 534 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 535 setOperationAction(ISD::VAARG, MVT::i16, Promote); 536 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 537 setOperationAction(ISD::VAARG, MVT::i32, Promote); 538 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 539 setOperationAction(ISD::VAARG, MVT::Other, Expand); 540 } else if (Subtarget.is32BitELFABI()) { 541 // VAARG is custom lowered with the 32-bit SVR4 ABI. 542 setOperationAction(ISD::VAARG, MVT::Other, Custom); 543 setOperationAction(ISD::VAARG, MVT::i64, Custom); 544 } else 545 setOperationAction(ISD::VAARG, MVT::Other, Expand); 546 547 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 548 if (Subtarget.is32BitELFABI()) 549 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 550 else 551 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 552 553 // Use the default implementation. 554 setOperationAction(ISD::VAEND , MVT::Other, Expand); 555 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 556 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 557 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 558 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 559 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 560 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 561 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 562 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 563 564 // We want to custom lower some of our intrinsics. 565 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 566 567 // To handle counter-based loop conditions. 568 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 569 570 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 571 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 572 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 573 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 574 575 // Comparisons that require checking two conditions. 576 if (Subtarget.hasSPE()) { 577 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 578 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 579 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 580 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 581 } 582 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 583 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 584 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 585 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 586 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 587 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 588 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 589 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 590 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 591 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 592 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 593 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 594 595 if (Subtarget.has64BitSupport()) { 596 // They also have instructions for converting between i64 and fp. 597 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 598 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 599 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 600 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 601 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 602 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 603 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 604 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 605 // This is just the low 32 bits of a (signed) fp->i64 conversion. 606 // We cannot do this with Promote because i64 is not a legal type. 607 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 608 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 609 610 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 611 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 612 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 613 } 614 } else { 615 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 616 if (Subtarget.hasSPE()) { 617 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 618 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 619 } else { 620 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 621 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 622 } 623 } 624 625 // With the instructions enabled under FPCVT, we can do everything. 626 if (Subtarget.hasFPCVT()) { 627 if (Subtarget.has64BitSupport()) { 628 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 629 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 630 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 631 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 632 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 633 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 634 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 635 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 636 } 637 638 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 639 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 640 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 641 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 642 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 643 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 645 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 646 } 647 648 if (Subtarget.use64BitRegs()) { 649 // 64-bit PowerPC implementations can support i64 types directly 650 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 651 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 652 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 653 // 64-bit PowerPC wants to expand i128 shifts itself. 654 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 655 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 656 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 657 } else { 658 // 32-bit PowerPC wants to expand i64 shifts itself. 659 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 660 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 661 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 662 } 663 664 // PowerPC has better expansions for funnel shifts than the generic 665 // TargetLowering::expandFunnelShift. 666 if (Subtarget.has64BitSupport()) { 667 setOperationAction(ISD::FSHL, MVT::i64, Custom); 668 setOperationAction(ISD::FSHR, MVT::i64, Custom); 669 } 670 setOperationAction(ISD::FSHL, MVT::i32, Custom); 671 setOperationAction(ISD::FSHR, MVT::i32, Custom); 672 673 if (Subtarget.hasVSX()) { 674 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 675 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 676 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 677 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 678 } 679 680 if (Subtarget.hasAltivec()) { 681 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 682 setOperationAction(ISD::SADDSAT, VT, Legal); 683 setOperationAction(ISD::SSUBSAT, VT, Legal); 684 setOperationAction(ISD::UADDSAT, VT, Legal); 685 setOperationAction(ISD::USUBSAT, VT, Legal); 686 } 687 // First set operation action for all vector types to expand. Then we 688 // will selectively turn on ones that can be effectively codegen'd. 689 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 690 // add/sub are legal for all supported vector VT's. 691 setOperationAction(ISD::ADD, VT, Legal); 692 setOperationAction(ISD::SUB, VT, Legal); 693 694 // For v2i64, these are only valid with P8Vector. This is corrected after 695 // the loop. 696 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 697 setOperationAction(ISD::SMAX, VT, Legal); 698 setOperationAction(ISD::SMIN, VT, Legal); 699 setOperationAction(ISD::UMAX, VT, Legal); 700 setOperationAction(ISD::UMIN, VT, Legal); 701 } 702 else { 703 setOperationAction(ISD::SMAX, VT, Expand); 704 setOperationAction(ISD::SMIN, VT, Expand); 705 setOperationAction(ISD::UMAX, VT, Expand); 706 setOperationAction(ISD::UMIN, VT, Expand); 707 } 708 709 if (Subtarget.hasVSX()) { 710 setOperationAction(ISD::FMAXNUM, VT, Legal); 711 setOperationAction(ISD::FMINNUM, VT, Legal); 712 } 713 714 // Vector instructions introduced in P8 715 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 716 setOperationAction(ISD::CTPOP, VT, Legal); 717 setOperationAction(ISD::CTLZ, VT, Legal); 718 } 719 else { 720 setOperationAction(ISD::CTPOP, VT, Expand); 721 setOperationAction(ISD::CTLZ, VT, Expand); 722 } 723 724 // Vector instructions introduced in P9 725 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 726 setOperationAction(ISD::CTTZ, VT, Legal); 727 else 728 setOperationAction(ISD::CTTZ, VT, Expand); 729 730 // We promote all shuffles to v16i8. 731 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 732 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 733 734 // We promote all non-typed operations to v4i32. 735 setOperationAction(ISD::AND , VT, Promote); 736 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 737 setOperationAction(ISD::OR , VT, Promote); 738 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 739 setOperationAction(ISD::XOR , VT, Promote); 740 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 741 setOperationAction(ISD::LOAD , VT, Promote); 742 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 743 setOperationAction(ISD::SELECT, VT, Promote); 744 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 745 setOperationAction(ISD::VSELECT, VT, Legal); 746 setOperationAction(ISD::SELECT_CC, VT, Promote); 747 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 748 setOperationAction(ISD::STORE, VT, Promote); 749 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 750 751 // No other operations are legal. 752 setOperationAction(ISD::MUL , VT, Expand); 753 setOperationAction(ISD::SDIV, VT, Expand); 754 setOperationAction(ISD::SREM, VT, Expand); 755 setOperationAction(ISD::UDIV, VT, Expand); 756 setOperationAction(ISD::UREM, VT, Expand); 757 setOperationAction(ISD::FDIV, VT, Expand); 758 setOperationAction(ISD::FREM, VT, Expand); 759 setOperationAction(ISD::FNEG, VT, Expand); 760 setOperationAction(ISD::FSQRT, VT, Expand); 761 setOperationAction(ISD::FLOG, VT, Expand); 762 setOperationAction(ISD::FLOG10, VT, Expand); 763 setOperationAction(ISD::FLOG2, VT, Expand); 764 setOperationAction(ISD::FEXP, VT, Expand); 765 setOperationAction(ISD::FEXP2, VT, Expand); 766 setOperationAction(ISD::FSIN, VT, Expand); 767 setOperationAction(ISD::FCOS, VT, Expand); 768 setOperationAction(ISD::FABS, VT, Expand); 769 setOperationAction(ISD::FFLOOR, VT, Expand); 770 setOperationAction(ISD::FCEIL, VT, Expand); 771 setOperationAction(ISD::FTRUNC, VT, Expand); 772 setOperationAction(ISD::FRINT, VT, Expand); 773 setOperationAction(ISD::FNEARBYINT, VT, Expand); 774 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 775 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 776 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 777 setOperationAction(ISD::MULHU, VT, Expand); 778 setOperationAction(ISD::MULHS, VT, Expand); 779 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 780 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 781 setOperationAction(ISD::UDIVREM, VT, Expand); 782 setOperationAction(ISD::SDIVREM, VT, Expand); 783 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 784 setOperationAction(ISD::FPOW, VT, Expand); 785 setOperationAction(ISD::BSWAP, VT, Expand); 786 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 787 setOperationAction(ISD::ROTL, VT, Expand); 788 setOperationAction(ISD::ROTR, VT, Expand); 789 790 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 791 setTruncStoreAction(VT, InnerVT, Expand); 792 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 793 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 794 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 795 } 796 } 797 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 798 if (!Subtarget.hasP8Vector()) { 799 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 800 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 801 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 802 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 803 } 804 805 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 806 setOperationAction(ISD::ABS, VT, Custom); 807 808 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 809 // with merges, splats, etc. 810 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 811 812 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 813 // are cheap, so handle them before they get expanded to scalar. 814 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 815 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 816 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 817 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 818 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 819 820 setOperationAction(ISD::AND , MVT::v4i32, Legal); 821 setOperationAction(ISD::OR , MVT::v4i32, Legal); 822 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 823 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 824 setOperationAction(ISD::SELECT, MVT::v4i32, 825 Subtarget.useCRBits() ? Legal : Expand); 826 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 827 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 828 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 829 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 830 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 831 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 832 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 833 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 834 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 835 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 836 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 837 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 838 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 839 840 // Without hasP8Altivec set, v2i64 SMAX isn't available. 841 // But ABS custom lowering requires SMAX support. 842 if (!Subtarget.hasP8Altivec()) 843 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 844 845 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 846 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 847 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 848 if (Subtarget.hasAltivec()) 849 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 850 setOperationAction(ISD::ROTL, VT, Legal); 851 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 852 if (Subtarget.hasP8Altivec()) 853 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 854 855 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 856 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 857 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 858 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 859 860 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 861 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 862 863 if (Subtarget.hasVSX()) { 864 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 865 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 866 } 867 868 if (Subtarget.hasP8Altivec()) 869 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 870 else 871 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 872 873 if (Subtarget.isISA3_1()) { 874 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 875 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 876 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 877 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 878 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 879 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 880 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 881 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 882 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 883 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 884 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 885 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 886 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 887 } 888 889 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 890 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 891 892 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 893 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 894 895 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 896 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 897 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 898 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 899 900 // Altivec does not contain unordered floating-point compare instructions 901 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 902 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 903 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 904 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 905 906 if (Subtarget.hasVSX()) { 907 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 908 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 909 if (Subtarget.hasP8Vector()) { 910 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 911 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 912 } 913 if (Subtarget.hasDirectMove() && isPPC64) { 914 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 915 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 916 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 917 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 918 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 919 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 920 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 921 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 922 } 923 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 924 925 // The nearbyint variants are not allowed to raise the inexact exception 926 // so we can only code-gen them with unsafe math. 927 if (TM.Options.UnsafeFPMath) { 928 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 929 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 930 } 931 932 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 933 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 934 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 935 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 936 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 937 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 938 setOperationAction(ISD::FROUND, MVT::f64, Legal); 939 setOperationAction(ISD::FRINT, MVT::f64, Legal); 940 941 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 942 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 943 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 944 setOperationAction(ISD::FROUND, MVT::f32, Legal); 945 setOperationAction(ISD::FRINT, MVT::f32, Legal); 946 947 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 948 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 949 950 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 951 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 952 953 // Share the Altivec comparison restrictions. 954 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 955 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 956 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 957 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 958 959 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 960 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 961 962 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 963 964 if (Subtarget.hasP8Vector()) 965 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 966 967 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 968 969 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 970 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 971 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 972 973 if (Subtarget.hasP8Altivec()) { 974 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 975 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 976 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 977 978 // 128 bit shifts can be accomplished via 3 instructions for SHL and 979 // SRL, but not for SRA because of the instructions available: 980 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 981 // doing 982 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 983 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 984 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 985 986 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 987 } 988 else { 989 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 990 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 991 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 992 993 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 994 995 // VSX v2i64 only supports non-arithmetic operations. 996 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 997 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 998 } 999 1000 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1001 1002 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1003 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1004 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1005 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1006 1007 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1008 1009 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1010 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1011 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1012 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1013 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1014 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1015 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1016 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1017 1018 // Custom handling for partial vectors of integers converted to 1019 // floating point. We already have optimal handling for v2i32 through 1020 // the DAG combine, so those aren't necessary. 1021 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1022 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1023 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1024 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1025 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1026 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1027 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1028 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1029 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1030 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1031 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1032 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1033 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1034 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1035 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1036 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1037 1038 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1039 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1040 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1041 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1042 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1043 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1044 1045 if (Subtarget.hasDirectMove()) 1046 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1047 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1048 1049 // Handle constrained floating-point operations of vector. 1050 // The predictor is `hasVSX` because altivec instruction has 1051 // no exception but VSX vector instruction has. 1052 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1053 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1054 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1055 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1056 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1057 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1058 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1059 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1060 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 1061 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1062 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1063 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1064 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1065 1066 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1067 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1068 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1069 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1070 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1071 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1072 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1073 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1074 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 1075 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1076 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1077 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1078 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1079 1080 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1081 } 1082 1083 if (Subtarget.hasP8Altivec()) { 1084 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1085 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1086 } 1087 1088 if (Subtarget.hasP9Vector()) { 1089 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1090 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1091 1092 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1093 // SRL, but not for SRA because of the instructions available: 1094 // VS{RL} and VS{RL}O. 1095 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1096 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1097 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1098 1099 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1100 setOperationAction(ISD::FADD, MVT::f128, Legal); 1101 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1102 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1103 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1104 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1105 // No extending loads to f128 on PPC. 1106 for (MVT FPT : MVT::fp_valuetypes()) 1107 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1108 setOperationAction(ISD::FMA, MVT::f128, Legal); 1109 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1110 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1111 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1112 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1113 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1114 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1115 1116 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1117 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1118 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1119 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1120 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1121 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1122 1123 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1124 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1125 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1126 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1127 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1128 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1129 // No implementation for these ops for PowerPC. 1130 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1131 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1132 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1133 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1134 setOperationAction(ISD::FREM, MVT::f128, Expand); 1135 1136 // Handle constrained floating-point operations of fp128 1137 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1138 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1139 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1140 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1141 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1142 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1143 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1144 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1145 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1146 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1147 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1148 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1149 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1150 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1152 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1153 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1154 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1155 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1156 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1157 } 1158 1159 if (Subtarget.hasP9Altivec()) { 1160 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1161 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1162 1163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1167 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1168 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1169 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1170 } 1171 } 1172 1173 if (Subtarget.has64BitSupport()) 1174 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1175 1176 if (Subtarget.isISA3_1()) 1177 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1178 1179 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1180 1181 if (!isPPC64) { 1182 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1183 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1184 } 1185 1186 setBooleanContents(ZeroOrOneBooleanContent); 1187 1188 if (Subtarget.hasAltivec()) { 1189 // Altivec instructions set fields to all zeros or all ones. 1190 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1191 } 1192 1193 if (!isPPC64) { 1194 // These libcalls are not available in 32-bit. 1195 setLibcallName(RTLIB::SHL_I128, nullptr); 1196 setLibcallName(RTLIB::SRL_I128, nullptr); 1197 setLibcallName(RTLIB::SRA_I128, nullptr); 1198 } 1199 1200 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1201 1202 // We have target-specific dag combine patterns for the following nodes: 1203 setTargetDAGCombine(ISD::ADD); 1204 setTargetDAGCombine(ISD::SHL); 1205 setTargetDAGCombine(ISD::SRA); 1206 setTargetDAGCombine(ISD::SRL); 1207 setTargetDAGCombine(ISD::MUL); 1208 setTargetDAGCombine(ISD::FMA); 1209 setTargetDAGCombine(ISD::SINT_TO_FP); 1210 setTargetDAGCombine(ISD::BUILD_VECTOR); 1211 if (Subtarget.hasFPCVT()) 1212 setTargetDAGCombine(ISD::UINT_TO_FP); 1213 setTargetDAGCombine(ISD::LOAD); 1214 setTargetDAGCombine(ISD::STORE); 1215 setTargetDAGCombine(ISD::BR_CC); 1216 if (Subtarget.useCRBits()) 1217 setTargetDAGCombine(ISD::BRCOND); 1218 setTargetDAGCombine(ISD::BSWAP); 1219 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1220 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1221 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1222 1223 setTargetDAGCombine(ISD::SIGN_EXTEND); 1224 setTargetDAGCombine(ISD::ZERO_EXTEND); 1225 setTargetDAGCombine(ISD::ANY_EXTEND); 1226 1227 setTargetDAGCombine(ISD::TRUNCATE); 1228 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1229 1230 1231 if (Subtarget.useCRBits()) { 1232 setTargetDAGCombine(ISD::TRUNCATE); 1233 setTargetDAGCombine(ISD::SETCC); 1234 setTargetDAGCombine(ISD::SELECT_CC); 1235 } 1236 1237 if (Subtarget.hasP9Altivec()) { 1238 setTargetDAGCombine(ISD::ABS); 1239 setTargetDAGCombine(ISD::VSELECT); 1240 } 1241 1242 setLibcallName(RTLIB::LOG_F128, "logf128"); 1243 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1244 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1245 setLibcallName(RTLIB::EXP_F128, "expf128"); 1246 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1247 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1248 setLibcallName(RTLIB::COS_F128, "cosf128"); 1249 setLibcallName(RTLIB::POW_F128, "powf128"); 1250 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1251 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1252 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1253 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1254 1255 // With 32 condition bits, we don't need to sink (and duplicate) compares 1256 // aggressively in CodeGenPrep. 1257 if (Subtarget.useCRBits()) { 1258 setHasMultipleConditionRegisters(); 1259 setJumpIsExpensive(); 1260 } 1261 1262 setMinFunctionAlignment(Align(4)); 1263 1264 switch (Subtarget.getCPUDirective()) { 1265 default: break; 1266 case PPC::DIR_970: 1267 case PPC::DIR_A2: 1268 case PPC::DIR_E500: 1269 case PPC::DIR_E500mc: 1270 case PPC::DIR_E5500: 1271 case PPC::DIR_PWR4: 1272 case PPC::DIR_PWR5: 1273 case PPC::DIR_PWR5X: 1274 case PPC::DIR_PWR6: 1275 case PPC::DIR_PWR6X: 1276 case PPC::DIR_PWR7: 1277 case PPC::DIR_PWR8: 1278 case PPC::DIR_PWR9: 1279 case PPC::DIR_PWR10: 1280 case PPC::DIR_PWR_FUTURE: 1281 setPrefLoopAlignment(Align(16)); 1282 setPrefFunctionAlignment(Align(16)); 1283 break; 1284 } 1285 1286 if (Subtarget.enableMachineScheduler()) 1287 setSchedulingPreference(Sched::Source); 1288 else 1289 setSchedulingPreference(Sched::Hybrid); 1290 1291 computeRegisterProperties(STI.getRegisterInfo()); 1292 1293 // The Freescale cores do better with aggressive inlining of memcpy and 1294 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1295 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1296 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1297 MaxStoresPerMemset = 32; 1298 MaxStoresPerMemsetOptSize = 16; 1299 MaxStoresPerMemcpy = 32; 1300 MaxStoresPerMemcpyOptSize = 8; 1301 MaxStoresPerMemmove = 32; 1302 MaxStoresPerMemmoveOptSize = 8; 1303 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1304 // The A2 also benefits from (very) aggressive inlining of memcpy and 1305 // friends. The overhead of a the function call, even when warm, can be 1306 // over one hundred cycles. 1307 MaxStoresPerMemset = 128; 1308 MaxStoresPerMemcpy = 128; 1309 MaxStoresPerMemmove = 128; 1310 MaxLoadsPerMemcmp = 128; 1311 } else { 1312 MaxLoadsPerMemcmp = 8; 1313 MaxLoadsPerMemcmpOptSize = 4; 1314 } 1315 1316 // Let the subtarget (CPU) decide if a predictable select is more expensive 1317 // than the corresponding branch. This information is used in CGP to decide 1318 // when to convert selects into branches. 1319 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1320 } 1321 1322 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1323 /// the desired ByVal argument alignment. 1324 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1325 if (MaxAlign == MaxMaxAlign) 1326 return; 1327 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1328 if (MaxMaxAlign >= 32 && 1329 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1330 MaxAlign = Align(32); 1331 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1332 MaxAlign < 16) 1333 MaxAlign = Align(16); 1334 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1335 Align EltAlign; 1336 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1337 if (EltAlign > MaxAlign) 1338 MaxAlign = EltAlign; 1339 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1340 for (auto *EltTy : STy->elements()) { 1341 Align EltAlign; 1342 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1343 if (EltAlign > MaxAlign) 1344 MaxAlign = EltAlign; 1345 if (MaxAlign == MaxMaxAlign) 1346 break; 1347 } 1348 } 1349 } 1350 1351 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1352 /// function arguments in the caller parameter area. 1353 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1354 const DataLayout &DL) const { 1355 // 16byte and wider vectors are passed on 16byte boundary. 1356 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1357 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1358 if (Subtarget.hasAltivec()) 1359 getMaxByValAlign(Ty, Alignment, Align(16)); 1360 return Alignment.value(); 1361 } 1362 1363 bool PPCTargetLowering::useSoftFloat() const { 1364 return Subtarget.useSoftFloat(); 1365 } 1366 1367 bool PPCTargetLowering::hasSPE() const { 1368 return Subtarget.hasSPE(); 1369 } 1370 1371 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1372 return VT.isScalarInteger(); 1373 } 1374 1375 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1376 /// type is cheaper than a multiply followed by a shift. 1377 /// This is true for words and doublewords on 64-bit PowerPC. 1378 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1379 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1380 isOperationLegal(ISD::MULHU, Type))) 1381 return true; 1382 return TargetLowering::isMulhCheaperThanMulShift(Type); 1383 } 1384 1385 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1386 switch ((PPCISD::NodeType)Opcode) { 1387 case PPCISD::FIRST_NUMBER: break; 1388 case PPCISD::FSEL: return "PPCISD::FSEL"; 1389 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1390 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1391 case PPCISD::FCFID: return "PPCISD::FCFID"; 1392 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1393 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1394 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1395 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1396 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1397 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1398 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1399 case PPCISD::FP_TO_UINT_IN_VSR: 1400 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1401 case PPCISD::FP_TO_SINT_IN_VSR: 1402 return "PPCISD::FP_TO_SINT_IN_VSR"; 1403 case PPCISD::FRE: return "PPCISD::FRE"; 1404 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1405 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1406 case PPCISD::VPERM: return "PPCISD::VPERM"; 1407 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1408 case PPCISD::XXSPLTI_SP_TO_DP: 1409 return "PPCISD::XXSPLTI_SP_TO_DP"; 1410 case PPCISD::XXSPLTI32DX: 1411 return "PPCISD::XXSPLTI32DX"; 1412 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1413 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1414 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1415 case PPCISD::CMPB: return "PPCISD::CMPB"; 1416 case PPCISD::Hi: return "PPCISD::Hi"; 1417 case PPCISD::Lo: return "PPCISD::Lo"; 1418 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1419 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1420 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1421 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1422 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1423 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1424 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1425 case PPCISD::SRL: return "PPCISD::SRL"; 1426 case PPCISD::SRA: return "PPCISD::SRA"; 1427 case PPCISD::SHL: return "PPCISD::SHL"; 1428 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1429 case PPCISD::CALL: return "PPCISD::CALL"; 1430 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1431 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1432 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1433 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1434 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1435 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1436 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1437 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1438 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1439 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1440 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1441 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1442 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1443 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1444 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1445 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1446 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1447 case PPCISD::ANDI_rec_1_EQ_BIT: 1448 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1449 case PPCISD::ANDI_rec_1_GT_BIT: 1450 return "PPCISD::ANDI_rec_1_GT_BIT"; 1451 case PPCISD::VCMP: return "PPCISD::VCMP"; 1452 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1453 case PPCISD::LBRX: return "PPCISD::LBRX"; 1454 case PPCISD::STBRX: return "PPCISD::STBRX"; 1455 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1456 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1457 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1458 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1459 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1460 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1461 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1462 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1463 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1464 case PPCISD::ST_VSR_SCAL_INT: 1465 return "PPCISD::ST_VSR_SCAL_INT"; 1466 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1467 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1468 case PPCISD::BDZ: return "PPCISD::BDZ"; 1469 case PPCISD::MFFS: return "PPCISD::MFFS"; 1470 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1471 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1472 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1473 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1474 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1475 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1476 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1477 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1478 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1479 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1480 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1481 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1482 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1483 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1484 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1485 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1486 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1487 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1488 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1489 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1490 case PPCISD::SC: return "PPCISD::SC"; 1491 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1492 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1493 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1494 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1495 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1496 case PPCISD::VABSD: return "PPCISD::VABSD"; 1497 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1498 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1499 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1500 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1501 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1502 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1503 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1504 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1505 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1506 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1507 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1508 case PPCISD::STRICT_FCTIDZ: 1509 return "PPCISD::STRICT_FCTIDZ"; 1510 case PPCISD::STRICT_FCTIWZ: 1511 return "PPCISD::STRICT_FCTIWZ"; 1512 case PPCISD::STRICT_FCTIDUZ: 1513 return "PPCISD::STRICT_FCTIDUZ"; 1514 case PPCISD::STRICT_FCTIWUZ: 1515 return "PPCISD::STRICT_FCTIWUZ"; 1516 case PPCISD::STRICT_FCFID: 1517 return "PPCISD::STRICT_FCFID"; 1518 case PPCISD::STRICT_FCFIDU: 1519 return "PPCISD::STRICT_FCFIDU"; 1520 case PPCISD::STRICT_FCFIDS: 1521 return "PPCISD::STRICT_FCFIDS"; 1522 case PPCISD::STRICT_FCFIDUS: 1523 return "PPCISD::STRICT_FCFIDUS"; 1524 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1525 } 1526 return nullptr; 1527 } 1528 1529 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1530 EVT VT) const { 1531 if (!VT.isVector()) 1532 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1533 1534 return VT.changeVectorElementTypeToInteger(); 1535 } 1536 1537 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1538 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1539 return true; 1540 } 1541 1542 //===----------------------------------------------------------------------===// 1543 // Node matching predicates, for use by the tblgen matching code. 1544 //===----------------------------------------------------------------------===// 1545 1546 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1547 static bool isFloatingPointZero(SDValue Op) { 1548 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1549 return CFP->getValueAPF().isZero(); 1550 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1551 // Maybe this has already been legalized into the constant pool? 1552 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1553 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1554 return CFP->getValueAPF().isZero(); 1555 } 1556 return false; 1557 } 1558 1559 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1560 /// true if Op is undef or if it matches the specified value. 1561 static bool isConstantOrUndef(int Op, int Val) { 1562 return Op < 0 || Op == Val; 1563 } 1564 1565 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1566 /// VPKUHUM instruction. 1567 /// The ShuffleKind distinguishes between big-endian operations with 1568 /// two different inputs (0), either-endian operations with two identical 1569 /// inputs (1), and little-endian operations with two different inputs (2). 1570 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1571 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1572 SelectionDAG &DAG) { 1573 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1574 if (ShuffleKind == 0) { 1575 if (IsLE) 1576 return false; 1577 for (unsigned i = 0; i != 16; ++i) 1578 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1579 return false; 1580 } else if (ShuffleKind == 2) { 1581 if (!IsLE) 1582 return false; 1583 for (unsigned i = 0; i != 16; ++i) 1584 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1585 return false; 1586 } else if (ShuffleKind == 1) { 1587 unsigned j = IsLE ? 0 : 1; 1588 for (unsigned i = 0; i != 8; ++i) 1589 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1590 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1591 return false; 1592 } 1593 return true; 1594 } 1595 1596 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1597 /// VPKUWUM instruction. 1598 /// The ShuffleKind distinguishes between big-endian operations with 1599 /// two different inputs (0), either-endian operations with two identical 1600 /// inputs (1), and little-endian operations with two different inputs (2). 1601 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1602 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1603 SelectionDAG &DAG) { 1604 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1605 if (ShuffleKind == 0) { 1606 if (IsLE) 1607 return false; 1608 for (unsigned i = 0; i != 16; i += 2) 1609 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1610 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1611 return false; 1612 } else if (ShuffleKind == 2) { 1613 if (!IsLE) 1614 return false; 1615 for (unsigned i = 0; i != 16; i += 2) 1616 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1617 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1618 return false; 1619 } else if (ShuffleKind == 1) { 1620 unsigned j = IsLE ? 0 : 2; 1621 for (unsigned i = 0; i != 8; i += 2) 1622 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1623 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1624 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1625 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1626 return false; 1627 } 1628 return true; 1629 } 1630 1631 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1632 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1633 /// current subtarget. 1634 /// 1635 /// The ShuffleKind distinguishes between big-endian operations with 1636 /// two different inputs (0), either-endian operations with two identical 1637 /// inputs (1), and little-endian operations with two different inputs (2). 1638 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1639 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1640 SelectionDAG &DAG) { 1641 const PPCSubtarget& Subtarget = 1642 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1643 if (!Subtarget.hasP8Vector()) 1644 return false; 1645 1646 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1647 if (ShuffleKind == 0) { 1648 if (IsLE) 1649 return false; 1650 for (unsigned i = 0; i != 16; i += 4) 1651 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1652 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1653 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1654 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1655 return false; 1656 } else if (ShuffleKind == 2) { 1657 if (!IsLE) 1658 return false; 1659 for (unsigned i = 0; i != 16; i += 4) 1660 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1661 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1662 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1663 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1664 return false; 1665 } else if (ShuffleKind == 1) { 1666 unsigned j = IsLE ? 0 : 4; 1667 for (unsigned i = 0; i != 8; i += 4) 1668 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1669 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1670 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1671 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1672 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1673 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1674 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1675 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1676 return false; 1677 } 1678 return true; 1679 } 1680 1681 /// isVMerge - Common function, used to match vmrg* shuffles. 1682 /// 1683 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1684 unsigned LHSStart, unsigned RHSStart) { 1685 if (N->getValueType(0) != MVT::v16i8) 1686 return false; 1687 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1688 "Unsupported merge size!"); 1689 1690 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1691 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1692 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1693 LHSStart+j+i*UnitSize) || 1694 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1695 RHSStart+j+i*UnitSize)) 1696 return false; 1697 } 1698 return true; 1699 } 1700 1701 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1702 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1703 /// The ShuffleKind distinguishes between big-endian merges with two 1704 /// different inputs (0), either-endian merges with two identical inputs (1), 1705 /// and little-endian merges with two different inputs (2). For the latter, 1706 /// the input operands are swapped (see PPCInstrAltivec.td). 1707 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1708 unsigned ShuffleKind, SelectionDAG &DAG) { 1709 if (DAG.getDataLayout().isLittleEndian()) { 1710 if (ShuffleKind == 1) // unary 1711 return isVMerge(N, UnitSize, 0, 0); 1712 else if (ShuffleKind == 2) // swapped 1713 return isVMerge(N, UnitSize, 0, 16); 1714 else 1715 return false; 1716 } else { 1717 if (ShuffleKind == 1) // unary 1718 return isVMerge(N, UnitSize, 8, 8); 1719 else if (ShuffleKind == 0) // normal 1720 return isVMerge(N, UnitSize, 8, 24); 1721 else 1722 return false; 1723 } 1724 } 1725 1726 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1727 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1728 /// The ShuffleKind distinguishes between big-endian merges with two 1729 /// different inputs (0), either-endian merges with two identical inputs (1), 1730 /// and little-endian merges with two different inputs (2). For the latter, 1731 /// the input operands are swapped (see PPCInstrAltivec.td). 1732 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1733 unsigned ShuffleKind, SelectionDAG &DAG) { 1734 if (DAG.getDataLayout().isLittleEndian()) { 1735 if (ShuffleKind == 1) // unary 1736 return isVMerge(N, UnitSize, 8, 8); 1737 else if (ShuffleKind == 2) // swapped 1738 return isVMerge(N, UnitSize, 8, 24); 1739 else 1740 return false; 1741 } else { 1742 if (ShuffleKind == 1) // unary 1743 return isVMerge(N, UnitSize, 0, 0); 1744 else if (ShuffleKind == 0) // normal 1745 return isVMerge(N, UnitSize, 0, 16); 1746 else 1747 return false; 1748 } 1749 } 1750 1751 /** 1752 * Common function used to match vmrgew and vmrgow shuffles 1753 * 1754 * The indexOffset determines whether to look for even or odd words in 1755 * the shuffle mask. This is based on the of the endianness of the target 1756 * machine. 1757 * - Little Endian: 1758 * - Use offset of 0 to check for odd elements 1759 * - Use offset of 4 to check for even elements 1760 * - Big Endian: 1761 * - Use offset of 0 to check for even elements 1762 * - Use offset of 4 to check for odd elements 1763 * A detailed description of the vector element ordering for little endian and 1764 * big endian can be found at 1765 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1766 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1767 * compiler differences mean to you 1768 * 1769 * The mask to the shuffle vector instruction specifies the indices of the 1770 * elements from the two input vectors to place in the result. The elements are 1771 * numbered in array-access order, starting with the first vector. These vectors 1772 * are always of type v16i8, thus each vector will contain 16 elements of size 1773 * 8. More info on the shuffle vector can be found in the 1774 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1775 * Language Reference. 1776 * 1777 * The RHSStartValue indicates whether the same input vectors are used (unary) 1778 * or two different input vectors are used, based on the following: 1779 * - If the instruction uses the same vector for both inputs, the range of the 1780 * indices will be 0 to 15. In this case, the RHSStart value passed should 1781 * be 0. 1782 * - If the instruction has two different vectors then the range of the 1783 * indices will be 0 to 31. In this case, the RHSStart value passed should 1784 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1785 * to 31 specify elements in the second vector). 1786 * 1787 * \param[in] N The shuffle vector SD Node to analyze 1788 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1789 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1790 * vector to the shuffle_vector instruction 1791 * \return true iff this shuffle vector represents an even or odd word merge 1792 */ 1793 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1794 unsigned RHSStartValue) { 1795 if (N->getValueType(0) != MVT::v16i8) 1796 return false; 1797 1798 for (unsigned i = 0; i < 2; ++i) 1799 for (unsigned j = 0; j < 4; ++j) 1800 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1801 i*RHSStartValue+j+IndexOffset) || 1802 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1803 i*RHSStartValue+j+IndexOffset+8)) 1804 return false; 1805 return true; 1806 } 1807 1808 /** 1809 * Determine if the specified shuffle mask is suitable for the vmrgew or 1810 * vmrgow instructions. 1811 * 1812 * \param[in] N The shuffle vector SD Node to analyze 1813 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1814 * \param[in] ShuffleKind Identify the type of merge: 1815 * - 0 = big-endian merge with two different inputs; 1816 * - 1 = either-endian merge with two identical inputs; 1817 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1818 * little-endian merges). 1819 * \param[in] DAG The current SelectionDAG 1820 * \return true iff this shuffle mask 1821 */ 1822 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1823 unsigned ShuffleKind, SelectionDAG &DAG) { 1824 if (DAG.getDataLayout().isLittleEndian()) { 1825 unsigned indexOffset = CheckEven ? 4 : 0; 1826 if (ShuffleKind == 1) // Unary 1827 return isVMerge(N, indexOffset, 0); 1828 else if (ShuffleKind == 2) // swapped 1829 return isVMerge(N, indexOffset, 16); 1830 else 1831 return false; 1832 } 1833 else { 1834 unsigned indexOffset = CheckEven ? 0 : 4; 1835 if (ShuffleKind == 1) // Unary 1836 return isVMerge(N, indexOffset, 0); 1837 else if (ShuffleKind == 0) // Normal 1838 return isVMerge(N, indexOffset, 16); 1839 else 1840 return false; 1841 } 1842 return false; 1843 } 1844 1845 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1846 /// amount, otherwise return -1. 1847 /// The ShuffleKind distinguishes between big-endian operations with two 1848 /// different inputs (0), either-endian operations with two identical inputs 1849 /// (1), and little-endian operations with two different inputs (2). For the 1850 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1851 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1852 SelectionDAG &DAG) { 1853 if (N->getValueType(0) != MVT::v16i8) 1854 return -1; 1855 1856 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1857 1858 // Find the first non-undef value in the shuffle mask. 1859 unsigned i; 1860 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1861 /*search*/; 1862 1863 if (i == 16) return -1; // all undef. 1864 1865 // Otherwise, check to see if the rest of the elements are consecutively 1866 // numbered from this value. 1867 unsigned ShiftAmt = SVOp->getMaskElt(i); 1868 if (ShiftAmt < i) return -1; 1869 1870 ShiftAmt -= i; 1871 bool isLE = DAG.getDataLayout().isLittleEndian(); 1872 1873 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1874 // Check the rest of the elements to see if they are consecutive. 1875 for (++i; i != 16; ++i) 1876 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1877 return -1; 1878 } else if (ShuffleKind == 1) { 1879 // Check the rest of the elements to see if they are consecutive. 1880 for (++i; i != 16; ++i) 1881 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1882 return -1; 1883 } else 1884 return -1; 1885 1886 if (isLE) 1887 ShiftAmt = 16 - ShiftAmt; 1888 1889 return ShiftAmt; 1890 } 1891 1892 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1893 /// specifies a splat of a single element that is suitable for input to 1894 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1895 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1896 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1897 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1898 1899 // The consecutive indices need to specify an element, not part of two 1900 // different elements. So abandon ship early if this isn't the case. 1901 if (N->getMaskElt(0) % EltSize != 0) 1902 return false; 1903 1904 // This is a splat operation if each element of the permute is the same, and 1905 // if the value doesn't reference the second vector. 1906 unsigned ElementBase = N->getMaskElt(0); 1907 1908 // FIXME: Handle UNDEF elements too! 1909 if (ElementBase >= 16) 1910 return false; 1911 1912 // Check that the indices are consecutive, in the case of a multi-byte element 1913 // splatted with a v16i8 mask. 1914 for (unsigned i = 1; i != EltSize; ++i) 1915 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1916 return false; 1917 1918 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1919 if (N->getMaskElt(i) < 0) continue; 1920 for (unsigned j = 0; j != EltSize; ++j) 1921 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1922 return false; 1923 } 1924 return true; 1925 } 1926 1927 /// Check that the mask is shuffling N byte elements. Within each N byte 1928 /// element of the mask, the indices could be either in increasing or 1929 /// decreasing order as long as they are consecutive. 1930 /// \param[in] N the shuffle vector SD Node to analyze 1931 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1932 /// Word/DoubleWord/QuadWord). 1933 /// \param[in] StepLen the delta indices number among the N byte element, if 1934 /// the mask is in increasing/decreasing order then it is 1/-1. 1935 /// \return true iff the mask is shuffling N byte elements. 1936 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1937 int StepLen) { 1938 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1939 "Unexpected element width."); 1940 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1941 1942 unsigned NumOfElem = 16 / Width; 1943 unsigned MaskVal[16]; // Width is never greater than 16 1944 for (unsigned i = 0; i < NumOfElem; ++i) { 1945 MaskVal[0] = N->getMaskElt(i * Width); 1946 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1947 return false; 1948 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1949 return false; 1950 } 1951 1952 for (unsigned int j = 1; j < Width; ++j) { 1953 MaskVal[j] = N->getMaskElt(i * Width + j); 1954 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1955 return false; 1956 } 1957 } 1958 } 1959 1960 return true; 1961 } 1962 1963 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1964 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1965 if (!isNByteElemShuffleMask(N, 4, 1)) 1966 return false; 1967 1968 // Now we look at mask elements 0,4,8,12 1969 unsigned M0 = N->getMaskElt(0) / 4; 1970 unsigned M1 = N->getMaskElt(4) / 4; 1971 unsigned M2 = N->getMaskElt(8) / 4; 1972 unsigned M3 = N->getMaskElt(12) / 4; 1973 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1974 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1975 1976 // Below, let H and L be arbitrary elements of the shuffle mask 1977 // where H is in the range [4,7] and L is in the range [0,3]. 1978 // H, 1, 2, 3 or L, 5, 6, 7 1979 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1980 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1981 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1982 InsertAtByte = IsLE ? 12 : 0; 1983 Swap = M0 < 4; 1984 return true; 1985 } 1986 // 0, H, 2, 3 or 4, L, 6, 7 1987 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1988 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1989 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1990 InsertAtByte = IsLE ? 8 : 4; 1991 Swap = M1 < 4; 1992 return true; 1993 } 1994 // 0, 1, H, 3 or 4, 5, L, 7 1995 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1996 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1997 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1998 InsertAtByte = IsLE ? 4 : 8; 1999 Swap = M2 < 4; 2000 return true; 2001 } 2002 // 0, 1, 2, H or 4, 5, 6, L 2003 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2004 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2005 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2006 InsertAtByte = IsLE ? 0 : 12; 2007 Swap = M3 < 4; 2008 return true; 2009 } 2010 2011 // If both vector operands for the shuffle are the same vector, the mask will 2012 // contain only elements from the first one and the second one will be undef. 2013 if (N->getOperand(1).isUndef()) { 2014 ShiftElts = 0; 2015 Swap = true; 2016 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2017 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2018 InsertAtByte = IsLE ? 12 : 0; 2019 return true; 2020 } 2021 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2022 InsertAtByte = IsLE ? 8 : 4; 2023 return true; 2024 } 2025 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2026 InsertAtByte = IsLE ? 4 : 8; 2027 return true; 2028 } 2029 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2030 InsertAtByte = IsLE ? 0 : 12; 2031 return true; 2032 } 2033 } 2034 2035 return false; 2036 } 2037 2038 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2039 bool &Swap, bool IsLE) { 2040 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2041 // Ensure each byte index of the word is consecutive. 2042 if (!isNByteElemShuffleMask(N, 4, 1)) 2043 return false; 2044 2045 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2046 unsigned M0 = N->getMaskElt(0) / 4; 2047 unsigned M1 = N->getMaskElt(4) / 4; 2048 unsigned M2 = N->getMaskElt(8) / 4; 2049 unsigned M3 = N->getMaskElt(12) / 4; 2050 2051 // If both vector operands for the shuffle are the same vector, the mask will 2052 // contain only elements from the first one and the second one will be undef. 2053 if (N->getOperand(1).isUndef()) { 2054 assert(M0 < 4 && "Indexing into an undef vector?"); 2055 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2056 return false; 2057 2058 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2059 Swap = false; 2060 return true; 2061 } 2062 2063 // Ensure each word index of the ShuffleVector Mask is consecutive. 2064 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2065 return false; 2066 2067 if (IsLE) { 2068 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2069 // Input vectors don't need to be swapped if the leading element 2070 // of the result is one of the 3 left elements of the second vector 2071 // (or if there is no shift to be done at all). 2072 Swap = false; 2073 ShiftElts = (8 - M0) % 8; 2074 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2075 // Input vectors need to be swapped if the leading element 2076 // of the result is one of the 3 left elements of the first vector 2077 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2078 Swap = true; 2079 ShiftElts = (4 - M0) % 4; 2080 } 2081 2082 return true; 2083 } else { // BE 2084 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2085 // Input vectors don't need to be swapped if the leading element 2086 // of the result is one of the 4 elements of the first vector. 2087 Swap = false; 2088 ShiftElts = M0; 2089 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2090 // Input vectors need to be swapped if the leading element 2091 // of the result is one of the 4 elements of the right vector. 2092 Swap = true; 2093 ShiftElts = M0 - 4; 2094 } 2095 2096 return true; 2097 } 2098 } 2099 2100 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2101 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2102 2103 if (!isNByteElemShuffleMask(N, Width, -1)) 2104 return false; 2105 2106 for (int i = 0; i < 16; i += Width) 2107 if (N->getMaskElt(i) != i + Width - 1) 2108 return false; 2109 2110 return true; 2111 } 2112 2113 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2114 return isXXBRShuffleMaskHelper(N, 2); 2115 } 2116 2117 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2118 return isXXBRShuffleMaskHelper(N, 4); 2119 } 2120 2121 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2122 return isXXBRShuffleMaskHelper(N, 8); 2123 } 2124 2125 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2126 return isXXBRShuffleMaskHelper(N, 16); 2127 } 2128 2129 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2130 /// if the inputs to the instruction should be swapped and set \p DM to the 2131 /// value for the immediate. 2132 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2133 /// AND element 0 of the result comes from the first input (LE) or second input 2134 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2135 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2136 /// mask. 2137 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2138 bool &Swap, bool IsLE) { 2139 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2140 2141 // Ensure each byte index of the double word is consecutive. 2142 if (!isNByteElemShuffleMask(N, 8, 1)) 2143 return false; 2144 2145 unsigned M0 = N->getMaskElt(0) / 8; 2146 unsigned M1 = N->getMaskElt(8) / 8; 2147 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2148 2149 // If both vector operands for the shuffle are the same vector, the mask will 2150 // contain only elements from the first one and the second one will be undef. 2151 if (N->getOperand(1).isUndef()) { 2152 if ((M0 | M1) < 2) { 2153 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2154 Swap = false; 2155 return true; 2156 } else 2157 return false; 2158 } 2159 2160 if (IsLE) { 2161 if (M0 > 1 && M1 < 2) { 2162 Swap = false; 2163 } else if (M0 < 2 && M1 > 1) { 2164 M0 = (M0 + 2) % 4; 2165 M1 = (M1 + 2) % 4; 2166 Swap = true; 2167 } else 2168 return false; 2169 2170 // Note: if control flow comes here that means Swap is already set above 2171 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2172 return true; 2173 } else { // BE 2174 if (M0 < 2 && M1 > 1) { 2175 Swap = false; 2176 } else if (M0 > 1 && M1 < 2) { 2177 M0 = (M0 + 2) % 4; 2178 M1 = (M1 + 2) % 4; 2179 Swap = true; 2180 } else 2181 return false; 2182 2183 // Note: if control flow comes here that means Swap is already set above 2184 DM = (M0 << 1) + (M1 & 1); 2185 return true; 2186 } 2187 } 2188 2189 2190 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2191 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2192 /// elements are counted from the left of the vector register). 2193 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2194 SelectionDAG &DAG) { 2195 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2196 assert(isSplatShuffleMask(SVOp, EltSize)); 2197 if (DAG.getDataLayout().isLittleEndian()) 2198 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2199 else 2200 return SVOp->getMaskElt(0) / EltSize; 2201 } 2202 2203 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2204 /// by using a vspltis[bhw] instruction of the specified element size, return 2205 /// the constant being splatted. The ByteSize field indicates the number of 2206 /// bytes of each element [124] -> [bhw]. 2207 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2208 SDValue OpVal(nullptr, 0); 2209 2210 // If ByteSize of the splat is bigger than the element size of the 2211 // build_vector, then we have a case where we are checking for a splat where 2212 // multiple elements of the buildvector are folded together into a single 2213 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2214 unsigned EltSize = 16/N->getNumOperands(); 2215 if (EltSize < ByteSize) { 2216 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2217 SDValue UniquedVals[4]; 2218 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2219 2220 // See if all of the elements in the buildvector agree across. 2221 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2222 if (N->getOperand(i).isUndef()) continue; 2223 // If the element isn't a constant, bail fully out. 2224 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2225 2226 if (!UniquedVals[i&(Multiple-1)].getNode()) 2227 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2228 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2229 return SDValue(); // no match. 2230 } 2231 2232 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2233 // either constant or undef values that are identical for each chunk. See 2234 // if these chunks can form into a larger vspltis*. 2235 2236 // Check to see if all of the leading entries are either 0 or -1. If 2237 // neither, then this won't fit into the immediate field. 2238 bool LeadingZero = true; 2239 bool LeadingOnes = true; 2240 for (unsigned i = 0; i != Multiple-1; ++i) { 2241 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2242 2243 LeadingZero &= isNullConstant(UniquedVals[i]); 2244 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2245 } 2246 // Finally, check the least significant entry. 2247 if (LeadingZero) { 2248 if (!UniquedVals[Multiple-1].getNode()) 2249 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2250 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2251 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2252 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2253 } 2254 if (LeadingOnes) { 2255 if (!UniquedVals[Multiple-1].getNode()) 2256 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2257 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2258 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2259 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2260 } 2261 2262 return SDValue(); 2263 } 2264 2265 // Check to see if this buildvec has a single non-undef value in its elements. 2266 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2267 if (N->getOperand(i).isUndef()) continue; 2268 if (!OpVal.getNode()) 2269 OpVal = N->getOperand(i); 2270 else if (OpVal != N->getOperand(i)) 2271 return SDValue(); 2272 } 2273 2274 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2275 2276 unsigned ValSizeInBytes = EltSize; 2277 uint64_t Value = 0; 2278 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2279 Value = CN->getZExtValue(); 2280 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2281 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2282 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2283 } 2284 2285 // If the splat value is larger than the element value, then we can never do 2286 // this splat. The only case that we could fit the replicated bits into our 2287 // immediate field for would be zero, and we prefer to use vxor for it. 2288 if (ValSizeInBytes < ByteSize) return SDValue(); 2289 2290 // If the element value is larger than the splat value, check if it consists 2291 // of a repeated bit pattern of size ByteSize. 2292 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2293 return SDValue(); 2294 2295 // Properly sign extend the value. 2296 int MaskVal = SignExtend32(Value, ByteSize * 8); 2297 2298 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2299 if (MaskVal == 0) return SDValue(); 2300 2301 // Finally, if this value fits in a 5 bit sext field, return it 2302 if (SignExtend32<5>(MaskVal) == MaskVal) 2303 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2304 return SDValue(); 2305 } 2306 2307 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2308 /// amount, otherwise return -1. 2309 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2310 EVT VT = N->getValueType(0); 2311 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2312 return -1; 2313 2314 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2315 2316 // Find the first non-undef value in the shuffle mask. 2317 unsigned i; 2318 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2319 /*search*/; 2320 2321 if (i == 4) return -1; // all undef. 2322 2323 // Otherwise, check to see if the rest of the elements are consecutively 2324 // numbered from this value. 2325 unsigned ShiftAmt = SVOp->getMaskElt(i); 2326 if (ShiftAmt < i) return -1; 2327 ShiftAmt -= i; 2328 2329 // Check the rest of the elements to see if they are consecutive. 2330 for (++i; i != 4; ++i) 2331 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2332 return -1; 2333 2334 return ShiftAmt; 2335 } 2336 2337 //===----------------------------------------------------------------------===// 2338 // Addressing Mode Selection 2339 //===----------------------------------------------------------------------===// 2340 2341 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2342 /// or 64-bit immediate, and if the value can be accurately represented as a 2343 /// sign extension from a 16-bit value. If so, this returns true and the 2344 /// immediate. 2345 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2346 if (!isa<ConstantSDNode>(N)) 2347 return false; 2348 2349 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2350 if (N->getValueType(0) == MVT::i32) 2351 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2352 else 2353 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2354 } 2355 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2356 return isIntS16Immediate(Op.getNode(), Imm); 2357 } 2358 2359 2360 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2361 /// be represented as an indexed [r+r] operation. 2362 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2363 SDValue &Index, 2364 SelectionDAG &DAG) const { 2365 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2366 UI != E; ++UI) { 2367 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2368 if (Memop->getMemoryVT() == MVT::f64) { 2369 Base = N.getOperand(0); 2370 Index = N.getOperand(1); 2371 return true; 2372 } 2373 } 2374 } 2375 return false; 2376 } 2377 2378 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2379 /// can be represented as an indexed [r+r] operation. Returns false if it 2380 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2381 /// non-zero and N can be represented by a base register plus a signed 16-bit 2382 /// displacement, make a more precise judgement by checking (displacement % \p 2383 /// EncodingAlignment). 2384 bool PPCTargetLowering::SelectAddressRegReg( 2385 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2386 MaybeAlign EncodingAlignment) const { 2387 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2388 // a [pc+imm]. 2389 if (SelectAddressPCRel(N, Base)) 2390 return false; 2391 2392 int16_t Imm = 0; 2393 if (N.getOpcode() == ISD::ADD) { 2394 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2395 // SPE load/store can only handle 8-bit offsets. 2396 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2397 return true; 2398 if (isIntS16Immediate(N.getOperand(1), Imm) && 2399 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2400 return false; // r+i 2401 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2402 return false; // r+i 2403 2404 Base = N.getOperand(0); 2405 Index = N.getOperand(1); 2406 return true; 2407 } else if (N.getOpcode() == ISD::OR) { 2408 if (isIntS16Immediate(N.getOperand(1), Imm) && 2409 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2410 return false; // r+i can fold it if we can. 2411 2412 // If this is an or of disjoint bitfields, we can codegen this as an add 2413 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2414 // disjoint. 2415 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2416 2417 if (LHSKnown.Zero.getBoolValue()) { 2418 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2419 // If all of the bits are known zero on the LHS or RHS, the add won't 2420 // carry. 2421 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2422 Base = N.getOperand(0); 2423 Index = N.getOperand(1); 2424 return true; 2425 } 2426 } 2427 } 2428 2429 return false; 2430 } 2431 2432 // If we happen to be doing an i64 load or store into a stack slot that has 2433 // less than a 4-byte alignment, then the frame-index elimination may need to 2434 // use an indexed load or store instruction (because the offset may not be a 2435 // multiple of 4). The extra register needed to hold the offset comes from the 2436 // register scavenger, and it is possible that the scavenger will need to use 2437 // an emergency spill slot. As a result, we need to make sure that a spill slot 2438 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2439 // stack slot. 2440 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2441 // FIXME: This does not handle the LWA case. 2442 if (VT != MVT::i64) 2443 return; 2444 2445 // NOTE: We'll exclude negative FIs here, which come from argument 2446 // lowering, because there are no known test cases triggering this problem 2447 // using packed structures (or similar). We can remove this exclusion if 2448 // we find such a test case. The reason why this is so test-case driven is 2449 // because this entire 'fixup' is only to prevent crashes (from the 2450 // register scavenger) on not-really-valid inputs. For example, if we have: 2451 // %a = alloca i1 2452 // %b = bitcast i1* %a to i64* 2453 // store i64* a, i64 b 2454 // then the store should really be marked as 'align 1', but is not. If it 2455 // were marked as 'align 1' then the indexed form would have been 2456 // instruction-selected initially, and the problem this 'fixup' is preventing 2457 // won't happen regardless. 2458 if (FrameIdx < 0) 2459 return; 2460 2461 MachineFunction &MF = DAG.getMachineFunction(); 2462 MachineFrameInfo &MFI = MF.getFrameInfo(); 2463 2464 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2465 return; 2466 2467 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2468 FuncInfo->setHasNonRISpills(); 2469 } 2470 2471 /// Returns true if the address N can be represented by a base register plus 2472 /// a signed 16-bit displacement [r+imm], and if it is not better 2473 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2474 /// displacements that are multiples of that value. 2475 bool PPCTargetLowering::SelectAddressRegImm( 2476 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2477 MaybeAlign EncodingAlignment) const { 2478 // FIXME dl should come from parent load or store, not from address 2479 SDLoc dl(N); 2480 2481 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2482 // a [pc+imm]. 2483 if (SelectAddressPCRel(N, Base)) 2484 return false; 2485 2486 // If this can be more profitably realized as r+r, fail. 2487 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2488 return false; 2489 2490 if (N.getOpcode() == ISD::ADD) { 2491 int16_t imm = 0; 2492 if (isIntS16Immediate(N.getOperand(1), imm) && 2493 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2494 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2495 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2496 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2497 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2498 } else { 2499 Base = N.getOperand(0); 2500 } 2501 return true; // [r+i] 2502 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2503 // Match LOAD (ADD (X, Lo(G))). 2504 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2505 && "Cannot handle constant offsets yet!"); 2506 Disp = N.getOperand(1).getOperand(0); // The global address. 2507 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2508 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2509 Disp.getOpcode() == ISD::TargetConstantPool || 2510 Disp.getOpcode() == ISD::TargetJumpTable); 2511 Base = N.getOperand(0); 2512 return true; // [&g+r] 2513 } 2514 } else if (N.getOpcode() == ISD::OR) { 2515 int16_t imm = 0; 2516 if (isIntS16Immediate(N.getOperand(1), imm) && 2517 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2518 // If this is an or of disjoint bitfields, we can codegen this as an add 2519 // (for better address arithmetic) if the LHS and RHS of the OR are 2520 // provably disjoint. 2521 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2522 2523 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2524 // If all of the bits are known zero on the LHS or RHS, the add won't 2525 // carry. 2526 if (FrameIndexSDNode *FI = 2527 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2528 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2529 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2530 } else { 2531 Base = N.getOperand(0); 2532 } 2533 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2534 return true; 2535 } 2536 } 2537 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2538 // Loading from a constant address. 2539 2540 // If this address fits entirely in a 16-bit sext immediate field, codegen 2541 // this as "d, 0" 2542 int16_t Imm; 2543 if (isIntS16Immediate(CN, Imm) && 2544 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2545 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2546 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2547 CN->getValueType(0)); 2548 return true; 2549 } 2550 2551 // Handle 32-bit sext immediates with LIS + addr mode. 2552 if ((CN->getValueType(0) == MVT::i32 || 2553 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2554 (!EncodingAlignment || 2555 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2556 int Addr = (int)CN->getZExtValue(); 2557 2558 // Otherwise, break this down into an LIS + disp. 2559 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2560 2561 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2562 MVT::i32); 2563 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2564 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2565 return true; 2566 } 2567 } 2568 2569 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2570 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2571 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2572 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2573 } else 2574 Base = N; 2575 return true; // [r+0] 2576 } 2577 2578 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2579 /// represented as an indexed [r+r] operation. 2580 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2581 SDValue &Index, 2582 SelectionDAG &DAG) const { 2583 // Check to see if we can easily represent this as an [r+r] address. This 2584 // will fail if it thinks that the address is more profitably represented as 2585 // reg+imm, e.g. where imm = 0. 2586 if (SelectAddressRegReg(N, Base, Index, DAG)) 2587 return true; 2588 2589 // If the address is the result of an add, we will utilize the fact that the 2590 // address calculation includes an implicit add. However, we can reduce 2591 // register pressure if we do not materialize a constant just for use as the 2592 // index register. We only get rid of the add if it is not an add of a 2593 // value and a 16-bit signed constant and both have a single use. 2594 int16_t imm = 0; 2595 if (N.getOpcode() == ISD::ADD && 2596 (!isIntS16Immediate(N.getOperand(1), imm) || 2597 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2598 Base = N.getOperand(0); 2599 Index = N.getOperand(1); 2600 return true; 2601 } 2602 2603 // Otherwise, do it the hard way, using R0 as the base register. 2604 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2605 N.getValueType()); 2606 Index = N; 2607 return true; 2608 } 2609 2610 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2611 Ty *PCRelCand = dyn_cast<Ty>(N); 2612 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2613 } 2614 2615 /// Returns true if this address is a PC Relative address. 2616 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2617 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2618 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2619 // This is a materialize PC Relative node. Always select this as PC Relative. 2620 Base = N; 2621 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2622 return true; 2623 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2624 isValidPCRelNode<GlobalAddressSDNode>(N) || 2625 isValidPCRelNode<JumpTableSDNode>(N) || 2626 isValidPCRelNode<BlockAddressSDNode>(N)) 2627 return true; 2628 return false; 2629 } 2630 2631 /// Returns true if we should use a direct load into vector instruction 2632 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2633 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2634 2635 // If there are any other uses other than scalar to vector, then we should 2636 // keep it as a scalar load -> direct move pattern to prevent multiple 2637 // loads. 2638 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2639 if (!LD) 2640 return false; 2641 2642 EVT MemVT = LD->getMemoryVT(); 2643 if (!MemVT.isSimple()) 2644 return false; 2645 switch(MemVT.getSimpleVT().SimpleTy) { 2646 case MVT::i64: 2647 break; 2648 case MVT::i32: 2649 if (!ST.hasP8Vector()) 2650 return false; 2651 break; 2652 case MVT::i16: 2653 case MVT::i8: 2654 if (!ST.hasP9Vector()) 2655 return false; 2656 break; 2657 default: 2658 return false; 2659 } 2660 2661 SDValue LoadedVal(N, 0); 2662 if (!LoadedVal.hasOneUse()) 2663 return false; 2664 2665 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2666 UI != UE; ++UI) 2667 if (UI.getUse().get().getResNo() == 0 && 2668 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2669 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2670 return false; 2671 2672 return true; 2673 } 2674 2675 /// getPreIndexedAddressParts - returns true by value, base pointer and 2676 /// offset pointer and addressing mode by reference if the node's address 2677 /// can be legally represented as pre-indexed load / store address. 2678 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2679 SDValue &Offset, 2680 ISD::MemIndexedMode &AM, 2681 SelectionDAG &DAG) const { 2682 if (DisablePPCPreinc) return false; 2683 2684 bool isLoad = true; 2685 SDValue Ptr; 2686 EVT VT; 2687 unsigned Alignment; 2688 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2689 Ptr = LD->getBasePtr(); 2690 VT = LD->getMemoryVT(); 2691 Alignment = LD->getAlignment(); 2692 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2693 Ptr = ST->getBasePtr(); 2694 VT = ST->getMemoryVT(); 2695 Alignment = ST->getAlignment(); 2696 isLoad = false; 2697 } else 2698 return false; 2699 2700 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2701 // instructions because we can fold these into a more efficient instruction 2702 // instead, (such as LXSD). 2703 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2704 return false; 2705 } 2706 2707 // PowerPC doesn't have preinc load/store instructions for vectors 2708 if (VT.isVector()) 2709 return false; 2710 2711 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2712 // Common code will reject creating a pre-inc form if the base pointer 2713 // is a frame index, or if N is a store and the base pointer is either 2714 // the same as or a predecessor of the value being stored. Check for 2715 // those situations here, and try with swapped Base/Offset instead. 2716 bool Swap = false; 2717 2718 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2719 Swap = true; 2720 else if (!isLoad) { 2721 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2722 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2723 Swap = true; 2724 } 2725 2726 if (Swap) 2727 std::swap(Base, Offset); 2728 2729 AM = ISD::PRE_INC; 2730 return true; 2731 } 2732 2733 // LDU/STU can only handle immediates that are a multiple of 4. 2734 if (VT != MVT::i64) { 2735 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2736 return false; 2737 } else { 2738 // LDU/STU need an address with at least 4-byte alignment. 2739 if (Alignment < 4) 2740 return false; 2741 2742 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2743 return false; 2744 } 2745 2746 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2747 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2748 // sext i32 to i64 when addr mode is r+i. 2749 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2750 LD->getExtensionType() == ISD::SEXTLOAD && 2751 isa<ConstantSDNode>(Offset)) 2752 return false; 2753 } 2754 2755 AM = ISD::PRE_INC; 2756 return true; 2757 } 2758 2759 //===----------------------------------------------------------------------===// 2760 // LowerOperation implementation 2761 //===----------------------------------------------------------------------===// 2762 2763 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2764 /// and LoOpFlags to the target MO flags. 2765 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2766 unsigned &HiOpFlags, unsigned &LoOpFlags, 2767 const GlobalValue *GV = nullptr) { 2768 HiOpFlags = PPCII::MO_HA; 2769 LoOpFlags = PPCII::MO_LO; 2770 2771 // Don't use the pic base if not in PIC relocation model. 2772 if (IsPIC) { 2773 HiOpFlags |= PPCII::MO_PIC_FLAG; 2774 LoOpFlags |= PPCII::MO_PIC_FLAG; 2775 } 2776 } 2777 2778 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2779 SelectionDAG &DAG) { 2780 SDLoc DL(HiPart); 2781 EVT PtrVT = HiPart.getValueType(); 2782 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2783 2784 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2785 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2786 2787 // With PIC, the first instruction is actually "GR+hi(&G)". 2788 if (isPIC) 2789 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2790 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2791 2792 // Generate non-pic code that has direct accesses to the constant pool. 2793 // The address of the global is just (hi(&g)+lo(&g)). 2794 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2795 } 2796 2797 static void setUsesTOCBasePtr(MachineFunction &MF) { 2798 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2799 FuncInfo->setUsesTOCBasePtr(); 2800 } 2801 2802 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2803 setUsesTOCBasePtr(DAG.getMachineFunction()); 2804 } 2805 2806 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2807 SDValue GA) const { 2808 const bool Is64Bit = Subtarget.isPPC64(); 2809 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2810 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2811 : Subtarget.isAIXABI() 2812 ? DAG.getRegister(PPC::R2, VT) 2813 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2814 SDValue Ops[] = { GA, Reg }; 2815 return DAG.getMemIntrinsicNode( 2816 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2817 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2818 MachineMemOperand::MOLoad); 2819 } 2820 2821 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2822 SelectionDAG &DAG) const { 2823 EVT PtrVT = Op.getValueType(); 2824 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2825 const Constant *C = CP->getConstVal(); 2826 2827 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2828 // The actual address of the GlobalValue is stored in the TOC. 2829 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2830 if (Subtarget.isUsingPCRelativeCalls()) { 2831 SDLoc DL(CP); 2832 EVT Ty = getPointerTy(DAG.getDataLayout()); 2833 SDValue ConstPool = DAG.getTargetConstantPool( 2834 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2835 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2836 } 2837 setUsesTOCBasePtr(DAG); 2838 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2839 return getTOCEntry(DAG, SDLoc(CP), GA); 2840 } 2841 2842 unsigned MOHiFlag, MOLoFlag; 2843 bool IsPIC = isPositionIndependent(); 2844 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2845 2846 if (IsPIC && Subtarget.isSVR4ABI()) { 2847 SDValue GA = 2848 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2849 return getTOCEntry(DAG, SDLoc(CP), GA); 2850 } 2851 2852 SDValue CPIHi = 2853 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2854 SDValue CPILo = 2855 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2856 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2857 } 2858 2859 // For 64-bit PowerPC, prefer the more compact relative encodings. 2860 // This trades 32 bits per jump table entry for one or two instructions 2861 // on the jump site. 2862 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2863 if (isJumpTableRelative()) 2864 return MachineJumpTableInfo::EK_LabelDifference32; 2865 2866 return TargetLowering::getJumpTableEncoding(); 2867 } 2868 2869 bool PPCTargetLowering::isJumpTableRelative() const { 2870 if (UseAbsoluteJumpTables) 2871 return false; 2872 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2873 return true; 2874 return TargetLowering::isJumpTableRelative(); 2875 } 2876 2877 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2878 SelectionDAG &DAG) const { 2879 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2880 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2881 2882 switch (getTargetMachine().getCodeModel()) { 2883 case CodeModel::Small: 2884 case CodeModel::Medium: 2885 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2886 default: 2887 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2888 getPointerTy(DAG.getDataLayout())); 2889 } 2890 } 2891 2892 const MCExpr * 2893 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2894 unsigned JTI, 2895 MCContext &Ctx) const { 2896 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2897 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2898 2899 switch (getTargetMachine().getCodeModel()) { 2900 case CodeModel::Small: 2901 case CodeModel::Medium: 2902 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2903 default: 2904 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2905 } 2906 } 2907 2908 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2909 EVT PtrVT = Op.getValueType(); 2910 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2911 2912 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2913 if (Subtarget.isUsingPCRelativeCalls()) { 2914 SDLoc DL(JT); 2915 EVT Ty = getPointerTy(DAG.getDataLayout()); 2916 SDValue GA = 2917 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2918 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2919 return MatAddr; 2920 } 2921 2922 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2923 // The actual address of the GlobalValue is stored in the TOC. 2924 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2925 setUsesTOCBasePtr(DAG); 2926 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2927 return getTOCEntry(DAG, SDLoc(JT), GA); 2928 } 2929 2930 unsigned MOHiFlag, MOLoFlag; 2931 bool IsPIC = isPositionIndependent(); 2932 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2933 2934 if (IsPIC && Subtarget.isSVR4ABI()) { 2935 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2936 PPCII::MO_PIC_FLAG); 2937 return getTOCEntry(DAG, SDLoc(GA), GA); 2938 } 2939 2940 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2941 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2942 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2943 } 2944 2945 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2946 SelectionDAG &DAG) const { 2947 EVT PtrVT = Op.getValueType(); 2948 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2949 const BlockAddress *BA = BASDN->getBlockAddress(); 2950 2951 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2952 if (Subtarget.isUsingPCRelativeCalls()) { 2953 SDLoc DL(BASDN); 2954 EVT Ty = getPointerTy(DAG.getDataLayout()); 2955 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2956 PPCII::MO_PCREL_FLAG); 2957 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2958 return MatAddr; 2959 } 2960 2961 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2962 // The actual BlockAddress is stored in the TOC. 2963 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2964 setUsesTOCBasePtr(DAG); 2965 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2966 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2967 } 2968 2969 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2970 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2971 return getTOCEntry( 2972 DAG, SDLoc(BASDN), 2973 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2974 2975 unsigned MOHiFlag, MOLoFlag; 2976 bool IsPIC = isPositionIndependent(); 2977 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2978 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2979 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2980 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2981 } 2982 2983 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2984 SelectionDAG &DAG) const { 2985 // FIXME: TLS addresses currently use medium model code sequences, 2986 // which is the most useful form. Eventually support for small and 2987 // large models could be added if users need it, at the cost of 2988 // additional complexity. 2989 if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS) 2990 report_fatal_error("Thread local storage is not supported with pc-relative" 2991 " addressing - please compile with -mno-pcrel"); 2992 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2993 if (DAG.getTarget().useEmulatedTLS()) 2994 return LowerToTLSEmulatedModel(GA, DAG); 2995 2996 SDLoc dl(GA); 2997 const GlobalValue *GV = GA->getGlobal(); 2998 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2999 bool is64bit = Subtarget.isPPC64(); 3000 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3001 PICLevel::Level picLevel = M->getPICLevel(); 3002 3003 const TargetMachine &TM = getTargetMachine(); 3004 TLSModel::Model Model = TM.getTLSModel(GV); 3005 3006 if (Model == TLSModel::LocalExec) { 3007 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3008 PPCII::MO_TPREL_HA); 3009 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3010 PPCII::MO_TPREL_LO); 3011 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3012 : DAG.getRegister(PPC::R2, MVT::i32); 3013 3014 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3015 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3016 } 3017 3018 if (Model == TLSModel::InitialExec) { 3019 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3020 SDValue TGA = DAG.getTargetGlobalAddress( 3021 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3022 SDValue TGATLS = DAG.getTargetGlobalAddress( 3023 GV, dl, PtrVT, 0, 3024 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3025 SDValue TPOffset; 3026 if (IsPCRel) { 3027 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3028 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3029 MachinePointerInfo()); 3030 } else { 3031 SDValue GOTPtr; 3032 if (is64bit) { 3033 setUsesTOCBasePtr(DAG); 3034 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3035 GOTPtr = 3036 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3037 } else { 3038 if (!TM.isPositionIndependent()) 3039 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3040 else if (picLevel == PICLevel::SmallPIC) 3041 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3042 else 3043 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3044 } 3045 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3046 } 3047 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3048 } 3049 3050 if (Model == TLSModel::GeneralDynamic) { 3051 if (Subtarget.isUsingPCRelativeCalls()) { 3052 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3053 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3054 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3055 } 3056 3057 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3058 SDValue GOTPtr; 3059 if (is64bit) { 3060 setUsesTOCBasePtr(DAG); 3061 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3062 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3063 GOTReg, TGA); 3064 } else { 3065 if (picLevel == PICLevel::SmallPIC) 3066 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3067 else 3068 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3069 } 3070 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3071 GOTPtr, TGA, TGA); 3072 } 3073 3074 if (Model == TLSModel::LocalDynamic) { 3075 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3076 SDValue GOTPtr; 3077 if (is64bit) { 3078 setUsesTOCBasePtr(DAG); 3079 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3080 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3081 GOTReg, TGA); 3082 } else { 3083 if (picLevel == PICLevel::SmallPIC) 3084 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3085 else 3086 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3087 } 3088 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3089 PtrVT, GOTPtr, TGA, TGA); 3090 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3091 PtrVT, TLSAddr, TGA); 3092 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3093 } 3094 3095 llvm_unreachable("Unknown TLS model!"); 3096 } 3097 3098 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3099 SelectionDAG &DAG) const { 3100 EVT PtrVT = Op.getValueType(); 3101 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3102 SDLoc DL(GSDN); 3103 const GlobalValue *GV = GSDN->getGlobal(); 3104 3105 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3106 // The actual address of the GlobalValue is stored in the TOC. 3107 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3108 if (Subtarget.isUsingPCRelativeCalls()) { 3109 EVT Ty = getPointerTy(DAG.getDataLayout()); 3110 if (isAccessedAsGotIndirect(Op)) { 3111 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3112 PPCII::MO_PCREL_FLAG | 3113 PPCII::MO_GOT_FLAG); 3114 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3115 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3116 MachinePointerInfo()); 3117 return Load; 3118 } else { 3119 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3120 PPCII::MO_PCREL_FLAG); 3121 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3122 } 3123 } 3124 setUsesTOCBasePtr(DAG); 3125 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3126 return getTOCEntry(DAG, DL, GA); 3127 } 3128 3129 unsigned MOHiFlag, MOLoFlag; 3130 bool IsPIC = isPositionIndependent(); 3131 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3132 3133 if (IsPIC && Subtarget.isSVR4ABI()) { 3134 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3135 GSDN->getOffset(), 3136 PPCII::MO_PIC_FLAG); 3137 return getTOCEntry(DAG, DL, GA); 3138 } 3139 3140 SDValue GAHi = 3141 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3142 SDValue GALo = 3143 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3144 3145 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3146 } 3147 3148 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3149 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3150 SDLoc dl(Op); 3151 3152 if (Op.getValueType() == MVT::v2i64) { 3153 // When the operands themselves are v2i64 values, we need to do something 3154 // special because VSX has no underlying comparison operations for these. 3155 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3156 // Equality can be handled by casting to the legal type for Altivec 3157 // comparisons, everything else needs to be expanded. 3158 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3159 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3160 DAG.getSetCC(dl, MVT::v4i32, 3161 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3162 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3163 CC)); 3164 } 3165 3166 return SDValue(); 3167 } 3168 3169 // We handle most of these in the usual way. 3170 return Op; 3171 } 3172 3173 // If we're comparing for equality to zero, expose the fact that this is 3174 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3175 // fold the new nodes. 3176 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3177 return V; 3178 3179 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3180 // Leave comparisons against 0 and -1 alone for now, since they're usually 3181 // optimized. FIXME: revisit this when we can custom lower all setcc 3182 // optimizations. 3183 if (C->isAllOnesValue() || C->isNullValue()) 3184 return SDValue(); 3185 } 3186 3187 // If we have an integer seteq/setne, turn it into a compare against zero 3188 // by xor'ing the rhs with the lhs, which is faster than setting a 3189 // condition register, reading it back out, and masking the correct bit. The 3190 // normal approach here uses sub to do this instead of xor. Using xor exposes 3191 // the result to other bit-twiddling opportunities. 3192 EVT LHSVT = Op.getOperand(0).getValueType(); 3193 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3194 EVT VT = Op.getValueType(); 3195 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3196 Op.getOperand(1)); 3197 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3198 } 3199 return SDValue(); 3200 } 3201 3202 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3203 SDNode *Node = Op.getNode(); 3204 EVT VT = Node->getValueType(0); 3205 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3206 SDValue InChain = Node->getOperand(0); 3207 SDValue VAListPtr = Node->getOperand(1); 3208 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3209 SDLoc dl(Node); 3210 3211 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3212 3213 // gpr_index 3214 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3215 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3216 InChain = GprIndex.getValue(1); 3217 3218 if (VT == MVT::i64) { 3219 // Check if GprIndex is even 3220 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3221 DAG.getConstant(1, dl, MVT::i32)); 3222 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3223 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3224 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3225 DAG.getConstant(1, dl, MVT::i32)); 3226 // Align GprIndex to be even if it isn't 3227 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3228 GprIndex); 3229 } 3230 3231 // fpr index is 1 byte after gpr 3232 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3233 DAG.getConstant(1, dl, MVT::i32)); 3234 3235 // fpr 3236 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3237 FprPtr, MachinePointerInfo(SV), MVT::i8); 3238 InChain = FprIndex.getValue(1); 3239 3240 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3241 DAG.getConstant(8, dl, MVT::i32)); 3242 3243 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3244 DAG.getConstant(4, dl, MVT::i32)); 3245 3246 // areas 3247 SDValue OverflowArea = 3248 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3249 InChain = OverflowArea.getValue(1); 3250 3251 SDValue RegSaveArea = 3252 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3253 InChain = RegSaveArea.getValue(1); 3254 3255 // select overflow_area if index > 8 3256 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3257 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3258 3259 // adjustment constant gpr_index * 4/8 3260 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3261 VT.isInteger() ? GprIndex : FprIndex, 3262 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3263 MVT::i32)); 3264 3265 // OurReg = RegSaveArea + RegConstant 3266 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3267 RegConstant); 3268 3269 // Floating types are 32 bytes into RegSaveArea 3270 if (VT.isFloatingPoint()) 3271 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3272 DAG.getConstant(32, dl, MVT::i32)); 3273 3274 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3275 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3276 VT.isInteger() ? GprIndex : FprIndex, 3277 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3278 MVT::i32)); 3279 3280 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3281 VT.isInteger() ? VAListPtr : FprPtr, 3282 MachinePointerInfo(SV), MVT::i8); 3283 3284 // determine if we should load from reg_save_area or overflow_area 3285 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3286 3287 // increase overflow_area by 4/8 if gpr/fpr > 8 3288 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3289 DAG.getConstant(VT.isInteger() ? 4 : 8, 3290 dl, MVT::i32)); 3291 3292 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3293 OverflowAreaPlusN); 3294 3295 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3296 MachinePointerInfo(), MVT::i32); 3297 3298 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3299 } 3300 3301 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3302 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3303 3304 // We have to copy the entire va_list struct: 3305 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3306 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3307 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3308 false, true, false, MachinePointerInfo(), 3309 MachinePointerInfo()); 3310 } 3311 3312 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3313 SelectionDAG &DAG) const { 3314 if (Subtarget.isAIXABI()) 3315 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3316 3317 return Op.getOperand(0); 3318 } 3319 3320 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3321 SelectionDAG &DAG) const { 3322 if (Subtarget.isAIXABI()) 3323 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3324 3325 SDValue Chain = Op.getOperand(0); 3326 SDValue Trmp = Op.getOperand(1); // trampoline 3327 SDValue FPtr = Op.getOperand(2); // nested function 3328 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3329 SDLoc dl(Op); 3330 3331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3332 bool isPPC64 = (PtrVT == MVT::i64); 3333 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3334 3335 TargetLowering::ArgListTy Args; 3336 TargetLowering::ArgListEntry Entry; 3337 3338 Entry.Ty = IntPtrTy; 3339 Entry.Node = Trmp; Args.push_back(Entry); 3340 3341 // TrampSize == (isPPC64 ? 48 : 40); 3342 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3343 isPPC64 ? MVT::i64 : MVT::i32); 3344 Args.push_back(Entry); 3345 3346 Entry.Node = FPtr; Args.push_back(Entry); 3347 Entry.Node = Nest; Args.push_back(Entry); 3348 3349 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3350 TargetLowering::CallLoweringInfo CLI(DAG); 3351 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3352 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3353 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3354 3355 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3356 return CallResult.second; 3357 } 3358 3359 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3360 MachineFunction &MF = DAG.getMachineFunction(); 3361 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3362 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3363 3364 SDLoc dl(Op); 3365 3366 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3367 // vastart just stores the address of the VarArgsFrameIndex slot into the 3368 // memory location argument. 3369 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3370 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3371 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3372 MachinePointerInfo(SV)); 3373 } 3374 3375 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3376 // We suppose the given va_list is already allocated. 3377 // 3378 // typedef struct { 3379 // char gpr; /* index into the array of 8 GPRs 3380 // * stored in the register save area 3381 // * gpr=0 corresponds to r3, 3382 // * gpr=1 to r4, etc. 3383 // */ 3384 // char fpr; /* index into the array of 8 FPRs 3385 // * stored in the register save area 3386 // * fpr=0 corresponds to f1, 3387 // * fpr=1 to f2, etc. 3388 // */ 3389 // char *overflow_arg_area; 3390 // /* location on stack that holds 3391 // * the next overflow argument 3392 // */ 3393 // char *reg_save_area; 3394 // /* where r3:r10 and f1:f8 (if saved) 3395 // * are stored 3396 // */ 3397 // } va_list[1]; 3398 3399 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3400 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3401 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3402 PtrVT); 3403 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3404 PtrVT); 3405 3406 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3407 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3408 3409 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3410 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3411 3412 uint64_t FPROffset = 1; 3413 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3414 3415 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3416 3417 // Store first byte : number of int regs 3418 SDValue firstStore = 3419 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3420 MachinePointerInfo(SV), MVT::i8); 3421 uint64_t nextOffset = FPROffset; 3422 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3423 ConstFPROffset); 3424 3425 // Store second byte : number of float regs 3426 SDValue secondStore = 3427 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3428 MachinePointerInfo(SV, nextOffset), MVT::i8); 3429 nextOffset += StackOffset; 3430 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3431 3432 // Store second word : arguments given on stack 3433 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3434 MachinePointerInfo(SV, nextOffset)); 3435 nextOffset += FrameOffset; 3436 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3437 3438 // Store third word : arguments given in registers 3439 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3440 MachinePointerInfo(SV, nextOffset)); 3441 } 3442 3443 /// FPR - The set of FP registers that should be allocated for arguments 3444 /// on Darwin and AIX. 3445 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3446 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3447 PPC::F11, PPC::F12, PPC::F13}; 3448 3449 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3450 /// the stack. 3451 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3452 unsigned PtrByteSize) { 3453 unsigned ArgSize = ArgVT.getStoreSize(); 3454 if (Flags.isByVal()) 3455 ArgSize = Flags.getByValSize(); 3456 3457 // Round up to multiples of the pointer size, except for array members, 3458 // which are always packed. 3459 if (!Flags.isInConsecutiveRegs()) 3460 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3461 3462 return ArgSize; 3463 } 3464 3465 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3466 /// on the stack. 3467 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3468 ISD::ArgFlagsTy Flags, 3469 unsigned PtrByteSize) { 3470 Align Alignment(PtrByteSize); 3471 3472 // Altivec parameters are padded to a 16 byte boundary. 3473 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3474 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3475 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3476 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3477 Alignment = Align(16); 3478 3479 // ByVal parameters are aligned as requested. 3480 if (Flags.isByVal()) { 3481 auto BVAlign = Flags.getNonZeroByValAlign(); 3482 if (BVAlign > PtrByteSize) { 3483 if (BVAlign.value() % PtrByteSize != 0) 3484 llvm_unreachable( 3485 "ByVal alignment is not a multiple of the pointer size"); 3486 3487 Alignment = BVAlign; 3488 } 3489 } 3490 3491 // Array members are always packed to their original alignment. 3492 if (Flags.isInConsecutiveRegs()) { 3493 // If the array member was split into multiple registers, the first 3494 // needs to be aligned to the size of the full type. (Except for 3495 // ppcf128, which is only aligned as its f64 components.) 3496 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3497 Alignment = Align(OrigVT.getStoreSize()); 3498 else 3499 Alignment = Align(ArgVT.getStoreSize()); 3500 } 3501 3502 return Alignment; 3503 } 3504 3505 /// CalculateStackSlotUsed - Return whether this argument will use its 3506 /// stack slot (instead of being passed in registers). ArgOffset, 3507 /// AvailableFPRs, and AvailableVRs must hold the current argument 3508 /// position, and will be updated to account for this argument. 3509 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3510 unsigned PtrByteSize, unsigned LinkageSize, 3511 unsigned ParamAreaSize, unsigned &ArgOffset, 3512 unsigned &AvailableFPRs, 3513 unsigned &AvailableVRs) { 3514 bool UseMemory = false; 3515 3516 // Respect alignment of argument on the stack. 3517 Align Alignment = 3518 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3519 ArgOffset = alignTo(ArgOffset, Alignment); 3520 // If there's no space left in the argument save area, we must 3521 // use memory (this check also catches zero-sized arguments). 3522 if (ArgOffset >= LinkageSize + ParamAreaSize) 3523 UseMemory = true; 3524 3525 // Allocate argument on the stack. 3526 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3527 if (Flags.isInConsecutiveRegsLast()) 3528 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3529 // If we overran the argument save area, we must use memory 3530 // (this check catches arguments passed partially in memory) 3531 if (ArgOffset > LinkageSize + ParamAreaSize) 3532 UseMemory = true; 3533 3534 // However, if the argument is actually passed in an FPR or a VR, 3535 // we don't use memory after all. 3536 if (!Flags.isByVal()) { 3537 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3538 if (AvailableFPRs > 0) { 3539 --AvailableFPRs; 3540 return false; 3541 } 3542 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3543 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3544 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3545 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3546 if (AvailableVRs > 0) { 3547 --AvailableVRs; 3548 return false; 3549 } 3550 } 3551 3552 return UseMemory; 3553 } 3554 3555 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3556 /// ensure minimum alignment required for target. 3557 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3558 unsigned NumBytes) { 3559 return alignTo(NumBytes, Lowering->getStackAlign()); 3560 } 3561 3562 SDValue PPCTargetLowering::LowerFormalArguments( 3563 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3564 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3565 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3566 if (Subtarget.isAIXABI()) 3567 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3568 InVals); 3569 if (Subtarget.is64BitELFABI()) 3570 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3571 InVals); 3572 if (Subtarget.is32BitELFABI()) 3573 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3574 InVals); 3575 3576 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3577 InVals); 3578 } 3579 3580 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3581 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3582 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3583 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3584 3585 // 32-bit SVR4 ABI Stack Frame Layout: 3586 // +-----------------------------------+ 3587 // +--> | Back chain | 3588 // | +-----------------------------------+ 3589 // | | Floating-point register save area | 3590 // | +-----------------------------------+ 3591 // | | General register save area | 3592 // | +-----------------------------------+ 3593 // | | CR save word | 3594 // | +-----------------------------------+ 3595 // | | VRSAVE save word | 3596 // | +-----------------------------------+ 3597 // | | Alignment padding | 3598 // | +-----------------------------------+ 3599 // | | Vector register save area | 3600 // | +-----------------------------------+ 3601 // | | Local variable space | 3602 // | +-----------------------------------+ 3603 // | | Parameter list area | 3604 // | +-----------------------------------+ 3605 // | | LR save word | 3606 // | +-----------------------------------+ 3607 // SP--> +--- | Back chain | 3608 // +-----------------------------------+ 3609 // 3610 // Specifications: 3611 // System V Application Binary Interface PowerPC Processor Supplement 3612 // AltiVec Technology Programming Interface Manual 3613 3614 MachineFunction &MF = DAG.getMachineFunction(); 3615 MachineFrameInfo &MFI = MF.getFrameInfo(); 3616 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3617 3618 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3619 // Potential tail calls could cause overwriting of argument stack slots. 3620 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3621 (CallConv == CallingConv::Fast)); 3622 const Align PtrAlign(4); 3623 3624 // Assign locations to all of the incoming arguments. 3625 SmallVector<CCValAssign, 16> ArgLocs; 3626 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3627 *DAG.getContext()); 3628 3629 // Reserve space for the linkage area on the stack. 3630 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3631 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3632 if (useSoftFloat()) 3633 CCInfo.PreAnalyzeFormalArguments(Ins); 3634 3635 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3636 CCInfo.clearWasPPCF128(); 3637 3638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3639 CCValAssign &VA = ArgLocs[i]; 3640 3641 // Arguments stored in registers. 3642 if (VA.isRegLoc()) { 3643 const TargetRegisterClass *RC; 3644 EVT ValVT = VA.getValVT(); 3645 3646 switch (ValVT.getSimpleVT().SimpleTy) { 3647 default: 3648 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3649 case MVT::i1: 3650 case MVT::i32: 3651 RC = &PPC::GPRCRegClass; 3652 break; 3653 case MVT::f32: 3654 if (Subtarget.hasP8Vector()) 3655 RC = &PPC::VSSRCRegClass; 3656 else if (Subtarget.hasSPE()) 3657 RC = &PPC::GPRCRegClass; 3658 else 3659 RC = &PPC::F4RCRegClass; 3660 break; 3661 case MVT::f64: 3662 if (Subtarget.hasVSX()) 3663 RC = &PPC::VSFRCRegClass; 3664 else if (Subtarget.hasSPE()) 3665 // SPE passes doubles in GPR pairs. 3666 RC = &PPC::GPRCRegClass; 3667 else 3668 RC = &PPC::F8RCRegClass; 3669 break; 3670 case MVT::v16i8: 3671 case MVT::v8i16: 3672 case MVT::v4i32: 3673 RC = &PPC::VRRCRegClass; 3674 break; 3675 case MVT::v4f32: 3676 RC = &PPC::VRRCRegClass; 3677 break; 3678 case MVT::v2f64: 3679 case MVT::v2i64: 3680 RC = &PPC::VRRCRegClass; 3681 break; 3682 } 3683 3684 SDValue ArgValue; 3685 // Transform the arguments stored in physical registers into 3686 // virtual ones. 3687 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3688 assert(i + 1 < e && "No second half of double precision argument"); 3689 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3690 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3691 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3692 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3693 if (!Subtarget.isLittleEndian()) 3694 std::swap (ArgValueLo, ArgValueHi); 3695 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3696 ArgValueHi); 3697 } else { 3698 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3699 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3700 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3701 if (ValVT == MVT::i1) 3702 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3703 } 3704 3705 InVals.push_back(ArgValue); 3706 } else { 3707 // Argument stored in memory. 3708 assert(VA.isMemLoc()); 3709 3710 // Get the extended size of the argument type in stack 3711 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3712 // Get the actual size of the argument type 3713 unsigned ObjSize = VA.getValVT().getStoreSize(); 3714 unsigned ArgOffset = VA.getLocMemOffset(); 3715 // Stack objects in PPC32 are right justified. 3716 ArgOffset += ArgSize - ObjSize; 3717 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3718 3719 // Create load nodes to retrieve arguments from the stack. 3720 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3721 InVals.push_back( 3722 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3723 } 3724 } 3725 3726 // Assign locations to all of the incoming aggregate by value arguments. 3727 // Aggregates passed by value are stored in the local variable space of the 3728 // caller's stack frame, right above the parameter list area. 3729 SmallVector<CCValAssign, 16> ByValArgLocs; 3730 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3731 ByValArgLocs, *DAG.getContext()); 3732 3733 // Reserve stack space for the allocations in CCInfo. 3734 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3735 3736 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3737 3738 // Area that is at least reserved in the caller of this function. 3739 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3740 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3741 3742 // Set the size that is at least reserved in caller of this function. Tail 3743 // call optimized function's reserved stack space needs to be aligned so that 3744 // taking the difference between two stack areas will result in an aligned 3745 // stack. 3746 MinReservedArea = 3747 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3748 FuncInfo->setMinReservedArea(MinReservedArea); 3749 3750 SmallVector<SDValue, 8> MemOps; 3751 3752 // If the function takes variable number of arguments, make a frame index for 3753 // the start of the first vararg value... for expansion of llvm.va_start. 3754 if (isVarArg) { 3755 static const MCPhysReg GPArgRegs[] = { 3756 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3757 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3758 }; 3759 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3760 3761 static const MCPhysReg FPArgRegs[] = { 3762 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3763 PPC::F8 3764 }; 3765 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3766 3767 if (useSoftFloat() || hasSPE()) 3768 NumFPArgRegs = 0; 3769 3770 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3771 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3772 3773 // Make room for NumGPArgRegs and NumFPArgRegs. 3774 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3775 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3776 3777 FuncInfo->setVarArgsStackOffset( 3778 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3779 CCInfo.getNextStackOffset(), true)); 3780 3781 FuncInfo->setVarArgsFrameIndex( 3782 MFI.CreateStackObject(Depth, Align(8), false)); 3783 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3784 3785 // The fixed integer arguments of a variadic function are stored to the 3786 // VarArgsFrameIndex on the stack so that they may be loaded by 3787 // dereferencing the result of va_next. 3788 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3789 // Get an existing live-in vreg, or add a new one. 3790 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3791 if (!VReg) 3792 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3793 3794 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3795 SDValue Store = 3796 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3797 MemOps.push_back(Store); 3798 // Increment the address by four for the next argument to store 3799 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3800 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3801 } 3802 3803 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3804 // is set. 3805 // The double arguments are stored to the VarArgsFrameIndex 3806 // on the stack. 3807 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3808 // Get an existing live-in vreg, or add a new one. 3809 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3810 if (!VReg) 3811 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3812 3813 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3814 SDValue Store = 3815 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3816 MemOps.push_back(Store); 3817 // Increment the address by eight for the next argument to store 3818 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3819 PtrVT); 3820 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3821 } 3822 } 3823 3824 if (!MemOps.empty()) 3825 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3826 3827 return Chain; 3828 } 3829 3830 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3831 // value to MVT::i64 and then truncate to the correct register size. 3832 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3833 EVT ObjectVT, SelectionDAG &DAG, 3834 SDValue ArgVal, 3835 const SDLoc &dl) const { 3836 if (Flags.isSExt()) 3837 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3838 DAG.getValueType(ObjectVT)); 3839 else if (Flags.isZExt()) 3840 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3841 DAG.getValueType(ObjectVT)); 3842 3843 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3844 } 3845 3846 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3847 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3848 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3849 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3850 // TODO: add description of PPC stack frame format, or at least some docs. 3851 // 3852 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3853 bool isLittleEndian = Subtarget.isLittleEndian(); 3854 MachineFunction &MF = DAG.getMachineFunction(); 3855 MachineFrameInfo &MFI = MF.getFrameInfo(); 3856 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3857 3858 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3859 "fastcc not supported on varargs functions"); 3860 3861 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3862 // Potential tail calls could cause overwriting of argument stack slots. 3863 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3864 (CallConv == CallingConv::Fast)); 3865 unsigned PtrByteSize = 8; 3866 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3867 3868 static const MCPhysReg GPR[] = { 3869 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3870 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3871 }; 3872 static const MCPhysReg VR[] = { 3873 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3874 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3875 }; 3876 3877 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3878 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3879 const unsigned Num_VR_Regs = array_lengthof(VR); 3880 3881 // Do a first pass over the arguments to determine whether the ABI 3882 // guarantees that our caller has allocated the parameter save area 3883 // on its stack frame. In the ELFv1 ABI, this is always the case; 3884 // in the ELFv2 ABI, it is true if this is a vararg function or if 3885 // any parameter is located in a stack slot. 3886 3887 bool HasParameterArea = !isELFv2ABI || isVarArg; 3888 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3889 unsigned NumBytes = LinkageSize; 3890 unsigned AvailableFPRs = Num_FPR_Regs; 3891 unsigned AvailableVRs = Num_VR_Regs; 3892 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3893 if (Ins[i].Flags.isNest()) 3894 continue; 3895 3896 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3897 PtrByteSize, LinkageSize, ParamAreaSize, 3898 NumBytes, AvailableFPRs, AvailableVRs)) 3899 HasParameterArea = true; 3900 } 3901 3902 // Add DAG nodes to load the arguments or copy them out of registers. On 3903 // entry to a function on PPC, the arguments start after the linkage area, 3904 // although the first ones are often in registers. 3905 3906 unsigned ArgOffset = LinkageSize; 3907 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3908 SmallVector<SDValue, 8> MemOps; 3909 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3910 unsigned CurArgIdx = 0; 3911 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3912 SDValue ArgVal; 3913 bool needsLoad = false; 3914 EVT ObjectVT = Ins[ArgNo].VT; 3915 EVT OrigVT = Ins[ArgNo].ArgVT; 3916 unsigned ObjSize = ObjectVT.getStoreSize(); 3917 unsigned ArgSize = ObjSize; 3918 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3919 if (Ins[ArgNo].isOrigArg()) { 3920 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3921 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3922 } 3923 // We re-align the argument offset for each argument, except when using the 3924 // fast calling convention, when we need to make sure we do that only when 3925 // we'll actually use a stack slot. 3926 unsigned CurArgOffset; 3927 Align Alignment; 3928 auto ComputeArgOffset = [&]() { 3929 /* Respect alignment of argument on the stack. */ 3930 Alignment = 3931 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3932 ArgOffset = alignTo(ArgOffset, Alignment); 3933 CurArgOffset = ArgOffset; 3934 }; 3935 3936 if (CallConv != CallingConv::Fast) { 3937 ComputeArgOffset(); 3938 3939 /* Compute GPR index associated with argument offset. */ 3940 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3941 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3942 } 3943 3944 // FIXME the codegen can be much improved in some cases. 3945 // We do not have to keep everything in memory. 3946 if (Flags.isByVal()) { 3947 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3948 3949 if (CallConv == CallingConv::Fast) 3950 ComputeArgOffset(); 3951 3952 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3953 ObjSize = Flags.getByValSize(); 3954 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3955 // Empty aggregate parameters do not take up registers. Examples: 3956 // struct { } a; 3957 // union { } b; 3958 // int c[0]; 3959 // etc. However, we have to provide a place-holder in InVals, so 3960 // pretend we have an 8-byte item at the current address for that 3961 // purpose. 3962 if (!ObjSize) { 3963 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3964 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3965 InVals.push_back(FIN); 3966 continue; 3967 } 3968 3969 // Create a stack object covering all stack doublewords occupied 3970 // by the argument. If the argument is (fully or partially) on 3971 // the stack, or if the argument is fully in registers but the 3972 // caller has allocated the parameter save anyway, we can refer 3973 // directly to the caller's stack frame. Otherwise, create a 3974 // local copy in our own frame. 3975 int FI; 3976 if (HasParameterArea || 3977 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3978 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3979 else 3980 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3981 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3982 3983 // Handle aggregates smaller than 8 bytes. 3984 if (ObjSize < PtrByteSize) { 3985 // The value of the object is its address, which differs from the 3986 // address of the enclosing doubleword on big-endian systems. 3987 SDValue Arg = FIN; 3988 if (!isLittleEndian) { 3989 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3990 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3991 } 3992 InVals.push_back(Arg); 3993 3994 if (GPR_idx != Num_GPR_Regs) { 3995 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3996 FuncInfo->addLiveInAttr(VReg, Flags); 3997 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3998 SDValue Store; 3999 4000 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4001 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4002 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4003 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4004 MachinePointerInfo(&*FuncArg), ObjType); 4005 } else { 4006 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4007 // store the whole register as-is to the parameter save area 4008 // slot. 4009 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4010 MachinePointerInfo(&*FuncArg)); 4011 } 4012 4013 MemOps.push_back(Store); 4014 } 4015 // Whether we copied from a register or not, advance the offset 4016 // into the parameter save area by a full doubleword. 4017 ArgOffset += PtrByteSize; 4018 continue; 4019 } 4020 4021 // The value of the object is its address, which is the address of 4022 // its first stack doubleword. 4023 InVals.push_back(FIN); 4024 4025 // Store whatever pieces of the object are in registers to memory. 4026 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4027 if (GPR_idx == Num_GPR_Regs) 4028 break; 4029 4030 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4031 FuncInfo->addLiveInAttr(VReg, Flags); 4032 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4033 SDValue Addr = FIN; 4034 if (j) { 4035 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4036 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4037 } 4038 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4039 MachinePointerInfo(&*FuncArg, j)); 4040 MemOps.push_back(Store); 4041 ++GPR_idx; 4042 } 4043 ArgOffset += ArgSize; 4044 continue; 4045 } 4046 4047 switch (ObjectVT.getSimpleVT().SimpleTy) { 4048 default: llvm_unreachable("Unhandled argument type!"); 4049 case MVT::i1: 4050 case MVT::i32: 4051 case MVT::i64: 4052 if (Flags.isNest()) { 4053 // The 'nest' parameter, if any, is passed in R11. 4054 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4055 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4056 4057 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4058 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4059 4060 break; 4061 } 4062 4063 // These can be scalar arguments or elements of an integer array type 4064 // passed directly. Clang may use those instead of "byval" aggregate 4065 // types to avoid forcing arguments to memory unnecessarily. 4066 if (GPR_idx != Num_GPR_Regs) { 4067 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4068 FuncInfo->addLiveInAttr(VReg, Flags); 4069 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4070 4071 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4072 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4073 // value to MVT::i64 and then truncate to the correct register size. 4074 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4075 } else { 4076 if (CallConv == CallingConv::Fast) 4077 ComputeArgOffset(); 4078 4079 needsLoad = true; 4080 ArgSize = PtrByteSize; 4081 } 4082 if (CallConv != CallingConv::Fast || needsLoad) 4083 ArgOffset += 8; 4084 break; 4085 4086 case MVT::f32: 4087 case MVT::f64: 4088 // These can be scalar arguments or elements of a float array type 4089 // passed directly. The latter are used to implement ELFv2 homogenous 4090 // float aggregates. 4091 if (FPR_idx != Num_FPR_Regs) { 4092 unsigned VReg; 4093 4094 if (ObjectVT == MVT::f32) 4095 VReg = MF.addLiveIn(FPR[FPR_idx], 4096 Subtarget.hasP8Vector() 4097 ? &PPC::VSSRCRegClass 4098 : &PPC::F4RCRegClass); 4099 else 4100 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4101 ? &PPC::VSFRCRegClass 4102 : &PPC::F8RCRegClass); 4103 4104 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4105 ++FPR_idx; 4106 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4107 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4108 // once we support fp <-> gpr moves. 4109 4110 // This can only ever happen in the presence of f32 array types, 4111 // since otherwise we never run out of FPRs before running out 4112 // of GPRs. 4113 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4114 FuncInfo->addLiveInAttr(VReg, Flags); 4115 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4116 4117 if (ObjectVT == MVT::f32) { 4118 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4119 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4120 DAG.getConstant(32, dl, MVT::i32)); 4121 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4122 } 4123 4124 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4125 } else { 4126 if (CallConv == CallingConv::Fast) 4127 ComputeArgOffset(); 4128 4129 needsLoad = true; 4130 } 4131 4132 // When passing an array of floats, the array occupies consecutive 4133 // space in the argument area; only round up to the next doubleword 4134 // at the end of the array. Otherwise, each float takes 8 bytes. 4135 if (CallConv != CallingConv::Fast || needsLoad) { 4136 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4137 ArgOffset += ArgSize; 4138 if (Flags.isInConsecutiveRegsLast()) 4139 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4140 } 4141 break; 4142 case MVT::v4f32: 4143 case MVT::v4i32: 4144 case MVT::v8i16: 4145 case MVT::v16i8: 4146 case MVT::v2f64: 4147 case MVT::v2i64: 4148 case MVT::v1i128: 4149 case MVT::f128: 4150 // These can be scalar arguments or elements of a vector array type 4151 // passed directly. The latter are used to implement ELFv2 homogenous 4152 // vector aggregates. 4153 if (VR_idx != Num_VR_Regs) { 4154 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4155 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4156 ++VR_idx; 4157 } else { 4158 if (CallConv == CallingConv::Fast) 4159 ComputeArgOffset(); 4160 needsLoad = true; 4161 } 4162 if (CallConv != CallingConv::Fast || needsLoad) 4163 ArgOffset += 16; 4164 break; 4165 } 4166 4167 // We need to load the argument to a virtual register if we determined 4168 // above that we ran out of physical registers of the appropriate type. 4169 if (needsLoad) { 4170 if (ObjSize < ArgSize && !isLittleEndian) 4171 CurArgOffset += ArgSize - ObjSize; 4172 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4173 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4174 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4175 } 4176 4177 InVals.push_back(ArgVal); 4178 } 4179 4180 // Area that is at least reserved in the caller of this function. 4181 unsigned MinReservedArea; 4182 if (HasParameterArea) 4183 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4184 else 4185 MinReservedArea = LinkageSize; 4186 4187 // Set the size that is at least reserved in caller of this function. Tail 4188 // call optimized functions' reserved stack space needs to be aligned so that 4189 // taking the difference between two stack areas will result in an aligned 4190 // stack. 4191 MinReservedArea = 4192 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4193 FuncInfo->setMinReservedArea(MinReservedArea); 4194 4195 // If the function takes variable number of arguments, make a frame index for 4196 // the start of the first vararg value... for expansion of llvm.va_start. 4197 // On ELFv2ABI spec, it writes: 4198 // C programs that are intended to be *portable* across different compilers 4199 // and architectures must use the header file <stdarg.h> to deal with variable 4200 // argument lists. 4201 if (isVarArg && MFI.hasVAStart()) { 4202 int Depth = ArgOffset; 4203 4204 FuncInfo->setVarArgsFrameIndex( 4205 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4206 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4207 4208 // If this function is vararg, store any remaining integer argument regs 4209 // to their spots on the stack so that they may be loaded by dereferencing 4210 // the result of va_next. 4211 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4212 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4213 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4214 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4215 SDValue Store = 4216 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4217 MemOps.push_back(Store); 4218 // Increment the address by four for the next argument to store 4219 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4220 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4221 } 4222 } 4223 4224 if (!MemOps.empty()) 4225 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4226 4227 return Chain; 4228 } 4229 4230 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4231 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4232 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4233 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4234 // TODO: add description of PPC stack frame format, or at least some docs. 4235 // 4236 MachineFunction &MF = DAG.getMachineFunction(); 4237 MachineFrameInfo &MFI = MF.getFrameInfo(); 4238 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4239 4240 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4241 bool isPPC64 = PtrVT == MVT::i64; 4242 // Potential tail calls could cause overwriting of argument stack slots. 4243 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4244 (CallConv == CallingConv::Fast)); 4245 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4246 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4247 unsigned ArgOffset = LinkageSize; 4248 // Area that is at least reserved in caller of this function. 4249 unsigned MinReservedArea = ArgOffset; 4250 4251 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4252 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4253 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4254 }; 4255 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4256 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4257 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4258 }; 4259 static const MCPhysReg VR[] = { 4260 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4261 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4262 }; 4263 4264 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4265 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4266 const unsigned Num_VR_Regs = array_lengthof( VR); 4267 4268 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4269 4270 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4271 4272 // In 32-bit non-varargs functions, the stack space for vectors is after the 4273 // stack space for non-vectors. We do not use this space unless we have 4274 // too many vectors to fit in registers, something that only occurs in 4275 // constructed examples:), but we have to walk the arglist to figure 4276 // that out...for the pathological case, compute VecArgOffset as the 4277 // start of the vector parameter area. Computing VecArgOffset is the 4278 // entire point of the following loop. 4279 unsigned VecArgOffset = ArgOffset; 4280 if (!isVarArg && !isPPC64) { 4281 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4282 ++ArgNo) { 4283 EVT ObjectVT = Ins[ArgNo].VT; 4284 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4285 4286 if (Flags.isByVal()) { 4287 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4288 unsigned ObjSize = Flags.getByValSize(); 4289 unsigned ArgSize = 4290 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4291 VecArgOffset += ArgSize; 4292 continue; 4293 } 4294 4295 switch(ObjectVT.getSimpleVT().SimpleTy) { 4296 default: llvm_unreachable("Unhandled argument type!"); 4297 case MVT::i1: 4298 case MVT::i32: 4299 case MVT::f32: 4300 VecArgOffset += 4; 4301 break; 4302 case MVT::i64: // PPC64 4303 case MVT::f64: 4304 // FIXME: We are guaranteed to be !isPPC64 at this point. 4305 // Does MVT::i64 apply? 4306 VecArgOffset += 8; 4307 break; 4308 case MVT::v4f32: 4309 case MVT::v4i32: 4310 case MVT::v8i16: 4311 case MVT::v16i8: 4312 // Nothing to do, we're only looking at Nonvector args here. 4313 break; 4314 } 4315 } 4316 } 4317 // We've found where the vector parameter area in memory is. Skip the 4318 // first 12 parameters; these don't use that memory. 4319 VecArgOffset = ((VecArgOffset+15)/16)*16; 4320 VecArgOffset += 12*16; 4321 4322 // Add DAG nodes to load the arguments or copy them out of registers. On 4323 // entry to a function on PPC, the arguments start after the linkage area, 4324 // although the first ones are often in registers. 4325 4326 SmallVector<SDValue, 8> MemOps; 4327 unsigned nAltivecParamsAtEnd = 0; 4328 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4329 unsigned CurArgIdx = 0; 4330 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4331 SDValue ArgVal; 4332 bool needsLoad = false; 4333 EVT ObjectVT = Ins[ArgNo].VT; 4334 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4335 unsigned ArgSize = ObjSize; 4336 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4337 if (Ins[ArgNo].isOrigArg()) { 4338 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4339 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4340 } 4341 unsigned CurArgOffset = ArgOffset; 4342 4343 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4344 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4345 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4346 if (isVarArg || isPPC64) { 4347 MinReservedArea = ((MinReservedArea+15)/16)*16; 4348 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4349 Flags, 4350 PtrByteSize); 4351 } else nAltivecParamsAtEnd++; 4352 } else 4353 // Calculate min reserved area. 4354 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4355 Flags, 4356 PtrByteSize); 4357 4358 // FIXME the codegen can be much improved in some cases. 4359 // We do not have to keep everything in memory. 4360 if (Flags.isByVal()) { 4361 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4362 4363 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4364 ObjSize = Flags.getByValSize(); 4365 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4366 // Objects of size 1 and 2 are right justified, everything else is 4367 // left justified. This means the memory address is adjusted forwards. 4368 if (ObjSize==1 || ObjSize==2) { 4369 CurArgOffset = CurArgOffset + (4 - ObjSize); 4370 } 4371 // The value of the object is its address. 4372 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4373 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4374 InVals.push_back(FIN); 4375 if (ObjSize==1 || ObjSize==2) { 4376 if (GPR_idx != Num_GPR_Regs) { 4377 unsigned VReg; 4378 if (isPPC64) 4379 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4380 else 4381 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4382 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4383 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4384 SDValue Store = 4385 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4386 MachinePointerInfo(&*FuncArg), ObjType); 4387 MemOps.push_back(Store); 4388 ++GPR_idx; 4389 } 4390 4391 ArgOffset += PtrByteSize; 4392 4393 continue; 4394 } 4395 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4396 // Store whatever pieces of the object are in registers 4397 // to memory. ArgOffset will be the address of the beginning 4398 // of the object. 4399 if (GPR_idx != Num_GPR_Regs) { 4400 unsigned VReg; 4401 if (isPPC64) 4402 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4403 else 4404 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4405 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4406 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4407 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4408 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4409 MachinePointerInfo(&*FuncArg, j)); 4410 MemOps.push_back(Store); 4411 ++GPR_idx; 4412 ArgOffset += PtrByteSize; 4413 } else { 4414 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4415 break; 4416 } 4417 } 4418 continue; 4419 } 4420 4421 switch (ObjectVT.getSimpleVT().SimpleTy) { 4422 default: llvm_unreachable("Unhandled argument type!"); 4423 case MVT::i1: 4424 case MVT::i32: 4425 if (!isPPC64) { 4426 if (GPR_idx != Num_GPR_Regs) { 4427 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4428 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4429 4430 if (ObjectVT == MVT::i1) 4431 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4432 4433 ++GPR_idx; 4434 } else { 4435 needsLoad = true; 4436 ArgSize = PtrByteSize; 4437 } 4438 // All int arguments reserve stack space in the Darwin ABI. 4439 ArgOffset += PtrByteSize; 4440 break; 4441 } 4442 LLVM_FALLTHROUGH; 4443 case MVT::i64: // PPC64 4444 if (GPR_idx != Num_GPR_Regs) { 4445 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4446 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4447 4448 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4449 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4450 // value to MVT::i64 and then truncate to the correct register size. 4451 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4452 4453 ++GPR_idx; 4454 } else { 4455 needsLoad = true; 4456 ArgSize = PtrByteSize; 4457 } 4458 // All int arguments reserve stack space in the Darwin ABI. 4459 ArgOffset += 8; 4460 break; 4461 4462 case MVT::f32: 4463 case MVT::f64: 4464 // Every 4 bytes of argument space consumes one of the GPRs available for 4465 // argument passing. 4466 if (GPR_idx != Num_GPR_Regs) { 4467 ++GPR_idx; 4468 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4469 ++GPR_idx; 4470 } 4471 if (FPR_idx != Num_FPR_Regs) { 4472 unsigned VReg; 4473 4474 if (ObjectVT == MVT::f32) 4475 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4476 else 4477 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4478 4479 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4480 ++FPR_idx; 4481 } else { 4482 needsLoad = true; 4483 } 4484 4485 // All FP arguments reserve stack space in the Darwin ABI. 4486 ArgOffset += isPPC64 ? 8 : ObjSize; 4487 break; 4488 case MVT::v4f32: 4489 case MVT::v4i32: 4490 case MVT::v8i16: 4491 case MVT::v16i8: 4492 // Note that vector arguments in registers don't reserve stack space, 4493 // except in varargs functions. 4494 if (VR_idx != Num_VR_Regs) { 4495 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4496 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4497 if (isVarArg) { 4498 while ((ArgOffset % 16) != 0) { 4499 ArgOffset += PtrByteSize; 4500 if (GPR_idx != Num_GPR_Regs) 4501 GPR_idx++; 4502 } 4503 ArgOffset += 16; 4504 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4505 } 4506 ++VR_idx; 4507 } else { 4508 if (!isVarArg && !isPPC64) { 4509 // Vectors go after all the nonvectors. 4510 CurArgOffset = VecArgOffset; 4511 VecArgOffset += 16; 4512 } else { 4513 // Vectors are aligned. 4514 ArgOffset = ((ArgOffset+15)/16)*16; 4515 CurArgOffset = ArgOffset; 4516 ArgOffset += 16; 4517 } 4518 needsLoad = true; 4519 } 4520 break; 4521 } 4522 4523 // We need to load the argument to a virtual register if we determined above 4524 // that we ran out of physical registers of the appropriate type. 4525 if (needsLoad) { 4526 int FI = MFI.CreateFixedObject(ObjSize, 4527 CurArgOffset + (ArgSize - ObjSize), 4528 isImmutable); 4529 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4530 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4531 } 4532 4533 InVals.push_back(ArgVal); 4534 } 4535 4536 // Allow for Altivec parameters at the end, if needed. 4537 if (nAltivecParamsAtEnd) { 4538 MinReservedArea = ((MinReservedArea+15)/16)*16; 4539 MinReservedArea += 16*nAltivecParamsAtEnd; 4540 } 4541 4542 // Area that is at least reserved in the caller of this function. 4543 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4544 4545 // Set the size that is at least reserved in caller of this function. Tail 4546 // call optimized functions' reserved stack space needs to be aligned so that 4547 // taking the difference between two stack areas will result in an aligned 4548 // stack. 4549 MinReservedArea = 4550 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4551 FuncInfo->setMinReservedArea(MinReservedArea); 4552 4553 // If the function takes variable number of arguments, make a frame index for 4554 // the start of the first vararg value... for expansion of llvm.va_start. 4555 if (isVarArg) { 4556 int Depth = ArgOffset; 4557 4558 FuncInfo->setVarArgsFrameIndex( 4559 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4560 Depth, true)); 4561 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4562 4563 // If this function is vararg, store any remaining integer argument regs 4564 // to their spots on the stack so that they may be loaded by dereferencing 4565 // the result of va_next. 4566 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4567 unsigned VReg; 4568 4569 if (isPPC64) 4570 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4571 else 4572 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4573 4574 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4575 SDValue Store = 4576 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4577 MemOps.push_back(Store); 4578 // Increment the address by four for the next argument to store 4579 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4580 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4581 } 4582 } 4583 4584 if (!MemOps.empty()) 4585 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4586 4587 return Chain; 4588 } 4589 4590 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4591 /// adjusted to accommodate the arguments for the tailcall. 4592 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4593 unsigned ParamSize) { 4594 4595 if (!isTailCall) return 0; 4596 4597 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4598 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4599 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4600 // Remember only if the new adjustment is bigger. 4601 if (SPDiff < FI->getTailCallSPDelta()) 4602 FI->setTailCallSPDelta(SPDiff); 4603 4604 return SPDiff; 4605 } 4606 4607 static bool isFunctionGlobalAddress(SDValue Callee); 4608 4609 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4610 const TargetMachine &TM) { 4611 // It does not make sense to call callsShareTOCBase() with a caller that 4612 // is PC Relative since PC Relative callers do not have a TOC. 4613 #ifndef NDEBUG 4614 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4615 assert(!STICaller->isUsingPCRelativeCalls() && 4616 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4617 #endif 4618 4619 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4620 // don't have enough information to determine if the caller and callee share 4621 // the same TOC base, so we have to pessimistically assume they don't for 4622 // correctness. 4623 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4624 if (!G) 4625 return false; 4626 4627 const GlobalValue *GV = G->getGlobal(); 4628 4629 // If the callee is preemptable, then the static linker will use a plt-stub 4630 // which saves the toc to the stack, and needs a nop after the call 4631 // instruction to convert to a toc-restore. 4632 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4633 return false; 4634 4635 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4636 // We may need a TOC restore in the situation where the caller requires a 4637 // valid TOC but the callee is PC Relative and does not. 4638 const Function *F = dyn_cast<Function>(GV); 4639 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4640 4641 // If we have an Alias we can try to get the function from there. 4642 if (Alias) { 4643 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4644 F = dyn_cast<Function>(GlobalObj); 4645 } 4646 4647 // If we still have no valid function pointer we do not have enough 4648 // information to determine if the callee uses PC Relative calls so we must 4649 // assume that it does. 4650 if (!F) 4651 return false; 4652 4653 // If the callee uses PC Relative we cannot guarantee that the callee won't 4654 // clobber the TOC of the caller and so we must assume that the two 4655 // functions do not share a TOC base. 4656 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4657 if (STICallee->isUsingPCRelativeCalls()) 4658 return false; 4659 4660 // The medium and large code models are expected to provide a sufficiently 4661 // large TOC to provide all data addressing needs of a module with a 4662 // single TOC. 4663 if (CodeModel::Medium == TM.getCodeModel() || 4664 CodeModel::Large == TM.getCodeModel()) 4665 return true; 4666 4667 // Otherwise we need to ensure callee and caller are in the same section, 4668 // since the linker may allocate multiple TOCs, and we don't know which 4669 // sections will belong to the same TOC base. 4670 if (!GV->isStrongDefinitionForLinker()) 4671 return false; 4672 4673 // Any explicitly-specified sections and section prefixes must also match. 4674 // Also, if we're using -ffunction-sections, then each function is always in 4675 // a different section (the same is true for COMDAT functions). 4676 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4677 GV->getSection() != Caller->getSection()) 4678 return false; 4679 if (const auto *F = dyn_cast<Function>(GV)) { 4680 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4681 return false; 4682 } 4683 4684 return true; 4685 } 4686 4687 static bool 4688 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4689 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4690 assert(Subtarget.is64BitELFABI()); 4691 4692 const unsigned PtrByteSize = 8; 4693 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4694 4695 static const MCPhysReg GPR[] = { 4696 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4697 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4698 }; 4699 static const MCPhysReg VR[] = { 4700 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4701 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4702 }; 4703 4704 const unsigned NumGPRs = array_lengthof(GPR); 4705 const unsigned NumFPRs = 13; 4706 const unsigned NumVRs = array_lengthof(VR); 4707 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4708 4709 unsigned NumBytes = LinkageSize; 4710 unsigned AvailableFPRs = NumFPRs; 4711 unsigned AvailableVRs = NumVRs; 4712 4713 for (const ISD::OutputArg& Param : Outs) { 4714 if (Param.Flags.isNest()) continue; 4715 4716 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4717 LinkageSize, ParamAreaSize, NumBytes, 4718 AvailableFPRs, AvailableVRs)) 4719 return true; 4720 } 4721 return false; 4722 } 4723 4724 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4725 if (CB.arg_size() != CallerFn->arg_size()) 4726 return false; 4727 4728 auto CalleeArgIter = CB.arg_begin(); 4729 auto CalleeArgEnd = CB.arg_end(); 4730 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4731 4732 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4733 const Value* CalleeArg = *CalleeArgIter; 4734 const Value* CallerArg = &(*CallerArgIter); 4735 if (CalleeArg == CallerArg) 4736 continue; 4737 4738 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4739 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4740 // } 4741 // 1st argument of callee is undef and has the same type as caller. 4742 if (CalleeArg->getType() == CallerArg->getType() && 4743 isa<UndefValue>(CalleeArg)) 4744 continue; 4745 4746 return false; 4747 } 4748 4749 return true; 4750 } 4751 4752 // Returns true if TCO is possible between the callers and callees 4753 // calling conventions. 4754 static bool 4755 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4756 CallingConv::ID CalleeCC) { 4757 // Tail calls are possible with fastcc and ccc. 4758 auto isTailCallableCC = [] (CallingConv::ID CC){ 4759 return CC == CallingConv::C || CC == CallingConv::Fast; 4760 }; 4761 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4762 return false; 4763 4764 // We can safely tail call both fastcc and ccc callees from a c calling 4765 // convention caller. If the caller is fastcc, we may have less stack space 4766 // than a non-fastcc caller with the same signature so disable tail-calls in 4767 // that case. 4768 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4769 } 4770 4771 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4772 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4773 const SmallVectorImpl<ISD::OutputArg> &Outs, 4774 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4775 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4776 4777 if (DisableSCO && !TailCallOpt) return false; 4778 4779 // Variadic argument functions are not supported. 4780 if (isVarArg) return false; 4781 4782 auto &Caller = DAG.getMachineFunction().getFunction(); 4783 // Check that the calling conventions are compatible for tco. 4784 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4785 return false; 4786 4787 // Caller contains any byval parameter is not supported. 4788 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4789 return false; 4790 4791 // Callee contains any byval parameter is not supported, too. 4792 // Note: This is a quick work around, because in some cases, e.g. 4793 // caller's stack size > callee's stack size, we are still able to apply 4794 // sibling call optimization. For example, gcc is able to do SCO for caller1 4795 // in the following example, but not for caller2. 4796 // struct test { 4797 // long int a; 4798 // char ary[56]; 4799 // } gTest; 4800 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4801 // b->a = v.a; 4802 // return 0; 4803 // } 4804 // void caller1(struct test a, struct test c, struct test *b) { 4805 // callee(gTest, b); } 4806 // void caller2(struct test *b) { callee(gTest, b); } 4807 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4808 return false; 4809 4810 // If callee and caller use different calling conventions, we cannot pass 4811 // parameters on stack since offsets for the parameter area may be different. 4812 if (Caller.getCallingConv() != CalleeCC && 4813 needStackSlotPassParameters(Subtarget, Outs)) 4814 return false; 4815 4816 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4817 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4818 // callee potentially have different TOC bases then we cannot tail call since 4819 // we need to restore the TOC pointer after the call. 4820 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4821 // We cannot guarantee this for indirect calls or calls to external functions. 4822 // When PC-Relative addressing is used, the concept of the TOC is no longer 4823 // applicable so this check is not required. 4824 // Check first for indirect calls. 4825 if (!Subtarget.isUsingPCRelativeCalls() && 4826 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4827 return false; 4828 4829 // Check if we share the TOC base. 4830 if (!Subtarget.isUsingPCRelativeCalls() && 4831 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4832 return false; 4833 4834 // TCO allows altering callee ABI, so we don't have to check further. 4835 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4836 return true; 4837 4838 if (DisableSCO) return false; 4839 4840 // If callee use the same argument list that caller is using, then we can 4841 // apply SCO on this case. If it is not, then we need to check if callee needs 4842 // stack for passing arguments. 4843 // PC Relative tail calls may not have a CallBase. 4844 // If there is no CallBase we cannot verify if we have the same argument 4845 // list so assume that we don't have the same argument list. 4846 if (CB && !hasSameArgumentList(&Caller, *CB) && 4847 needStackSlotPassParameters(Subtarget, Outs)) 4848 return false; 4849 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4850 return false; 4851 4852 return true; 4853 } 4854 4855 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4856 /// for tail call optimization. Targets which want to do tail call 4857 /// optimization should implement this function. 4858 bool 4859 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4860 CallingConv::ID CalleeCC, 4861 bool isVarArg, 4862 const SmallVectorImpl<ISD::InputArg> &Ins, 4863 SelectionDAG& DAG) const { 4864 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4865 return false; 4866 4867 // Variable argument functions are not supported. 4868 if (isVarArg) 4869 return false; 4870 4871 MachineFunction &MF = DAG.getMachineFunction(); 4872 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4873 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4874 // Functions containing by val parameters are not supported. 4875 for (unsigned i = 0; i != Ins.size(); i++) { 4876 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4877 if (Flags.isByVal()) return false; 4878 } 4879 4880 // Non-PIC/GOT tail calls are supported. 4881 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4882 return true; 4883 4884 // At the moment we can only do local tail calls (in same module, hidden 4885 // or protected) if we are generating PIC. 4886 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4887 return G->getGlobal()->hasHiddenVisibility() 4888 || G->getGlobal()->hasProtectedVisibility(); 4889 } 4890 4891 return false; 4892 } 4893 4894 /// isCallCompatibleAddress - Return the immediate to use if the specified 4895 /// 32-bit value is representable in the immediate field of a BxA instruction. 4896 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4897 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4898 if (!C) return nullptr; 4899 4900 int Addr = C->getZExtValue(); 4901 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4902 SignExtend32<26>(Addr) != Addr) 4903 return nullptr; // Top 6 bits have to be sext of immediate. 4904 4905 return DAG 4906 .getConstant( 4907 (int)C->getZExtValue() >> 2, SDLoc(Op), 4908 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4909 .getNode(); 4910 } 4911 4912 namespace { 4913 4914 struct TailCallArgumentInfo { 4915 SDValue Arg; 4916 SDValue FrameIdxOp; 4917 int FrameIdx = 0; 4918 4919 TailCallArgumentInfo() = default; 4920 }; 4921 4922 } // end anonymous namespace 4923 4924 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4925 static void StoreTailCallArgumentsToStackSlot( 4926 SelectionDAG &DAG, SDValue Chain, 4927 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4928 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4929 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4930 SDValue Arg = TailCallArgs[i].Arg; 4931 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4932 int FI = TailCallArgs[i].FrameIdx; 4933 // Store relative to framepointer. 4934 MemOpChains.push_back(DAG.getStore( 4935 Chain, dl, Arg, FIN, 4936 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4937 } 4938 } 4939 4940 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4941 /// the appropriate stack slot for the tail call optimized function call. 4942 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4943 SDValue OldRetAddr, SDValue OldFP, 4944 int SPDiff, const SDLoc &dl) { 4945 if (SPDiff) { 4946 // Calculate the new stack slot for the return address. 4947 MachineFunction &MF = DAG.getMachineFunction(); 4948 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4949 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4950 bool isPPC64 = Subtarget.isPPC64(); 4951 int SlotSize = isPPC64 ? 8 : 4; 4952 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4953 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4954 NewRetAddrLoc, true); 4955 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4956 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4957 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4958 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4959 } 4960 return Chain; 4961 } 4962 4963 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4964 /// the position of the argument. 4965 static void 4966 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4967 SDValue Arg, int SPDiff, unsigned ArgOffset, 4968 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4969 int Offset = ArgOffset + SPDiff; 4970 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4971 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4972 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4973 SDValue FIN = DAG.getFrameIndex(FI, VT); 4974 TailCallArgumentInfo Info; 4975 Info.Arg = Arg; 4976 Info.FrameIdxOp = FIN; 4977 Info.FrameIdx = FI; 4978 TailCallArguments.push_back(Info); 4979 } 4980 4981 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4982 /// stack slot. Returns the chain as result and the loaded frame pointers in 4983 /// LROpOut/FPOpout. Used when tail calling. 4984 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4985 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4986 SDValue &FPOpOut, const SDLoc &dl) const { 4987 if (SPDiff) { 4988 // Load the LR and FP stack slot for later adjusting. 4989 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4990 LROpOut = getReturnAddrFrameIndex(DAG); 4991 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4992 Chain = SDValue(LROpOut.getNode(), 1); 4993 } 4994 return Chain; 4995 } 4996 4997 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4998 /// by "Src" to address "Dst" of size "Size". Alignment information is 4999 /// specified by the specific parameter attribute. The copy will be passed as 5000 /// a byval function parameter. 5001 /// Sometimes what we are copying is the end of a larger object, the part that 5002 /// does not fit in registers. 5003 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5004 SDValue Chain, ISD::ArgFlagsTy Flags, 5005 SelectionDAG &DAG, const SDLoc &dl) { 5006 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5007 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5008 Flags.getNonZeroByValAlign(), false, false, false, 5009 MachinePointerInfo(), MachinePointerInfo()); 5010 } 5011 5012 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5013 /// tail calls. 5014 static void LowerMemOpCallTo( 5015 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5016 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5017 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5018 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5019 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5020 if (!isTailCall) { 5021 if (isVector) { 5022 SDValue StackPtr; 5023 if (isPPC64) 5024 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5025 else 5026 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5027 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5028 DAG.getConstant(ArgOffset, dl, PtrVT)); 5029 } 5030 MemOpChains.push_back( 5031 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5032 // Calculate and remember argument location. 5033 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5034 TailCallArguments); 5035 } 5036 5037 static void 5038 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5039 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5040 SDValue FPOp, 5041 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5042 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5043 // might overwrite each other in case of tail call optimization. 5044 SmallVector<SDValue, 8> MemOpChains2; 5045 // Do not flag preceding copytoreg stuff together with the following stuff. 5046 InFlag = SDValue(); 5047 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5048 MemOpChains2, dl); 5049 if (!MemOpChains2.empty()) 5050 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5051 5052 // Store the return address to the appropriate stack slot. 5053 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5054 5055 // Emit callseq_end just before tailcall node. 5056 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5057 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5058 InFlag = Chain.getValue(1); 5059 } 5060 5061 // Is this global address that of a function that can be called by name? (as 5062 // opposed to something that must hold a descriptor for an indirect call). 5063 static bool isFunctionGlobalAddress(SDValue Callee) { 5064 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5065 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5066 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5067 return false; 5068 5069 return G->getGlobal()->getValueType()->isFunctionTy(); 5070 } 5071 5072 return false; 5073 } 5074 5075 SDValue PPCTargetLowering::LowerCallResult( 5076 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5077 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5078 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5079 SmallVector<CCValAssign, 16> RVLocs; 5080 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5081 *DAG.getContext()); 5082 5083 CCRetInfo.AnalyzeCallResult( 5084 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5085 ? RetCC_PPC_Cold 5086 : RetCC_PPC); 5087 5088 // Copy all of the result registers out of their specified physreg. 5089 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5090 CCValAssign &VA = RVLocs[i]; 5091 assert(VA.isRegLoc() && "Can only return in registers!"); 5092 5093 SDValue Val; 5094 5095 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5096 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5097 InFlag); 5098 Chain = Lo.getValue(1); 5099 InFlag = Lo.getValue(2); 5100 VA = RVLocs[++i]; // skip ahead to next loc 5101 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5102 InFlag); 5103 Chain = Hi.getValue(1); 5104 InFlag = Hi.getValue(2); 5105 if (!Subtarget.isLittleEndian()) 5106 std::swap (Lo, Hi); 5107 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5108 } else { 5109 Val = DAG.getCopyFromReg(Chain, dl, 5110 VA.getLocReg(), VA.getLocVT(), InFlag); 5111 Chain = Val.getValue(1); 5112 InFlag = Val.getValue(2); 5113 } 5114 5115 switch (VA.getLocInfo()) { 5116 default: llvm_unreachable("Unknown loc info!"); 5117 case CCValAssign::Full: break; 5118 case CCValAssign::AExt: 5119 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5120 break; 5121 case CCValAssign::ZExt: 5122 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5123 DAG.getValueType(VA.getValVT())); 5124 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5125 break; 5126 case CCValAssign::SExt: 5127 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5128 DAG.getValueType(VA.getValVT())); 5129 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5130 break; 5131 } 5132 5133 InVals.push_back(Val); 5134 } 5135 5136 return Chain; 5137 } 5138 5139 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5140 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5141 // PatchPoint calls are not indirect. 5142 if (isPatchPoint) 5143 return false; 5144 5145 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5146 return false; 5147 5148 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5149 // becuase the immediate function pointer points to a descriptor instead of 5150 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5151 // pointer immediate points to the global entry point, while the BLA would 5152 // need to jump to the local entry point (see rL211174). 5153 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5154 isBLACompatibleAddress(Callee, DAG)) 5155 return false; 5156 5157 return true; 5158 } 5159 5160 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5161 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5162 return Subtarget.isAIXABI() || 5163 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5164 } 5165 5166 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5167 const Function &Caller, 5168 const SDValue &Callee, 5169 const PPCSubtarget &Subtarget, 5170 const TargetMachine &TM) { 5171 if (CFlags.IsTailCall) 5172 return PPCISD::TC_RETURN; 5173 5174 // This is a call through a function pointer. 5175 if (CFlags.IsIndirect) { 5176 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5177 // indirect calls. The save of the caller's TOC pointer to the stack will be 5178 // inserted into the DAG as part of call lowering. The restore of the TOC 5179 // pointer is modeled by using a pseudo instruction for the call opcode that 5180 // represents the 2 instruction sequence of an indirect branch and link, 5181 // immediately followed by a load of the TOC pointer from the the stack save 5182 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5183 // as it is not saved or used. 5184 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5185 : PPCISD::BCTRL; 5186 } 5187 5188 if (Subtarget.isUsingPCRelativeCalls()) { 5189 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5190 return PPCISD::CALL_NOTOC; 5191 } 5192 5193 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5194 // immediately following the call instruction if the caller and callee may 5195 // have different TOC bases. At link time if the linker determines the calls 5196 // may not share a TOC base, the call is redirected to a trampoline inserted 5197 // by the linker. The trampoline will (among other things) save the callers 5198 // TOC pointer at an ABI designated offset in the linkage area and the linker 5199 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5200 // into gpr2. 5201 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5202 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5203 : PPCISD::CALL_NOP; 5204 5205 return PPCISD::CALL; 5206 } 5207 5208 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5209 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5210 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5211 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5212 return SDValue(Dest, 0); 5213 5214 // Returns true if the callee is local, and false otherwise. 5215 auto isLocalCallee = [&]() { 5216 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5217 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5218 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5219 5220 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5221 !dyn_cast_or_null<GlobalIFunc>(GV); 5222 }; 5223 5224 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5225 // a static relocation model causes some versions of GNU LD (2.17.50, at 5226 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5227 // built with secure-PLT. 5228 bool UsePlt = 5229 Subtarget.is32BitELFABI() && !isLocalCallee() && 5230 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5231 5232 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5233 const TargetMachine &TM = Subtarget.getTargetMachine(); 5234 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5235 MCSymbolXCOFF *S = 5236 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5237 5238 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5239 return DAG.getMCSymbol(S, PtrVT); 5240 }; 5241 5242 if (isFunctionGlobalAddress(Callee)) { 5243 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5244 5245 if (Subtarget.isAIXABI()) { 5246 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5247 return getAIXFuncEntryPointSymbolSDNode(GV); 5248 } 5249 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5250 UsePlt ? PPCII::MO_PLT : 0); 5251 } 5252 5253 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5254 const char *SymName = S->getSymbol(); 5255 if (Subtarget.isAIXABI()) { 5256 // If there exists a user-declared function whose name is the same as the 5257 // ExternalSymbol's, then we pick up the user-declared version. 5258 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5259 if (const Function *F = 5260 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5261 return getAIXFuncEntryPointSymbolSDNode(F); 5262 5263 // On AIX, direct function calls reference the symbol for the function's 5264 // entry point, which is named by prepending a "." before the function's 5265 // C-linkage name. A Qualname is returned here because an external 5266 // function entry point is a csect with XTY_ER property. 5267 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5268 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5269 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5270 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5271 SectionKind::getMetadata()); 5272 return Sec->getQualNameSymbol(); 5273 }; 5274 5275 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5276 } 5277 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5278 UsePlt ? PPCII::MO_PLT : 0); 5279 } 5280 5281 // No transformation needed. 5282 assert(Callee.getNode() && "What no callee?"); 5283 return Callee; 5284 } 5285 5286 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5287 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5288 "Expected a CALLSEQ_STARTSDNode."); 5289 5290 // The last operand is the chain, except when the node has glue. If the node 5291 // has glue, then the last operand is the glue, and the chain is the second 5292 // last operand. 5293 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5294 if (LastValue.getValueType() != MVT::Glue) 5295 return LastValue; 5296 5297 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5298 } 5299 5300 // Creates the node that moves a functions address into the count register 5301 // to prepare for an indirect call instruction. 5302 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5303 SDValue &Glue, SDValue &Chain, 5304 const SDLoc &dl) { 5305 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5306 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5307 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5308 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5309 // The glue is the second value produced. 5310 Glue = Chain.getValue(1); 5311 } 5312 5313 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5314 SDValue &Glue, SDValue &Chain, 5315 SDValue CallSeqStart, 5316 const CallBase *CB, const SDLoc &dl, 5317 bool hasNest, 5318 const PPCSubtarget &Subtarget) { 5319 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5320 // entry point, but to the function descriptor (the function entry point 5321 // address is part of the function descriptor though). 5322 // The function descriptor is a three doubleword structure with the 5323 // following fields: function entry point, TOC base address and 5324 // environment pointer. 5325 // Thus for a call through a function pointer, the following actions need 5326 // to be performed: 5327 // 1. Save the TOC of the caller in the TOC save area of its stack 5328 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5329 // 2. Load the address of the function entry point from the function 5330 // descriptor. 5331 // 3. Load the TOC of the callee from the function descriptor into r2. 5332 // 4. Load the environment pointer from the function descriptor into 5333 // r11. 5334 // 5. Branch to the function entry point address. 5335 // 6. On return of the callee, the TOC of the caller needs to be 5336 // restored (this is done in FinishCall()). 5337 // 5338 // The loads are scheduled at the beginning of the call sequence, and the 5339 // register copies are flagged together to ensure that no other 5340 // operations can be scheduled in between. E.g. without flagging the 5341 // copies together, a TOC access in the caller could be scheduled between 5342 // the assignment of the callee TOC and the branch to the callee, which leads 5343 // to incorrect code. 5344 5345 // Start by loading the function address from the descriptor. 5346 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5347 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5348 ? (MachineMemOperand::MODereferenceable | 5349 MachineMemOperand::MOInvariant) 5350 : MachineMemOperand::MONone; 5351 5352 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5353 5354 // Registers used in building the DAG. 5355 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5356 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5357 5358 // Offsets of descriptor members. 5359 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5360 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5361 5362 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5363 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5364 5365 // One load for the functions entry point address. 5366 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5367 Alignment, MMOFlags); 5368 5369 // One for loading the TOC anchor for the module that contains the called 5370 // function. 5371 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5372 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5373 SDValue TOCPtr = 5374 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5375 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5376 5377 // One for loading the environment pointer. 5378 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5379 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5380 SDValue LoadEnvPtr = 5381 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5382 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5383 5384 5385 // Then copy the newly loaded TOC anchor to the TOC pointer. 5386 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5387 Chain = TOCVal.getValue(0); 5388 Glue = TOCVal.getValue(1); 5389 5390 // If the function call has an explicit 'nest' parameter, it takes the 5391 // place of the environment pointer. 5392 assert((!hasNest || !Subtarget.isAIXABI()) && 5393 "Nest parameter is not supported on AIX."); 5394 if (!hasNest) { 5395 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5396 Chain = EnvVal.getValue(0); 5397 Glue = EnvVal.getValue(1); 5398 } 5399 5400 // The rest of the indirect call sequence is the same as the non-descriptor 5401 // DAG. 5402 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5403 } 5404 5405 static void 5406 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5407 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5408 SelectionDAG &DAG, 5409 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5410 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5411 const PPCSubtarget &Subtarget) { 5412 const bool IsPPC64 = Subtarget.isPPC64(); 5413 // MVT for a general purpose register. 5414 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5415 5416 // First operand is always the chain. 5417 Ops.push_back(Chain); 5418 5419 // If it's a direct call pass the callee as the second operand. 5420 if (!CFlags.IsIndirect) 5421 Ops.push_back(Callee); 5422 else { 5423 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5424 5425 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5426 // on the stack (this would have been done in `LowerCall_64SVR4` or 5427 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5428 // represents both the indirect branch and a load that restores the TOC 5429 // pointer from the linkage area. The operand for the TOC restore is an add 5430 // of the TOC save offset to the stack pointer. This must be the second 5431 // operand: after the chain input but before any other variadic arguments. 5432 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5433 // saved or used. 5434 if (isTOCSaveRestoreRequired(Subtarget)) { 5435 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5436 5437 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5438 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5439 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5440 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5441 Ops.push_back(AddTOC); 5442 } 5443 5444 // Add the register used for the environment pointer. 5445 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5446 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5447 RegVT)); 5448 5449 5450 // Add CTR register as callee so a bctr can be emitted later. 5451 if (CFlags.IsTailCall) 5452 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5453 } 5454 5455 // If this is a tail call add stack pointer delta. 5456 if (CFlags.IsTailCall) 5457 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5458 5459 // Add argument registers to the end of the list so that they are known live 5460 // into the call. 5461 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5462 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5463 RegsToPass[i].second.getValueType())); 5464 5465 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5466 // no way to mark dependencies as implicit here. 5467 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5468 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5469 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5470 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5471 5472 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5473 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5474 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5475 5476 // Add a register mask operand representing the call-preserved registers. 5477 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5478 const uint32_t *Mask = 5479 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5480 assert(Mask && "Missing call preserved mask for calling convention"); 5481 Ops.push_back(DAG.getRegisterMask(Mask)); 5482 5483 // If the glue is valid, it is the last operand. 5484 if (Glue.getNode()) 5485 Ops.push_back(Glue); 5486 } 5487 5488 SDValue PPCTargetLowering::FinishCall( 5489 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5490 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5491 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5492 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5493 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5494 5495 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5496 Subtarget.isAIXABI()) 5497 setUsesTOCBasePtr(DAG); 5498 5499 unsigned CallOpc = 5500 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5501 Subtarget, DAG.getTarget()); 5502 5503 if (!CFlags.IsIndirect) 5504 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5505 else if (Subtarget.usesFunctionDescriptors()) 5506 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5507 dl, CFlags.HasNest, Subtarget); 5508 else 5509 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5510 5511 // Build the operand list for the call instruction. 5512 SmallVector<SDValue, 8> Ops; 5513 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5514 SPDiff, Subtarget); 5515 5516 // Emit tail call. 5517 if (CFlags.IsTailCall) { 5518 // Indirect tail call when using PC Relative calls do not have the same 5519 // constraints. 5520 assert(((Callee.getOpcode() == ISD::Register && 5521 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5522 Callee.getOpcode() == ISD::TargetExternalSymbol || 5523 Callee.getOpcode() == ISD::TargetGlobalAddress || 5524 isa<ConstantSDNode>(Callee) || 5525 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5526 "Expecting a global address, external symbol, absolute value, " 5527 "register or an indirect tail call when PC Relative calls are " 5528 "used."); 5529 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5530 assert(CallOpc == PPCISD::TC_RETURN && 5531 "Unexpected call opcode for a tail call."); 5532 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5533 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5534 } 5535 5536 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5537 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5538 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5539 Glue = Chain.getValue(1); 5540 5541 // When performing tail call optimization the callee pops its arguments off 5542 // the stack. Account for this here so these bytes can be pushed back on in 5543 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5544 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5545 getTargetMachine().Options.GuaranteedTailCallOpt) 5546 ? NumBytes 5547 : 0; 5548 5549 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5550 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5551 Glue, dl); 5552 Glue = Chain.getValue(1); 5553 5554 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5555 DAG, InVals); 5556 } 5557 5558 SDValue 5559 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5560 SmallVectorImpl<SDValue> &InVals) const { 5561 SelectionDAG &DAG = CLI.DAG; 5562 SDLoc &dl = CLI.DL; 5563 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5564 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5565 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5566 SDValue Chain = CLI.Chain; 5567 SDValue Callee = CLI.Callee; 5568 bool &isTailCall = CLI.IsTailCall; 5569 CallingConv::ID CallConv = CLI.CallConv; 5570 bool isVarArg = CLI.IsVarArg; 5571 bool isPatchPoint = CLI.IsPatchPoint; 5572 const CallBase *CB = CLI.CB; 5573 5574 if (isTailCall) { 5575 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5576 isTailCall = false; 5577 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5578 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5579 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5580 else 5581 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5582 Ins, DAG); 5583 if (isTailCall) { 5584 ++NumTailCalls; 5585 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5586 ++NumSiblingCalls; 5587 5588 // PC Relative calls no longer guarantee that the callee is a Global 5589 // Address Node. The callee could be an indirect tail call in which 5590 // case the SDValue for the callee could be a load (to load the address 5591 // of a function pointer) or it may be a register copy (to move the 5592 // address of the callee from a function parameter into a virtual 5593 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5594 assert((Subtarget.isUsingPCRelativeCalls() || 5595 isa<GlobalAddressSDNode>(Callee)) && 5596 "Callee should be an llvm::Function object."); 5597 5598 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5599 << "\nTCO callee: "); 5600 LLVM_DEBUG(Callee.dump()); 5601 } 5602 } 5603 5604 if (!isTailCall && CB && CB->isMustTailCall()) 5605 report_fatal_error("failed to perform tail call elimination on a call " 5606 "site marked musttail"); 5607 5608 // When long calls (i.e. indirect calls) are always used, calls are always 5609 // made via function pointer. If we have a function name, first translate it 5610 // into a pointer. 5611 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5612 !isTailCall) 5613 Callee = LowerGlobalAddress(Callee, DAG); 5614 5615 CallFlags CFlags( 5616 CallConv, isTailCall, isVarArg, isPatchPoint, 5617 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5618 // hasNest 5619 Subtarget.is64BitELFABI() && 5620 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5621 CLI.NoMerge); 5622 5623 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5624 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5625 InVals, CB); 5626 5627 if (Subtarget.isSVR4ABI()) 5628 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5629 InVals, CB); 5630 5631 if (Subtarget.isAIXABI()) 5632 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5633 InVals, CB); 5634 5635 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5636 InVals, CB); 5637 } 5638 5639 SDValue PPCTargetLowering::LowerCall_32SVR4( 5640 SDValue Chain, SDValue Callee, CallFlags CFlags, 5641 const SmallVectorImpl<ISD::OutputArg> &Outs, 5642 const SmallVectorImpl<SDValue> &OutVals, 5643 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5644 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5645 const CallBase *CB) const { 5646 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5647 // of the 32-bit SVR4 ABI stack frame layout. 5648 5649 const CallingConv::ID CallConv = CFlags.CallConv; 5650 const bool IsVarArg = CFlags.IsVarArg; 5651 const bool IsTailCall = CFlags.IsTailCall; 5652 5653 assert((CallConv == CallingConv::C || 5654 CallConv == CallingConv::Cold || 5655 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5656 5657 const Align PtrAlign(4); 5658 5659 MachineFunction &MF = DAG.getMachineFunction(); 5660 5661 // Mark this function as potentially containing a function that contains a 5662 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5663 // and restoring the callers stack pointer in this functions epilog. This is 5664 // done because by tail calling the called function might overwrite the value 5665 // in this function's (MF) stack pointer stack slot 0(SP). 5666 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5667 CallConv == CallingConv::Fast) 5668 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5669 5670 // Count how many bytes are to be pushed on the stack, including the linkage 5671 // area, parameter list area and the part of the local variable space which 5672 // contains copies of aggregates which are passed by value. 5673 5674 // Assign locations to all of the outgoing arguments. 5675 SmallVector<CCValAssign, 16> ArgLocs; 5676 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5677 5678 // Reserve space for the linkage area on the stack. 5679 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5680 PtrAlign); 5681 if (useSoftFloat()) 5682 CCInfo.PreAnalyzeCallOperands(Outs); 5683 5684 if (IsVarArg) { 5685 // Handle fixed and variable vector arguments differently. 5686 // Fixed vector arguments go into registers as long as registers are 5687 // available. Variable vector arguments always go into memory. 5688 unsigned NumArgs = Outs.size(); 5689 5690 for (unsigned i = 0; i != NumArgs; ++i) { 5691 MVT ArgVT = Outs[i].VT; 5692 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5693 bool Result; 5694 5695 if (Outs[i].IsFixed) { 5696 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5697 CCInfo); 5698 } else { 5699 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5700 ArgFlags, CCInfo); 5701 } 5702 5703 if (Result) { 5704 #ifndef NDEBUG 5705 errs() << "Call operand #" << i << " has unhandled type " 5706 << EVT(ArgVT).getEVTString() << "\n"; 5707 #endif 5708 llvm_unreachable(nullptr); 5709 } 5710 } 5711 } else { 5712 // All arguments are treated the same. 5713 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5714 } 5715 CCInfo.clearWasPPCF128(); 5716 5717 // Assign locations to all of the outgoing aggregate by value arguments. 5718 SmallVector<CCValAssign, 16> ByValArgLocs; 5719 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5720 5721 // Reserve stack space for the allocations in CCInfo. 5722 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5723 5724 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5725 5726 // Size of the linkage area, parameter list area and the part of the local 5727 // space variable where copies of aggregates which are passed by value are 5728 // stored. 5729 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5730 5731 // Calculate by how many bytes the stack has to be adjusted in case of tail 5732 // call optimization. 5733 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5734 5735 // Adjust the stack pointer for the new arguments... 5736 // These operations are automatically eliminated by the prolog/epilog pass 5737 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5738 SDValue CallSeqStart = Chain; 5739 5740 // Load the return address and frame pointer so it can be moved somewhere else 5741 // later. 5742 SDValue LROp, FPOp; 5743 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5744 5745 // Set up a copy of the stack pointer for use loading and storing any 5746 // arguments that may not fit in the registers available for argument 5747 // passing. 5748 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5749 5750 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5751 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5752 SmallVector<SDValue, 8> MemOpChains; 5753 5754 bool seenFloatArg = false; 5755 // Walk the register/memloc assignments, inserting copies/loads. 5756 // i - Tracks the index into the list of registers allocated for the call 5757 // RealArgIdx - Tracks the index into the list of actual function arguments 5758 // j - Tracks the index into the list of byval arguments 5759 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5760 i != e; 5761 ++i, ++RealArgIdx) { 5762 CCValAssign &VA = ArgLocs[i]; 5763 SDValue Arg = OutVals[RealArgIdx]; 5764 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5765 5766 if (Flags.isByVal()) { 5767 // Argument is an aggregate which is passed by value, thus we need to 5768 // create a copy of it in the local variable space of the current stack 5769 // frame (which is the stack frame of the caller) and pass the address of 5770 // this copy to the callee. 5771 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5772 CCValAssign &ByValVA = ByValArgLocs[j++]; 5773 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5774 5775 // Memory reserved in the local variable space of the callers stack frame. 5776 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5777 5778 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5779 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5780 StackPtr, PtrOff); 5781 5782 // Create a copy of the argument in the local area of the current 5783 // stack frame. 5784 SDValue MemcpyCall = 5785 CreateCopyOfByValArgument(Arg, PtrOff, 5786 CallSeqStart.getNode()->getOperand(0), 5787 Flags, DAG, dl); 5788 5789 // This must go outside the CALLSEQ_START..END. 5790 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5791 SDLoc(MemcpyCall)); 5792 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5793 NewCallSeqStart.getNode()); 5794 Chain = CallSeqStart = NewCallSeqStart; 5795 5796 // Pass the address of the aggregate copy on the stack either in a 5797 // physical register or in the parameter list area of the current stack 5798 // frame to the callee. 5799 Arg = PtrOff; 5800 } 5801 5802 // When useCRBits() is true, there can be i1 arguments. 5803 // It is because getRegisterType(MVT::i1) => MVT::i1, 5804 // and for other integer types getRegisterType() => MVT::i32. 5805 // Extend i1 and ensure callee will get i32. 5806 if (Arg.getValueType() == MVT::i1) 5807 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5808 dl, MVT::i32, Arg); 5809 5810 if (VA.isRegLoc()) { 5811 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5812 // Put argument in a physical register. 5813 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5814 bool IsLE = Subtarget.isLittleEndian(); 5815 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5816 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5817 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5818 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5819 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5820 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5821 SVal.getValue(0))); 5822 } else 5823 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5824 } else { 5825 // Put argument in the parameter list area of the current stack frame. 5826 assert(VA.isMemLoc()); 5827 unsigned LocMemOffset = VA.getLocMemOffset(); 5828 5829 if (!IsTailCall) { 5830 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5831 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5832 StackPtr, PtrOff); 5833 5834 MemOpChains.push_back( 5835 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5836 } else { 5837 // Calculate and remember argument location. 5838 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5839 TailCallArguments); 5840 } 5841 } 5842 } 5843 5844 if (!MemOpChains.empty()) 5845 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5846 5847 // Build a sequence of copy-to-reg nodes chained together with token chain 5848 // and flag operands which copy the outgoing args into the appropriate regs. 5849 SDValue InFlag; 5850 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5851 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5852 RegsToPass[i].second, InFlag); 5853 InFlag = Chain.getValue(1); 5854 } 5855 5856 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5857 // registers. 5858 if (IsVarArg) { 5859 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5860 SDValue Ops[] = { Chain, InFlag }; 5861 5862 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5863 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5864 5865 InFlag = Chain.getValue(1); 5866 } 5867 5868 if (IsTailCall) 5869 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5870 TailCallArguments); 5871 5872 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5873 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5874 } 5875 5876 // Copy an argument into memory, being careful to do this outside the 5877 // call sequence for the call to which the argument belongs. 5878 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5879 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5880 SelectionDAG &DAG, const SDLoc &dl) const { 5881 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5882 CallSeqStart.getNode()->getOperand(0), 5883 Flags, DAG, dl); 5884 // The MEMCPY must go outside the CALLSEQ_START..END. 5885 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5886 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5887 SDLoc(MemcpyCall)); 5888 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5889 NewCallSeqStart.getNode()); 5890 return NewCallSeqStart; 5891 } 5892 5893 SDValue PPCTargetLowering::LowerCall_64SVR4( 5894 SDValue Chain, SDValue Callee, CallFlags CFlags, 5895 const SmallVectorImpl<ISD::OutputArg> &Outs, 5896 const SmallVectorImpl<SDValue> &OutVals, 5897 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5898 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5899 const CallBase *CB) const { 5900 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5901 bool isLittleEndian = Subtarget.isLittleEndian(); 5902 unsigned NumOps = Outs.size(); 5903 bool IsSibCall = false; 5904 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5905 5906 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5907 unsigned PtrByteSize = 8; 5908 5909 MachineFunction &MF = DAG.getMachineFunction(); 5910 5911 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5912 IsSibCall = true; 5913 5914 // Mark this function as potentially containing a function that contains a 5915 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5916 // and restoring the callers stack pointer in this functions epilog. This is 5917 // done because by tail calling the called function might overwrite the value 5918 // in this function's (MF) stack pointer stack slot 0(SP). 5919 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5920 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5921 5922 assert(!(IsFastCall && CFlags.IsVarArg) && 5923 "fastcc not supported on varargs functions"); 5924 5925 // Count how many bytes are to be pushed on the stack, including the linkage 5926 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5927 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5928 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5929 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5930 unsigned NumBytes = LinkageSize; 5931 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5932 5933 static const MCPhysReg GPR[] = { 5934 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5935 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5936 }; 5937 static const MCPhysReg VR[] = { 5938 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5939 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5940 }; 5941 5942 const unsigned NumGPRs = array_lengthof(GPR); 5943 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5944 const unsigned NumVRs = array_lengthof(VR); 5945 5946 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5947 // can be passed to the callee in registers. 5948 // For the fast calling convention, there is another check below. 5949 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5950 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5951 if (!HasParameterArea) { 5952 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5953 unsigned AvailableFPRs = NumFPRs; 5954 unsigned AvailableVRs = NumVRs; 5955 unsigned NumBytesTmp = NumBytes; 5956 for (unsigned i = 0; i != NumOps; ++i) { 5957 if (Outs[i].Flags.isNest()) continue; 5958 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5959 PtrByteSize, LinkageSize, ParamAreaSize, 5960 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5961 HasParameterArea = true; 5962 } 5963 } 5964 5965 // When using the fast calling convention, we don't provide backing for 5966 // arguments that will be in registers. 5967 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5968 5969 // Avoid allocating parameter area for fastcc functions if all the arguments 5970 // can be passed in the registers. 5971 if (IsFastCall) 5972 HasParameterArea = false; 5973 5974 // Add up all the space actually used. 5975 for (unsigned i = 0; i != NumOps; ++i) { 5976 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5977 EVT ArgVT = Outs[i].VT; 5978 EVT OrigVT = Outs[i].ArgVT; 5979 5980 if (Flags.isNest()) 5981 continue; 5982 5983 if (IsFastCall) { 5984 if (Flags.isByVal()) { 5985 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5986 if (NumGPRsUsed > NumGPRs) 5987 HasParameterArea = true; 5988 } else { 5989 switch (ArgVT.getSimpleVT().SimpleTy) { 5990 default: llvm_unreachable("Unexpected ValueType for argument!"); 5991 case MVT::i1: 5992 case MVT::i32: 5993 case MVT::i64: 5994 if (++NumGPRsUsed <= NumGPRs) 5995 continue; 5996 break; 5997 case MVT::v4i32: 5998 case MVT::v8i16: 5999 case MVT::v16i8: 6000 case MVT::v2f64: 6001 case MVT::v2i64: 6002 case MVT::v1i128: 6003 case MVT::f128: 6004 if (++NumVRsUsed <= NumVRs) 6005 continue; 6006 break; 6007 case MVT::v4f32: 6008 if (++NumVRsUsed <= NumVRs) 6009 continue; 6010 break; 6011 case MVT::f32: 6012 case MVT::f64: 6013 if (++NumFPRsUsed <= NumFPRs) 6014 continue; 6015 break; 6016 } 6017 HasParameterArea = true; 6018 } 6019 } 6020 6021 /* Respect alignment of argument on the stack. */ 6022 auto Alignement = 6023 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6024 NumBytes = alignTo(NumBytes, Alignement); 6025 6026 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6027 if (Flags.isInConsecutiveRegsLast()) 6028 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6029 } 6030 6031 unsigned NumBytesActuallyUsed = NumBytes; 6032 6033 // In the old ELFv1 ABI, 6034 // the prolog code of the callee may store up to 8 GPR argument registers to 6035 // the stack, allowing va_start to index over them in memory if its varargs. 6036 // Because we cannot tell if this is needed on the caller side, we have to 6037 // conservatively assume that it is needed. As such, make sure we have at 6038 // least enough stack space for the caller to store the 8 GPRs. 6039 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6040 // really requires memory operands, e.g. a vararg function. 6041 if (HasParameterArea) 6042 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6043 else 6044 NumBytes = LinkageSize; 6045 6046 // Tail call needs the stack to be aligned. 6047 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6048 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6049 6050 int SPDiff = 0; 6051 6052 // Calculate by how many bytes the stack has to be adjusted in case of tail 6053 // call optimization. 6054 if (!IsSibCall) 6055 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6056 6057 // To protect arguments on the stack from being clobbered in a tail call, 6058 // force all the loads to happen before doing any other lowering. 6059 if (CFlags.IsTailCall) 6060 Chain = DAG.getStackArgumentTokenFactor(Chain); 6061 6062 // Adjust the stack pointer for the new arguments... 6063 // These operations are automatically eliminated by the prolog/epilog pass 6064 if (!IsSibCall) 6065 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6066 SDValue CallSeqStart = Chain; 6067 6068 // Load the return address and frame pointer so it can be move somewhere else 6069 // later. 6070 SDValue LROp, FPOp; 6071 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6072 6073 // Set up a copy of the stack pointer for use loading and storing any 6074 // arguments that may not fit in the registers available for argument 6075 // passing. 6076 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6077 6078 // Figure out which arguments are going to go in registers, and which in 6079 // memory. Also, if this is a vararg function, floating point operations 6080 // must be stored to our stack, and loaded into integer regs as well, if 6081 // any integer regs are available for argument passing. 6082 unsigned ArgOffset = LinkageSize; 6083 6084 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6085 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6086 6087 SmallVector<SDValue, 8> MemOpChains; 6088 for (unsigned i = 0; i != NumOps; ++i) { 6089 SDValue Arg = OutVals[i]; 6090 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6091 EVT ArgVT = Outs[i].VT; 6092 EVT OrigVT = Outs[i].ArgVT; 6093 6094 // PtrOff will be used to store the current argument to the stack if a 6095 // register cannot be found for it. 6096 SDValue PtrOff; 6097 6098 // We re-align the argument offset for each argument, except when using the 6099 // fast calling convention, when we need to make sure we do that only when 6100 // we'll actually use a stack slot. 6101 auto ComputePtrOff = [&]() { 6102 /* Respect alignment of argument on the stack. */ 6103 auto Alignment = 6104 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6105 ArgOffset = alignTo(ArgOffset, Alignment); 6106 6107 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6108 6109 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6110 }; 6111 6112 if (!IsFastCall) { 6113 ComputePtrOff(); 6114 6115 /* Compute GPR index associated with argument offset. */ 6116 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6117 GPR_idx = std::min(GPR_idx, NumGPRs); 6118 } 6119 6120 // Promote integers to 64-bit values. 6121 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6122 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6123 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6124 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6125 } 6126 6127 // FIXME memcpy is used way more than necessary. Correctness first. 6128 // Note: "by value" is code for passing a structure by value, not 6129 // basic types. 6130 if (Flags.isByVal()) { 6131 // Note: Size includes alignment padding, so 6132 // struct x { short a; char b; } 6133 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6134 // These are the proper values we need for right-justifying the 6135 // aggregate in a parameter register. 6136 unsigned Size = Flags.getByValSize(); 6137 6138 // An empty aggregate parameter takes up no storage and no 6139 // registers. 6140 if (Size == 0) 6141 continue; 6142 6143 if (IsFastCall) 6144 ComputePtrOff(); 6145 6146 // All aggregates smaller than 8 bytes must be passed right-justified. 6147 if (Size==1 || Size==2 || Size==4) { 6148 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6149 if (GPR_idx != NumGPRs) { 6150 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6151 MachinePointerInfo(), VT); 6152 MemOpChains.push_back(Load.getValue(1)); 6153 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6154 6155 ArgOffset += PtrByteSize; 6156 continue; 6157 } 6158 } 6159 6160 if (GPR_idx == NumGPRs && Size < 8) { 6161 SDValue AddPtr = PtrOff; 6162 if (!isLittleEndian) { 6163 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6164 PtrOff.getValueType()); 6165 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6166 } 6167 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6168 CallSeqStart, 6169 Flags, DAG, dl); 6170 ArgOffset += PtrByteSize; 6171 continue; 6172 } 6173 // Copy entire object into memory. There are cases where gcc-generated 6174 // code assumes it is there, even if it could be put entirely into 6175 // registers. (This is not what the doc says.) 6176 6177 // FIXME: The above statement is likely due to a misunderstanding of the 6178 // documents. All arguments must be copied into the parameter area BY 6179 // THE CALLEE in the event that the callee takes the address of any 6180 // formal argument. That has not yet been implemented. However, it is 6181 // reasonable to use the stack area as a staging area for the register 6182 // load. 6183 6184 // Skip this for small aggregates, as we will use the same slot for a 6185 // right-justified copy, below. 6186 if (Size >= 8) 6187 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6188 CallSeqStart, 6189 Flags, DAG, dl); 6190 6191 // When a register is available, pass a small aggregate right-justified. 6192 if (Size < 8 && GPR_idx != NumGPRs) { 6193 // The easiest way to get this right-justified in a register 6194 // is to copy the structure into the rightmost portion of a 6195 // local variable slot, then load the whole slot into the 6196 // register. 6197 // FIXME: The memcpy seems to produce pretty awful code for 6198 // small aggregates, particularly for packed ones. 6199 // FIXME: It would be preferable to use the slot in the 6200 // parameter save area instead of a new local variable. 6201 SDValue AddPtr = PtrOff; 6202 if (!isLittleEndian) { 6203 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6204 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6205 } 6206 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6207 CallSeqStart, 6208 Flags, DAG, dl); 6209 6210 // Load the slot into the register. 6211 SDValue Load = 6212 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6213 MemOpChains.push_back(Load.getValue(1)); 6214 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6215 6216 // Done with this argument. 6217 ArgOffset += PtrByteSize; 6218 continue; 6219 } 6220 6221 // For aggregates larger than PtrByteSize, copy the pieces of the 6222 // object that fit into registers from the parameter save area. 6223 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6224 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6225 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6226 if (GPR_idx != NumGPRs) { 6227 SDValue Load = 6228 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6229 MemOpChains.push_back(Load.getValue(1)); 6230 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6231 ArgOffset += PtrByteSize; 6232 } else { 6233 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6234 break; 6235 } 6236 } 6237 continue; 6238 } 6239 6240 switch (Arg.getSimpleValueType().SimpleTy) { 6241 default: llvm_unreachable("Unexpected ValueType for argument!"); 6242 case MVT::i1: 6243 case MVT::i32: 6244 case MVT::i64: 6245 if (Flags.isNest()) { 6246 // The 'nest' parameter, if any, is passed in R11. 6247 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6248 break; 6249 } 6250 6251 // These can be scalar arguments or elements of an integer array type 6252 // passed directly. Clang may use those instead of "byval" aggregate 6253 // types to avoid forcing arguments to memory unnecessarily. 6254 if (GPR_idx != NumGPRs) { 6255 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6256 } else { 6257 if (IsFastCall) 6258 ComputePtrOff(); 6259 6260 assert(HasParameterArea && 6261 "Parameter area must exist to pass an argument in memory."); 6262 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6263 true, CFlags.IsTailCall, false, MemOpChains, 6264 TailCallArguments, dl); 6265 if (IsFastCall) 6266 ArgOffset += PtrByteSize; 6267 } 6268 if (!IsFastCall) 6269 ArgOffset += PtrByteSize; 6270 break; 6271 case MVT::f32: 6272 case MVT::f64: { 6273 // These can be scalar arguments or elements of a float array type 6274 // passed directly. The latter are used to implement ELFv2 homogenous 6275 // float aggregates. 6276 6277 // Named arguments go into FPRs first, and once they overflow, the 6278 // remaining arguments go into GPRs and then the parameter save area. 6279 // Unnamed arguments for vararg functions always go to GPRs and 6280 // then the parameter save area. For now, put all arguments to vararg 6281 // routines always in both locations (FPR *and* GPR or stack slot). 6282 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6283 bool NeededLoad = false; 6284 6285 // First load the argument into the next available FPR. 6286 if (FPR_idx != NumFPRs) 6287 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6288 6289 // Next, load the argument into GPR or stack slot if needed. 6290 if (!NeedGPROrStack) 6291 ; 6292 else if (GPR_idx != NumGPRs && !IsFastCall) { 6293 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6294 // once we support fp <-> gpr moves. 6295 6296 // In the non-vararg case, this can only ever happen in the 6297 // presence of f32 array types, since otherwise we never run 6298 // out of FPRs before running out of GPRs. 6299 SDValue ArgVal; 6300 6301 // Double values are always passed in a single GPR. 6302 if (Arg.getValueType() != MVT::f32) { 6303 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6304 6305 // Non-array float values are extended and passed in a GPR. 6306 } else if (!Flags.isInConsecutiveRegs()) { 6307 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6308 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6309 6310 // If we have an array of floats, we collect every odd element 6311 // together with its predecessor into one GPR. 6312 } else if (ArgOffset % PtrByteSize != 0) { 6313 SDValue Lo, Hi; 6314 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6315 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6316 if (!isLittleEndian) 6317 std::swap(Lo, Hi); 6318 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6319 6320 // The final element, if even, goes into the first half of a GPR. 6321 } else if (Flags.isInConsecutiveRegsLast()) { 6322 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6323 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6324 if (!isLittleEndian) 6325 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6326 DAG.getConstant(32, dl, MVT::i32)); 6327 6328 // Non-final even elements are skipped; they will be handled 6329 // together the with subsequent argument on the next go-around. 6330 } else 6331 ArgVal = SDValue(); 6332 6333 if (ArgVal.getNode()) 6334 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6335 } else { 6336 if (IsFastCall) 6337 ComputePtrOff(); 6338 6339 // Single-precision floating-point values are mapped to the 6340 // second (rightmost) word of the stack doubleword. 6341 if (Arg.getValueType() == MVT::f32 && 6342 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6343 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6344 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6345 } 6346 6347 assert(HasParameterArea && 6348 "Parameter area must exist to pass an argument in memory."); 6349 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6350 true, CFlags.IsTailCall, false, MemOpChains, 6351 TailCallArguments, dl); 6352 6353 NeededLoad = true; 6354 } 6355 // When passing an array of floats, the array occupies consecutive 6356 // space in the argument area; only round up to the next doubleword 6357 // at the end of the array. Otherwise, each float takes 8 bytes. 6358 if (!IsFastCall || NeededLoad) { 6359 ArgOffset += (Arg.getValueType() == MVT::f32 && 6360 Flags.isInConsecutiveRegs()) ? 4 : 8; 6361 if (Flags.isInConsecutiveRegsLast()) 6362 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6363 } 6364 break; 6365 } 6366 case MVT::v4f32: 6367 case MVT::v4i32: 6368 case MVT::v8i16: 6369 case MVT::v16i8: 6370 case MVT::v2f64: 6371 case MVT::v2i64: 6372 case MVT::v1i128: 6373 case MVT::f128: 6374 // These can be scalar arguments or elements of a vector array type 6375 // passed directly. The latter are used to implement ELFv2 homogenous 6376 // vector aggregates. 6377 6378 // For a varargs call, named arguments go into VRs or on the stack as 6379 // usual; unnamed arguments always go to the stack or the corresponding 6380 // GPRs when within range. For now, we always put the value in both 6381 // locations (or even all three). 6382 if (CFlags.IsVarArg) { 6383 assert(HasParameterArea && 6384 "Parameter area must exist if we have a varargs call."); 6385 // We could elide this store in the case where the object fits 6386 // entirely in R registers. Maybe later. 6387 SDValue Store = 6388 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6389 MemOpChains.push_back(Store); 6390 if (VR_idx != NumVRs) { 6391 SDValue Load = 6392 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6393 MemOpChains.push_back(Load.getValue(1)); 6394 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6395 } 6396 ArgOffset += 16; 6397 for (unsigned i=0; i<16; i+=PtrByteSize) { 6398 if (GPR_idx == NumGPRs) 6399 break; 6400 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6401 DAG.getConstant(i, dl, PtrVT)); 6402 SDValue Load = 6403 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6404 MemOpChains.push_back(Load.getValue(1)); 6405 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6406 } 6407 break; 6408 } 6409 6410 // Non-varargs Altivec params go into VRs or on the stack. 6411 if (VR_idx != NumVRs) { 6412 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6413 } else { 6414 if (IsFastCall) 6415 ComputePtrOff(); 6416 6417 assert(HasParameterArea && 6418 "Parameter area must exist to pass an argument in memory."); 6419 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6420 true, CFlags.IsTailCall, true, MemOpChains, 6421 TailCallArguments, dl); 6422 if (IsFastCall) 6423 ArgOffset += 16; 6424 } 6425 6426 if (!IsFastCall) 6427 ArgOffset += 16; 6428 break; 6429 } 6430 } 6431 6432 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6433 "mismatch in size of parameter area"); 6434 (void)NumBytesActuallyUsed; 6435 6436 if (!MemOpChains.empty()) 6437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6438 6439 // Check if this is an indirect call (MTCTR/BCTRL). 6440 // See prepareDescriptorIndirectCall and buildCallOperands for more 6441 // information about calls through function pointers in the 64-bit SVR4 ABI. 6442 if (CFlags.IsIndirect) { 6443 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6444 // caller in the TOC save area. 6445 if (isTOCSaveRestoreRequired(Subtarget)) { 6446 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6447 // Load r2 into a virtual register and store it to the TOC save area. 6448 setUsesTOCBasePtr(DAG); 6449 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6450 // TOC save area offset. 6451 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6452 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6453 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6454 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6455 MachinePointerInfo::getStack( 6456 DAG.getMachineFunction(), TOCSaveOffset)); 6457 } 6458 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6459 // This does not mean the MTCTR instruction must use R12; it's easier 6460 // to model this as an extra parameter, so do that. 6461 if (isELFv2ABI && !CFlags.IsPatchPoint) 6462 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6463 } 6464 6465 // Build a sequence of copy-to-reg nodes chained together with token chain 6466 // and flag operands which copy the outgoing args into the appropriate regs. 6467 SDValue InFlag; 6468 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6469 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6470 RegsToPass[i].second, InFlag); 6471 InFlag = Chain.getValue(1); 6472 } 6473 6474 if (CFlags.IsTailCall && !IsSibCall) 6475 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6476 TailCallArguments); 6477 6478 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6479 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6480 } 6481 6482 SDValue PPCTargetLowering::LowerCall_Darwin( 6483 SDValue Chain, SDValue Callee, CallFlags CFlags, 6484 const SmallVectorImpl<ISD::OutputArg> &Outs, 6485 const SmallVectorImpl<SDValue> &OutVals, 6486 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6487 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6488 const CallBase *CB) const { 6489 unsigned NumOps = Outs.size(); 6490 6491 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6492 bool isPPC64 = PtrVT == MVT::i64; 6493 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6494 6495 MachineFunction &MF = DAG.getMachineFunction(); 6496 6497 // Mark this function as potentially containing a function that contains a 6498 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6499 // and restoring the callers stack pointer in this functions epilog. This is 6500 // done because by tail calling the called function might overwrite the value 6501 // in this function's (MF) stack pointer stack slot 0(SP). 6502 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6503 CFlags.CallConv == CallingConv::Fast) 6504 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6505 6506 // Count how many bytes are to be pushed on the stack, including the linkage 6507 // area, and parameter passing area. We start with 24/48 bytes, which is 6508 // prereserved space for [SP][CR][LR][3 x unused]. 6509 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6510 unsigned NumBytes = LinkageSize; 6511 6512 // Add up all the space actually used. 6513 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6514 // they all go in registers, but we must reserve stack space for them for 6515 // possible use by the caller. In varargs or 64-bit calls, parameters are 6516 // assigned stack space in order, with padding so Altivec parameters are 6517 // 16-byte aligned. 6518 unsigned nAltivecParamsAtEnd = 0; 6519 for (unsigned i = 0; i != NumOps; ++i) { 6520 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6521 EVT ArgVT = Outs[i].VT; 6522 // Varargs Altivec parameters are padded to a 16 byte boundary. 6523 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6524 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6525 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6526 if (!CFlags.IsVarArg && !isPPC64) { 6527 // Non-varargs Altivec parameters go after all the non-Altivec 6528 // parameters; handle those later so we know how much padding we need. 6529 nAltivecParamsAtEnd++; 6530 continue; 6531 } 6532 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6533 NumBytes = ((NumBytes+15)/16)*16; 6534 } 6535 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6536 } 6537 6538 // Allow for Altivec parameters at the end, if needed. 6539 if (nAltivecParamsAtEnd) { 6540 NumBytes = ((NumBytes+15)/16)*16; 6541 NumBytes += 16*nAltivecParamsAtEnd; 6542 } 6543 6544 // The prolog code of the callee may store up to 8 GPR argument registers to 6545 // the stack, allowing va_start to index over them in memory if its varargs. 6546 // Because we cannot tell if this is needed on the caller side, we have to 6547 // conservatively assume that it is needed. As such, make sure we have at 6548 // least enough stack space for the caller to store the 8 GPRs. 6549 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6550 6551 // Tail call needs the stack to be aligned. 6552 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6553 CFlags.CallConv == CallingConv::Fast) 6554 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6555 6556 // Calculate by how many bytes the stack has to be adjusted in case of tail 6557 // call optimization. 6558 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6559 6560 // To protect arguments on the stack from being clobbered in a tail call, 6561 // force all the loads to happen before doing any other lowering. 6562 if (CFlags.IsTailCall) 6563 Chain = DAG.getStackArgumentTokenFactor(Chain); 6564 6565 // Adjust the stack pointer for the new arguments... 6566 // These operations are automatically eliminated by the prolog/epilog pass 6567 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6568 SDValue CallSeqStart = Chain; 6569 6570 // Load the return address and frame pointer so it can be move somewhere else 6571 // later. 6572 SDValue LROp, FPOp; 6573 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6574 6575 // Set up a copy of the stack pointer for use loading and storing any 6576 // arguments that may not fit in the registers available for argument 6577 // passing. 6578 SDValue StackPtr; 6579 if (isPPC64) 6580 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6581 else 6582 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6583 6584 // Figure out which arguments are going to go in registers, and which in 6585 // memory. Also, if this is a vararg function, floating point operations 6586 // must be stored to our stack, and loaded into integer regs as well, if 6587 // any integer regs are available for argument passing. 6588 unsigned ArgOffset = LinkageSize; 6589 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6590 6591 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6592 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6593 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6594 }; 6595 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6596 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6597 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6598 }; 6599 static const MCPhysReg VR[] = { 6600 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6601 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6602 }; 6603 const unsigned NumGPRs = array_lengthof(GPR_32); 6604 const unsigned NumFPRs = 13; 6605 const unsigned NumVRs = array_lengthof(VR); 6606 6607 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6608 6609 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6610 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6611 6612 SmallVector<SDValue, 8> MemOpChains; 6613 for (unsigned i = 0; i != NumOps; ++i) { 6614 SDValue Arg = OutVals[i]; 6615 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6616 6617 // PtrOff will be used to store the current argument to the stack if a 6618 // register cannot be found for it. 6619 SDValue PtrOff; 6620 6621 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6622 6623 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6624 6625 // On PPC64, promote integers to 64-bit values. 6626 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6627 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6628 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6629 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6630 } 6631 6632 // FIXME memcpy is used way more than necessary. Correctness first. 6633 // Note: "by value" is code for passing a structure by value, not 6634 // basic types. 6635 if (Flags.isByVal()) { 6636 unsigned Size = Flags.getByValSize(); 6637 // Very small objects are passed right-justified. Everything else is 6638 // passed left-justified. 6639 if (Size==1 || Size==2) { 6640 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6641 if (GPR_idx != NumGPRs) { 6642 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6643 MachinePointerInfo(), VT); 6644 MemOpChains.push_back(Load.getValue(1)); 6645 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6646 6647 ArgOffset += PtrByteSize; 6648 } else { 6649 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6650 PtrOff.getValueType()); 6651 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6652 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6653 CallSeqStart, 6654 Flags, DAG, dl); 6655 ArgOffset += PtrByteSize; 6656 } 6657 continue; 6658 } 6659 // Copy entire object into memory. There are cases where gcc-generated 6660 // code assumes it is there, even if it could be put entirely into 6661 // registers. (This is not what the doc says.) 6662 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6663 CallSeqStart, 6664 Flags, DAG, dl); 6665 6666 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6667 // copy the pieces of the object that fit into registers from the 6668 // parameter save area. 6669 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6670 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6671 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6672 if (GPR_idx != NumGPRs) { 6673 SDValue Load = 6674 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6675 MemOpChains.push_back(Load.getValue(1)); 6676 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6677 ArgOffset += PtrByteSize; 6678 } else { 6679 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6680 break; 6681 } 6682 } 6683 continue; 6684 } 6685 6686 switch (Arg.getSimpleValueType().SimpleTy) { 6687 default: llvm_unreachable("Unexpected ValueType for argument!"); 6688 case MVT::i1: 6689 case MVT::i32: 6690 case MVT::i64: 6691 if (GPR_idx != NumGPRs) { 6692 if (Arg.getValueType() == MVT::i1) 6693 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6694 6695 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6696 } else { 6697 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6698 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6699 TailCallArguments, dl); 6700 } 6701 ArgOffset += PtrByteSize; 6702 break; 6703 case MVT::f32: 6704 case MVT::f64: 6705 if (FPR_idx != NumFPRs) { 6706 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6707 6708 if (CFlags.IsVarArg) { 6709 SDValue Store = 6710 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6711 MemOpChains.push_back(Store); 6712 6713 // Float varargs are always shadowed in available integer registers 6714 if (GPR_idx != NumGPRs) { 6715 SDValue Load = 6716 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6717 MemOpChains.push_back(Load.getValue(1)); 6718 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6719 } 6720 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6721 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6722 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6723 SDValue Load = 6724 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6725 MemOpChains.push_back(Load.getValue(1)); 6726 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6727 } 6728 } else { 6729 // If we have any FPRs remaining, we may also have GPRs remaining. 6730 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6731 // GPRs. 6732 if (GPR_idx != NumGPRs) 6733 ++GPR_idx; 6734 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6735 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6736 ++GPR_idx; 6737 } 6738 } else 6739 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6740 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6741 TailCallArguments, dl); 6742 if (isPPC64) 6743 ArgOffset += 8; 6744 else 6745 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6746 break; 6747 case MVT::v4f32: 6748 case MVT::v4i32: 6749 case MVT::v8i16: 6750 case MVT::v16i8: 6751 if (CFlags.IsVarArg) { 6752 // These go aligned on the stack, or in the corresponding R registers 6753 // when within range. The Darwin PPC ABI doc claims they also go in 6754 // V registers; in fact gcc does this only for arguments that are 6755 // prototyped, not for those that match the ... We do it for all 6756 // arguments, seems to work. 6757 while (ArgOffset % 16 !=0) { 6758 ArgOffset += PtrByteSize; 6759 if (GPR_idx != NumGPRs) 6760 GPR_idx++; 6761 } 6762 // We could elide this store in the case where the object fits 6763 // entirely in R registers. Maybe later. 6764 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6765 DAG.getConstant(ArgOffset, dl, PtrVT)); 6766 SDValue Store = 6767 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6768 MemOpChains.push_back(Store); 6769 if (VR_idx != NumVRs) { 6770 SDValue Load = 6771 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6772 MemOpChains.push_back(Load.getValue(1)); 6773 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6774 } 6775 ArgOffset += 16; 6776 for (unsigned i=0; i<16; i+=PtrByteSize) { 6777 if (GPR_idx == NumGPRs) 6778 break; 6779 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6780 DAG.getConstant(i, dl, PtrVT)); 6781 SDValue Load = 6782 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6783 MemOpChains.push_back(Load.getValue(1)); 6784 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6785 } 6786 break; 6787 } 6788 6789 // Non-varargs Altivec params generally go in registers, but have 6790 // stack space allocated at the end. 6791 if (VR_idx != NumVRs) { 6792 // Doesn't have GPR space allocated. 6793 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6794 } else if (nAltivecParamsAtEnd==0) { 6795 // We are emitting Altivec params in order. 6796 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6797 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6798 TailCallArguments, dl); 6799 ArgOffset += 16; 6800 } 6801 break; 6802 } 6803 } 6804 // If all Altivec parameters fit in registers, as they usually do, 6805 // they get stack space following the non-Altivec parameters. We 6806 // don't track this here because nobody below needs it. 6807 // If there are more Altivec parameters than fit in registers emit 6808 // the stores here. 6809 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6810 unsigned j = 0; 6811 // Offset is aligned; skip 1st 12 params which go in V registers. 6812 ArgOffset = ((ArgOffset+15)/16)*16; 6813 ArgOffset += 12*16; 6814 for (unsigned i = 0; i != NumOps; ++i) { 6815 SDValue Arg = OutVals[i]; 6816 EVT ArgType = Outs[i].VT; 6817 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6818 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6819 if (++j > NumVRs) { 6820 SDValue PtrOff; 6821 // We are emitting Altivec params in order. 6822 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6823 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6824 TailCallArguments, dl); 6825 ArgOffset += 16; 6826 } 6827 } 6828 } 6829 } 6830 6831 if (!MemOpChains.empty()) 6832 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6833 6834 // On Darwin, R12 must contain the address of an indirect callee. This does 6835 // not mean the MTCTR instruction must use R12; it's easier to model this as 6836 // an extra parameter, so do that. 6837 if (CFlags.IsIndirect) { 6838 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6839 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6840 PPC::R12), Callee)); 6841 } 6842 6843 // Build a sequence of copy-to-reg nodes chained together with token chain 6844 // and flag operands which copy the outgoing args into the appropriate regs. 6845 SDValue InFlag; 6846 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6847 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6848 RegsToPass[i].second, InFlag); 6849 InFlag = Chain.getValue(1); 6850 } 6851 6852 if (CFlags.IsTailCall) 6853 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6854 TailCallArguments); 6855 6856 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6857 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6858 } 6859 6860 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6861 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6862 CCState &State) { 6863 6864 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6865 State.getMachineFunction().getSubtarget()); 6866 const bool IsPPC64 = Subtarget.isPPC64(); 6867 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6868 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6869 6870 assert((!ValVT.isInteger() || 6871 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6872 "Integer argument exceeds register size: should have been legalized"); 6873 6874 if (ValVT == MVT::f128) 6875 report_fatal_error("f128 is unimplemented on AIX."); 6876 6877 if (ArgFlags.isNest()) 6878 report_fatal_error("Nest arguments are unimplemented."); 6879 6880 if (ValVT.isVector() || LocVT.isVector()) 6881 report_fatal_error("Vector arguments are unimplemented on AIX."); 6882 6883 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6884 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6885 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6886 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6887 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6888 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6889 6890 if (ArgFlags.isByVal()) { 6891 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6892 report_fatal_error("Pass-by-value arguments with alignment greater than " 6893 "register width are not supported."); 6894 6895 const unsigned ByValSize = ArgFlags.getByValSize(); 6896 6897 // An empty aggregate parameter takes up no storage and no registers, 6898 // but needs a MemLoc for a stack slot for the formal arguments side. 6899 if (ByValSize == 0) { 6900 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6901 State.getNextStackOffset(), RegVT, 6902 LocInfo)); 6903 return false; 6904 } 6905 6906 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6907 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6908 for (const unsigned E = Offset + StackSize; Offset < E; 6909 Offset += PtrAlign.value()) { 6910 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6911 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6912 else { 6913 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6914 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6915 LocInfo)); 6916 break; 6917 } 6918 } 6919 return false; 6920 } 6921 6922 // Arguments always reserve parameter save area. 6923 switch (ValVT.SimpleTy) { 6924 default: 6925 report_fatal_error("Unhandled value type for argument."); 6926 case MVT::i64: 6927 // i64 arguments should have been split to i32 for PPC32. 6928 assert(IsPPC64 && "PPC32 should have split i64 values."); 6929 LLVM_FALLTHROUGH; 6930 case MVT::i1: 6931 case MVT::i32: { 6932 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6933 // AIX integer arguments are always passed in register width. 6934 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6935 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6936 : CCValAssign::LocInfo::ZExt; 6937 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6938 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6939 else 6940 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6941 6942 return false; 6943 } 6944 case MVT::f32: 6945 case MVT::f64: { 6946 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6947 const unsigned StoreSize = LocVT.getStoreSize(); 6948 // Floats are always 4-byte aligned in the PSA on AIX. 6949 // This includes f64 in 64-bit mode for ABI compatibility. 6950 const unsigned Offset = 6951 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6952 unsigned FReg = State.AllocateReg(FPR); 6953 if (FReg) 6954 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6955 6956 // Reserve and initialize GPRs or initialize the PSA as required. 6957 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6958 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6959 assert(FReg && "An FPR should be available when a GPR is reserved."); 6960 if (State.isVarArg()) { 6961 // Successfully reserved GPRs are only initialized for vararg calls. 6962 // Custom handling is required for: 6963 // f64 in PPC32 needs to be split into 2 GPRs. 6964 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6965 State.addLoc( 6966 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6967 } 6968 } else { 6969 // If there are insufficient GPRs, the PSA needs to be initialized. 6970 // Initialization occurs even if an FPR was initialized for 6971 // compatibility with the AIX XL compiler. The full memory for the 6972 // argument will be initialized even if a prior word is saved in GPR. 6973 // A custom memLoc is used when the argument also passes in FPR so 6974 // that the callee handling can skip over it easily. 6975 State.addLoc( 6976 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6977 LocInfo) 6978 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6979 break; 6980 } 6981 } 6982 6983 return false; 6984 } 6985 } 6986 return true; 6987 } 6988 6989 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6990 bool IsPPC64) { 6991 assert((IsPPC64 || SVT != MVT::i64) && 6992 "i64 should have been split for 32-bit codegen."); 6993 6994 switch (SVT) { 6995 default: 6996 report_fatal_error("Unexpected value type for formal argument"); 6997 case MVT::i1: 6998 case MVT::i32: 6999 case MVT::i64: 7000 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7001 case MVT::f32: 7002 return &PPC::F4RCRegClass; 7003 case MVT::f64: 7004 return &PPC::F8RCRegClass; 7005 } 7006 } 7007 7008 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7009 SelectionDAG &DAG, SDValue ArgValue, 7010 MVT LocVT, const SDLoc &dl) { 7011 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7012 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7013 7014 if (Flags.isSExt()) 7015 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7016 DAG.getValueType(ValVT)); 7017 else if (Flags.isZExt()) 7018 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7019 DAG.getValueType(ValVT)); 7020 7021 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7022 } 7023 7024 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7025 const unsigned LASize = FL->getLinkageSize(); 7026 7027 if (PPC::GPRCRegClass.contains(Reg)) { 7028 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7029 "Reg must be a valid argument register!"); 7030 return LASize + 4 * (Reg - PPC::R3); 7031 } 7032 7033 if (PPC::G8RCRegClass.contains(Reg)) { 7034 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7035 "Reg must be a valid argument register!"); 7036 return LASize + 8 * (Reg - PPC::X3); 7037 } 7038 7039 llvm_unreachable("Only general purpose registers expected."); 7040 } 7041 7042 // AIX ABI Stack Frame Layout: 7043 // 7044 // Low Memory +--------------------------------------------+ 7045 // SP +---> | Back chain | ---+ 7046 // | +--------------------------------------------+ | 7047 // | | Saved Condition Register | | 7048 // | +--------------------------------------------+ | 7049 // | | Saved Linkage Register | | 7050 // | +--------------------------------------------+ | Linkage Area 7051 // | | Reserved for compilers | | 7052 // | +--------------------------------------------+ | 7053 // | | Reserved for binders | | 7054 // | +--------------------------------------------+ | 7055 // | | Saved TOC pointer | ---+ 7056 // | +--------------------------------------------+ 7057 // | | Parameter save area | 7058 // | +--------------------------------------------+ 7059 // | | Alloca space | 7060 // | +--------------------------------------------+ 7061 // | | Local variable space | 7062 // | +--------------------------------------------+ 7063 // | | Float/int conversion temporary | 7064 // | +--------------------------------------------+ 7065 // | | Save area for AltiVec registers | 7066 // | +--------------------------------------------+ 7067 // | | AltiVec alignment padding | 7068 // | +--------------------------------------------+ 7069 // | | Save area for VRSAVE register | 7070 // | +--------------------------------------------+ 7071 // | | Save area for General Purpose registers | 7072 // | +--------------------------------------------+ 7073 // | | Save area for Floating Point registers | 7074 // | +--------------------------------------------+ 7075 // +---- | Back chain | 7076 // High Memory +--------------------------------------------+ 7077 // 7078 // Specifications: 7079 // AIX 7.2 Assembler Language Reference 7080 // Subroutine linkage convention 7081 7082 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7083 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7084 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7085 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7086 7087 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7088 CallConv == CallingConv::Fast) && 7089 "Unexpected calling convention!"); 7090 7091 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7092 report_fatal_error("Tail call support is unimplemented on AIX."); 7093 7094 if (useSoftFloat()) 7095 report_fatal_error("Soft float support is unimplemented on AIX."); 7096 7097 const PPCSubtarget &Subtarget = 7098 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7099 7100 const bool IsPPC64 = Subtarget.isPPC64(); 7101 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7102 7103 // Assign locations to all of the incoming arguments. 7104 SmallVector<CCValAssign, 16> ArgLocs; 7105 MachineFunction &MF = DAG.getMachineFunction(); 7106 MachineFrameInfo &MFI = MF.getFrameInfo(); 7107 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7108 7109 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7110 // Reserve space for the linkage area on the stack. 7111 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7112 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7113 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7114 7115 SmallVector<SDValue, 8> MemOps; 7116 7117 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7118 CCValAssign &VA = ArgLocs[I++]; 7119 MVT LocVT = VA.getLocVT(); 7120 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7121 7122 // For compatibility with the AIX XL compiler, the float args in the 7123 // parameter save area are initialized even if the argument is available 7124 // in register. The caller is required to initialize both the register 7125 // and memory, however, the callee can choose to expect it in either. 7126 // The memloc is dismissed here because the argument is retrieved from 7127 // the register. 7128 if (VA.isMemLoc() && VA.needsCustom()) 7129 continue; 7130 7131 if (Flags.isByVal() && VA.isMemLoc()) { 7132 const unsigned Size = 7133 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7134 PtrByteSize); 7135 const int FI = MF.getFrameInfo().CreateFixedObject( 7136 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7137 /* IsAliased */ true); 7138 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7139 InVals.push_back(FIN); 7140 7141 continue; 7142 } 7143 7144 if (Flags.isByVal()) { 7145 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7146 7147 const MCPhysReg ArgReg = VA.getLocReg(); 7148 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7149 7150 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7151 report_fatal_error("Over aligned byvals not supported yet."); 7152 7153 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7154 const int FI = MF.getFrameInfo().CreateFixedObject( 7155 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7156 /* IsAliased */ true); 7157 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7158 InVals.push_back(FIN); 7159 7160 // Add live ins for all the RegLocs for the same ByVal. 7161 const TargetRegisterClass *RegClass = 7162 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7163 7164 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7165 unsigned Offset) { 7166 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7167 // Since the callers side has left justified the aggregate in the 7168 // register, we can simply store the entire register into the stack 7169 // slot. 7170 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7171 // The store to the fixedstack object is needed becuase accessing a 7172 // field of the ByVal will use a gep and load. Ideally we will optimize 7173 // to extracting the value from the register directly, and elide the 7174 // stores when the arguments address is not taken, but that will need to 7175 // be future work. 7176 SDValue Store = DAG.getStore( 7177 CopyFrom.getValue(1), dl, CopyFrom, 7178 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7179 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7180 7181 MemOps.push_back(Store); 7182 }; 7183 7184 unsigned Offset = 0; 7185 HandleRegLoc(VA.getLocReg(), Offset); 7186 Offset += PtrByteSize; 7187 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7188 Offset += PtrByteSize) { 7189 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7190 "RegLocs should be for ByVal argument."); 7191 7192 const CCValAssign RL = ArgLocs[I++]; 7193 HandleRegLoc(RL.getLocReg(), Offset); 7194 } 7195 7196 if (Offset != StackSize) { 7197 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7198 "Expected MemLoc for remaining bytes."); 7199 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7200 // Consume the MemLoc.The InVal has already been emitted, so nothing 7201 // more needs to be done. 7202 ++I; 7203 } 7204 7205 continue; 7206 } 7207 7208 EVT ValVT = VA.getValVT(); 7209 if (VA.isRegLoc() && !VA.needsCustom()) { 7210 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7211 unsigned VReg = 7212 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7213 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7214 if (ValVT.isScalarInteger() && 7215 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7216 ArgValue = 7217 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7218 } 7219 InVals.push_back(ArgValue); 7220 continue; 7221 } 7222 if (VA.isMemLoc()) { 7223 const unsigned LocSize = LocVT.getStoreSize(); 7224 const unsigned ValSize = ValVT.getStoreSize(); 7225 assert((ValSize <= LocSize) && 7226 "Object size is larger than size of MemLoc"); 7227 int CurArgOffset = VA.getLocMemOffset(); 7228 // Objects are right-justified because AIX is big-endian. 7229 if (LocSize > ValSize) 7230 CurArgOffset += LocSize - ValSize; 7231 // Potential tail calls could cause overwriting of argument stack slots. 7232 const bool IsImmutable = 7233 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7234 (CallConv == CallingConv::Fast)); 7235 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7236 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7237 SDValue ArgValue = 7238 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7239 InVals.push_back(ArgValue); 7240 continue; 7241 } 7242 } 7243 7244 // On AIX a minimum of 8 words is saved to the parameter save area. 7245 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7246 // Area that is at least reserved in the caller of this function. 7247 unsigned CallerReservedArea = 7248 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7249 7250 // Set the size that is at least reserved in caller of this function. Tail 7251 // call optimized function's reserved stack space needs to be aligned so 7252 // that taking the difference between two stack areas will result in an 7253 // aligned stack. 7254 CallerReservedArea = 7255 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7256 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7257 FuncInfo->setMinReservedArea(CallerReservedArea); 7258 7259 if (isVarArg) { 7260 FuncInfo->setVarArgsFrameIndex( 7261 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7262 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7263 7264 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7265 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7266 7267 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7268 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7269 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7270 7271 // The fixed integer arguments of a variadic function are stored to the 7272 // VarArgsFrameIndex on the stack so that they may be loaded by 7273 // dereferencing the result of va_next. 7274 for (unsigned GPRIndex = 7275 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7276 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7277 7278 const unsigned VReg = 7279 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7280 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7281 7282 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7283 SDValue Store = 7284 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7285 MemOps.push_back(Store); 7286 // Increment the address for the next argument to store. 7287 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7288 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7289 } 7290 } 7291 7292 if (!MemOps.empty()) 7293 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7294 7295 return Chain; 7296 } 7297 7298 SDValue PPCTargetLowering::LowerCall_AIX( 7299 SDValue Chain, SDValue Callee, CallFlags CFlags, 7300 const SmallVectorImpl<ISD::OutputArg> &Outs, 7301 const SmallVectorImpl<SDValue> &OutVals, 7302 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7303 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7304 const CallBase *CB) const { 7305 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7306 // AIX ABI stack frame layout. 7307 7308 assert((CFlags.CallConv == CallingConv::C || 7309 CFlags.CallConv == CallingConv::Cold || 7310 CFlags.CallConv == CallingConv::Fast) && 7311 "Unexpected calling convention!"); 7312 7313 if (CFlags.IsPatchPoint) 7314 report_fatal_error("This call type is unimplemented on AIX."); 7315 7316 const PPCSubtarget& Subtarget = 7317 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7318 if (Subtarget.hasAltivec()) 7319 report_fatal_error("Altivec support is unimplemented on AIX."); 7320 7321 MachineFunction &MF = DAG.getMachineFunction(); 7322 SmallVector<CCValAssign, 16> ArgLocs; 7323 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7324 *DAG.getContext()); 7325 7326 // Reserve space for the linkage save area (LSA) on the stack. 7327 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7328 // [SP][CR][LR][2 x reserved][TOC]. 7329 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7330 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7331 const bool IsPPC64 = Subtarget.isPPC64(); 7332 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7333 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7334 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7335 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7336 7337 // The prolog code of the callee may store up to 8 GPR argument registers to 7338 // the stack, allowing va_start to index over them in memory if the callee 7339 // is variadic. 7340 // Because we cannot tell if this is needed on the caller side, we have to 7341 // conservatively assume that it is needed. As such, make sure we have at 7342 // least enough stack space for the caller to store the 8 GPRs. 7343 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7344 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7345 CCInfo.getNextStackOffset()); 7346 7347 // Adjust the stack pointer for the new arguments... 7348 // These operations are automatically eliminated by the prolog/epilog pass. 7349 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7350 SDValue CallSeqStart = Chain; 7351 7352 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7353 SmallVector<SDValue, 8> MemOpChains; 7354 7355 // Set up a copy of the stack pointer for loading and storing any 7356 // arguments that may not fit in the registers available for argument 7357 // passing. 7358 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7359 : DAG.getRegister(PPC::R1, MVT::i32); 7360 7361 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7362 const unsigned ValNo = ArgLocs[I].getValNo(); 7363 SDValue Arg = OutVals[ValNo]; 7364 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7365 7366 if (Flags.isByVal()) { 7367 const unsigned ByValSize = Flags.getByValSize(); 7368 7369 // Nothing to do for zero-sized ByVals on the caller side. 7370 if (!ByValSize) { 7371 ++I; 7372 continue; 7373 } 7374 7375 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7376 return DAG.getExtLoad( 7377 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7378 (LoadOffset != 0) 7379 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7380 : Arg, 7381 MachinePointerInfo(), VT); 7382 }; 7383 7384 unsigned LoadOffset = 0; 7385 7386 // Initialize registers, which are fully occupied by the by-val argument. 7387 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7388 SDValue Load = GetLoad(PtrVT, LoadOffset); 7389 MemOpChains.push_back(Load.getValue(1)); 7390 LoadOffset += PtrByteSize; 7391 const CCValAssign &ByValVA = ArgLocs[I++]; 7392 assert(ByValVA.getValNo() == ValNo && 7393 "Unexpected location for pass-by-value argument."); 7394 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7395 } 7396 7397 if (LoadOffset == ByValSize) 7398 continue; 7399 7400 // There must be one more loc to handle the remainder. 7401 assert(ArgLocs[I].getValNo() == ValNo && 7402 "Expected additional location for by-value argument."); 7403 7404 if (ArgLocs[I].isMemLoc()) { 7405 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7406 const CCValAssign &ByValVA = ArgLocs[I++]; 7407 ISD::ArgFlagsTy MemcpyFlags = Flags; 7408 // Only memcpy the bytes that don't pass in register. 7409 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7410 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7411 (LoadOffset != 0) 7412 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7413 : Arg, 7414 DAG.getObjectPtrOffset(dl, StackPtr, 7415 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7416 CallSeqStart, MemcpyFlags, DAG, dl); 7417 continue; 7418 } 7419 7420 // Initialize the final register residue. 7421 // Any residue that occupies the final by-val arg register must be 7422 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7423 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7424 // 2 and 1 byte loads. 7425 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7426 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7427 "Unexpected register residue for by-value argument."); 7428 SDValue ResidueVal; 7429 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7430 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7431 const MVT VT = 7432 N == 1 ? MVT::i8 7433 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7434 SDValue Load = GetLoad(VT, LoadOffset); 7435 MemOpChains.push_back(Load.getValue(1)); 7436 LoadOffset += N; 7437 Bytes += N; 7438 7439 // By-val arguments are passed left-justfied in register. 7440 // Every load here needs to be shifted, otherwise a full register load 7441 // should have been used. 7442 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7443 "Unexpected load emitted during handling of pass-by-value " 7444 "argument."); 7445 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7446 EVT ShiftAmountTy = 7447 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7448 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7449 SDValue ShiftedLoad = 7450 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7451 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7452 ShiftedLoad) 7453 : ShiftedLoad; 7454 } 7455 7456 const CCValAssign &ByValVA = ArgLocs[I++]; 7457 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7458 continue; 7459 } 7460 7461 CCValAssign &VA = ArgLocs[I++]; 7462 const MVT LocVT = VA.getLocVT(); 7463 const MVT ValVT = VA.getValVT(); 7464 7465 switch (VA.getLocInfo()) { 7466 default: 7467 report_fatal_error("Unexpected argument extension type."); 7468 case CCValAssign::Full: 7469 break; 7470 case CCValAssign::ZExt: 7471 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7472 break; 7473 case CCValAssign::SExt: 7474 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7475 break; 7476 } 7477 7478 if (VA.isRegLoc() && !VA.needsCustom()) { 7479 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7480 continue; 7481 } 7482 7483 if (VA.isMemLoc()) { 7484 SDValue PtrOff = 7485 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7486 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7487 MemOpChains.push_back( 7488 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7489 7490 continue; 7491 } 7492 7493 // Custom handling is used for GPR initializations for vararg float 7494 // arguments. 7495 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7496 ValVT.isFloatingPoint() && LocVT.isInteger() && 7497 "Unexpected register handling for calling convention."); 7498 7499 SDValue ArgAsInt = 7500 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7501 7502 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7503 // f32 in 32-bit GPR 7504 // f64 in 64-bit GPR 7505 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7506 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7507 // f32 in 64-bit GPR. 7508 RegsToPass.push_back(std::make_pair( 7509 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7510 else { 7511 // f64 in two 32-bit GPRs 7512 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7513 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7514 "Unexpected custom register for argument!"); 7515 CCValAssign &GPR1 = VA; 7516 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7517 DAG.getConstant(32, dl, MVT::i8)); 7518 RegsToPass.push_back(std::make_pair( 7519 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7520 7521 if (I != E) { 7522 // If only 1 GPR was available, there will only be one custom GPR and 7523 // the argument will also pass in memory. 7524 CCValAssign &PeekArg = ArgLocs[I]; 7525 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7526 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7527 CCValAssign &GPR2 = ArgLocs[I++]; 7528 RegsToPass.push_back(std::make_pair( 7529 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7530 } 7531 } 7532 } 7533 } 7534 7535 if (!MemOpChains.empty()) 7536 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7537 7538 // For indirect calls, we need to save the TOC base to the stack for 7539 // restoration after the call. 7540 if (CFlags.IsIndirect) { 7541 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7542 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7543 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7544 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7545 const unsigned TOCSaveOffset = 7546 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7547 7548 setUsesTOCBasePtr(DAG); 7549 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7550 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7551 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7552 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7553 Chain = DAG.getStore( 7554 Val.getValue(1), dl, Val, AddPtr, 7555 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7556 } 7557 7558 // Build a sequence of copy-to-reg nodes chained together with token chain 7559 // and flag operands which copy the outgoing args into the appropriate regs. 7560 SDValue InFlag; 7561 for (auto Reg : RegsToPass) { 7562 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7563 InFlag = Chain.getValue(1); 7564 } 7565 7566 const int SPDiff = 0; 7567 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7568 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7569 } 7570 7571 bool 7572 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7573 MachineFunction &MF, bool isVarArg, 7574 const SmallVectorImpl<ISD::OutputArg> &Outs, 7575 LLVMContext &Context) const { 7576 SmallVector<CCValAssign, 16> RVLocs; 7577 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7578 return CCInfo.CheckReturn( 7579 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7580 ? RetCC_PPC_Cold 7581 : RetCC_PPC); 7582 } 7583 7584 SDValue 7585 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7586 bool isVarArg, 7587 const SmallVectorImpl<ISD::OutputArg> &Outs, 7588 const SmallVectorImpl<SDValue> &OutVals, 7589 const SDLoc &dl, SelectionDAG &DAG) const { 7590 SmallVector<CCValAssign, 16> RVLocs; 7591 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7592 *DAG.getContext()); 7593 CCInfo.AnalyzeReturn(Outs, 7594 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7595 ? RetCC_PPC_Cold 7596 : RetCC_PPC); 7597 7598 SDValue Flag; 7599 SmallVector<SDValue, 4> RetOps(1, Chain); 7600 7601 // Copy the result values into the output registers. 7602 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7603 CCValAssign &VA = RVLocs[i]; 7604 assert(VA.isRegLoc() && "Can only return in registers!"); 7605 7606 SDValue Arg = OutVals[RealResIdx]; 7607 7608 switch (VA.getLocInfo()) { 7609 default: llvm_unreachable("Unknown loc info!"); 7610 case CCValAssign::Full: break; 7611 case CCValAssign::AExt: 7612 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7613 break; 7614 case CCValAssign::ZExt: 7615 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7616 break; 7617 case CCValAssign::SExt: 7618 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7619 break; 7620 } 7621 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7622 bool isLittleEndian = Subtarget.isLittleEndian(); 7623 // Legalize ret f64 -> ret 2 x i32. 7624 SDValue SVal = 7625 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7626 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7627 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7628 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7629 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7630 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7631 Flag = Chain.getValue(1); 7632 VA = RVLocs[++i]; // skip ahead to next loc 7633 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7634 } else 7635 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7636 Flag = Chain.getValue(1); 7637 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7638 } 7639 7640 RetOps[0] = Chain; // Update chain. 7641 7642 // Add the flag if we have it. 7643 if (Flag.getNode()) 7644 RetOps.push_back(Flag); 7645 7646 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7647 } 7648 7649 SDValue 7650 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7651 SelectionDAG &DAG) const { 7652 SDLoc dl(Op); 7653 7654 // Get the correct type for integers. 7655 EVT IntVT = Op.getValueType(); 7656 7657 // Get the inputs. 7658 SDValue Chain = Op.getOperand(0); 7659 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7660 // Build a DYNAREAOFFSET node. 7661 SDValue Ops[2] = {Chain, FPSIdx}; 7662 SDVTList VTs = DAG.getVTList(IntVT); 7663 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7664 } 7665 7666 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7667 SelectionDAG &DAG) const { 7668 // When we pop the dynamic allocation we need to restore the SP link. 7669 SDLoc dl(Op); 7670 7671 // Get the correct type for pointers. 7672 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7673 7674 // Construct the stack pointer operand. 7675 bool isPPC64 = Subtarget.isPPC64(); 7676 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7677 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7678 7679 // Get the operands for the STACKRESTORE. 7680 SDValue Chain = Op.getOperand(0); 7681 SDValue SaveSP = Op.getOperand(1); 7682 7683 // Load the old link SP. 7684 SDValue LoadLinkSP = 7685 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7686 7687 // Restore the stack pointer. 7688 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7689 7690 // Store the old link SP. 7691 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7692 } 7693 7694 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7695 MachineFunction &MF = DAG.getMachineFunction(); 7696 bool isPPC64 = Subtarget.isPPC64(); 7697 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7698 7699 // Get current frame pointer save index. The users of this index will be 7700 // primarily DYNALLOC instructions. 7701 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7702 int RASI = FI->getReturnAddrSaveIndex(); 7703 7704 // If the frame pointer save index hasn't been defined yet. 7705 if (!RASI) { 7706 // Find out what the fix offset of the frame pointer save area. 7707 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7708 // Allocate the frame index for frame pointer save area. 7709 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7710 // Save the result. 7711 FI->setReturnAddrSaveIndex(RASI); 7712 } 7713 return DAG.getFrameIndex(RASI, PtrVT); 7714 } 7715 7716 SDValue 7717 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7718 MachineFunction &MF = DAG.getMachineFunction(); 7719 bool isPPC64 = Subtarget.isPPC64(); 7720 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7721 7722 // Get current frame pointer save index. The users of this index will be 7723 // primarily DYNALLOC instructions. 7724 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7725 int FPSI = FI->getFramePointerSaveIndex(); 7726 7727 // If the frame pointer save index hasn't been defined yet. 7728 if (!FPSI) { 7729 // Find out what the fix offset of the frame pointer save area. 7730 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7731 // Allocate the frame index for frame pointer save area. 7732 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7733 // Save the result. 7734 FI->setFramePointerSaveIndex(FPSI); 7735 } 7736 return DAG.getFrameIndex(FPSI, PtrVT); 7737 } 7738 7739 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7740 SelectionDAG &DAG) const { 7741 MachineFunction &MF = DAG.getMachineFunction(); 7742 // Get the inputs. 7743 SDValue Chain = Op.getOperand(0); 7744 SDValue Size = Op.getOperand(1); 7745 SDLoc dl(Op); 7746 7747 // Get the correct type for pointers. 7748 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7749 // Negate the size. 7750 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7751 DAG.getConstant(0, dl, PtrVT), Size); 7752 // Construct a node for the frame pointer save index. 7753 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7754 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7755 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7756 if (hasInlineStackProbe(MF)) 7757 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7758 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7759 } 7760 7761 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7762 SelectionDAG &DAG) const { 7763 MachineFunction &MF = DAG.getMachineFunction(); 7764 7765 bool isPPC64 = Subtarget.isPPC64(); 7766 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7767 7768 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7769 return DAG.getFrameIndex(FI, PtrVT); 7770 } 7771 7772 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7773 SelectionDAG &DAG) const { 7774 SDLoc DL(Op); 7775 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7776 DAG.getVTList(MVT::i32, MVT::Other), 7777 Op.getOperand(0), Op.getOperand(1)); 7778 } 7779 7780 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7781 SelectionDAG &DAG) const { 7782 SDLoc DL(Op); 7783 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7784 Op.getOperand(0), Op.getOperand(1)); 7785 } 7786 7787 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7788 7789 assert(Op.getValueType() == MVT::i1 && 7790 "Custom lowering only for i1 loads"); 7791 7792 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7793 7794 SDLoc dl(Op); 7795 LoadSDNode *LD = cast<LoadSDNode>(Op); 7796 7797 SDValue Chain = LD->getChain(); 7798 SDValue BasePtr = LD->getBasePtr(); 7799 MachineMemOperand *MMO = LD->getMemOperand(); 7800 7801 SDValue NewLD = 7802 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7803 BasePtr, MVT::i8, MMO); 7804 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7805 7806 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7807 return DAG.getMergeValues(Ops, dl); 7808 } 7809 7810 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7811 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7812 "Custom lowering only for i1 stores"); 7813 7814 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7815 7816 SDLoc dl(Op); 7817 StoreSDNode *ST = cast<StoreSDNode>(Op); 7818 7819 SDValue Chain = ST->getChain(); 7820 SDValue BasePtr = ST->getBasePtr(); 7821 SDValue Value = ST->getValue(); 7822 MachineMemOperand *MMO = ST->getMemOperand(); 7823 7824 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7825 Value); 7826 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7827 } 7828 7829 // FIXME: Remove this once the ANDI glue bug is fixed: 7830 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7831 assert(Op.getValueType() == MVT::i1 && 7832 "Custom lowering only for i1 results"); 7833 7834 SDLoc DL(Op); 7835 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7836 } 7837 7838 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7839 SelectionDAG &DAG) const { 7840 7841 // Implements a vector truncate that fits in a vector register as a shuffle. 7842 // We want to legalize vector truncates down to where the source fits in 7843 // a vector register (and target is therefore smaller than vector register 7844 // size). At that point legalization will try to custom lower the sub-legal 7845 // result and get here - where we can contain the truncate as a single target 7846 // operation. 7847 7848 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7849 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7850 // 7851 // We will implement it for big-endian ordering as this (where x denotes 7852 // undefined): 7853 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7854 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7855 // 7856 // The same operation in little-endian ordering will be: 7857 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7858 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7859 7860 EVT TrgVT = Op.getValueType(); 7861 assert(TrgVT.isVector() && "Vector type expected."); 7862 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7863 EVT EltVT = TrgVT.getVectorElementType(); 7864 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7865 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7866 !isPowerOf2_32(EltVT.getSizeInBits())) 7867 return SDValue(); 7868 7869 SDValue N1 = Op.getOperand(0); 7870 EVT SrcVT = N1.getValueType(); 7871 unsigned SrcSize = SrcVT.getSizeInBits(); 7872 if (SrcSize > 256 || 7873 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7874 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7875 return SDValue(); 7876 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7877 return SDValue(); 7878 7879 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7880 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7881 7882 SDLoc DL(Op); 7883 SDValue Op1, Op2; 7884 if (SrcSize == 256) { 7885 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7886 EVT SplitVT = 7887 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7888 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7889 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7890 DAG.getConstant(0, DL, VecIdxTy)); 7891 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7892 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7893 } 7894 else { 7895 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7896 Op2 = DAG.getUNDEF(WideVT); 7897 } 7898 7899 // First list the elements we want to keep. 7900 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7901 SmallVector<int, 16> ShuffV; 7902 if (Subtarget.isLittleEndian()) 7903 for (unsigned i = 0; i < TrgNumElts; ++i) 7904 ShuffV.push_back(i * SizeMult); 7905 else 7906 for (unsigned i = 1; i <= TrgNumElts; ++i) 7907 ShuffV.push_back(i * SizeMult - 1); 7908 7909 // Populate the remaining elements with undefs. 7910 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7911 // ShuffV.push_back(i + WideNumElts); 7912 ShuffV.push_back(WideNumElts + 1); 7913 7914 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7915 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7916 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7917 } 7918 7919 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7920 /// possible. 7921 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7922 // Not FP, or using SPE? Not a fsel. 7923 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7924 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7925 return Op; 7926 7927 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7928 7929 EVT ResVT = Op.getValueType(); 7930 EVT CmpVT = Op.getOperand(0).getValueType(); 7931 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7932 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7933 SDLoc dl(Op); 7934 SDNodeFlags Flags = Op.getNode()->getFlags(); 7935 7936 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7937 // presence of infinities. 7938 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7939 switch (CC) { 7940 default: 7941 break; 7942 case ISD::SETOGT: 7943 case ISD::SETGT: 7944 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7945 case ISD::SETOLT: 7946 case ISD::SETLT: 7947 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7948 } 7949 } 7950 7951 // We might be able to do better than this under some circumstances, but in 7952 // general, fsel-based lowering of select is a finite-math-only optimization. 7953 // For more information, see section F.3 of the 2.06 ISA specification. 7954 // With ISA 3.0 7955 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7956 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7957 return Op; 7958 7959 // If the RHS of the comparison is a 0.0, we don't need to do the 7960 // subtraction at all. 7961 SDValue Sel1; 7962 if (isFloatingPointZero(RHS)) 7963 switch (CC) { 7964 default: break; // SETUO etc aren't handled by fsel. 7965 case ISD::SETNE: 7966 std::swap(TV, FV); 7967 LLVM_FALLTHROUGH; 7968 case ISD::SETEQ: 7969 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7970 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7971 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7972 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7973 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7974 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7975 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7976 case ISD::SETULT: 7977 case ISD::SETLT: 7978 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7979 LLVM_FALLTHROUGH; 7980 case ISD::SETOGE: 7981 case ISD::SETGE: 7982 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7983 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7984 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7985 case ISD::SETUGT: 7986 case ISD::SETGT: 7987 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7988 LLVM_FALLTHROUGH; 7989 case ISD::SETOLE: 7990 case ISD::SETLE: 7991 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7992 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7993 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7994 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7995 } 7996 7997 SDValue Cmp; 7998 switch (CC) { 7999 default: break; // SETUO etc aren't handled by fsel. 8000 case ISD::SETNE: 8001 std::swap(TV, FV); 8002 LLVM_FALLTHROUGH; 8003 case ISD::SETEQ: 8004 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8005 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8006 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8007 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8008 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8009 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8010 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8011 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8012 case ISD::SETULT: 8013 case ISD::SETLT: 8014 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8015 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8016 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8017 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8018 case ISD::SETOGE: 8019 case ISD::SETGE: 8020 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8021 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8022 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8023 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8024 case ISD::SETUGT: 8025 case ISD::SETGT: 8026 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8027 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8028 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8029 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8030 case ISD::SETOLE: 8031 case ISD::SETLE: 8032 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8033 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8034 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8035 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8036 } 8037 return Op; 8038 } 8039 8040 static unsigned getPPCStrictOpcode(unsigned Opc) { 8041 switch (Opc) { 8042 default: 8043 llvm_unreachable("No strict version of this opcode!"); 8044 case PPCISD::FCTIDZ: 8045 return PPCISD::STRICT_FCTIDZ; 8046 case PPCISD::FCTIWZ: 8047 return PPCISD::STRICT_FCTIWZ; 8048 case PPCISD::FCTIDUZ: 8049 return PPCISD::STRICT_FCTIDUZ; 8050 case PPCISD::FCTIWUZ: 8051 return PPCISD::STRICT_FCTIWUZ; 8052 case PPCISD::FCFID: 8053 return PPCISD::STRICT_FCFID; 8054 case PPCISD::FCFIDU: 8055 return PPCISD::STRICT_FCFIDU; 8056 case PPCISD::FCFIDS: 8057 return PPCISD::STRICT_FCFIDS; 8058 case PPCISD::FCFIDUS: 8059 return PPCISD::STRICT_FCFIDUS; 8060 } 8061 } 8062 8063 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8064 const PPCSubtarget &Subtarget) { 8065 SDLoc dl(Op); 8066 bool IsStrict = Op->isStrictFPOpcode(); 8067 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8068 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8069 // For strict nodes, source is the second operand. 8070 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8071 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8072 assert(Src.getValueType().isFloatingPoint()); 8073 if (Src.getValueType() == MVT::f32) { 8074 if (IsStrict) { 8075 Src = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f64, MVT::Other}, 8076 {Chain, Src}); 8077 Chain = Src.getValue(1); 8078 } else 8079 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8080 } 8081 SDValue Conv; 8082 unsigned Opc = ISD::DELETED_NODE; 8083 switch (Op.getSimpleValueType().SimpleTy) { 8084 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8085 case MVT::i32: 8086 Opc = IsSigned ? PPCISD::FCTIWZ 8087 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8088 break; 8089 case MVT::i64: 8090 assert((IsSigned || Subtarget.hasFPCVT()) && 8091 "i64 FP_TO_UINT is supported only with FPCVT"); 8092 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8093 } 8094 if (IsStrict) { 8095 Opc = getPPCStrictOpcode(Opc); 8096 Conv = DAG.getNode(Opc, dl, {MVT::f64, MVT::Other}, {Chain, Src}); 8097 } else { 8098 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8099 } 8100 return Conv; 8101 } 8102 8103 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8104 SelectionDAG &DAG, 8105 const SDLoc &dl) const { 8106 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8107 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8108 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8109 bool IsStrict = Op->isStrictFPOpcode(); 8110 8111 // Convert the FP value to an int value through memory. 8112 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8113 (IsSigned || Subtarget.hasFPCVT()); 8114 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8115 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8116 MachinePointerInfo MPI = 8117 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8118 8119 // Emit a store to the stack slot. 8120 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8121 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8122 if (i32Stack) { 8123 MachineFunction &MF = DAG.getMachineFunction(); 8124 Alignment = Align(4); 8125 MachineMemOperand *MMO = 8126 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8127 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8128 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8129 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8130 } else 8131 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8132 8133 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8134 // add in a bias on big endian. 8135 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8136 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8137 DAG.getConstant(4, dl, FIPtr.getValueType())); 8138 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8139 } 8140 8141 RLI.Chain = Chain; 8142 RLI.Ptr = FIPtr; 8143 RLI.MPI = MPI; 8144 RLI.Alignment = Alignment; 8145 } 8146 8147 /// Custom lowers floating point to integer conversions to use 8148 /// the direct move instructions available in ISA 2.07 to avoid the 8149 /// need for load/store combinations. 8150 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8151 SelectionDAG &DAG, 8152 const SDLoc &dl) const { 8153 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8154 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8155 if (Op->isStrictFPOpcode()) 8156 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8157 else 8158 return Mov; 8159 } 8160 8161 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8162 const SDLoc &dl) const { 8163 bool IsStrict = Op->isStrictFPOpcode(); 8164 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8165 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8166 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8167 // FP to INT conversions are legal for f128. 8168 if (Src.getValueType() == MVT::f128) 8169 return Op; 8170 8171 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8172 // PPC (the libcall is not available). 8173 if (Src.getValueType() == MVT::ppcf128 && !IsStrict) { 8174 if (Op.getValueType() == MVT::i32) { 8175 if (IsSigned) { 8176 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8177 DAG.getIntPtrConstant(0, dl)); 8178 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8179 DAG.getIntPtrConstant(1, dl)); 8180 8181 // Add the two halves of the long double in round-to-zero mode. 8182 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8183 8184 // Now use a smaller FP_TO_SINT. 8185 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8186 } else { 8187 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8188 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8189 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8190 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8191 // FIXME: generated code sucks. 8192 // TODO: Are there fast-math-flags to propagate to this FSUB? 8193 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Tmp); 8194 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8195 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8196 DAG.getConstant(0x80000000, dl, MVT::i32)); 8197 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8198 return DAG.getSelectCC(dl, Src, Tmp, True, False, ISD::SETGE); 8199 } 8200 } 8201 8202 return SDValue(); 8203 } 8204 8205 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8206 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8207 8208 ReuseLoadInfo RLI; 8209 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8210 8211 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8212 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8213 } 8214 8215 // We're trying to insert a regular store, S, and then a load, L. If the 8216 // incoming value, O, is a load, we might just be able to have our load use the 8217 // address used by O. However, we don't know if anything else will store to 8218 // that address before we can load from it. To prevent this situation, we need 8219 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8220 // the same chain operand as O, we create a token factor from the chain results 8221 // of O and L, and we replace all uses of O's chain result with that token 8222 // factor (see spliceIntoChain below for this last part). 8223 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8224 ReuseLoadInfo &RLI, 8225 SelectionDAG &DAG, 8226 ISD::LoadExtType ET) const { 8227 // Conservatively skip reusing for constrained FP nodes. 8228 if (Op->isStrictFPOpcode()) 8229 return false; 8230 8231 SDLoc dl(Op); 8232 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8233 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8234 if (ET == ISD::NON_EXTLOAD && 8235 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8236 isOperationLegalOrCustom(Op.getOpcode(), 8237 Op.getOperand(0).getValueType())) { 8238 8239 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8240 return true; 8241 } 8242 8243 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8244 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8245 LD->isNonTemporal()) 8246 return false; 8247 if (LD->getMemoryVT() != MemVT) 8248 return false; 8249 8250 RLI.Ptr = LD->getBasePtr(); 8251 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8252 assert(LD->getAddressingMode() == ISD::PRE_INC && 8253 "Non-pre-inc AM on PPC?"); 8254 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8255 LD->getOffset()); 8256 } 8257 8258 RLI.Chain = LD->getChain(); 8259 RLI.MPI = LD->getPointerInfo(); 8260 RLI.IsDereferenceable = LD->isDereferenceable(); 8261 RLI.IsInvariant = LD->isInvariant(); 8262 RLI.Alignment = LD->getAlign(); 8263 RLI.AAInfo = LD->getAAInfo(); 8264 RLI.Ranges = LD->getRanges(); 8265 8266 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8267 return true; 8268 } 8269 8270 // Given the head of the old chain, ResChain, insert a token factor containing 8271 // it and NewResChain, and make users of ResChain now be users of that token 8272 // factor. 8273 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8274 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8275 SDValue NewResChain, 8276 SelectionDAG &DAG) const { 8277 if (!ResChain) 8278 return; 8279 8280 SDLoc dl(NewResChain); 8281 8282 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8283 NewResChain, DAG.getUNDEF(MVT::Other)); 8284 assert(TF.getNode() != NewResChain.getNode() && 8285 "A new TF really is required here"); 8286 8287 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8288 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8289 } 8290 8291 /// Analyze profitability of direct move 8292 /// prefer float load to int load plus direct move 8293 /// when there is no integer use of int load 8294 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8295 SDNode *Origin = Op.getOperand(0).getNode(); 8296 if (Origin->getOpcode() != ISD::LOAD) 8297 return true; 8298 8299 // If there is no LXSIBZX/LXSIHZX, like Power8, 8300 // prefer direct move if the memory size is 1 or 2 bytes. 8301 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8302 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8303 return true; 8304 8305 for (SDNode::use_iterator UI = Origin->use_begin(), 8306 UE = Origin->use_end(); 8307 UI != UE; ++UI) { 8308 8309 // Only look at the users of the loaded value. 8310 if (UI.getUse().get().getResNo() != 0) 8311 continue; 8312 8313 if (UI->getOpcode() != ISD::SINT_TO_FP && 8314 UI->getOpcode() != ISD::UINT_TO_FP && 8315 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8316 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8317 return true; 8318 } 8319 8320 return false; 8321 } 8322 8323 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8324 const PPCSubtarget &Subtarget, 8325 SDValue Chain = SDValue()) { 8326 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8327 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8328 SDLoc dl(Op); 8329 // If we have FCFIDS, then use it when converting to single-precision. 8330 // Otherwise, convert to double-precision and then round. 8331 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8332 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8333 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8334 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8335 if (Op->isStrictFPOpcode()) { 8336 if (!Chain) 8337 Chain = Op.getOperand(0); 8338 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, {ConvTy, MVT::Other}, 8339 {Chain, Src}); 8340 } else 8341 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8342 } 8343 8344 /// Custom lowers integer to floating point conversions to use 8345 /// the direct move instructions available in ISA 2.07 to avoid the 8346 /// need for load/store combinations. 8347 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8348 SelectionDAG &DAG, 8349 const SDLoc &dl) const { 8350 assert((Op.getValueType() == MVT::f32 || 8351 Op.getValueType() == MVT::f64) && 8352 "Invalid floating point type as target of conversion"); 8353 assert(Subtarget.hasFPCVT() && 8354 "Int to FP conversions with direct moves require FPCVT"); 8355 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8356 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8357 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8358 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8359 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8360 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8361 return convertIntToFP(Op, Mov, DAG, Subtarget); 8362 } 8363 8364 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8365 8366 EVT VecVT = Vec.getValueType(); 8367 assert(VecVT.isVector() && "Expected a vector type."); 8368 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8369 8370 EVT EltVT = VecVT.getVectorElementType(); 8371 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8372 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8373 8374 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8375 SmallVector<SDValue, 16> Ops(NumConcat); 8376 Ops[0] = Vec; 8377 SDValue UndefVec = DAG.getUNDEF(VecVT); 8378 for (unsigned i = 1; i < NumConcat; ++i) 8379 Ops[i] = UndefVec; 8380 8381 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8382 } 8383 8384 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8385 const SDLoc &dl) const { 8386 bool IsStrict = Op->isStrictFPOpcode(); 8387 unsigned Opc = Op.getOpcode(); 8388 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8389 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8390 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8391 "Unexpected conversion type"); 8392 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8393 "Supports conversions to v2f64/v4f32 only."); 8394 8395 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8396 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8397 8398 SDValue Wide = widenVec(DAG, Src, dl); 8399 EVT WideVT = Wide.getValueType(); 8400 unsigned WideNumElts = WideVT.getVectorNumElements(); 8401 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8402 8403 SmallVector<int, 16> ShuffV; 8404 for (unsigned i = 0; i < WideNumElts; ++i) 8405 ShuffV.push_back(i + WideNumElts); 8406 8407 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8408 int SaveElts = FourEltRes ? 4 : 2; 8409 if (Subtarget.isLittleEndian()) 8410 for (int i = 0; i < SaveElts; i++) 8411 ShuffV[i * Stride] = i; 8412 else 8413 for (int i = 1; i <= SaveElts; i++) 8414 ShuffV[i * Stride - 1] = i - 1; 8415 8416 SDValue ShuffleSrc2 = 8417 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8418 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8419 8420 SDValue Extend; 8421 if (SignedConv) { 8422 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8423 EVT ExtVT = Src.getValueType(); 8424 if (Subtarget.hasP9Altivec()) 8425 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8426 IntermediateVT.getVectorNumElements()); 8427 8428 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8429 DAG.getValueType(ExtVT)); 8430 } else 8431 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8432 8433 if (IsStrict) 8434 return DAG.getNode(Opc, dl, {Op.getValueType(), MVT::Other}, 8435 {Op.getOperand(0), Extend}); 8436 8437 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8438 } 8439 8440 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8441 SelectionDAG &DAG) const { 8442 SDLoc dl(Op); 8443 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8444 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8445 bool IsStrict = Op->isStrictFPOpcode(); 8446 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8447 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8448 8449 EVT InVT = Src.getValueType(); 8450 EVT OutVT = Op.getValueType(); 8451 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8452 isOperationCustom(Op.getOpcode(), InVT)) 8453 return LowerINT_TO_FPVector(Op, DAG, dl); 8454 8455 // Conversions to f128 are legal. 8456 if (Op.getValueType() == MVT::f128) 8457 return Op; 8458 8459 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8460 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8461 return SDValue(); 8462 8463 if (Src.getValueType() == MVT::i1) 8464 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8465 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8466 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8467 8468 // If we have direct moves, we can do all the conversion, skip the store/load 8469 // however, without FPCVT we can't do most conversions. 8470 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8471 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8472 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8473 8474 assert((IsSigned || Subtarget.hasFPCVT()) && 8475 "UINT_TO_FP is supported only with FPCVT"); 8476 8477 if (Src.getValueType() == MVT::i64) { 8478 SDValue SINT = Src; 8479 // When converting to single-precision, we actually need to convert 8480 // to double-precision first and then round to single-precision. 8481 // To avoid double-rounding effects during that operation, we have 8482 // to prepare the input operand. Bits that might be truncated when 8483 // converting to double-precision are replaced by a bit that won't 8484 // be lost at this stage, but is below the single-precision rounding 8485 // position. 8486 // 8487 // However, if -enable-unsafe-fp-math is in effect, accept double 8488 // rounding to avoid the extra overhead. 8489 if (Op.getValueType() == MVT::f32 && 8490 !Subtarget.hasFPCVT() && 8491 !DAG.getTarget().Options.UnsafeFPMath) { 8492 8493 // Twiddle input to make sure the low 11 bits are zero. (If this 8494 // is the case, we are guaranteed the value will fit into the 53 bit 8495 // mantissa of an IEEE double-precision value without rounding.) 8496 // If any of those low 11 bits were not zero originally, make sure 8497 // bit 12 (value 2048) is set instead, so that the final rounding 8498 // to single-precision gets the correct result. 8499 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8500 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8501 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8502 Round, DAG.getConstant(2047, dl, MVT::i64)); 8503 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8504 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8505 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8506 8507 // However, we cannot use that value unconditionally: if the magnitude 8508 // of the input value is small, the bit-twiddling we did above might 8509 // end up visibly changing the output. Fortunately, in that case, we 8510 // don't need to twiddle bits since the original input will convert 8511 // exactly to double-precision floating-point already. Therefore, 8512 // construct a conditional to use the original value if the top 11 8513 // bits are all sign-bit copies, and use the rounded value computed 8514 // above otherwise. 8515 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8516 SINT, DAG.getConstant(53, dl, MVT::i32)); 8517 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8518 Cond, DAG.getConstant(1, dl, MVT::i64)); 8519 Cond = DAG.getSetCC( 8520 dl, 8521 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8522 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8523 8524 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8525 } 8526 8527 ReuseLoadInfo RLI; 8528 SDValue Bits; 8529 8530 MachineFunction &MF = DAG.getMachineFunction(); 8531 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8532 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8533 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8534 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8535 } else if (Subtarget.hasLFIWAX() && 8536 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8537 MachineMemOperand *MMO = 8538 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8539 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8540 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8541 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8542 DAG.getVTList(MVT::f64, MVT::Other), 8543 Ops, MVT::i32, MMO); 8544 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8545 } else if (Subtarget.hasFPCVT() && 8546 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8547 MachineMemOperand *MMO = 8548 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8549 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8550 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8551 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8552 DAG.getVTList(MVT::f64, MVT::Other), 8553 Ops, MVT::i32, MMO); 8554 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8555 } else if (((Subtarget.hasLFIWAX() && 8556 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8557 (Subtarget.hasFPCVT() && 8558 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8559 SINT.getOperand(0).getValueType() == MVT::i32) { 8560 MachineFrameInfo &MFI = MF.getFrameInfo(); 8561 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8562 8563 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8564 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8565 8566 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8567 MachinePointerInfo::getFixedStack( 8568 DAG.getMachineFunction(), FrameIdx)); 8569 Chain = Store; 8570 8571 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8572 "Expected an i32 store"); 8573 8574 RLI.Ptr = FIdx; 8575 RLI.Chain = Chain; 8576 RLI.MPI = 8577 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8578 RLI.Alignment = Align(4); 8579 8580 MachineMemOperand *MMO = 8581 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8582 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8583 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8584 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8585 PPCISD::LFIWZX : PPCISD::LFIWAX, 8586 dl, DAG.getVTList(MVT::f64, MVT::Other), 8587 Ops, MVT::i32, MMO); 8588 Chain = Bits.getValue(1); 8589 } else 8590 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8591 8592 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8593 if (IsStrict) 8594 Chain = FP.getValue(1); 8595 8596 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8597 if (IsStrict) 8598 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other}, 8599 {Chain, FP, DAG.getIntPtrConstant(0, dl)}); 8600 else 8601 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8602 DAG.getIntPtrConstant(0, dl)); 8603 } 8604 return FP; 8605 } 8606 8607 assert(Src.getValueType() == MVT::i32 && 8608 "Unhandled INT_TO_FP type in custom expander!"); 8609 // Since we only generate this in 64-bit mode, we can take advantage of 8610 // 64-bit registers. In particular, sign extend the input value into the 8611 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8612 // then lfd it and fcfid it. 8613 MachineFunction &MF = DAG.getMachineFunction(); 8614 MachineFrameInfo &MFI = MF.getFrameInfo(); 8615 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8616 8617 SDValue Ld; 8618 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8619 ReuseLoadInfo RLI; 8620 bool ReusingLoad; 8621 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8622 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8623 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8624 8625 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8626 MachinePointerInfo::getFixedStack( 8627 DAG.getMachineFunction(), FrameIdx)); 8628 Chain = Store; 8629 8630 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8631 "Expected an i32 store"); 8632 8633 RLI.Ptr = FIdx; 8634 RLI.Chain = Chain; 8635 RLI.MPI = 8636 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8637 RLI.Alignment = Align(4); 8638 } 8639 8640 MachineMemOperand *MMO = 8641 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8642 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8643 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8644 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8645 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8646 MVT::i32, MMO); 8647 Chain = Ld.getValue(1); 8648 if (ReusingLoad) 8649 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8650 } else { 8651 assert(Subtarget.isPPC64() && 8652 "i32->FP without LFIWAX supported only on PPC64"); 8653 8654 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8655 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8656 8657 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8658 8659 // STD the extended value into the stack slot. 8660 SDValue Store = DAG.getStore( 8661 Chain, dl, Ext64, FIdx, 8662 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8663 Chain = Store; 8664 8665 // Load the value as a double. 8666 Ld = DAG.getLoad( 8667 MVT::f64, dl, Chain, FIdx, 8668 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8669 Chain = Ld.getValue(1); 8670 } 8671 8672 // FCFID it and return it. 8673 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8674 if (IsStrict) 8675 Chain = FP.getValue(1); 8676 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8677 if (IsStrict) 8678 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other}, 8679 {Chain, FP, DAG.getIntPtrConstant(0, dl)}); 8680 else 8681 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8682 DAG.getIntPtrConstant(0, dl)); 8683 } 8684 return FP; 8685 } 8686 8687 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8688 SelectionDAG &DAG) const { 8689 SDLoc dl(Op); 8690 /* 8691 The rounding mode is in bits 30:31 of FPSR, and has the following 8692 settings: 8693 00 Round to nearest 8694 01 Round to 0 8695 10 Round to +inf 8696 11 Round to -inf 8697 8698 FLT_ROUNDS, on the other hand, expects the following: 8699 -1 Undefined 8700 0 Round to 0 8701 1 Round to nearest 8702 2 Round to +inf 8703 3 Round to -inf 8704 8705 To perform the conversion, we do: 8706 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8707 */ 8708 8709 MachineFunction &MF = DAG.getMachineFunction(); 8710 EVT VT = Op.getValueType(); 8711 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8712 8713 // Save FP Control Word to register 8714 SDValue Chain = Op.getOperand(0); 8715 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8716 Chain = MFFS.getValue(1); 8717 8718 // Save FP register to stack slot 8719 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8720 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8721 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8722 8723 // Load FP Control Word from low 32 bits of stack slot. 8724 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8725 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8726 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8727 Chain = CWD.getValue(1); 8728 8729 // Transform as necessary 8730 SDValue CWD1 = 8731 DAG.getNode(ISD::AND, dl, MVT::i32, 8732 CWD, DAG.getConstant(3, dl, MVT::i32)); 8733 SDValue CWD2 = 8734 DAG.getNode(ISD::SRL, dl, MVT::i32, 8735 DAG.getNode(ISD::AND, dl, MVT::i32, 8736 DAG.getNode(ISD::XOR, dl, MVT::i32, 8737 CWD, DAG.getConstant(3, dl, MVT::i32)), 8738 DAG.getConstant(3, dl, MVT::i32)), 8739 DAG.getConstant(1, dl, MVT::i32)); 8740 8741 SDValue RetVal = 8742 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8743 8744 RetVal = 8745 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8746 dl, VT, RetVal); 8747 8748 return DAG.getMergeValues({RetVal, Chain}, dl); 8749 } 8750 8751 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8752 EVT VT = Op.getValueType(); 8753 unsigned BitWidth = VT.getSizeInBits(); 8754 SDLoc dl(Op); 8755 assert(Op.getNumOperands() == 3 && 8756 VT == Op.getOperand(1).getValueType() && 8757 "Unexpected SHL!"); 8758 8759 // Expand into a bunch of logical ops. Note that these ops 8760 // depend on the PPC behavior for oversized shift amounts. 8761 SDValue Lo = Op.getOperand(0); 8762 SDValue Hi = Op.getOperand(1); 8763 SDValue Amt = Op.getOperand(2); 8764 EVT AmtVT = Amt.getValueType(); 8765 8766 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8767 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8768 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8769 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8770 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8771 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8772 DAG.getConstant(-BitWidth, dl, AmtVT)); 8773 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8774 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8775 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8776 SDValue OutOps[] = { OutLo, OutHi }; 8777 return DAG.getMergeValues(OutOps, dl); 8778 } 8779 8780 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8781 EVT VT = Op.getValueType(); 8782 SDLoc dl(Op); 8783 unsigned BitWidth = VT.getSizeInBits(); 8784 assert(Op.getNumOperands() == 3 && 8785 VT == Op.getOperand(1).getValueType() && 8786 "Unexpected SRL!"); 8787 8788 // Expand into a bunch of logical ops. Note that these ops 8789 // depend on the PPC behavior for oversized shift amounts. 8790 SDValue Lo = Op.getOperand(0); 8791 SDValue Hi = Op.getOperand(1); 8792 SDValue Amt = Op.getOperand(2); 8793 EVT AmtVT = Amt.getValueType(); 8794 8795 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8796 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8797 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8798 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8799 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8800 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8801 DAG.getConstant(-BitWidth, dl, AmtVT)); 8802 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8803 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8804 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8805 SDValue OutOps[] = { OutLo, OutHi }; 8806 return DAG.getMergeValues(OutOps, dl); 8807 } 8808 8809 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8810 SDLoc dl(Op); 8811 EVT VT = Op.getValueType(); 8812 unsigned BitWidth = VT.getSizeInBits(); 8813 assert(Op.getNumOperands() == 3 && 8814 VT == Op.getOperand(1).getValueType() && 8815 "Unexpected SRA!"); 8816 8817 // Expand into a bunch of logical ops, followed by a select_cc. 8818 SDValue Lo = Op.getOperand(0); 8819 SDValue Hi = Op.getOperand(1); 8820 SDValue Amt = Op.getOperand(2); 8821 EVT AmtVT = Amt.getValueType(); 8822 8823 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8824 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8825 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8826 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8827 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8828 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8829 DAG.getConstant(-BitWidth, dl, AmtVT)); 8830 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8831 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8832 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8833 Tmp4, Tmp6, ISD::SETLE); 8834 SDValue OutOps[] = { OutLo, OutHi }; 8835 return DAG.getMergeValues(OutOps, dl); 8836 } 8837 8838 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8839 SelectionDAG &DAG) const { 8840 SDLoc dl(Op); 8841 EVT VT = Op.getValueType(); 8842 unsigned BitWidth = VT.getSizeInBits(); 8843 8844 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8845 SDValue X = Op.getOperand(0); 8846 SDValue Y = Op.getOperand(1); 8847 SDValue Z = Op.getOperand(2); 8848 EVT AmtVT = Z.getValueType(); 8849 8850 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8851 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8852 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8853 // on PowerPC shift by BW being well defined. 8854 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8855 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8856 SDValue SubZ = 8857 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8858 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8859 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8860 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8861 } 8862 8863 //===----------------------------------------------------------------------===// 8864 // Vector related lowering. 8865 // 8866 8867 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8868 /// element size of SplatSize. Cast the result to VT. 8869 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8870 SelectionDAG &DAG, const SDLoc &dl) { 8871 static const MVT VTys[] = { // canonical VT to use for each size. 8872 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8873 }; 8874 8875 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8876 8877 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8878 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8879 SplatSize = 1; 8880 Val = 0xFF; 8881 } 8882 8883 EVT CanonicalVT = VTys[SplatSize-1]; 8884 8885 // Build a canonical splat for this value. 8886 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8887 } 8888 8889 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8890 /// specified intrinsic ID. 8891 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8892 const SDLoc &dl, EVT DestVT = MVT::Other) { 8893 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8894 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8895 DAG.getConstant(IID, dl, MVT::i32), Op); 8896 } 8897 8898 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8899 /// specified intrinsic ID. 8900 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8901 SelectionDAG &DAG, const SDLoc &dl, 8902 EVT DestVT = MVT::Other) { 8903 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8904 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8905 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8906 } 8907 8908 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8909 /// specified intrinsic ID. 8910 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8911 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8912 EVT DestVT = MVT::Other) { 8913 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8914 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8915 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8916 } 8917 8918 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8919 /// amount. The result has the specified value type. 8920 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8921 SelectionDAG &DAG, const SDLoc &dl) { 8922 // Force LHS/RHS to be the right type. 8923 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8924 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8925 8926 int Ops[16]; 8927 for (unsigned i = 0; i != 16; ++i) 8928 Ops[i] = i + Amt; 8929 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8930 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8931 } 8932 8933 /// Do we have an efficient pattern in a .td file for this node? 8934 /// 8935 /// \param V - pointer to the BuildVectorSDNode being matched 8936 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8937 /// 8938 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8939 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8940 /// the opposite is true (expansion is beneficial) are: 8941 /// - The node builds a vector out of integers that are not 32 or 64-bits 8942 /// - The node builds a vector out of constants 8943 /// - The node is a "load-and-splat" 8944 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8945 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8946 bool HasDirectMove, 8947 bool HasP8Vector) { 8948 EVT VecVT = V->getValueType(0); 8949 bool RightType = VecVT == MVT::v2f64 || 8950 (HasP8Vector && VecVT == MVT::v4f32) || 8951 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8952 if (!RightType) 8953 return false; 8954 8955 bool IsSplat = true; 8956 bool IsLoad = false; 8957 SDValue Op0 = V->getOperand(0); 8958 8959 // This function is called in a block that confirms the node is not a constant 8960 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8961 // different constants. 8962 if (V->isConstant()) 8963 return false; 8964 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8965 if (V->getOperand(i).isUndef()) 8966 return false; 8967 // We want to expand nodes that represent load-and-splat even if the 8968 // loaded value is a floating point truncation or conversion to int. 8969 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8970 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8971 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8972 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8973 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8974 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8975 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8976 IsLoad = true; 8977 // If the operands are different or the input is not a load and has more 8978 // uses than just this BV node, then it isn't a splat. 8979 if (V->getOperand(i) != Op0 || 8980 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8981 IsSplat = false; 8982 } 8983 return !(IsSplat && IsLoad); 8984 } 8985 8986 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8987 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8988 8989 SDLoc dl(Op); 8990 SDValue Op0 = Op->getOperand(0); 8991 8992 if ((Op.getValueType() != MVT::f128) || 8993 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8994 (Op0.getOperand(0).getValueType() != MVT::i64) || 8995 (Op0.getOperand(1).getValueType() != MVT::i64)) 8996 return SDValue(); 8997 8998 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8999 Op0.getOperand(1)); 9000 } 9001 9002 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9003 const SDValue *InputLoad = &Op; 9004 if (InputLoad->getOpcode() == ISD::BITCAST) 9005 InputLoad = &InputLoad->getOperand(0); 9006 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9007 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9008 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9009 InputLoad = &InputLoad->getOperand(0); 9010 } 9011 if (InputLoad->getOpcode() != ISD::LOAD) 9012 return nullptr; 9013 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9014 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9015 } 9016 9017 // Convert the argument APFloat to a single precision APFloat if there is no 9018 // loss in information during the conversion to single precision APFloat and the 9019 // resulting number is not a denormal number. Return true if successful. 9020 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9021 APFloat APFloatToConvert = ArgAPFloat; 9022 bool LosesInfo = true; 9023 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9024 &LosesInfo); 9025 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9026 if (Success) 9027 ArgAPFloat = APFloatToConvert; 9028 return Success; 9029 } 9030 9031 // Bitcast the argument APInt to a double and convert it to a single precision 9032 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9033 // argument if there is no loss in information during the conversion from 9034 // double to single precision APFloat and the resulting number is not a denormal 9035 // number. Return true if successful. 9036 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9037 double DpValue = ArgAPInt.bitsToDouble(); 9038 APFloat APFloatDp(DpValue); 9039 bool Success = convertToNonDenormSingle(APFloatDp); 9040 if (Success) 9041 ArgAPInt = APFloatDp.bitcastToAPInt(); 9042 return Success; 9043 } 9044 9045 // If this is a case we can't handle, return null and let the default 9046 // expansion code take care of it. If we CAN select this case, and if it 9047 // selects to a single instruction, return Op. Otherwise, if we can codegen 9048 // this case more efficiently than a constant pool load, lower it to the 9049 // sequence of ops that should be used. 9050 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9051 SelectionDAG &DAG) const { 9052 SDLoc dl(Op); 9053 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9054 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9055 9056 // Check if this is a splat of a constant value. 9057 APInt APSplatBits, APSplatUndef; 9058 unsigned SplatBitSize; 9059 bool HasAnyUndefs; 9060 bool BVNIsConstantSplat = 9061 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9062 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9063 9064 // If it is a splat of a double, check if we can shrink it to a 32 bit 9065 // non-denormal float which when converted back to double gives us the same 9066 // double. This is to exploit the XXSPLTIDP instruction. 9067 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9068 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9069 convertToNonDenormSingle(APSplatBits)) { 9070 SDValue SplatNode = DAG.getNode( 9071 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9072 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9073 return DAG.getBitcast(Op.getValueType(), SplatNode); 9074 } 9075 9076 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9077 9078 bool IsPermutedLoad = false; 9079 const SDValue *InputLoad = 9080 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9081 // Handle load-and-splat patterns as we have instructions that will do this 9082 // in one go. 9083 if (InputLoad && DAG.isSplatValue(Op, true)) { 9084 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9085 9086 // We have handling for 4 and 8 byte elements. 9087 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9088 9089 // Checking for a single use of this load, we have to check for vector 9090 // width (128 bits) / ElementSize uses (since each operand of the 9091 // BUILD_VECTOR is a separate use of the value. 9092 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9093 ((Subtarget.hasVSX() && ElementSize == 64) || 9094 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9095 SDValue Ops[] = { 9096 LD->getChain(), // Chain 9097 LD->getBasePtr(), // Ptr 9098 DAG.getValueType(Op.getValueType()) // VT 9099 }; 9100 return 9101 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9102 DAG.getVTList(Op.getValueType(), MVT::Other), 9103 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9104 } 9105 } 9106 9107 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9108 // lowered to VSX instructions under certain conditions. 9109 // Without VSX, there is no pattern more efficient than expanding the node. 9110 if (Subtarget.hasVSX() && 9111 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9112 Subtarget.hasP8Vector())) 9113 return Op; 9114 return SDValue(); 9115 } 9116 9117 uint64_t SplatBits = APSplatBits.getZExtValue(); 9118 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9119 unsigned SplatSize = SplatBitSize / 8; 9120 9121 // First, handle single instruction cases. 9122 9123 // All zeros? 9124 if (SplatBits == 0) { 9125 // Canonicalize all zero vectors to be v4i32. 9126 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9127 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9128 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9129 } 9130 return Op; 9131 } 9132 9133 // We have XXSPLTIW for constant splats four bytes wide. 9134 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9135 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9136 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9137 // turned into a 4-byte splat of 0xABABABAB. 9138 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9139 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9140 Op.getValueType(), DAG, dl); 9141 9142 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9143 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9144 dl); 9145 9146 // We have XXSPLTIB for constant splats one byte wide. 9147 if (Subtarget.hasP9Vector() && SplatSize == 1) 9148 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9149 dl); 9150 9151 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9152 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9153 (32-SplatBitSize)); 9154 if (SextVal >= -16 && SextVal <= 15) 9155 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9156 dl); 9157 9158 // Two instruction sequences. 9159 9160 // If this value is in the range [-32,30] and is even, use: 9161 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9162 // If this value is in the range [17,31] and is odd, use: 9163 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9164 // If this value is in the range [-31,-17] and is odd, use: 9165 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9166 // Note the last two are three-instruction sequences. 9167 if (SextVal >= -32 && SextVal <= 31) { 9168 // To avoid having these optimizations undone by constant folding, 9169 // we convert to a pseudo that will be expanded later into one of 9170 // the above forms. 9171 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9172 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9173 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9174 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9175 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9176 if (VT == Op.getValueType()) 9177 return RetVal; 9178 else 9179 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9180 } 9181 9182 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9183 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9184 // for fneg/fabs. 9185 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9186 // Make -1 and vspltisw -1: 9187 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9188 9189 // Make the VSLW intrinsic, computing 0x8000_0000. 9190 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9191 OnesV, DAG, dl); 9192 9193 // xor by OnesV to invert it. 9194 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9195 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9196 } 9197 9198 // Check to see if this is a wide variety of vsplti*, binop self cases. 9199 static const signed char SplatCsts[] = { 9200 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9201 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9202 }; 9203 9204 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9205 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9206 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9207 int i = SplatCsts[idx]; 9208 9209 // Figure out what shift amount will be used by altivec if shifted by i in 9210 // this splat size. 9211 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9212 9213 // vsplti + shl self. 9214 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9215 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9216 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9217 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9218 Intrinsic::ppc_altivec_vslw 9219 }; 9220 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9221 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9222 } 9223 9224 // vsplti + srl self. 9225 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9226 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9227 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9228 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9229 Intrinsic::ppc_altivec_vsrw 9230 }; 9231 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9232 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9233 } 9234 9235 // vsplti + sra self. 9236 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9237 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9238 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9239 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9240 Intrinsic::ppc_altivec_vsraw 9241 }; 9242 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9243 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9244 } 9245 9246 // vsplti + rol self. 9247 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9248 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9249 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9250 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9251 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9252 Intrinsic::ppc_altivec_vrlw 9253 }; 9254 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9255 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9256 } 9257 9258 // t = vsplti c, result = vsldoi t, t, 1 9259 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9260 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9261 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9262 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9263 } 9264 // t = vsplti c, result = vsldoi t, t, 2 9265 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9266 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9267 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9268 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9269 } 9270 // t = vsplti c, result = vsldoi t, t, 3 9271 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9272 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9273 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9274 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9275 } 9276 } 9277 9278 return SDValue(); 9279 } 9280 9281 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9282 /// the specified operations to build the shuffle. 9283 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9284 SDValue RHS, SelectionDAG &DAG, 9285 const SDLoc &dl) { 9286 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9287 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9288 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9289 9290 enum { 9291 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9292 OP_VMRGHW, 9293 OP_VMRGLW, 9294 OP_VSPLTISW0, 9295 OP_VSPLTISW1, 9296 OP_VSPLTISW2, 9297 OP_VSPLTISW3, 9298 OP_VSLDOI4, 9299 OP_VSLDOI8, 9300 OP_VSLDOI12 9301 }; 9302 9303 if (OpNum == OP_COPY) { 9304 if (LHSID == (1*9+2)*9+3) return LHS; 9305 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9306 return RHS; 9307 } 9308 9309 SDValue OpLHS, OpRHS; 9310 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9311 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9312 9313 int ShufIdxs[16]; 9314 switch (OpNum) { 9315 default: llvm_unreachable("Unknown i32 permute!"); 9316 case OP_VMRGHW: 9317 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9318 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9319 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9320 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9321 break; 9322 case OP_VMRGLW: 9323 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9324 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9325 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9326 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9327 break; 9328 case OP_VSPLTISW0: 9329 for (unsigned i = 0; i != 16; ++i) 9330 ShufIdxs[i] = (i&3)+0; 9331 break; 9332 case OP_VSPLTISW1: 9333 for (unsigned i = 0; i != 16; ++i) 9334 ShufIdxs[i] = (i&3)+4; 9335 break; 9336 case OP_VSPLTISW2: 9337 for (unsigned i = 0; i != 16; ++i) 9338 ShufIdxs[i] = (i&3)+8; 9339 break; 9340 case OP_VSPLTISW3: 9341 for (unsigned i = 0; i != 16; ++i) 9342 ShufIdxs[i] = (i&3)+12; 9343 break; 9344 case OP_VSLDOI4: 9345 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9346 case OP_VSLDOI8: 9347 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9348 case OP_VSLDOI12: 9349 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9350 } 9351 EVT VT = OpLHS.getValueType(); 9352 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9353 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9354 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9355 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9356 } 9357 9358 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9359 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9360 /// SDValue. 9361 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9362 SelectionDAG &DAG) const { 9363 const unsigned BytesInVector = 16; 9364 bool IsLE = Subtarget.isLittleEndian(); 9365 SDLoc dl(N); 9366 SDValue V1 = N->getOperand(0); 9367 SDValue V2 = N->getOperand(1); 9368 unsigned ShiftElts = 0, InsertAtByte = 0; 9369 bool Swap = false; 9370 9371 // Shifts required to get the byte we want at element 7. 9372 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9373 0, 15, 14, 13, 12, 11, 10, 9}; 9374 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9375 1, 2, 3, 4, 5, 6, 7, 8}; 9376 9377 ArrayRef<int> Mask = N->getMask(); 9378 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9379 9380 // For each mask element, find out if we're just inserting something 9381 // from V2 into V1 or vice versa. 9382 // Possible permutations inserting an element from V2 into V1: 9383 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9384 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9385 // ... 9386 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9387 // Inserting from V1 into V2 will be similar, except mask range will be 9388 // [16,31]. 9389 9390 bool FoundCandidate = false; 9391 // If both vector operands for the shuffle are the same vector, the mask 9392 // will contain only elements from the first one and the second one will be 9393 // undef. 9394 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9395 // Go through the mask of half-words to find an element that's being moved 9396 // from one vector to the other. 9397 for (unsigned i = 0; i < BytesInVector; ++i) { 9398 unsigned CurrentElement = Mask[i]; 9399 // If 2nd operand is undefined, we should only look for element 7 in the 9400 // Mask. 9401 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9402 continue; 9403 9404 bool OtherElementsInOrder = true; 9405 // Examine the other elements in the Mask to see if they're in original 9406 // order. 9407 for (unsigned j = 0; j < BytesInVector; ++j) { 9408 if (j == i) 9409 continue; 9410 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9411 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9412 // in which we always assume we're always picking from the 1st operand. 9413 int MaskOffset = 9414 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9415 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9416 OtherElementsInOrder = false; 9417 break; 9418 } 9419 } 9420 // If other elements are in original order, we record the number of shifts 9421 // we need to get the element we want into element 7. Also record which byte 9422 // in the vector we should insert into. 9423 if (OtherElementsInOrder) { 9424 // If 2nd operand is undefined, we assume no shifts and no swapping. 9425 if (V2.isUndef()) { 9426 ShiftElts = 0; 9427 Swap = false; 9428 } else { 9429 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9430 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9431 : BigEndianShifts[CurrentElement & 0xF]; 9432 Swap = CurrentElement < BytesInVector; 9433 } 9434 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9435 FoundCandidate = true; 9436 break; 9437 } 9438 } 9439 9440 if (!FoundCandidate) 9441 return SDValue(); 9442 9443 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9444 // optionally with VECSHL if shift is required. 9445 if (Swap) 9446 std::swap(V1, V2); 9447 if (V2.isUndef()) 9448 V2 = V1; 9449 if (ShiftElts) { 9450 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9451 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9452 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9453 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9454 } 9455 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9456 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9457 } 9458 9459 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9460 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9461 /// SDValue. 9462 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9463 SelectionDAG &DAG) const { 9464 const unsigned NumHalfWords = 8; 9465 const unsigned BytesInVector = NumHalfWords * 2; 9466 // Check that the shuffle is on half-words. 9467 if (!isNByteElemShuffleMask(N, 2, 1)) 9468 return SDValue(); 9469 9470 bool IsLE = Subtarget.isLittleEndian(); 9471 SDLoc dl(N); 9472 SDValue V1 = N->getOperand(0); 9473 SDValue V2 = N->getOperand(1); 9474 unsigned ShiftElts = 0, InsertAtByte = 0; 9475 bool Swap = false; 9476 9477 // Shifts required to get the half-word we want at element 3. 9478 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9479 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9480 9481 uint32_t Mask = 0; 9482 uint32_t OriginalOrderLow = 0x1234567; 9483 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9484 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9485 // 32-bit space, only need 4-bit nibbles per element. 9486 for (unsigned i = 0; i < NumHalfWords; ++i) { 9487 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9488 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9489 } 9490 9491 // For each mask element, find out if we're just inserting something 9492 // from V2 into V1 or vice versa. Possible permutations inserting an element 9493 // from V2 into V1: 9494 // X, 1, 2, 3, 4, 5, 6, 7 9495 // 0, X, 2, 3, 4, 5, 6, 7 9496 // 0, 1, X, 3, 4, 5, 6, 7 9497 // 0, 1, 2, X, 4, 5, 6, 7 9498 // 0, 1, 2, 3, X, 5, 6, 7 9499 // 0, 1, 2, 3, 4, X, 6, 7 9500 // 0, 1, 2, 3, 4, 5, X, 7 9501 // 0, 1, 2, 3, 4, 5, 6, X 9502 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9503 9504 bool FoundCandidate = false; 9505 // Go through the mask of half-words to find an element that's being moved 9506 // from one vector to the other. 9507 for (unsigned i = 0; i < NumHalfWords; ++i) { 9508 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9509 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9510 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9511 uint32_t TargetOrder = 0x0; 9512 9513 // If both vector operands for the shuffle are the same vector, the mask 9514 // will contain only elements from the first one and the second one will be 9515 // undef. 9516 if (V2.isUndef()) { 9517 ShiftElts = 0; 9518 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9519 TargetOrder = OriginalOrderLow; 9520 Swap = false; 9521 // Skip if not the correct element or mask of other elements don't equal 9522 // to our expected order. 9523 if (MaskOneElt == VINSERTHSrcElem && 9524 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9525 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9526 FoundCandidate = true; 9527 break; 9528 } 9529 } else { // If both operands are defined. 9530 // Target order is [8,15] if the current mask is between [0,7]. 9531 TargetOrder = 9532 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9533 // Skip if mask of other elements don't equal our expected order. 9534 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9535 // We only need the last 3 bits for the number of shifts. 9536 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9537 : BigEndianShifts[MaskOneElt & 0x7]; 9538 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9539 Swap = MaskOneElt < NumHalfWords; 9540 FoundCandidate = true; 9541 break; 9542 } 9543 } 9544 } 9545 9546 if (!FoundCandidate) 9547 return SDValue(); 9548 9549 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9550 // optionally with VECSHL if shift is required. 9551 if (Swap) 9552 std::swap(V1, V2); 9553 if (V2.isUndef()) 9554 V2 = V1; 9555 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9556 if (ShiftElts) { 9557 // Double ShiftElts because we're left shifting on v16i8 type. 9558 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9559 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9560 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9561 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9562 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9563 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9564 } 9565 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9566 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9567 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9568 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9569 } 9570 9571 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9572 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9573 /// return the default SDValue. 9574 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9575 SelectionDAG &DAG) const { 9576 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9577 // to v16i8. Peek through the bitcasts to get the actual operands. 9578 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9579 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9580 9581 auto ShuffleMask = SVN->getMask(); 9582 SDValue VecShuffle(SVN, 0); 9583 SDLoc DL(SVN); 9584 9585 // Check that we have a four byte shuffle. 9586 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9587 return SDValue(); 9588 9589 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9590 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9591 std::swap(LHS, RHS); 9592 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9593 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9594 } 9595 9596 // Ensure that the RHS is a vector of constants. 9597 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9598 if (!BVN) 9599 return SDValue(); 9600 9601 // Check if RHS is a splat of 4-bytes (or smaller). 9602 APInt APSplatValue, APSplatUndef; 9603 unsigned SplatBitSize; 9604 bool HasAnyUndefs; 9605 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9606 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9607 SplatBitSize > 32) 9608 return SDValue(); 9609 9610 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9611 // The instruction splats a constant C into two words of the source vector 9612 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9613 // Thus we check that the shuffle mask is the equivalent of 9614 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9615 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9616 // within each word are consecutive, so we only need to check the first byte. 9617 SDValue Index; 9618 bool IsLE = Subtarget.isLittleEndian(); 9619 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9620 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9621 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9622 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9623 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9624 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9625 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9626 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9627 else 9628 return SDValue(); 9629 9630 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9631 // for XXSPLTI32DX. 9632 unsigned SplatVal = APSplatValue.getZExtValue(); 9633 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9634 SplatVal |= (SplatVal << SplatBitSize); 9635 9636 SDValue SplatNode = DAG.getNode( 9637 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9638 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9639 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9640 } 9641 9642 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9643 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9644 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9645 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9646 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9647 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9648 assert(Op.getValueType() == MVT::v1i128 && 9649 "Only set v1i128 as custom, other type shouldn't reach here!"); 9650 SDLoc dl(Op); 9651 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9652 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9653 unsigned SHLAmt = N1.getConstantOperandVal(0); 9654 if (SHLAmt % 8 == 0) { 9655 SmallVector<int, 16> Mask(16, 0); 9656 std::iota(Mask.begin(), Mask.end(), 0); 9657 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9658 if (SDValue Shuffle = 9659 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9660 DAG.getUNDEF(MVT::v16i8), Mask)) 9661 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9662 } 9663 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9664 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9665 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9666 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9667 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9668 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9669 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9670 } 9671 9672 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9673 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9674 /// return the code it can be lowered into. Worst case, it can always be 9675 /// lowered into a vperm. 9676 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9677 SelectionDAG &DAG) const { 9678 SDLoc dl(Op); 9679 SDValue V1 = Op.getOperand(0); 9680 SDValue V2 = Op.getOperand(1); 9681 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9682 9683 // Any nodes that were combined in the target-independent combiner prior 9684 // to vector legalization will not be sent to the target combine. Try to 9685 // combine it here. 9686 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9687 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9688 return NewShuffle; 9689 Op = NewShuffle; 9690 SVOp = cast<ShuffleVectorSDNode>(Op); 9691 V1 = Op.getOperand(0); 9692 V2 = Op.getOperand(1); 9693 } 9694 EVT VT = Op.getValueType(); 9695 bool isLittleEndian = Subtarget.isLittleEndian(); 9696 9697 unsigned ShiftElts, InsertAtByte; 9698 bool Swap = false; 9699 9700 // If this is a load-and-splat, we can do that with a single instruction 9701 // in some cases. However if the load has multiple uses, we don't want to 9702 // combine it because that will just produce multiple loads. 9703 bool IsPermutedLoad = false; 9704 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9705 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9706 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9707 InputLoad->hasOneUse()) { 9708 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9709 int SplatIdx = 9710 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9711 9712 // The splat index for permuted loads will be in the left half of the vector 9713 // which is strictly wider than the loaded value by 8 bytes. So we need to 9714 // adjust the splat index to point to the correct address in memory. 9715 if (IsPermutedLoad) { 9716 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9717 SplatIdx += IsFourByte ? 2 : 1; 9718 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9719 "Splat of a value outside of the loaded memory"); 9720 } 9721 9722 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9723 // For 4-byte load-and-splat, we need Power9. 9724 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9725 uint64_t Offset = 0; 9726 if (IsFourByte) 9727 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9728 else 9729 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9730 9731 SDValue BasePtr = LD->getBasePtr(); 9732 if (Offset != 0) 9733 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9734 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9735 SDValue Ops[] = { 9736 LD->getChain(), // Chain 9737 BasePtr, // BasePtr 9738 DAG.getValueType(Op.getValueType()) // VT 9739 }; 9740 SDVTList VTL = 9741 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9742 SDValue LdSplt = 9743 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9744 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9745 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9746 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9747 return LdSplt; 9748 } 9749 } 9750 if (Subtarget.hasP9Vector() && 9751 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9752 isLittleEndian)) { 9753 if (Swap) 9754 std::swap(V1, V2); 9755 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9756 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9757 if (ShiftElts) { 9758 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9759 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9760 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9761 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9762 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9763 } 9764 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9765 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9766 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9767 } 9768 9769 if (Subtarget.hasPrefixInstrs()) { 9770 SDValue SplatInsertNode; 9771 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9772 return SplatInsertNode; 9773 } 9774 9775 if (Subtarget.hasP9Altivec()) { 9776 SDValue NewISDNode; 9777 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9778 return NewISDNode; 9779 9780 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9781 return NewISDNode; 9782 } 9783 9784 if (Subtarget.hasVSX() && 9785 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9786 if (Swap) 9787 std::swap(V1, V2); 9788 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9789 SDValue Conv2 = 9790 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9791 9792 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9793 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9794 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9795 } 9796 9797 if (Subtarget.hasVSX() && 9798 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9799 if (Swap) 9800 std::swap(V1, V2); 9801 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9802 SDValue Conv2 = 9803 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9804 9805 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9806 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9807 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9808 } 9809 9810 if (Subtarget.hasP9Vector()) { 9811 if (PPC::isXXBRHShuffleMask(SVOp)) { 9812 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9813 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9814 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9815 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9816 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9817 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9818 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9819 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9820 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9821 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9822 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9823 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9824 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9825 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9826 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9827 } 9828 } 9829 9830 if (Subtarget.hasVSX()) { 9831 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9832 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9833 9834 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9835 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9836 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9837 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9838 } 9839 9840 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9841 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9842 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9843 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9844 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9845 } 9846 } 9847 9848 // Cases that are handled by instructions that take permute immediates 9849 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9850 // selected by the instruction selector. 9851 if (V2.isUndef()) { 9852 if (PPC::isSplatShuffleMask(SVOp, 1) || 9853 PPC::isSplatShuffleMask(SVOp, 2) || 9854 PPC::isSplatShuffleMask(SVOp, 4) || 9855 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9856 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9857 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9858 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9859 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9860 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9861 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9862 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9863 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9864 (Subtarget.hasP8Altivec() && ( 9865 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9866 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9867 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9868 return Op; 9869 } 9870 } 9871 9872 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9873 // and produce a fixed permutation. If any of these match, do not lower to 9874 // VPERM. 9875 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9876 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9877 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9878 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9879 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9880 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9881 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9882 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9883 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9884 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9885 (Subtarget.hasP8Altivec() && ( 9886 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9887 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9888 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9889 return Op; 9890 9891 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9892 // perfect shuffle table to emit an optimal matching sequence. 9893 ArrayRef<int> PermMask = SVOp->getMask(); 9894 9895 unsigned PFIndexes[4]; 9896 bool isFourElementShuffle = true; 9897 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9898 unsigned EltNo = 8; // Start out undef. 9899 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9900 if (PermMask[i*4+j] < 0) 9901 continue; // Undef, ignore it. 9902 9903 unsigned ByteSource = PermMask[i*4+j]; 9904 if ((ByteSource & 3) != j) { 9905 isFourElementShuffle = false; 9906 break; 9907 } 9908 9909 if (EltNo == 8) { 9910 EltNo = ByteSource/4; 9911 } else if (EltNo != ByteSource/4) { 9912 isFourElementShuffle = false; 9913 break; 9914 } 9915 } 9916 PFIndexes[i] = EltNo; 9917 } 9918 9919 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9920 // perfect shuffle vector to determine if it is cost effective to do this as 9921 // discrete instructions, or whether we should use a vperm. 9922 // For now, we skip this for little endian until such time as we have a 9923 // little-endian perfect shuffle table. 9924 if (isFourElementShuffle && !isLittleEndian) { 9925 // Compute the index in the perfect shuffle table. 9926 unsigned PFTableIndex = 9927 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9928 9929 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9930 unsigned Cost = (PFEntry >> 30); 9931 9932 // Determining when to avoid vperm is tricky. Many things affect the cost 9933 // of vperm, particularly how many times the perm mask needs to be computed. 9934 // For example, if the perm mask can be hoisted out of a loop or is already 9935 // used (perhaps because there are multiple permutes with the same shuffle 9936 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9937 // the loop requires an extra register. 9938 // 9939 // As a compromise, we only emit discrete instructions if the shuffle can be 9940 // generated in 3 or fewer operations. When we have loop information 9941 // available, if this block is within a loop, we should avoid using vperm 9942 // for 3-operation perms and use a constant pool load instead. 9943 if (Cost < 3) 9944 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9945 } 9946 9947 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9948 // vector that will get spilled to the constant pool. 9949 if (V2.isUndef()) V2 = V1; 9950 9951 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9952 // that it is in input element units, not in bytes. Convert now. 9953 9954 // For little endian, the order of the input vectors is reversed, and 9955 // the permutation mask is complemented with respect to 31. This is 9956 // necessary to produce proper semantics with the big-endian-biased vperm 9957 // instruction. 9958 EVT EltVT = V1.getValueType().getVectorElementType(); 9959 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9960 9961 SmallVector<SDValue, 16> ResultMask; 9962 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9963 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9964 9965 for (unsigned j = 0; j != BytesPerElement; ++j) 9966 if (isLittleEndian) 9967 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9968 dl, MVT::i32)); 9969 else 9970 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9971 MVT::i32)); 9972 } 9973 9974 ShufflesHandledWithVPERM++; 9975 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9976 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9977 LLVM_DEBUG(SVOp->dump()); 9978 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9979 LLVM_DEBUG(VPermMask.dump()); 9980 9981 if (isLittleEndian) 9982 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9983 V2, V1, VPermMask); 9984 else 9985 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9986 V1, V2, VPermMask); 9987 } 9988 9989 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9990 /// vector comparison. If it is, return true and fill in Opc/isDot with 9991 /// information about the intrinsic. 9992 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9993 bool &isDot, const PPCSubtarget &Subtarget) { 9994 unsigned IntrinsicID = 9995 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9996 CompareOpc = -1; 9997 isDot = false; 9998 switch (IntrinsicID) { 9999 default: 10000 return false; 10001 // Comparison predicates. 10002 case Intrinsic::ppc_altivec_vcmpbfp_p: 10003 CompareOpc = 966; 10004 isDot = true; 10005 break; 10006 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10007 CompareOpc = 198; 10008 isDot = true; 10009 break; 10010 case Intrinsic::ppc_altivec_vcmpequb_p: 10011 CompareOpc = 6; 10012 isDot = true; 10013 break; 10014 case Intrinsic::ppc_altivec_vcmpequh_p: 10015 CompareOpc = 70; 10016 isDot = true; 10017 break; 10018 case Intrinsic::ppc_altivec_vcmpequw_p: 10019 CompareOpc = 134; 10020 isDot = true; 10021 break; 10022 case Intrinsic::ppc_altivec_vcmpequd_p: 10023 if (Subtarget.hasP8Altivec()) { 10024 CompareOpc = 199; 10025 isDot = true; 10026 } else 10027 return false; 10028 break; 10029 case Intrinsic::ppc_altivec_vcmpneb_p: 10030 case Intrinsic::ppc_altivec_vcmpneh_p: 10031 case Intrinsic::ppc_altivec_vcmpnew_p: 10032 case Intrinsic::ppc_altivec_vcmpnezb_p: 10033 case Intrinsic::ppc_altivec_vcmpnezh_p: 10034 case Intrinsic::ppc_altivec_vcmpnezw_p: 10035 if (Subtarget.hasP9Altivec()) { 10036 switch (IntrinsicID) { 10037 default: 10038 llvm_unreachable("Unknown comparison intrinsic."); 10039 case Intrinsic::ppc_altivec_vcmpneb_p: 10040 CompareOpc = 7; 10041 break; 10042 case Intrinsic::ppc_altivec_vcmpneh_p: 10043 CompareOpc = 71; 10044 break; 10045 case Intrinsic::ppc_altivec_vcmpnew_p: 10046 CompareOpc = 135; 10047 break; 10048 case Intrinsic::ppc_altivec_vcmpnezb_p: 10049 CompareOpc = 263; 10050 break; 10051 case Intrinsic::ppc_altivec_vcmpnezh_p: 10052 CompareOpc = 327; 10053 break; 10054 case Intrinsic::ppc_altivec_vcmpnezw_p: 10055 CompareOpc = 391; 10056 break; 10057 } 10058 isDot = true; 10059 } else 10060 return false; 10061 break; 10062 case Intrinsic::ppc_altivec_vcmpgefp_p: 10063 CompareOpc = 454; 10064 isDot = true; 10065 break; 10066 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10067 CompareOpc = 710; 10068 isDot = true; 10069 break; 10070 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10071 CompareOpc = 774; 10072 isDot = true; 10073 break; 10074 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10075 CompareOpc = 838; 10076 isDot = true; 10077 break; 10078 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10079 CompareOpc = 902; 10080 isDot = true; 10081 break; 10082 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10083 if (Subtarget.hasP8Altivec()) { 10084 CompareOpc = 967; 10085 isDot = true; 10086 } else 10087 return false; 10088 break; 10089 case Intrinsic::ppc_altivec_vcmpgtub_p: 10090 CompareOpc = 518; 10091 isDot = true; 10092 break; 10093 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10094 CompareOpc = 582; 10095 isDot = true; 10096 break; 10097 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10098 CompareOpc = 646; 10099 isDot = true; 10100 break; 10101 case Intrinsic::ppc_altivec_vcmpgtud_p: 10102 if (Subtarget.hasP8Altivec()) { 10103 CompareOpc = 711; 10104 isDot = true; 10105 } else 10106 return false; 10107 break; 10108 10109 // VSX predicate comparisons use the same infrastructure 10110 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10111 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10112 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10113 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10114 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10115 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10116 if (Subtarget.hasVSX()) { 10117 switch (IntrinsicID) { 10118 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10119 CompareOpc = 99; 10120 break; 10121 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10122 CompareOpc = 115; 10123 break; 10124 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10125 CompareOpc = 107; 10126 break; 10127 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10128 CompareOpc = 67; 10129 break; 10130 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10131 CompareOpc = 83; 10132 break; 10133 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10134 CompareOpc = 75; 10135 break; 10136 } 10137 isDot = true; 10138 } else 10139 return false; 10140 break; 10141 10142 // Normal Comparisons. 10143 case Intrinsic::ppc_altivec_vcmpbfp: 10144 CompareOpc = 966; 10145 break; 10146 case Intrinsic::ppc_altivec_vcmpeqfp: 10147 CompareOpc = 198; 10148 break; 10149 case Intrinsic::ppc_altivec_vcmpequb: 10150 CompareOpc = 6; 10151 break; 10152 case Intrinsic::ppc_altivec_vcmpequh: 10153 CompareOpc = 70; 10154 break; 10155 case Intrinsic::ppc_altivec_vcmpequw: 10156 CompareOpc = 134; 10157 break; 10158 case Intrinsic::ppc_altivec_vcmpequd: 10159 if (Subtarget.hasP8Altivec()) 10160 CompareOpc = 199; 10161 else 10162 return false; 10163 break; 10164 case Intrinsic::ppc_altivec_vcmpneb: 10165 case Intrinsic::ppc_altivec_vcmpneh: 10166 case Intrinsic::ppc_altivec_vcmpnew: 10167 case Intrinsic::ppc_altivec_vcmpnezb: 10168 case Intrinsic::ppc_altivec_vcmpnezh: 10169 case Intrinsic::ppc_altivec_vcmpnezw: 10170 if (Subtarget.hasP9Altivec()) 10171 switch (IntrinsicID) { 10172 default: 10173 llvm_unreachable("Unknown comparison intrinsic."); 10174 case Intrinsic::ppc_altivec_vcmpneb: 10175 CompareOpc = 7; 10176 break; 10177 case Intrinsic::ppc_altivec_vcmpneh: 10178 CompareOpc = 71; 10179 break; 10180 case Intrinsic::ppc_altivec_vcmpnew: 10181 CompareOpc = 135; 10182 break; 10183 case Intrinsic::ppc_altivec_vcmpnezb: 10184 CompareOpc = 263; 10185 break; 10186 case Intrinsic::ppc_altivec_vcmpnezh: 10187 CompareOpc = 327; 10188 break; 10189 case Intrinsic::ppc_altivec_vcmpnezw: 10190 CompareOpc = 391; 10191 break; 10192 } 10193 else 10194 return false; 10195 break; 10196 case Intrinsic::ppc_altivec_vcmpgefp: 10197 CompareOpc = 454; 10198 break; 10199 case Intrinsic::ppc_altivec_vcmpgtfp: 10200 CompareOpc = 710; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpgtsb: 10203 CompareOpc = 774; 10204 break; 10205 case Intrinsic::ppc_altivec_vcmpgtsh: 10206 CompareOpc = 838; 10207 break; 10208 case Intrinsic::ppc_altivec_vcmpgtsw: 10209 CompareOpc = 902; 10210 break; 10211 case Intrinsic::ppc_altivec_vcmpgtsd: 10212 if (Subtarget.hasP8Altivec()) 10213 CompareOpc = 967; 10214 else 10215 return false; 10216 break; 10217 case Intrinsic::ppc_altivec_vcmpgtub: 10218 CompareOpc = 518; 10219 break; 10220 case Intrinsic::ppc_altivec_vcmpgtuh: 10221 CompareOpc = 582; 10222 break; 10223 case Intrinsic::ppc_altivec_vcmpgtuw: 10224 CompareOpc = 646; 10225 break; 10226 case Intrinsic::ppc_altivec_vcmpgtud: 10227 if (Subtarget.hasP8Altivec()) 10228 CompareOpc = 711; 10229 else 10230 return false; 10231 break; 10232 } 10233 return true; 10234 } 10235 10236 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10237 /// lower, do it, otherwise return null. 10238 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10239 SelectionDAG &DAG) const { 10240 unsigned IntrinsicID = 10241 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10242 10243 SDLoc dl(Op); 10244 10245 if (IntrinsicID == Intrinsic::thread_pointer) { 10246 // Reads the thread pointer register, used for __builtin_thread_pointer. 10247 if (Subtarget.isPPC64()) 10248 return DAG.getRegister(PPC::X13, MVT::i64); 10249 return DAG.getRegister(PPC::R2, MVT::i32); 10250 } 10251 10252 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10253 // opcode number of the comparison. 10254 int CompareOpc; 10255 bool isDot; 10256 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10257 return SDValue(); // Don't custom lower most intrinsics. 10258 10259 // If this is a non-dot comparison, make the VCMP node and we are done. 10260 if (!isDot) { 10261 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10262 Op.getOperand(1), Op.getOperand(2), 10263 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10264 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10265 } 10266 10267 // Create the PPCISD altivec 'dot' comparison node. 10268 SDValue Ops[] = { 10269 Op.getOperand(2), // LHS 10270 Op.getOperand(3), // RHS 10271 DAG.getConstant(CompareOpc, dl, MVT::i32) 10272 }; 10273 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10274 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10275 10276 // Now that we have the comparison, emit a copy from the CR to a GPR. 10277 // This is flagged to the above dot comparison. 10278 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10279 DAG.getRegister(PPC::CR6, MVT::i32), 10280 CompNode.getValue(1)); 10281 10282 // Unpack the result based on how the target uses it. 10283 unsigned BitNo; // Bit # of CR6. 10284 bool InvertBit; // Invert result? 10285 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10286 default: // Can't happen, don't crash on invalid number though. 10287 case 0: // Return the value of the EQ bit of CR6. 10288 BitNo = 0; InvertBit = false; 10289 break; 10290 case 1: // Return the inverted value of the EQ bit of CR6. 10291 BitNo = 0; InvertBit = true; 10292 break; 10293 case 2: // Return the value of the LT bit of CR6. 10294 BitNo = 2; InvertBit = false; 10295 break; 10296 case 3: // Return the inverted value of the LT bit of CR6. 10297 BitNo = 2; InvertBit = true; 10298 break; 10299 } 10300 10301 // Shift the bit into the low position. 10302 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10303 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10304 // Isolate the bit. 10305 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10306 DAG.getConstant(1, dl, MVT::i32)); 10307 10308 // If we are supposed to, toggle the bit. 10309 if (InvertBit) 10310 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10311 DAG.getConstant(1, dl, MVT::i32)); 10312 return Flags; 10313 } 10314 10315 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10316 SelectionDAG &DAG) const { 10317 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10318 // the beginning of the argument list. 10319 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10320 SDLoc DL(Op); 10321 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10322 case Intrinsic::ppc_cfence: { 10323 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10324 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10325 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10326 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10327 Op.getOperand(ArgStart + 1)), 10328 Op.getOperand(0)), 10329 0); 10330 } 10331 default: 10332 break; 10333 } 10334 return SDValue(); 10335 } 10336 10337 // Lower scalar BSWAP64 to xxbrd. 10338 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10339 SDLoc dl(Op); 10340 // MTVSRDD 10341 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10342 Op.getOperand(0)); 10343 // XXBRD 10344 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10345 // MFVSRD 10346 int VectorIndex = 0; 10347 if (Subtarget.isLittleEndian()) 10348 VectorIndex = 1; 10349 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10350 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10351 return Op; 10352 } 10353 10354 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10355 // compared to a value that is atomically loaded (atomic loads zero-extend). 10356 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10357 SelectionDAG &DAG) const { 10358 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10359 "Expecting an atomic compare-and-swap here."); 10360 SDLoc dl(Op); 10361 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10362 EVT MemVT = AtomicNode->getMemoryVT(); 10363 if (MemVT.getSizeInBits() >= 32) 10364 return Op; 10365 10366 SDValue CmpOp = Op.getOperand(2); 10367 // If this is already correctly zero-extended, leave it alone. 10368 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10369 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10370 return Op; 10371 10372 // Clear the high bits of the compare operand. 10373 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10374 SDValue NewCmpOp = 10375 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10376 DAG.getConstant(MaskVal, dl, MVT::i32)); 10377 10378 // Replace the existing compare operand with the properly zero-extended one. 10379 SmallVector<SDValue, 4> Ops; 10380 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10381 Ops.push_back(AtomicNode->getOperand(i)); 10382 Ops[2] = NewCmpOp; 10383 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10384 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10385 auto NodeTy = 10386 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10387 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10388 } 10389 10390 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10391 SelectionDAG &DAG) const { 10392 SDLoc dl(Op); 10393 // Create a stack slot that is 16-byte aligned. 10394 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10395 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10396 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10397 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10398 10399 // Store the input value into Value#0 of the stack slot. 10400 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10401 MachinePointerInfo()); 10402 // Load it out. 10403 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10404 } 10405 10406 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10407 SelectionDAG &DAG) const { 10408 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10409 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10410 10411 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10412 // We have legal lowering for constant indices but not for variable ones. 10413 if (!C) 10414 return SDValue(); 10415 10416 EVT VT = Op.getValueType(); 10417 SDLoc dl(Op); 10418 SDValue V1 = Op.getOperand(0); 10419 SDValue V2 = Op.getOperand(1); 10420 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10421 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10422 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10423 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10424 unsigned InsertAtElement = C->getZExtValue(); 10425 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10426 if (Subtarget.isLittleEndian()) { 10427 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10428 } 10429 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10430 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10431 } 10432 return Op; 10433 } 10434 10435 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10436 SDLoc dl(Op); 10437 if (Op.getValueType() == MVT::v4i32) { 10438 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10439 10440 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10441 // +16 as shift amt. 10442 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10443 SDValue RHSSwap = // = vrlw RHS, 16 10444 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10445 10446 // Shrinkify inputs to v8i16. 10447 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10448 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10449 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10450 10451 // Low parts multiplied together, generating 32-bit results (we ignore the 10452 // top parts). 10453 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10454 LHS, RHS, DAG, dl, MVT::v4i32); 10455 10456 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10457 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10458 // Shift the high parts up 16 bits. 10459 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10460 Neg16, DAG, dl); 10461 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10462 } else if (Op.getValueType() == MVT::v16i8) { 10463 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10464 bool isLittleEndian = Subtarget.isLittleEndian(); 10465 10466 // Multiply the even 8-bit parts, producing 16-bit sums. 10467 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10468 LHS, RHS, DAG, dl, MVT::v8i16); 10469 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10470 10471 // Multiply the odd 8-bit parts, producing 16-bit sums. 10472 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10473 LHS, RHS, DAG, dl, MVT::v8i16); 10474 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10475 10476 // Merge the results together. Because vmuleub and vmuloub are 10477 // instructions with a big-endian bias, we must reverse the 10478 // element numbering and reverse the meaning of "odd" and "even" 10479 // when generating little endian code. 10480 int Ops[16]; 10481 for (unsigned i = 0; i != 8; ++i) { 10482 if (isLittleEndian) { 10483 Ops[i*2 ] = 2*i; 10484 Ops[i*2+1] = 2*i+16; 10485 } else { 10486 Ops[i*2 ] = 2*i+1; 10487 Ops[i*2+1] = 2*i+1+16; 10488 } 10489 } 10490 if (isLittleEndian) 10491 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10492 else 10493 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10494 } else { 10495 llvm_unreachable("Unknown mul to lower!"); 10496 } 10497 } 10498 10499 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10500 10501 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10502 10503 EVT VT = Op.getValueType(); 10504 assert(VT.isVector() && 10505 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10506 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10507 VT == MVT::v16i8) && 10508 "Unexpected vector element type!"); 10509 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10510 "Current subtarget doesn't support smax v2i64!"); 10511 10512 // For vector abs, it can be lowered to: 10513 // abs x 10514 // ==> 10515 // y = -x 10516 // smax(x, y) 10517 10518 SDLoc dl(Op); 10519 SDValue X = Op.getOperand(0); 10520 SDValue Zero = DAG.getConstant(0, dl, VT); 10521 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10522 10523 // SMAX patch https://reviews.llvm.org/D47332 10524 // hasn't landed yet, so use intrinsic first here. 10525 // TODO: Should use SMAX directly once SMAX patch landed 10526 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10527 if (VT == MVT::v2i64) 10528 BifID = Intrinsic::ppc_altivec_vmaxsd; 10529 else if (VT == MVT::v8i16) 10530 BifID = Intrinsic::ppc_altivec_vmaxsh; 10531 else if (VT == MVT::v16i8) 10532 BifID = Intrinsic::ppc_altivec_vmaxsb; 10533 10534 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10535 } 10536 10537 // Custom lowering for fpext vf32 to v2f64 10538 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10539 10540 assert(Op.getOpcode() == ISD::FP_EXTEND && 10541 "Should only be called for ISD::FP_EXTEND"); 10542 10543 // FIXME: handle extends from half precision float vectors on P9. 10544 // We only want to custom lower an extend from v2f32 to v2f64. 10545 if (Op.getValueType() != MVT::v2f64 || 10546 Op.getOperand(0).getValueType() != MVT::v2f32) 10547 return SDValue(); 10548 10549 SDLoc dl(Op); 10550 SDValue Op0 = Op.getOperand(0); 10551 10552 switch (Op0.getOpcode()) { 10553 default: 10554 return SDValue(); 10555 case ISD::EXTRACT_SUBVECTOR: { 10556 assert(Op0.getNumOperands() == 2 && 10557 isa<ConstantSDNode>(Op0->getOperand(1)) && 10558 "Node should have 2 operands with second one being a constant!"); 10559 10560 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10561 return SDValue(); 10562 10563 // Custom lower is only done for high or low doubleword. 10564 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10565 if (Idx % 2 != 0) 10566 return SDValue(); 10567 10568 // Since input is v4f32, at this point Idx is either 0 or 2. 10569 // Shift to get the doubleword position we want. 10570 int DWord = Idx >> 1; 10571 10572 // High and low word positions are different on little endian. 10573 if (Subtarget.isLittleEndian()) 10574 DWord ^= 0x1; 10575 10576 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10577 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10578 } 10579 case ISD::FADD: 10580 case ISD::FMUL: 10581 case ISD::FSUB: { 10582 SDValue NewLoad[2]; 10583 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10584 // Ensure both input are loads. 10585 SDValue LdOp = Op0.getOperand(i); 10586 if (LdOp.getOpcode() != ISD::LOAD) 10587 return SDValue(); 10588 // Generate new load node. 10589 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10590 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10591 NewLoad[i] = DAG.getMemIntrinsicNode( 10592 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10593 LD->getMemoryVT(), LD->getMemOperand()); 10594 } 10595 SDValue NewOp = 10596 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10597 NewLoad[1], Op0.getNode()->getFlags()); 10598 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10599 DAG.getConstant(0, dl, MVT::i32)); 10600 } 10601 case ISD::LOAD: { 10602 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10603 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10604 SDValue NewLd = DAG.getMemIntrinsicNode( 10605 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10606 LD->getMemoryVT(), LD->getMemOperand()); 10607 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10608 DAG.getConstant(0, dl, MVT::i32)); 10609 } 10610 } 10611 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10612 } 10613 10614 /// LowerOperation - Provide custom lowering hooks for some operations. 10615 /// 10616 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10617 switch (Op.getOpcode()) { 10618 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10619 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10620 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10621 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10622 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10623 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10624 case ISD::SETCC: return LowerSETCC(Op, DAG); 10625 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10626 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10627 10628 // Variable argument lowering. 10629 case ISD::VASTART: return LowerVASTART(Op, DAG); 10630 case ISD::VAARG: return LowerVAARG(Op, DAG); 10631 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10632 10633 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10634 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10635 case ISD::GET_DYNAMIC_AREA_OFFSET: 10636 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10637 10638 // Exception handling lowering. 10639 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10640 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10641 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10642 10643 case ISD::LOAD: return LowerLOAD(Op, DAG); 10644 case ISD::STORE: return LowerSTORE(Op, DAG); 10645 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10646 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10647 case ISD::STRICT_FP_TO_UINT: 10648 case ISD::STRICT_FP_TO_SINT: 10649 case ISD::FP_TO_UINT: 10650 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10651 case ISD::STRICT_UINT_TO_FP: 10652 case ISD::STRICT_SINT_TO_FP: 10653 case ISD::UINT_TO_FP: 10654 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10655 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10656 10657 // Lower 64-bit shifts. 10658 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10659 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10660 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10661 10662 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10663 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10664 10665 // Vector-related lowering. 10666 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10667 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10668 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10669 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10670 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10671 case ISD::MUL: return LowerMUL(Op, DAG); 10672 case ISD::ABS: return LowerABS(Op, DAG); 10673 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10674 case ISD::ROTL: return LowerROTL(Op, DAG); 10675 10676 // For counter-based loop handling. 10677 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10678 10679 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10680 10681 // Frame & Return address. 10682 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10683 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10684 10685 case ISD::INTRINSIC_VOID: 10686 return LowerINTRINSIC_VOID(Op, DAG); 10687 case ISD::BSWAP: 10688 return LowerBSWAP(Op, DAG); 10689 case ISD::ATOMIC_CMP_SWAP: 10690 return LowerATOMIC_CMP_SWAP(Op, DAG); 10691 } 10692 } 10693 10694 void PPCTargetLowering::LowerOperationWrapper(SDNode *N, 10695 SmallVectorImpl<SDValue> &Results, 10696 SelectionDAG &DAG) const { 10697 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10698 10699 if (!Res.getNode()) 10700 return; 10701 10702 // Take the return value as-is if original node has only one result. 10703 if (N->getNumValues() == 1) { 10704 Results.push_back(Res); 10705 return; 10706 } 10707 10708 // New node should have the same number of results. 10709 assert((N->getNumValues() == Res->getNumValues()) && 10710 "Lowering returned the wrong number of results!"); 10711 10712 for (unsigned i = 0; i < N->getNumValues(); ++i) 10713 Results.push_back(Res.getValue(i)); 10714 } 10715 10716 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10717 SmallVectorImpl<SDValue>&Results, 10718 SelectionDAG &DAG) const { 10719 SDLoc dl(N); 10720 switch (N->getOpcode()) { 10721 default: 10722 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10723 case ISD::READCYCLECOUNTER: { 10724 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10725 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10726 10727 Results.push_back( 10728 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10729 Results.push_back(RTB.getValue(2)); 10730 break; 10731 } 10732 case ISD::INTRINSIC_W_CHAIN: { 10733 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10734 Intrinsic::loop_decrement) 10735 break; 10736 10737 assert(N->getValueType(0) == MVT::i1 && 10738 "Unexpected result type for CTR decrement intrinsic"); 10739 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10740 N->getValueType(0)); 10741 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10742 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10743 N->getOperand(1)); 10744 10745 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10746 Results.push_back(NewInt.getValue(1)); 10747 break; 10748 } 10749 case ISD::VAARG: { 10750 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10751 return; 10752 10753 EVT VT = N->getValueType(0); 10754 10755 if (VT == MVT::i64) { 10756 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10757 10758 Results.push_back(NewNode); 10759 Results.push_back(NewNode.getValue(1)); 10760 } 10761 return; 10762 } 10763 case ISD::STRICT_FP_TO_SINT: 10764 case ISD::STRICT_FP_TO_UINT: 10765 case ISD::FP_TO_SINT: 10766 case ISD::FP_TO_UINT: 10767 // LowerFP_TO_INT() can only handle f32 and f64. 10768 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10769 MVT::ppcf128) 10770 return; 10771 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10772 return; 10773 case ISD::TRUNCATE: { 10774 if (!N->getValueType(0).isVector()) 10775 return; 10776 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10777 if (Lowered) 10778 Results.push_back(Lowered); 10779 return; 10780 } 10781 case ISD::BITCAST: 10782 // Don't handle bitcast here. 10783 return; 10784 case ISD::FP_EXTEND: 10785 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10786 if (Lowered) 10787 Results.push_back(Lowered); 10788 return; 10789 } 10790 } 10791 10792 //===----------------------------------------------------------------------===// 10793 // Other Lowering Code 10794 //===----------------------------------------------------------------------===// 10795 10796 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10797 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10798 Function *Func = Intrinsic::getDeclaration(M, Id); 10799 return Builder.CreateCall(Func, {}); 10800 } 10801 10802 // The mappings for emitLeading/TrailingFence is taken from 10803 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10804 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10805 Instruction *Inst, 10806 AtomicOrdering Ord) const { 10807 if (Ord == AtomicOrdering::SequentiallyConsistent) 10808 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10809 if (isReleaseOrStronger(Ord)) 10810 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10811 return nullptr; 10812 } 10813 10814 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10815 Instruction *Inst, 10816 AtomicOrdering Ord) const { 10817 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10818 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10819 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10820 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10821 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10822 return Builder.CreateCall( 10823 Intrinsic::getDeclaration( 10824 Builder.GetInsertBlock()->getParent()->getParent(), 10825 Intrinsic::ppc_cfence, {Inst->getType()}), 10826 {Inst}); 10827 // FIXME: Can use isync for rmw operation. 10828 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10829 } 10830 return nullptr; 10831 } 10832 10833 MachineBasicBlock * 10834 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10835 unsigned AtomicSize, 10836 unsigned BinOpcode, 10837 unsigned CmpOpcode, 10838 unsigned CmpPred) const { 10839 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10840 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10841 10842 auto LoadMnemonic = PPC::LDARX; 10843 auto StoreMnemonic = PPC::STDCX; 10844 switch (AtomicSize) { 10845 default: 10846 llvm_unreachable("Unexpected size of atomic entity"); 10847 case 1: 10848 LoadMnemonic = PPC::LBARX; 10849 StoreMnemonic = PPC::STBCX; 10850 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10851 break; 10852 case 2: 10853 LoadMnemonic = PPC::LHARX; 10854 StoreMnemonic = PPC::STHCX; 10855 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10856 break; 10857 case 4: 10858 LoadMnemonic = PPC::LWARX; 10859 StoreMnemonic = PPC::STWCX; 10860 break; 10861 case 8: 10862 LoadMnemonic = PPC::LDARX; 10863 StoreMnemonic = PPC::STDCX; 10864 break; 10865 } 10866 10867 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10868 MachineFunction *F = BB->getParent(); 10869 MachineFunction::iterator It = ++BB->getIterator(); 10870 10871 Register dest = MI.getOperand(0).getReg(); 10872 Register ptrA = MI.getOperand(1).getReg(); 10873 Register ptrB = MI.getOperand(2).getReg(); 10874 Register incr = MI.getOperand(3).getReg(); 10875 DebugLoc dl = MI.getDebugLoc(); 10876 10877 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10878 MachineBasicBlock *loop2MBB = 10879 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10880 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10881 F->insert(It, loopMBB); 10882 if (CmpOpcode) 10883 F->insert(It, loop2MBB); 10884 F->insert(It, exitMBB); 10885 exitMBB->splice(exitMBB->begin(), BB, 10886 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10887 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10888 10889 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10890 Register TmpReg = (!BinOpcode) ? incr : 10891 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10892 : &PPC::GPRCRegClass); 10893 10894 // thisMBB: 10895 // ... 10896 // fallthrough --> loopMBB 10897 BB->addSuccessor(loopMBB); 10898 10899 // loopMBB: 10900 // l[wd]arx dest, ptr 10901 // add r0, dest, incr 10902 // st[wd]cx. r0, ptr 10903 // bne- loopMBB 10904 // fallthrough --> exitMBB 10905 10906 // For max/min... 10907 // loopMBB: 10908 // l[wd]arx dest, ptr 10909 // cmpl?[wd] incr, dest 10910 // bgt exitMBB 10911 // loop2MBB: 10912 // st[wd]cx. dest, ptr 10913 // bne- loopMBB 10914 // fallthrough --> exitMBB 10915 10916 BB = loopMBB; 10917 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10918 .addReg(ptrA).addReg(ptrB); 10919 if (BinOpcode) 10920 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10921 if (CmpOpcode) { 10922 // Signed comparisons of byte or halfword values must be sign-extended. 10923 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10924 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10925 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10926 ExtReg).addReg(dest); 10927 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10928 .addReg(incr).addReg(ExtReg); 10929 } else 10930 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10931 .addReg(incr).addReg(dest); 10932 10933 BuildMI(BB, dl, TII->get(PPC::BCC)) 10934 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10935 BB->addSuccessor(loop2MBB); 10936 BB->addSuccessor(exitMBB); 10937 BB = loop2MBB; 10938 } 10939 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10940 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10941 BuildMI(BB, dl, TII->get(PPC::BCC)) 10942 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10943 BB->addSuccessor(loopMBB); 10944 BB->addSuccessor(exitMBB); 10945 10946 // exitMBB: 10947 // ... 10948 BB = exitMBB; 10949 return BB; 10950 } 10951 10952 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10953 MachineInstr &MI, MachineBasicBlock *BB, 10954 bool is8bit, // operation 10955 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10956 // If we support part-word atomic mnemonics, just use them 10957 if (Subtarget.hasPartwordAtomics()) 10958 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10959 CmpPred); 10960 10961 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10962 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10963 // In 64 bit mode we have to use 64 bits for addresses, even though the 10964 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10965 // registers without caring whether they're 32 or 64, but here we're 10966 // doing actual arithmetic on the addresses. 10967 bool is64bit = Subtarget.isPPC64(); 10968 bool isLittleEndian = Subtarget.isLittleEndian(); 10969 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10970 10971 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10972 MachineFunction *F = BB->getParent(); 10973 MachineFunction::iterator It = ++BB->getIterator(); 10974 10975 Register dest = MI.getOperand(0).getReg(); 10976 Register ptrA = MI.getOperand(1).getReg(); 10977 Register ptrB = MI.getOperand(2).getReg(); 10978 Register incr = MI.getOperand(3).getReg(); 10979 DebugLoc dl = MI.getDebugLoc(); 10980 10981 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10982 MachineBasicBlock *loop2MBB = 10983 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10984 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10985 F->insert(It, loopMBB); 10986 if (CmpOpcode) 10987 F->insert(It, loop2MBB); 10988 F->insert(It, exitMBB); 10989 exitMBB->splice(exitMBB->begin(), BB, 10990 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10991 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10992 10993 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10994 const TargetRegisterClass *RC = 10995 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10996 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10997 10998 Register PtrReg = RegInfo.createVirtualRegister(RC); 10999 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11000 Register ShiftReg = 11001 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11002 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11003 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11004 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11005 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11006 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11007 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11008 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11009 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11010 Register Ptr1Reg; 11011 Register TmpReg = 11012 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11013 11014 // thisMBB: 11015 // ... 11016 // fallthrough --> loopMBB 11017 BB->addSuccessor(loopMBB); 11018 11019 // The 4-byte load must be aligned, while a char or short may be 11020 // anywhere in the word. Hence all this nasty bookkeeping code. 11021 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11022 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11023 // xori shift, shift1, 24 [16] 11024 // rlwinm ptr, ptr1, 0, 0, 29 11025 // slw incr2, incr, shift 11026 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11027 // slw mask, mask2, shift 11028 // loopMBB: 11029 // lwarx tmpDest, ptr 11030 // add tmp, tmpDest, incr2 11031 // andc tmp2, tmpDest, mask 11032 // and tmp3, tmp, mask 11033 // or tmp4, tmp3, tmp2 11034 // stwcx. tmp4, ptr 11035 // bne- loopMBB 11036 // fallthrough --> exitMBB 11037 // srw dest, tmpDest, shift 11038 if (ptrA != ZeroReg) { 11039 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11040 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11041 .addReg(ptrA) 11042 .addReg(ptrB); 11043 } else { 11044 Ptr1Reg = ptrB; 11045 } 11046 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11047 // mode. 11048 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11049 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11050 .addImm(3) 11051 .addImm(27) 11052 .addImm(is8bit ? 28 : 27); 11053 if (!isLittleEndian) 11054 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11055 .addReg(Shift1Reg) 11056 .addImm(is8bit ? 24 : 16); 11057 if (is64bit) 11058 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11059 .addReg(Ptr1Reg) 11060 .addImm(0) 11061 .addImm(61); 11062 else 11063 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11064 .addReg(Ptr1Reg) 11065 .addImm(0) 11066 .addImm(0) 11067 .addImm(29); 11068 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11069 if (is8bit) 11070 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11071 else { 11072 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11073 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11074 .addReg(Mask3Reg) 11075 .addImm(65535); 11076 } 11077 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11078 .addReg(Mask2Reg) 11079 .addReg(ShiftReg); 11080 11081 BB = loopMBB; 11082 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11083 .addReg(ZeroReg) 11084 .addReg(PtrReg); 11085 if (BinOpcode) 11086 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11087 .addReg(Incr2Reg) 11088 .addReg(TmpDestReg); 11089 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11090 .addReg(TmpDestReg) 11091 .addReg(MaskReg); 11092 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11093 if (CmpOpcode) { 11094 // For unsigned comparisons, we can directly compare the shifted values. 11095 // For signed comparisons we shift and sign extend. 11096 Register SReg = RegInfo.createVirtualRegister(GPRC); 11097 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11098 .addReg(TmpDestReg) 11099 .addReg(MaskReg); 11100 unsigned ValueReg = SReg; 11101 unsigned CmpReg = Incr2Reg; 11102 if (CmpOpcode == PPC::CMPW) { 11103 ValueReg = RegInfo.createVirtualRegister(GPRC); 11104 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11105 .addReg(SReg) 11106 .addReg(ShiftReg); 11107 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11108 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11109 .addReg(ValueReg); 11110 ValueReg = ValueSReg; 11111 CmpReg = incr; 11112 } 11113 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11114 .addReg(CmpReg) 11115 .addReg(ValueReg); 11116 BuildMI(BB, dl, TII->get(PPC::BCC)) 11117 .addImm(CmpPred) 11118 .addReg(PPC::CR0) 11119 .addMBB(exitMBB); 11120 BB->addSuccessor(loop2MBB); 11121 BB->addSuccessor(exitMBB); 11122 BB = loop2MBB; 11123 } 11124 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11125 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11126 .addReg(Tmp4Reg) 11127 .addReg(ZeroReg) 11128 .addReg(PtrReg); 11129 BuildMI(BB, dl, TII->get(PPC::BCC)) 11130 .addImm(PPC::PRED_NE) 11131 .addReg(PPC::CR0) 11132 .addMBB(loopMBB); 11133 BB->addSuccessor(loopMBB); 11134 BB->addSuccessor(exitMBB); 11135 11136 // exitMBB: 11137 // ... 11138 BB = exitMBB; 11139 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11140 .addReg(TmpDestReg) 11141 .addReg(ShiftReg); 11142 return BB; 11143 } 11144 11145 llvm::MachineBasicBlock * 11146 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11147 MachineBasicBlock *MBB) const { 11148 DebugLoc DL = MI.getDebugLoc(); 11149 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11150 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11151 11152 MachineFunction *MF = MBB->getParent(); 11153 MachineRegisterInfo &MRI = MF->getRegInfo(); 11154 11155 const BasicBlock *BB = MBB->getBasicBlock(); 11156 MachineFunction::iterator I = ++MBB->getIterator(); 11157 11158 Register DstReg = MI.getOperand(0).getReg(); 11159 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11160 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11161 Register mainDstReg = MRI.createVirtualRegister(RC); 11162 Register restoreDstReg = MRI.createVirtualRegister(RC); 11163 11164 MVT PVT = getPointerTy(MF->getDataLayout()); 11165 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11166 "Invalid Pointer Size!"); 11167 // For v = setjmp(buf), we generate 11168 // 11169 // thisMBB: 11170 // SjLjSetup mainMBB 11171 // bl mainMBB 11172 // v_restore = 1 11173 // b sinkMBB 11174 // 11175 // mainMBB: 11176 // buf[LabelOffset] = LR 11177 // v_main = 0 11178 // 11179 // sinkMBB: 11180 // v = phi(main, restore) 11181 // 11182 11183 MachineBasicBlock *thisMBB = MBB; 11184 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11185 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11186 MF->insert(I, mainMBB); 11187 MF->insert(I, sinkMBB); 11188 11189 MachineInstrBuilder MIB; 11190 11191 // Transfer the remainder of BB and its successor edges to sinkMBB. 11192 sinkMBB->splice(sinkMBB->begin(), MBB, 11193 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11194 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11195 11196 // Note that the structure of the jmp_buf used here is not compatible 11197 // with that used by libc, and is not designed to be. Specifically, it 11198 // stores only those 'reserved' registers that LLVM does not otherwise 11199 // understand how to spill. Also, by convention, by the time this 11200 // intrinsic is called, Clang has already stored the frame address in the 11201 // first slot of the buffer and stack address in the third. Following the 11202 // X86 target code, we'll store the jump address in the second slot. We also 11203 // need to save the TOC pointer (R2) to handle jumps between shared 11204 // libraries, and that will be stored in the fourth slot. The thread 11205 // identifier (R13) is not affected. 11206 11207 // thisMBB: 11208 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11209 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11210 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11211 11212 // Prepare IP either in reg. 11213 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11214 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11215 Register BufReg = MI.getOperand(1).getReg(); 11216 11217 if (Subtarget.is64BitELFABI()) { 11218 setUsesTOCBasePtr(*MBB->getParent()); 11219 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11220 .addReg(PPC::X2) 11221 .addImm(TOCOffset) 11222 .addReg(BufReg) 11223 .cloneMemRefs(MI); 11224 } 11225 11226 // Naked functions never have a base pointer, and so we use r1. For all 11227 // other functions, this decision must be delayed until during PEI. 11228 unsigned BaseReg; 11229 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11230 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11231 else 11232 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11233 11234 MIB = BuildMI(*thisMBB, MI, DL, 11235 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11236 .addReg(BaseReg) 11237 .addImm(BPOffset) 11238 .addReg(BufReg) 11239 .cloneMemRefs(MI); 11240 11241 // Setup 11242 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11243 MIB.addRegMask(TRI->getNoPreservedMask()); 11244 11245 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11246 11247 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11248 .addMBB(mainMBB); 11249 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11250 11251 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11252 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11253 11254 // mainMBB: 11255 // mainDstReg = 0 11256 MIB = 11257 BuildMI(mainMBB, DL, 11258 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11259 11260 // Store IP 11261 if (Subtarget.isPPC64()) { 11262 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11263 .addReg(LabelReg) 11264 .addImm(LabelOffset) 11265 .addReg(BufReg); 11266 } else { 11267 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11268 .addReg(LabelReg) 11269 .addImm(LabelOffset) 11270 .addReg(BufReg); 11271 } 11272 MIB.cloneMemRefs(MI); 11273 11274 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11275 mainMBB->addSuccessor(sinkMBB); 11276 11277 // sinkMBB: 11278 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11279 TII->get(PPC::PHI), DstReg) 11280 .addReg(mainDstReg).addMBB(mainMBB) 11281 .addReg(restoreDstReg).addMBB(thisMBB); 11282 11283 MI.eraseFromParent(); 11284 return sinkMBB; 11285 } 11286 11287 MachineBasicBlock * 11288 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11289 MachineBasicBlock *MBB) const { 11290 DebugLoc DL = MI.getDebugLoc(); 11291 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11292 11293 MachineFunction *MF = MBB->getParent(); 11294 MachineRegisterInfo &MRI = MF->getRegInfo(); 11295 11296 MVT PVT = getPointerTy(MF->getDataLayout()); 11297 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11298 "Invalid Pointer Size!"); 11299 11300 const TargetRegisterClass *RC = 11301 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11302 Register Tmp = MRI.createVirtualRegister(RC); 11303 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11304 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11305 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11306 unsigned BP = 11307 (PVT == MVT::i64) 11308 ? PPC::X30 11309 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11310 : PPC::R30); 11311 11312 MachineInstrBuilder MIB; 11313 11314 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11315 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11316 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11317 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11318 11319 Register BufReg = MI.getOperand(0).getReg(); 11320 11321 // Reload FP (the jumped-to function may not have had a 11322 // frame pointer, and if so, then its r31 will be restored 11323 // as necessary). 11324 if (PVT == MVT::i64) { 11325 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11326 .addImm(0) 11327 .addReg(BufReg); 11328 } else { 11329 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11330 .addImm(0) 11331 .addReg(BufReg); 11332 } 11333 MIB.cloneMemRefs(MI); 11334 11335 // Reload IP 11336 if (PVT == MVT::i64) { 11337 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11338 .addImm(LabelOffset) 11339 .addReg(BufReg); 11340 } else { 11341 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11342 .addImm(LabelOffset) 11343 .addReg(BufReg); 11344 } 11345 MIB.cloneMemRefs(MI); 11346 11347 // Reload SP 11348 if (PVT == MVT::i64) { 11349 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11350 .addImm(SPOffset) 11351 .addReg(BufReg); 11352 } else { 11353 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11354 .addImm(SPOffset) 11355 .addReg(BufReg); 11356 } 11357 MIB.cloneMemRefs(MI); 11358 11359 // Reload BP 11360 if (PVT == MVT::i64) { 11361 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11362 .addImm(BPOffset) 11363 .addReg(BufReg); 11364 } else { 11365 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11366 .addImm(BPOffset) 11367 .addReg(BufReg); 11368 } 11369 MIB.cloneMemRefs(MI); 11370 11371 // Reload TOC 11372 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11373 setUsesTOCBasePtr(*MBB->getParent()); 11374 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11375 .addImm(TOCOffset) 11376 .addReg(BufReg) 11377 .cloneMemRefs(MI); 11378 } 11379 11380 // Jump 11381 BuildMI(*MBB, MI, DL, 11382 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11383 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11384 11385 MI.eraseFromParent(); 11386 return MBB; 11387 } 11388 11389 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11390 // If the function specifically requests inline stack probes, emit them. 11391 if (MF.getFunction().hasFnAttribute("probe-stack")) 11392 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11393 "inline-asm"; 11394 return false; 11395 } 11396 11397 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11398 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11399 unsigned StackAlign = TFI->getStackAlignment(); 11400 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11401 "Unexpected stack alignment"); 11402 // The default stack probe size is 4096 if the function has no 11403 // stack-probe-size attribute. 11404 unsigned StackProbeSize = 4096; 11405 const Function &Fn = MF.getFunction(); 11406 if (Fn.hasFnAttribute("stack-probe-size")) 11407 Fn.getFnAttribute("stack-probe-size") 11408 .getValueAsString() 11409 .getAsInteger(0, StackProbeSize); 11410 // Round down to the stack alignment. 11411 StackProbeSize &= ~(StackAlign - 1); 11412 return StackProbeSize ? StackProbeSize : StackAlign; 11413 } 11414 11415 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11416 // into three phases. In the first phase, it uses pseudo instruction 11417 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11418 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11419 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11420 // MaxCallFrameSize so that it can calculate correct data area pointer. 11421 MachineBasicBlock * 11422 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11423 MachineBasicBlock *MBB) const { 11424 const bool isPPC64 = Subtarget.isPPC64(); 11425 MachineFunction *MF = MBB->getParent(); 11426 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11427 DebugLoc DL = MI.getDebugLoc(); 11428 const unsigned ProbeSize = getStackProbeSize(*MF); 11429 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11430 MachineRegisterInfo &MRI = MF->getRegInfo(); 11431 // The CFG of probing stack looks as 11432 // +-----+ 11433 // | MBB | 11434 // +--+--+ 11435 // | 11436 // +----v----+ 11437 // +--->+ TestMBB +---+ 11438 // | +----+----+ | 11439 // | | | 11440 // | +-----v----+ | 11441 // +---+ BlockMBB | | 11442 // +----------+ | 11443 // | 11444 // +---------+ | 11445 // | TailMBB +<--+ 11446 // +---------+ 11447 // In MBB, calculate previous frame pointer and final stack pointer. 11448 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11449 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11450 // TailMBB is spliced via \p MI. 11451 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11452 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11453 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11454 11455 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11456 MF->insert(MBBIter, TestMBB); 11457 MF->insert(MBBIter, BlockMBB); 11458 MF->insert(MBBIter, TailMBB); 11459 11460 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11461 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11462 11463 Register DstReg = MI.getOperand(0).getReg(); 11464 Register NegSizeReg = MI.getOperand(1).getReg(); 11465 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11466 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11467 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11468 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11469 11470 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11471 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11472 // NegSize. 11473 unsigned ProbeOpc; 11474 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11475 ProbeOpc = 11476 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11477 else 11478 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11479 // and NegSizeReg will be allocated in the same phyreg to avoid 11480 // redundant copy when NegSizeReg has only one use which is current MI and 11481 // will be replaced by PREPARE_PROBED_ALLOCA then. 11482 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11483 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11484 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11485 .addDef(ActualNegSizeReg) 11486 .addReg(NegSizeReg) 11487 .add(MI.getOperand(2)) 11488 .add(MI.getOperand(3)); 11489 11490 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11491 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11492 FinalStackPtr) 11493 .addReg(SPReg) 11494 .addReg(ActualNegSizeReg); 11495 11496 // Materialize a scratch register for update. 11497 int64_t NegProbeSize = -(int64_t)ProbeSize; 11498 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11499 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11500 if (!isInt<16>(NegProbeSize)) { 11501 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11502 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11503 .addImm(NegProbeSize >> 16); 11504 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11505 ScratchReg) 11506 .addReg(TempReg) 11507 .addImm(NegProbeSize & 0xFFFF); 11508 } else 11509 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11510 .addImm(NegProbeSize); 11511 11512 { 11513 // Probing leading residual part. 11514 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11515 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11516 .addReg(ActualNegSizeReg) 11517 .addReg(ScratchReg); 11518 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11519 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11520 .addReg(Div) 11521 .addReg(ScratchReg); 11522 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11523 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11524 .addReg(Mul) 11525 .addReg(ActualNegSizeReg); 11526 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11527 .addReg(FramePointer) 11528 .addReg(SPReg) 11529 .addReg(NegMod); 11530 } 11531 11532 { 11533 // Remaining part should be multiple of ProbeSize. 11534 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11535 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11536 .addReg(SPReg) 11537 .addReg(FinalStackPtr); 11538 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11539 .addImm(PPC::PRED_EQ) 11540 .addReg(CmpResult) 11541 .addMBB(TailMBB); 11542 TestMBB->addSuccessor(BlockMBB); 11543 TestMBB->addSuccessor(TailMBB); 11544 } 11545 11546 { 11547 // Touch the block. 11548 // |P...|P...|P... 11549 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11550 .addReg(FramePointer) 11551 .addReg(SPReg) 11552 .addReg(ScratchReg); 11553 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11554 BlockMBB->addSuccessor(TestMBB); 11555 } 11556 11557 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11558 // DYNAREAOFFSET pseudo instruction to get the future result. 11559 Register MaxCallFrameSizeReg = 11560 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11561 BuildMI(TailMBB, DL, 11562 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11563 MaxCallFrameSizeReg) 11564 .add(MI.getOperand(2)) 11565 .add(MI.getOperand(3)); 11566 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11567 .addReg(SPReg) 11568 .addReg(MaxCallFrameSizeReg); 11569 11570 // Splice instructions after MI to TailMBB. 11571 TailMBB->splice(TailMBB->end(), MBB, 11572 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11573 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11574 MBB->addSuccessor(TestMBB); 11575 11576 // Delete the pseudo instruction. 11577 MI.eraseFromParent(); 11578 11579 ++NumDynamicAllocaProbed; 11580 return TailMBB; 11581 } 11582 11583 MachineBasicBlock * 11584 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11585 MachineBasicBlock *BB) const { 11586 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11587 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11588 if (Subtarget.is64BitELFABI() && 11589 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11590 !Subtarget.isUsingPCRelativeCalls()) { 11591 // Call lowering should have added an r2 operand to indicate a dependence 11592 // on the TOC base pointer value. It can't however, because there is no 11593 // way to mark the dependence as implicit there, and so the stackmap code 11594 // will confuse it with a regular operand. Instead, add the dependence 11595 // here. 11596 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11597 } 11598 11599 return emitPatchPoint(MI, BB); 11600 } 11601 11602 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11603 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11604 return emitEHSjLjSetJmp(MI, BB); 11605 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11606 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11607 return emitEHSjLjLongJmp(MI, BB); 11608 } 11609 11610 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11611 11612 // To "insert" these instructions we actually have to insert their 11613 // control-flow patterns. 11614 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11615 MachineFunction::iterator It = ++BB->getIterator(); 11616 11617 MachineFunction *F = BB->getParent(); 11618 11619 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11620 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11621 MI.getOpcode() == PPC::SELECT_I8) { 11622 SmallVector<MachineOperand, 2> Cond; 11623 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11624 MI.getOpcode() == PPC::SELECT_CC_I8) 11625 Cond.push_back(MI.getOperand(4)); 11626 else 11627 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11628 Cond.push_back(MI.getOperand(1)); 11629 11630 DebugLoc dl = MI.getDebugLoc(); 11631 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11632 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11633 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11634 MI.getOpcode() == PPC::SELECT_CC_F8 || 11635 MI.getOpcode() == PPC::SELECT_CC_F16 || 11636 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11637 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11638 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11639 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11640 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11641 MI.getOpcode() == PPC::SELECT_CC_SPE || 11642 MI.getOpcode() == PPC::SELECT_F4 || 11643 MI.getOpcode() == PPC::SELECT_F8 || 11644 MI.getOpcode() == PPC::SELECT_F16 || 11645 MI.getOpcode() == PPC::SELECT_SPE || 11646 MI.getOpcode() == PPC::SELECT_SPE4 || 11647 MI.getOpcode() == PPC::SELECT_VRRC || 11648 MI.getOpcode() == PPC::SELECT_VSFRC || 11649 MI.getOpcode() == PPC::SELECT_VSSRC || 11650 MI.getOpcode() == PPC::SELECT_VSRC) { 11651 // The incoming instruction knows the destination vreg to set, the 11652 // condition code register to branch on, the true/false values to 11653 // select between, and a branch opcode to use. 11654 11655 // thisMBB: 11656 // ... 11657 // TrueVal = ... 11658 // cmpTY ccX, r1, r2 11659 // bCC copy1MBB 11660 // fallthrough --> copy0MBB 11661 MachineBasicBlock *thisMBB = BB; 11662 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11663 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11664 DebugLoc dl = MI.getDebugLoc(); 11665 F->insert(It, copy0MBB); 11666 F->insert(It, sinkMBB); 11667 11668 // Transfer the remainder of BB and its successor edges to sinkMBB. 11669 sinkMBB->splice(sinkMBB->begin(), BB, 11670 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11671 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11672 11673 // Next, add the true and fallthrough blocks as its successors. 11674 BB->addSuccessor(copy0MBB); 11675 BB->addSuccessor(sinkMBB); 11676 11677 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11678 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11679 MI.getOpcode() == PPC::SELECT_F16 || 11680 MI.getOpcode() == PPC::SELECT_SPE4 || 11681 MI.getOpcode() == PPC::SELECT_SPE || 11682 MI.getOpcode() == PPC::SELECT_VRRC || 11683 MI.getOpcode() == PPC::SELECT_VSFRC || 11684 MI.getOpcode() == PPC::SELECT_VSSRC || 11685 MI.getOpcode() == PPC::SELECT_VSRC) { 11686 BuildMI(BB, dl, TII->get(PPC::BC)) 11687 .addReg(MI.getOperand(1).getReg()) 11688 .addMBB(sinkMBB); 11689 } else { 11690 unsigned SelectPred = MI.getOperand(4).getImm(); 11691 BuildMI(BB, dl, TII->get(PPC::BCC)) 11692 .addImm(SelectPred) 11693 .addReg(MI.getOperand(1).getReg()) 11694 .addMBB(sinkMBB); 11695 } 11696 11697 // copy0MBB: 11698 // %FalseValue = ... 11699 // # fallthrough to sinkMBB 11700 BB = copy0MBB; 11701 11702 // Update machine-CFG edges 11703 BB->addSuccessor(sinkMBB); 11704 11705 // sinkMBB: 11706 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11707 // ... 11708 BB = sinkMBB; 11709 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11710 .addReg(MI.getOperand(3).getReg()) 11711 .addMBB(copy0MBB) 11712 .addReg(MI.getOperand(2).getReg()) 11713 .addMBB(thisMBB); 11714 } else if (MI.getOpcode() == PPC::ReadTB) { 11715 // To read the 64-bit time-base register on a 32-bit target, we read the 11716 // two halves. Should the counter have wrapped while it was being read, we 11717 // need to try again. 11718 // ... 11719 // readLoop: 11720 // mfspr Rx,TBU # load from TBU 11721 // mfspr Ry,TB # load from TB 11722 // mfspr Rz,TBU # load from TBU 11723 // cmpw crX,Rx,Rz # check if 'old'='new' 11724 // bne readLoop # branch if they're not equal 11725 // ... 11726 11727 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11728 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11729 DebugLoc dl = MI.getDebugLoc(); 11730 F->insert(It, readMBB); 11731 F->insert(It, sinkMBB); 11732 11733 // Transfer the remainder of BB and its successor edges to sinkMBB. 11734 sinkMBB->splice(sinkMBB->begin(), BB, 11735 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11736 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11737 11738 BB->addSuccessor(readMBB); 11739 BB = readMBB; 11740 11741 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11742 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11743 Register LoReg = MI.getOperand(0).getReg(); 11744 Register HiReg = MI.getOperand(1).getReg(); 11745 11746 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11747 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11748 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11749 11750 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11751 11752 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11753 .addReg(HiReg) 11754 .addReg(ReadAgainReg); 11755 BuildMI(BB, dl, TII->get(PPC::BCC)) 11756 .addImm(PPC::PRED_NE) 11757 .addReg(CmpReg) 11758 .addMBB(readMBB); 11759 11760 BB->addSuccessor(readMBB); 11761 BB->addSuccessor(sinkMBB); 11762 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11763 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11764 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11765 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11766 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11767 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11768 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11769 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11770 11771 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11772 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11773 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11774 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11775 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11776 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11777 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11778 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11779 11780 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11781 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11782 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11783 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11784 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11785 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11786 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11787 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11788 11789 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11790 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11791 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11792 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11793 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11794 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11795 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11796 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11797 11798 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11799 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11800 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11801 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11802 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11803 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11804 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11805 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11806 11807 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11808 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11809 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11810 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11811 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11812 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11813 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11814 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11815 11816 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11817 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11818 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11819 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11820 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11821 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11822 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11823 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11824 11825 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11826 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11827 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11828 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11829 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11830 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11831 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11832 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11833 11834 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11835 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11836 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11837 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11838 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11839 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11840 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11841 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11842 11843 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11844 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11845 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11846 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11847 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11848 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11849 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11850 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11851 11852 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11853 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11854 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11855 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11856 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11857 BB = EmitAtomicBinary(MI, BB, 4, 0); 11858 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11859 BB = EmitAtomicBinary(MI, BB, 8, 0); 11860 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11861 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11862 (Subtarget.hasPartwordAtomics() && 11863 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11864 (Subtarget.hasPartwordAtomics() && 11865 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11866 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11867 11868 auto LoadMnemonic = PPC::LDARX; 11869 auto StoreMnemonic = PPC::STDCX; 11870 switch (MI.getOpcode()) { 11871 default: 11872 llvm_unreachable("Compare and swap of unknown size"); 11873 case PPC::ATOMIC_CMP_SWAP_I8: 11874 LoadMnemonic = PPC::LBARX; 11875 StoreMnemonic = PPC::STBCX; 11876 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11877 break; 11878 case PPC::ATOMIC_CMP_SWAP_I16: 11879 LoadMnemonic = PPC::LHARX; 11880 StoreMnemonic = PPC::STHCX; 11881 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11882 break; 11883 case PPC::ATOMIC_CMP_SWAP_I32: 11884 LoadMnemonic = PPC::LWARX; 11885 StoreMnemonic = PPC::STWCX; 11886 break; 11887 case PPC::ATOMIC_CMP_SWAP_I64: 11888 LoadMnemonic = PPC::LDARX; 11889 StoreMnemonic = PPC::STDCX; 11890 break; 11891 } 11892 Register dest = MI.getOperand(0).getReg(); 11893 Register ptrA = MI.getOperand(1).getReg(); 11894 Register ptrB = MI.getOperand(2).getReg(); 11895 Register oldval = MI.getOperand(3).getReg(); 11896 Register newval = MI.getOperand(4).getReg(); 11897 DebugLoc dl = MI.getDebugLoc(); 11898 11899 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11900 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11901 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11902 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11903 F->insert(It, loop1MBB); 11904 F->insert(It, loop2MBB); 11905 F->insert(It, midMBB); 11906 F->insert(It, exitMBB); 11907 exitMBB->splice(exitMBB->begin(), BB, 11908 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11909 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11910 11911 // thisMBB: 11912 // ... 11913 // fallthrough --> loopMBB 11914 BB->addSuccessor(loop1MBB); 11915 11916 // loop1MBB: 11917 // l[bhwd]arx dest, ptr 11918 // cmp[wd] dest, oldval 11919 // bne- midMBB 11920 // loop2MBB: 11921 // st[bhwd]cx. newval, ptr 11922 // bne- loopMBB 11923 // b exitBB 11924 // midMBB: 11925 // st[bhwd]cx. dest, ptr 11926 // exitBB: 11927 BB = loop1MBB; 11928 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11929 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11930 .addReg(oldval) 11931 .addReg(dest); 11932 BuildMI(BB, dl, TII->get(PPC::BCC)) 11933 .addImm(PPC::PRED_NE) 11934 .addReg(PPC::CR0) 11935 .addMBB(midMBB); 11936 BB->addSuccessor(loop2MBB); 11937 BB->addSuccessor(midMBB); 11938 11939 BB = loop2MBB; 11940 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11941 .addReg(newval) 11942 .addReg(ptrA) 11943 .addReg(ptrB); 11944 BuildMI(BB, dl, TII->get(PPC::BCC)) 11945 .addImm(PPC::PRED_NE) 11946 .addReg(PPC::CR0) 11947 .addMBB(loop1MBB); 11948 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11949 BB->addSuccessor(loop1MBB); 11950 BB->addSuccessor(exitMBB); 11951 11952 BB = midMBB; 11953 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11954 .addReg(dest) 11955 .addReg(ptrA) 11956 .addReg(ptrB); 11957 BB->addSuccessor(exitMBB); 11958 11959 // exitMBB: 11960 // ... 11961 BB = exitMBB; 11962 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11963 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11964 // We must use 64-bit registers for addresses when targeting 64-bit, 11965 // since we're actually doing arithmetic on them. Other registers 11966 // can be 32-bit. 11967 bool is64bit = Subtarget.isPPC64(); 11968 bool isLittleEndian = Subtarget.isLittleEndian(); 11969 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11970 11971 Register dest = MI.getOperand(0).getReg(); 11972 Register ptrA = MI.getOperand(1).getReg(); 11973 Register ptrB = MI.getOperand(2).getReg(); 11974 Register oldval = MI.getOperand(3).getReg(); 11975 Register newval = MI.getOperand(4).getReg(); 11976 DebugLoc dl = MI.getDebugLoc(); 11977 11978 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11979 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11980 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11981 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11982 F->insert(It, loop1MBB); 11983 F->insert(It, loop2MBB); 11984 F->insert(It, midMBB); 11985 F->insert(It, exitMBB); 11986 exitMBB->splice(exitMBB->begin(), BB, 11987 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11988 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11989 11990 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11991 const TargetRegisterClass *RC = 11992 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11993 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11994 11995 Register PtrReg = RegInfo.createVirtualRegister(RC); 11996 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11997 Register ShiftReg = 11998 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11999 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12000 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12001 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12002 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12003 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12004 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12005 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12006 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12007 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12008 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12009 Register Ptr1Reg; 12010 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12011 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12012 // thisMBB: 12013 // ... 12014 // fallthrough --> loopMBB 12015 BB->addSuccessor(loop1MBB); 12016 12017 // The 4-byte load must be aligned, while a char or short may be 12018 // anywhere in the word. Hence all this nasty bookkeeping code. 12019 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12020 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12021 // xori shift, shift1, 24 [16] 12022 // rlwinm ptr, ptr1, 0, 0, 29 12023 // slw newval2, newval, shift 12024 // slw oldval2, oldval,shift 12025 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12026 // slw mask, mask2, shift 12027 // and newval3, newval2, mask 12028 // and oldval3, oldval2, mask 12029 // loop1MBB: 12030 // lwarx tmpDest, ptr 12031 // and tmp, tmpDest, mask 12032 // cmpw tmp, oldval3 12033 // bne- midMBB 12034 // loop2MBB: 12035 // andc tmp2, tmpDest, mask 12036 // or tmp4, tmp2, newval3 12037 // stwcx. tmp4, ptr 12038 // bne- loop1MBB 12039 // b exitBB 12040 // midMBB: 12041 // stwcx. tmpDest, ptr 12042 // exitBB: 12043 // srw dest, tmpDest, shift 12044 if (ptrA != ZeroReg) { 12045 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12046 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12047 .addReg(ptrA) 12048 .addReg(ptrB); 12049 } else { 12050 Ptr1Reg = ptrB; 12051 } 12052 12053 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12054 // mode. 12055 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12056 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12057 .addImm(3) 12058 .addImm(27) 12059 .addImm(is8bit ? 28 : 27); 12060 if (!isLittleEndian) 12061 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12062 .addReg(Shift1Reg) 12063 .addImm(is8bit ? 24 : 16); 12064 if (is64bit) 12065 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12066 .addReg(Ptr1Reg) 12067 .addImm(0) 12068 .addImm(61); 12069 else 12070 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12071 .addReg(Ptr1Reg) 12072 .addImm(0) 12073 .addImm(0) 12074 .addImm(29); 12075 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12076 .addReg(newval) 12077 .addReg(ShiftReg); 12078 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12079 .addReg(oldval) 12080 .addReg(ShiftReg); 12081 if (is8bit) 12082 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12083 else { 12084 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12085 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12086 .addReg(Mask3Reg) 12087 .addImm(65535); 12088 } 12089 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12090 .addReg(Mask2Reg) 12091 .addReg(ShiftReg); 12092 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12093 .addReg(NewVal2Reg) 12094 .addReg(MaskReg); 12095 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12096 .addReg(OldVal2Reg) 12097 .addReg(MaskReg); 12098 12099 BB = loop1MBB; 12100 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12101 .addReg(ZeroReg) 12102 .addReg(PtrReg); 12103 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12104 .addReg(TmpDestReg) 12105 .addReg(MaskReg); 12106 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12107 .addReg(TmpReg) 12108 .addReg(OldVal3Reg); 12109 BuildMI(BB, dl, TII->get(PPC::BCC)) 12110 .addImm(PPC::PRED_NE) 12111 .addReg(PPC::CR0) 12112 .addMBB(midMBB); 12113 BB->addSuccessor(loop2MBB); 12114 BB->addSuccessor(midMBB); 12115 12116 BB = loop2MBB; 12117 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12118 .addReg(TmpDestReg) 12119 .addReg(MaskReg); 12120 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12121 .addReg(Tmp2Reg) 12122 .addReg(NewVal3Reg); 12123 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12124 .addReg(Tmp4Reg) 12125 .addReg(ZeroReg) 12126 .addReg(PtrReg); 12127 BuildMI(BB, dl, TII->get(PPC::BCC)) 12128 .addImm(PPC::PRED_NE) 12129 .addReg(PPC::CR0) 12130 .addMBB(loop1MBB); 12131 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12132 BB->addSuccessor(loop1MBB); 12133 BB->addSuccessor(exitMBB); 12134 12135 BB = midMBB; 12136 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12137 .addReg(TmpDestReg) 12138 .addReg(ZeroReg) 12139 .addReg(PtrReg); 12140 BB->addSuccessor(exitMBB); 12141 12142 // exitMBB: 12143 // ... 12144 BB = exitMBB; 12145 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12146 .addReg(TmpReg) 12147 .addReg(ShiftReg); 12148 } else if (MI.getOpcode() == PPC::FADDrtz) { 12149 // This pseudo performs an FADD with rounding mode temporarily forced 12150 // to round-to-zero. We emit this via custom inserter since the FPSCR 12151 // is not modeled at the SelectionDAG level. 12152 Register Dest = MI.getOperand(0).getReg(); 12153 Register Src1 = MI.getOperand(1).getReg(); 12154 Register Src2 = MI.getOperand(2).getReg(); 12155 DebugLoc dl = MI.getDebugLoc(); 12156 12157 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12158 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12159 12160 // Save FPSCR value. 12161 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12162 12163 // Set rounding mode to round-to-zero. 12164 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12165 .addImm(31) 12166 .addReg(PPC::RM, RegState::ImplicitDefine); 12167 12168 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12169 .addImm(30) 12170 .addReg(PPC::RM, RegState::ImplicitDefine); 12171 12172 // Perform addition. 12173 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12174 12175 // Restore FPSCR value. 12176 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12177 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12178 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12179 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12180 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12181 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12182 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12183 ? PPC::ANDI8_rec 12184 : PPC::ANDI_rec; 12185 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12186 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12187 12188 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12189 Register Dest = RegInfo.createVirtualRegister( 12190 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12191 12192 DebugLoc Dl = MI.getDebugLoc(); 12193 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12194 .addReg(MI.getOperand(1).getReg()) 12195 .addImm(1); 12196 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12197 MI.getOperand(0).getReg()) 12198 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12199 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12200 DebugLoc Dl = MI.getDebugLoc(); 12201 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12202 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12203 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12204 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12205 MI.getOperand(0).getReg()) 12206 .addReg(CRReg); 12207 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12208 DebugLoc Dl = MI.getDebugLoc(); 12209 unsigned Imm = MI.getOperand(1).getImm(); 12210 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12211 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12212 MI.getOperand(0).getReg()) 12213 .addReg(PPC::CR0EQ); 12214 } else if (MI.getOpcode() == PPC::SETRNDi) { 12215 DebugLoc dl = MI.getDebugLoc(); 12216 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12217 12218 // Save FPSCR value. 12219 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12220 12221 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12222 // the following settings: 12223 // 00 Round to nearest 12224 // 01 Round to 0 12225 // 10 Round to +inf 12226 // 11 Round to -inf 12227 12228 // When the operand is immediate, using the two least significant bits of 12229 // the immediate to set the bits 62:63 of FPSCR. 12230 unsigned Mode = MI.getOperand(1).getImm(); 12231 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12232 .addImm(31) 12233 .addReg(PPC::RM, RegState::ImplicitDefine); 12234 12235 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12236 .addImm(30) 12237 .addReg(PPC::RM, RegState::ImplicitDefine); 12238 } else if (MI.getOpcode() == PPC::SETRND) { 12239 DebugLoc dl = MI.getDebugLoc(); 12240 12241 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12242 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12243 // If the target doesn't have DirectMove, we should use stack to do the 12244 // conversion, because the target doesn't have the instructions like mtvsrd 12245 // or mfvsrd to do this conversion directly. 12246 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12247 if (Subtarget.hasDirectMove()) { 12248 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12249 .addReg(SrcReg); 12250 } else { 12251 // Use stack to do the register copy. 12252 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12253 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12254 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12255 if (RC == &PPC::F8RCRegClass) { 12256 // Copy register from F8RCRegClass to G8RCRegclass. 12257 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12258 "Unsupported RegClass."); 12259 12260 StoreOp = PPC::STFD; 12261 LoadOp = PPC::LD; 12262 } else { 12263 // Copy register from G8RCRegClass to F8RCRegclass. 12264 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12265 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12266 "Unsupported RegClass."); 12267 } 12268 12269 MachineFrameInfo &MFI = F->getFrameInfo(); 12270 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12271 12272 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12273 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12274 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12275 MFI.getObjectAlign(FrameIdx)); 12276 12277 // Store the SrcReg into the stack. 12278 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12279 .addReg(SrcReg) 12280 .addImm(0) 12281 .addFrameIndex(FrameIdx) 12282 .addMemOperand(MMOStore); 12283 12284 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12285 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12286 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12287 MFI.getObjectAlign(FrameIdx)); 12288 12289 // Load from the stack where SrcReg is stored, and save to DestReg, 12290 // so we have done the RegClass conversion from RegClass::SrcReg to 12291 // RegClass::DestReg. 12292 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12293 .addImm(0) 12294 .addFrameIndex(FrameIdx) 12295 .addMemOperand(MMOLoad); 12296 } 12297 }; 12298 12299 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12300 12301 // Save FPSCR value. 12302 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12303 12304 // When the operand is gprc register, use two least significant bits of the 12305 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12306 // 12307 // copy OldFPSCRTmpReg, OldFPSCRReg 12308 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12309 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12310 // copy NewFPSCRReg, NewFPSCRTmpReg 12311 // mtfsf 255, NewFPSCRReg 12312 MachineOperand SrcOp = MI.getOperand(1); 12313 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12314 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12315 12316 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12317 12318 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12319 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12320 12321 // The first operand of INSERT_SUBREG should be a register which has 12322 // subregisters, we only care about its RegClass, so we should use an 12323 // IMPLICIT_DEF register. 12324 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12325 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12326 .addReg(ImDefReg) 12327 .add(SrcOp) 12328 .addImm(1); 12329 12330 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12331 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12332 .addReg(OldFPSCRTmpReg) 12333 .addReg(ExtSrcReg) 12334 .addImm(0) 12335 .addImm(62); 12336 12337 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12338 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12339 12340 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12341 // bits of FPSCR. 12342 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12343 .addImm(255) 12344 .addReg(NewFPSCRReg) 12345 .addImm(0) 12346 .addImm(0); 12347 } else if (MI.getOpcode() == PPC::SETFLM) { 12348 DebugLoc Dl = MI.getDebugLoc(); 12349 12350 // Result of setflm is previous FPSCR content, so we need to save it first. 12351 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12352 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12353 12354 // Put bits in 32:63 to FPSCR. 12355 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12356 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12357 .addImm(255) 12358 .addReg(NewFPSCRReg) 12359 .addImm(0) 12360 .addImm(0); 12361 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12362 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12363 return emitProbedAlloca(MI, BB); 12364 } else { 12365 llvm_unreachable("Unexpected instr type to insert"); 12366 } 12367 12368 MI.eraseFromParent(); // The pseudo instruction is gone now. 12369 return BB; 12370 } 12371 12372 //===----------------------------------------------------------------------===// 12373 // Target Optimization Hooks 12374 //===----------------------------------------------------------------------===// 12375 12376 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12377 // For the estimates, convergence is quadratic, so we essentially double the 12378 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12379 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12380 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12381 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12382 if (VT.getScalarType() == MVT::f64) 12383 RefinementSteps++; 12384 return RefinementSteps; 12385 } 12386 12387 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12388 int Enabled, int &RefinementSteps, 12389 bool &UseOneConstNR, 12390 bool Reciprocal) const { 12391 EVT VT = Operand.getValueType(); 12392 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12393 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12394 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12395 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12396 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12397 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12398 12399 // The Newton-Raphson computation with a single constant does not provide 12400 // enough accuracy on some CPUs. 12401 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12402 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12403 } 12404 return SDValue(); 12405 } 12406 12407 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12408 int Enabled, 12409 int &RefinementSteps) const { 12410 EVT VT = Operand.getValueType(); 12411 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12412 (VT == MVT::f64 && Subtarget.hasFRE()) || 12413 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12414 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12415 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12416 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12417 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12418 } 12419 return SDValue(); 12420 } 12421 12422 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12423 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12424 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12425 // enabled for division), this functionality is redundant with the default 12426 // combiner logic (once the division -> reciprocal/multiply transformation 12427 // has taken place). As a result, this matters more for older cores than for 12428 // newer ones. 12429 12430 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12431 // reciprocal if there are two or more FDIVs (for embedded cores with only 12432 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12433 switch (Subtarget.getCPUDirective()) { 12434 default: 12435 return 3; 12436 case PPC::DIR_440: 12437 case PPC::DIR_A2: 12438 case PPC::DIR_E500: 12439 case PPC::DIR_E500mc: 12440 case PPC::DIR_E5500: 12441 return 2; 12442 } 12443 } 12444 12445 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12446 // collapsed, and so we need to look through chains of them. 12447 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12448 int64_t& Offset, SelectionDAG &DAG) { 12449 if (DAG.isBaseWithConstantOffset(Loc)) { 12450 Base = Loc.getOperand(0); 12451 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12452 12453 // The base might itself be a base plus an offset, and if so, accumulate 12454 // that as well. 12455 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12456 } 12457 } 12458 12459 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12460 unsigned Bytes, int Dist, 12461 SelectionDAG &DAG) { 12462 if (VT.getSizeInBits() / 8 != Bytes) 12463 return false; 12464 12465 SDValue BaseLoc = Base->getBasePtr(); 12466 if (Loc.getOpcode() == ISD::FrameIndex) { 12467 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12468 return false; 12469 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12470 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12471 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12472 int FS = MFI.getObjectSize(FI); 12473 int BFS = MFI.getObjectSize(BFI); 12474 if (FS != BFS || FS != (int)Bytes) return false; 12475 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12476 } 12477 12478 SDValue Base1 = Loc, Base2 = BaseLoc; 12479 int64_t Offset1 = 0, Offset2 = 0; 12480 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12481 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12482 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12483 return true; 12484 12485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12486 const GlobalValue *GV1 = nullptr; 12487 const GlobalValue *GV2 = nullptr; 12488 Offset1 = 0; 12489 Offset2 = 0; 12490 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12491 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12492 if (isGA1 && isGA2 && GV1 == GV2) 12493 return Offset1 == (Offset2 + Dist*Bytes); 12494 return false; 12495 } 12496 12497 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12498 // not enforce equality of the chain operands. 12499 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12500 unsigned Bytes, int Dist, 12501 SelectionDAG &DAG) { 12502 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12503 EVT VT = LS->getMemoryVT(); 12504 SDValue Loc = LS->getBasePtr(); 12505 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12506 } 12507 12508 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12509 EVT VT; 12510 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12511 default: return false; 12512 case Intrinsic::ppc_altivec_lvx: 12513 case Intrinsic::ppc_altivec_lvxl: 12514 case Intrinsic::ppc_vsx_lxvw4x: 12515 case Intrinsic::ppc_vsx_lxvw4x_be: 12516 VT = MVT::v4i32; 12517 break; 12518 case Intrinsic::ppc_vsx_lxvd2x: 12519 case Intrinsic::ppc_vsx_lxvd2x_be: 12520 VT = MVT::v2f64; 12521 break; 12522 case Intrinsic::ppc_altivec_lvebx: 12523 VT = MVT::i8; 12524 break; 12525 case Intrinsic::ppc_altivec_lvehx: 12526 VT = MVT::i16; 12527 break; 12528 case Intrinsic::ppc_altivec_lvewx: 12529 VT = MVT::i32; 12530 break; 12531 } 12532 12533 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12534 } 12535 12536 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12537 EVT VT; 12538 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12539 default: return false; 12540 case Intrinsic::ppc_altivec_stvx: 12541 case Intrinsic::ppc_altivec_stvxl: 12542 case Intrinsic::ppc_vsx_stxvw4x: 12543 VT = MVT::v4i32; 12544 break; 12545 case Intrinsic::ppc_vsx_stxvd2x: 12546 VT = MVT::v2f64; 12547 break; 12548 case Intrinsic::ppc_vsx_stxvw4x_be: 12549 VT = MVT::v4i32; 12550 break; 12551 case Intrinsic::ppc_vsx_stxvd2x_be: 12552 VT = MVT::v2f64; 12553 break; 12554 case Intrinsic::ppc_altivec_stvebx: 12555 VT = MVT::i8; 12556 break; 12557 case Intrinsic::ppc_altivec_stvehx: 12558 VT = MVT::i16; 12559 break; 12560 case Intrinsic::ppc_altivec_stvewx: 12561 VT = MVT::i32; 12562 break; 12563 } 12564 12565 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12566 } 12567 12568 return false; 12569 } 12570 12571 // Return true is there is a nearyby consecutive load to the one provided 12572 // (regardless of alignment). We search up and down the chain, looking though 12573 // token factors and other loads (but nothing else). As a result, a true result 12574 // indicates that it is safe to create a new consecutive load adjacent to the 12575 // load provided. 12576 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12577 SDValue Chain = LD->getChain(); 12578 EVT VT = LD->getMemoryVT(); 12579 12580 SmallSet<SDNode *, 16> LoadRoots; 12581 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12582 SmallSet<SDNode *, 16> Visited; 12583 12584 // First, search up the chain, branching to follow all token-factor operands. 12585 // If we find a consecutive load, then we're done, otherwise, record all 12586 // nodes just above the top-level loads and token factors. 12587 while (!Queue.empty()) { 12588 SDNode *ChainNext = Queue.pop_back_val(); 12589 if (!Visited.insert(ChainNext).second) 12590 continue; 12591 12592 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12593 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12594 return true; 12595 12596 if (!Visited.count(ChainLD->getChain().getNode())) 12597 Queue.push_back(ChainLD->getChain().getNode()); 12598 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12599 for (const SDUse &O : ChainNext->ops()) 12600 if (!Visited.count(O.getNode())) 12601 Queue.push_back(O.getNode()); 12602 } else 12603 LoadRoots.insert(ChainNext); 12604 } 12605 12606 // Second, search down the chain, starting from the top-level nodes recorded 12607 // in the first phase. These top-level nodes are the nodes just above all 12608 // loads and token factors. Starting with their uses, recursively look though 12609 // all loads (just the chain uses) and token factors to find a consecutive 12610 // load. 12611 Visited.clear(); 12612 Queue.clear(); 12613 12614 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12615 IE = LoadRoots.end(); I != IE; ++I) { 12616 Queue.push_back(*I); 12617 12618 while (!Queue.empty()) { 12619 SDNode *LoadRoot = Queue.pop_back_val(); 12620 if (!Visited.insert(LoadRoot).second) 12621 continue; 12622 12623 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12624 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12625 return true; 12626 12627 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12628 UE = LoadRoot->use_end(); UI != UE; ++UI) 12629 if (((isa<MemSDNode>(*UI) && 12630 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12631 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12632 Queue.push_back(*UI); 12633 } 12634 } 12635 12636 return false; 12637 } 12638 12639 /// This function is called when we have proved that a SETCC node can be replaced 12640 /// by subtraction (and other supporting instructions) so that the result of 12641 /// comparison is kept in a GPR instead of CR. This function is purely for 12642 /// codegen purposes and has some flags to guide the codegen process. 12643 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12644 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12645 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12646 12647 // Zero extend the operands to the largest legal integer. Originally, they 12648 // must be of a strictly smaller size. 12649 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12650 DAG.getConstant(Size, DL, MVT::i32)); 12651 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12652 DAG.getConstant(Size, DL, MVT::i32)); 12653 12654 // Swap if needed. Depends on the condition code. 12655 if (Swap) 12656 std::swap(Op0, Op1); 12657 12658 // Subtract extended integers. 12659 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12660 12661 // Move the sign bit to the least significant position and zero out the rest. 12662 // Now the least significant bit carries the result of original comparison. 12663 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12664 DAG.getConstant(Size - 1, DL, MVT::i32)); 12665 auto Final = Shifted; 12666 12667 // Complement the result if needed. Based on the condition code. 12668 if (Complement) 12669 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12670 DAG.getConstant(1, DL, MVT::i64)); 12671 12672 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12673 } 12674 12675 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12676 DAGCombinerInfo &DCI) const { 12677 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12678 12679 SelectionDAG &DAG = DCI.DAG; 12680 SDLoc DL(N); 12681 12682 // Size of integers being compared has a critical role in the following 12683 // analysis, so we prefer to do this when all types are legal. 12684 if (!DCI.isAfterLegalizeDAG()) 12685 return SDValue(); 12686 12687 // If all users of SETCC extend its value to a legal integer type 12688 // then we replace SETCC with a subtraction 12689 for (SDNode::use_iterator UI = N->use_begin(), 12690 UE = N->use_end(); UI != UE; ++UI) { 12691 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12692 return SDValue(); 12693 } 12694 12695 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12696 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12697 12698 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12699 12700 if (OpSize < Size) { 12701 switch (CC) { 12702 default: break; 12703 case ISD::SETULT: 12704 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12705 case ISD::SETULE: 12706 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12707 case ISD::SETUGT: 12708 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12709 case ISD::SETUGE: 12710 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12711 } 12712 } 12713 12714 return SDValue(); 12715 } 12716 12717 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12718 DAGCombinerInfo &DCI) const { 12719 SelectionDAG &DAG = DCI.DAG; 12720 SDLoc dl(N); 12721 12722 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12723 // If we're tracking CR bits, we need to be careful that we don't have: 12724 // trunc(binary-ops(zext(x), zext(y))) 12725 // or 12726 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12727 // such that we're unnecessarily moving things into GPRs when it would be 12728 // better to keep them in CR bits. 12729 12730 // Note that trunc here can be an actual i1 trunc, or can be the effective 12731 // truncation that comes from a setcc or select_cc. 12732 if (N->getOpcode() == ISD::TRUNCATE && 12733 N->getValueType(0) != MVT::i1) 12734 return SDValue(); 12735 12736 if (N->getOperand(0).getValueType() != MVT::i32 && 12737 N->getOperand(0).getValueType() != MVT::i64) 12738 return SDValue(); 12739 12740 if (N->getOpcode() == ISD::SETCC || 12741 N->getOpcode() == ISD::SELECT_CC) { 12742 // If we're looking at a comparison, then we need to make sure that the 12743 // high bits (all except for the first) don't matter the result. 12744 ISD::CondCode CC = 12745 cast<CondCodeSDNode>(N->getOperand( 12746 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12747 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12748 12749 if (ISD::isSignedIntSetCC(CC)) { 12750 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12751 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12752 return SDValue(); 12753 } else if (ISD::isUnsignedIntSetCC(CC)) { 12754 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12755 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12756 !DAG.MaskedValueIsZero(N->getOperand(1), 12757 APInt::getHighBitsSet(OpBits, OpBits-1))) 12758 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12759 : SDValue()); 12760 } else { 12761 // This is neither a signed nor an unsigned comparison, just make sure 12762 // that the high bits are equal. 12763 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12764 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12765 12766 // We don't really care about what is known about the first bit (if 12767 // anything), so clear it in all masks prior to comparing them. 12768 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12769 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12770 12771 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12772 return SDValue(); 12773 } 12774 } 12775 12776 // We now know that the higher-order bits are irrelevant, we just need to 12777 // make sure that all of the intermediate operations are bit operations, and 12778 // all inputs are extensions. 12779 if (N->getOperand(0).getOpcode() != ISD::AND && 12780 N->getOperand(0).getOpcode() != ISD::OR && 12781 N->getOperand(0).getOpcode() != ISD::XOR && 12782 N->getOperand(0).getOpcode() != ISD::SELECT && 12783 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12784 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12785 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12786 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12787 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12788 return SDValue(); 12789 12790 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12791 N->getOperand(1).getOpcode() != ISD::AND && 12792 N->getOperand(1).getOpcode() != ISD::OR && 12793 N->getOperand(1).getOpcode() != ISD::XOR && 12794 N->getOperand(1).getOpcode() != ISD::SELECT && 12795 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12796 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12797 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12798 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12799 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12800 return SDValue(); 12801 12802 SmallVector<SDValue, 4> Inputs; 12803 SmallVector<SDValue, 8> BinOps, PromOps; 12804 SmallPtrSet<SDNode *, 16> Visited; 12805 12806 for (unsigned i = 0; i < 2; ++i) { 12807 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12808 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12809 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12810 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12811 isa<ConstantSDNode>(N->getOperand(i))) 12812 Inputs.push_back(N->getOperand(i)); 12813 else 12814 BinOps.push_back(N->getOperand(i)); 12815 12816 if (N->getOpcode() == ISD::TRUNCATE) 12817 break; 12818 } 12819 12820 // Visit all inputs, collect all binary operations (and, or, xor and 12821 // select) that are all fed by extensions. 12822 while (!BinOps.empty()) { 12823 SDValue BinOp = BinOps.back(); 12824 BinOps.pop_back(); 12825 12826 if (!Visited.insert(BinOp.getNode()).second) 12827 continue; 12828 12829 PromOps.push_back(BinOp); 12830 12831 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12832 // The condition of the select is not promoted. 12833 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12834 continue; 12835 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12836 continue; 12837 12838 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12839 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12840 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12841 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12842 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12843 Inputs.push_back(BinOp.getOperand(i)); 12844 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12845 BinOp.getOperand(i).getOpcode() == ISD::OR || 12846 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12847 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12848 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12849 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12850 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12851 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12852 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12853 BinOps.push_back(BinOp.getOperand(i)); 12854 } else { 12855 // We have an input that is not an extension or another binary 12856 // operation; we'll abort this transformation. 12857 return SDValue(); 12858 } 12859 } 12860 } 12861 12862 // Make sure that this is a self-contained cluster of operations (which 12863 // is not quite the same thing as saying that everything has only one 12864 // use). 12865 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12866 if (isa<ConstantSDNode>(Inputs[i])) 12867 continue; 12868 12869 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12870 UE = Inputs[i].getNode()->use_end(); 12871 UI != UE; ++UI) { 12872 SDNode *User = *UI; 12873 if (User != N && !Visited.count(User)) 12874 return SDValue(); 12875 12876 // Make sure that we're not going to promote the non-output-value 12877 // operand(s) or SELECT or SELECT_CC. 12878 // FIXME: Although we could sometimes handle this, and it does occur in 12879 // practice that one of the condition inputs to the select is also one of 12880 // the outputs, we currently can't deal with this. 12881 if (User->getOpcode() == ISD::SELECT) { 12882 if (User->getOperand(0) == Inputs[i]) 12883 return SDValue(); 12884 } else if (User->getOpcode() == ISD::SELECT_CC) { 12885 if (User->getOperand(0) == Inputs[i] || 12886 User->getOperand(1) == Inputs[i]) 12887 return SDValue(); 12888 } 12889 } 12890 } 12891 12892 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12893 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12894 UE = PromOps[i].getNode()->use_end(); 12895 UI != UE; ++UI) { 12896 SDNode *User = *UI; 12897 if (User != N && !Visited.count(User)) 12898 return SDValue(); 12899 12900 // Make sure that we're not going to promote the non-output-value 12901 // operand(s) or SELECT or SELECT_CC. 12902 // FIXME: Although we could sometimes handle this, and it does occur in 12903 // practice that one of the condition inputs to the select is also one of 12904 // the outputs, we currently can't deal with this. 12905 if (User->getOpcode() == ISD::SELECT) { 12906 if (User->getOperand(0) == PromOps[i]) 12907 return SDValue(); 12908 } else if (User->getOpcode() == ISD::SELECT_CC) { 12909 if (User->getOperand(0) == PromOps[i] || 12910 User->getOperand(1) == PromOps[i]) 12911 return SDValue(); 12912 } 12913 } 12914 } 12915 12916 // Replace all inputs with the extension operand. 12917 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12918 // Constants may have users outside the cluster of to-be-promoted nodes, 12919 // and so we need to replace those as we do the promotions. 12920 if (isa<ConstantSDNode>(Inputs[i])) 12921 continue; 12922 else 12923 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12924 } 12925 12926 std::list<HandleSDNode> PromOpHandles; 12927 for (auto &PromOp : PromOps) 12928 PromOpHandles.emplace_back(PromOp); 12929 12930 // Replace all operations (these are all the same, but have a different 12931 // (i1) return type). DAG.getNode will validate that the types of 12932 // a binary operator match, so go through the list in reverse so that 12933 // we've likely promoted both operands first. Any intermediate truncations or 12934 // extensions disappear. 12935 while (!PromOpHandles.empty()) { 12936 SDValue PromOp = PromOpHandles.back().getValue(); 12937 PromOpHandles.pop_back(); 12938 12939 if (PromOp.getOpcode() == ISD::TRUNCATE || 12940 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12941 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12942 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12943 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12944 PromOp.getOperand(0).getValueType() != MVT::i1) { 12945 // The operand is not yet ready (see comment below). 12946 PromOpHandles.emplace_front(PromOp); 12947 continue; 12948 } 12949 12950 SDValue RepValue = PromOp.getOperand(0); 12951 if (isa<ConstantSDNode>(RepValue)) 12952 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12953 12954 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12955 continue; 12956 } 12957 12958 unsigned C; 12959 switch (PromOp.getOpcode()) { 12960 default: C = 0; break; 12961 case ISD::SELECT: C = 1; break; 12962 case ISD::SELECT_CC: C = 2; break; 12963 } 12964 12965 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12966 PromOp.getOperand(C).getValueType() != MVT::i1) || 12967 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12968 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12969 // The to-be-promoted operands of this node have not yet been 12970 // promoted (this should be rare because we're going through the 12971 // list backward, but if one of the operands has several users in 12972 // this cluster of to-be-promoted nodes, it is possible). 12973 PromOpHandles.emplace_front(PromOp); 12974 continue; 12975 } 12976 12977 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12978 PromOp.getNode()->op_end()); 12979 12980 // If there are any constant inputs, make sure they're replaced now. 12981 for (unsigned i = 0; i < 2; ++i) 12982 if (isa<ConstantSDNode>(Ops[C+i])) 12983 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12984 12985 DAG.ReplaceAllUsesOfValueWith(PromOp, 12986 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12987 } 12988 12989 // Now we're left with the initial truncation itself. 12990 if (N->getOpcode() == ISD::TRUNCATE) 12991 return N->getOperand(0); 12992 12993 // Otherwise, this is a comparison. The operands to be compared have just 12994 // changed type (to i1), but everything else is the same. 12995 return SDValue(N, 0); 12996 } 12997 12998 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12999 DAGCombinerInfo &DCI) const { 13000 SelectionDAG &DAG = DCI.DAG; 13001 SDLoc dl(N); 13002 13003 // If we're tracking CR bits, we need to be careful that we don't have: 13004 // zext(binary-ops(trunc(x), trunc(y))) 13005 // or 13006 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13007 // such that we're unnecessarily moving things into CR bits that can more 13008 // efficiently stay in GPRs. Note that if we're not certain that the high 13009 // bits are set as required by the final extension, we still may need to do 13010 // some masking to get the proper behavior. 13011 13012 // This same functionality is important on PPC64 when dealing with 13013 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13014 // the return values of functions. Because it is so similar, it is handled 13015 // here as well. 13016 13017 if (N->getValueType(0) != MVT::i32 && 13018 N->getValueType(0) != MVT::i64) 13019 return SDValue(); 13020 13021 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13022 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13023 return SDValue(); 13024 13025 if (N->getOperand(0).getOpcode() != ISD::AND && 13026 N->getOperand(0).getOpcode() != ISD::OR && 13027 N->getOperand(0).getOpcode() != ISD::XOR && 13028 N->getOperand(0).getOpcode() != ISD::SELECT && 13029 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13030 return SDValue(); 13031 13032 SmallVector<SDValue, 4> Inputs; 13033 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13034 SmallPtrSet<SDNode *, 16> Visited; 13035 13036 // Visit all inputs, collect all binary operations (and, or, xor and 13037 // select) that are all fed by truncations. 13038 while (!BinOps.empty()) { 13039 SDValue BinOp = BinOps.back(); 13040 BinOps.pop_back(); 13041 13042 if (!Visited.insert(BinOp.getNode()).second) 13043 continue; 13044 13045 PromOps.push_back(BinOp); 13046 13047 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13048 // The condition of the select is not promoted. 13049 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13050 continue; 13051 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13052 continue; 13053 13054 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13055 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13056 Inputs.push_back(BinOp.getOperand(i)); 13057 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13058 BinOp.getOperand(i).getOpcode() == ISD::OR || 13059 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13060 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13061 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13062 BinOps.push_back(BinOp.getOperand(i)); 13063 } else { 13064 // We have an input that is not a truncation or another binary 13065 // operation; we'll abort this transformation. 13066 return SDValue(); 13067 } 13068 } 13069 } 13070 13071 // The operands of a select that must be truncated when the select is 13072 // promoted because the operand is actually part of the to-be-promoted set. 13073 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13074 13075 // Make sure that this is a self-contained cluster of operations (which 13076 // is not quite the same thing as saying that everything has only one 13077 // use). 13078 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13079 if (isa<ConstantSDNode>(Inputs[i])) 13080 continue; 13081 13082 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13083 UE = Inputs[i].getNode()->use_end(); 13084 UI != UE; ++UI) { 13085 SDNode *User = *UI; 13086 if (User != N && !Visited.count(User)) 13087 return SDValue(); 13088 13089 // If we're going to promote the non-output-value operand(s) or SELECT or 13090 // SELECT_CC, record them for truncation. 13091 if (User->getOpcode() == ISD::SELECT) { 13092 if (User->getOperand(0) == Inputs[i]) 13093 SelectTruncOp[0].insert(std::make_pair(User, 13094 User->getOperand(0).getValueType())); 13095 } else if (User->getOpcode() == ISD::SELECT_CC) { 13096 if (User->getOperand(0) == Inputs[i]) 13097 SelectTruncOp[0].insert(std::make_pair(User, 13098 User->getOperand(0).getValueType())); 13099 if (User->getOperand(1) == Inputs[i]) 13100 SelectTruncOp[1].insert(std::make_pair(User, 13101 User->getOperand(1).getValueType())); 13102 } 13103 } 13104 } 13105 13106 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13107 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13108 UE = PromOps[i].getNode()->use_end(); 13109 UI != UE; ++UI) { 13110 SDNode *User = *UI; 13111 if (User != N && !Visited.count(User)) 13112 return SDValue(); 13113 13114 // If we're going to promote the non-output-value operand(s) or SELECT or 13115 // SELECT_CC, record them for truncation. 13116 if (User->getOpcode() == ISD::SELECT) { 13117 if (User->getOperand(0) == PromOps[i]) 13118 SelectTruncOp[0].insert(std::make_pair(User, 13119 User->getOperand(0).getValueType())); 13120 } else if (User->getOpcode() == ISD::SELECT_CC) { 13121 if (User->getOperand(0) == PromOps[i]) 13122 SelectTruncOp[0].insert(std::make_pair(User, 13123 User->getOperand(0).getValueType())); 13124 if (User->getOperand(1) == PromOps[i]) 13125 SelectTruncOp[1].insert(std::make_pair(User, 13126 User->getOperand(1).getValueType())); 13127 } 13128 } 13129 } 13130 13131 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13132 bool ReallyNeedsExt = false; 13133 if (N->getOpcode() != ISD::ANY_EXTEND) { 13134 // If all of the inputs are not already sign/zero extended, then 13135 // we'll still need to do that at the end. 13136 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13137 if (isa<ConstantSDNode>(Inputs[i])) 13138 continue; 13139 13140 unsigned OpBits = 13141 Inputs[i].getOperand(0).getValueSizeInBits(); 13142 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13143 13144 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13145 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13146 APInt::getHighBitsSet(OpBits, 13147 OpBits-PromBits))) || 13148 (N->getOpcode() == ISD::SIGN_EXTEND && 13149 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13150 (OpBits-(PromBits-1)))) { 13151 ReallyNeedsExt = true; 13152 break; 13153 } 13154 } 13155 } 13156 13157 // Replace all inputs, either with the truncation operand, or a 13158 // truncation or extension to the final output type. 13159 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13160 // Constant inputs need to be replaced with the to-be-promoted nodes that 13161 // use them because they might have users outside of the cluster of 13162 // promoted nodes. 13163 if (isa<ConstantSDNode>(Inputs[i])) 13164 continue; 13165 13166 SDValue InSrc = Inputs[i].getOperand(0); 13167 if (Inputs[i].getValueType() == N->getValueType(0)) 13168 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13169 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13170 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13171 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13172 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13173 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13174 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13175 else 13176 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13177 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13178 } 13179 13180 std::list<HandleSDNode> PromOpHandles; 13181 for (auto &PromOp : PromOps) 13182 PromOpHandles.emplace_back(PromOp); 13183 13184 // Replace all operations (these are all the same, but have a different 13185 // (promoted) return type). DAG.getNode will validate that the types of 13186 // a binary operator match, so go through the list in reverse so that 13187 // we've likely promoted both operands first. 13188 while (!PromOpHandles.empty()) { 13189 SDValue PromOp = PromOpHandles.back().getValue(); 13190 PromOpHandles.pop_back(); 13191 13192 unsigned C; 13193 switch (PromOp.getOpcode()) { 13194 default: C = 0; break; 13195 case ISD::SELECT: C = 1; break; 13196 case ISD::SELECT_CC: C = 2; break; 13197 } 13198 13199 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13200 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13201 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13202 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13203 // The to-be-promoted operands of this node have not yet been 13204 // promoted (this should be rare because we're going through the 13205 // list backward, but if one of the operands has several users in 13206 // this cluster of to-be-promoted nodes, it is possible). 13207 PromOpHandles.emplace_front(PromOp); 13208 continue; 13209 } 13210 13211 // For SELECT and SELECT_CC nodes, we do a similar check for any 13212 // to-be-promoted comparison inputs. 13213 if (PromOp.getOpcode() == ISD::SELECT || 13214 PromOp.getOpcode() == ISD::SELECT_CC) { 13215 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13216 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13217 (SelectTruncOp[1].count(PromOp.getNode()) && 13218 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13219 PromOpHandles.emplace_front(PromOp); 13220 continue; 13221 } 13222 } 13223 13224 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13225 PromOp.getNode()->op_end()); 13226 13227 // If this node has constant inputs, then they'll need to be promoted here. 13228 for (unsigned i = 0; i < 2; ++i) { 13229 if (!isa<ConstantSDNode>(Ops[C+i])) 13230 continue; 13231 if (Ops[C+i].getValueType() == N->getValueType(0)) 13232 continue; 13233 13234 if (N->getOpcode() == ISD::SIGN_EXTEND) 13235 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13236 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13237 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13238 else 13239 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13240 } 13241 13242 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13243 // truncate them again to the original value type. 13244 if (PromOp.getOpcode() == ISD::SELECT || 13245 PromOp.getOpcode() == ISD::SELECT_CC) { 13246 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13247 if (SI0 != SelectTruncOp[0].end()) 13248 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13249 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13250 if (SI1 != SelectTruncOp[1].end()) 13251 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13252 } 13253 13254 DAG.ReplaceAllUsesOfValueWith(PromOp, 13255 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13256 } 13257 13258 // Now we're left with the initial extension itself. 13259 if (!ReallyNeedsExt) 13260 return N->getOperand(0); 13261 13262 // To zero extend, just mask off everything except for the first bit (in the 13263 // i1 case). 13264 if (N->getOpcode() == ISD::ZERO_EXTEND) 13265 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13266 DAG.getConstant(APInt::getLowBitsSet( 13267 N->getValueSizeInBits(0), PromBits), 13268 dl, N->getValueType(0))); 13269 13270 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13271 "Invalid extension type"); 13272 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13273 SDValue ShiftCst = 13274 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13275 return DAG.getNode( 13276 ISD::SRA, dl, N->getValueType(0), 13277 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13278 ShiftCst); 13279 } 13280 13281 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13282 DAGCombinerInfo &DCI) const { 13283 assert(N->getOpcode() == ISD::SETCC && 13284 "Should be called with a SETCC node"); 13285 13286 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13287 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13288 SDValue LHS = N->getOperand(0); 13289 SDValue RHS = N->getOperand(1); 13290 13291 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13292 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13293 LHS.hasOneUse()) 13294 std::swap(LHS, RHS); 13295 13296 // x == 0-y --> x+y == 0 13297 // x != 0-y --> x+y != 0 13298 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13299 RHS.hasOneUse()) { 13300 SDLoc DL(N); 13301 SelectionDAG &DAG = DCI.DAG; 13302 EVT VT = N->getValueType(0); 13303 EVT OpVT = LHS.getValueType(); 13304 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13305 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13306 } 13307 } 13308 13309 return DAGCombineTruncBoolExt(N, DCI); 13310 } 13311 13312 // Is this an extending load from an f32 to an f64? 13313 static bool isFPExtLoad(SDValue Op) { 13314 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13315 return LD->getExtensionType() == ISD::EXTLOAD && 13316 Op.getValueType() == MVT::f64; 13317 return false; 13318 } 13319 13320 /// Reduces the number of fp-to-int conversion when building a vector. 13321 /// 13322 /// If this vector is built out of floating to integer conversions, 13323 /// transform it to a vector built out of floating point values followed by a 13324 /// single floating to integer conversion of the vector. 13325 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13326 /// becomes (fptosi (build_vector ($A, $B, ...))) 13327 SDValue PPCTargetLowering:: 13328 combineElementTruncationToVectorTruncation(SDNode *N, 13329 DAGCombinerInfo &DCI) const { 13330 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13331 "Should be called with a BUILD_VECTOR node"); 13332 13333 SelectionDAG &DAG = DCI.DAG; 13334 SDLoc dl(N); 13335 13336 SDValue FirstInput = N->getOperand(0); 13337 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13338 "The input operand must be an fp-to-int conversion."); 13339 13340 // This combine happens after legalization so the fp_to_[su]i nodes are 13341 // already converted to PPCSISD nodes. 13342 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13343 if (FirstConversion == PPCISD::FCTIDZ || 13344 FirstConversion == PPCISD::FCTIDUZ || 13345 FirstConversion == PPCISD::FCTIWZ || 13346 FirstConversion == PPCISD::FCTIWUZ) { 13347 bool IsSplat = true; 13348 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13349 FirstConversion == PPCISD::FCTIWUZ; 13350 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13351 SmallVector<SDValue, 4> Ops; 13352 EVT TargetVT = N->getValueType(0); 13353 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13354 SDValue NextOp = N->getOperand(i); 13355 if (NextOp.getOpcode() != PPCISD::MFVSR) 13356 return SDValue(); 13357 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13358 if (NextConversion != FirstConversion) 13359 return SDValue(); 13360 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13361 // This is not valid if the input was originally double precision. It is 13362 // also not profitable to do unless this is an extending load in which 13363 // case doing this combine will allow us to combine consecutive loads. 13364 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13365 return SDValue(); 13366 if (N->getOperand(i) != FirstInput) 13367 IsSplat = false; 13368 } 13369 13370 // If this is a splat, we leave it as-is since there will be only a single 13371 // fp-to-int conversion followed by a splat of the integer. This is better 13372 // for 32-bit and smaller ints and neutral for 64-bit ints. 13373 if (IsSplat) 13374 return SDValue(); 13375 13376 // Now that we know we have the right type of node, get its operands 13377 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13378 SDValue In = N->getOperand(i).getOperand(0); 13379 if (Is32Bit) { 13380 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13381 // here, we know that all inputs are extending loads so this is safe). 13382 if (In.isUndef()) 13383 Ops.push_back(DAG.getUNDEF(SrcVT)); 13384 else { 13385 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13386 MVT::f32, In.getOperand(0), 13387 DAG.getIntPtrConstant(1, dl)); 13388 Ops.push_back(Trunc); 13389 } 13390 } else 13391 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13392 } 13393 13394 unsigned Opcode; 13395 if (FirstConversion == PPCISD::FCTIDZ || 13396 FirstConversion == PPCISD::FCTIWZ) 13397 Opcode = ISD::FP_TO_SINT; 13398 else 13399 Opcode = ISD::FP_TO_UINT; 13400 13401 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13402 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13403 return DAG.getNode(Opcode, dl, TargetVT, BV); 13404 } 13405 return SDValue(); 13406 } 13407 13408 /// Reduce the number of loads when building a vector. 13409 /// 13410 /// Building a vector out of multiple loads can be converted to a load 13411 /// of the vector type if the loads are consecutive. If the loads are 13412 /// consecutive but in descending order, a shuffle is added at the end 13413 /// to reorder the vector. 13414 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13415 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13416 "Should be called with a BUILD_VECTOR node"); 13417 13418 SDLoc dl(N); 13419 13420 // Return early for non byte-sized type, as they can't be consecutive. 13421 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13422 return SDValue(); 13423 13424 bool InputsAreConsecutiveLoads = true; 13425 bool InputsAreReverseConsecutive = true; 13426 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13427 SDValue FirstInput = N->getOperand(0); 13428 bool IsRoundOfExtLoad = false; 13429 13430 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13431 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13432 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13433 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13434 } 13435 // Not a build vector of (possibly fp_rounded) loads. 13436 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13437 N->getNumOperands() == 1) 13438 return SDValue(); 13439 13440 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13441 // If any inputs are fp_round(extload), they all must be. 13442 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13443 return SDValue(); 13444 13445 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13446 N->getOperand(i); 13447 if (NextInput.getOpcode() != ISD::LOAD) 13448 return SDValue(); 13449 13450 SDValue PreviousInput = 13451 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13452 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13453 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13454 13455 // If any inputs are fp_round(extload), they all must be. 13456 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13457 return SDValue(); 13458 13459 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13460 InputsAreConsecutiveLoads = false; 13461 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13462 InputsAreReverseConsecutive = false; 13463 13464 // Exit early if the loads are neither consecutive nor reverse consecutive. 13465 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13466 return SDValue(); 13467 } 13468 13469 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13470 "The loads cannot be both consecutive and reverse consecutive."); 13471 13472 SDValue FirstLoadOp = 13473 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13474 SDValue LastLoadOp = 13475 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13476 N->getOperand(N->getNumOperands()-1); 13477 13478 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13479 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13480 if (InputsAreConsecutiveLoads) { 13481 assert(LD1 && "Input needs to be a LoadSDNode."); 13482 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13483 LD1->getBasePtr(), LD1->getPointerInfo(), 13484 LD1->getAlignment()); 13485 } 13486 if (InputsAreReverseConsecutive) { 13487 assert(LDL && "Input needs to be a LoadSDNode."); 13488 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13489 LDL->getBasePtr(), LDL->getPointerInfo(), 13490 LDL->getAlignment()); 13491 SmallVector<int, 16> Ops; 13492 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13493 Ops.push_back(i); 13494 13495 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13496 DAG.getUNDEF(N->getValueType(0)), Ops); 13497 } 13498 return SDValue(); 13499 } 13500 13501 // This function adds the required vector_shuffle needed to get 13502 // the elements of the vector extract in the correct position 13503 // as specified by the CorrectElems encoding. 13504 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13505 SDValue Input, uint64_t Elems, 13506 uint64_t CorrectElems) { 13507 SDLoc dl(N); 13508 13509 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13510 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13511 13512 // Knowing the element indices being extracted from the original 13513 // vector and the order in which they're being inserted, just put 13514 // them at element indices required for the instruction. 13515 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13516 if (DAG.getDataLayout().isLittleEndian()) 13517 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13518 else 13519 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13520 CorrectElems = CorrectElems >> 8; 13521 Elems = Elems >> 8; 13522 } 13523 13524 SDValue Shuffle = 13525 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13526 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13527 13528 EVT VT = N->getValueType(0); 13529 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13530 13531 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13532 Input.getValueType().getVectorElementType(), 13533 VT.getVectorNumElements()); 13534 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13535 DAG.getValueType(ExtVT)); 13536 } 13537 13538 // Look for build vector patterns where input operands come from sign 13539 // extended vector_extract elements of specific indices. If the correct indices 13540 // aren't used, add a vector shuffle to fix up the indices and create 13541 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13542 // during instruction selection. 13543 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13544 // This array encodes the indices that the vector sign extend instructions 13545 // extract from when extending from one type to another for both BE and LE. 13546 // The right nibble of each byte corresponds to the LE incides. 13547 // and the left nibble of each byte corresponds to the BE incides. 13548 // For example: 0x3074B8FC byte->word 13549 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13550 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13551 // For example: 0x000070F8 byte->double word 13552 // For LE: the allowed indices are: 0x0,0x8 13553 // For BE: the allowed indices are: 0x7,0xF 13554 uint64_t TargetElems[] = { 13555 0x3074B8FC, // b->w 13556 0x000070F8, // b->d 13557 0x10325476, // h->w 13558 0x00003074, // h->d 13559 0x00001032, // w->d 13560 }; 13561 13562 uint64_t Elems = 0; 13563 int Index; 13564 SDValue Input; 13565 13566 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13567 if (!Op) 13568 return false; 13569 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13570 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13571 return false; 13572 13573 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13574 // of the right width. 13575 SDValue Extract = Op.getOperand(0); 13576 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13577 Extract = Extract.getOperand(0); 13578 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13579 return false; 13580 13581 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13582 if (!ExtOp) 13583 return false; 13584 13585 Index = ExtOp->getZExtValue(); 13586 if (Input && Input != Extract.getOperand(0)) 13587 return false; 13588 13589 if (!Input) 13590 Input = Extract.getOperand(0); 13591 13592 Elems = Elems << 8; 13593 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13594 Elems |= Index; 13595 13596 return true; 13597 }; 13598 13599 // If the build vector operands aren't sign extended vector extracts, 13600 // of the same input vector, then return. 13601 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13602 if (!isSExtOfVecExtract(N->getOperand(i))) { 13603 return SDValue(); 13604 } 13605 } 13606 13607 // If the vector extract indicies are not correct, add the appropriate 13608 // vector_shuffle. 13609 int TgtElemArrayIdx; 13610 int InputSize = Input.getValueType().getScalarSizeInBits(); 13611 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13612 if (InputSize + OutputSize == 40) 13613 TgtElemArrayIdx = 0; 13614 else if (InputSize + OutputSize == 72) 13615 TgtElemArrayIdx = 1; 13616 else if (InputSize + OutputSize == 48) 13617 TgtElemArrayIdx = 2; 13618 else if (InputSize + OutputSize == 80) 13619 TgtElemArrayIdx = 3; 13620 else if (InputSize + OutputSize == 96) 13621 TgtElemArrayIdx = 4; 13622 else 13623 return SDValue(); 13624 13625 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13626 CorrectElems = DAG.getDataLayout().isLittleEndian() 13627 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13628 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13629 if (Elems != CorrectElems) { 13630 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13631 } 13632 13633 // Regular lowering will catch cases where a shuffle is not needed. 13634 return SDValue(); 13635 } 13636 13637 // Look for the pattern of a load from a narrow width to i128, feeding 13638 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13639 // (LXVRZX). This node represents a zero extending load that will be matched 13640 // to the Load VSX Vector Rightmost instructions. 13641 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13642 SDLoc DL(N); 13643 13644 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13645 if (N->getValueType(0) != MVT::v1i128) 13646 return SDValue(); 13647 13648 SDValue Operand = N->getOperand(0); 13649 // Proceed with the transformation if the operand to the BUILD_VECTOR 13650 // is a load instruction. 13651 if (Operand.getOpcode() != ISD::LOAD) 13652 return SDValue(); 13653 13654 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13655 EVT MemoryType = LD->getMemoryVT(); 13656 13657 // This transformation is only valid if the we are loading either a byte, 13658 // halfword, word, or doubleword. 13659 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13660 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13661 13662 // Ensure that the load from the narrow width is being zero extended to i128. 13663 if (!ValidLDType || 13664 (LD->getExtensionType() != ISD::ZEXTLOAD && 13665 LD->getExtensionType() != ISD::EXTLOAD)) 13666 return SDValue(); 13667 13668 SDValue LoadOps[] = { 13669 LD->getChain(), LD->getBasePtr(), 13670 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13671 13672 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13673 DAG.getVTList(MVT::v1i128, MVT::Other), 13674 LoadOps, MemoryType, LD->getMemOperand()); 13675 } 13676 13677 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13678 DAGCombinerInfo &DCI) const { 13679 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13680 "Should be called with a BUILD_VECTOR node"); 13681 13682 SelectionDAG &DAG = DCI.DAG; 13683 SDLoc dl(N); 13684 13685 if (!Subtarget.hasVSX()) 13686 return SDValue(); 13687 13688 // The target independent DAG combiner will leave a build_vector of 13689 // float-to-int conversions intact. We can generate MUCH better code for 13690 // a float-to-int conversion of a vector of floats. 13691 SDValue FirstInput = N->getOperand(0); 13692 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13693 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13694 if (Reduced) 13695 return Reduced; 13696 } 13697 13698 // If we're building a vector out of consecutive loads, just load that 13699 // vector type. 13700 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13701 if (Reduced) 13702 return Reduced; 13703 13704 // If we're building a vector out of extended elements from another vector 13705 // we have P9 vector integer extend instructions. The code assumes legal 13706 // input types (i.e. it can't handle things like v4i16) so do not run before 13707 // legalization. 13708 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13709 Reduced = combineBVOfVecSExt(N, DAG); 13710 if (Reduced) 13711 return Reduced; 13712 } 13713 13714 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13715 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13716 // is a load from <valid narrow width> to i128. 13717 if (Subtarget.isISA3_1()) { 13718 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13719 if (BVOfZLoad) 13720 return BVOfZLoad; 13721 } 13722 13723 if (N->getValueType(0) != MVT::v2f64) 13724 return SDValue(); 13725 13726 // Looking for: 13727 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13728 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13729 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13730 return SDValue(); 13731 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13732 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13733 return SDValue(); 13734 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13735 return SDValue(); 13736 13737 SDValue Ext1 = FirstInput.getOperand(0); 13738 SDValue Ext2 = N->getOperand(1).getOperand(0); 13739 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13740 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13741 return SDValue(); 13742 13743 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13744 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13745 if (!Ext1Op || !Ext2Op) 13746 return SDValue(); 13747 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13748 Ext1.getOperand(0) != Ext2.getOperand(0)) 13749 return SDValue(); 13750 13751 int FirstElem = Ext1Op->getZExtValue(); 13752 int SecondElem = Ext2Op->getZExtValue(); 13753 int SubvecIdx; 13754 if (FirstElem == 0 && SecondElem == 1) 13755 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13756 else if (FirstElem == 2 && SecondElem == 3) 13757 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13758 else 13759 return SDValue(); 13760 13761 SDValue SrcVec = Ext1.getOperand(0); 13762 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13763 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13764 return DAG.getNode(NodeType, dl, MVT::v2f64, 13765 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13766 } 13767 13768 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13769 DAGCombinerInfo &DCI) const { 13770 assert((N->getOpcode() == ISD::SINT_TO_FP || 13771 N->getOpcode() == ISD::UINT_TO_FP) && 13772 "Need an int -> FP conversion node here"); 13773 13774 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13775 return SDValue(); 13776 13777 SelectionDAG &DAG = DCI.DAG; 13778 SDLoc dl(N); 13779 SDValue Op(N, 0); 13780 13781 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13782 // from the hardware. 13783 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13784 return SDValue(); 13785 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13786 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13787 return SDValue(); 13788 13789 SDValue FirstOperand(Op.getOperand(0)); 13790 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13791 (FirstOperand.getValueType() == MVT::i8 || 13792 FirstOperand.getValueType() == MVT::i16); 13793 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13794 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13795 bool DstDouble = Op.getValueType() == MVT::f64; 13796 unsigned ConvOp = Signed ? 13797 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13798 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13799 SDValue WidthConst = 13800 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13801 dl, false); 13802 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13803 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13804 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13805 DAG.getVTList(MVT::f64, MVT::Other), 13806 Ops, MVT::i8, LDN->getMemOperand()); 13807 13808 // For signed conversion, we need to sign-extend the value in the VSR 13809 if (Signed) { 13810 SDValue ExtOps[] = { Ld, WidthConst }; 13811 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13812 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13813 } else 13814 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13815 } 13816 13817 13818 // For i32 intermediate values, unfortunately, the conversion functions 13819 // leave the upper 32 bits of the value are undefined. Within the set of 13820 // scalar instructions, we have no method for zero- or sign-extending the 13821 // value. Thus, we cannot handle i32 intermediate values here. 13822 if (Op.getOperand(0).getValueType() == MVT::i32) 13823 return SDValue(); 13824 13825 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13826 "UINT_TO_FP is supported only with FPCVT"); 13827 13828 // If we have FCFIDS, then use it when converting to single-precision. 13829 // Otherwise, convert to double-precision and then round. 13830 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13831 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13832 : PPCISD::FCFIDS) 13833 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13834 : PPCISD::FCFID); 13835 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13836 ? MVT::f32 13837 : MVT::f64; 13838 13839 // If we're converting from a float, to an int, and back to a float again, 13840 // then we don't need the store/load pair at all. 13841 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13842 Subtarget.hasFPCVT()) || 13843 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13844 SDValue Src = Op.getOperand(0).getOperand(0); 13845 if (Src.getValueType() == MVT::f32) { 13846 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13847 DCI.AddToWorklist(Src.getNode()); 13848 } else if (Src.getValueType() != MVT::f64) { 13849 // Make sure that we don't pick up a ppc_fp128 source value. 13850 return SDValue(); 13851 } 13852 13853 unsigned FCTOp = 13854 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13855 PPCISD::FCTIDUZ; 13856 13857 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13858 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13859 13860 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13861 FP = DAG.getNode(ISD::FP_ROUND, dl, 13862 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13863 DCI.AddToWorklist(FP.getNode()); 13864 } 13865 13866 return FP; 13867 } 13868 13869 return SDValue(); 13870 } 13871 13872 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13873 // builtins) into loads with swaps. 13874 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13875 DAGCombinerInfo &DCI) const { 13876 SelectionDAG &DAG = DCI.DAG; 13877 SDLoc dl(N); 13878 SDValue Chain; 13879 SDValue Base; 13880 MachineMemOperand *MMO; 13881 13882 switch (N->getOpcode()) { 13883 default: 13884 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13885 case ISD::LOAD: { 13886 LoadSDNode *LD = cast<LoadSDNode>(N); 13887 Chain = LD->getChain(); 13888 Base = LD->getBasePtr(); 13889 MMO = LD->getMemOperand(); 13890 // If the MMO suggests this isn't a load of a full vector, leave 13891 // things alone. For a built-in, we have to make the change for 13892 // correctness, so if there is a size problem that will be a bug. 13893 if (MMO->getSize() < 16) 13894 return SDValue(); 13895 break; 13896 } 13897 case ISD::INTRINSIC_W_CHAIN: { 13898 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13899 Chain = Intrin->getChain(); 13900 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13901 // us what we want. Get operand 2 instead. 13902 Base = Intrin->getOperand(2); 13903 MMO = Intrin->getMemOperand(); 13904 break; 13905 } 13906 } 13907 13908 MVT VecTy = N->getValueType(0).getSimpleVT(); 13909 13910 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13911 // aligned and the type is a vector with elements up to 4 bytes 13912 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13913 VecTy.getScalarSizeInBits() <= 32) { 13914 return SDValue(); 13915 } 13916 13917 SDValue LoadOps[] = { Chain, Base }; 13918 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13919 DAG.getVTList(MVT::v2f64, MVT::Other), 13920 LoadOps, MVT::v2f64, MMO); 13921 13922 DCI.AddToWorklist(Load.getNode()); 13923 Chain = Load.getValue(1); 13924 SDValue Swap = DAG.getNode( 13925 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13926 DCI.AddToWorklist(Swap.getNode()); 13927 13928 // Add a bitcast if the resulting load type doesn't match v2f64. 13929 if (VecTy != MVT::v2f64) { 13930 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13931 DCI.AddToWorklist(N.getNode()); 13932 // Package {bitcast value, swap's chain} to match Load's shape. 13933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13934 N, Swap.getValue(1)); 13935 } 13936 13937 return Swap; 13938 } 13939 13940 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13941 // builtins) into stores with swaps. 13942 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13943 DAGCombinerInfo &DCI) const { 13944 SelectionDAG &DAG = DCI.DAG; 13945 SDLoc dl(N); 13946 SDValue Chain; 13947 SDValue Base; 13948 unsigned SrcOpnd; 13949 MachineMemOperand *MMO; 13950 13951 switch (N->getOpcode()) { 13952 default: 13953 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13954 case ISD::STORE: { 13955 StoreSDNode *ST = cast<StoreSDNode>(N); 13956 Chain = ST->getChain(); 13957 Base = ST->getBasePtr(); 13958 MMO = ST->getMemOperand(); 13959 SrcOpnd = 1; 13960 // If the MMO suggests this isn't a store of a full vector, leave 13961 // things alone. For a built-in, we have to make the change for 13962 // correctness, so if there is a size problem that will be a bug. 13963 if (MMO->getSize() < 16) 13964 return SDValue(); 13965 break; 13966 } 13967 case ISD::INTRINSIC_VOID: { 13968 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13969 Chain = Intrin->getChain(); 13970 // Intrin->getBasePtr() oddly does not get what we want. 13971 Base = Intrin->getOperand(3); 13972 MMO = Intrin->getMemOperand(); 13973 SrcOpnd = 2; 13974 break; 13975 } 13976 } 13977 13978 SDValue Src = N->getOperand(SrcOpnd); 13979 MVT VecTy = Src.getValueType().getSimpleVT(); 13980 13981 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13982 // aligned and the type is a vector with elements up to 4 bytes 13983 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13984 VecTy.getScalarSizeInBits() <= 32) { 13985 return SDValue(); 13986 } 13987 13988 // All stores are done as v2f64 and possible bit cast. 13989 if (VecTy != MVT::v2f64) { 13990 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13991 DCI.AddToWorklist(Src.getNode()); 13992 } 13993 13994 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13995 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13996 DCI.AddToWorklist(Swap.getNode()); 13997 Chain = Swap.getValue(1); 13998 SDValue StoreOps[] = { Chain, Swap, Base }; 13999 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14000 DAG.getVTList(MVT::Other), 14001 StoreOps, VecTy, MMO); 14002 DCI.AddToWorklist(Store.getNode()); 14003 return Store; 14004 } 14005 14006 // Handle DAG combine for STORE (FP_TO_INT F). 14007 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14008 DAGCombinerInfo &DCI) const { 14009 14010 SelectionDAG &DAG = DCI.DAG; 14011 SDLoc dl(N); 14012 unsigned Opcode = N->getOperand(1).getOpcode(); 14013 14014 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14015 && "Not a FP_TO_INT Instruction!"); 14016 14017 SDValue Val = N->getOperand(1).getOperand(0); 14018 EVT Op1VT = N->getOperand(1).getValueType(); 14019 EVT ResVT = Val.getValueType(); 14020 14021 // Floating point types smaller than 32 bits are not legal on Power. 14022 if (ResVT.getScalarSizeInBits() < 32) 14023 return SDValue(); 14024 14025 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14026 bool ValidTypeForStoreFltAsInt = 14027 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14028 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14029 14030 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14031 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14032 return SDValue(); 14033 14034 // Extend f32 values to f64 14035 if (ResVT.getScalarSizeInBits() == 32) { 14036 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14037 DCI.AddToWorklist(Val.getNode()); 14038 } 14039 14040 // Set signed or unsigned conversion opcode. 14041 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14042 PPCISD::FP_TO_SINT_IN_VSR : 14043 PPCISD::FP_TO_UINT_IN_VSR; 14044 14045 Val = DAG.getNode(ConvOpcode, 14046 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14047 DCI.AddToWorklist(Val.getNode()); 14048 14049 // Set number of bytes being converted. 14050 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14051 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14052 DAG.getIntPtrConstant(ByteSize, dl, false), 14053 DAG.getValueType(Op1VT) }; 14054 14055 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14056 DAG.getVTList(MVT::Other), Ops, 14057 cast<StoreSDNode>(N)->getMemoryVT(), 14058 cast<StoreSDNode>(N)->getMemOperand()); 14059 14060 DCI.AddToWorklist(Val.getNode()); 14061 return Val; 14062 } 14063 14064 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14065 // Check that the source of the element keeps flipping 14066 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14067 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14068 for (int i = 1, e = Mask.size(); i < e; i++) { 14069 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14070 return false; 14071 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14072 return false; 14073 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14074 } 14075 return true; 14076 } 14077 14078 static bool isSplatBV(SDValue Op) { 14079 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14080 return false; 14081 SDValue FirstOp; 14082 14083 // Find first non-undef input. 14084 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14085 FirstOp = Op.getOperand(i); 14086 if (!FirstOp.isUndef()) 14087 break; 14088 } 14089 14090 // All inputs are undef or the same as the first non-undef input. 14091 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14092 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14093 return false; 14094 return true; 14095 } 14096 14097 static SDValue isScalarToVec(SDValue Op) { 14098 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14099 return Op; 14100 if (Op.getOpcode() != ISD::BITCAST) 14101 return SDValue(); 14102 Op = Op.getOperand(0); 14103 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14104 return Op; 14105 return SDValue(); 14106 } 14107 14108 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14109 int LHSMaxIdx, int RHSMinIdx, 14110 int RHSMaxIdx, int HalfVec) { 14111 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14112 int Idx = ShuffV[i]; 14113 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14114 ShuffV[i] += HalfVec; 14115 } 14116 return; 14117 } 14118 14119 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14120 // the original is: 14121 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14122 // In such a case, just change the shuffle mask to extract the element 14123 // from the permuted index. 14124 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14125 SDLoc dl(OrigSToV); 14126 EVT VT = OrigSToV.getValueType(); 14127 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14128 "Expecting a SCALAR_TO_VECTOR here"); 14129 SDValue Input = OrigSToV.getOperand(0); 14130 14131 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14132 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14133 SDValue OrigVector = Input.getOperand(0); 14134 14135 // Can't handle non-const element indices or different vector types 14136 // for the input to the extract and the output of the scalar_to_vector. 14137 if (Idx && VT == OrigVector.getValueType()) { 14138 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14139 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14140 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14141 } 14142 } 14143 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14144 OrigSToV.getOperand(0)); 14145 } 14146 14147 // On little endian subtargets, combine shuffles such as: 14148 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14149 // into: 14150 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14151 // because the latter can be matched to a single instruction merge. 14152 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14153 // to put the value into element zero. Adjust the shuffle mask so that the 14154 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14155 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14156 SelectionDAG &DAG) const { 14157 SDValue LHS = SVN->getOperand(0); 14158 SDValue RHS = SVN->getOperand(1); 14159 auto Mask = SVN->getMask(); 14160 int NumElts = LHS.getValueType().getVectorNumElements(); 14161 SDValue Res(SVN, 0); 14162 SDLoc dl(SVN); 14163 14164 // None of these combines are useful on big endian systems since the ISA 14165 // already has a big endian bias. 14166 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14167 return Res; 14168 14169 // If this is not a shuffle of a shuffle and the first element comes from 14170 // the second vector, canonicalize to the commuted form. This will make it 14171 // more likely to match one of the single instruction patterns. 14172 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14173 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14174 std::swap(LHS, RHS); 14175 Res = DAG.getCommutedVectorShuffle(*SVN); 14176 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14177 } 14178 14179 // Adjust the shuffle mask if either input vector comes from a 14180 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14181 // form (to prevent the need for a swap). 14182 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14183 SDValue SToVLHS = isScalarToVec(LHS); 14184 SDValue SToVRHS = isScalarToVec(RHS); 14185 if (SToVLHS || SToVRHS) { 14186 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14187 : SToVRHS.getValueType().getVectorNumElements(); 14188 int NumEltsOut = ShuffV.size(); 14189 14190 // Initially assume that neither input is permuted. These will be adjusted 14191 // accordingly if either input is. 14192 int LHSMaxIdx = -1; 14193 int RHSMinIdx = -1; 14194 int RHSMaxIdx = -1; 14195 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14196 14197 // Get the permuted scalar to vector nodes for the source(s) that come from 14198 // ISD::SCALAR_TO_VECTOR. 14199 if (SToVLHS) { 14200 // Set up the values for the shuffle vector fixup. 14201 LHSMaxIdx = NumEltsOut / NumEltsIn; 14202 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14203 if (SToVLHS.getValueType() != LHS.getValueType()) 14204 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14205 LHS = SToVLHS; 14206 } 14207 if (SToVRHS) { 14208 RHSMinIdx = NumEltsOut; 14209 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14210 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14211 if (SToVRHS.getValueType() != RHS.getValueType()) 14212 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14213 RHS = SToVRHS; 14214 } 14215 14216 // Fix up the shuffle mask to reflect where the desired element actually is. 14217 // The minimum and maximum indices that correspond to element zero for both 14218 // the LHS and RHS are computed and will control which shuffle mask entries 14219 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14220 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14221 // HalfVec to refer to the corresponding element in the permuted vector. 14222 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14223 HalfVec); 14224 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14225 14226 // We may have simplified away the shuffle. We won't be able to do anything 14227 // further with it here. 14228 if (!isa<ShuffleVectorSDNode>(Res)) 14229 return Res; 14230 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14231 } 14232 14233 // The common case after we commuted the shuffle is that the RHS is a splat 14234 // and we have elements coming in from the splat at indices that are not 14235 // conducive to using a merge. 14236 // Example: 14237 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14238 if (!isSplatBV(RHS)) 14239 return Res; 14240 14241 // We are looking for a mask such that all even elements are from 14242 // one vector and all odd elements from the other. 14243 if (!isAlternatingShuffMask(Mask, NumElts)) 14244 return Res; 14245 14246 // Adjust the mask so we are pulling in the same index from the splat 14247 // as the index from the interesting vector in consecutive elements. 14248 // Example (even elements from first vector): 14249 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14250 if (Mask[0] < NumElts) 14251 for (int i = 1, e = Mask.size(); i < e; i += 2) 14252 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14253 // Example (odd elements from first vector): 14254 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14255 else 14256 for (int i = 0, e = Mask.size(); i < e; i += 2) 14257 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14258 14259 // If the RHS has undefs, we need to remove them since we may have created 14260 // a shuffle that adds those instead of the splat value. 14261 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14262 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14263 14264 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14265 return Res; 14266 } 14267 14268 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14269 LSBaseSDNode *LSBase, 14270 DAGCombinerInfo &DCI) const { 14271 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14272 "Not a reverse memop pattern!"); 14273 14274 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14275 auto Mask = SVN->getMask(); 14276 int i = 0; 14277 auto I = Mask.rbegin(); 14278 auto E = Mask.rend(); 14279 14280 for (; I != E; ++I) { 14281 if (*I != i) 14282 return false; 14283 i++; 14284 } 14285 return true; 14286 }; 14287 14288 SelectionDAG &DAG = DCI.DAG; 14289 EVT VT = SVN->getValueType(0); 14290 14291 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14292 return SDValue(); 14293 14294 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14295 // See comment in PPCVSXSwapRemoval.cpp. 14296 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14297 if (!Subtarget.hasP9Vector()) 14298 return SDValue(); 14299 14300 if(!IsElementReverse(SVN)) 14301 return SDValue(); 14302 14303 if (LSBase->getOpcode() == ISD::LOAD) { 14304 SDLoc dl(SVN); 14305 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14306 return DAG.getMemIntrinsicNode( 14307 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14308 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14309 } 14310 14311 if (LSBase->getOpcode() == ISD::STORE) { 14312 SDLoc dl(LSBase); 14313 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14314 LSBase->getBasePtr()}; 14315 return DAG.getMemIntrinsicNode( 14316 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14317 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14318 } 14319 14320 llvm_unreachable("Expected a load or store node here"); 14321 } 14322 14323 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14324 DAGCombinerInfo &DCI) const { 14325 SelectionDAG &DAG = DCI.DAG; 14326 SDLoc dl(N); 14327 switch (N->getOpcode()) { 14328 default: break; 14329 case ISD::ADD: 14330 return combineADD(N, DCI); 14331 case ISD::SHL: 14332 return combineSHL(N, DCI); 14333 case ISD::SRA: 14334 return combineSRA(N, DCI); 14335 case ISD::SRL: 14336 return combineSRL(N, DCI); 14337 case ISD::MUL: 14338 return combineMUL(N, DCI); 14339 case ISD::FMA: 14340 case PPCISD::FNMSUB: 14341 return combineFMALike(N, DCI); 14342 case PPCISD::SHL: 14343 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14344 return N->getOperand(0); 14345 break; 14346 case PPCISD::SRL: 14347 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14348 return N->getOperand(0); 14349 break; 14350 case PPCISD::SRA: 14351 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14352 if (C->isNullValue() || // 0 >>s V -> 0. 14353 C->isAllOnesValue()) // -1 >>s V -> -1. 14354 return N->getOperand(0); 14355 } 14356 break; 14357 case ISD::SIGN_EXTEND: 14358 case ISD::ZERO_EXTEND: 14359 case ISD::ANY_EXTEND: 14360 return DAGCombineExtBoolTrunc(N, DCI); 14361 case ISD::TRUNCATE: 14362 return combineTRUNCATE(N, DCI); 14363 case ISD::SETCC: 14364 if (SDValue CSCC = combineSetCC(N, DCI)) 14365 return CSCC; 14366 LLVM_FALLTHROUGH; 14367 case ISD::SELECT_CC: 14368 return DAGCombineTruncBoolExt(N, DCI); 14369 case ISD::SINT_TO_FP: 14370 case ISD::UINT_TO_FP: 14371 return combineFPToIntToFP(N, DCI); 14372 case ISD::VECTOR_SHUFFLE: 14373 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14374 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14375 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14376 } 14377 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14378 case ISD::STORE: { 14379 14380 EVT Op1VT = N->getOperand(1).getValueType(); 14381 unsigned Opcode = N->getOperand(1).getOpcode(); 14382 14383 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14384 SDValue Val= combineStoreFPToInt(N, DCI); 14385 if (Val) 14386 return Val; 14387 } 14388 14389 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14390 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14391 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14392 if (Val) 14393 return Val; 14394 } 14395 14396 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14397 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14398 N->getOperand(1).getNode()->hasOneUse() && 14399 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14400 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14401 14402 // STBRX can only handle simple types and it makes no sense to store less 14403 // two bytes in byte-reversed order. 14404 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14405 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14406 break; 14407 14408 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14409 // Do an any-extend to 32-bits if this is a half-word input. 14410 if (BSwapOp.getValueType() == MVT::i16) 14411 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14412 14413 // If the type of BSWAP operand is wider than stored memory width 14414 // it need to be shifted to the right side before STBRX. 14415 if (Op1VT.bitsGT(mVT)) { 14416 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14417 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14418 DAG.getConstant(Shift, dl, MVT::i32)); 14419 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14420 if (Op1VT == MVT::i64) 14421 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14422 } 14423 14424 SDValue Ops[] = { 14425 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14426 }; 14427 return 14428 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14429 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14430 cast<StoreSDNode>(N)->getMemOperand()); 14431 } 14432 14433 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14434 // So it can increase the chance of CSE constant construction. 14435 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14436 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14437 // Need to sign-extended to 64-bits to handle negative values. 14438 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14439 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14440 MemVT.getSizeInBits()); 14441 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14442 14443 // DAG.getTruncStore() can't be used here because it doesn't accept 14444 // the general (base + offset) addressing mode. 14445 // So we use UpdateNodeOperands and setTruncatingStore instead. 14446 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14447 N->getOperand(3)); 14448 cast<StoreSDNode>(N)->setTruncatingStore(true); 14449 return SDValue(N, 0); 14450 } 14451 14452 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14453 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14454 if (Op1VT.isSimple()) { 14455 MVT StoreVT = Op1VT.getSimpleVT(); 14456 if (Subtarget.needsSwapsForVSXMemOps() && 14457 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14458 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14459 return expandVSXStoreForLE(N, DCI); 14460 } 14461 break; 14462 } 14463 case ISD::LOAD: { 14464 LoadSDNode *LD = cast<LoadSDNode>(N); 14465 EVT VT = LD->getValueType(0); 14466 14467 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14468 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14469 if (VT.isSimple()) { 14470 MVT LoadVT = VT.getSimpleVT(); 14471 if (Subtarget.needsSwapsForVSXMemOps() && 14472 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14473 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14474 return expandVSXLoadForLE(N, DCI); 14475 } 14476 14477 // We sometimes end up with a 64-bit integer load, from which we extract 14478 // two single-precision floating-point numbers. This happens with 14479 // std::complex<float>, and other similar structures, because of the way we 14480 // canonicalize structure copies. However, if we lack direct moves, 14481 // then the final bitcasts from the extracted integer values to the 14482 // floating-point numbers turn into store/load pairs. Even with direct moves, 14483 // just loading the two floating-point numbers is likely better. 14484 auto ReplaceTwoFloatLoad = [&]() { 14485 if (VT != MVT::i64) 14486 return false; 14487 14488 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14489 LD->isVolatile()) 14490 return false; 14491 14492 // We're looking for a sequence like this: 14493 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14494 // t16: i64 = srl t13, Constant:i32<32> 14495 // t17: i32 = truncate t16 14496 // t18: f32 = bitcast t17 14497 // t19: i32 = truncate t13 14498 // t20: f32 = bitcast t19 14499 14500 if (!LD->hasNUsesOfValue(2, 0)) 14501 return false; 14502 14503 auto UI = LD->use_begin(); 14504 while (UI.getUse().getResNo() != 0) ++UI; 14505 SDNode *Trunc = *UI++; 14506 while (UI.getUse().getResNo() != 0) ++UI; 14507 SDNode *RightShift = *UI; 14508 if (Trunc->getOpcode() != ISD::TRUNCATE) 14509 std::swap(Trunc, RightShift); 14510 14511 if (Trunc->getOpcode() != ISD::TRUNCATE || 14512 Trunc->getValueType(0) != MVT::i32 || 14513 !Trunc->hasOneUse()) 14514 return false; 14515 if (RightShift->getOpcode() != ISD::SRL || 14516 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14517 RightShift->getConstantOperandVal(1) != 32 || 14518 !RightShift->hasOneUse()) 14519 return false; 14520 14521 SDNode *Trunc2 = *RightShift->use_begin(); 14522 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14523 Trunc2->getValueType(0) != MVT::i32 || 14524 !Trunc2->hasOneUse()) 14525 return false; 14526 14527 SDNode *Bitcast = *Trunc->use_begin(); 14528 SDNode *Bitcast2 = *Trunc2->use_begin(); 14529 14530 if (Bitcast->getOpcode() != ISD::BITCAST || 14531 Bitcast->getValueType(0) != MVT::f32) 14532 return false; 14533 if (Bitcast2->getOpcode() != ISD::BITCAST || 14534 Bitcast2->getValueType(0) != MVT::f32) 14535 return false; 14536 14537 if (Subtarget.isLittleEndian()) 14538 std::swap(Bitcast, Bitcast2); 14539 14540 // Bitcast has the second float (in memory-layout order) and Bitcast2 14541 // has the first one. 14542 14543 SDValue BasePtr = LD->getBasePtr(); 14544 if (LD->isIndexed()) { 14545 assert(LD->getAddressingMode() == ISD::PRE_INC && 14546 "Non-pre-inc AM on PPC?"); 14547 BasePtr = 14548 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14549 LD->getOffset()); 14550 } 14551 14552 auto MMOFlags = 14553 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14554 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14555 LD->getPointerInfo(), LD->getAlignment(), 14556 MMOFlags, LD->getAAInfo()); 14557 SDValue AddPtr = 14558 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14559 BasePtr, DAG.getIntPtrConstant(4, dl)); 14560 SDValue FloatLoad2 = DAG.getLoad( 14561 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14562 LD->getPointerInfo().getWithOffset(4), 14563 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14564 14565 if (LD->isIndexed()) { 14566 // Note that DAGCombine should re-form any pre-increment load(s) from 14567 // what is produced here if that makes sense. 14568 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14569 } 14570 14571 DCI.CombineTo(Bitcast2, FloatLoad); 14572 DCI.CombineTo(Bitcast, FloatLoad2); 14573 14574 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14575 SDValue(FloatLoad2.getNode(), 1)); 14576 return true; 14577 }; 14578 14579 if (ReplaceTwoFloatLoad()) 14580 return SDValue(N, 0); 14581 14582 EVT MemVT = LD->getMemoryVT(); 14583 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14584 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14585 if (LD->isUnindexed() && VT.isVector() && 14586 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14587 // P8 and later hardware should just use LOAD. 14588 !Subtarget.hasP8Vector() && 14589 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14590 VT == MVT::v4f32))) && 14591 LD->getAlign() < ABIAlignment) { 14592 // This is a type-legal unaligned Altivec load. 14593 SDValue Chain = LD->getChain(); 14594 SDValue Ptr = LD->getBasePtr(); 14595 bool isLittleEndian = Subtarget.isLittleEndian(); 14596 14597 // This implements the loading of unaligned vectors as described in 14598 // the venerable Apple Velocity Engine overview. Specifically: 14599 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14600 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14601 // 14602 // The general idea is to expand a sequence of one or more unaligned 14603 // loads into an alignment-based permutation-control instruction (lvsl 14604 // or lvsr), a series of regular vector loads (which always truncate 14605 // their input address to an aligned address), and a series of 14606 // permutations. The results of these permutations are the requested 14607 // loaded values. The trick is that the last "extra" load is not taken 14608 // from the address you might suspect (sizeof(vector) bytes after the 14609 // last requested load), but rather sizeof(vector) - 1 bytes after the 14610 // last requested vector. The point of this is to avoid a page fault if 14611 // the base address happened to be aligned. This works because if the 14612 // base address is aligned, then adding less than a full vector length 14613 // will cause the last vector in the sequence to be (re)loaded. 14614 // Otherwise, the next vector will be fetched as you might suspect was 14615 // necessary. 14616 14617 // We might be able to reuse the permutation generation from 14618 // a different base address offset from this one by an aligned amount. 14619 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14620 // optimization later. 14621 Intrinsic::ID Intr, IntrLD, IntrPerm; 14622 MVT PermCntlTy, PermTy, LDTy; 14623 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14624 : Intrinsic::ppc_altivec_lvsl; 14625 IntrLD = Intrinsic::ppc_altivec_lvx; 14626 IntrPerm = Intrinsic::ppc_altivec_vperm; 14627 PermCntlTy = MVT::v16i8; 14628 PermTy = MVT::v4i32; 14629 LDTy = MVT::v4i32; 14630 14631 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14632 14633 // Create the new MMO for the new base load. It is like the original MMO, 14634 // but represents an area in memory almost twice the vector size centered 14635 // on the original address. If the address is unaligned, we might start 14636 // reading up to (sizeof(vector)-1) bytes below the address of the 14637 // original unaligned load. 14638 MachineFunction &MF = DAG.getMachineFunction(); 14639 MachineMemOperand *BaseMMO = 14640 MF.getMachineMemOperand(LD->getMemOperand(), 14641 -(long)MemVT.getStoreSize()+1, 14642 2*MemVT.getStoreSize()-1); 14643 14644 // Create the new base load. 14645 SDValue LDXIntID = 14646 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14647 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14648 SDValue BaseLoad = 14649 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14650 DAG.getVTList(PermTy, MVT::Other), 14651 BaseLoadOps, LDTy, BaseMMO); 14652 14653 // Note that the value of IncOffset (which is provided to the next 14654 // load's pointer info offset value, and thus used to calculate the 14655 // alignment), and the value of IncValue (which is actually used to 14656 // increment the pointer value) are different! This is because we 14657 // require the next load to appear to be aligned, even though it 14658 // is actually offset from the base pointer by a lesser amount. 14659 int IncOffset = VT.getSizeInBits() / 8; 14660 int IncValue = IncOffset; 14661 14662 // Walk (both up and down) the chain looking for another load at the real 14663 // (aligned) offset (the alignment of the other load does not matter in 14664 // this case). If found, then do not use the offset reduction trick, as 14665 // that will prevent the loads from being later combined (as they would 14666 // otherwise be duplicates). 14667 if (!findConsecutiveLoad(LD, DAG)) 14668 --IncValue; 14669 14670 SDValue Increment = 14671 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14672 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14673 14674 MachineMemOperand *ExtraMMO = 14675 MF.getMachineMemOperand(LD->getMemOperand(), 14676 1, 2*MemVT.getStoreSize()-1); 14677 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14678 SDValue ExtraLoad = 14679 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14680 DAG.getVTList(PermTy, MVT::Other), 14681 ExtraLoadOps, LDTy, ExtraMMO); 14682 14683 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14684 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14685 14686 // Because vperm has a big-endian bias, we must reverse the order 14687 // of the input vectors and complement the permute control vector 14688 // when generating little endian code. We have already handled the 14689 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14690 // and ExtraLoad here. 14691 SDValue Perm; 14692 if (isLittleEndian) 14693 Perm = BuildIntrinsicOp(IntrPerm, 14694 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14695 else 14696 Perm = BuildIntrinsicOp(IntrPerm, 14697 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14698 14699 if (VT != PermTy) 14700 Perm = Subtarget.hasAltivec() 14701 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14702 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14703 DAG.getTargetConstant(1, dl, MVT::i64)); 14704 // second argument is 1 because this rounding 14705 // is always exact. 14706 14707 // The output of the permutation is our loaded result, the TokenFactor is 14708 // our new chain. 14709 DCI.CombineTo(N, Perm, TF); 14710 return SDValue(N, 0); 14711 } 14712 } 14713 break; 14714 case ISD::INTRINSIC_WO_CHAIN: { 14715 bool isLittleEndian = Subtarget.isLittleEndian(); 14716 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14717 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14718 : Intrinsic::ppc_altivec_lvsl); 14719 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14720 SDValue Add = N->getOperand(1); 14721 14722 int Bits = 4 /* 16 byte alignment */; 14723 14724 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14725 APInt::getAllOnesValue(Bits /* alignment */) 14726 .zext(Add.getScalarValueSizeInBits()))) { 14727 SDNode *BasePtr = Add->getOperand(0).getNode(); 14728 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14729 UE = BasePtr->use_end(); 14730 UI != UE; ++UI) { 14731 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14732 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14733 IID) { 14734 // We've found another LVSL/LVSR, and this address is an aligned 14735 // multiple of that one. The results will be the same, so use the 14736 // one we've just found instead. 14737 14738 return SDValue(*UI, 0); 14739 } 14740 } 14741 } 14742 14743 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14744 SDNode *BasePtr = Add->getOperand(0).getNode(); 14745 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14746 UE = BasePtr->use_end(); UI != UE; ++UI) { 14747 if (UI->getOpcode() == ISD::ADD && 14748 isa<ConstantSDNode>(UI->getOperand(1)) && 14749 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14750 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14751 (1ULL << Bits) == 0) { 14752 SDNode *OtherAdd = *UI; 14753 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14754 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14755 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14756 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14757 return SDValue(*VI, 0); 14758 } 14759 } 14760 } 14761 } 14762 } 14763 } 14764 14765 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14766 // Expose the vabsduw/h/b opportunity for down stream 14767 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14768 (IID == Intrinsic::ppc_altivec_vmaxsw || 14769 IID == Intrinsic::ppc_altivec_vmaxsh || 14770 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14771 SDValue V1 = N->getOperand(1); 14772 SDValue V2 = N->getOperand(2); 14773 if ((V1.getSimpleValueType() == MVT::v4i32 || 14774 V1.getSimpleValueType() == MVT::v8i16 || 14775 V1.getSimpleValueType() == MVT::v16i8) && 14776 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14777 // (0-a, a) 14778 if (V1.getOpcode() == ISD::SUB && 14779 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14780 V1.getOperand(1) == V2) { 14781 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14782 } 14783 // (a, 0-a) 14784 if (V2.getOpcode() == ISD::SUB && 14785 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14786 V2.getOperand(1) == V1) { 14787 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14788 } 14789 // (x-y, y-x) 14790 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14791 V1.getOperand(0) == V2.getOperand(1) && 14792 V1.getOperand(1) == V2.getOperand(0)) { 14793 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14794 } 14795 } 14796 } 14797 } 14798 14799 break; 14800 case ISD::INTRINSIC_W_CHAIN: 14801 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14802 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14803 if (Subtarget.needsSwapsForVSXMemOps()) { 14804 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14805 default: 14806 break; 14807 case Intrinsic::ppc_vsx_lxvw4x: 14808 case Intrinsic::ppc_vsx_lxvd2x: 14809 return expandVSXLoadForLE(N, DCI); 14810 } 14811 } 14812 break; 14813 case ISD::INTRINSIC_VOID: 14814 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14815 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14816 if (Subtarget.needsSwapsForVSXMemOps()) { 14817 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14818 default: 14819 break; 14820 case Intrinsic::ppc_vsx_stxvw4x: 14821 case Intrinsic::ppc_vsx_stxvd2x: 14822 return expandVSXStoreForLE(N, DCI); 14823 } 14824 } 14825 break; 14826 case ISD::BSWAP: 14827 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14828 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14829 N->getOperand(0).hasOneUse() && 14830 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14831 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14832 N->getValueType(0) == MVT::i64))) { 14833 SDValue Load = N->getOperand(0); 14834 LoadSDNode *LD = cast<LoadSDNode>(Load); 14835 // Create the byte-swapping load. 14836 SDValue Ops[] = { 14837 LD->getChain(), // Chain 14838 LD->getBasePtr(), // Ptr 14839 DAG.getValueType(N->getValueType(0)) // VT 14840 }; 14841 SDValue BSLoad = 14842 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14843 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14844 MVT::i64 : MVT::i32, MVT::Other), 14845 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14846 14847 // If this is an i16 load, insert the truncate. 14848 SDValue ResVal = BSLoad; 14849 if (N->getValueType(0) == MVT::i16) 14850 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14851 14852 // First, combine the bswap away. This makes the value produced by the 14853 // load dead. 14854 DCI.CombineTo(N, ResVal); 14855 14856 // Next, combine the load away, we give it a bogus result value but a real 14857 // chain result. The result value is dead because the bswap is dead. 14858 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14859 14860 // Return N so it doesn't get rechecked! 14861 return SDValue(N, 0); 14862 } 14863 break; 14864 case PPCISD::VCMP: 14865 // If a VCMPo node already exists with exactly the same operands as this 14866 // node, use its result instead of this node (VCMPo computes both a CR6 and 14867 // a normal output). 14868 // 14869 if (!N->getOperand(0).hasOneUse() && 14870 !N->getOperand(1).hasOneUse() && 14871 !N->getOperand(2).hasOneUse()) { 14872 14873 // Scan all of the users of the LHS, looking for VCMPo's that match. 14874 SDNode *VCMPoNode = nullptr; 14875 14876 SDNode *LHSN = N->getOperand(0).getNode(); 14877 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14878 UI != E; ++UI) 14879 if (UI->getOpcode() == PPCISD::VCMPo && 14880 UI->getOperand(1) == N->getOperand(1) && 14881 UI->getOperand(2) == N->getOperand(2) && 14882 UI->getOperand(0) == N->getOperand(0)) { 14883 VCMPoNode = *UI; 14884 break; 14885 } 14886 14887 // If there is no VCMPo node, or if the flag value has a single use, don't 14888 // transform this. 14889 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14890 break; 14891 14892 // Look at the (necessarily single) use of the flag value. If it has a 14893 // chain, this transformation is more complex. Note that multiple things 14894 // could use the value result, which we should ignore. 14895 SDNode *FlagUser = nullptr; 14896 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14897 FlagUser == nullptr; ++UI) { 14898 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14899 SDNode *User = *UI; 14900 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14901 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14902 FlagUser = User; 14903 break; 14904 } 14905 } 14906 } 14907 14908 // If the user is a MFOCRF instruction, we know this is safe. 14909 // Otherwise we give up for right now. 14910 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14911 return SDValue(VCMPoNode, 0); 14912 } 14913 break; 14914 case ISD::BRCOND: { 14915 SDValue Cond = N->getOperand(1); 14916 SDValue Target = N->getOperand(2); 14917 14918 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14919 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14920 Intrinsic::loop_decrement) { 14921 14922 // We now need to make the intrinsic dead (it cannot be instruction 14923 // selected). 14924 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14925 assert(Cond.getNode()->hasOneUse() && 14926 "Counter decrement has more than one use"); 14927 14928 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14929 N->getOperand(0), Target); 14930 } 14931 } 14932 break; 14933 case ISD::BR_CC: { 14934 // If this is a branch on an altivec predicate comparison, lower this so 14935 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14936 // lowering is done pre-legalize, because the legalizer lowers the predicate 14937 // compare down to code that is difficult to reassemble. 14938 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14939 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14940 14941 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14942 // value. If so, pass-through the AND to get to the intrinsic. 14943 if (LHS.getOpcode() == ISD::AND && 14944 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14945 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14946 Intrinsic::loop_decrement && 14947 isa<ConstantSDNode>(LHS.getOperand(1)) && 14948 !isNullConstant(LHS.getOperand(1))) 14949 LHS = LHS.getOperand(0); 14950 14951 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14952 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14953 Intrinsic::loop_decrement && 14954 isa<ConstantSDNode>(RHS)) { 14955 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14956 "Counter decrement comparison is not EQ or NE"); 14957 14958 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14959 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14960 (CC == ISD::SETNE && !Val); 14961 14962 // We now need to make the intrinsic dead (it cannot be instruction 14963 // selected). 14964 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14965 assert(LHS.getNode()->hasOneUse() && 14966 "Counter decrement has more than one use"); 14967 14968 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14969 N->getOperand(0), N->getOperand(4)); 14970 } 14971 14972 int CompareOpc; 14973 bool isDot; 14974 14975 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14976 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14977 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14978 assert(isDot && "Can't compare against a vector result!"); 14979 14980 // If this is a comparison against something other than 0/1, then we know 14981 // that the condition is never/always true. 14982 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14983 if (Val != 0 && Val != 1) { 14984 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14985 return N->getOperand(0); 14986 // Always !=, turn it into an unconditional branch. 14987 return DAG.getNode(ISD::BR, dl, MVT::Other, 14988 N->getOperand(0), N->getOperand(4)); 14989 } 14990 14991 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14992 14993 // Create the PPCISD altivec 'dot' comparison node. 14994 SDValue Ops[] = { 14995 LHS.getOperand(2), // LHS of compare 14996 LHS.getOperand(3), // RHS of compare 14997 DAG.getConstant(CompareOpc, dl, MVT::i32) 14998 }; 14999 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15000 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15001 15002 // Unpack the result based on how the target uses it. 15003 PPC::Predicate CompOpc; 15004 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15005 default: // Can't happen, don't crash on invalid number though. 15006 case 0: // Branch on the value of the EQ bit of CR6. 15007 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15008 break; 15009 case 1: // Branch on the inverted value of the EQ bit of CR6. 15010 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15011 break; 15012 case 2: // Branch on the value of the LT bit of CR6. 15013 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15014 break; 15015 case 3: // Branch on the inverted value of the LT bit of CR6. 15016 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15017 break; 15018 } 15019 15020 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15021 DAG.getConstant(CompOpc, dl, MVT::i32), 15022 DAG.getRegister(PPC::CR6, MVT::i32), 15023 N->getOperand(4), CompNode.getValue(1)); 15024 } 15025 break; 15026 } 15027 case ISD::BUILD_VECTOR: 15028 return DAGCombineBuildVector(N, DCI); 15029 case ISD::ABS: 15030 return combineABS(N, DCI); 15031 case ISD::VSELECT: 15032 return combineVSelect(N, DCI); 15033 } 15034 15035 return SDValue(); 15036 } 15037 15038 SDValue 15039 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15040 SelectionDAG &DAG, 15041 SmallVectorImpl<SDNode *> &Created) const { 15042 // fold (sdiv X, pow2) 15043 EVT VT = N->getValueType(0); 15044 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15045 return SDValue(); 15046 if ((VT != MVT::i32 && VT != MVT::i64) || 15047 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15048 return SDValue(); 15049 15050 SDLoc DL(N); 15051 SDValue N0 = N->getOperand(0); 15052 15053 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15054 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15055 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15056 15057 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15058 Created.push_back(Op.getNode()); 15059 15060 if (IsNegPow2) { 15061 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15062 Created.push_back(Op.getNode()); 15063 } 15064 15065 return Op; 15066 } 15067 15068 //===----------------------------------------------------------------------===// 15069 // Inline Assembly Support 15070 //===----------------------------------------------------------------------===// 15071 15072 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15073 KnownBits &Known, 15074 const APInt &DemandedElts, 15075 const SelectionDAG &DAG, 15076 unsigned Depth) const { 15077 Known.resetAll(); 15078 switch (Op.getOpcode()) { 15079 default: break; 15080 case PPCISD::LBRX: { 15081 // lhbrx is known to have the top bits cleared out. 15082 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15083 Known.Zero = 0xFFFF0000; 15084 break; 15085 } 15086 case ISD::INTRINSIC_WO_CHAIN: { 15087 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15088 default: break; 15089 case Intrinsic::ppc_altivec_vcmpbfp_p: 15090 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15091 case Intrinsic::ppc_altivec_vcmpequb_p: 15092 case Intrinsic::ppc_altivec_vcmpequh_p: 15093 case Intrinsic::ppc_altivec_vcmpequw_p: 15094 case Intrinsic::ppc_altivec_vcmpequd_p: 15095 case Intrinsic::ppc_altivec_vcmpgefp_p: 15096 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15097 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15098 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15099 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15100 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15101 case Intrinsic::ppc_altivec_vcmpgtub_p: 15102 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15103 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15104 case Intrinsic::ppc_altivec_vcmpgtud_p: 15105 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15106 break; 15107 } 15108 } 15109 } 15110 } 15111 15112 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15113 switch (Subtarget.getCPUDirective()) { 15114 default: break; 15115 case PPC::DIR_970: 15116 case PPC::DIR_PWR4: 15117 case PPC::DIR_PWR5: 15118 case PPC::DIR_PWR5X: 15119 case PPC::DIR_PWR6: 15120 case PPC::DIR_PWR6X: 15121 case PPC::DIR_PWR7: 15122 case PPC::DIR_PWR8: 15123 case PPC::DIR_PWR9: 15124 case PPC::DIR_PWR10: 15125 case PPC::DIR_PWR_FUTURE: { 15126 if (!ML) 15127 break; 15128 15129 if (!DisableInnermostLoopAlign32) { 15130 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15131 // so that we can decrease cache misses and branch-prediction misses. 15132 // Actual alignment of the loop will depend on the hotness check and other 15133 // logic in alignBlocks. 15134 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15135 return Align(32); 15136 } 15137 15138 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15139 15140 // For small loops (between 5 and 8 instructions), align to a 32-byte 15141 // boundary so that the entire loop fits in one instruction-cache line. 15142 uint64_t LoopSize = 0; 15143 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15144 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15145 LoopSize += TII->getInstSizeInBytes(*J); 15146 if (LoopSize > 32) 15147 break; 15148 } 15149 15150 if (LoopSize > 16 && LoopSize <= 32) 15151 return Align(32); 15152 15153 break; 15154 } 15155 } 15156 15157 return TargetLowering::getPrefLoopAlignment(ML); 15158 } 15159 15160 /// getConstraintType - Given a constraint, return the type of 15161 /// constraint it is for this target. 15162 PPCTargetLowering::ConstraintType 15163 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15164 if (Constraint.size() == 1) { 15165 switch (Constraint[0]) { 15166 default: break; 15167 case 'b': 15168 case 'r': 15169 case 'f': 15170 case 'd': 15171 case 'v': 15172 case 'y': 15173 return C_RegisterClass; 15174 case 'Z': 15175 // FIXME: While Z does indicate a memory constraint, it specifically 15176 // indicates an r+r address (used in conjunction with the 'y' modifier 15177 // in the replacement string). Currently, we're forcing the base 15178 // register to be r0 in the asm printer (which is interpreted as zero) 15179 // and forming the complete address in the second register. This is 15180 // suboptimal. 15181 return C_Memory; 15182 } 15183 } else if (Constraint == "wc") { // individual CR bits. 15184 return C_RegisterClass; 15185 } else if (Constraint == "wa" || Constraint == "wd" || 15186 Constraint == "wf" || Constraint == "ws" || 15187 Constraint == "wi" || Constraint == "ww") { 15188 return C_RegisterClass; // VSX registers. 15189 } 15190 return TargetLowering::getConstraintType(Constraint); 15191 } 15192 15193 /// Examine constraint type and operand type and determine a weight value. 15194 /// This object must already have been set up with the operand type 15195 /// and the current alternative constraint selected. 15196 TargetLowering::ConstraintWeight 15197 PPCTargetLowering::getSingleConstraintMatchWeight( 15198 AsmOperandInfo &info, const char *constraint) const { 15199 ConstraintWeight weight = CW_Invalid; 15200 Value *CallOperandVal = info.CallOperandVal; 15201 // If we don't have a value, we can't do a match, 15202 // but allow it at the lowest weight. 15203 if (!CallOperandVal) 15204 return CW_Default; 15205 Type *type = CallOperandVal->getType(); 15206 15207 // Look at the constraint type. 15208 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15209 return CW_Register; // an individual CR bit. 15210 else if ((StringRef(constraint) == "wa" || 15211 StringRef(constraint) == "wd" || 15212 StringRef(constraint) == "wf") && 15213 type->isVectorTy()) 15214 return CW_Register; 15215 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15216 return CW_Register; // just hold 64-bit integers data. 15217 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15218 return CW_Register; 15219 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15220 return CW_Register; 15221 15222 switch (*constraint) { 15223 default: 15224 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15225 break; 15226 case 'b': 15227 if (type->isIntegerTy()) 15228 weight = CW_Register; 15229 break; 15230 case 'f': 15231 if (type->isFloatTy()) 15232 weight = CW_Register; 15233 break; 15234 case 'd': 15235 if (type->isDoubleTy()) 15236 weight = CW_Register; 15237 break; 15238 case 'v': 15239 if (type->isVectorTy()) 15240 weight = CW_Register; 15241 break; 15242 case 'y': 15243 weight = CW_Register; 15244 break; 15245 case 'Z': 15246 weight = CW_Memory; 15247 break; 15248 } 15249 return weight; 15250 } 15251 15252 std::pair<unsigned, const TargetRegisterClass *> 15253 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15254 StringRef Constraint, 15255 MVT VT) const { 15256 if (Constraint.size() == 1) { 15257 // GCC RS6000 Constraint Letters 15258 switch (Constraint[0]) { 15259 case 'b': // R1-R31 15260 if (VT == MVT::i64 && Subtarget.isPPC64()) 15261 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15262 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15263 case 'r': // R0-R31 15264 if (VT == MVT::i64 && Subtarget.isPPC64()) 15265 return std::make_pair(0U, &PPC::G8RCRegClass); 15266 return std::make_pair(0U, &PPC::GPRCRegClass); 15267 // 'd' and 'f' constraints are both defined to be "the floating point 15268 // registers", where one is for 32-bit and the other for 64-bit. We don't 15269 // really care overly much here so just give them all the same reg classes. 15270 case 'd': 15271 case 'f': 15272 if (Subtarget.hasSPE()) { 15273 if (VT == MVT::f32 || VT == MVT::i32) 15274 return std::make_pair(0U, &PPC::GPRCRegClass); 15275 if (VT == MVT::f64 || VT == MVT::i64) 15276 return std::make_pair(0U, &PPC::SPERCRegClass); 15277 } else { 15278 if (VT == MVT::f32 || VT == MVT::i32) 15279 return std::make_pair(0U, &PPC::F4RCRegClass); 15280 if (VT == MVT::f64 || VT == MVT::i64) 15281 return std::make_pair(0U, &PPC::F8RCRegClass); 15282 } 15283 break; 15284 case 'v': 15285 if (Subtarget.hasAltivec()) 15286 return std::make_pair(0U, &PPC::VRRCRegClass); 15287 break; 15288 case 'y': // crrc 15289 return std::make_pair(0U, &PPC::CRRCRegClass); 15290 } 15291 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15292 // An individual CR bit. 15293 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15294 } else if ((Constraint == "wa" || Constraint == "wd" || 15295 Constraint == "wf" || Constraint == "wi") && 15296 Subtarget.hasVSX()) { 15297 return std::make_pair(0U, &PPC::VSRCRegClass); 15298 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15299 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15300 return std::make_pair(0U, &PPC::VSSRCRegClass); 15301 else 15302 return std::make_pair(0U, &PPC::VSFRCRegClass); 15303 } 15304 15305 // If we name a VSX register, we can't defer to the base class because it 15306 // will not recognize the correct register (their names will be VSL{0-31} 15307 // and V{0-31} so they won't match). So we match them here. 15308 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15309 int VSNum = atoi(Constraint.data() + 3); 15310 assert(VSNum >= 0 && VSNum <= 63 && 15311 "Attempted to access a vsr out of range"); 15312 if (VSNum < 32) 15313 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15314 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15315 } 15316 std::pair<unsigned, const TargetRegisterClass *> R = 15317 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15318 15319 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15320 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15321 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15322 // register. 15323 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15324 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15325 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15326 PPC::GPRCRegClass.contains(R.first)) 15327 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15328 PPC::sub_32, &PPC::G8RCRegClass), 15329 &PPC::G8RCRegClass); 15330 15331 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15332 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15333 R.first = PPC::CR0; 15334 R.second = &PPC::CRRCRegClass; 15335 } 15336 15337 return R; 15338 } 15339 15340 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15341 /// vector. If it is invalid, don't add anything to Ops. 15342 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15343 std::string &Constraint, 15344 std::vector<SDValue>&Ops, 15345 SelectionDAG &DAG) const { 15346 SDValue Result; 15347 15348 // Only support length 1 constraints. 15349 if (Constraint.length() > 1) return; 15350 15351 char Letter = Constraint[0]; 15352 switch (Letter) { 15353 default: break; 15354 case 'I': 15355 case 'J': 15356 case 'K': 15357 case 'L': 15358 case 'M': 15359 case 'N': 15360 case 'O': 15361 case 'P': { 15362 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15363 if (!CST) return; // Must be an immediate to match. 15364 SDLoc dl(Op); 15365 int64_t Value = CST->getSExtValue(); 15366 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15367 // numbers are printed as such. 15368 switch (Letter) { 15369 default: llvm_unreachable("Unknown constraint letter!"); 15370 case 'I': // "I" is a signed 16-bit constant. 15371 if (isInt<16>(Value)) 15372 Result = DAG.getTargetConstant(Value, dl, TCVT); 15373 break; 15374 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15375 if (isShiftedUInt<16, 16>(Value)) 15376 Result = DAG.getTargetConstant(Value, dl, TCVT); 15377 break; 15378 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15379 if (isShiftedInt<16, 16>(Value)) 15380 Result = DAG.getTargetConstant(Value, dl, TCVT); 15381 break; 15382 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15383 if (isUInt<16>(Value)) 15384 Result = DAG.getTargetConstant(Value, dl, TCVT); 15385 break; 15386 case 'M': // "M" is a constant that is greater than 31. 15387 if (Value > 31) 15388 Result = DAG.getTargetConstant(Value, dl, TCVT); 15389 break; 15390 case 'N': // "N" is a positive constant that is an exact power of two. 15391 if (Value > 0 && isPowerOf2_64(Value)) 15392 Result = DAG.getTargetConstant(Value, dl, TCVT); 15393 break; 15394 case 'O': // "O" is the constant zero. 15395 if (Value == 0) 15396 Result = DAG.getTargetConstant(Value, dl, TCVT); 15397 break; 15398 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15399 if (isInt<16>(-Value)) 15400 Result = DAG.getTargetConstant(Value, dl, TCVT); 15401 break; 15402 } 15403 break; 15404 } 15405 } 15406 15407 if (Result.getNode()) { 15408 Ops.push_back(Result); 15409 return; 15410 } 15411 15412 // Handle standard constraint letters. 15413 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15414 } 15415 15416 // isLegalAddressingMode - Return true if the addressing mode represented 15417 // by AM is legal for this target, for a load/store of the specified type. 15418 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15419 const AddrMode &AM, Type *Ty, 15420 unsigned AS, 15421 Instruction *I) const { 15422 // Vector type r+i form is supported since power9 as DQ form. We don't check 15423 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15424 // imm form is preferred and the offset can be adjusted to use imm form later 15425 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15426 // max offset to check legal addressing mode, we should be a little aggressive 15427 // to contain other offsets for that LSRUse. 15428 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15429 return false; 15430 15431 // PPC allows a sign-extended 16-bit immediate field. 15432 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15433 return false; 15434 15435 // No global is ever allowed as a base. 15436 if (AM.BaseGV) 15437 return false; 15438 15439 // PPC only support r+r, 15440 switch (AM.Scale) { 15441 case 0: // "r+i" or just "i", depending on HasBaseReg. 15442 break; 15443 case 1: 15444 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15445 return false; 15446 // Otherwise we have r+r or r+i. 15447 break; 15448 case 2: 15449 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15450 return false; 15451 // Allow 2*r as r+r. 15452 break; 15453 default: 15454 // No other scales are supported. 15455 return false; 15456 } 15457 15458 return true; 15459 } 15460 15461 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15462 SelectionDAG &DAG) const { 15463 MachineFunction &MF = DAG.getMachineFunction(); 15464 MachineFrameInfo &MFI = MF.getFrameInfo(); 15465 MFI.setReturnAddressIsTaken(true); 15466 15467 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15468 return SDValue(); 15469 15470 SDLoc dl(Op); 15471 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15472 15473 // Make sure the function does not optimize away the store of the RA to 15474 // the stack. 15475 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15476 FuncInfo->setLRStoreRequired(); 15477 bool isPPC64 = Subtarget.isPPC64(); 15478 auto PtrVT = getPointerTy(MF.getDataLayout()); 15479 15480 if (Depth > 0) { 15481 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15482 SDValue Offset = 15483 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15484 isPPC64 ? MVT::i64 : MVT::i32); 15485 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15486 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15487 MachinePointerInfo()); 15488 } 15489 15490 // Just load the return address off the stack. 15491 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15492 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15493 MachinePointerInfo()); 15494 } 15495 15496 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15497 SelectionDAG &DAG) const { 15498 SDLoc dl(Op); 15499 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15500 15501 MachineFunction &MF = DAG.getMachineFunction(); 15502 MachineFrameInfo &MFI = MF.getFrameInfo(); 15503 MFI.setFrameAddressIsTaken(true); 15504 15505 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15506 bool isPPC64 = PtrVT == MVT::i64; 15507 15508 // Naked functions never have a frame pointer, and so we use r1. For all 15509 // other functions, this decision must be delayed until during PEI. 15510 unsigned FrameReg; 15511 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15512 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15513 else 15514 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15515 15516 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15517 PtrVT); 15518 while (Depth--) 15519 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15520 FrameAddr, MachinePointerInfo()); 15521 return FrameAddr; 15522 } 15523 15524 // FIXME? Maybe this could be a TableGen attribute on some registers and 15525 // this table could be generated automatically from RegInfo. 15526 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15527 const MachineFunction &MF) const { 15528 bool isPPC64 = Subtarget.isPPC64(); 15529 15530 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15531 if (!is64Bit && VT != LLT::scalar(32)) 15532 report_fatal_error("Invalid register global variable type"); 15533 15534 Register Reg = StringSwitch<Register>(RegName) 15535 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15536 .Case("r2", isPPC64 ? Register() : PPC::R2) 15537 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15538 .Default(Register()); 15539 15540 if (Reg) 15541 return Reg; 15542 report_fatal_error("Invalid register name global variable"); 15543 } 15544 15545 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15546 // 32-bit SVR4 ABI access everything as got-indirect. 15547 if (Subtarget.is32BitELFABI()) 15548 return true; 15549 15550 // AIX accesses everything indirectly through the TOC, which is similar to 15551 // the GOT. 15552 if (Subtarget.isAIXABI()) 15553 return true; 15554 15555 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15556 // If it is small or large code model, module locals are accessed 15557 // indirectly by loading their address from .toc/.got. 15558 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15559 return true; 15560 15561 // JumpTable and BlockAddress are accessed as got-indirect. 15562 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15563 return true; 15564 15565 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15566 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15567 15568 return false; 15569 } 15570 15571 bool 15572 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15573 // The PowerPC target isn't yet aware of offsets. 15574 return false; 15575 } 15576 15577 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15578 const CallInst &I, 15579 MachineFunction &MF, 15580 unsigned Intrinsic) const { 15581 switch (Intrinsic) { 15582 case Intrinsic::ppc_altivec_lvx: 15583 case Intrinsic::ppc_altivec_lvxl: 15584 case Intrinsic::ppc_altivec_lvebx: 15585 case Intrinsic::ppc_altivec_lvehx: 15586 case Intrinsic::ppc_altivec_lvewx: 15587 case Intrinsic::ppc_vsx_lxvd2x: 15588 case Intrinsic::ppc_vsx_lxvw4x: { 15589 EVT VT; 15590 switch (Intrinsic) { 15591 case Intrinsic::ppc_altivec_lvebx: 15592 VT = MVT::i8; 15593 break; 15594 case Intrinsic::ppc_altivec_lvehx: 15595 VT = MVT::i16; 15596 break; 15597 case Intrinsic::ppc_altivec_lvewx: 15598 VT = MVT::i32; 15599 break; 15600 case Intrinsic::ppc_vsx_lxvd2x: 15601 VT = MVT::v2f64; 15602 break; 15603 default: 15604 VT = MVT::v4i32; 15605 break; 15606 } 15607 15608 Info.opc = ISD::INTRINSIC_W_CHAIN; 15609 Info.memVT = VT; 15610 Info.ptrVal = I.getArgOperand(0); 15611 Info.offset = -VT.getStoreSize()+1; 15612 Info.size = 2*VT.getStoreSize()-1; 15613 Info.align = Align(1); 15614 Info.flags = MachineMemOperand::MOLoad; 15615 return true; 15616 } 15617 case Intrinsic::ppc_altivec_stvx: 15618 case Intrinsic::ppc_altivec_stvxl: 15619 case Intrinsic::ppc_altivec_stvebx: 15620 case Intrinsic::ppc_altivec_stvehx: 15621 case Intrinsic::ppc_altivec_stvewx: 15622 case Intrinsic::ppc_vsx_stxvd2x: 15623 case Intrinsic::ppc_vsx_stxvw4x: { 15624 EVT VT; 15625 switch (Intrinsic) { 15626 case Intrinsic::ppc_altivec_stvebx: 15627 VT = MVT::i8; 15628 break; 15629 case Intrinsic::ppc_altivec_stvehx: 15630 VT = MVT::i16; 15631 break; 15632 case Intrinsic::ppc_altivec_stvewx: 15633 VT = MVT::i32; 15634 break; 15635 case Intrinsic::ppc_vsx_stxvd2x: 15636 VT = MVT::v2f64; 15637 break; 15638 default: 15639 VT = MVT::v4i32; 15640 break; 15641 } 15642 15643 Info.opc = ISD::INTRINSIC_VOID; 15644 Info.memVT = VT; 15645 Info.ptrVal = I.getArgOperand(1); 15646 Info.offset = -VT.getStoreSize()+1; 15647 Info.size = 2*VT.getStoreSize()-1; 15648 Info.align = Align(1); 15649 Info.flags = MachineMemOperand::MOStore; 15650 return true; 15651 } 15652 default: 15653 break; 15654 } 15655 15656 return false; 15657 } 15658 15659 /// It returns EVT::Other if the type should be determined using generic 15660 /// target-independent logic. 15661 EVT PPCTargetLowering::getOptimalMemOpType( 15662 const MemOp &Op, const AttributeList &FuncAttributes) const { 15663 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15664 // We should use Altivec/VSX loads and stores when available. For unaligned 15665 // addresses, unaligned VSX loads are only fast starting with the P8. 15666 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15667 (Op.isAligned(Align(16)) || 15668 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15669 return MVT::v4i32; 15670 } 15671 15672 if (Subtarget.isPPC64()) { 15673 return MVT::i64; 15674 } 15675 15676 return MVT::i32; 15677 } 15678 15679 /// Returns true if it is beneficial to convert a load of a constant 15680 /// to just the constant itself. 15681 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15682 Type *Ty) const { 15683 assert(Ty->isIntegerTy()); 15684 15685 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15686 return !(BitSize == 0 || BitSize > 64); 15687 } 15688 15689 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15690 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15691 return false; 15692 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15693 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15694 return NumBits1 == 64 && NumBits2 == 32; 15695 } 15696 15697 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15698 if (!VT1.isInteger() || !VT2.isInteger()) 15699 return false; 15700 unsigned NumBits1 = VT1.getSizeInBits(); 15701 unsigned NumBits2 = VT2.getSizeInBits(); 15702 return NumBits1 == 64 && NumBits2 == 32; 15703 } 15704 15705 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15706 // Generally speaking, zexts are not free, but they are free when they can be 15707 // folded with other operations. 15708 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15709 EVT MemVT = LD->getMemoryVT(); 15710 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15711 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15712 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15713 LD->getExtensionType() == ISD::ZEXTLOAD)) 15714 return true; 15715 } 15716 15717 // FIXME: Add other cases... 15718 // - 32-bit shifts with a zext to i64 15719 // - zext after ctlz, bswap, etc. 15720 // - zext after and by a constant mask 15721 15722 return TargetLowering::isZExtFree(Val, VT2); 15723 } 15724 15725 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15726 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15727 "invalid fpext types"); 15728 // Extending to float128 is not free. 15729 if (DestVT == MVT::f128) 15730 return false; 15731 return true; 15732 } 15733 15734 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15735 return isInt<16>(Imm) || isUInt<16>(Imm); 15736 } 15737 15738 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15739 return isInt<16>(Imm) || isUInt<16>(Imm); 15740 } 15741 15742 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15743 unsigned, 15744 unsigned, 15745 MachineMemOperand::Flags, 15746 bool *Fast) const { 15747 if (DisablePPCUnaligned) 15748 return false; 15749 15750 // PowerPC supports unaligned memory access for simple non-vector types. 15751 // Although accessing unaligned addresses is not as efficient as accessing 15752 // aligned addresses, it is generally more efficient than manual expansion, 15753 // and generally only traps for software emulation when crossing page 15754 // boundaries. 15755 15756 if (!VT.isSimple()) 15757 return false; 15758 15759 if (VT.isFloatingPoint() && !VT.isVector() && 15760 !Subtarget.allowsUnalignedFPAccess()) 15761 return false; 15762 15763 if (VT.getSimpleVT().isVector()) { 15764 if (Subtarget.hasVSX()) { 15765 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15766 VT != MVT::v4f32 && VT != MVT::v4i32) 15767 return false; 15768 } else { 15769 return false; 15770 } 15771 } 15772 15773 if (VT == MVT::ppcf128) 15774 return false; 15775 15776 if (Fast) 15777 *Fast = true; 15778 15779 return true; 15780 } 15781 15782 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15783 EVT VT) const { 15784 return isFMAFasterThanFMulAndFAdd( 15785 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15786 } 15787 15788 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15789 Type *Ty) const { 15790 switch (Ty->getScalarType()->getTypeID()) { 15791 case Type::FloatTyID: 15792 case Type::DoubleTyID: 15793 return true; 15794 case Type::FP128TyID: 15795 return Subtarget.hasP9Vector(); 15796 default: 15797 return false; 15798 } 15799 } 15800 15801 // FIXME: add more patterns which are not profitable to hoist. 15802 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15803 if (!I->hasOneUse()) 15804 return true; 15805 15806 Instruction *User = I->user_back(); 15807 assert(User && "A single use instruction with no uses."); 15808 15809 switch (I->getOpcode()) { 15810 case Instruction::FMul: { 15811 // Don't break FMA, PowerPC prefers FMA. 15812 if (User->getOpcode() != Instruction::FSub && 15813 User->getOpcode() != Instruction::FAdd) 15814 return true; 15815 15816 const TargetOptions &Options = getTargetMachine().Options; 15817 const Function *F = I->getFunction(); 15818 const DataLayout &DL = F->getParent()->getDataLayout(); 15819 Type *Ty = User->getOperand(0)->getType(); 15820 15821 return !( 15822 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15823 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15824 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15825 } 15826 case Instruction::Load: { 15827 // Don't break "store (load float*)" pattern, this pattern will be combined 15828 // to "store (load int32)" in later InstCombine pass. See function 15829 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15830 // cycles than loading a 32 bit integer. 15831 LoadInst *LI = cast<LoadInst>(I); 15832 // For the loads that combineLoadToOperationType does nothing, like 15833 // ordered load, it should be profitable to hoist them. 15834 // For swifterror load, it can only be used for pointer to pointer type, so 15835 // later type check should get rid of this case. 15836 if (!LI->isUnordered()) 15837 return true; 15838 15839 if (User->getOpcode() != Instruction::Store) 15840 return true; 15841 15842 if (I->getType()->getTypeID() != Type::FloatTyID) 15843 return true; 15844 15845 return false; 15846 } 15847 default: 15848 return true; 15849 } 15850 return true; 15851 } 15852 15853 const MCPhysReg * 15854 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15855 // LR is a callee-save register, but we must treat it as clobbered by any call 15856 // site. Hence we include LR in the scratch registers, which are in turn added 15857 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15858 // to CTR, which is used by any indirect call. 15859 static const MCPhysReg ScratchRegs[] = { 15860 PPC::X12, PPC::LR8, PPC::CTR8, 0 15861 }; 15862 15863 return ScratchRegs; 15864 } 15865 15866 Register PPCTargetLowering::getExceptionPointerRegister( 15867 const Constant *PersonalityFn) const { 15868 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15869 } 15870 15871 Register PPCTargetLowering::getExceptionSelectorRegister( 15872 const Constant *PersonalityFn) const { 15873 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15874 } 15875 15876 bool 15877 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15878 EVT VT , unsigned DefinedValues) const { 15879 if (VT == MVT::v2i64) 15880 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15881 15882 if (Subtarget.hasVSX()) 15883 return true; 15884 15885 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15886 } 15887 15888 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15889 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15890 return TargetLowering::getSchedulingPreference(N); 15891 15892 return Sched::ILP; 15893 } 15894 15895 // Create a fast isel object. 15896 FastISel * 15897 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15898 const TargetLibraryInfo *LibInfo) const { 15899 return PPC::createFastISel(FuncInfo, LibInfo); 15900 } 15901 15902 // 'Inverted' means the FMA opcode after negating one multiplicand. 15903 // For example, (fma -a b c) = (fnmsub a b c) 15904 static unsigned invertFMAOpcode(unsigned Opc) { 15905 switch (Opc) { 15906 default: 15907 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15908 case ISD::FMA: 15909 return PPCISD::FNMSUB; 15910 case PPCISD::FNMSUB: 15911 return ISD::FMA; 15912 } 15913 } 15914 15915 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15916 bool LegalOps, bool OptForSize, 15917 NegatibleCost &Cost, 15918 unsigned Depth) const { 15919 if (Depth > SelectionDAG::MaxRecursionDepth) 15920 return SDValue(); 15921 15922 unsigned Opc = Op.getOpcode(); 15923 EVT VT = Op.getValueType(); 15924 SDNodeFlags Flags = Op.getNode()->getFlags(); 15925 15926 switch (Opc) { 15927 case PPCISD::FNMSUB: 15928 if (!Op.hasOneUse() || !isTypeLegal(VT)) 15929 break; 15930 15931 const TargetOptions &Options = getTargetMachine().Options; 15932 SDValue N0 = Op.getOperand(0); 15933 SDValue N1 = Op.getOperand(1); 15934 SDValue N2 = Op.getOperand(2); 15935 SDLoc Loc(Op); 15936 15937 NegatibleCost N2Cost = NegatibleCost::Expensive; 15938 SDValue NegN2 = 15939 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15940 15941 if (!NegN2) 15942 return SDValue(); 15943 15944 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15945 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15946 // These transformations may change sign of zeroes. For example, 15947 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15948 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15949 // Try and choose the cheaper one to negate. 15950 NegatibleCost N0Cost = NegatibleCost::Expensive; 15951 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15952 N0Cost, Depth + 1); 15953 15954 NegatibleCost N1Cost = NegatibleCost::Expensive; 15955 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15956 N1Cost, Depth + 1); 15957 15958 if (NegN0 && N0Cost <= N1Cost) { 15959 Cost = std::min(N0Cost, N2Cost); 15960 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15961 } else if (NegN1) { 15962 Cost = std::min(N1Cost, N2Cost); 15963 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15964 } 15965 } 15966 15967 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15968 if (isOperationLegal(ISD::FMA, VT)) { 15969 Cost = N2Cost; 15970 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15971 } 15972 15973 break; 15974 } 15975 15976 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15977 Cost, Depth); 15978 } 15979 15980 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15981 bool PPCTargetLowering::useLoadStackGuardNode() const { 15982 if (!Subtarget.isTargetLinux()) 15983 return TargetLowering::useLoadStackGuardNode(); 15984 return true; 15985 } 15986 15987 // Override to disable global variable loading on Linux. 15988 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15989 if (!Subtarget.isTargetLinux()) 15990 return TargetLowering::insertSSPDeclarations(M); 15991 } 15992 15993 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15994 bool ForCodeSize) const { 15995 if (!VT.isSimple() || !Subtarget.hasVSX()) 15996 return false; 15997 15998 switch(VT.getSimpleVT().SimpleTy) { 15999 default: 16000 // For FP types that are currently not supported by PPC backend, return 16001 // false. Examples: f16, f80. 16002 return false; 16003 case MVT::f32: 16004 case MVT::f64: 16005 if (Subtarget.hasPrefixInstrs()) { 16006 // With prefixed instructions, we can materialize anything that can be 16007 // represented with a 32-bit immediate, not just positive zero. 16008 APFloat APFloatOfImm = Imm; 16009 return convertToNonDenormSingle(APFloatOfImm); 16010 } 16011 LLVM_FALLTHROUGH; 16012 case MVT::ppcf128: 16013 return Imm.isPosZero(); 16014 } 16015 } 16016 16017 // For vector shift operation op, fold 16018 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16019 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16020 SelectionDAG &DAG) { 16021 SDValue N0 = N->getOperand(0); 16022 SDValue N1 = N->getOperand(1); 16023 EVT VT = N0.getValueType(); 16024 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16025 unsigned Opcode = N->getOpcode(); 16026 unsigned TargetOpcode; 16027 16028 switch (Opcode) { 16029 default: 16030 llvm_unreachable("Unexpected shift operation"); 16031 case ISD::SHL: 16032 TargetOpcode = PPCISD::SHL; 16033 break; 16034 case ISD::SRL: 16035 TargetOpcode = PPCISD::SRL; 16036 break; 16037 case ISD::SRA: 16038 TargetOpcode = PPCISD::SRA; 16039 break; 16040 } 16041 16042 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16043 N1->getOpcode() == ISD::AND) 16044 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16045 if (Mask->getZExtValue() == OpSizeInBits - 1) 16046 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16047 16048 return SDValue(); 16049 } 16050 16051 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16052 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16053 return Value; 16054 16055 SDValue N0 = N->getOperand(0); 16056 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16057 if (!Subtarget.isISA3_0() || 16058 N0.getOpcode() != ISD::SIGN_EXTEND || 16059 N0.getOperand(0).getValueType() != MVT::i32 || 16060 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16061 return SDValue(); 16062 16063 // We can't save an operation here if the value is already extended, and 16064 // the existing shift is easier to combine. 16065 SDValue ExtsSrc = N0.getOperand(0); 16066 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16067 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16068 return SDValue(); 16069 16070 SDLoc DL(N0); 16071 SDValue ShiftBy = SDValue(CN1, 0); 16072 // We want the shift amount to be i32 on the extswli, but the shift could 16073 // have an i64. 16074 if (ShiftBy.getValueType() == MVT::i64) 16075 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16076 16077 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16078 ShiftBy); 16079 } 16080 16081 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16082 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16083 return Value; 16084 16085 return SDValue(); 16086 } 16087 16088 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16089 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16090 return Value; 16091 16092 return SDValue(); 16093 } 16094 16095 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16096 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16097 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16098 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16099 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16100 const PPCSubtarget &Subtarget) { 16101 if (!Subtarget.isPPC64()) 16102 return SDValue(); 16103 16104 SDValue LHS = N->getOperand(0); 16105 SDValue RHS = N->getOperand(1); 16106 16107 auto isZextOfCompareWithConstant = [](SDValue Op) { 16108 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16109 Op.getValueType() != MVT::i64) 16110 return false; 16111 16112 SDValue Cmp = Op.getOperand(0); 16113 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16114 Cmp.getOperand(0).getValueType() != MVT::i64) 16115 return false; 16116 16117 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16118 int64_t NegConstant = 0 - Constant->getSExtValue(); 16119 // Due to the limitations of the addi instruction, 16120 // -C is required to be [-32768, 32767]. 16121 return isInt<16>(NegConstant); 16122 } 16123 16124 return false; 16125 }; 16126 16127 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16128 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16129 16130 // If there is a pattern, canonicalize a zext operand to the RHS. 16131 if (LHSHasPattern && !RHSHasPattern) 16132 std::swap(LHS, RHS); 16133 else if (!LHSHasPattern && !RHSHasPattern) 16134 return SDValue(); 16135 16136 SDLoc DL(N); 16137 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16138 SDValue Cmp = RHS.getOperand(0); 16139 SDValue Z = Cmp.getOperand(0); 16140 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16141 16142 assert(Constant && "Constant Should not be a null pointer."); 16143 int64_t NegConstant = 0 - Constant->getSExtValue(); 16144 16145 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16146 default: break; 16147 case ISD::SETNE: { 16148 // when C == 0 16149 // --> addze X, (addic Z, -1).carry 16150 // / 16151 // add X, (zext(setne Z, C))-- 16152 // \ when -32768 <= -C <= 32767 && C != 0 16153 // --> addze X, (addic (addi Z, -C), -1).carry 16154 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16155 DAG.getConstant(NegConstant, DL, MVT::i64)); 16156 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16157 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16158 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16159 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16160 SDValue(Addc.getNode(), 1)); 16161 } 16162 case ISD::SETEQ: { 16163 // when C == 0 16164 // --> addze X, (subfic Z, 0).carry 16165 // / 16166 // add X, (zext(sete Z, C))-- 16167 // \ when -32768 <= -C <= 32767 && C != 0 16168 // --> addze X, (subfic (addi Z, -C), 0).carry 16169 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16170 DAG.getConstant(NegConstant, DL, MVT::i64)); 16171 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16172 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16173 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16174 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16175 SDValue(Subc.getNode(), 1)); 16176 } 16177 } 16178 16179 return SDValue(); 16180 } 16181 16182 // Transform 16183 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16184 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16185 // In this case both C1 and C2 must be known constants. 16186 // C1+C2 must fit into a 34 bit signed integer. 16187 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16188 const PPCSubtarget &Subtarget) { 16189 if (!Subtarget.isUsingPCRelativeCalls()) 16190 return SDValue(); 16191 16192 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16193 // If we find that node try to cast the Global Address and the Constant. 16194 SDValue LHS = N->getOperand(0); 16195 SDValue RHS = N->getOperand(1); 16196 16197 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16198 std::swap(LHS, RHS); 16199 16200 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16201 return SDValue(); 16202 16203 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16204 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16205 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16206 16207 // Check that both casts succeeded. 16208 if (!GSDN || !ConstNode) 16209 return SDValue(); 16210 16211 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16212 SDLoc DL(GSDN); 16213 16214 // The signed int offset needs to fit in 34 bits. 16215 if (!isInt<34>(NewOffset)) 16216 return SDValue(); 16217 16218 // The new global address is a copy of the old global address except 16219 // that it has the updated Offset. 16220 SDValue GA = 16221 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16222 NewOffset, GSDN->getTargetFlags()); 16223 SDValue MatPCRel = 16224 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16225 return MatPCRel; 16226 } 16227 16228 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16229 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16230 return Value; 16231 16232 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16233 return Value; 16234 16235 return SDValue(); 16236 } 16237 16238 // Detect TRUNCATE operations on bitcasts of float128 values. 16239 // What we are looking for here is the situtation where we extract a subset 16240 // of bits from a 128 bit float. 16241 // This can be of two forms: 16242 // 1) BITCAST of f128 feeding TRUNCATE 16243 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16244 // The reason this is required is because we do not have a legal i128 type 16245 // and so we want to prevent having to store the f128 and then reload part 16246 // of it. 16247 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16248 DAGCombinerInfo &DCI) const { 16249 // If we are using CRBits then try that first. 16250 if (Subtarget.useCRBits()) { 16251 // Check if CRBits did anything and return that if it did. 16252 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16253 return CRTruncValue; 16254 } 16255 16256 SDLoc dl(N); 16257 SDValue Op0 = N->getOperand(0); 16258 16259 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16260 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16261 EVT VT = N->getValueType(0); 16262 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16263 return SDValue(); 16264 SDValue Sub = Op0.getOperand(0); 16265 if (Sub.getOpcode() == ISD::SUB) { 16266 SDValue SubOp0 = Sub.getOperand(0); 16267 SDValue SubOp1 = Sub.getOperand(1); 16268 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16269 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16270 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16271 SubOp1.getOperand(0), 16272 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16273 } 16274 } 16275 } 16276 16277 // Looking for a truncate of i128 to i64. 16278 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16279 return SDValue(); 16280 16281 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16282 16283 // SRL feeding TRUNCATE. 16284 if (Op0.getOpcode() == ISD::SRL) { 16285 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16286 // The right shift has to be by 64 bits. 16287 if (!ConstNode || ConstNode->getZExtValue() != 64) 16288 return SDValue(); 16289 16290 // Switch the element number to extract. 16291 EltToExtract = EltToExtract ? 0 : 1; 16292 // Update Op0 past the SRL. 16293 Op0 = Op0.getOperand(0); 16294 } 16295 16296 // BITCAST feeding a TRUNCATE possibly via SRL. 16297 if (Op0.getOpcode() == ISD::BITCAST && 16298 Op0.getValueType() == MVT::i128 && 16299 Op0.getOperand(0).getValueType() == MVT::f128) { 16300 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16301 return DCI.DAG.getNode( 16302 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16303 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16304 } 16305 return SDValue(); 16306 } 16307 16308 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16309 SelectionDAG &DAG = DCI.DAG; 16310 16311 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16312 if (!ConstOpOrElement) 16313 return SDValue(); 16314 16315 // An imul is usually smaller than the alternative sequence for legal type. 16316 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16317 isOperationLegal(ISD::MUL, N->getValueType(0))) 16318 return SDValue(); 16319 16320 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16321 switch (this->Subtarget.getCPUDirective()) { 16322 default: 16323 // TODO: enhance the condition for subtarget before pwr8 16324 return false; 16325 case PPC::DIR_PWR8: 16326 // type mul add shl 16327 // scalar 4 1 1 16328 // vector 7 2 2 16329 return true; 16330 case PPC::DIR_PWR9: 16331 case PPC::DIR_PWR10: 16332 case PPC::DIR_PWR_FUTURE: 16333 // type mul add shl 16334 // scalar 5 2 2 16335 // vector 7 2 2 16336 16337 // The cycle RATIO of related operations are showed as a table above. 16338 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16339 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16340 // are 4, it is always profitable; but for 3 instrs patterns 16341 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16342 // So we should only do it for vector type. 16343 return IsAddOne && IsNeg ? VT.isVector() : true; 16344 } 16345 }; 16346 16347 EVT VT = N->getValueType(0); 16348 SDLoc DL(N); 16349 16350 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16351 bool IsNeg = MulAmt.isNegative(); 16352 APInt MulAmtAbs = MulAmt.abs(); 16353 16354 if ((MulAmtAbs - 1).isPowerOf2()) { 16355 // (mul x, 2^N + 1) => (add (shl x, N), x) 16356 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16357 16358 if (!IsProfitable(IsNeg, true, VT)) 16359 return SDValue(); 16360 16361 SDValue Op0 = N->getOperand(0); 16362 SDValue Op1 = 16363 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16364 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16365 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16366 16367 if (!IsNeg) 16368 return Res; 16369 16370 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16371 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16372 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16373 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16374 16375 if (!IsProfitable(IsNeg, false, VT)) 16376 return SDValue(); 16377 16378 SDValue Op0 = N->getOperand(0); 16379 SDValue Op1 = 16380 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16381 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16382 16383 if (!IsNeg) 16384 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16385 else 16386 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16387 16388 } else { 16389 return SDValue(); 16390 } 16391 } 16392 16393 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16394 // in combiner since we need to check SD flags and other subtarget features. 16395 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16396 DAGCombinerInfo &DCI) const { 16397 SDValue N0 = N->getOperand(0); 16398 SDValue N1 = N->getOperand(1); 16399 SDValue N2 = N->getOperand(2); 16400 SDNodeFlags Flags = N->getFlags(); 16401 EVT VT = N->getValueType(0); 16402 SelectionDAG &DAG = DCI.DAG; 16403 const TargetOptions &Options = getTargetMachine().Options; 16404 unsigned Opc = N->getOpcode(); 16405 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16406 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16407 SDLoc Loc(N); 16408 16409 if (!isOperationLegal(ISD::FMA, VT)) 16410 return SDValue(); 16411 16412 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16413 // since (fnmsub a b c)=-0 while c-ab=+0. 16414 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16415 return SDValue(); 16416 16417 // (fma (fneg a) b c) => (fnmsub a b c) 16418 // (fnmsub (fneg a) b c) => (fma a b c) 16419 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16420 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16421 16422 // (fma a (fneg b) c) => (fnmsub a b c) 16423 // (fnmsub a (fneg b) c) => (fma a b c) 16424 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16425 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16426 16427 return SDValue(); 16428 } 16429 16430 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16431 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16432 if (!Subtarget.is64BitELFABI()) 16433 return false; 16434 16435 // If not a tail call then no need to proceed. 16436 if (!CI->isTailCall()) 16437 return false; 16438 16439 // If sibling calls have been disabled and tail-calls aren't guaranteed 16440 // there is no reason to duplicate. 16441 auto &TM = getTargetMachine(); 16442 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16443 return false; 16444 16445 // Can't tail call a function called indirectly, or if it has variadic args. 16446 const Function *Callee = CI->getCalledFunction(); 16447 if (!Callee || Callee->isVarArg()) 16448 return false; 16449 16450 // Make sure the callee and caller calling conventions are eligible for tco. 16451 const Function *Caller = CI->getParent()->getParent(); 16452 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16453 CI->getCallingConv())) 16454 return false; 16455 16456 // If the function is local then we have a good chance at tail-calling it 16457 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16458 } 16459 16460 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16461 if (!Subtarget.hasVSX()) 16462 return false; 16463 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16464 return true; 16465 return VT == MVT::f32 || VT == MVT::f64 || 16466 VT == MVT::v4f32 || VT == MVT::v2f64; 16467 } 16468 16469 bool PPCTargetLowering:: 16470 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16471 const Value *Mask = AndI.getOperand(1); 16472 // If the mask is suitable for andi. or andis. we should sink the and. 16473 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16474 // Can't handle constants wider than 64-bits. 16475 if (CI->getBitWidth() > 64) 16476 return false; 16477 int64_t ConstVal = CI->getZExtValue(); 16478 return isUInt<16>(ConstVal) || 16479 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16480 } 16481 16482 // For non-constant masks, we can always use the record-form and. 16483 return true; 16484 } 16485 16486 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16487 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16488 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16489 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16490 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16491 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16492 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16493 assert(Subtarget.hasP9Altivec() && 16494 "Only combine this when P9 altivec supported!"); 16495 EVT VT = N->getValueType(0); 16496 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16497 return SDValue(); 16498 16499 SelectionDAG &DAG = DCI.DAG; 16500 SDLoc dl(N); 16501 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16502 // Even for signed integers, if it's known to be positive (as signed 16503 // integer) due to zero-extended inputs. 16504 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16505 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16506 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16507 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16508 (SubOpcd1 == ISD::ZERO_EXTEND || 16509 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16510 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16511 N->getOperand(0)->getOperand(0), 16512 N->getOperand(0)->getOperand(1), 16513 DAG.getTargetConstant(0, dl, MVT::i32)); 16514 } 16515 16516 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16517 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16518 N->getOperand(0).hasOneUse()) { 16519 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16520 N->getOperand(0)->getOperand(0), 16521 N->getOperand(0)->getOperand(1), 16522 DAG.getTargetConstant(1, dl, MVT::i32)); 16523 } 16524 } 16525 16526 return SDValue(); 16527 } 16528 16529 // For type v4i32/v8ii16/v16i8, transform 16530 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16531 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16532 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16533 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16534 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16535 DAGCombinerInfo &DCI) const { 16536 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16537 assert(Subtarget.hasP9Altivec() && 16538 "Only combine this when P9 altivec supported!"); 16539 16540 SelectionDAG &DAG = DCI.DAG; 16541 SDLoc dl(N); 16542 SDValue Cond = N->getOperand(0); 16543 SDValue TrueOpnd = N->getOperand(1); 16544 SDValue FalseOpnd = N->getOperand(2); 16545 EVT VT = N->getOperand(1).getValueType(); 16546 16547 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16548 FalseOpnd.getOpcode() != ISD::SUB) 16549 return SDValue(); 16550 16551 // ABSD only available for type v4i32/v8i16/v16i8 16552 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16553 return SDValue(); 16554 16555 // At least to save one more dependent computation 16556 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16557 return SDValue(); 16558 16559 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16560 16561 // Can only handle unsigned comparison here 16562 switch (CC) { 16563 default: 16564 return SDValue(); 16565 case ISD::SETUGT: 16566 case ISD::SETUGE: 16567 break; 16568 case ISD::SETULT: 16569 case ISD::SETULE: 16570 std::swap(TrueOpnd, FalseOpnd); 16571 break; 16572 } 16573 16574 SDValue CmpOpnd1 = Cond.getOperand(0); 16575 SDValue CmpOpnd2 = Cond.getOperand(1); 16576 16577 // SETCC CmpOpnd1 CmpOpnd2 cond 16578 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16579 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16580 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16581 TrueOpnd.getOperand(1) == CmpOpnd2 && 16582 FalseOpnd.getOperand(0) == CmpOpnd2 && 16583 FalseOpnd.getOperand(1) == CmpOpnd1) { 16584 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16585 CmpOpnd1, CmpOpnd2, 16586 DAG.getTargetConstant(0, dl, MVT::i32)); 16587 } 16588 16589 return SDValue(); 16590 } 16591