1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/VectorExtras.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Function.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/DerivedTypes.h" 39 using namespace llvm; 40 41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 42 CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, 44 CCState &State); 45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 46 MVT &LocVT, 47 CCValAssign::LocInfo &LocInfo, 48 ISD::ArgFlagsTy &ArgFlags, 49 CCState &State); 50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 51 MVT &LocVT, 52 CCValAssign::LocInfo &LocInfo, 53 ISD::ArgFlagsTy &ArgFlags, 54 CCState &State); 55 56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 57 cl::desc("enable preincrement load/store generation on PPC (experimental)"), 58 cl::Hidden); 59 60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65 } 66 67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 70 setPow2DivIsCheap(); 71 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 82 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 83 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 84 85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 88 89 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 90 91 // PowerPC has pre-inc load and store's. 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 102 103 // This is used in the ppcf128->int sequence. Note it has different semantics 104 // from FP_ROUND: that rounds to nearest, this rounds to zero. 105 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 106 107 // PowerPC has no SREM/UREM instructions 108 setOperationAction(ISD::SREM, MVT::i32, Expand); 109 setOperationAction(ISD::UREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i64, Expand); 111 setOperationAction(ISD::UREM, MVT::i64, Expand); 112 113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 118 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 119 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 120 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 121 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 122 123 // We don't support sin/cos/sqrt/fmod/pow 124 setOperationAction(ISD::FSIN , MVT::f64, Expand); 125 setOperationAction(ISD::FCOS , MVT::f64, Expand); 126 setOperationAction(ISD::FREM , MVT::f64, Expand); 127 setOperationAction(ISD::FPOW , MVT::f64, Expand); 128 setOperationAction(ISD::FMA , MVT::f64, Expand); 129 setOperationAction(ISD::FSIN , MVT::f32, Expand); 130 setOperationAction(ISD::FCOS , MVT::f32, Expand); 131 setOperationAction(ISD::FREM , MVT::f32, Expand); 132 setOperationAction(ISD::FPOW , MVT::f32, Expand); 133 setOperationAction(ISD::FMA , MVT::f32, Expand); 134 135 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 136 137 // If we're enabling GP optimizations, use hardware square root 138 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 139 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 140 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 141 } 142 143 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 144 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 145 146 // PowerPC does not have BSWAP, CTPOP or CTTZ 147 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 148 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 149 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 150 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 151 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 152 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 153 154 // PowerPC does not have ROTR 155 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 156 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 157 158 // PowerPC does not have Select 159 setOperationAction(ISD::SELECT, MVT::i32, Expand); 160 setOperationAction(ISD::SELECT, MVT::i64, Expand); 161 setOperationAction(ISD::SELECT, MVT::f32, Expand); 162 setOperationAction(ISD::SELECT, MVT::f64, Expand); 163 164 // PowerPC wants to turn select_cc of FP into fsel when possible. 165 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 166 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 167 168 // PowerPC wants to optimize integer setcc a bit 169 setOperationAction(ISD::SETCC, MVT::i32, Custom); 170 171 // PowerPC does not have BRCOND which requires SetCC 172 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 176 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 177 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 178 179 // PowerPC does not have [U|S]INT_TO_FP 180 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 181 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 182 183 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 184 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 185 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 186 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 187 188 // We cannot sextinreg(i1). Expand to shifts. 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 190 191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 192 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 193 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 194 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 195 196 197 // We want to legalize GlobalAddress and ConstantPool nodes into the 198 // appropriate instructions to materialize the address. 199 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 200 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 201 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 202 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 203 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 204 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 205 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 206 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 207 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 208 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 209 210 // TRAP is legal. 211 setOperationAction(ISD::TRAP, MVT::Other, Legal); 212 213 // TRAMPOLINE is custom lowered. 214 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 215 216 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 217 setOperationAction(ISD::VASTART , MVT::Other, Custom); 218 219 // VAARG is custom lowered with the 32-bit SVR4 ABI. 220 if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 221 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) { 222 setOperationAction(ISD::VAARG, MVT::Other, Custom); 223 setOperationAction(ISD::VAARG, MVT::i64, Custom); 224 } else 225 setOperationAction(ISD::VAARG, MVT::Other, Expand); 226 227 // Use the default implementation. 228 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 229 setOperationAction(ISD::VAEND , MVT::Other, Expand); 230 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 231 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 232 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 233 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 234 235 // We want to custom lower some of our intrinsics. 236 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 237 238 // Comparisons that require checking two conditions. 239 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 240 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 241 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 242 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 243 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 244 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 245 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 246 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 247 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 248 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 249 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 250 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 251 252 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 253 // They also have instructions for converting between i64 and fp. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 255 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 258 // This is just the low 32 bits of a (signed) fp->i64 conversion. 259 // We cannot do this with Promote because i64 is not a legal type. 260 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 261 262 // FIXME: disable this lowered code. This generates 64-bit register values, 263 // and we don't model the fact that the top part is clobbered by calls. We 264 // need to flag these together so that the value isn't live across a call. 265 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 266 } else { 267 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 268 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 269 } 270 271 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 272 // 64-bit PowerPC implementations can support i64 types directly 273 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 274 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 275 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 276 // 64-bit PowerPC wants to expand i128 shifts itself. 277 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 278 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 279 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 280 } else { 281 // 32-bit PowerPC wants to expand i64 shifts itself. 282 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 283 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 284 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 285 } 286 287 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 288 // First set operation action for all vector types to expand. Then we 289 // will selectively turn on ones that can be effectively codegen'd. 290 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 291 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 292 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 293 294 // add/sub are legal for all supported vector VT's. 295 setOperationAction(ISD::ADD , VT, Legal); 296 setOperationAction(ISD::SUB , VT, Legal); 297 298 // We promote all shuffles to v16i8. 299 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 300 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 301 302 // We promote all non-typed operations to v4i32. 303 setOperationAction(ISD::AND , VT, Promote); 304 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 305 setOperationAction(ISD::OR , VT, Promote); 306 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 307 setOperationAction(ISD::XOR , VT, Promote); 308 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 309 setOperationAction(ISD::LOAD , VT, Promote); 310 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 311 setOperationAction(ISD::SELECT, VT, Promote); 312 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 313 setOperationAction(ISD::STORE, VT, Promote); 314 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 315 316 // No other operations are legal. 317 setOperationAction(ISD::MUL , VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::SREM, VT, Expand); 320 setOperationAction(ISD::UDIV, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::FDIV, VT, Expand); 323 setOperationAction(ISD::FNEG, VT, Expand); 324 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 325 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 326 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 327 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 328 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 329 setOperationAction(ISD::UDIVREM, VT, Expand); 330 setOperationAction(ISD::SDIVREM, VT, Expand); 331 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 332 setOperationAction(ISD::FPOW, VT, Expand); 333 setOperationAction(ISD::CTPOP, VT, Expand); 334 setOperationAction(ISD::CTLZ, VT, Expand); 335 setOperationAction(ISD::CTTZ, VT, Expand); 336 } 337 338 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 339 // with merges, splats, etc. 340 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 341 342 setOperationAction(ISD::AND , MVT::v4i32, Legal); 343 setOperationAction(ISD::OR , MVT::v4i32, Legal); 344 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 345 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 346 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 347 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 348 349 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 350 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 351 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 352 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 353 354 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 355 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 356 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 357 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 358 359 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 360 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 361 362 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 363 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 364 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 365 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 366 } 367 368 setBooleanContents(ZeroOrOneBooleanContent); 369 370 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 371 setStackPointerRegisterToSaveRestore(PPC::X1); 372 setExceptionPointerRegister(PPC::X3); 373 setExceptionSelectorRegister(PPC::X4); 374 } else { 375 setStackPointerRegisterToSaveRestore(PPC::R1); 376 setExceptionPointerRegister(PPC::R3); 377 setExceptionSelectorRegister(PPC::R4); 378 } 379 380 // We have target-specific dag combine patterns for the following nodes: 381 setTargetDAGCombine(ISD::SINT_TO_FP); 382 setTargetDAGCombine(ISD::STORE); 383 setTargetDAGCombine(ISD::BR_CC); 384 setTargetDAGCombine(ISD::BSWAP); 385 386 // Darwin long double math library functions have $LDBL128 appended. 387 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 388 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 389 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 390 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 391 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 392 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 393 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 394 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 395 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 396 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 397 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 398 } 399 400 setMinFunctionAlignment(2); 401 if (PPCSubTarget.isDarwin()) 402 setPrefFunctionAlignment(4); 403 404 setInsertFencesForAtomic(true); 405 406 computeRegisterProperties(); 407 } 408 409 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 410 /// function arguments in the caller parameter area. 411 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 412 const TargetMachine &TM = getTargetMachine(); 413 // Darwin passes everything on 4 byte boundary. 414 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 415 return 4; 416 // FIXME SVR4 TBD 417 return 4; 418 } 419 420 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 421 switch (Opcode) { 422 default: return 0; 423 case PPCISD::FSEL: return "PPCISD::FSEL"; 424 case PPCISD::FCFID: return "PPCISD::FCFID"; 425 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 426 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 427 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 428 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 429 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 430 case PPCISD::VPERM: return "PPCISD::VPERM"; 431 case PPCISD::Hi: return "PPCISD::Hi"; 432 case PPCISD::Lo: return "PPCISD::Lo"; 433 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 434 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 435 case PPCISD::LOAD: return "PPCISD::LOAD"; 436 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 437 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 438 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 439 case PPCISD::SRL: return "PPCISD::SRL"; 440 case PPCISD::SRA: return "PPCISD::SRA"; 441 case PPCISD::SHL: return "PPCISD::SHL"; 442 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 443 case PPCISD::STD_32: return "PPCISD::STD_32"; 444 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 445 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 446 case PPCISD::NOP: return "PPCISD::NOP"; 447 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 448 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 449 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 450 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 451 case PPCISD::MFCR: return "PPCISD::MFCR"; 452 case PPCISD::VCMP: return "PPCISD::VCMP"; 453 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 454 case PPCISD::LBRX: return "PPCISD::LBRX"; 455 case PPCISD::STBRX: return "PPCISD::STBRX"; 456 case PPCISD::LARX: return "PPCISD::LARX"; 457 case PPCISD::STCX: return "PPCISD::STCX"; 458 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 459 case PPCISD::MFFS: return "PPCISD::MFFS"; 460 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 461 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 462 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 463 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 464 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 465 } 466 } 467 468 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { 469 return MVT::i32; 470 } 471 472 //===----------------------------------------------------------------------===// 473 // Node matching predicates, for use by the tblgen matching code. 474 //===----------------------------------------------------------------------===// 475 476 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 477 static bool isFloatingPointZero(SDValue Op) { 478 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 479 return CFP->getValueAPF().isZero(); 480 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 481 // Maybe this has already been legalized into the constant pool? 482 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 484 return CFP->getValueAPF().isZero(); 485 } 486 return false; 487 } 488 489 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 490 /// true if Op is undef or if it matches the specified value. 491 static bool isConstantOrUndef(int Op, int Val) { 492 return Op < 0 || Op == Val; 493 } 494 495 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 496 /// VPKUHUM instruction. 497 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 498 if (!isUnary) { 499 for (unsigned i = 0; i != 16; ++i) 500 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 501 return false; 502 } else { 503 for (unsigned i = 0; i != 8; ++i) 504 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 505 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 506 return false; 507 } 508 return true; 509 } 510 511 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 512 /// VPKUWUM instruction. 513 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 514 if (!isUnary) { 515 for (unsigned i = 0; i != 16; i += 2) 516 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 517 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 518 return false; 519 } else { 520 for (unsigned i = 0; i != 8; i += 2) 521 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 522 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 523 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 524 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 525 return false; 526 } 527 return true; 528 } 529 530 /// isVMerge - Common function, used to match vmrg* shuffles. 531 /// 532 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 533 unsigned LHSStart, unsigned RHSStart) { 534 assert(N->getValueType(0) == MVT::v16i8 && 535 "PPC only supports shuffles by bytes!"); 536 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 537 "Unsupported merge size!"); 538 539 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 540 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 541 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 542 LHSStart+j+i*UnitSize) || 543 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 544 RHSStart+j+i*UnitSize)) 545 return false; 546 } 547 return true; 548 } 549 550 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 551 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 552 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 553 bool isUnary) { 554 if (!isUnary) 555 return isVMerge(N, UnitSize, 8, 24); 556 return isVMerge(N, UnitSize, 8, 8); 557 } 558 559 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 560 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 561 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 562 bool isUnary) { 563 if (!isUnary) 564 return isVMerge(N, UnitSize, 0, 16); 565 return isVMerge(N, UnitSize, 0, 0); 566 } 567 568 569 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 570 /// amount, otherwise return -1. 571 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 572 assert(N->getValueType(0) == MVT::v16i8 && 573 "PPC only supports shuffles by bytes!"); 574 575 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 576 577 // Find the first non-undef value in the shuffle mask. 578 unsigned i; 579 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 580 /*search*/; 581 582 if (i == 16) return -1; // all undef. 583 584 // Otherwise, check to see if the rest of the elements are consecutively 585 // numbered from this value. 586 unsigned ShiftAmt = SVOp->getMaskElt(i); 587 if (ShiftAmt < i) return -1; 588 ShiftAmt -= i; 589 590 if (!isUnary) { 591 // Check the rest of the elements to see if they are consecutive. 592 for (++i; i != 16; ++i) 593 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 594 return -1; 595 } else { 596 // Check the rest of the elements to see if they are consecutive. 597 for (++i; i != 16; ++i) 598 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 599 return -1; 600 } 601 return ShiftAmt; 602 } 603 604 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 605 /// specifies a splat of a single element that is suitable for input to 606 /// VSPLTB/VSPLTH/VSPLTW. 607 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 608 assert(N->getValueType(0) == MVT::v16i8 && 609 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 610 611 // This is a splat operation if each element of the permute is the same, and 612 // if the value doesn't reference the second vector. 613 unsigned ElementBase = N->getMaskElt(0); 614 615 // FIXME: Handle UNDEF elements too! 616 if (ElementBase >= 16) 617 return false; 618 619 // Check that the indices are consecutive, in the case of a multi-byte element 620 // splatted with a v16i8 mask. 621 for (unsigned i = 1; i != EltSize; ++i) 622 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 623 return false; 624 625 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 626 if (N->getMaskElt(i) < 0) continue; 627 for (unsigned j = 0; j != EltSize; ++j) 628 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 629 return false; 630 } 631 return true; 632 } 633 634 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 635 /// are -0.0. 636 bool PPC::isAllNegativeZeroVector(SDNode *N) { 637 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 638 639 APInt APVal, APUndef; 640 unsigned BitSize; 641 bool HasAnyUndefs; 642 643 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 644 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 645 return CFP->getValueAPF().isNegZero(); 646 647 return false; 648 } 649 650 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 651 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 652 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 653 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 654 assert(isSplatShuffleMask(SVOp, EltSize)); 655 return SVOp->getMaskElt(0) / EltSize; 656 } 657 658 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 659 /// by using a vspltis[bhw] instruction of the specified element size, return 660 /// the constant being splatted. The ByteSize field indicates the number of 661 /// bytes of each element [124] -> [bhw]. 662 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 663 SDValue OpVal(0, 0); 664 665 // If ByteSize of the splat is bigger than the element size of the 666 // build_vector, then we have a case where we are checking for a splat where 667 // multiple elements of the buildvector are folded together into a single 668 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 669 unsigned EltSize = 16/N->getNumOperands(); 670 if (EltSize < ByteSize) { 671 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 672 SDValue UniquedVals[4]; 673 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 674 675 // See if all of the elements in the buildvector agree across. 676 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 677 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 678 // If the element isn't a constant, bail fully out. 679 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 680 681 682 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 683 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 684 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 685 return SDValue(); // no match. 686 } 687 688 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 689 // either constant or undef values that are identical for each chunk. See 690 // if these chunks can form into a larger vspltis*. 691 692 // Check to see if all of the leading entries are either 0 or -1. If 693 // neither, then this won't fit into the immediate field. 694 bool LeadingZero = true; 695 bool LeadingOnes = true; 696 for (unsigned i = 0; i != Multiple-1; ++i) { 697 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 698 699 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 700 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 701 } 702 // Finally, check the least significant entry. 703 if (LeadingZero) { 704 if (UniquedVals[Multiple-1].getNode() == 0) 705 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 706 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 707 if (Val < 16) 708 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 709 } 710 if (LeadingOnes) { 711 if (UniquedVals[Multiple-1].getNode() == 0) 712 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 713 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 714 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 715 return DAG.getTargetConstant(Val, MVT::i32); 716 } 717 718 return SDValue(); 719 } 720 721 // Check to see if this buildvec has a single non-undef value in its elements. 722 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 723 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 724 if (OpVal.getNode() == 0) 725 OpVal = N->getOperand(i); 726 else if (OpVal != N->getOperand(i)) 727 return SDValue(); 728 } 729 730 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 731 732 unsigned ValSizeInBytes = EltSize; 733 uint64_t Value = 0; 734 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 735 Value = CN->getZExtValue(); 736 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 737 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 738 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 739 } 740 741 // If the splat value is larger than the element value, then we can never do 742 // this splat. The only case that we could fit the replicated bits into our 743 // immediate field for would be zero, and we prefer to use vxor for it. 744 if (ValSizeInBytes < ByteSize) return SDValue(); 745 746 // If the element value is larger than the splat value, cut it in half and 747 // check to see if the two halves are equal. Continue doing this until we 748 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 749 while (ValSizeInBytes > ByteSize) { 750 ValSizeInBytes >>= 1; 751 752 // If the top half equals the bottom half, we're still ok. 753 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 754 (Value & ((1 << (8*ValSizeInBytes))-1))) 755 return SDValue(); 756 } 757 758 // Properly sign extend the value. 759 int ShAmt = (4-ByteSize)*8; 760 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 761 762 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 763 if (MaskVal == 0) return SDValue(); 764 765 // Finally, if this value fits in a 5 bit sext field, return it 766 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 767 return DAG.getTargetConstant(MaskVal, MVT::i32); 768 return SDValue(); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // Addressing Mode Selection 773 //===----------------------------------------------------------------------===// 774 775 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 776 /// or 64-bit immediate, and if the value can be accurately represented as a 777 /// sign extension from a 16-bit value. If so, this returns true and the 778 /// immediate. 779 static bool isIntS16Immediate(SDNode *N, short &Imm) { 780 if (N->getOpcode() != ISD::Constant) 781 return false; 782 783 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 784 if (N->getValueType(0) == MVT::i32) 785 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 786 else 787 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 788 } 789 static bool isIntS16Immediate(SDValue Op, short &Imm) { 790 return isIntS16Immediate(Op.getNode(), Imm); 791 } 792 793 794 /// SelectAddressRegReg - Given the specified addressed, check to see if it 795 /// can be represented as an indexed [r+r] operation. Returns false if it 796 /// can be more efficiently represented with [r+imm]. 797 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 798 SDValue &Index, 799 SelectionDAG &DAG) const { 800 short imm = 0; 801 if (N.getOpcode() == ISD::ADD) { 802 if (isIntS16Immediate(N.getOperand(1), imm)) 803 return false; // r+i 804 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 805 return false; // r+i 806 807 Base = N.getOperand(0); 808 Index = N.getOperand(1); 809 return true; 810 } else if (N.getOpcode() == ISD::OR) { 811 if (isIntS16Immediate(N.getOperand(1), imm)) 812 return false; // r+i can fold it if we can. 813 814 // If this is an or of disjoint bitfields, we can codegen this as an add 815 // (for better address arithmetic) if the LHS and RHS of the OR are provably 816 // disjoint. 817 APInt LHSKnownZero, LHSKnownOne; 818 APInt RHSKnownZero, RHSKnownOne; 819 DAG.ComputeMaskedBits(N.getOperand(0), 820 APInt::getAllOnesValue(N.getOperand(0) 821 .getValueSizeInBits()), 822 LHSKnownZero, LHSKnownOne); 823 824 if (LHSKnownZero.getBoolValue()) { 825 DAG.ComputeMaskedBits(N.getOperand(1), 826 APInt::getAllOnesValue(N.getOperand(1) 827 .getValueSizeInBits()), 828 RHSKnownZero, RHSKnownOne); 829 // If all of the bits are known zero on the LHS or RHS, the add won't 830 // carry. 831 if (~(LHSKnownZero | RHSKnownZero) == 0) { 832 Base = N.getOperand(0); 833 Index = N.getOperand(1); 834 return true; 835 } 836 } 837 } 838 839 return false; 840 } 841 842 /// Returns true if the address N can be represented by a base register plus 843 /// a signed 16-bit displacement [r+imm], and if it is not better 844 /// represented as reg+reg. 845 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 846 SDValue &Base, 847 SelectionDAG &DAG) const { 848 // FIXME dl should come from parent load or store, not from address 849 DebugLoc dl = N.getDebugLoc(); 850 // If this can be more profitably realized as r+r, fail. 851 if (SelectAddressRegReg(N, Disp, Base, DAG)) 852 return false; 853 854 if (N.getOpcode() == ISD::ADD) { 855 short imm = 0; 856 if (isIntS16Immediate(N.getOperand(1), imm)) { 857 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 859 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 860 } else { 861 Base = N.getOperand(0); 862 } 863 return true; // [r+i] 864 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 865 // Match LOAD (ADD (X, Lo(G))). 866 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 867 && "Cannot handle constant offsets yet!"); 868 Disp = N.getOperand(1).getOperand(0); // The global address. 869 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 870 Disp.getOpcode() == ISD::TargetConstantPool || 871 Disp.getOpcode() == ISD::TargetJumpTable); 872 Base = N.getOperand(0); 873 return true; // [&g+r] 874 } 875 } else if (N.getOpcode() == ISD::OR) { 876 short imm = 0; 877 if (isIntS16Immediate(N.getOperand(1), imm)) { 878 // If this is an or of disjoint bitfields, we can codegen this as an add 879 // (for better address arithmetic) if the LHS and RHS of the OR are 880 // provably disjoint. 881 APInt LHSKnownZero, LHSKnownOne; 882 DAG.ComputeMaskedBits(N.getOperand(0), 883 APInt::getAllOnesValue(N.getOperand(0) 884 .getValueSizeInBits()), 885 LHSKnownZero, LHSKnownOne); 886 887 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 888 // If all of the bits are known zero on the LHS or RHS, the add won't 889 // carry. 890 Base = N.getOperand(0); 891 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 892 return true; 893 } 894 } 895 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 896 // Loading from a constant address. 897 898 // If this address fits entirely in a 16-bit sext immediate field, codegen 899 // this as "d, 0" 900 short Imm; 901 if (isIntS16Immediate(CN, Imm)) { 902 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 903 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 904 CN->getValueType(0)); 905 return true; 906 } 907 908 // Handle 32-bit sext immediates with LIS + addr mode. 909 if (CN->getValueType(0) == MVT::i32 || 910 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 911 int Addr = (int)CN->getZExtValue(); 912 913 // Otherwise, break this down into an LIS + disp. 914 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 915 916 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 917 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 918 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 919 return true; 920 } 921 } 922 923 Disp = DAG.getTargetConstant(0, getPointerTy()); 924 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 925 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 926 else 927 Base = N; 928 return true; // [r+0] 929 } 930 931 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 932 /// represented as an indexed [r+r] operation. 933 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 934 SDValue &Index, 935 SelectionDAG &DAG) const { 936 // Check to see if we can easily represent this as an [r+r] address. This 937 // will fail if it thinks that the address is more profitably represented as 938 // reg+imm, e.g. where imm = 0. 939 if (SelectAddressRegReg(N, Base, Index, DAG)) 940 return true; 941 942 // If the operand is an addition, always emit this as [r+r], since this is 943 // better (for code size, and execution, as the memop does the add for free) 944 // than emitting an explicit add. 945 if (N.getOpcode() == ISD::ADD) { 946 Base = N.getOperand(0); 947 Index = N.getOperand(1); 948 return true; 949 } 950 951 // Otherwise, do it the hard way, using R0 as the base register. 952 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 953 N.getValueType()); 954 Index = N; 955 return true; 956 } 957 958 /// SelectAddressRegImmShift - Returns true if the address N can be 959 /// represented by a base register plus a signed 14-bit displacement 960 /// [r+imm*4]. Suitable for use by STD and friends. 961 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 962 SDValue &Base, 963 SelectionDAG &DAG) const { 964 // FIXME dl should come from the parent load or store, not the address 965 DebugLoc dl = N.getDebugLoc(); 966 // If this can be more profitably realized as r+r, fail. 967 if (SelectAddressRegReg(N, Disp, Base, DAG)) 968 return false; 969 970 if (N.getOpcode() == ISD::ADD) { 971 short imm = 0; 972 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 973 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 974 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 975 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 976 } else { 977 Base = N.getOperand(0); 978 } 979 return true; // [r+i] 980 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 981 // Match LOAD (ADD (X, Lo(G))). 982 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 983 && "Cannot handle constant offsets yet!"); 984 Disp = N.getOperand(1).getOperand(0); // The global address. 985 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 986 Disp.getOpcode() == ISD::TargetConstantPool || 987 Disp.getOpcode() == ISD::TargetJumpTable); 988 Base = N.getOperand(0); 989 return true; // [&g+r] 990 } 991 } else if (N.getOpcode() == ISD::OR) { 992 short imm = 0; 993 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 994 // If this is an or of disjoint bitfields, we can codegen this as an add 995 // (for better address arithmetic) if the LHS and RHS of the OR are 996 // provably disjoint. 997 APInt LHSKnownZero, LHSKnownOne; 998 DAG.ComputeMaskedBits(N.getOperand(0), 999 APInt::getAllOnesValue(N.getOperand(0) 1000 .getValueSizeInBits()), 1001 LHSKnownZero, LHSKnownOne); 1002 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1003 // If all of the bits are known zero on the LHS or RHS, the add won't 1004 // carry. 1005 Base = N.getOperand(0); 1006 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1007 return true; 1008 } 1009 } 1010 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1011 // Loading from a constant address. Verify low two bits are clear. 1012 if ((CN->getZExtValue() & 3) == 0) { 1013 // If this address fits entirely in a 14-bit sext immediate field, codegen 1014 // this as "d, 0" 1015 short Imm; 1016 if (isIntS16Immediate(CN, Imm)) { 1017 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1018 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1019 CN->getValueType(0)); 1020 return true; 1021 } 1022 1023 // Fold the low-part of 32-bit absolute addresses into addr mode. 1024 if (CN->getValueType(0) == MVT::i32 || 1025 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1026 int Addr = (int)CN->getZExtValue(); 1027 1028 // Otherwise, break this down into an LIS + disp. 1029 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1030 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1031 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1032 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1033 return true; 1034 } 1035 } 1036 } 1037 1038 Disp = DAG.getTargetConstant(0, getPointerTy()); 1039 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1040 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1041 else 1042 Base = N; 1043 return true; // [r+0] 1044 } 1045 1046 1047 /// getPreIndexedAddressParts - returns true by value, base pointer and 1048 /// offset pointer and addressing mode by reference if the node's address 1049 /// can be legally represented as pre-indexed load / store address. 1050 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1051 SDValue &Offset, 1052 ISD::MemIndexedMode &AM, 1053 SelectionDAG &DAG) const { 1054 // Disabled by default for now. 1055 if (!EnablePPCPreinc) return false; 1056 1057 SDValue Ptr; 1058 EVT VT; 1059 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1060 Ptr = LD->getBasePtr(); 1061 VT = LD->getMemoryVT(); 1062 1063 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1064 Ptr = ST->getBasePtr(); 1065 VT = ST->getMemoryVT(); 1066 } else 1067 return false; 1068 1069 // PowerPC doesn't have preinc load/store instructions for vectors. 1070 if (VT.isVector()) 1071 return false; 1072 1073 // TODO: Check reg+reg first. 1074 1075 // LDU/STU use reg+imm*4, others use reg+imm. 1076 if (VT != MVT::i64) { 1077 // reg + imm 1078 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1079 return false; 1080 } else { 1081 // reg + imm * 4. 1082 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1083 return false; 1084 } 1085 1086 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1087 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1088 // sext i32 to i64 when addr mode is r+i. 1089 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1090 LD->getExtensionType() == ISD::SEXTLOAD && 1091 isa<ConstantSDNode>(Offset)) 1092 return false; 1093 } 1094 1095 AM = ISD::PRE_INC; 1096 return true; 1097 } 1098 1099 //===----------------------------------------------------------------------===// 1100 // LowerOperation implementation 1101 //===----------------------------------------------------------------------===// 1102 1103 /// GetLabelAccessInfo - Return true if we should reference labels using a 1104 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1105 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1106 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1107 HiOpFlags = PPCII::MO_HA16; 1108 LoOpFlags = PPCII::MO_LO16; 1109 1110 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1111 // non-darwin platform. We don't support PIC on other platforms yet. 1112 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1113 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1114 if (isPIC) { 1115 HiOpFlags |= PPCII::MO_PIC_FLAG; 1116 LoOpFlags |= PPCII::MO_PIC_FLAG; 1117 } 1118 1119 // If this is a reference to a global value that requires a non-lazy-ptr, make 1120 // sure that instruction lowering adds it. 1121 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1122 HiOpFlags |= PPCII::MO_NLP_FLAG; 1123 LoOpFlags |= PPCII::MO_NLP_FLAG; 1124 1125 if (GV->hasHiddenVisibility()) { 1126 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1127 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1128 } 1129 } 1130 1131 return isPIC; 1132 } 1133 1134 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1135 SelectionDAG &DAG) { 1136 EVT PtrVT = HiPart.getValueType(); 1137 SDValue Zero = DAG.getConstant(0, PtrVT); 1138 DebugLoc DL = HiPart.getDebugLoc(); 1139 1140 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1141 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1142 1143 // With PIC, the first instruction is actually "GR+hi(&G)". 1144 if (isPIC) 1145 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1146 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1147 1148 // Generate non-pic code that has direct accesses to the constant pool. 1149 // The address of the global is just (hi(&g)+lo(&g)). 1150 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1151 } 1152 1153 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1154 SelectionDAG &DAG) const { 1155 EVT PtrVT = Op.getValueType(); 1156 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1157 const Constant *C = CP->getConstVal(); 1158 1159 unsigned MOHiFlag, MOLoFlag; 1160 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1161 SDValue CPIHi = 1162 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1163 SDValue CPILo = 1164 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1165 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1166 } 1167 1168 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1169 EVT PtrVT = Op.getValueType(); 1170 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1171 1172 unsigned MOHiFlag, MOLoFlag; 1173 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1174 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1175 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1176 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1177 } 1178 1179 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1180 SelectionDAG &DAG) const { 1181 EVT PtrVT = Op.getValueType(); 1182 1183 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1184 1185 unsigned MOHiFlag, MOLoFlag; 1186 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1187 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1188 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1189 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1190 } 1191 1192 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1193 SelectionDAG &DAG) const { 1194 EVT PtrVT = Op.getValueType(); 1195 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1196 DebugLoc DL = GSDN->getDebugLoc(); 1197 const GlobalValue *GV = GSDN->getGlobal(); 1198 1199 // 64-bit SVR4 ABI code is always position-independent. 1200 // The actual address of the GlobalValue is stored in the TOC. 1201 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1202 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1203 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1204 DAG.getRegister(PPC::X2, MVT::i64)); 1205 } 1206 1207 unsigned MOHiFlag, MOLoFlag; 1208 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1209 1210 SDValue GAHi = 1211 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1212 SDValue GALo = 1213 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1214 1215 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1216 1217 // If the global reference is actually to a non-lazy-pointer, we have to do an 1218 // extra load to get the address of the global. 1219 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1220 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1221 false, false, 0); 1222 return Ptr; 1223 } 1224 1225 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1227 DebugLoc dl = Op.getDebugLoc(); 1228 1229 // If we're comparing for equality to zero, expose the fact that this is 1230 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1231 // fold the new nodes. 1232 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1233 if (C->isNullValue() && CC == ISD::SETEQ) { 1234 EVT VT = Op.getOperand(0).getValueType(); 1235 SDValue Zext = Op.getOperand(0); 1236 if (VT.bitsLT(MVT::i32)) { 1237 VT = MVT::i32; 1238 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1239 } 1240 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1241 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1242 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1243 DAG.getConstant(Log2b, MVT::i32)); 1244 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1245 } 1246 // Leave comparisons against 0 and -1 alone for now, since they're usually 1247 // optimized. FIXME: revisit this when we can custom lower all setcc 1248 // optimizations. 1249 if (C->isAllOnesValue() || C->isNullValue()) 1250 return SDValue(); 1251 } 1252 1253 // If we have an integer seteq/setne, turn it into a compare against zero 1254 // by xor'ing the rhs with the lhs, which is faster than setting a 1255 // condition register, reading it back out, and masking the correct bit. The 1256 // normal approach here uses sub to do this instead of xor. Using xor exposes 1257 // the result to other bit-twiddling opportunities. 1258 EVT LHSVT = Op.getOperand(0).getValueType(); 1259 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1260 EVT VT = Op.getValueType(); 1261 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1262 Op.getOperand(1)); 1263 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1264 } 1265 return SDValue(); 1266 } 1267 1268 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1269 const PPCSubtarget &Subtarget) const { 1270 SDNode *Node = Op.getNode(); 1271 EVT VT = Node->getValueType(0); 1272 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1273 SDValue InChain = Node->getOperand(0); 1274 SDValue VAListPtr = Node->getOperand(1); 1275 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1276 DebugLoc dl = Node->getDebugLoc(); 1277 1278 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1279 1280 // gpr_index 1281 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1282 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1283 false, false, 0); 1284 InChain = GprIndex.getValue(1); 1285 1286 if (VT == MVT::i64) { 1287 // Check if GprIndex is even 1288 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1289 DAG.getConstant(1, MVT::i32)); 1290 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1291 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1292 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1293 DAG.getConstant(1, MVT::i32)); 1294 // Align GprIndex to be even if it isn't 1295 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1296 GprIndex); 1297 } 1298 1299 // fpr index is 1 byte after gpr 1300 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1301 DAG.getConstant(1, MVT::i32)); 1302 1303 // fpr 1304 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1305 FprPtr, MachinePointerInfo(SV), MVT::i8, 1306 false, false, 0); 1307 InChain = FprIndex.getValue(1); 1308 1309 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1310 DAG.getConstant(8, MVT::i32)); 1311 1312 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1313 DAG.getConstant(4, MVT::i32)); 1314 1315 // areas 1316 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1317 MachinePointerInfo(), false, false, 0); 1318 InChain = OverflowArea.getValue(1); 1319 1320 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1321 MachinePointerInfo(), false, false, 0); 1322 InChain = RegSaveArea.getValue(1); 1323 1324 // select overflow_area if index > 8 1325 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1326 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1327 1328 // adjustment constant gpr_index * 4/8 1329 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1330 VT.isInteger() ? GprIndex : FprIndex, 1331 DAG.getConstant(VT.isInteger() ? 4 : 8, 1332 MVT::i32)); 1333 1334 // OurReg = RegSaveArea + RegConstant 1335 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1336 RegConstant); 1337 1338 // Floating types are 32 bytes into RegSaveArea 1339 if (VT.isFloatingPoint()) 1340 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1341 DAG.getConstant(32, MVT::i32)); 1342 1343 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1344 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1345 VT.isInteger() ? GprIndex : FprIndex, 1346 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1347 MVT::i32)); 1348 1349 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1350 VT.isInteger() ? VAListPtr : FprPtr, 1351 MachinePointerInfo(SV), 1352 MVT::i8, false, false, 0); 1353 1354 // determine if we should load from reg_save_area or overflow_area 1355 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1356 1357 // increase overflow_area by 4/8 if gpr/fpr > 8 1358 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1359 DAG.getConstant(VT.isInteger() ? 4 : 8, 1360 MVT::i32)); 1361 1362 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1363 OverflowAreaPlusN); 1364 1365 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1366 OverflowAreaPtr, 1367 MachinePointerInfo(), 1368 MVT::i32, false, false, 0); 1369 1370 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0); 1371 } 1372 1373 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, 1374 SelectionDAG &DAG) const { 1375 SDValue Chain = Op.getOperand(0); 1376 SDValue Trmp = Op.getOperand(1); // trampoline 1377 SDValue FPtr = Op.getOperand(2); // nested function 1378 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1379 DebugLoc dl = Op.getDebugLoc(); 1380 1381 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1382 bool isPPC64 = (PtrVT == MVT::i64); 1383 Type *IntPtrTy = 1384 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1385 *DAG.getContext()); 1386 1387 TargetLowering::ArgListTy Args; 1388 TargetLowering::ArgListEntry Entry; 1389 1390 Entry.Ty = IntPtrTy; 1391 Entry.Node = Trmp; Args.push_back(Entry); 1392 1393 // TrampSize == (isPPC64 ? 48 : 40); 1394 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1395 isPPC64 ? MVT::i64 : MVT::i32); 1396 Args.push_back(Entry); 1397 1398 Entry.Node = FPtr; Args.push_back(Entry); 1399 Entry.Node = Nest; Args.push_back(Entry); 1400 1401 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1402 std::pair<SDValue, SDValue> CallResult = 1403 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), 1404 false, false, false, false, 0, CallingConv::C, false, 1405 /*isReturnValueUsed=*/true, 1406 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1407 Args, DAG, dl); 1408 1409 SDValue Ops[] = 1410 { CallResult.first, CallResult.second }; 1411 1412 return DAG.getMergeValues(Ops, 2, dl); 1413 } 1414 1415 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1416 const PPCSubtarget &Subtarget) const { 1417 MachineFunction &MF = DAG.getMachineFunction(); 1418 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1419 1420 DebugLoc dl = Op.getDebugLoc(); 1421 1422 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1423 // vastart just stores the address of the VarArgsFrameIndex slot into the 1424 // memory location argument. 1425 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1426 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1427 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1428 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1429 MachinePointerInfo(SV), 1430 false, false, 0); 1431 } 1432 1433 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1434 // We suppose the given va_list is already allocated. 1435 // 1436 // typedef struct { 1437 // char gpr; /* index into the array of 8 GPRs 1438 // * stored in the register save area 1439 // * gpr=0 corresponds to r3, 1440 // * gpr=1 to r4, etc. 1441 // */ 1442 // char fpr; /* index into the array of 8 FPRs 1443 // * stored in the register save area 1444 // * fpr=0 corresponds to f1, 1445 // * fpr=1 to f2, etc. 1446 // */ 1447 // char *overflow_arg_area; 1448 // /* location on stack that holds 1449 // * the next overflow argument 1450 // */ 1451 // char *reg_save_area; 1452 // /* where r3:r10 and f1:f8 (if saved) 1453 // * are stored 1454 // */ 1455 // } va_list[1]; 1456 1457 1458 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1459 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1460 1461 1462 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1463 1464 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1465 PtrVT); 1466 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1467 PtrVT); 1468 1469 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1470 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1471 1472 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1473 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1474 1475 uint64_t FPROffset = 1; 1476 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1477 1478 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1479 1480 // Store first byte : number of int regs 1481 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1482 Op.getOperand(1), 1483 MachinePointerInfo(SV), 1484 MVT::i8, false, false, 0); 1485 uint64_t nextOffset = FPROffset; 1486 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1487 ConstFPROffset); 1488 1489 // Store second byte : number of float regs 1490 SDValue secondStore = 1491 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1492 MachinePointerInfo(SV, nextOffset), MVT::i8, 1493 false, false, 0); 1494 nextOffset += StackOffset; 1495 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1496 1497 // Store second word : arguments given on stack 1498 SDValue thirdStore = 1499 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1500 MachinePointerInfo(SV, nextOffset), 1501 false, false, 0); 1502 nextOffset += FrameOffset; 1503 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1504 1505 // Store third word : arguments given in registers 1506 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1507 MachinePointerInfo(SV, nextOffset), 1508 false, false, 0); 1509 1510 } 1511 1512 #include "PPCGenCallingConv.inc" 1513 1514 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1515 CCValAssign::LocInfo &LocInfo, 1516 ISD::ArgFlagsTy &ArgFlags, 1517 CCState &State) { 1518 return true; 1519 } 1520 1521 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1522 MVT &LocVT, 1523 CCValAssign::LocInfo &LocInfo, 1524 ISD::ArgFlagsTy &ArgFlags, 1525 CCState &State) { 1526 static const unsigned ArgRegs[] = { 1527 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1528 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1529 }; 1530 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1531 1532 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1533 1534 // Skip one register if the first unallocated register has an even register 1535 // number and there are still argument registers available which have not been 1536 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1537 // need to skip a register if RegNum is odd. 1538 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1539 State.AllocateReg(ArgRegs[RegNum]); 1540 } 1541 1542 // Always return false here, as this function only makes sure that the first 1543 // unallocated register has an odd register number and does not actually 1544 // allocate a register for the current argument. 1545 return false; 1546 } 1547 1548 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1549 MVT &LocVT, 1550 CCValAssign::LocInfo &LocInfo, 1551 ISD::ArgFlagsTy &ArgFlags, 1552 CCState &State) { 1553 static const unsigned ArgRegs[] = { 1554 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1555 PPC::F8 1556 }; 1557 1558 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1559 1560 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1561 1562 // If there is only one Floating-point register left we need to put both f64 1563 // values of a split ppc_fp128 value on the stack. 1564 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1565 State.AllocateReg(ArgRegs[RegNum]); 1566 } 1567 1568 // Always return false here, as this function only makes sure that the two f64 1569 // values a ppc_fp128 value is split into are both passed in registers or both 1570 // passed on the stack and does not actually allocate a register for the 1571 // current argument. 1572 return false; 1573 } 1574 1575 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1576 /// on Darwin. 1577 static const unsigned *GetFPR() { 1578 static const unsigned FPR[] = { 1579 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1580 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1581 }; 1582 1583 return FPR; 1584 } 1585 1586 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1587 /// the stack. 1588 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1589 unsigned PtrByteSize) { 1590 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1591 if (Flags.isByVal()) 1592 ArgSize = Flags.getByValSize(); 1593 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1594 1595 return ArgSize; 1596 } 1597 1598 SDValue 1599 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1600 CallingConv::ID CallConv, bool isVarArg, 1601 const SmallVectorImpl<ISD::InputArg> 1602 &Ins, 1603 DebugLoc dl, SelectionDAG &DAG, 1604 SmallVectorImpl<SDValue> &InVals) 1605 const { 1606 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1607 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1608 dl, DAG, InVals); 1609 } else { 1610 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1611 dl, DAG, InVals); 1612 } 1613 } 1614 1615 SDValue 1616 PPCTargetLowering::LowerFormalArguments_SVR4( 1617 SDValue Chain, 1618 CallingConv::ID CallConv, bool isVarArg, 1619 const SmallVectorImpl<ISD::InputArg> 1620 &Ins, 1621 DebugLoc dl, SelectionDAG &DAG, 1622 SmallVectorImpl<SDValue> &InVals) const { 1623 1624 // 32-bit SVR4 ABI Stack Frame Layout: 1625 // +-----------------------------------+ 1626 // +--> | Back chain | 1627 // | +-----------------------------------+ 1628 // | | Floating-point register save area | 1629 // | +-----------------------------------+ 1630 // | | General register save area | 1631 // | +-----------------------------------+ 1632 // | | CR save word | 1633 // | +-----------------------------------+ 1634 // | | VRSAVE save word | 1635 // | +-----------------------------------+ 1636 // | | Alignment padding | 1637 // | +-----------------------------------+ 1638 // | | Vector register save area | 1639 // | +-----------------------------------+ 1640 // | | Local variable space | 1641 // | +-----------------------------------+ 1642 // | | Parameter list area | 1643 // | +-----------------------------------+ 1644 // | | LR save word | 1645 // | +-----------------------------------+ 1646 // SP--> +--- | Back chain | 1647 // +-----------------------------------+ 1648 // 1649 // Specifications: 1650 // System V Application Binary Interface PowerPC Processor Supplement 1651 // AltiVec Technology Programming Interface Manual 1652 1653 MachineFunction &MF = DAG.getMachineFunction(); 1654 MachineFrameInfo *MFI = MF.getFrameInfo(); 1655 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1656 1657 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1658 // Potential tail calls could cause overwriting of argument stack slots. 1659 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1660 unsigned PtrByteSize = 4; 1661 1662 // Assign locations to all of the incoming arguments. 1663 SmallVector<CCValAssign, 16> ArgLocs; 1664 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1665 getTargetMachine(), ArgLocs, *DAG.getContext()); 1666 1667 // Reserve space for the linkage area on the stack. 1668 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1669 1670 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1671 1672 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1673 CCValAssign &VA = ArgLocs[i]; 1674 1675 // Arguments stored in registers. 1676 if (VA.isRegLoc()) { 1677 TargetRegisterClass *RC; 1678 EVT ValVT = VA.getValVT(); 1679 1680 switch (ValVT.getSimpleVT().SimpleTy) { 1681 default: 1682 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1683 case MVT::i32: 1684 RC = PPC::GPRCRegisterClass; 1685 break; 1686 case MVT::f32: 1687 RC = PPC::F4RCRegisterClass; 1688 break; 1689 case MVT::f64: 1690 RC = PPC::F8RCRegisterClass; 1691 break; 1692 case MVT::v16i8: 1693 case MVT::v8i16: 1694 case MVT::v4i32: 1695 case MVT::v4f32: 1696 RC = PPC::VRRCRegisterClass; 1697 break; 1698 } 1699 1700 // Transform the arguments stored in physical registers into virtual ones. 1701 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1702 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1703 1704 InVals.push_back(ArgValue); 1705 } else { 1706 // Argument stored in memory. 1707 assert(VA.isMemLoc()); 1708 1709 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1710 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1711 isImmutable); 1712 1713 // Create load nodes to retrieve arguments from the stack. 1714 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1715 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1716 MachinePointerInfo(), 1717 false, false, 0)); 1718 } 1719 } 1720 1721 // Assign locations to all of the incoming aggregate by value arguments. 1722 // Aggregates passed by value are stored in the local variable space of the 1723 // caller's stack frame, right above the parameter list area. 1724 SmallVector<CCValAssign, 16> ByValArgLocs; 1725 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1726 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1727 1728 // Reserve stack space for the allocations in CCInfo. 1729 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1730 1731 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1732 1733 // Area that is at least reserved in the caller of this function. 1734 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1735 1736 // Set the size that is at least reserved in caller of this function. Tail 1737 // call optimized function's reserved stack space needs to be aligned so that 1738 // taking the difference between two stack areas will result in an aligned 1739 // stack. 1740 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1741 1742 MinReservedArea = 1743 std::max(MinReservedArea, 1744 PPCFrameLowering::getMinCallFrameSize(false, false)); 1745 1746 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1747 getStackAlignment(); 1748 unsigned AlignMask = TargetAlign-1; 1749 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1750 1751 FI->setMinReservedArea(MinReservedArea); 1752 1753 SmallVector<SDValue, 8> MemOps; 1754 1755 // If the function takes variable number of arguments, make a frame index for 1756 // the start of the first vararg value... for expansion of llvm.va_start. 1757 if (isVarArg) { 1758 static const unsigned GPArgRegs[] = { 1759 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1760 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1761 }; 1762 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1763 1764 static const unsigned FPArgRegs[] = { 1765 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1766 PPC::F8 1767 }; 1768 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1769 1770 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1771 NumGPArgRegs)); 1772 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1773 NumFPArgRegs)); 1774 1775 // Make room for NumGPArgRegs and NumFPArgRegs. 1776 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1777 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1778 1779 FuncInfo->setVarArgsStackOffset( 1780 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1781 CCInfo.getNextStackOffset(), true)); 1782 1783 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1784 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1785 1786 // The fixed integer arguments of a variadic function are stored to the 1787 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1788 // the result of va_next. 1789 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1790 // Get an existing live-in vreg, or add a new one. 1791 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1792 if (!VReg) 1793 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1794 1795 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1796 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1797 MachinePointerInfo(), false, false, 0); 1798 MemOps.push_back(Store); 1799 // Increment the address by four for the next argument to store 1800 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1801 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1802 } 1803 1804 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1805 // is set. 1806 // The double arguments are stored to the VarArgsFrameIndex 1807 // on the stack. 1808 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1809 // Get an existing live-in vreg, or add a new one. 1810 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1811 if (!VReg) 1812 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1813 1814 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1815 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1816 MachinePointerInfo(), false, false, 0); 1817 MemOps.push_back(Store); 1818 // Increment the address by eight for the next argument to store 1819 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1820 PtrVT); 1821 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1822 } 1823 } 1824 1825 if (!MemOps.empty()) 1826 Chain = DAG.getNode(ISD::TokenFactor, dl, 1827 MVT::Other, &MemOps[0], MemOps.size()); 1828 1829 return Chain; 1830 } 1831 1832 SDValue 1833 PPCTargetLowering::LowerFormalArguments_Darwin( 1834 SDValue Chain, 1835 CallingConv::ID CallConv, bool isVarArg, 1836 const SmallVectorImpl<ISD::InputArg> 1837 &Ins, 1838 DebugLoc dl, SelectionDAG &DAG, 1839 SmallVectorImpl<SDValue> &InVals) const { 1840 // TODO: add description of PPC stack frame format, or at least some docs. 1841 // 1842 MachineFunction &MF = DAG.getMachineFunction(); 1843 MachineFrameInfo *MFI = MF.getFrameInfo(); 1844 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1845 1846 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1847 bool isPPC64 = PtrVT == MVT::i64; 1848 // Potential tail calls could cause overwriting of argument stack slots. 1849 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1850 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1851 1852 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1853 // Area that is at least reserved in caller of this function. 1854 unsigned MinReservedArea = ArgOffset; 1855 1856 static const unsigned GPR_32[] = { // 32-bit registers. 1857 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1858 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1859 }; 1860 static const unsigned GPR_64[] = { // 64-bit registers. 1861 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1862 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1863 }; 1864 1865 static const unsigned *FPR = GetFPR(); 1866 1867 static const unsigned VR[] = { 1868 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1869 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1870 }; 1871 1872 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1873 const unsigned Num_FPR_Regs = 13; 1874 const unsigned Num_VR_Regs = array_lengthof( VR); 1875 1876 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1877 1878 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1879 1880 // In 32-bit non-varargs functions, the stack space for vectors is after the 1881 // stack space for non-vectors. We do not use this space unless we have 1882 // too many vectors to fit in registers, something that only occurs in 1883 // constructed examples:), but we have to walk the arglist to figure 1884 // that out...for the pathological case, compute VecArgOffset as the 1885 // start of the vector parameter area. Computing VecArgOffset is the 1886 // entire point of the following loop. 1887 unsigned VecArgOffset = ArgOffset; 1888 if (!isVarArg && !isPPC64) { 1889 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1890 ++ArgNo) { 1891 EVT ObjectVT = Ins[ArgNo].VT; 1892 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1893 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1894 1895 if (Flags.isByVal()) { 1896 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1897 ObjSize = Flags.getByValSize(); 1898 unsigned ArgSize = 1899 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1900 VecArgOffset += ArgSize; 1901 continue; 1902 } 1903 1904 switch(ObjectVT.getSimpleVT().SimpleTy) { 1905 default: llvm_unreachable("Unhandled argument type!"); 1906 case MVT::i32: 1907 case MVT::f32: 1908 VecArgOffset += isPPC64 ? 8 : 4; 1909 break; 1910 case MVT::i64: // PPC64 1911 case MVT::f64: 1912 VecArgOffset += 8; 1913 break; 1914 case MVT::v4f32: 1915 case MVT::v4i32: 1916 case MVT::v8i16: 1917 case MVT::v16i8: 1918 // Nothing to do, we're only looking at Nonvector args here. 1919 break; 1920 } 1921 } 1922 } 1923 // We've found where the vector parameter area in memory is. Skip the 1924 // first 12 parameters; these don't use that memory. 1925 VecArgOffset = ((VecArgOffset+15)/16)*16; 1926 VecArgOffset += 12*16; 1927 1928 // Add DAG nodes to load the arguments or copy them out of registers. On 1929 // entry to a function on PPC, the arguments start after the linkage area, 1930 // although the first ones are often in registers. 1931 1932 SmallVector<SDValue, 8> MemOps; 1933 unsigned nAltivecParamsAtEnd = 0; 1934 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1935 SDValue ArgVal; 1936 bool needsLoad = false; 1937 EVT ObjectVT = Ins[ArgNo].VT; 1938 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1939 unsigned ArgSize = ObjSize; 1940 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1941 1942 unsigned CurArgOffset = ArgOffset; 1943 1944 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1945 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1946 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1947 if (isVarArg || isPPC64) { 1948 MinReservedArea = ((MinReservedArea+15)/16)*16; 1949 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1950 Flags, 1951 PtrByteSize); 1952 } else nAltivecParamsAtEnd++; 1953 } else 1954 // Calculate min reserved area. 1955 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1956 Flags, 1957 PtrByteSize); 1958 1959 // FIXME the codegen can be much improved in some cases. 1960 // We do not have to keep everything in memory. 1961 if (Flags.isByVal()) { 1962 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1963 ObjSize = Flags.getByValSize(); 1964 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1965 // Objects of size 1 and 2 are right justified, everything else is 1966 // left justified. This means the memory address is adjusted forwards. 1967 if (ObjSize==1 || ObjSize==2) { 1968 CurArgOffset = CurArgOffset + (4 - ObjSize); 1969 } 1970 // The value of the object is its address. 1971 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1972 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1973 InVals.push_back(FIN); 1974 if (ObjSize==1 || ObjSize==2) { 1975 if (GPR_idx != Num_GPR_Regs) { 1976 unsigned VReg; 1977 if (isPPC64) 1978 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 1979 else 1980 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1981 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1982 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 1983 MachinePointerInfo(), 1984 ObjSize==1 ? MVT::i8 : MVT::i16, 1985 false, false, 0); 1986 MemOps.push_back(Store); 1987 ++GPR_idx; 1988 } 1989 1990 ArgOffset += PtrByteSize; 1991 1992 continue; 1993 } 1994 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 1995 // Store whatever pieces of the object are in registers 1996 // to memory. ArgVal will be address of the beginning of 1997 // the object. 1998 if (GPR_idx != Num_GPR_Regs) { 1999 unsigned VReg; 2000 if (isPPC64) 2001 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2002 else 2003 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2004 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2005 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2006 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2007 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2008 MachinePointerInfo(), 2009 false, false, 0); 2010 MemOps.push_back(Store); 2011 ++GPR_idx; 2012 ArgOffset += PtrByteSize; 2013 } else { 2014 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2015 break; 2016 } 2017 } 2018 continue; 2019 } 2020 2021 switch (ObjectVT.getSimpleVT().SimpleTy) { 2022 default: llvm_unreachable("Unhandled argument type!"); 2023 case MVT::i32: 2024 if (!isPPC64) { 2025 if (GPR_idx != Num_GPR_Regs) { 2026 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2027 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2028 ++GPR_idx; 2029 } else { 2030 needsLoad = true; 2031 ArgSize = PtrByteSize; 2032 } 2033 // All int arguments reserve stack space in the Darwin ABI. 2034 ArgOffset += PtrByteSize; 2035 break; 2036 } 2037 // FALLTHROUGH 2038 case MVT::i64: // PPC64 2039 if (GPR_idx != Num_GPR_Regs) { 2040 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2041 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2042 2043 if (ObjectVT == MVT::i32) { 2044 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2045 // value to MVT::i64 and then truncate to the correct register size. 2046 if (Flags.isSExt()) 2047 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2048 DAG.getValueType(ObjectVT)); 2049 else if (Flags.isZExt()) 2050 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2051 DAG.getValueType(ObjectVT)); 2052 2053 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2054 } 2055 2056 ++GPR_idx; 2057 } else { 2058 needsLoad = true; 2059 ArgSize = PtrByteSize; 2060 } 2061 // All int arguments reserve stack space in the Darwin ABI. 2062 ArgOffset += 8; 2063 break; 2064 2065 case MVT::f32: 2066 case MVT::f64: 2067 // Every 4 bytes of argument space consumes one of the GPRs available for 2068 // argument passing. 2069 if (GPR_idx != Num_GPR_Regs) { 2070 ++GPR_idx; 2071 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2072 ++GPR_idx; 2073 } 2074 if (FPR_idx != Num_FPR_Regs) { 2075 unsigned VReg; 2076 2077 if (ObjectVT == MVT::f32) 2078 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2079 else 2080 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2081 2082 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2083 ++FPR_idx; 2084 } else { 2085 needsLoad = true; 2086 } 2087 2088 // All FP arguments reserve stack space in the Darwin ABI. 2089 ArgOffset += isPPC64 ? 8 : ObjSize; 2090 break; 2091 case MVT::v4f32: 2092 case MVT::v4i32: 2093 case MVT::v8i16: 2094 case MVT::v16i8: 2095 // Note that vector arguments in registers don't reserve stack space, 2096 // except in varargs functions. 2097 if (VR_idx != Num_VR_Regs) { 2098 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2099 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2100 if (isVarArg) { 2101 while ((ArgOffset % 16) != 0) { 2102 ArgOffset += PtrByteSize; 2103 if (GPR_idx != Num_GPR_Regs) 2104 GPR_idx++; 2105 } 2106 ArgOffset += 16; 2107 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2108 } 2109 ++VR_idx; 2110 } else { 2111 if (!isVarArg && !isPPC64) { 2112 // Vectors go after all the nonvectors. 2113 CurArgOffset = VecArgOffset; 2114 VecArgOffset += 16; 2115 } else { 2116 // Vectors are aligned. 2117 ArgOffset = ((ArgOffset+15)/16)*16; 2118 CurArgOffset = ArgOffset; 2119 ArgOffset += 16; 2120 } 2121 needsLoad = true; 2122 } 2123 break; 2124 } 2125 2126 // We need to load the argument to a virtual register if we determined above 2127 // that we ran out of physical registers of the appropriate type. 2128 if (needsLoad) { 2129 int FI = MFI->CreateFixedObject(ObjSize, 2130 CurArgOffset + (ArgSize - ObjSize), 2131 isImmutable); 2132 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2133 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2134 false, false, 0); 2135 } 2136 2137 InVals.push_back(ArgVal); 2138 } 2139 2140 // Set the size that is at least reserved in caller of this function. Tail 2141 // call optimized function's reserved stack space needs to be aligned so that 2142 // taking the difference between two stack areas will result in an aligned 2143 // stack. 2144 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2145 // Add the Altivec parameters at the end, if needed. 2146 if (nAltivecParamsAtEnd) { 2147 MinReservedArea = ((MinReservedArea+15)/16)*16; 2148 MinReservedArea += 16*nAltivecParamsAtEnd; 2149 } 2150 MinReservedArea = 2151 std::max(MinReservedArea, 2152 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2153 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2154 getStackAlignment(); 2155 unsigned AlignMask = TargetAlign-1; 2156 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2157 FI->setMinReservedArea(MinReservedArea); 2158 2159 // If the function takes variable number of arguments, make a frame index for 2160 // the start of the first vararg value... for expansion of llvm.va_start. 2161 if (isVarArg) { 2162 int Depth = ArgOffset; 2163 2164 FuncInfo->setVarArgsFrameIndex( 2165 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2166 Depth, true)); 2167 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2168 2169 // If this function is vararg, store any remaining integer argument regs 2170 // to their spots on the stack so that they may be loaded by deferencing the 2171 // result of va_next. 2172 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2173 unsigned VReg; 2174 2175 if (isPPC64) 2176 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2177 else 2178 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2179 2180 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2181 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2182 MachinePointerInfo(), false, false, 0); 2183 MemOps.push_back(Store); 2184 // Increment the address by four for the next argument to store 2185 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2186 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2187 } 2188 } 2189 2190 if (!MemOps.empty()) 2191 Chain = DAG.getNode(ISD::TokenFactor, dl, 2192 MVT::Other, &MemOps[0], MemOps.size()); 2193 2194 return Chain; 2195 } 2196 2197 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2198 /// linkage area for the Darwin ABI. 2199 static unsigned 2200 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2201 bool isPPC64, 2202 bool isVarArg, 2203 unsigned CC, 2204 const SmallVectorImpl<ISD::OutputArg> 2205 &Outs, 2206 const SmallVectorImpl<SDValue> &OutVals, 2207 unsigned &nAltivecParamsAtEnd) { 2208 // Count how many bytes are to be pushed on the stack, including the linkage 2209 // area, and parameter passing area. We start with 24/48 bytes, which is 2210 // prereserved space for [SP][CR][LR][3 x unused]. 2211 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2212 unsigned NumOps = Outs.size(); 2213 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2214 2215 // Add up all the space actually used. 2216 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2217 // they all go in registers, but we must reserve stack space for them for 2218 // possible use by the caller. In varargs or 64-bit calls, parameters are 2219 // assigned stack space in order, with padding so Altivec parameters are 2220 // 16-byte aligned. 2221 nAltivecParamsAtEnd = 0; 2222 for (unsigned i = 0; i != NumOps; ++i) { 2223 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2224 EVT ArgVT = Outs[i].VT; 2225 // Varargs Altivec parameters are padded to a 16 byte boundary. 2226 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2227 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2228 if (!isVarArg && !isPPC64) { 2229 // Non-varargs Altivec parameters go after all the non-Altivec 2230 // parameters; handle those later so we know how much padding we need. 2231 nAltivecParamsAtEnd++; 2232 continue; 2233 } 2234 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2235 NumBytes = ((NumBytes+15)/16)*16; 2236 } 2237 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2238 } 2239 2240 // Allow for Altivec parameters at the end, if needed. 2241 if (nAltivecParamsAtEnd) { 2242 NumBytes = ((NumBytes+15)/16)*16; 2243 NumBytes += 16*nAltivecParamsAtEnd; 2244 } 2245 2246 // The prolog code of the callee may store up to 8 GPR argument registers to 2247 // the stack, allowing va_start to index over them in memory if its varargs. 2248 // Because we cannot tell if this is needed on the caller side, we have to 2249 // conservatively assume that it is needed. As such, make sure we have at 2250 // least enough stack space for the caller to store the 8 GPRs. 2251 NumBytes = std::max(NumBytes, 2252 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2253 2254 // Tail call needs the stack to be aligned. 2255 if (CC==CallingConv::Fast && GuaranteedTailCallOpt) { 2256 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2257 getStackAlignment(); 2258 unsigned AlignMask = TargetAlign-1; 2259 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2260 } 2261 2262 return NumBytes; 2263 } 2264 2265 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2266 /// adjusted to accommodate the arguments for the tailcall. 2267 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2268 unsigned ParamSize) { 2269 2270 if (!isTailCall) return 0; 2271 2272 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2273 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2274 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2275 // Remember only if the new adjustement is bigger. 2276 if (SPDiff < FI->getTailCallSPDelta()) 2277 FI->setTailCallSPDelta(SPDiff); 2278 2279 return SPDiff; 2280 } 2281 2282 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2283 /// for tail call optimization. Targets which want to do tail call 2284 /// optimization should implement this function. 2285 bool 2286 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2287 CallingConv::ID CalleeCC, 2288 bool isVarArg, 2289 const SmallVectorImpl<ISD::InputArg> &Ins, 2290 SelectionDAG& DAG) const { 2291 if (!GuaranteedTailCallOpt) 2292 return false; 2293 2294 // Variable argument functions are not supported. 2295 if (isVarArg) 2296 return false; 2297 2298 MachineFunction &MF = DAG.getMachineFunction(); 2299 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2300 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2301 // Functions containing by val parameters are not supported. 2302 for (unsigned i = 0; i != Ins.size(); i++) { 2303 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2304 if (Flags.isByVal()) return false; 2305 } 2306 2307 // Non PIC/GOT tail calls are supported. 2308 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2309 return true; 2310 2311 // At the moment we can only do local tail calls (in same module, hidden 2312 // or protected) if we are generating PIC. 2313 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2314 return G->getGlobal()->hasHiddenVisibility() 2315 || G->getGlobal()->hasProtectedVisibility(); 2316 } 2317 2318 return false; 2319 } 2320 2321 /// isCallCompatibleAddress - Return the immediate to use if the specified 2322 /// 32-bit value is representable in the immediate field of a BxA instruction. 2323 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2324 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2325 if (!C) return 0; 2326 2327 int Addr = C->getZExtValue(); 2328 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2329 (Addr << 6 >> 6) != Addr) 2330 return 0; // Top 6 bits have to be sext of immediate. 2331 2332 return DAG.getConstant((int)C->getZExtValue() >> 2, 2333 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2334 } 2335 2336 namespace { 2337 2338 struct TailCallArgumentInfo { 2339 SDValue Arg; 2340 SDValue FrameIdxOp; 2341 int FrameIdx; 2342 2343 TailCallArgumentInfo() : FrameIdx(0) {} 2344 }; 2345 2346 } 2347 2348 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2349 static void 2350 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2351 SDValue Chain, 2352 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2353 SmallVector<SDValue, 8> &MemOpChains, 2354 DebugLoc dl) { 2355 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2356 SDValue Arg = TailCallArgs[i].Arg; 2357 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2358 int FI = TailCallArgs[i].FrameIdx; 2359 // Store relative to framepointer. 2360 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2361 MachinePointerInfo::getFixedStack(FI), 2362 false, false, 0)); 2363 } 2364 } 2365 2366 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2367 /// the appropriate stack slot for the tail call optimized function call. 2368 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2369 MachineFunction &MF, 2370 SDValue Chain, 2371 SDValue OldRetAddr, 2372 SDValue OldFP, 2373 int SPDiff, 2374 bool isPPC64, 2375 bool isDarwinABI, 2376 DebugLoc dl) { 2377 if (SPDiff) { 2378 // Calculate the new stack slot for the return address. 2379 int SlotSize = isPPC64 ? 8 : 4; 2380 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2381 isDarwinABI); 2382 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2383 NewRetAddrLoc, true); 2384 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2385 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2386 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2387 MachinePointerInfo::getFixedStack(NewRetAddr), 2388 false, false, 0); 2389 2390 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2391 // slot as the FP is never overwritten. 2392 if (isDarwinABI) { 2393 int NewFPLoc = 2394 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2395 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2396 true); 2397 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2398 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2399 MachinePointerInfo::getFixedStack(NewFPIdx), 2400 false, false, 0); 2401 } 2402 } 2403 return Chain; 2404 } 2405 2406 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2407 /// the position of the argument. 2408 static void 2409 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2410 SDValue Arg, int SPDiff, unsigned ArgOffset, 2411 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2412 int Offset = ArgOffset + SPDiff; 2413 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2414 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2415 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2416 SDValue FIN = DAG.getFrameIndex(FI, VT); 2417 TailCallArgumentInfo Info; 2418 Info.Arg = Arg; 2419 Info.FrameIdxOp = FIN; 2420 Info.FrameIdx = FI; 2421 TailCallArguments.push_back(Info); 2422 } 2423 2424 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2425 /// stack slot. Returns the chain as result and the loaded frame pointers in 2426 /// LROpOut/FPOpout. Used when tail calling. 2427 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2428 int SPDiff, 2429 SDValue Chain, 2430 SDValue &LROpOut, 2431 SDValue &FPOpOut, 2432 bool isDarwinABI, 2433 DebugLoc dl) const { 2434 if (SPDiff) { 2435 // Load the LR and FP stack slot for later adjusting. 2436 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2437 LROpOut = getReturnAddrFrameIndex(DAG); 2438 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2439 false, false, 0); 2440 Chain = SDValue(LROpOut.getNode(), 1); 2441 2442 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2443 // slot as the FP is never overwritten. 2444 if (isDarwinABI) { 2445 FPOpOut = getFramePointerFrameIndex(DAG); 2446 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2447 false, false, 0); 2448 Chain = SDValue(FPOpOut.getNode(), 1); 2449 } 2450 } 2451 return Chain; 2452 } 2453 2454 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2455 /// by "Src" to address "Dst" of size "Size". Alignment information is 2456 /// specified by the specific parameter attribute. The copy will be passed as 2457 /// a byval function parameter. 2458 /// Sometimes what we are copying is the end of a larger object, the part that 2459 /// does not fit in registers. 2460 static SDValue 2461 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2462 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2463 DebugLoc dl) { 2464 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2465 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2466 false, false, MachinePointerInfo(0), 2467 MachinePointerInfo(0)); 2468 } 2469 2470 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2471 /// tail calls. 2472 static void 2473 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2474 SDValue Arg, SDValue PtrOff, int SPDiff, 2475 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2476 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2477 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2478 DebugLoc dl) { 2479 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2480 if (!isTailCall) { 2481 if (isVector) { 2482 SDValue StackPtr; 2483 if (isPPC64) 2484 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2485 else 2486 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2487 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2488 DAG.getConstant(ArgOffset, PtrVT)); 2489 } 2490 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2491 MachinePointerInfo(), false, false, 0)); 2492 // Calculate and remember argument location. 2493 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2494 TailCallArguments); 2495 } 2496 2497 static 2498 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2499 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2500 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2501 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2502 MachineFunction &MF = DAG.getMachineFunction(); 2503 2504 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2505 // might overwrite each other in case of tail call optimization. 2506 SmallVector<SDValue, 8> MemOpChains2; 2507 // Do not flag preceding copytoreg stuff together with the following stuff. 2508 InFlag = SDValue(); 2509 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2510 MemOpChains2, dl); 2511 if (!MemOpChains2.empty()) 2512 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2513 &MemOpChains2[0], MemOpChains2.size()); 2514 2515 // Store the return address to the appropriate stack slot. 2516 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2517 isPPC64, isDarwinABI, dl); 2518 2519 // Emit callseq_end just before tailcall node. 2520 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2521 DAG.getIntPtrConstant(0, true), InFlag); 2522 InFlag = Chain.getValue(1); 2523 } 2524 2525 static 2526 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2527 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2528 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2529 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2530 const PPCSubtarget &PPCSubTarget) { 2531 2532 bool isPPC64 = PPCSubTarget.isPPC64(); 2533 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2534 2535 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2536 NodeTys.push_back(MVT::Other); // Returns a chain 2537 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2538 2539 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2540 2541 bool needIndirectCall = true; 2542 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2543 // If this is an absolute destination address, use the munged value. 2544 Callee = SDValue(Dest, 0); 2545 needIndirectCall = false; 2546 } 2547 2548 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2549 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2550 // Use indirect calls for ALL functions calls in JIT mode, since the 2551 // far-call stubs may be outside relocation limits for a BL instruction. 2552 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2553 unsigned OpFlags = 0; 2554 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2555 (PPCSubTarget.getTargetTriple().isMacOSX() && 2556 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2557 (G->getGlobal()->isDeclaration() || 2558 G->getGlobal()->isWeakForLinker())) { 2559 // PC-relative references to external symbols should go through $stub, 2560 // unless we're building with the leopard linker or later, which 2561 // automatically synthesizes these stubs. 2562 OpFlags = PPCII::MO_DARWIN_STUB; 2563 } 2564 2565 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2566 // every direct call is) turn it into a TargetGlobalAddress / 2567 // TargetExternalSymbol node so that legalize doesn't hack it. 2568 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2569 Callee.getValueType(), 2570 0, OpFlags); 2571 needIndirectCall = false; 2572 } 2573 } 2574 2575 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2576 unsigned char OpFlags = 0; 2577 2578 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2579 (PPCSubTarget.getTargetTriple().isMacOSX() && 2580 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2581 // PC-relative references to external symbols should go through $stub, 2582 // unless we're building with the leopard linker or later, which 2583 // automatically synthesizes these stubs. 2584 OpFlags = PPCII::MO_DARWIN_STUB; 2585 } 2586 2587 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2588 OpFlags); 2589 needIndirectCall = false; 2590 } 2591 2592 if (needIndirectCall) { 2593 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2594 // to do the call, we can't use PPCISD::CALL. 2595 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2596 2597 if (isSVR4ABI && isPPC64) { 2598 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2599 // entry point, but to the function descriptor (the function entry point 2600 // address is part of the function descriptor though). 2601 // The function descriptor is a three doubleword structure with the 2602 // following fields: function entry point, TOC base address and 2603 // environment pointer. 2604 // Thus for a call through a function pointer, the following actions need 2605 // to be performed: 2606 // 1. Save the TOC of the caller in the TOC save area of its stack 2607 // frame (this is done in LowerCall_Darwin()). 2608 // 2. Load the address of the function entry point from the function 2609 // descriptor. 2610 // 3. Load the TOC of the callee from the function descriptor into r2. 2611 // 4. Load the environment pointer from the function descriptor into 2612 // r11. 2613 // 5. Branch to the function entry point address. 2614 // 6. On return of the callee, the TOC of the caller needs to be 2615 // restored (this is done in FinishCall()). 2616 // 2617 // All those operations are flagged together to ensure that no other 2618 // operations can be scheduled in between. E.g. without flagging the 2619 // operations together, a TOC access in the caller could be scheduled 2620 // between the load of the callee TOC and the branch to the callee, which 2621 // results in the TOC access going through the TOC of the callee instead 2622 // of going through the TOC of the caller, which leads to incorrect code. 2623 2624 // Load the address of the function entry point from the function 2625 // descriptor. 2626 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2627 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2628 InFlag.getNode() ? 3 : 2); 2629 Chain = LoadFuncPtr.getValue(1); 2630 InFlag = LoadFuncPtr.getValue(2); 2631 2632 // Load environment pointer into r11. 2633 // Offset of the environment pointer within the function descriptor. 2634 SDValue PtrOff = DAG.getIntPtrConstant(16); 2635 2636 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2637 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2638 InFlag); 2639 Chain = LoadEnvPtr.getValue(1); 2640 InFlag = LoadEnvPtr.getValue(2); 2641 2642 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2643 InFlag); 2644 Chain = EnvVal.getValue(0); 2645 InFlag = EnvVal.getValue(1); 2646 2647 // Load TOC of the callee into r2. We are using a target-specific load 2648 // with r2 hard coded, because the result of a target-independent load 2649 // would never go directly into r2, since r2 is a reserved register (which 2650 // prevents the register allocator from allocating it), resulting in an 2651 // additional register being allocated and an unnecessary move instruction 2652 // being generated. 2653 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2654 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2655 Callee, InFlag); 2656 Chain = LoadTOCPtr.getValue(0); 2657 InFlag = LoadTOCPtr.getValue(1); 2658 2659 MTCTROps[0] = Chain; 2660 MTCTROps[1] = LoadFuncPtr; 2661 MTCTROps[2] = InFlag; 2662 } 2663 2664 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2665 2 + (InFlag.getNode() != 0)); 2666 InFlag = Chain.getValue(1); 2667 2668 NodeTys.clear(); 2669 NodeTys.push_back(MVT::Other); 2670 NodeTys.push_back(MVT::Glue); 2671 Ops.push_back(Chain); 2672 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2673 Callee.setNode(0); 2674 // Add CTR register as callee so a bctr can be emitted later. 2675 if (isTailCall) 2676 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2677 } 2678 2679 // If this is a direct call, pass the chain and the callee. 2680 if (Callee.getNode()) { 2681 Ops.push_back(Chain); 2682 Ops.push_back(Callee); 2683 } 2684 // If this is a tail call add stack pointer delta. 2685 if (isTailCall) 2686 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2687 2688 // Add argument registers to the end of the list so that they are known live 2689 // into the call. 2690 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2691 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2692 RegsToPass[i].second.getValueType())); 2693 2694 return CallOpc; 2695 } 2696 2697 SDValue 2698 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2699 CallingConv::ID CallConv, bool isVarArg, 2700 const SmallVectorImpl<ISD::InputArg> &Ins, 2701 DebugLoc dl, SelectionDAG &DAG, 2702 SmallVectorImpl<SDValue> &InVals) const { 2703 2704 SmallVector<CCValAssign, 16> RVLocs; 2705 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2706 getTargetMachine(), RVLocs, *DAG.getContext()); 2707 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2708 2709 // Copy all of the result registers out of their specified physreg. 2710 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2711 CCValAssign &VA = RVLocs[i]; 2712 EVT VT = VA.getValVT(); 2713 assert(VA.isRegLoc() && "Can only return in registers!"); 2714 Chain = DAG.getCopyFromReg(Chain, dl, 2715 VA.getLocReg(), VT, InFlag).getValue(1); 2716 InVals.push_back(Chain.getValue(0)); 2717 InFlag = Chain.getValue(2); 2718 } 2719 2720 return Chain; 2721 } 2722 2723 SDValue 2724 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2725 bool isTailCall, bool isVarArg, 2726 SelectionDAG &DAG, 2727 SmallVector<std::pair<unsigned, SDValue>, 8> 2728 &RegsToPass, 2729 SDValue InFlag, SDValue Chain, 2730 SDValue &Callee, 2731 int SPDiff, unsigned NumBytes, 2732 const SmallVectorImpl<ISD::InputArg> &Ins, 2733 SmallVectorImpl<SDValue> &InVals) const { 2734 std::vector<EVT> NodeTys; 2735 SmallVector<SDValue, 8> Ops; 2736 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2737 isTailCall, RegsToPass, Ops, NodeTys, 2738 PPCSubTarget); 2739 2740 // When performing tail call optimization the callee pops its arguments off 2741 // the stack. Account for this here so these bytes can be pushed back on in 2742 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2743 int BytesCalleePops = 2744 (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0; 2745 2746 if (InFlag.getNode()) 2747 Ops.push_back(InFlag); 2748 2749 // Emit tail call. 2750 if (isTailCall) { 2751 // If this is the first return lowered for this function, add the regs 2752 // to the liveout set for the function. 2753 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2754 SmallVector<CCValAssign, 16> RVLocs; 2755 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2756 getTargetMachine(), RVLocs, *DAG.getContext()); 2757 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2758 for (unsigned i = 0; i != RVLocs.size(); ++i) 2759 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2760 } 2761 2762 assert(((Callee.getOpcode() == ISD::Register && 2763 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2764 Callee.getOpcode() == ISD::TargetExternalSymbol || 2765 Callee.getOpcode() == ISD::TargetGlobalAddress || 2766 isa<ConstantSDNode>(Callee)) && 2767 "Expecting an global address, external symbol, absolute value or register"); 2768 2769 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2770 } 2771 2772 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2773 InFlag = Chain.getValue(1); 2774 2775 // Add a NOP immediately after the branch instruction when using the 64-bit 2776 // SVR4 ABI. At link time, if caller and callee are in a different module and 2777 // thus have a different TOC, the call will be replaced with a call to a stub 2778 // function which saves the current TOC, loads the TOC of the callee and 2779 // branches to the callee. The NOP will be replaced with a load instruction 2780 // which restores the TOC of the caller from the TOC save slot of the current 2781 // stack frame. If caller and callee belong to the same module (and have the 2782 // same TOC), the NOP will remain unchanged. 2783 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2784 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2785 if (CallOpc == PPCISD::BCTRL_SVR4) { 2786 // This is a call through a function pointer. 2787 // Restore the caller TOC from the save area into R2. 2788 // See PrepareCall() for more information about calls through function 2789 // pointers in the 64-bit SVR4 ABI. 2790 // We are using a target-specific load with r2 hard coded, because the 2791 // result of a target-independent load would never go directly into r2, 2792 // since r2 is a reserved register (which prevents the register allocator 2793 // from allocating it), resulting in an additional register being 2794 // allocated and an unnecessary move instruction being generated. 2795 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2796 InFlag = Chain.getValue(1); 2797 } else { 2798 // Otherwise insert NOP. 2799 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2800 } 2801 } 2802 2803 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2804 DAG.getIntPtrConstant(BytesCalleePops, true), 2805 InFlag); 2806 if (!Ins.empty()) 2807 InFlag = Chain.getValue(1); 2808 2809 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2810 Ins, dl, DAG, InVals); 2811 } 2812 2813 SDValue 2814 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2815 CallingConv::ID CallConv, bool isVarArg, 2816 bool &isTailCall, 2817 const SmallVectorImpl<ISD::OutputArg> &Outs, 2818 const SmallVectorImpl<SDValue> &OutVals, 2819 const SmallVectorImpl<ISD::InputArg> &Ins, 2820 DebugLoc dl, SelectionDAG &DAG, 2821 SmallVectorImpl<SDValue> &InVals) const { 2822 if (isTailCall) 2823 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2824 Ins, DAG); 2825 2826 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2827 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2828 isTailCall, Outs, OutVals, Ins, 2829 dl, DAG, InVals); 2830 2831 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2832 isTailCall, Outs, OutVals, Ins, 2833 dl, DAG, InVals); 2834 } 2835 2836 SDValue 2837 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2838 CallingConv::ID CallConv, bool isVarArg, 2839 bool isTailCall, 2840 const SmallVectorImpl<ISD::OutputArg> &Outs, 2841 const SmallVectorImpl<SDValue> &OutVals, 2842 const SmallVectorImpl<ISD::InputArg> &Ins, 2843 DebugLoc dl, SelectionDAG &DAG, 2844 SmallVectorImpl<SDValue> &InVals) const { 2845 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2846 // of the 32-bit SVR4 ABI stack frame layout. 2847 2848 assert((CallConv == CallingConv::C || 2849 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2850 2851 unsigned PtrByteSize = 4; 2852 2853 MachineFunction &MF = DAG.getMachineFunction(); 2854 2855 // Mark this function as potentially containing a function that contains a 2856 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2857 // and restoring the callers stack pointer in this functions epilog. This is 2858 // done because by tail calling the called function might overwrite the value 2859 // in this function's (MF) stack pointer stack slot 0(SP). 2860 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2861 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2862 2863 // Count how many bytes are to be pushed on the stack, including the linkage 2864 // area, parameter list area and the part of the local variable space which 2865 // contains copies of aggregates which are passed by value. 2866 2867 // Assign locations to all of the outgoing arguments. 2868 SmallVector<CCValAssign, 16> ArgLocs; 2869 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2870 getTargetMachine(), ArgLocs, *DAG.getContext()); 2871 2872 // Reserve space for the linkage area on the stack. 2873 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2874 2875 if (isVarArg) { 2876 // Handle fixed and variable vector arguments differently. 2877 // Fixed vector arguments go into registers as long as registers are 2878 // available. Variable vector arguments always go into memory. 2879 unsigned NumArgs = Outs.size(); 2880 2881 for (unsigned i = 0; i != NumArgs; ++i) { 2882 MVT ArgVT = Outs[i].VT; 2883 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2884 bool Result; 2885 2886 if (Outs[i].IsFixed) { 2887 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2888 CCInfo); 2889 } else { 2890 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2891 ArgFlags, CCInfo); 2892 } 2893 2894 if (Result) { 2895 #ifndef NDEBUG 2896 errs() << "Call operand #" << i << " has unhandled type " 2897 << EVT(ArgVT).getEVTString() << "\n"; 2898 #endif 2899 llvm_unreachable(0); 2900 } 2901 } 2902 } else { 2903 // All arguments are treated the same. 2904 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2905 } 2906 2907 // Assign locations to all of the outgoing aggregate by value arguments. 2908 SmallVector<CCValAssign, 16> ByValArgLocs; 2909 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2910 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 2911 2912 // Reserve stack space for the allocations in CCInfo. 2913 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2914 2915 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2916 2917 // Size of the linkage area, parameter list area and the part of the local 2918 // space variable where copies of aggregates which are passed by value are 2919 // stored. 2920 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2921 2922 // Calculate by how many bytes the stack has to be adjusted in case of tail 2923 // call optimization. 2924 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2925 2926 // Adjust the stack pointer for the new arguments... 2927 // These operations are automatically eliminated by the prolog/epilog pass 2928 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2929 SDValue CallSeqStart = Chain; 2930 2931 // Load the return address and frame pointer so it can be moved somewhere else 2932 // later. 2933 SDValue LROp, FPOp; 2934 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2935 dl); 2936 2937 // Set up a copy of the stack pointer for use loading and storing any 2938 // arguments that may not fit in the registers available for argument 2939 // passing. 2940 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2941 2942 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2943 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2944 SmallVector<SDValue, 8> MemOpChains; 2945 2946 // Walk the register/memloc assignments, inserting copies/loads. 2947 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2948 i != e; 2949 ++i) { 2950 CCValAssign &VA = ArgLocs[i]; 2951 SDValue Arg = OutVals[i]; 2952 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2953 2954 if (Flags.isByVal()) { 2955 // Argument is an aggregate which is passed by value, thus we need to 2956 // create a copy of it in the local variable space of the current stack 2957 // frame (which is the stack frame of the caller) and pass the address of 2958 // this copy to the callee. 2959 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2960 CCValAssign &ByValVA = ByValArgLocs[j++]; 2961 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2962 2963 // Memory reserved in the local variable space of the callers stack frame. 2964 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2965 2966 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2967 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2968 2969 // Create a copy of the argument in the local area of the current 2970 // stack frame. 2971 SDValue MemcpyCall = 2972 CreateCopyOfByValArgument(Arg, PtrOff, 2973 CallSeqStart.getNode()->getOperand(0), 2974 Flags, DAG, dl); 2975 2976 // This must go outside the CALLSEQ_START..END. 2977 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2978 CallSeqStart.getNode()->getOperand(1)); 2979 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 2980 NewCallSeqStart.getNode()); 2981 Chain = CallSeqStart = NewCallSeqStart; 2982 2983 // Pass the address of the aggregate copy on the stack either in a 2984 // physical register or in the parameter list area of the current stack 2985 // frame to the callee. 2986 Arg = PtrOff; 2987 } 2988 2989 if (VA.isRegLoc()) { 2990 // Put argument in a physical register. 2991 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2992 } else { 2993 // Put argument in the parameter list area of the current stack frame. 2994 assert(VA.isMemLoc()); 2995 unsigned LocMemOffset = VA.getLocMemOffset(); 2996 2997 if (!isTailCall) { 2998 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2999 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3000 3001 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3002 MachinePointerInfo(), 3003 false, false, 0)); 3004 } else { 3005 // Calculate and remember argument location. 3006 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3007 TailCallArguments); 3008 } 3009 } 3010 } 3011 3012 if (!MemOpChains.empty()) 3013 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3014 &MemOpChains[0], MemOpChains.size()); 3015 3016 // Set CR6 to true if this is a vararg call. 3017 if (isVarArg) { 3018 SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); 3019 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3020 } 3021 3022 // Build a sequence of copy-to-reg nodes chained together with token chain 3023 // and flag operands which copy the outgoing args into the appropriate regs. 3024 SDValue InFlag; 3025 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3026 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3027 RegsToPass[i].second, InFlag); 3028 InFlag = Chain.getValue(1); 3029 } 3030 3031 if (isTailCall) 3032 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3033 false, TailCallArguments); 3034 3035 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3036 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3037 Ins, InVals); 3038 } 3039 3040 SDValue 3041 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3042 CallingConv::ID CallConv, bool isVarArg, 3043 bool isTailCall, 3044 const SmallVectorImpl<ISD::OutputArg> &Outs, 3045 const SmallVectorImpl<SDValue> &OutVals, 3046 const SmallVectorImpl<ISD::InputArg> &Ins, 3047 DebugLoc dl, SelectionDAG &DAG, 3048 SmallVectorImpl<SDValue> &InVals) const { 3049 3050 unsigned NumOps = Outs.size(); 3051 3052 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3053 bool isPPC64 = PtrVT == MVT::i64; 3054 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3055 3056 MachineFunction &MF = DAG.getMachineFunction(); 3057 3058 // Mark this function as potentially containing a function that contains a 3059 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3060 // and restoring the callers stack pointer in this functions epilog. This is 3061 // done because by tail calling the called function might overwrite the value 3062 // in this function's (MF) stack pointer stack slot 0(SP). 3063 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 3064 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3065 3066 unsigned nAltivecParamsAtEnd = 0; 3067 3068 // Count how many bytes are to be pushed on the stack, including the linkage 3069 // area, and parameter passing area. We start with 24/48 bytes, which is 3070 // prereserved space for [SP][CR][LR][3 x unused]. 3071 unsigned NumBytes = 3072 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3073 Outs, OutVals, 3074 nAltivecParamsAtEnd); 3075 3076 // Calculate by how many bytes the stack has to be adjusted in case of tail 3077 // call optimization. 3078 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3079 3080 // To protect arguments on the stack from being clobbered in a tail call, 3081 // force all the loads to happen before doing any other lowering. 3082 if (isTailCall) 3083 Chain = DAG.getStackArgumentTokenFactor(Chain); 3084 3085 // Adjust the stack pointer for the new arguments... 3086 // These operations are automatically eliminated by the prolog/epilog pass 3087 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3088 SDValue CallSeqStart = Chain; 3089 3090 // Load the return address and frame pointer so it can be move somewhere else 3091 // later. 3092 SDValue LROp, FPOp; 3093 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3094 dl); 3095 3096 // Set up a copy of the stack pointer for use loading and storing any 3097 // arguments that may not fit in the registers available for argument 3098 // passing. 3099 SDValue StackPtr; 3100 if (isPPC64) 3101 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3102 else 3103 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3104 3105 // Figure out which arguments are going to go in registers, and which in 3106 // memory. Also, if this is a vararg function, floating point operations 3107 // must be stored to our stack, and loaded into integer regs as well, if 3108 // any integer regs are available for argument passing. 3109 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3110 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3111 3112 static const unsigned GPR_32[] = { // 32-bit registers. 3113 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3114 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3115 }; 3116 static const unsigned GPR_64[] = { // 64-bit registers. 3117 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3118 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3119 }; 3120 static const unsigned *FPR = GetFPR(); 3121 3122 static const unsigned VR[] = { 3123 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3124 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3125 }; 3126 const unsigned NumGPRs = array_lengthof(GPR_32); 3127 const unsigned NumFPRs = 13; 3128 const unsigned NumVRs = array_lengthof(VR); 3129 3130 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3131 3132 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3133 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3134 3135 SmallVector<SDValue, 8> MemOpChains; 3136 for (unsigned i = 0; i != NumOps; ++i) { 3137 SDValue Arg = OutVals[i]; 3138 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3139 3140 // PtrOff will be used to store the current argument to the stack if a 3141 // register cannot be found for it. 3142 SDValue PtrOff; 3143 3144 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3145 3146 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3147 3148 // On PPC64, promote integers to 64-bit values. 3149 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3150 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3151 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3152 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3153 } 3154 3155 // FIXME memcpy is used way more than necessary. Correctness first. 3156 if (Flags.isByVal()) { 3157 unsigned Size = Flags.getByValSize(); 3158 if (Size==1 || Size==2) { 3159 // Very small objects are passed right-justified. 3160 // Everything else is passed left-justified. 3161 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3162 if (GPR_idx != NumGPRs) { 3163 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3164 MachinePointerInfo(), VT, 3165 false, false, 0); 3166 MemOpChains.push_back(Load.getValue(1)); 3167 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3168 3169 ArgOffset += PtrByteSize; 3170 } else { 3171 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3172 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3173 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3174 CallSeqStart.getNode()->getOperand(0), 3175 Flags, DAG, dl); 3176 // This must go outside the CALLSEQ_START..END. 3177 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3178 CallSeqStart.getNode()->getOperand(1)); 3179 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3180 NewCallSeqStart.getNode()); 3181 Chain = CallSeqStart = NewCallSeqStart; 3182 ArgOffset += PtrByteSize; 3183 } 3184 continue; 3185 } 3186 // Copy entire object into memory. There are cases where gcc-generated 3187 // code assumes it is there, even if it could be put entirely into 3188 // registers. (This is not what the doc says.) 3189 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3190 CallSeqStart.getNode()->getOperand(0), 3191 Flags, DAG, dl); 3192 // This must go outside the CALLSEQ_START..END. 3193 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3194 CallSeqStart.getNode()->getOperand(1)); 3195 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3196 Chain = CallSeqStart = NewCallSeqStart; 3197 // And copy the pieces of it that fit into registers. 3198 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3199 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3200 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3201 if (GPR_idx != NumGPRs) { 3202 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3203 MachinePointerInfo(), 3204 false, false, 0); 3205 MemOpChains.push_back(Load.getValue(1)); 3206 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3207 ArgOffset += PtrByteSize; 3208 } else { 3209 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3210 break; 3211 } 3212 } 3213 continue; 3214 } 3215 3216 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3217 default: llvm_unreachable("Unexpected ValueType for argument!"); 3218 case MVT::i32: 3219 case MVT::i64: 3220 if (GPR_idx != NumGPRs) { 3221 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3222 } else { 3223 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3224 isPPC64, isTailCall, false, MemOpChains, 3225 TailCallArguments, dl); 3226 } 3227 ArgOffset += PtrByteSize; 3228 break; 3229 case MVT::f32: 3230 case MVT::f64: 3231 if (FPR_idx != NumFPRs) { 3232 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3233 3234 if (isVarArg) { 3235 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3236 MachinePointerInfo(), false, false, 0); 3237 MemOpChains.push_back(Store); 3238 3239 // Float varargs are always shadowed in available integer registers 3240 if (GPR_idx != NumGPRs) { 3241 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3242 MachinePointerInfo(), false, false, 0); 3243 MemOpChains.push_back(Load.getValue(1)); 3244 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3245 } 3246 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3247 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3248 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3249 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3250 MachinePointerInfo(), 3251 false, false, 0); 3252 MemOpChains.push_back(Load.getValue(1)); 3253 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3254 } 3255 } else { 3256 // If we have any FPRs remaining, we may also have GPRs remaining. 3257 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3258 // GPRs. 3259 if (GPR_idx != NumGPRs) 3260 ++GPR_idx; 3261 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3262 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3263 ++GPR_idx; 3264 } 3265 } else { 3266 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3267 isPPC64, isTailCall, false, MemOpChains, 3268 TailCallArguments, dl); 3269 } 3270 if (isPPC64) 3271 ArgOffset += 8; 3272 else 3273 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3274 break; 3275 case MVT::v4f32: 3276 case MVT::v4i32: 3277 case MVT::v8i16: 3278 case MVT::v16i8: 3279 if (isVarArg) { 3280 // These go aligned on the stack, or in the corresponding R registers 3281 // when within range. The Darwin PPC ABI doc claims they also go in 3282 // V registers; in fact gcc does this only for arguments that are 3283 // prototyped, not for those that match the ... We do it for all 3284 // arguments, seems to work. 3285 while (ArgOffset % 16 !=0) { 3286 ArgOffset += PtrByteSize; 3287 if (GPR_idx != NumGPRs) 3288 GPR_idx++; 3289 } 3290 // We could elide this store in the case where the object fits 3291 // entirely in R registers. Maybe later. 3292 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3293 DAG.getConstant(ArgOffset, PtrVT)); 3294 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3295 MachinePointerInfo(), false, false, 0); 3296 MemOpChains.push_back(Store); 3297 if (VR_idx != NumVRs) { 3298 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3299 MachinePointerInfo(), 3300 false, false, 0); 3301 MemOpChains.push_back(Load.getValue(1)); 3302 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3303 } 3304 ArgOffset += 16; 3305 for (unsigned i=0; i<16; i+=PtrByteSize) { 3306 if (GPR_idx == NumGPRs) 3307 break; 3308 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3309 DAG.getConstant(i, PtrVT)); 3310 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3311 false, false, 0); 3312 MemOpChains.push_back(Load.getValue(1)); 3313 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3314 } 3315 break; 3316 } 3317 3318 // Non-varargs Altivec params generally go in registers, but have 3319 // stack space allocated at the end. 3320 if (VR_idx != NumVRs) { 3321 // Doesn't have GPR space allocated. 3322 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3323 } else if (nAltivecParamsAtEnd==0) { 3324 // We are emitting Altivec params in order. 3325 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3326 isPPC64, isTailCall, true, MemOpChains, 3327 TailCallArguments, dl); 3328 ArgOffset += 16; 3329 } 3330 break; 3331 } 3332 } 3333 // If all Altivec parameters fit in registers, as they usually do, 3334 // they get stack space following the non-Altivec parameters. We 3335 // don't track this here because nobody below needs it. 3336 // If there are more Altivec parameters than fit in registers emit 3337 // the stores here. 3338 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3339 unsigned j = 0; 3340 // Offset is aligned; skip 1st 12 params which go in V registers. 3341 ArgOffset = ((ArgOffset+15)/16)*16; 3342 ArgOffset += 12*16; 3343 for (unsigned i = 0; i != NumOps; ++i) { 3344 SDValue Arg = OutVals[i]; 3345 EVT ArgType = Outs[i].VT; 3346 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3347 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3348 if (++j > NumVRs) { 3349 SDValue PtrOff; 3350 // We are emitting Altivec params in order. 3351 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3352 isPPC64, isTailCall, true, MemOpChains, 3353 TailCallArguments, dl); 3354 ArgOffset += 16; 3355 } 3356 } 3357 } 3358 } 3359 3360 if (!MemOpChains.empty()) 3361 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3362 &MemOpChains[0], MemOpChains.size()); 3363 3364 // Check if this is an indirect call (MTCTR/BCTRL). 3365 // See PrepareCall() for more information about calls through function 3366 // pointers in the 64-bit SVR4 ABI. 3367 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3368 !dyn_cast<GlobalAddressSDNode>(Callee) && 3369 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3370 !isBLACompatibleAddress(Callee, DAG)) { 3371 // Load r2 into a virtual register and store it to the TOC save area. 3372 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3373 // TOC save area offset. 3374 SDValue PtrOff = DAG.getIntPtrConstant(40); 3375 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3376 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3377 false, false, 0); 3378 } 3379 3380 // On Darwin, R12 must contain the address of an indirect callee. This does 3381 // not mean the MTCTR instruction must use R12; it's easier to model this as 3382 // an extra parameter, so do that. 3383 if (!isTailCall && 3384 !dyn_cast<GlobalAddressSDNode>(Callee) && 3385 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3386 !isBLACompatibleAddress(Callee, DAG)) 3387 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3388 PPC::R12), Callee)); 3389 3390 // Build a sequence of copy-to-reg nodes chained together with token chain 3391 // and flag operands which copy the outgoing args into the appropriate regs. 3392 SDValue InFlag; 3393 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3394 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3395 RegsToPass[i].second, InFlag); 3396 InFlag = Chain.getValue(1); 3397 } 3398 3399 if (isTailCall) 3400 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3401 FPOp, true, TailCallArguments); 3402 3403 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3404 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3405 Ins, InVals); 3406 } 3407 3408 SDValue 3409 PPCTargetLowering::LowerReturn(SDValue Chain, 3410 CallingConv::ID CallConv, bool isVarArg, 3411 const SmallVectorImpl<ISD::OutputArg> &Outs, 3412 const SmallVectorImpl<SDValue> &OutVals, 3413 DebugLoc dl, SelectionDAG &DAG) const { 3414 3415 SmallVector<CCValAssign, 16> RVLocs; 3416 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3417 getTargetMachine(), RVLocs, *DAG.getContext()); 3418 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3419 3420 // If this is the first return lowered for this function, add the regs to the 3421 // liveout set for the function. 3422 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3423 for (unsigned i = 0; i != RVLocs.size(); ++i) 3424 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3425 } 3426 3427 SDValue Flag; 3428 3429 // Copy the result values into the output registers. 3430 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3431 CCValAssign &VA = RVLocs[i]; 3432 assert(VA.isRegLoc() && "Can only return in registers!"); 3433 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3434 OutVals[i], Flag); 3435 Flag = Chain.getValue(1); 3436 } 3437 3438 if (Flag.getNode()) 3439 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3440 else 3441 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3442 } 3443 3444 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3445 const PPCSubtarget &Subtarget) const { 3446 // When we pop the dynamic allocation we need to restore the SP link. 3447 DebugLoc dl = Op.getDebugLoc(); 3448 3449 // Get the corect type for pointers. 3450 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3451 3452 // Construct the stack pointer operand. 3453 bool isPPC64 = Subtarget.isPPC64(); 3454 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3455 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3456 3457 // Get the operands for the STACKRESTORE. 3458 SDValue Chain = Op.getOperand(0); 3459 SDValue SaveSP = Op.getOperand(1); 3460 3461 // Load the old link SP. 3462 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3463 MachinePointerInfo(), 3464 false, false, 0); 3465 3466 // Restore the stack pointer. 3467 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3468 3469 // Store the old link SP. 3470 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3471 false, false, 0); 3472 } 3473 3474 3475 3476 SDValue 3477 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3478 MachineFunction &MF = DAG.getMachineFunction(); 3479 bool isPPC64 = PPCSubTarget.isPPC64(); 3480 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3481 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3482 3483 // Get current frame pointer save index. The users of this index will be 3484 // primarily DYNALLOC instructions. 3485 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3486 int RASI = FI->getReturnAddrSaveIndex(); 3487 3488 // If the frame pointer save index hasn't been defined yet. 3489 if (!RASI) { 3490 // Find out what the fix offset of the frame pointer save area. 3491 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3492 // Allocate the frame index for frame pointer save area. 3493 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3494 // Save the result. 3495 FI->setReturnAddrSaveIndex(RASI); 3496 } 3497 return DAG.getFrameIndex(RASI, PtrVT); 3498 } 3499 3500 SDValue 3501 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3502 MachineFunction &MF = DAG.getMachineFunction(); 3503 bool isPPC64 = PPCSubTarget.isPPC64(); 3504 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3505 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3506 3507 // Get current frame pointer save index. The users of this index will be 3508 // primarily DYNALLOC instructions. 3509 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3510 int FPSI = FI->getFramePointerSaveIndex(); 3511 3512 // If the frame pointer save index hasn't been defined yet. 3513 if (!FPSI) { 3514 // Find out what the fix offset of the frame pointer save area. 3515 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3516 isDarwinABI); 3517 3518 // Allocate the frame index for frame pointer save area. 3519 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3520 // Save the result. 3521 FI->setFramePointerSaveIndex(FPSI); 3522 } 3523 return DAG.getFrameIndex(FPSI, PtrVT); 3524 } 3525 3526 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3527 SelectionDAG &DAG, 3528 const PPCSubtarget &Subtarget) const { 3529 // Get the inputs. 3530 SDValue Chain = Op.getOperand(0); 3531 SDValue Size = Op.getOperand(1); 3532 DebugLoc dl = Op.getDebugLoc(); 3533 3534 // Get the corect type for pointers. 3535 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3536 // Negate the size. 3537 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3538 DAG.getConstant(0, PtrVT), Size); 3539 // Construct a node for the frame pointer save index. 3540 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3541 // Build a DYNALLOC node. 3542 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3543 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3544 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3545 } 3546 3547 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3548 /// possible. 3549 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3550 // Not FP? Not a fsel. 3551 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3552 !Op.getOperand(2).getValueType().isFloatingPoint()) 3553 return Op; 3554 3555 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3556 3557 // Cannot handle SETEQ/SETNE. 3558 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3559 3560 EVT ResVT = Op.getValueType(); 3561 EVT CmpVT = Op.getOperand(0).getValueType(); 3562 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3563 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3564 DebugLoc dl = Op.getDebugLoc(); 3565 3566 // If the RHS of the comparison is a 0.0, we don't need to do the 3567 // subtraction at all. 3568 if (isFloatingPointZero(RHS)) 3569 switch (CC) { 3570 default: break; // SETUO etc aren't handled by fsel. 3571 case ISD::SETULT: 3572 case ISD::SETLT: 3573 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3574 case ISD::SETOGE: 3575 case ISD::SETGE: 3576 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3577 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3578 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3579 case ISD::SETUGT: 3580 case ISD::SETGT: 3581 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3582 case ISD::SETOLE: 3583 case ISD::SETLE: 3584 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3585 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3586 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3587 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3588 } 3589 3590 SDValue Cmp; 3591 switch (CC) { 3592 default: break; // SETUO etc aren't handled by fsel. 3593 case ISD::SETULT: 3594 case ISD::SETLT: 3595 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3596 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3597 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3598 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3599 case ISD::SETOGE: 3600 case ISD::SETGE: 3601 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3602 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3603 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3604 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3605 case ISD::SETUGT: 3606 case ISD::SETGT: 3607 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3608 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3609 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3610 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3611 case ISD::SETOLE: 3612 case ISD::SETLE: 3613 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3614 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3615 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3616 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3617 } 3618 return Op; 3619 } 3620 3621 // FIXME: Split this code up when LegalizeDAGTypes lands. 3622 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3623 DebugLoc dl) const { 3624 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3625 SDValue Src = Op.getOperand(0); 3626 if (Src.getValueType() == MVT::f32) 3627 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3628 3629 SDValue Tmp; 3630 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3631 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3632 case MVT::i32: 3633 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3634 PPCISD::FCTIDZ, 3635 dl, MVT::f64, Src); 3636 break; 3637 case MVT::i64: 3638 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3639 break; 3640 } 3641 3642 // Convert the FP value to an int value through memory. 3643 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3644 3645 // Emit a store to the stack slot. 3646 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3647 MachinePointerInfo(), false, false, 0); 3648 3649 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3650 // add in a bias. 3651 if (Op.getValueType() == MVT::i32) 3652 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3653 DAG.getConstant(4, FIPtr.getValueType())); 3654 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3655 false, false, 0); 3656 } 3657 3658 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3659 SelectionDAG &DAG) const { 3660 DebugLoc dl = Op.getDebugLoc(); 3661 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3662 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3663 return SDValue(); 3664 3665 if (Op.getOperand(0).getValueType() == MVT::i64) { 3666 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3667 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3668 if (Op.getValueType() == MVT::f32) 3669 FP = DAG.getNode(ISD::FP_ROUND, dl, 3670 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3671 return FP; 3672 } 3673 3674 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3675 "Unhandled SINT_TO_FP type in custom expander!"); 3676 // Since we only generate this in 64-bit mode, we can take advantage of 3677 // 64-bit registers. In particular, sign extend the input value into the 3678 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3679 // then lfd it and fcfid it. 3680 MachineFunction &MF = DAG.getMachineFunction(); 3681 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3682 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3683 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3684 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3685 3686 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3687 Op.getOperand(0)); 3688 3689 // STD the extended value into the stack slot. 3690 MachineMemOperand *MMO = 3691 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3692 MachineMemOperand::MOStore, 8, 8); 3693 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3694 SDValue Store = 3695 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3696 Ops, 4, MVT::i64, MMO); 3697 // Load the value as a double. 3698 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3699 false, false, 0); 3700 3701 // FCFID it and return it. 3702 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3703 if (Op.getValueType() == MVT::f32) 3704 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3705 return FP; 3706 } 3707 3708 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3709 SelectionDAG &DAG) const { 3710 DebugLoc dl = Op.getDebugLoc(); 3711 /* 3712 The rounding mode is in bits 30:31 of FPSR, and has the following 3713 settings: 3714 00 Round to nearest 3715 01 Round to 0 3716 10 Round to +inf 3717 11 Round to -inf 3718 3719 FLT_ROUNDS, on the other hand, expects the following: 3720 -1 Undefined 3721 0 Round to 0 3722 1 Round to nearest 3723 2 Round to +inf 3724 3 Round to -inf 3725 3726 To perform the conversion, we do: 3727 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3728 */ 3729 3730 MachineFunction &MF = DAG.getMachineFunction(); 3731 EVT VT = Op.getValueType(); 3732 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3733 std::vector<EVT> NodeTys; 3734 SDValue MFFSreg, InFlag; 3735 3736 // Save FP Control Word to register 3737 NodeTys.push_back(MVT::f64); // return register 3738 NodeTys.push_back(MVT::Glue); // unused in this context 3739 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3740 3741 // Save FP register to stack slot 3742 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3743 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3744 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3745 StackSlot, MachinePointerInfo(), false, false,0); 3746 3747 // Load FP Control Word from low 32 bits of stack slot. 3748 SDValue Four = DAG.getConstant(4, PtrVT); 3749 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3750 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3751 false, false, 0); 3752 3753 // Transform as necessary 3754 SDValue CWD1 = 3755 DAG.getNode(ISD::AND, dl, MVT::i32, 3756 CWD, DAG.getConstant(3, MVT::i32)); 3757 SDValue CWD2 = 3758 DAG.getNode(ISD::SRL, dl, MVT::i32, 3759 DAG.getNode(ISD::AND, dl, MVT::i32, 3760 DAG.getNode(ISD::XOR, dl, MVT::i32, 3761 CWD, DAG.getConstant(3, MVT::i32)), 3762 DAG.getConstant(3, MVT::i32)), 3763 DAG.getConstant(1, MVT::i32)); 3764 3765 SDValue RetVal = 3766 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3767 3768 return DAG.getNode((VT.getSizeInBits() < 16 ? 3769 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3770 } 3771 3772 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3773 EVT VT = Op.getValueType(); 3774 unsigned BitWidth = VT.getSizeInBits(); 3775 DebugLoc dl = Op.getDebugLoc(); 3776 assert(Op.getNumOperands() == 3 && 3777 VT == Op.getOperand(1).getValueType() && 3778 "Unexpected SHL!"); 3779 3780 // Expand into a bunch of logical ops. Note that these ops 3781 // depend on the PPC behavior for oversized shift amounts. 3782 SDValue Lo = Op.getOperand(0); 3783 SDValue Hi = Op.getOperand(1); 3784 SDValue Amt = Op.getOperand(2); 3785 EVT AmtVT = Amt.getValueType(); 3786 3787 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3788 DAG.getConstant(BitWidth, AmtVT), Amt); 3789 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3790 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3791 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3792 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3793 DAG.getConstant(-BitWidth, AmtVT)); 3794 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3795 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3796 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3797 SDValue OutOps[] = { OutLo, OutHi }; 3798 return DAG.getMergeValues(OutOps, 2, dl); 3799 } 3800 3801 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3802 EVT VT = Op.getValueType(); 3803 DebugLoc dl = Op.getDebugLoc(); 3804 unsigned BitWidth = VT.getSizeInBits(); 3805 assert(Op.getNumOperands() == 3 && 3806 VT == Op.getOperand(1).getValueType() && 3807 "Unexpected SRL!"); 3808 3809 // Expand into a bunch of logical ops. Note that these ops 3810 // depend on the PPC behavior for oversized shift amounts. 3811 SDValue Lo = Op.getOperand(0); 3812 SDValue Hi = Op.getOperand(1); 3813 SDValue Amt = Op.getOperand(2); 3814 EVT AmtVT = Amt.getValueType(); 3815 3816 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3817 DAG.getConstant(BitWidth, AmtVT), Amt); 3818 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3819 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3820 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3821 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3822 DAG.getConstant(-BitWidth, AmtVT)); 3823 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3824 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3825 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3826 SDValue OutOps[] = { OutLo, OutHi }; 3827 return DAG.getMergeValues(OutOps, 2, dl); 3828 } 3829 3830 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3831 DebugLoc dl = Op.getDebugLoc(); 3832 EVT VT = Op.getValueType(); 3833 unsigned BitWidth = VT.getSizeInBits(); 3834 assert(Op.getNumOperands() == 3 && 3835 VT == Op.getOperand(1).getValueType() && 3836 "Unexpected SRA!"); 3837 3838 // Expand into a bunch of logical ops, followed by a select_cc. 3839 SDValue Lo = Op.getOperand(0); 3840 SDValue Hi = Op.getOperand(1); 3841 SDValue Amt = Op.getOperand(2); 3842 EVT AmtVT = Amt.getValueType(); 3843 3844 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3845 DAG.getConstant(BitWidth, AmtVT), Amt); 3846 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3847 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3848 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3849 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3850 DAG.getConstant(-BitWidth, AmtVT)); 3851 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3852 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3853 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3854 Tmp4, Tmp6, ISD::SETLE); 3855 SDValue OutOps[] = { OutLo, OutHi }; 3856 return DAG.getMergeValues(OutOps, 2, dl); 3857 } 3858 3859 //===----------------------------------------------------------------------===// 3860 // Vector related lowering. 3861 // 3862 3863 /// BuildSplatI - Build a canonical splati of Val with an element size of 3864 /// SplatSize. Cast the result to VT. 3865 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3866 SelectionDAG &DAG, DebugLoc dl) { 3867 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3868 3869 static const EVT VTys[] = { // canonical VT to use for each size. 3870 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3871 }; 3872 3873 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3874 3875 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3876 if (Val == -1) 3877 SplatSize = 1; 3878 3879 EVT CanonicalVT = VTys[SplatSize-1]; 3880 3881 // Build a canonical splat for this value. 3882 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3883 SmallVector<SDValue, 8> Ops; 3884 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3885 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3886 &Ops[0], Ops.size()); 3887 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3888 } 3889 3890 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3891 /// specified intrinsic ID. 3892 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3893 SelectionDAG &DAG, DebugLoc dl, 3894 EVT DestVT = MVT::Other) { 3895 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3896 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3897 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3898 } 3899 3900 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3901 /// specified intrinsic ID. 3902 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3903 SDValue Op2, SelectionDAG &DAG, 3904 DebugLoc dl, EVT DestVT = MVT::Other) { 3905 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3906 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3907 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3908 } 3909 3910 3911 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3912 /// amount. The result has the specified value type. 3913 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3914 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3915 // Force LHS/RHS to be the right type. 3916 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3917 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3918 3919 int Ops[16]; 3920 for (unsigned i = 0; i != 16; ++i) 3921 Ops[i] = i + Amt; 3922 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3923 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3924 } 3925 3926 // If this is a case we can't handle, return null and let the default 3927 // expansion code take care of it. If we CAN select this case, and if it 3928 // selects to a single instruction, return Op. Otherwise, if we can codegen 3929 // this case more efficiently than a constant pool load, lower it to the 3930 // sequence of ops that should be used. 3931 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3932 SelectionDAG &DAG) const { 3933 DebugLoc dl = Op.getDebugLoc(); 3934 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3935 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3936 3937 // Check if this is a splat of a constant value. 3938 APInt APSplatBits, APSplatUndef; 3939 unsigned SplatBitSize; 3940 bool HasAnyUndefs; 3941 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3942 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3943 return SDValue(); 3944 3945 unsigned SplatBits = APSplatBits.getZExtValue(); 3946 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3947 unsigned SplatSize = SplatBitSize / 8; 3948 3949 // First, handle single instruction cases. 3950 3951 // All zeros? 3952 if (SplatBits == 0) { 3953 // Canonicalize all zero vectors to be v4i32. 3954 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3955 SDValue Z = DAG.getConstant(0, MVT::i32); 3956 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 3957 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 3958 } 3959 return Op; 3960 } 3961 3962 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 3963 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 3964 (32-SplatBitSize)); 3965 if (SextVal >= -16 && SextVal <= 15) 3966 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 3967 3968 3969 // Two instruction sequences. 3970 3971 // If this value is in the range [-32,30] and is even, use: 3972 // tmp = VSPLTI[bhw], result = add tmp, tmp 3973 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 3974 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 3975 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 3976 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3977 } 3978 3979 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 3980 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 3981 // for fneg/fabs. 3982 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 3983 // Make -1 and vspltisw -1: 3984 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 3985 3986 // Make the VSLW intrinsic, computing 0x8000_0000. 3987 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 3988 OnesV, DAG, dl); 3989 3990 // xor by OnesV to invert it. 3991 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 3992 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3993 } 3994 3995 // Check to see if this is a wide variety of vsplti*, binop self cases. 3996 static const signed char SplatCsts[] = { 3997 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 3998 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 3999 }; 4000 4001 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4002 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4003 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4004 int i = SplatCsts[idx]; 4005 4006 // Figure out what shift amount will be used by altivec if shifted by i in 4007 // this splat size. 4008 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4009 4010 // vsplti + shl self. 4011 if (SextVal == (i << (int)TypeShiftAmt)) { 4012 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4013 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4014 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4015 Intrinsic::ppc_altivec_vslw 4016 }; 4017 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4018 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4019 } 4020 4021 // vsplti + srl self. 4022 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4023 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4024 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4025 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4026 Intrinsic::ppc_altivec_vsrw 4027 }; 4028 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4029 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4030 } 4031 4032 // vsplti + sra self. 4033 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4034 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4035 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4036 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4037 Intrinsic::ppc_altivec_vsraw 4038 }; 4039 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4040 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4041 } 4042 4043 // vsplti + rol self. 4044 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4045 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4046 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4047 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4048 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4049 Intrinsic::ppc_altivec_vrlw 4050 }; 4051 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4052 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4053 } 4054 4055 // t = vsplti c, result = vsldoi t, t, 1 4056 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4057 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4058 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4059 } 4060 // t = vsplti c, result = vsldoi t, t, 2 4061 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4062 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4063 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4064 } 4065 // t = vsplti c, result = vsldoi t, t, 3 4066 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4067 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4068 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4069 } 4070 } 4071 4072 // Three instruction sequences. 4073 4074 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4075 if (SextVal >= 0 && SextVal <= 31) { 4076 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4077 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4078 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4079 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4080 } 4081 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4082 if (SextVal >= -31 && SextVal <= 0) { 4083 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4084 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4085 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4086 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4087 } 4088 4089 return SDValue(); 4090 } 4091 4092 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4093 /// the specified operations to build the shuffle. 4094 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4095 SDValue RHS, SelectionDAG &DAG, 4096 DebugLoc dl) { 4097 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4098 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4099 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4100 4101 enum { 4102 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4103 OP_VMRGHW, 4104 OP_VMRGLW, 4105 OP_VSPLTISW0, 4106 OP_VSPLTISW1, 4107 OP_VSPLTISW2, 4108 OP_VSPLTISW3, 4109 OP_VSLDOI4, 4110 OP_VSLDOI8, 4111 OP_VSLDOI12 4112 }; 4113 4114 if (OpNum == OP_COPY) { 4115 if (LHSID == (1*9+2)*9+3) return LHS; 4116 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4117 return RHS; 4118 } 4119 4120 SDValue OpLHS, OpRHS; 4121 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4122 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4123 4124 int ShufIdxs[16]; 4125 switch (OpNum) { 4126 default: llvm_unreachable("Unknown i32 permute!"); 4127 case OP_VMRGHW: 4128 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4129 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4130 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4131 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4132 break; 4133 case OP_VMRGLW: 4134 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4135 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4136 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4137 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4138 break; 4139 case OP_VSPLTISW0: 4140 for (unsigned i = 0; i != 16; ++i) 4141 ShufIdxs[i] = (i&3)+0; 4142 break; 4143 case OP_VSPLTISW1: 4144 for (unsigned i = 0; i != 16; ++i) 4145 ShufIdxs[i] = (i&3)+4; 4146 break; 4147 case OP_VSPLTISW2: 4148 for (unsigned i = 0; i != 16; ++i) 4149 ShufIdxs[i] = (i&3)+8; 4150 break; 4151 case OP_VSPLTISW3: 4152 for (unsigned i = 0; i != 16; ++i) 4153 ShufIdxs[i] = (i&3)+12; 4154 break; 4155 case OP_VSLDOI4: 4156 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4157 case OP_VSLDOI8: 4158 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4159 case OP_VSLDOI12: 4160 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4161 } 4162 EVT VT = OpLHS.getValueType(); 4163 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4164 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4165 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4166 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4167 } 4168 4169 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4170 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4171 /// return the code it can be lowered into. Worst case, it can always be 4172 /// lowered into a vperm. 4173 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4174 SelectionDAG &DAG) const { 4175 DebugLoc dl = Op.getDebugLoc(); 4176 SDValue V1 = Op.getOperand(0); 4177 SDValue V2 = Op.getOperand(1); 4178 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4179 EVT VT = Op.getValueType(); 4180 4181 // Cases that are handled by instructions that take permute immediates 4182 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4183 // selected by the instruction selector. 4184 if (V2.getOpcode() == ISD::UNDEF) { 4185 if (PPC::isSplatShuffleMask(SVOp, 1) || 4186 PPC::isSplatShuffleMask(SVOp, 2) || 4187 PPC::isSplatShuffleMask(SVOp, 4) || 4188 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4189 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4190 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4191 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4192 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4193 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4194 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4195 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4196 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4197 return Op; 4198 } 4199 } 4200 4201 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4202 // and produce a fixed permutation. If any of these match, do not lower to 4203 // VPERM. 4204 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4205 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4206 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4207 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4208 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4209 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4210 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4211 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4212 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4213 return Op; 4214 4215 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4216 // perfect shuffle table to emit an optimal matching sequence. 4217 SmallVector<int, 16> PermMask; 4218 SVOp->getMask(PermMask); 4219 4220 unsigned PFIndexes[4]; 4221 bool isFourElementShuffle = true; 4222 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4223 unsigned EltNo = 8; // Start out undef. 4224 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4225 if (PermMask[i*4+j] < 0) 4226 continue; // Undef, ignore it. 4227 4228 unsigned ByteSource = PermMask[i*4+j]; 4229 if ((ByteSource & 3) != j) { 4230 isFourElementShuffle = false; 4231 break; 4232 } 4233 4234 if (EltNo == 8) { 4235 EltNo = ByteSource/4; 4236 } else if (EltNo != ByteSource/4) { 4237 isFourElementShuffle = false; 4238 break; 4239 } 4240 } 4241 PFIndexes[i] = EltNo; 4242 } 4243 4244 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4245 // perfect shuffle vector to determine if it is cost effective to do this as 4246 // discrete instructions, or whether we should use a vperm. 4247 if (isFourElementShuffle) { 4248 // Compute the index in the perfect shuffle table. 4249 unsigned PFTableIndex = 4250 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4251 4252 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4253 unsigned Cost = (PFEntry >> 30); 4254 4255 // Determining when to avoid vperm is tricky. Many things affect the cost 4256 // of vperm, particularly how many times the perm mask needs to be computed. 4257 // For example, if the perm mask can be hoisted out of a loop or is already 4258 // used (perhaps because there are multiple permutes with the same shuffle 4259 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4260 // the loop requires an extra register. 4261 // 4262 // As a compromise, we only emit discrete instructions if the shuffle can be 4263 // generated in 3 or fewer operations. When we have loop information 4264 // available, if this block is within a loop, we should avoid using vperm 4265 // for 3-operation perms and use a constant pool load instead. 4266 if (Cost < 3) 4267 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4268 } 4269 4270 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4271 // vector that will get spilled to the constant pool. 4272 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4273 4274 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4275 // that it is in input element units, not in bytes. Convert now. 4276 EVT EltVT = V1.getValueType().getVectorElementType(); 4277 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4278 4279 SmallVector<SDValue, 16> ResultMask; 4280 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4281 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4282 4283 for (unsigned j = 0; j != BytesPerElement; ++j) 4284 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4285 MVT::i32)); 4286 } 4287 4288 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4289 &ResultMask[0], ResultMask.size()); 4290 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4291 } 4292 4293 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4294 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4295 /// information about the intrinsic. 4296 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4297 bool &isDot) { 4298 unsigned IntrinsicID = 4299 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4300 CompareOpc = -1; 4301 isDot = false; 4302 switch (IntrinsicID) { 4303 default: return false; 4304 // Comparison predicates. 4305 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4306 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4307 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4308 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4309 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4310 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4311 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4312 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4313 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4314 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4315 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4316 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4317 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4318 4319 // Normal Comparisons. 4320 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4321 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4322 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4323 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4324 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4325 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4326 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4327 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4328 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4329 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4330 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4331 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4332 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4333 } 4334 return true; 4335 } 4336 4337 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4338 /// lower, do it, otherwise return null. 4339 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4340 SelectionDAG &DAG) const { 4341 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4342 // opcode number of the comparison. 4343 DebugLoc dl = Op.getDebugLoc(); 4344 int CompareOpc; 4345 bool isDot; 4346 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4347 return SDValue(); // Don't custom lower most intrinsics. 4348 4349 // If this is a non-dot comparison, make the VCMP node and we are done. 4350 if (!isDot) { 4351 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4352 Op.getOperand(1), Op.getOperand(2), 4353 DAG.getConstant(CompareOpc, MVT::i32)); 4354 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4355 } 4356 4357 // Create the PPCISD altivec 'dot' comparison node. 4358 SDValue Ops[] = { 4359 Op.getOperand(2), // LHS 4360 Op.getOperand(3), // RHS 4361 DAG.getConstant(CompareOpc, MVT::i32) 4362 }; 4363 std::vector<EVT> VTs; 4364 VTs.push_back(Op.getOperand(2).getValueType()); 4365 VTs.push_back(MVT::Glue); 4366 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4367 4368 // Now that we have the comparison, emit a copy from the CR to a GPR. 4369 // This is flagged to the above dot comparison. 4370 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4371 DAG.getRegister(PPC::CR6, MVT::i32), 4372 CompNode.getValue(1)); 4373 4374 // Unpack the result based on how the target uses it. 4375 unsigned BitNo; // Bit # of CR6. 4376 bool InvertBit; // Invert result? 4377 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4378 default: // Can't happen, don't crash on invalid number though. 4379 case 0: // Return the value of the EQ bit of CR6. 4380 BitNo = 0; InvertBit = false; 4381 break; 4382 case 1: // Return the inverted value of the EQ bit of CR6. 4383 BitNo = 0; InvertBit = true; 4384 break; 4385 case 2: // Return the value of the LT bit of CR6. 4386 BitNo = 2; InvertBit = false; 4387 break; 4388 case 3: // Return the inverted value of the LT bit of CR6. 4389 BitNo = 2; InvertBit = true; 4390 break; 4391 } 4392 4393 // Shift the bit into the low position. 4394 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4395 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4396 // Isolate the bit. 4397 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4398 DAG.getConstant(1, MVT::i32)); 4399 4400 // If we are supposed to, toggle the bit. 4401 if (InvertBit) 4402 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4403 DAG.getConstant(1, MVT::i32)); 4404 return Flags; 4405 } 4406 4407 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4408 SelectionDAG &DAG) const { 4409 DebugLoc dl = Op.getDebugLoc(); 4410 // Create a stack slot that is 16-byte aligned. 4411 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4412 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4413 EVT PtrVT = getPointerTy(); 4414 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4415 4416 // Store the input value into Value#0 of the stack slot. 4417 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4418 Op.getOperand(0), FIdx, MachinePointerInfo(), 4419 false, false, 0); 4420 // Load it out. 4421 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4422 false, false, 0); 4423 } 4424 4425 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4426 DebugLoc dl = Op.getDebugLoc(); 4427 if (Op.getValueType() == MVT::v4i32) { 4428 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4429 4430 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4431 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4432 4433 SDValue RHSSwap = // = vrlw RHS, 16 4434 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4435 4436 // Shrinkify inputs to v8i16. 4437 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4438 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4439 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4440 4441 // Low parts multiplied together, generating 32-bit results (we ignore the 4442 // top parts). 4443 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4444 LHS, RHS, DAG, dl, MVT::v4i32); 4445 4446 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4447 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4448 // Shift the high parts up 16 bits. 4449 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4450 Neg16, DAG, dl); 4451 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4452 } else if (Op.getValueType() == MVT::v8i16) { 4453 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4454 4455 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4456 4457 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4458 LHS, RHS, Zero, DAG, dl); 4459 } else if (Op.getValueType() == MVT::v16i8) { 4460 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4461 4462 // Multiply the even 8-bit parts, producing 16-bit sums. 4463 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4464 LHS, RHS, DAG, dl, MVT::v8i16); 4465 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4466 4467 // Multiply the odd 8-bit parts, producing 16-bit sums. 4468 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4469 LHS, RHS, DAG, dl, MVT::v8i16); 4470 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4471 4472 // Merge the results together. 4473 int Ops[16]; 4474 for (unsigned i = 0; i != 8; ++i) { 4475 Ops[i*2 ] = 2*i+1; 4476 Ops[i*2+1] = 2*i+1+16; 4477 } 4478 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4479 } else { 4480 llvm_unreachable("Unknown mul to lower!"); 4481 } 4482 } 4483 4484 /// LowerOperation - Provide custom lowering hooks for some operations. 4485 /// 4486 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4487 switch (Op.getOpcode()) { 4488 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4489 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4490 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4491 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4492 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4493 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4494 case ISD::SETCC: return LowerSETCC(Op, DAG); 4495 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 4496 case ISD::VASTART: 4497 return LowerVASTART(Op, DAG, PPCSubTarget); 4498 4499 case ISD::VAARG: 4500 return LowerVAARG(Op, DAG, PPCSubTarget); 4501 4502 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4503 case ISD::DYNAMIC_STACKALLOC: 4504 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4505 4506 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4507 case ISD::FP_TO_UINT: 4508 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4509 Op.getDebugLoc()); 4510 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4511 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4512 4513 // Lower 64-bit shifts. 4514 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4515 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4516 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4517 4518 // Vector-related lowering. 4519 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4520 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4521 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4522 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4523 case ISD::MUL: return LowerMUL(Op, DAG); 4524 4525 // Frame & Return address. 4526 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4527 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4528 } 4529 return SDValue(); 4530 } 4531 4532 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4533 SmallVectorImpl<SDValue>&Results, 4534 SelectionDAG &DAG) const { 4535 const TargetMachine &TM = getTargetMachine(); 4536 DebugLoc dl = N->getDebugLoc(); 4537 switch (N->getOpcode()) { 4538 default: 4539 assert(false && "Do not know how to custom type legalize this operation!"); 4540 return; 4541 case ISD::VAARG: { 4542 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4543 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4544 return; 4545 4546 EVT VT = N->getValueType(0); 4547 4548 if (VT == MVT::i64) { 4549 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4550 4551 Results.push_back(NewNode); 4552 Results.push_back(NewNode.getValue(1)); 4553 } 4554 return; 4555 } 4556 case ISD::FP_ROUND_INREG: { 4557 assert(N->getValueType(0) == MVT::ppcf128); 4558 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4559 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4560 MVT::f64, N->getOperand(0), 4561 DAG.getIntPtrConstant(0)); 4562 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4563 MVT::f64, N->getOperand(0), 4564 DAG.getIntPtrConstant(1)); 4565 4566 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4567 // of the long double, and puts FPSCR back the way it was. We do not 4568 // actually model FPSCR. 4569 std::vector<EVT> NodeTys; 4570 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4571 4572 NodeTys.push_back(MVT::f64); // Return register 4573 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4574 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4575 MFFSreg = Result.getValue(0); 4576 InFlag = Result.getValue(1); 4577 4578 NodeTys.clear(); 4579 NodeTys.push_back(MVT::Glue); // Returns a flag 4580 Ops[0] = DAG.getConstant(31, MVT::i32); 4581 Ops[1] = InFlag; 4582 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4583 InFlag = Result.getValue(0); 4584 4585 NodeTys.clear(); 4586 NodeTys.push_back(MVT::Glue); // Returns a flag 4587 Ops[0] = DAG.getConstant(30, MVT::i32); 4588 Ops[1] = InFlag; 4589 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4590 InFlag = Result.getValue(0); 4591 4592 NodeTys.clear(); 4593 NodeTys.push_back(MVT::f64); // result of add 4594 NodeTys.push_back(MVT::Glue); // Returns a flag 4595 Ops[0] = Lo; 4596 Ops[1] = Hi; 4597 Ops[2] = InFlag; 4598 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4599 FPreg = Result.getValue(0); 4600 InFlag = Result.getValue(1); 4601 4602 NodeTys.clear(); 4603 NodeTys.push_back(MVT::f64); 4604 Ops[0] = DAG.getConstant(1, MVT::i32); 4605 Ops[1] = MFFSreg; 4606 Ops[2] = FPreg; 4607 Ops[3] = InFlag; 4608 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4609 FPreg = Result.getValue(0); 4610 4611 // We know the low half is about to be thrown away, so just use something 4612 // convenient. 4613 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4614 FPreg, FPreg)); 4615 return; 4616 } 4617 case ISD::FP_TO_SINT: 4618 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4619 return; 4620 } 4621 } 4622 4623 4624 //===----------------------------------------------------------------------===// 4625 // Other Lowering Code 4626 //===----------------------------------------------------------------------===// 4627 4628 MachineBasicBlock * 4629 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4630 bool is64bit, unsigned BinOpcode) const { 4631 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4632 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4633 4634 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4635 MachineFunction *F = BB->getParent(); 4636 MachineFunction::iterator It = BB; 4637 ++It; 4638 4639 unsigned dest = MI->getOperand(0).getReg(); 4640 unsigned ptrA = MI->getOperand(1).getReg(); 4641 unsigned ptrB = MI->getOperand(2).getReg(); 4642 unsigned incr = MI->getOperand(3).getReg(); 4643 DebugLoc dl = MI->getDebugLoc(); 4644 4645 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4646 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4647 F->insert(It, loopMBB); 4648 F->insert(It, exitMBB); 4649 exitMBB->splice(exitMBB->begin(), BB, 4650 llvm::next(MachineBasicBlock::iterator(MI)), 4651 BB->end()); 4652 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4653 4654 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4655 unsigned TmpReg = (!BinOpcode) ? incr : 4656 RegInfo.createVirtualRegister( 4657 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4658 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4659 4660 // thisMBB: 4661 // ... 4662 // fallthrough --> loopMBB 4663 BB->addSuccessor(loopMBB); 4664 4665 // loopMBB: 4666 // l[wd]arx dest, ptr 4667 // add r0, dest, incr 4668 // st[wd]cx. r0, ptr 4669 // bne- loopMBB 4670 // fallthrough --> exitMBB 4671 BB = loopMBB; 4672 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4673 .addReg(ptrA).addReg(ptrB); 4674 if (BinOpcode) 4675 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4676 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4677 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4678 BuildMI(BB, dl, TII->get(PPC::BCC)) 4679 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4680 BB->addSuccessor(loopMBB); 4681 BB->addSuccessor(exitMBB); 4682 4683 // exitMBB: 4684 // ... 4685 BB = exitMBB; 4686 return BB; 4687 } 4688 4689 MachineBasicBlock * 4690 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4691 MachineBasicBlock *BB, 4692 bool is8bit, // operation 4693 unsigned BinOpcode) const { 4694 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4695 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4696 // In 64 bit mode we have to use 64 bits for addresses, even though the 4697 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4698 // registers without caring whether they're 32 or 64, but here we're 4699 // doing actual arithmetic on the addresses. 4700 bool is64bit = PPCSubTarget.isPPC64(); 4701 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4702 4703 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4704 MachineFunction *F = BB->getParent(); 4705 MachineFunction::iterator It = BB; 4706 ++It; 4707 4708 unsigned dest = MI->getOperand(0).getReg(); 4709 unsigned ptrA = MI->getOperand(1).getReg(); 4710 unsigned ptrB = MI->getOperand(2).getReg(); 4711 unsigned incr = MI->getOperand(3).getReg(); 4712 DebugLoc dl = MI->getDebugLoc(); 4713 4714 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4715 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4716 F->insert(It, loopMBB); 4717 F->insert(It, exitMBB); 4718 exitMBB->splice(exitMBB->begin(), BB, 4719 llvm::next(MachineBasicBlock::iterator(MI)), 4720 BB->end()); 4721 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4722 4723 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4724 const TargetRegisterClass *RC = 4725 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4726 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4727 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4728 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4729 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4730 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4731 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4732 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4733 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4734 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4735 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4736 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4737 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4738 unsigned Ptr1Reg; 4739 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4740 4741 // thisMBB: 4742 // ... 4743 // fallthrough --> loopMBB 4744 BB->addSuccessor(loopMBB); 4745 4746 // The 4-byte load must be aligned, while a char or short may be 4747 // anywhere in the word. Hence all this nasty bookkeeping code. 4748 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4749 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4750 // xori shift, shift1, 24 [16] 4751 // rlwinm ptr, ptr1, 0, 0, 29 4752 // slw incr2, incr, shift 4753 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4754 // slw mask, mask2, shift 4755 // loopMBB: 4756 // lwarx tmpDest, ptr 4757 // add tmp, tmpDest, incr2 4758 // andc tmp2, tmpDest, mask 4759 // and tmp3, tmp, mask 4760 // or tmp4, tmp3, tmp2 4761 // stwcx. tmp4, ptr 4762 // bne- loopMBB 4763 // fallthrough --> exitMBB 4764 // srw dest, tmpDest, shift 4765 if (ptrA != ZeroReg) { 4766 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4767 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4768 .addReg(ptrA).addReg(ptrB); 4769 } else { 4770 Ptr1Reg = ptrB; 4771 } 4772 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4773 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4774 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4775 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4776 if (is64bit) 4777 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4778 .addReg(Ptr1Reg).addImm(0).addImm(61); 4779 else 4780 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4781 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4782 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4783 .addReg(incr).addReg(ShiftReg); 4784 if (is8bit) 4785 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4786 else { 4787 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4788 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4789 } 4790 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4791 .addReg(Mask2Reg).addReg(ShiftReg); 4792 4793 BB = loopMBB; 4794 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4795 .addReg(ZeroReg).addReg(PtrReg); 4796 if (BinOpcode) 4797 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4798 .addReg(Incr2Reg).addReg(TmpDestReg); 4799 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4800 .addReg(TmpDestReg).addReg(MaskReg); 4801 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4802 .addReg(TmpReg).addReg(MaskReg); 4803 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4804 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4805 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4806 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4807 BuildMI(BB, dl, TII->get(PPC::BCC)) 4808 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4809 BB->addSuccessor(loopMBB); 4810 BB->addSuccessor(exitMBB); 4811 4812 // exitMBB: 4813 // ... 4814 BB = exitMBB; 4815 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4816 .addReg(ShiftReg); 4817 return BB; 4818 } 4819 4820 MachineBasicBlock * 4821 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4822 MachineBasicBlock *BB) const { 4823 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4824 4825 // To "insert" these instructions we actually have to insert their 4826 // control-flow patterns. 4827 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4828 MachineFunction::iterator It = BB; 4829 ++It; 4830 4831 MachineFunction *F = BB->getParent(); 4832 4833 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4834 MI->getOpcode() == PPC::SELECT_CC_I8 || 4835 MI->getOpcode() == PPC::SELECT_CC_F4 || 4836 MI->getOpcode() == PPC::SELECT_CC_F8 || 4837 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4838 4839 // The incoming instruction knows the destination vreg to set, the 4840 // condition code register to branch on, the true/false values to 4841 // select between, and a branch opcode to use. 4842 4843 // thisMBB: 4844 // ... 4845 // TrueVal = ... 4846 // cmpTY ccX, r1, r2 4847 // bCC copy1MBB 4848 // fallthrough --> copy0MBB 4849 MachineBasicBlock *thisMBB = BB; 4850 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4851 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4852 unsigned SelectPred = MI->getOperand(4).getImm(); 4853 DebugLoc dl = MI->getDebugLoc(); 4854 F->insert(It, copy0MBB); 4855 F->insert(It, sinkMBB); 4856 4857 // Transfer the remainder of BB and its successor edges to sinkMBB. 4858 sinkMBB->splice(sinkMBB->begin(), BB, 4859 llvm::next(MachineBasicBlock::iterator(MI)), 4860 BB->end()); 4861 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4862 4863 // Next, add the true and fallthrough blocks as its successors. 4864 BB->addSuccessor(copy0MBB); 4865 BB->addSuccessor(sinkMBB); 4866 4867 BuildMI(BB, dl, TII->get(PPC::BCC)) 4868 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4869 4870 // copy0MBB: 4871 // %FalseValue = ... 4872 // # fallthrough to sinkMBB 4873 BB = copy0MBB; 4874 4875 // Update machine-CFG edges 4876 BB->addSuccessor(sinkMBB); 4877 4878 // sinkMBB: 4879 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4880 // ... 4881 BB = sinkMBB; 4882 BuildMI(*BB, BB->begin(), dl, 4883 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4884 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4885 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4886 } 4887 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4888 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4889 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4890 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4891 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4892 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4893 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4894 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4895 4896 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4897 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4898 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4899 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4900 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4901 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4902 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4903 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4904 4905 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4906 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4907 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4908 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4909 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4910 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4911 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4912 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4913 4914 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4915 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4916 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4917 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4918 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4919 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4920 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4921 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4922 4923 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4924 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4925 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4926 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4927 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4928 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4929 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4930 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4931 4932 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4933 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4934 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4935 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4936 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4937 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4938 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4939 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4940 4941 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4942 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4943 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4944 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4945 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4946 BB = EmitAtomicBinary(MI, BB, false, 0); 4947 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4948 BB = EmitAtomicBinary(MI, BB, true, 0); 4949 4950 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4951 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4952 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4953 4954 unsigned dest = MI->getOperand(0).getReg(); 4955 unsigned ptrA = MI->getOperand(1).getReg(); 4956 unsigned ptrB = MI->getOperand(2).getReg(); 4957 unsigned oldval = MI->getOperand(3).getReg(); 4958 unsigned newval = MI->getOperand(4).getReg(); 4959 DebugLoc dl = MI->getDebugLoc(); 4960 4961 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4962 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4963 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4964 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4965 F->insert(It, loop1MBB); 4966 F->insert(It, loop2MBB); 4967 F->insert(It, midMBB); 4968 F->insert(It, exitMBB); 4969 exitMBB->splice(exitMBB->begin(), BB, 4970 llvm::next(MachineBasicBlock::iterator(MI)), 4971 BB->end()); 4972 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4973 4974 // thisMBB: 4975 // ... 4976 // fallthrough --> loopMBB 4977 BB->addSuccessor(loop1MBB); 4978 4979 // loop1MBB: 4980 // l[wd]arx dest, ptr 4981 // cmp[wd] dest, oldval 4982 // bne- midMBB 4983 // loop2MBB: 4984 // st[wd]cx. newval, ptr 4985 // bne- loopMBB 4986 // b exitBB 4987 // midMBB: 4988 // st[wd]cx. dest, ptr 4989 // exitBB: 4990 BB = loop1MBB; 4991 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4992 .addReg(ptrA).addReg(ptrB); 4993 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 4994 .addReg(oldval).addReg(dest); 4995 BuildMI(BB, dl, TII->get(PPC::BCC)) 4996 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 4997 BB->addSuccessor(loop2MBB); 4998 BB->addSuccessor(midMBB); 4999 5000 BB = loop2MBB; 5001 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5002 .addReg(newval).addReg(ptrA).addReg(ptrB); 5003 BuildMI(BB, dl, TII->get(PPC::BCC)) 5004 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5005 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5006 BB->addSuccessor(loop1MBB); 5007 BB->addSuccessor(exitMBB); 5008 5009 BB = midMBB; 5010 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5011 .addReg(dest).addReg(ptrA).addReg(ptrB); 5012 BB->addSuccessor(exitMBB); 5013 5014 // exitMBB: 5015 // ... 5016 BB = exitMBB; 5017 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5018 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5019 // We must use 64-bit registers for addresses when targeting 64-bit, 5020 // since we're actually doing arithmetic on them. Other registers 5021 // can be 32-bit. 5022 bool is64bit = PPCSubTarget.isPPC64(); 5023 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5024 5025 unsigned dest = MI->getOperand(0).getReg(); 5026 unsigned ptrA = MI->getOperand(1).getReg(); 5027 unsigned ptrB = MI->getOperand(2).getReg(); 5028 unsigned oldval = MI->getOperand(3).getReg(); 5029 unsigned newval = MI->getOperand(4).getReg(); 5030 DebugLoc dl = MI->getDebugLoc(); 5031 5032 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5033 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5034 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5035 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5036 F->insert(It, loop1MBB); 5037 F->insert(It, loop2MBB); 5038 F->insert(It, midMBB); 5039 F->insert(It, exitMBB); 5040 exitMBB->splice(exitMBB->begin(), BB, 5041 llvm::next(MachineBasicBlock::iterator(MI)), 5042 BB->end()); 5043 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5044 5045 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5046 const TargetRegisterClass *RC = 5047 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5048 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5049 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5050 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5051 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5052 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5053 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5054 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5055 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5056 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5057 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5058 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5059 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5060 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5061 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5062 unsigned Ptr1Reg; 5063 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5064 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5065 // thisMBB: 5066 // ... 5067 // fallthrough --> loopMBB 5068 BB->addSuccessor(loop1MBB); 5069 5070 // The 4-byte load must be aligned, while a char or short may be 5071 // anywhere in the word. Hence all this nasty bookkeeping code. 5072 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5073 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5074 // xori shift, shift1, 24 [16] 5075 // rlwinm ptr, ptr1, 0, 0, 29 5076 // slw newval2, newval, shift 5077 // slw oldval2, oldval,shift 5078 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5079 // slw mask, mask2, shift 5080 // and newval3, newval2, mask 5081 // and oldval3, oldval2, mask 5082 // loop1MBB: 5083 // lwarx tmpDest, ptr 5084 // and tmp, tmpDest, mask 5085 // cmpw tmp, oldval3 5086 // bne- midMBB 5087 // loop2MBB: 5088 // andc tmp2, tmpDest, mask 5089 // or tmp4, tmp2, newval3 5090 // stwcx. tmp4, ptr 5091 // bne- loop1MBB 5092 // b exitBB 5093 // midMBB: 5094 // stwcx. tmpDest, ptr 5095 // exitBB: 5096 // srw dest, tmpDest, shift 5097 if (ptrA != ZeroReg) { 5098 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5099 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5100 .addReg(ptrA).addReg(ptrB); 5101 } else { 5102 Ptr1Reg = ptrB; 5103 } 5104 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5105 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5106 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5107 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5108 if (is64bit) 5109 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5110 .addReg(Ptr1Reg).addImm(0).addImm(61); 5111 else 5112 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5113 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5114 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5115 .addReg(newval).addReg(ShiftReg); 5116 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5117 .addReg(oldval).addReg(ShiftReg); 5118 if (is8bit) 5119 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5120 else { 5121 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5122 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5123 .addReg(Mask3Reg).addImm(65535); 5124 } 5125 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5126 .addReg(Mask2Reg).addReg(ShiftReg); 5127 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5128 .addReg(NewVal2Reg).addReg(MaskReg); 5129 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5130 .addReg(OldVal2Reg).addReg(MaskReg); 5131 5132 BB = loop1MBB; 5133 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5134 .addReg(ZeroReg).addReg(PtrReg); 5135 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5136 .addReg(TmpDestReg).addReg(MaskReg); 5137 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5138 .addReg(TmpReg).addReg(OldVal3Reg); 5139 BuildMI(BB, dl, TII->get(PPC::BCC)) 5140 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5141 BB->addSuccessor(loop2MBB); 5142 BB->addSuccessor(midMBB); 5143 5144 BB = loop2MBB; 5145 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5146 .addReg(TmpDestReg).addReg(MaskReg); 5147 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5148 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5149 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5150 .addReg(ZeroReg).addReg(PtrReg); 5151 BuildMI(BB, dl, TII->get(PPC::BCC)) 5152 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5153 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5154 BB->addSuccessor(loop1MBB); 5155 BB->addSuccessor(exitMBB); 5156 5157 BB = midMBB; 5158 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5159 .addReg(ZeroReg).addReg(PtrReg); 5160 BB->addSuccessor(exitMBB); 5161 5162 // exitMBB: 5163 // ... 5164 BB = exitMBB; 5165 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5166 .addReg(ShiftReg); 5167 } else { 5168 llvm_unreachable("Unexpected instr type to insert"); 5169 } 5170 5171 MI->eraseFromParent(); // The pseudo instruction is gone now. 5172 return BB; 5173 } 5174 5175 //===----------------------------------------------------------------------===// 5176 // Target Optimization Hooks 5177 //===----------------------------------------------------------------------===// 5178 5179 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5180 DAGCombinerInfo &DCI) const { 5181 const TargetMachine &TM = getTargetMachine(); 5182 SelectionDAG &DAG = DCI.DAG; 5183 DebugLoc dl = N->getDebugLoc(); 5184 switch (N->getOpcode()) { 5185 default: break; 5186 case PPCISD::SHL: 5187 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5188 if (C->isNullValue()) // 0 << V -> 0. 5189 return N->getOperand(0); 5190 } 5191 break; 5192 case PPCISD::SRL: 5193 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5194 if (C->isNullValue()) // 0 >>u V -> 0. 5195 return N->getOperand(0); 5196 } 5197 break; 5198 case PPCISD::SRA: 5199 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5200 if (C->isNullValue() || // 0 >>s V -> 0. 5201 C->isAllOnesValue()) // -1 >>s V -> -1. 5202 return N->getOperand(0); 5203 } 5204 break; 5205 5206 case ISD::SINT_TO_FP: 5207 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5208 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5209 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5210 // We allow the src/dst to be either f32/f64, but the intermediate 5211 // type must be i64. 5212 if (N->getOperand(0).getValueType() == MVT::i64 && 5213 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5214 SDValue Val = N->getOperand(0).getOperand(0); 5215 if (Val.getValueType() == MVT::f32) { 5216 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5217 DCI.AddToWorklist(Val.getNode()); 5218 } 5219 5220 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5221 DCI.AddToWorklist(Val.getNode()); 5222 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5223 DCI.AddToWorklist(Val.getNode()); 5224 if (N->getValueType(0) == MVT::f32) { 5225 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5226 DAG.getIntPtrConstant(0)); 5227 DCI.AddToWorklist(Val.getNode()); 5228 } 5229 return Val; 5230 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5231 // If the intermediate type is i32, we can avoid the load/store here 5232 // too. 5233 } 5234 } 5235 } 5236 break; 5237 case ISD::STORE: 5238 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5239 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5240 !cast<StoreSDNode>(N)->isTruncatingStore() && 5241 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5242 N->getOperand(1).getValueType() == MVT::i32 && 5243 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5244 SDValue Val = N->getOperand(1).getOperand(0); 5245 if (Val.getValueType() == MVT::f32) { 5246 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5247 DCI.AddToWorklist(Val.getNode()); 5248 } 5249 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5250 DCI.AddToWorklist(Val.getNode()); 5251 5252 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5253 N->getOperand(2), N->getOperand(3)); 5254 DCI.AddToWorklist(Val.getNode()); 5255 return Val; 5256 } 5257 5258 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5259 if (cast<StoreSDNode>(N)->isUnindexed() && 5260 N->getOperand(1).getOpcode() == ISD::BSWAP && 5261 N->getOperand(1).getNode()->hasOneUse() && 5262 (N->getOperand(1).getValueType() == MVT::i32 || 5263 N->getOperand(1).getValueType() == MVT::i16)) { 5264 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5265 // Do an any-extend to 32-bits if this is a half-word input. 5266 if (BSwapOp.getValueType() == MVT::i16) 5267 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5268 5269 SDValue Ops[] = { 5270 N->getOperand(0), BSwapOp, N->getOperand(2), 5271 DAG.getValueType(N->getOperand(1).getValueType()) 5272 }; 5273 return 5274 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5275 Ops, array_lengthof(Ops), 5276 cast<StoreSDNode>(N)->getMemoryVT(), 5277 cast<StoreSDNode>(N)->getMemOperand()); 5278 } 5279 break; 5280 case ISD::BSWAP: 5281 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5282 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5283 N->getOperand(0).hasOneUse() && 5284 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5285 SDValue Load = N->getOperand(0); 5286 LoadSDNode *LD = cast<LoadSDNode>(Load); 5287 // Create the byte-swapping load. 5288 SDValue Ops[] = { 5289 LD->getChain(), // Chain 5290 LD->getBasePtr(), // Ptr 5291 DAG.getValueType(N->getValueType(0)) // VT 5292 }; 5293 SDValue BSLoad = 5294 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5295 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5296 LD->getMemoryVT(), LD->getMemOperand()); 5297 5298 // If this is an i16 load, insert the truncate. 5299 SDValue ResVal = BSLoad; 5300 if (N->getValueType(0) == MVT::i16) 5301 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5302 5303 // First, combine the bswap away. This makes the value produced by the 5304 // load dead. 5305 DCI.CombineTo(N, ResVal); 5306 5307 // Next, combine the load away, we give it a bogus result value but a real 5308 // chain result. The result value is dead because the bswap is dead. 5309 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5310 5311 // Return N so it doesn't get rechecked! 5312 return SDValue(N, 0); 5313 } 5314 5315 break; 5316 case PPCISD::VCMP: { 5317 // If a VCMPo node already exists with exactly the same operands as this 5318 // node, use its result instead of this node (VCMPo computes both a CR6 and 5319 // a normal output). 5320 // 5321 if (!N->getOperand(0).hasOneUse() && 5322 !N->getOperand(1).hasOneUse() && 5323 !N->getOperand(2).hasOneUse()) { 5324 5325 // Scan all of the users of the LHS, looking for VCMPo's that match. 5326 SDNode *VCMPoNode = 0; 5327 5328 SDNode *LHSN = N->getOperand(0).getNode(); 5329 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5330 UI != E; ++UI) 5331 if (UI->getOpcode() == PPCISD::VCMPo && 5332 UI->getOperand(1) == N->getOperand(1) && 5333 UI->getOperand(2) == N->getOperand(2) && 5334 UI->getOperand(0) == N->getOperand(0)) { 5335 VCMPoNode = *UI; 5336 break; 5337 } 5338 5339 // If there is no VCMPo node, or if the flag value has a single use, don't 5340 // transform this. 5341 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5342 break; 5343 5344 // Look at the (necessarily single) use of the flag value. If it has a 5345 // chain, this transformation is more complex. Note that multiple things 5346 // could use the value result, which we should ignore. 5347 SDNode *FlagUser = 0; 5348 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5349 FlagUser == 0; ++UI) { 5350 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5351 SDNode *User = *UI; 5352 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5353 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5354 FlagUser = User; 5355 break; 5356 } 5357 } 5358 } 5359 5360 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5361 // give up for right now. 5362 if (FlagUser->getOpcode() == PPCISD::MFCR) 5363 return SDValue(VCMPoNode, 0); 5364 } 5365 break; 5366 } 5367 case ISD::BR_CC: { 5368 // If this is a branch on an altivec predicate comparison, lower this so 5369 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5370 // lowering is done pre-legalize, because the legalizer lowers the predicate 5371 // compare down to code that is difficult to reassemble. 5372 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5373 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5374 int CompareOpc; 5375 bool isDot; 5376 5377 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5378 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5379 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5380 assert(isDot && "Can't compare against a vector result!"); 5381 5382 // If this is a comparison against something other than 0/1, then we know 5383 // that the condition is never/always true. 5384 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5385 if (Val != 0 && Val != 1) { 5386 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5387 return N->getOperand(0); 5388 // Always !=, turn it into an unconditional branch. 5389 return DAG.getNode(ISD::BR, dl, MVT::Other, 5390 N->getOperand(0), N->getOperand(4)); 5391 } 5392 5393 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5394 5395 // Create the PPCISD altivec 'dot' comparison node. 5396 std::vector<EVT> VTs; 5397 SDValue Ops[] = { 5398 LHS.getOperand(2), // LHS of compare 5399 LHS.getOperand(3), // RHS of compare 5400 DAG.getConstant(CompareOpc, MVT::i32) 5401 }; 5402 VTs.push_back(LHS.getOperand(2).getValueType()); 5403 VTs.push_back(MVT::Glue); 5404 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5405 5406 // Unpack the result based on how the target uses it. 5407 PPC::Predicate CompOpc; 5408 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5409 default: // Can't happen, don't crash on invalid number though. 5410 case 0: // Branch on the value of the EQ bit of CR6. 5411 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5412 break; 5413 case 1: // Branch on the inverted value of the EQ bit of CR6. 5414 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5415 break; 5416 case 2: // Branch on the value of the LT bit of CR6. 5417 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5418 break; 5419 case 3: // Branch on the inverted value of the LT bit of CR6. 5420 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5421 break; 5422 } 5423 5424 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5425 DAG.getConstant(CompOpc, MVT::i32), 5426 DAG.getRegister(PPC::CR6, MVT::i32), 5427 N->getOperand(4), CompNode.getValue(1)); 5428 } 5429 break; 5430 } 5431 } 5432 5433 return SDValue(); 5434 } 5435 5436 //===----------------------------------------------------------------------===// 5437 // Inline Assembly Support 5438 //===----------------------------------------------------------------------===// 5439 5440 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5441 const APInt &Mask, 5442 APInt &KnownZero, 5443 APInt &KnownOne, 5444 const SelectionDAG &DAG, 5445 unsigned Depth) const { 5446 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5447 switch (Op.getOpcode()) { 5448 default: break; 5449 case PPCISD::LBRX: { 5450 // lhbrx is known to have the top bits cleared out. 5451 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5452 KnownZero = 0xFFFF0000; 5453 break; 5454 } 5455 case ISD::INTRINSIC_WO_CHAIN: { 5456 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5457 default: break; 5458 case Intrinsic::ppc_altivec_vcmpbfp_p: 5459 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5460 case Intrinsic::ppc_altivec_vcmpequb_p: 5461 case Intrinsic::ppc_altivec_vcmpequh_p: 5462 case Intrinsic::ppc_altivec_vcmpequw_p: 5463 case Intrinsic::ppc_altivec_vcmpgefp_p: 5464 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5465 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5466 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5467 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5468 case Intrinsic::ppc_altivec_vcmpgtub_p: 5469 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5470 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5471 KnownZero = ~1U; // All bits but the low one are known to be zero. 5472 break; 5473 } 5474 } 5475 } 5476 } 5477 5478 5479 /// getConstraintType - Given a constraint, return the type of 5480 /// constraint it is for this target. 5481 PPCTargetLowering::ConstraintType 5482 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5483 if (Constraint.size() == 1) { 5484 switch (Constraint[0]) { 5485 default: break; 5486 case 'b': 5487 case 'r': 5488 case 'f': 5489 case 'v': 5490 case 'y': 5491 return C_RegisterClass; 5492 } 5493 } 5494 return TargetLowering::getConstraintType(Constraint); 5495 } 5496 5497 /// Examine constraint type and operand type and determine a weight value. 5498 /// This object must already have been set up with the operand type 5499 /// and the current alternative constraint selected. 5500 TargetLowering::ConstraintWeight 5501 PPCTargetLowering::getSingleConstraintMatchWeight( 5502 AsmOperandInfo &info, const char *constraint) const { 5503 ConstraintWeight weight = CW_Invalid; 5504 Value *CallOperandVal = info.CallOperandVal; 5505 // If we don't have a value, we can't do a match, 5506 // but allow it at the lowest weight. 5507 if (CallOperandVal == NULL) 5508 return CW_Default; 5509 Type *type = CallOperandVal->getType(); 5510 // Look at the constraint type. 5511 switch (*constraint) { 5512 default: 5513 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5514 break; 5515 case 'b': 5516 if (type->isIntegerTy()) 5517 weight = CW_Register; 5518 break; 5519 case 'f': 5520 if (type->isFloatTy()) 5521 weight = CW_Register; 5522 break; 5523 case 'd': 5524 if (type->isDoubleTy()) 5525 weight = CW_Register; 5526 break; 5527 case 'v': 5528 if (type->isVectorTy()) 5529 weight = CW_Register; 5530 break; 5531 case 'y': 5532 weight = CW_Register; 5533 break; 5534 } 5535 return weight; 5536 } 5537 5538 std::pair<unsigned, const TargetRegisterClass*> 5539 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5540 EVT VT) const { 5541 if (Constraint.size() == 1) { 5542 // GCC RS6000 Constraint Letters 5543 switch (Constraint[0]) { 5544 case 'b': // R1-R31 5545 case 'r': // R0-R31 5546 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5547 return std::make_pair(0U, PPC::G8RCRegisterClass); 5548 return std::make_pair(0U, PPC::GPRCRegisterClass); 5549 case 'f': 5550 if (VT == MVT::f32) 5551 return std::make_pair(0U, PPC::F4RCRegisterClass); 5552 else if (VT == MVT::f64) 5553 return std::make_pair(0U, PPC::F8RCRegisterClass); 5554 break; 5555 case 'v': 5556 return std::make_pair(0U, PPC::VRRCRegisterClass); 5557 case 'y': // crrc 5558 return std::make_pair(0U, PPC::CRRCRegisterClass); 5559 } 5560 } 5561 5562 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5563 } 5564 5565 5566 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5567 /// vector. If it is invalid, don't add anything to Ops. 5568 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5569 std::string &Constraint, 5570 std::vector<SDValue>&Ops, 5571 SelectionDAG &DAG) const { 5572 SDValue Result(0,0); 5573 5574 // Only support length 1 constraints. 5575 if (Constraint.length() > 1) return; 5576 5577 char Letter = Constraint[0]; 5578 switch (Letter) { 5579 default: break; 5580 case 'I': 5581 case 'J': 5582 case 'K': 5583 case 'L': 5584 case 'M': 5585 case 'N': 5586 case 'O': 5587 case 'P': { 5588 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5589 if (!CST) return; // Must be an immediate to match. 5590 unsigned Value = CST->getZExtValue(); 5591 switch (Letter) { 5592 default: llvm_unreachable("Unknown constraint letter!"); 5593 case 'I': // "I" is a signed 16-bit constant. 5594 if ((short)Value == (int)Value) 5595 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5596 break; 5597 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5598 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5599 if ((short)Value == 0) 5600 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5601 break; 5602 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5603 if ((Value >> 16) == 0) 5604 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5605 break; 5606 case 'M': // "M" is a constant that is greater than 31. 5607 if (Value > 31) 5608 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5609 break; 5610 case 'N': // "N" is a positive constant that is an exact power of two. 5611 if ((int)Value > 0 && isPowerOf2_32(Value)) 5612 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5613 break; 5614 case 'O': // "O" is the constant zero. 5615 if (Value == 0) 5616 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5617 break; 5618 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5619 if ((short)-Value == (int)-Value) 5620 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5621 break; 5622 } 5623 break; 5624 } 5625 } 5626 5627 if (Result.getNode()) { 5628 Ops.push_back(Result); 5629 return; 5630 } 5631 5632 // Handle standard constraint letters. 5633 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5634 } 5635 5636 // isLegalAddressingMode - Return true if the addressing mode represented 5637 // by AM is legal for this target, for a load/store of the specified type. 5638 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5639 Type *Ty) const { 5640 // FIXME: PPC does not allow r+i addressing modes for vectors! 5641 5642 // PPC allows a sign-extended 16-bit immediate field. 5643 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5644 return false; 5645 5646 // No global is ever allowed as a base. 5647 if (AM.BaseGV) 5648 return false; 5649 5650 // PPC only support r+r, 5651 switch (AM.Scale) { 5652 case 0: // "r+i" or just "i", depending on HasBaseReg. 5653 break; 5654 case 1: 5655 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5656 return false; 5657 // Otherwise we have r+r or r+i. 5658 break; 5659 case 2: 5660 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5661 return false; 5662 // Allow 2*r as r+r. 5663 break; 5664 default: 5665 // No other scales are supported. 5666 return false; 5667 } 5668 5669 return true; 5670 } 5671 5672 /// isLegalAddressImmediate - Return true if the integer value can be used 5673 /// as the offset of the target addressing mode for load / store of the 5674 /// given type. 5675 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5676 // PPC allows a sign-extended 16-bit immediate field. 5677 return (V > -(1 << 16) && V < (1 << 16)-1); 5678 } 5679 5680 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5681 return false; 5682 } 5683 5684 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5685 SelectionDAG &DAG) const { 5686 MachineFunction &MF = DAG.getMachineFunction(); 5687 MachineFrameInfo *MFI = MF.getFrameInfo(); 5688 MFI->setReturnAddressIsTaken(true); 5689 5690 DebugLoc dl = Op.getDebugLoc(); 5691 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5692 5693 // Make sure the function does not optimize away the store of the RA to 5694 // the stack. 5695 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5696 FuncInfo->setLRStoreRequired(); 5697 bool isPPC64 = PPCSubTarget.isPPC64(); 5698 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5699 5700 if (Depth > 0) { 5701 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5702 SDValue Offset = 5703 5704 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5705 isPPC64? MVT::i64 : MVT::i32); 5706 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5707 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5708 FrameAddr, Offset), 5709 MachinePointerInfo(), false, false, 0); 5710 } 5711 5712 // Just load the return address off the stack. 5713 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5714 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5715 RetAddrFI, MachinePointerInfo(), false, false, 0); 5716 } 5717 5718 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5719 SelectionDAG &DAG) const { 5720 DebugLoc dl = Op.getDebugLoc(); 5721 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5722 5723 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5724 bool isPPC64 = PtrVT == MVT::i64; 5725 5726 MachineFunction &MF = DAG.getMachineFunction(); 5727 MachineFrameInfo *MFI = MF.getFrameInfo(); 5728 MFI->setFrameAddressIsTaken(true); 5729 bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) && 5730 MFI->getStackSize() && 5731 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5732 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5733 (is31 ? PPC::R31 : PPC::R1); 5734 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5735 PtrVT); 5736 while (Depth--) 5737 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5738 FrameAddr, MachinePointerInfo(), false, false, 0); 5739 return FrameAddr; 5740 } 5741 5742 bool 5743 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5744 // The PowerPC target isn't yet aware of offsets. 5745 return false; 5746 } 5747 5748 /// getOptimalMemOpType - Returns the target specific optimal type for load 5749 /// and store operations as a result of memset, memcpy, and memmove 5750 /// lowering. If DstAlign is zero that means it's safe to destination 5751 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5752 /// means there isn't a need to check it against alignment requirement, 5753 /// probably because the source does not need to be loaded. If 5754 /// 'NonScalarIntSafe' is true, that means it's safe to return a 5755 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5756 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5757 /// constant so it does not need to be loaded. 5758 /// It returns EVT::Other if the type should be determined using generic 5759 /// target-independent logic. 5760 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5761 unsigned DstAlign, unsigned SrcAlign, 5762 bool NonScalarIntSafe, 5763 bool MemcpyStrSrc, 5764 MachineFunction &MF) const { 5765 if (this->PPCSubTarget.isPPC64()) { 5766 return MVT::i64; 5767 } else { 5768 return MVT::i32; 5769 } 5770 } 5771