1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCISelLowering.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/MachineValueType.h" 51 #include "llvm/CodeGen/RuntimeLibcalls.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/ValueTypes.h" 55 #include "llvm/IR/CallingConv.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constant.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugLoc.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/MC/MCExpr.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Support/AtomicOrdering.h" 74 #include "llvm/Support/BranchProbability.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CodeGen.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/Format.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetInstrInfo.h" 85 #include "llvm/Target/TargetLowering.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Target/TargetRegisterInfo.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <list> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 99 #define DEBUG_TYPE "ppc-lowering" 100 101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 103 104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisableSCO("disable-ppc-sco", 111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 112 113 STATISTIC(NumTailCalls, "Number of tail calls"); 114 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 115 116 // FIXME: Remove this once the bug has been fixed! 117 extern cl::opt<bool> ANDIGlueBug; 118 119 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 120 const PPCSubtarget &STI) 121 : TargetLowering(TM), Subtarget(STI) { 122 // Use _setjmp/_longjmp instead of setjmp/longjmp. 123 setUseUnderscoreSetJmp(true); 124 setUseUnderscoreLongJmp(true); 125 126 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 127 // arguments are at least 4/8 bytes aligned. 128 bool isPPC64 = Subtarget.isPPC64(); 129 setMinStackArgumentAlignment(isPPC64 ? 8:4); 130 131 // Set up the register classes. 132 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 133 if (!useSoftFloat()) { 134 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 135 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 136 } 137 138 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 139 for (MVT VT : MVT::integer_valuetypes()) { 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 142 } 143 144 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 145 146 // PowerPC has pre-inc load and store's. 147 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 148 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 149 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 150 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 151 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 152 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 153 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 154 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 155 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 156 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 157 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 158 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 159 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 160 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 161 162 if (Subtarget.useCRBits()) { 163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 164 165 if (isPPC64 || Subtarget.hasFPCVT()) { 166 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 167 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 168 isPPC64 ? MVT::i64 : MVT::i32); 169 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 170 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 171 isPPC64 ? MVT::i64 : MVT::i32); 172 } else { 173 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 174 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 175 } 176 177 // PowerPC does not support direct load / store of condition registers 178 setOperationAction(ISD::LOAD, MVT::i1, Custom); 179 setOperationAction(ISD::STORE, MVT::i1, Custom); 180 181 // FIXME: Remove this once the ANDI glue bug is fixed: 182 if (ANDIGlueBug) 183 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 184 185 for (MVT VT : MVT::integer_valuetypes()) { 186 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 187 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 188 setTruncStoreAction(VT, MVT::i1, Expand); 189 } 190 191 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 192 } 193 194 // This is used in the ppcf128->int sequence. Note it has different semantics 195 // from FP_ROUND: that rounds to nearest, this rounds to zero. 196 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 197 198 // We do not currently implement these libm ops for PowerPC. 199 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 200 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 201 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 202 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 203 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 204 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 205 206 // PowerPC has no SREM/UREM instructions 207 setOperationAction(ISD::SREM, MVT::i32, Expand); 208 setOperationAction(ISD::UREM, MVT::i32, Expand); 209 setOperationAction(ISD::SREM, MVT::i64, Expand); 210 setOperationAction(ISD::UREM, MVT::i64, Expand); 211 212 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 213 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 214 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 215 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 216 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 217 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 218 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 219 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 220 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 221 222 // We don't support sin/cos/sqrt/fmod/pow 223 setOperationAction(ISD::FSIN , MVT::f64, Expand); 224 setOperationAction(ISD::FCOS , MVT::f64, Expand); 225 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 226 setOperationAction(ISD::FREM , MVT::f64, Expand); 227 setOperationAction(ISD::FPOW , MVT::f64, Expand); 228 setOperationAction(ISD::FMA , MVT::f64, Legal); 229 setOperationAction(ISD::FSIN , MVT::f32, Expand); 230 setOperationAction(ISD::FCOS , MVT::f32, Expand); 231 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 232 setOperationAction(ISD::FREM , MVT::f32, Expand); 233 setOperationAction(ISD::FPOW , MVT::f32, Expand); 234 setOperationAction(ISD::FMA , MVT::f32, Legal); 235 236 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 237 238 // If we're enabling GP optimizations, use hardware square root 239 if (!Subtarget.hasFSQRT() && 240 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 241 Subtarget.hasFRE())) 242 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 243 244 if (!Subtarget.hasFSQRT() && 245 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 246 Subtarget.hasFRES())) 247 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 248 249 if (Subtarget.hasFCPSGN()) { 250 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 251 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 252 } else { 253 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 254 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 255 } 256 257 if (Subtarget.hasFPRND()) { 258 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 259 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 260 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 261 setOperationAction(ISD::FROUND, MVT::f64, Legal); 262 263 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 264 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 265 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 266 setOperationAction(ISD::FROUND, MVT::f32, Legal); 267 } 268 269 // PowerPC does not have BSWAP 270 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 271 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 272 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 273 if (Subtarget.isISA3_0()) { 274 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 275 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 276 } else { 277 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 278 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 279 } 280 281 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 282 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 283 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 284 } else { 285 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 286 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 287 } 288 289 // PowerPC does not have ROTR 290 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 291 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 292 293 if (!Subtarget.useCRBits()) { 294 // PowerPC does not have Select 295 setOperationAction(ISD::SELECT, MVT::i32, Expand); 296 setOperationAction(ISD::SELECT, MVT::i64, Expand); 297 setOperationAction(ISD::SELECT, MVT::f32, Expand); 298 setOperationAction(ISD::SELECT, MVT::f64, Expand); 299 } 300 301 // PowerPC wants to turn select_cc of FP into fsel when possible. 302 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 303 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 304 305 // PowerPC wants to optimize integer setcc a bit 306 if (!Subtarget.useCRBits()) 307 setOperationAction(ISD::SETCC, MVT::i32, Custom); 308 309 // PowerPC does not have BRCOND which requires SetCC 310 if (!Subtarget.useCRBits()) 311 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 312 313 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 314 315 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 316 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 317 318 // PowerPC does not have [U|S]INT_TO_FP 319 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 320 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 321 322 if (Subtarget.hasDirectMove() && isPPC64) { 323 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 324 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 325 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 326 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 327 } else { 328 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 329 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 330 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 331 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 332 } 333 334 // We cannot sextinreg(i1). Expand to shifts. 335 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 336 337 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 338 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 339 // support continuation, user-level threading, and etc.. As a result, no 340 // other SjLj exception interfaces are implemented and please don't build 341 // your own exception handling based on them. 342 // LLVM/Clang supports zero-cost DWARF exception handling. 343 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 344 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 345 346 // We want to legalize GlobalAddress and ConstantPool nodes into the 347 // appropriate instructions to materialize the address. 348 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 349 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 350 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 351 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 352 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 353 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 354 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 355 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 356 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 357 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 358 359 // TRAP is legal. 360 setOperationAction(ISD::TRAP, MVT::Other, Legal); 361 362 // TRAMPOLINE is custom lowered. 363 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 364 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 365 366 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 367 setOperationAction(ISD::VASTART , MVT::Other, Custom); 368 369 if (Subtarget.isSVR4ABI()) { 370 if (isPPC64) { 371 // VAARG always uses double-word chunks, so promote anything smaller. 372 setOperationAction(ISD::VAARG, MVT::i1, Promote); 373 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 374 setOperationAction(ISD::VAARG, MVT::i8, Promote); 375 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 376 setOperationAction(ISD::VAARG, MVT::i16, Promote); 377 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 378 setOperationAction(ISD::VAARG, MVT::i32, Promote); 379 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 380 setOperationAction(ISD::VAARG, MVT::Other, Expand); 381 } else { 382 // VAARG is custom lowered with the 32-bit SVR4 ABI. 383 setOperationAction(ISD::VAARG, MVT::Other, Custom); 384 setOperationAction(ISD::VAARG, MVT::i64, Custom); 385 } 386 } else 387 setOperationAction(ISD::VAARG, MVT::Other, Expand); 388 389 if (Subtarget.isSVR4ABI() && !isPPC64) 390 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 391 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 392 else 393 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 394 395 // Use the default implementation. 396 setOperationAction(ISD::VAEND , MVT::Other, Expand); 397 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 398 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 399 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 400 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 401 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 402 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 403 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 404 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 405 406 // We want to custom lower some of our intrinsics. 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 408 409 // To handle counter-based loop conditions. 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 411 412 // Comparisons that require checking two conditions. 413 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 414 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 415 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 416 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 417 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 418 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 419 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 420 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 421 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 422 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 423 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 424 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 425 426 if (Subtarget.has64BitSupport()) { 427 // They also have instructions for converting between i64 and fp. 428 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 429 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 430 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 431 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 432 // This is just the low 32 bits of a (signed) fp->i64 conversion. 433 // We cannot do this with Promote because i64 is not a legal type. 434 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 435 436 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 437 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 438 } else { 439 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 440 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 441 } 442 443 // With the instructions enabled under FPCVT, we can do everything. 444 if (Subtarget.hasFPCVT()) { 445 if (Subtarget.has64BitSupport()) { 446 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 447 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 448 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 449 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 450 } 451 452 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 453 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 454 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 455 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 456 } 457 458 if (Subtarget.use64BitRegs()) { 459 // 64-bit PowerPC implementations can support i64 types directly 460 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 461 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 462 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 463 // 64-bit PowerPC wants to expand i128 shifts itself. 464 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 465 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 466 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 467 } else { 468 // 32-bit PowerPC wants to expand i64 shifts itself. 469 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 470 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 471 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 472 } 473 474 if (Subtarget.hasAltivec()) { 475 // First set operation action for all vector types to expand. Then we 476 // will selectively turn on ones that can be effectively codegen'd. 477 for (MVT VT : MVT::vector_valuetypes()) { 478 // add/sub are legal for all supported vector VT's. 479 setOperationAction(ISD::ADD, VT, Legal); 480 setOperationAction(ISD::SUB, VT, Legal); 481 482 // Vector instructions introduced in P8 483 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 484 setOperationAction(ISD::CTPOP, VT, Legal); 485 setOperationAction(ISD::CTLZ, VT, Legal); 486 } 487 else { 488 setOperationAction(ISD::CTPOP, VT, Expand); 489 setOperationAction(ISD::CTLZ, VT, Expand); 490 } 491 492 // Vector instructions introduced in P9 493 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 494 setOperationAction(ISD::CTTZ, VT, Legal); 495 else 496 setOperationAction(ISD::CTTZ, VT, Expand); 497 498 // We promote all shuffles to v16i8. 499 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 500 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 501 502 // We promote all non-typed operations to v4i32. 503 setOperationAction(ISD::AND , VT, Promote); 504 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 505 setOperationAction(ISD::OR , VT, Promote); 506 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 507 setOperationAction(ISD::XOR , VT, Promote); 508 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 509 setOperationAction(ISD::LOAD , VT, Promote); 510 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 511 setOperationAction(ISD::SELECT, VT, Promote); 512 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 513 setOperationAction(ISD::SELECT_CC, VT, Promote); 514 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 515 setOperationAction(ISD::STORE, VT, Promote); 516 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 517 518 // No other operations are legal. 519 setOperationAction(ISD::MUL , VT, Expand); 520 setOperationAction(ISD::SDIV, VT, Expand); 521 setOperationAction(ISD::SREM, VT, Expand); 522 setOperationAction(ISD::UDIV, VT, Expand); 523 setOperationAction(ISD::UREM, VT, Expand); 524 setOperationAction(ISD::FDIV, VT, Expand); 525 setOperationAction(ISD::FREM, VT, Expand); 526 setOperationAction(ISD::FNEG, VT, Expand); 527 setOperationAction(ISD::FSQRT, VT, Expand); 528 setOperationAction(ISD::FLOG, VT, Expand); 529 setOperationAction(ISD::FLOG10, VT, Expand); 530 setOperationAction(ISD::FLOG2, VT, Expand); 531 setOperationAction(ISD::FEXP, VT, Expand); 532 setOperationAction(ISD::FEXP2, VT, Expand); 533 setOperationAction(ISD::FSIN, VT, Expand); 534 setOperationAction(ISD::FCOS, VT, Expand); 535 setOperationAction(ISD::FABS, VT, Expand); 536 setOperationAction(ISD::FPOWI, VT, Expand); 537 setOperationAction(ISD::FFLOOR, VT, Expand); 538 setOperationAction(ISD::FCEIL, VT, Expand); 539 setOperationAction(ISD::FTRUNC, VT, Expand); 540 setOperationAction(ISD::FRINT, VT, Expand); 541 setOperationAction(ISD::FNEARBYINT, VT, Expand); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 543 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 544 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 545 setOperationAction(ISD::MULHU, VT, Expand); 546 setOperationAction(ISD::MULHS, VT, Expand); 547 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 548 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 549 setOperationAction(ISD::UDIVREM, VT, Expand); 550 setOperationAction(ISD::SDIVREM, VT, Expand); 551 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 552 setOperationAction(ISD::FPOW, VT, Expand); 553 setOperationAction(ISD::BSWAP, VT, Expand); 554 setOperationAction(ISD::VSELECT, VT, Expand); 555 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 556 setOperationAction(ISD::ROTL, VT, Expand); 557 setOperationAction(ISD::ROTR, VT, Expand); 558 559 for (MVT InnerVT : MVT::vector_valuetypes()) { 560 setTruncStoreAction(VT, InnerVT, Expand); 561 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 562 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 563 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 564 } 565 } 566 567 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 568 // with merges, splats, etc. 569 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 570 571 setOperationAction(ISD::AND , MVT::v4i32, Legal); 572 setOperationAction(ISD::OR , MVT::v4i32, Legal); 573 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 574 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 575 setOperationAction(ISD::SELECT, MVT::v4i32, 576 Subtarget.useCRBits() ? Legal : Expand); 577 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 578 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 579 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 580 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 581 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 582 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 583 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 584 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 585 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 586 587 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 588 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 589 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 590 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 591 592 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 593 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 594 595 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 596 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 597 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 598 } 599 600 if (Subtarget.hasP8Altivec()) 601 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 602 else 603 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 604 605 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 606 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 607 608 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 609 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 610 611 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 612 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 613 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 614 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 615 616 // Altivec does not contain unordered floating-point compare instructions 617 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 618 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 619 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 620 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 621 622 if (Subtarget.hasVSX()) { 623 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 624 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 625 if (Subtarget.hasP8Vector()) { 626 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 627 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 628 } 629 if (Subtarget.hasDirectMove() && isPPC64) { 630 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 631 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 632 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 633 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 634 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 635 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 636 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 637 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 638 } 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 640 641 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 642 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 643 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 644 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 645 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 646 647 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 648 649 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 650 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 651 652 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 653 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 654 655 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 656 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 657 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 658 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 659 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 660 661 // Share the Altivec comparison restrictions. 662 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 663 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 664 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 665 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 666 667 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 668 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 669 670 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 671 672 if (Subtarget.hasP8Vector()) 673 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 674 675 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 676 677 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 678 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 679 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 680 681 if (Subtarget.hasP8Altivec()) { 682 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 683 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 684 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 685 686 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 687 } 688 else { 689 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 690 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 691 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 692 693 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 694 695 // VSX v2i64 only supports non-arithmetic operations. 696 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 697 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 698 } 699 700 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 701 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 702 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 703 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 704 705 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 706 707 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 708 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 709 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 710 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 711 712 // Vector operation legalization checks the result type of 713 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 714 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 715 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 716 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 717 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 718 719 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 720 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 721 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 722 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 723 724 if (Subtarget.hasDirectMove()) 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 726 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 727 728 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 729 } 730 731 if (Subtarget.hasP8Altivec()) { 732 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 733 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 734 } 735 736 if (Subtarget.hasP9Vector()) { 737 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 738 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 739 } 740 } 741 742 if (Subtarget.hasQPX()) { 743 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 744 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 745 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 746 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 747 748 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 749 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 750 751 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 752 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 753 754 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 755 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 756 757 if (!Subtarget.useCRBits()) 758 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 759 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 760 761 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 762 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 763 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 764 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 765 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 766 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 767 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 768 769 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 770 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 771 772 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 773 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 774 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 775 776 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 777 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 778 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 779 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 780 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 781 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 782 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 783 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 784 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 785 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 786 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 787 788 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 789 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 790 791 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 792 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 793 794 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 795 796 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 797 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 798 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 799 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 800 801 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 802 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 803 804 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 805 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 806 807 if (!Subtarget.useCRBits()) 808 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 809 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 810 811 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 812 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 813 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 814 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 815 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 816 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 817 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 818 819 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 820 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 821 822 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 823 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 824 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 825 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 826 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 827 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 828 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 829 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 830 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 831 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 832 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 833 834 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 835 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 836 837 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 838 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 839 840 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 841 842 setOperationAction(ISD::AND , MVT::v4i1, Legal); 843 setOperationAction(ISD::OR , MVT::v4i1, Legal); 844 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 845 846 if (!Subtarget.useCRBits()) 847 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 848 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 849 850 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 851 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 852 853 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 854 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 855 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 856 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 857 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 858 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 859 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 860 861 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 862 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 863 864 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 865 866 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 867 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 868 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 869 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 870 871 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 872 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 873 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 874 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 875 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 877 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 878 879 // These need to set FE_INEXACT, and so cannot be vectorized here. 880 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 881 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 882 883 if (TM.Options.UnsafeFPMath) { 884 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 885 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 886 887 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 888 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 889 } else { 890 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 891 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 892 893 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 894 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 895 } 896 } 897 898 if (Subtarget.has64BitSupport()) 899 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 900 901 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 902 903 if (!isPPC64) { 904 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 905 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 906 } 907 908 setBooleanContents(ZeroOrOneBooleanContent); 909 910 if (Subtarget.hasAltivec()) { 911 // Altivec instructions set fields to all zeros or all ones. 912 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 913 } 914 915 if (!isPPC64) { 916 // These libcalls are not available in 32-bit. 917 setLibcallName(RTLIB::SHL_I128, nullptr); 918 setLibcallName(RTLIB::SRL_I128, nullptr); 919 setLibcallName(RTLIB::SRA_I128, nullptr); 920 } 921 922 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 923 924 // We have target-specific dag combine patterns for the following nodes: 925 setTargetDAGCombine(ISD::SINT_TO_FP); 926 setTargetDAGCombine(ISD::BUILD_VECTOR); 927 if (Subtarget.hasFPCVT()) 928 setTargetDAGCombine(ISD::UINT_TO_FP); 929 setTargetDAGCombine(ISD::LOAD); 930 setTargetDAGCombine(ISD::STORE); 931 setTargetDAGCombine(ISD::BR_CC); 932 if (Subtarget.useCRBits()) 933 setTargetDAGCombine(ISD::BRCOND); 934 setTargetDAGCombine(ISD::BSWAP); 935 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 936 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 937 setTargetDAGCombine(ISD::INTRINSIC_VOID); 938 939 setTargetDAGCombine(ISD::SIGN_EXTEND); 940 setTargetDAGCombine(ISD::ZERO_EXTEND); 941 setTargetDAGCombine(ISD::ANY_EXTEND); 942 943 if (Subtarget.useCRBits()) { 944 setTargetDAGCombine(ISD::TRUNCATE); 945 setTargetDAGCombine(ISD::SETCC); 946 setTargetDAGCombine(ISD::SELECT_CC); 947 } 948 949 // Use reciprocal estimates. 950 if (TM.Options.UnsafeFPMath) { 951 setTargetDAGCombine(ISD::FDIV); 952 setTargetDAGCombine(ISD::FSQRT); 953 } 954 955 // Darwin long double math library functions have $LDBL128 appended. 956 if (Subtarget.isDarwin()) { 957 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 958 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 959 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 960 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 961 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 962 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 963 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 964 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 965 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 966 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 967 } 968 969 // With 32 condition bits, we don't need to sink (and duplicate) compares 970 // aggressively in CodeGenPrep. 971 if (Subtarget.useCRBits()) { 972 setHasMultipleConditionRegisters(); 973 setJumpIsExpensive(); 974 } 975 976 setMinFunctionAlignment(2); 977 if (Subtarget.isDarwin()) 978 setPrefFunctionAlignment(4); 979 980 switch (Subtarget.getDarwinDirective()) { 981 default: break; 982 case PPC::DIR_970: 983 case PPC::DIR_A2: 984 case PPC::DIR_E500mc: 985 case PPC::DIR_E5500: 986 case PPC::DIR_PWR4: 987 case PPC::DIR_PWR5: 988 case PPC::DIR_PWR5X: 989 case PPC::DIR_PWR6: 990 case PPC::DIR_PWR6X: 991 case PPC::DIR_PWR7: 992 case PPC::DIR_PWR8: 993 case PPC::DIR_PWR9: 994 setPrefFunctionAlignment(4); 995 setPrefLoopAlignment(4); 996 break; 997 } 998 999 if (Subtarget.enableMachineScheduler()) 1000 setSchedulingPreference(Sched::Source); 1001 else 1002 setSchedulingPreference(Sched::Hybrid); 1003 1004 computeRegisterProperties(STI.getRegisterInfo()); 1005 1006 // The Freescale cores do better with aggressive inlining of memcpy and 1007 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1008 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1009 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1010 MaxStoresPerMemset = 32; 1011 MaxStoresPerMemsetOptSize = 16; 1012 MaxStoresPerMemcpy = 32; 1013 MaxStoresPerMemcpyOptSize = 8; 1014 MaxStoresPerMemmove = 32; 1015 MaxStoresPerMemmoveOptSize = 8; 1016 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1017 // The A2 also benefits from (very) aggressive inlining of memcpy and 1018 // friends. The overhead of a the function call, even when warm, can be 1019 // over one hundred cycles. 1020 MaxStoresPerMemset = 128; 1021 MaxStoresPerMemcpy = 128; 1022 MaxStoresPerMemmove = 128; 1023 } 1024 } 1025 1026 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1027 /// the desired ByVal argument alignment. 1028 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1029 unsigned MaxMaxAlign) { 1030 if (MaxAlign == MaxMaxAlign) 1031 return; 1032 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1033 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1034 MaxAlign = 32; 1035 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1036 MaxAlign = 16; 1037 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1038 unsigned EltAlign = 0; 1039 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1040 if (EltAlign > MaxAlign) 1041 MaxAlign = EltAlign; 1042 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1043 for (auto *EltTy : STy->elements()) { 1044 unsigned EltAlign = 0; 1045 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1046 if (EltAlign > MaxAlign) 1047 MaxAlign = EltAlign; 1048 if (MaxAlign == MaxMaxAlign) 1049 break; 1050 } 1051 } 1052 } 1053 1054 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1055 /// function arguments in the caller parameter area. 1056 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1057 const DataLayout &DL) const { 1058 // Darwin passes everything on 4 byte boundary. 1059 if (Subtarget.isDarwin()) 1060 return 4; 1061 1062 // 16byte and wider vectors are passed on 16byte boundary. 1063 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1064 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1065 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1066 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1067 return Align; 1068 } 1069 1070 bool PPCTargetLowering::useSoftFloat() const { 1071 return Subtarget.useSoftFloat(); 1072 } 1073 1074 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1075 switch ((PPCISD::NodeType)Opcode) { 1076 case PPCISD::FIRST_NUMBER: break; 1077 case PPCISD::FSEL: return "PPCISD::FSEL"; 1078 case PPCISD::FCFID: return "PPCISD::FCFID"; 1079 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1080 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1081 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1082 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1083 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1084 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1085 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1086 case PPCISD::FRE: return "PPCISD::FRE"; 1087 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1088 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1089 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1090 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1091 case PPCISD::VPERM: return "PPCISD::VPERM"; 1092 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1093 case PPCISD::XXINSERT: return "PPCISD::XXINSERT"; 1094 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1095 case PPCISD::CMPB: return "PPCISD::CMPB"; 1096 case PPCISD::Hi: return "PPCISD::Hi"; 1097 case PPCISD::Lo: return "PPCISD::Lo"; 1098 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1099 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1100 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1101 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1102 case PPCISD::SRL: return "PPCISD::SRL"; 1103 case PPCISD::SRA: return "PPCISD::SRA"; 1104 case PPCISD::SHL: return "PPCISD::SHL"; 1105 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1106 case PPCISD::CALL: return "PPCISD::CALL"; 1107 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1108 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1109 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1110 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1111 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1112 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1113 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1114 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1115 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1116 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1117 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1118 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1119 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1120 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1121 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1122 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1123 case PPCISD::VCMP: return "PPCISD::VCMP"; 1124 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1125 case PPCISD::LBRX: return "PPCISD::LBRX"; 1126 case PPCISD::STBRX: return "PPCISD::STBRX"; 1127 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1128 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1129 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1130 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1131 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1132 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1133 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1134 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1135 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1136 case PPCISD::BDZ: return "PPCISD::BDZ"; 1137 case PPCISD::MFFS: return "PPCISD::MFFS"; 1138 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1139 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1140 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1141 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1142 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1143 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1144 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1145 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1146 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1147 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1148 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1149 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1150 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1151 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1152 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1153 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1154 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1155 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1156 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1157 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1158 case PPCISD::SC: return "PPCISD::SC"; 1159 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1160 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1161 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1162 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1163 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1164 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1165 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1166 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1167 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1168 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1169 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1170 } 1171 return nullptr; 1172 } 1173 1174 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1175 EVT VT) const { 1176 if (!VT.isVector()) 1177 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1178 1179 if (Subtarget.hasQPX()) 1180 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1181 1182 return VT.changeVectorElementTypeToInteger(); 1183 } 1184 1185 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1186 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1187 return true; 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Node matching predicates, for use by the tblgen matching code. 1192 //===----------------------------------------------------------------------===// 1193 1194 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1195 static bool isFloatingPointZero(SDValue Op) { 1196 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1197 return CFP->getValueAPF().isZero(); 1198 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1199 // Maybe this has already been legalized into the constant pool? 1200 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1201 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1202 return CFP->getValueAPF().isZero(); 1203 } 1204 return false; 1205 } 1206 1207 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1208 /// true if Op is undef or if it matches the specified value. 1209 static bool isConstantOrUndef(int Op, int Val) { 1210 return Op < 0 || Op == Val; 1211 } 1212 1213 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1214 /// VPKUHUM instruction. 1215 /// The ShuffleKind distinguishes between big-endian operations with 1216 /// two different inputs (0), either-endian operations with two identical 1217 /// inputs (1), and little-endian operations with two different inputs (2). 1218 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1219 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1220 SelectionDAG &DAG) { 1221 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1222 if (ShuffleKind == 0) { 1223 if (IsLE) 1224 return false; 1225 for (unsigned i = 0; i != 16; ++i) 1226 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1227 return false; 1228 } else if (ShuffleKind == 2) { 1229 if (!IsLE) 1230 return false; 1231 for (unsigned i = 0; i != 16; ++i) 1232 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1233 return false; 1234 } else if (ShuffleKind == 1) { 1235 unsigned j = IsLE ? 0 : 1; 1236 for (unsigned i = 0; i != 8; ++i) 1237 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1238 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1239 return false; 1240 } 1241 return true; 1242 } 1243 1244 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1245 /// VPKUWUM instruction. 1246 /// The ShuffleKind distinguishes between big-endian operations with 1247 /// two different inputs (0), either-endian operations with two identical 1248 /// inputs (1), and little-endian operations with two different inputs (2). 1249 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1250 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1251 SelectionDAG &DAG) { 1252 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1253 if (ShuffleKind == 0) { 1254 if (IsLE) 1255 return false; 1256 for (unsigned i = 0; i != 16; i += 2) 1257 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1258 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1259 return false; 1260 } else if (ShuffleKind == 2) { 1261 if (!IsLE) 1262 return false; 1263 for (unsigned i = 0; i != 16; i += 2) 1264 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1265 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1266 return false; 1267 } else if (ShuffleKind == 1) { 1268 unsigned j = IsLE ? 0 : 2; 1269 for (unsigned i = 0; i != 8; i += 2) 1270 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1271 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1272 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1273 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1274 return false; 1275 } 1276 return true; 1277 } 1278 1279 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1280 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1281 /// current subtarget. 1282 /// 1283 /// The ShuffleKind distinguishes between big-endian operations with 1284 /// two different inputs (0), either-endian operations with two identical 1285 /// inputs (1), and little-endian operations with two different inputs (2). 1286 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1287 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1288 SelectionDAG &DAG) { 1289 const PPCSubtarget& Subtarget = 1290 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1291 if (!Subtarget.hasP8Vector()) 1292 return false; 1293 1294 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1295 if (ShuffleKind == 0) { 1296 if (IsLE) 1297 return false; 1298 for (unsigned i = 0; i != 16; i += 4) 1299 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1300 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1301 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1302 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1303 return false; 1304 } else if (ShuffleKind == 2) { 1305 if (!IsLE) 1306 return false; 1307 for (unsigned i = 0; i != 16; i += 4) 1308 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1309 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1310 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1311 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1312 return false; 1313 } else if (ShuffleKind == 1) { 1314 unsigned j = IsLE ? 0 : 4; 1315 for (unsigned i = 0; i != 8; i += 4) 1316 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1317 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1318 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1319 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1320 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1321 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1322 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1323 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1324 return false; 1325 } 1326 return true; 1327 } 1328 1329 /// isVMerge - Common function, used to match vmrg* shuffles. 1330 /// 1331 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1332 unsigned LHSStart, unsigned RHSStart) { 1333 if (N->getValueType(0) != MVT::v16i8) 1334 return false; 1335 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1336 "Unsupported merge size!"); 1337 1338 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1339 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1340 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1341 LHSStart+j+i*UnitSize) || 1342 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1343 RHSStart+j+i*UnitSize)) 1344 return false; 1345 } 1346 return true; 1347 } 1348 1349 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1350 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1351 /// The ShuffleKind distinguishes between big-endian merges with two 1352 /// different inputs (0), either-endian merges with two identical inputs (1), 1353 /// and little-endian merges with two different inputs (2). For the latter, 1354 /// the input operands are swapped (see PPCInstrAltivec.td). 1355 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1356 unsigned ShuffleKind, SelectionDAG &DAG) { 1357 if (DAG.getDataLayout().isLittleEndian()) { 1358 if (ShuffleKind == 1) // unary 1359 return isVMerge(N, UnitSize, 0, 0); 1360 else if (ShuffleKind == 2) // swapped 1361 return isVMerge(N, UnitSize, 0, 16); 1362 else 1363 return false; 1364 } else { 1365 if (ShuffleKind == 1) // unary 1366 return isVMerge(N, UnitSize, 8, 8); 1367 else if (ShuffleKind == 0) // normal 1368 return isVMerge(N, UnitSize, 8, 24); 1369 else 1370 return false; 1371 } 1372 } 1373 1374 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1375 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1376 /// The ShuffleKind distinguishes between big-endian merges with two 1377 /// different inputs (0), either-endian merges with two identical inputs (1), 1378 /// and little-endian merges with two different inputs (2). For the latter, 1379 /// the input operands are swapped (see PPCInstrAltivec.td). 1380 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1381 unsigned ShuffleKind, SelectionDAG &DAG) { 1382 if (DAG.getDataLayout().isLittleEndian()) { 1383 if (ShuffleKind == 1) // unary 1384 return isVMerge(N, UnitSize, 8, 8); 1385 else if (ShuffleKind == 2) // swapped 1386 return isVMerge(N, UnitSize, 8, 24); 1387 else 1388 return false; 1389 } else { 1390 if (ShuffleKind == 1) // unary 1391 return isVMerge(N, UnitSize, 0, 0); 1392 else if (ShuffleKind == 0) // normal 1393 return isVMerge(N, UnitSize, 0, 16); 1394 else 1395 return false; 1396 } 1397 } 1398 1399 /** 1400 * \brief Common function used to match vmrgew and vmrgow shuffles 1401 * 1402 * The indexOffset determines whether to look for even or odd words in 1403 * the shuffle mask. This is based on the of the endianness of the target 1404 * machine. 1405 * - Little Endian: 1406 * - Use offset of 0 to check for odd elements 1407 * - Use offset of 4 to check for even elements 1408 * - Big Endian: 1409 * - Use offset of 0 to check for even elements 1410 * - Use offset of 4 to check for odd elements 1411 * A detailed description of the vector element ordering for little endian and 1412 * big endian can be found at 1413 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1414 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1415 * compiler differences mean to you 1416 * 1417 * The mask to the shuffle vector instruction specifies the indices of the 1418 * elements from the two input vectors to place in the result. The elements are 1419 * numbered in array-access order, starting with the first vector. These vectors 1420 * are always of type v16i8, thus each vector will contain 16 elements of size 1421 * 8. More info on the shuffle vector can be found in the 1422 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1423 * Language Reference. 1424 * 1425 * The RHSStartValue indicates whether the same input vectors are used (unary) 1426 * or two different input vectors are used, based on the following: 1427 * - If the instruction uses the same vector for both inputs, the range of the 1428 * indices will be 0 to 15. In this case, the RHSStart value passed should 1429 * be 0. 1430 * - If the instruction has two different vectors then the range of the 1431 * indices will be 0 to 31. In this case, the RHSStart value passed should 1432 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1433 * to 31 specify elements in the second vector). 1434 * 1435 * \param[in] N The shuffle vector SD Node to analyze 1436 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1437 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1438 * vector to the shuffle_vector instruction 1439 * \return true iff this shuffle vector represents an even or odd word merge 1440 */ 1441 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1442 unsigned RHSStartValue) { 1443 if (N->getValueType(0) != MVT::v16i8) 1444 return false; 1445 1446 for (unsigned i = 0; i < 2; ++i) 1447 for (unsigned j = 0; j < 4; ++j) 1448 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1449 i*RHSStartValue+j+IndexOffset) || 1450 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1451 i*RHSStartValue+j+IndexOffset+8)) 1452 return false; 1453 return true; 1454 } 1455 1456 /** 1457 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1458 * vmrgow instructions. 1459 * 1460 * \param[in] N The shuffle vector SD Node to analyze 1461 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1462 * \param[in] ShuffleKind Identify the type of merge: 1463 * - 0 = big-endian merge with two different inputs; 1464 * - 1 = either-endian merge with two identical inputs; 1465 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1466 * little-endian merges). 1467 * \param[in] DAG The current SelectionDAG 1468 * \return true iff this shuffle mask 1469 */ 1470 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1471 unsigned ShuffleKind, SelectionDAG &DAG) { 1472 if (DAG.getDataLayout().isLittleEndian()) { 1473 unsigned indexOffset = CheckEven ? 4 : 0; 1474 if (ShuffleKind == 1) // Unary 1475 return isVMerge(N, indexOffset, 0); 1476 else if (ShuffleKind == 2) // swapped 1477 return isVMerge(N, indexOffset, 16); 1478 else 1479 return false; 1480 } 1481 else { 1482 unsigned indexOffset = CheckEven ? 0 : 4; 1483 if (ShuffleKind == 1) // Unary 1484 return isVMerge(N, indexOffset, 0); 1485 else if (ShuffleKind == 0) // Normal 1486 return isVMerge(N, indexOffset, 16); 1487 else 1488 return false; 1489 } 1490 return false; 1491 } 1492 1493 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1494 /// amount, otherwise return -1. 1495 /// The ShuffleKind distinguishes between big-endian operations with two 1496 /// different inputs (0), either-endian operations with two identical inputs 1497 /// (1), and little-endian operations with two different inputs (2). For the 1498 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1499 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1500 SelectionDAG &DAG) { 1501 if (N->getValueType(0) != MVT::v16i8) 1502 return -1; 1503 1504 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1505 1506 // Find the first non-undef value in the shuffle mask. 1507 unsigned i; 1508 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1509 /*search*/; 1510 1511 if (i == 16) return -1; // all undef. 1512 1513 // Otherwise, check to see if the rest of the elements are consecutively 1514 // numbered from this value. 1515 unsigned ShiftAmt = SVOp->getMaskElt(i); 1516 if (ShiftAmt < i) return -1; 1517 1518 ShiftAmt -= i; 1519 bool isLE = DAG.getDataLayout().isLittleEndian(); 1520 1521 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1522 // Check the rest of the elements to see if they are consecutive. 1523 for (++i; i != 16; ++i) 1524 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1525 return -1; 1526 } else if (ShuffleKind == 1) { 1527 // Check the rest of the elements to see if they are consecutive. 1528 for (++i; i != 16; ++i) 1529 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1530 return -1; 1531 } else 1532 return -1; 1533 1534 if (isLE) 1535 ShiftAmt = 16 - ShiftAmt; 1536 1537 return ShiftAmt; 1538 } 1539 1540 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1541 /// specifies a splat of a single element that is suitable for input to 1542 /// VSPLTB/VSPLTH/VSPLTW. 1543 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1544 assert(N->getValueType(0) == MVT::v16i8 && 1545 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1546 1547 // The consecutive indices need to specify an element, not part of two 1548 // different elements. So abandon ship early if this isn't the case. 1549 if (N->getMaskElt(0) % EltSize != 0) 1550 return false; 1551 1552 // This is a splat operation if each element of the permute is the same, and 1553 // if the value doesn't reference the second vector. 1554 unsigned ElementBase = N->getMaskElt(0); 1555 1556 // FIXME: Handle UNDEF elements too! 1557 if (ElementBase >= 16) 1558 return false; 1559 1560 // Check that the indices are consecutive, in the case of a multi-byte element 1561 // splatted with a v16i8 mask. 1562 for (unsigned i = 1; i != EltSize; ++i) 1563 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1564 return false; 1565 1566 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1567 if (N->getMaskElt(i) < 0) continue; 1568 for (unsigned j = 0; j != EltSize; ++j) 1569 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1570 return false; 1571 } 1572 return true; 1573 } 1574 1575 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1576 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1577 // Check that the mask is shuffling words 1578 for (unsigned i = 0; i < 4; ++i) { 1579 unsigned B0 = N->getMaskElt(i*4); 1580 unsigned B1 = N->getMaskElt(i*4+1); 1581 unsigned B2 = N->getMaskElt(i*4+2); 1582 unsigned B3 = N->getMaskElt(i*4+3); 1583 if (B0 % 4) 1584 return false; 1585 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1) 1586 return false; 1587 } 1588 1589 // Now we look at mask elements 0,4,8,12 1590 unsigned M0 = N->getMaskElt(0) / 4; 1591 unsigned M1 = N->getMaskElt(4) / 4; 1592 unsigned M2 = N->getMaskElt(8) / 4; 1593 unsigned M3 = N->getMaskElt(12) / 4; 1594 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1595 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1596 1597 // Below, let H and L be arbitrary elements of the shuffle mask 1598 // where H is in the range [4,7] and L is in the range [0,3]. 1599 // H, 1, 2, 3 or L, 5, 6, 7 1600 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1601 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1602 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1603 InsertAtByte = IsLE ? 12 : 0; 1604 Swap = M0 < 4; 1605 return true; 1606 } 1607 // 0, H, 2, 3 or 4, L, 6, 7 1608 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1609 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1610 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1611 InsertAtByte = IsLE ? 8 : 4; 1612 Swap = M1 < 4; 1613 return true; 1614 } 1615 // 0, 1, H, 3 or 4, 5, L, 7 1616 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1617 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1618 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1619 InsertAtByte = IsLE ? 4 : 8; 1620 Swap = M2 < 4; 1621 return true; 1622 } 1623 // 0, 1, 2, H or 4, 5, 6, L 1624 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1625 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1626 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1627 InsertAtByte = IsLE ? 0 : 12; 1628 Swap = M3 < 4; 1629 return true; 1630 } 1631 1632 // If both vector operands for the shuffle are the same vector, the mask will 1633 // contain only elements from the first one and the second one will be undef. 1634 if (N->getOperand(1).isUndef()) { 1635 ShiftElts = 0; 1636 Swap = true; 1637 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1638 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1639 InsertAtByte = IsLE ? 12 : 0; 1640 return true; 1641 } 1642 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1643 InsertAtByte = IsLE ? 8 : 4; 1644 return true; 1645 } 1646 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1647 InsertAtByte = IsLE ? 4 : 8; 1648 return true; 1649 } 1650 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1651 InsertAtByte = IsLE ? 0 : 12; 1652 return true; 1653 } 1654 } 1655 1656 return false; 1657 } 1658 1659 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1660 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1661 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1662 SelectionDAG &DAG) { 1663 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1664 assert(isSplatShuffleMask(SVOp, EltSize)); 1665 if (DAG.getDataLayout().isLittleEndian()) 1666 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1667 else 1668 return SVOp->getMaskElt(0) / EltSize; 1669 } 1670 1671 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1672 /// by using a vspltis[bhw] instruction of the specified element size, return 1673 /// the constant being splatted. The ByteSize field indicates the number of 1674 /// bytes of each element [124] -> [bhw]. 1675 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1676 SDValue OpVal(nullptr, 0); 1677 1678 // If ByteSize of the splat is bigger than the element size of the 1679 // build_vector, then we have a case where we are checking for a splat where 1680 // multiple elements of the buildvector are folded together into a single 1681 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1682 unsigned EltSize = 16/N->getNumOperands(); 1683 if (EltSize < ByteSize) { 1684 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1685 SDValue UniquedVals[4]; 1686 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1687 1688 // See if all of the elements in the buildvector agree across. 1689 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1690 if (N->getOperand(i).isUndef()) continue; 1691 // If the element isn't a constant, bail fully out. 1692 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1693 1694 if (!UniquedVals[i&(Multiple-1)].getNode()) 1695 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1696 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1697 return SDValue(); // no match. 1698 } 1699 1700 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1701 // either constant or undef values that are identical for each chunk. See 1702 // if these chunks can form into a larger vspltis*. 1703 1704 // Check to see if all of the leading entries are either 0 or -1. If 1705 // neither, then this won't fit into the immediate field. 1706 bool LeadingZero = true; 1707 bool LeadingOnes = true; 1708 for (unsigned i = 0; i != Multiple-1; ++i) { 1709 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1710 1711 LeadingZero &= isNullConstant(UniquedVals[i]); 1712 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1713 } 1714 // Finally, check the least significant entry. 1715 if (LeadingZero) { 1716 if (!UniquedVals[Multiple-1].getNode()) 1717 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1718 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1719 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1720 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1721 } 1722 if (LeadingOnes) { 1723 if (!UniquedVals[Multiple-1].getNode()) 1724 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1725 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1726 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1727 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1728 } 1729 1730 return SDValue(); 1731 } 1732 1733 // Check to see if this buildvec has a single non-undef value in its elements. 1734 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1735 if (N->getOperand(i).isUndef()) continue; 1736 if (!OpVal.getNode()) 1737 OpVal = N->getOperand(i); 1738 else if (OpVal != N->getOperand(i)) 1739 return SDValue(); 1740 } 1741 1742 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1743 1744 unsigned ValSizeInBytes = EltSize; 1745 uint64_t Value = 0; 1746 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1747 Value = CN->getZExtValue(); 1748 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1749 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1750 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1751 } 1752 1753 // If the splat value is larger than the element value, then we can never do 1754 // this splat. The only case that we could fit the replicated bits into our 1755 // immediate field for would be zero, and we prefer to use vxor for it. 1756 if (ValSizeInBytes < ByteSize) return SDValue(); 1757 1758 // If the element value is larger than the splat value, check if it consists 1759 // of a repeated bit pattern of size ByteSize. 1760 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1761 return SDValue(); 1762 1763 // Properly sign extend the value. 1764 int MaskVal = SignExtend32(Value, ByteSize * 8); 1765 1766 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1767 if (MaskVal == 0) return SDValue(); 1768 1769 // Finally, if this value fits in a 5 bit sext field, return it 1770 if (SignExtend32<5>(MaskVal) == MaskVal) 1771 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1772 return SDValue(); 1773 } 1774 1775 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1776 /// amount, otherwise return -1. 1777 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1778 EVT VT = N->getValueType(0); 1779 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1780 return -1; 1781 1782 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1783 1784 // Find the first non-undef value in the shuffle mask. 1785 unsigned i; 1786 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1787 /*search*/; 1788 1789 if (i == 4) return -1; // all undef. 1790 1791 // Otherwise, check to see if the rest of the elements are consecutively 1792 // numbered from this value. 1793 unsigned ShiftAmt = SVOp->getMaskElt(i); 1794 if (ShiftAmt < i) return -1; 1795 ShiftAmt -= i; 1796 1797 // Check the rest of the elements to see if they are consecutive. 1798 for (++i; i != 4; ++i) 1799 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1800 return -1; 1801 1802 return ShiftAmt; 1803 } 1804 1805 //===----------------------------------------------------------------------===// 1806 // Addressing Mode Selection 1807 //===----------------------------------------------------------------------===// 1808 1809 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1810 /// or 64-bit immediate, and if the value can be accurately represented as a 1811 /// sign extension from a 16-bit value. If so, this returns true and the 1812 /// immediate. 1813 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1814 if (!isa<ConstantSDNode>(N)) 1815 return false; 1816 1817 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1818 if (N->getValueType(0) == MVT::i32) 1819 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1820 else 1821 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1822 } 1823 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1824 return isIntS16Immediate(Op.getNode(), Imm); 1825 } 1826 1827 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1828 /// can be represented as an indexed [r+r] operation. Returns false if it 1829 /// can be more efficiently represented with [r+imm]. 1830 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1831 SDValue &Index, 1832 SelectionDAG &DAG) const { 1833 short imm = 0; 1834 if (N.getOpcode() == ISD::ADD) { 1835 if (isIntS16Immediate(N.getOperand(1), imm)) 1836 return false; // r+i 1837 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1838 return false; // r+i 1839 1840 Base = N.getOperand(0); 1841 Index = N.getOperand(1); 1842 return true; 1843 } else if (N.getOpcode() == ISD::OR) { 1844 if (isIntS16Immediate(N.getOperand(1), imm)) 1845 return false; // r+i can fold it if we can. 1846 1847 // If this is an or of disjoint bitfields, we can codegen this as an add 1848 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1849 // disjoint. 1850 APInt LHSKnownZero, LHSKnownOne; 1851 APInt RHSKnownZero, RHSKnownOne; 1852 DAG.computeKnownBits(N.getOperand(0), 1853 LHSKnownZero, LHSKnownOne); 1854 1855 if (LHSKnownZero.getBoolValue()) { 1856 DAG.computeKnownBits(N.getOperand(1), 1857 RHSKnownZero, RHSKnownOne); 1858 // If all of the bits are known zero on the LHS or RHS, the add won't 1859 // carry. 1860 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1861 Base = N.getOperand(0); 1862 Index = N.getOperand(1); 1863 return true; 1864 } 1865 } 1866 } 1867 1868 return false; 1869 } 1870 1871 // If we happen to be doing an i64 load or store into a stack slot that has 1872 // less than a 4-byte alignment, then the frame-index elimination may need to 1873 // use an indexed load or store instruction (because the offset may not be a 1874 // multiple of 4). The extra register needed to hold the offset comes from the 1875 // register scavenger, and it is possible that the scavenger will need to use 1876 // an emergency spill slot. As a result, we need to make sure that a spill slot 1877 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1878 // stack slot. 1879 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1880 // FIXME: This does not handle the LWA case. 1881 if (VT != MVT::i64) 1882 return; 1883 1884 // NOTE: We'll exclude negative FIs here, which come from argument 1885 // lowering, because there are no known test cases triggering this problem 1886 // using packed structures (or similar). We can remove this exclusion if 1887 // we find such a test case. The reason why this is so test-case driven is 1888 // because this entire 'fixup' is only to prevent crashes (from the 1889 // register scavenger) on not-really-valid inputs. For example, if we have: 1890 // %a = alloca i1 1891 // %b = bitcast i1* %a to i64* 1892 // store i64* a, i64 b 1893 // then the store should really be marked as 'align 1', but is not. If it 1894 // were marked as 'align 1' then the indexed form would have been 1895 // instruction-selected initially, and the problem this 'fixup' is preventing 1896 // won't happen regardless. 1897 if (FrameIdx < 0) 1898 return; 1899 1900 MachineFunction &MF = DAG.getMachineFunction(); 1901 MachineFrameInfo &MFI = MF.getFrameInfo(); 1902 1903 unsigned Align = MFI.getObjectAlignment(FrameIdx); 1904 if (Align >= 4) 1905 return; 1906 1907 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1908 FuncInfo->setHasNonRISpills(); 1909 } 1910 1911 /// Returns true if the address N can be represented by a base register plus 1912 /// a signed 16-bit displacement [r+imm], and if it is not better 1913 /// represented as reg+reg. If Aligned is true, only accept displacements 1914 /// suitable for STD and friends, i.e. multiples of 4. 1915 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1916 SDValue &Base, 1917 SelectionDAG &DAG, 1918 bool Aligned) const { 1919 // FIXME dl should come from parent load or store, not from address 1920 SDLoc dl(N); 1921 // If this can be more profitably realized as r+r, fail. 1922 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1923 return false; 1924 1925 if (N.getOpcode() == ISD::ADD) { 1926 short imm = 0; 1927 if (isIntS16Immediate(N.getOperand(1), imm) && 1928 (!Aligned || (imm & 3) == 0)) { 1929 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1930 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1931 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1932 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1933 } else { 1934 Base = N.getOperand(0); 1935 } 1936 return true; // [r+i] 1937 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1938 // Match LOAD (ADD (X, Lo(G))). 1939 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1940 && "Cannot handle constant offsets yet!"); 1941 Disp = N.getOperand(1).getOperand(0); // The global address. 1942 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1943 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1944 Disp.getOpcode() == ISD::TargetConstantPool || 1945 Disp.getOpcode() == ISD::TargetJumpTable); 1946 Base = N.getOperand(0); 1947 return true; // [&g+r] 1948 } 1949 } else if (N.getOpcode() == ISD::OR) { 1950 short imm = 0; 1951 if (isIntS16Immediate(N.getOperand(1), imm) && 1952 (!Aligned || (imm & 3) == 0)) { 1953 // If this is an or of disjoint bitfields, we can codegen this as an add 1954 // (for better address arithmetic) if the LHS and RHS of the OR are 1955 // provably disjoint. 1956 APInt LHSKnownZero, LHSKnownOne; 1957 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1958 1959 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1960 // If all of the bits are known zero on the LHS or RHS, the add won't 1961 // carry. 1962 if (FrameIndexSDNode *FI = 1963 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1964 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1965 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1966 } else { 1967 Base = N.getOperand(0); 1968 } 1969 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1970 return true; 1971 } 1972 } 1973 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1974 // Loading from a constant address. 1975 1976 // If this address fits entirely in a 16-bit sext immediate field, codegen 1977 // this as "d, 0" 1978 short Imm; 1979 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1980 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1981 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1982 CN->getValueType(0)); 1983 return true; 1984 } 1985 1986 // Handle 32-bit sext immediates with LIS + addr mode. 1987 if ((CN->getValueType(0) == MVT::i32 || 1988 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1989 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1990 int Addr = (int)CN->getZExtValue(); 1991 1992 // Otherwise, break this down into an LIS + disp. 1993 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1994 1995 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1996 MVT::i32); 1997 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1998 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1999 return true; 2000 } 2001 } 2002 2003 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2004 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2005 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2006 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2007 } else 2008 Base = N; 2009 return true; // [r+0] 2010 } 2011 2012 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2013 /// represented as an indexed [r+r] operation. 2014 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2015 SDValue &Index, 2016 SelectionDAG &DAG) const { 2017 // Check to see if we can easily represent this as an [r+r] address. This 2018 // will fail if it thinks that the address is more profitably represented as 2019 // reg+imm, e.g. where imm = 0. 2020 if (SelectAddressRegReg(N, Base, Index, DAG)) 2021 return true; 2022 2023 // If the operand is an addition, always emit this as [r+r], since this is 2024 // better (for code size, and execution, as the memop does the add for free) 2025 // than emitting an explicit add. 2026 if (N.getOpcode() == ISD::ADD) { 2027 Base = N.getOperand(0); 2028 Index = N.getOperand(1); 2029 return true; 2030 } 2031 2032 // Otherwise, do it the hard way, using R0 as the base register. 2033 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2034 N.getValueType()); 2035 Index = N; 2036 return true; 2037 } 2038 2039 /// getPreIndexedAddressParts - returns true by value, base pointer and 2040 /// offset pointer and addressing mode by reference if the node's address 2041 /// can be legally represented as pre-indexed load / store address. 2042 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2043 SDValue &Offset, 2044 ISD::MemIndexedMode &AM, 2045 SelectionDAG &DAG) const { 2046 if (DisablePPCPreinc) return false; 2047 2048 bool isLoad = true; 2049 SDValue Ptr; 2050 EVT VT; 2051 unsigned Alignment; 2052 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2053 Ptr = LD->getBasePtr(); 2054 VT = LD->getMemoryVT(); 2055 Alignment = LD->getAlignment(); 2056 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2057 Ptr = ST->getBasePtr(); 2058 VT = ST->getMemoryVT(); 2059 Alignment = ST->getAlignment(); 2060 isLoad = false; 2061 } else 2062 return false; 2063 2064 // PowerPC doesn't have preinc load/store instructions for vectors (except 2065 // for QPX, which does have preinc r+r forms). 2066 if (VT.isVector()) { 2067 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2068 return false; 2069 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2070 AM = ISD::PRE_INC; 2071 return true; 2072 } 2073 } 2074 2075 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2076 // Common code will reject creating a pre-inc form if the base pointer 2077 // is a frame index, or if N is a store and the base pointer is either 2078 // the same as or a predecessor of the value being stored. Check for 2079 // those situations here, and try with swapped Base/Offset instead. 2080 bool Swap = false; 2081 2082 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2083 Swap = true; 2084 else if (!isLoad) { 2085 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2086 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2087 Swap = true; 2088 } 2089 2090 if (Swap) 2091 std::swap(Base, Offset); 2092 2093 AM = ISD::PRE_INC; 2094 return true; 2095 } 2096 2097 // LDU/STU can only handle immediates that are a multiple of 4. 2098 if (VT != MVT::i64) { 2099 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 2100 return false; 2101 } else { 2102 // LDU/STU need an address with at least 4-byte alignment. 2103 if (Alignment < 4) 2104 return false; 2105 2106 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 2107 return false; 2108 } 2109 2110 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2111 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2112 // sext i32 to i64 when addr mode is r+i. 2113 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2114 LD->getExtensionType() == ISD::SEXTLOAD && 2115 isa<ConstantSDNode>(Offset)) 2116 return false; 2117 } 2118 2119 AM = ISD::PRE_INC; 2120 return true; 2121 } 2122 2123 //===----------------------------------------------------------------------===// 2124 // LowerOperation implementation 2125 //===----------------------------------------------------------------------===// 2126 2127 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2128 /// and LoOpFlags to the target MO flags. 2129 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2130 unsigned &HiOpFlags, unsigned &LoOpFlags, 2131 const GlobalValue *GV = nullptr) { 2132 HiOpFlags = PPCII::MO_HA; 2133 LoOpFlags = PPCII::MO_LO; 2134 2135 // Don't use the pic base if not in PIC relocation model. 2136 if (IsPIC) { 2137 HiOpFlags |= PPCII::MO_PIC_FLAG; 2138 LoOpFlags |= PPCII::MO_PIC_FLAG; 2139 } 2140 2141 // If this is a reference to a global value that requires a non-lazy-ptr, make 2142 // sure that instruction lowering adds it. 2143 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2144 HiOpFlags |= PPCII::MO_NLP_FLAG; 2145 LoOpFlags |= PPCII::MO_NLP_FLAG; 2146 2147 if (GV->hasHiddenVisibility()) { 2148 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2149 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2150 } 2151 } 2152 } 2153 2154 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2155 SelectionDAG &DAG) { 2156 SDLoc DL(HiPart); 2157 EVT PtrVT = HiPart.getValueType(); 2158 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2159 2160 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2161 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2162 2163 // With PIC, the first instruction is actually "GR+hi(&G)". 2164 if (isPIC) 2165 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2166 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2167 2168 // Generate non-pic code that has direct accesses to the constant pool. 2169 // The address of the global is just (hi(&g)+lo(&g)). 2170 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2171 } 2172 2173 static void setUsesTOCBasePtr(MachineFunction &MF) { 2174 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2175 FuncInfo->setUsesTOCBasePtr(); 2176 } 2177 2178 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2179 setUsesTOCBasePtr(DAG.getMachineFunction()); 2180 } 2181 2182 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2183 SDValue GA) { 2184 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2185 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2186 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2187 2188 SDValue Ops[] = { GA, Reg }; 2189 return DAG.getMemIntrinsicNode( 2190 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2191 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2192 false, 0); 2193 } 2194 2195 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2196 SelectionDAG &DAG) const { 2197 EVT PtrVT = Op.getValueType(); 2198 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2199 const Constant *C = CP->getConstVal(); 2200 2201 // 64-bit SVR4 ABI code is always position-independent. 2202 // The actual address of the GlobalValue is stored in the TOC. 2203 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2204 setUsesTOCBasePtr(DAG); 2205 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2206 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2207 } 2208 2209 unsigned MOHiFlag, MOLoFlag; 2210 bool IsPIC = isPositionIndependent(); 2211 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2212 2213 if (IsPIC && Subtarget.isSVR4ABI()) { 2214 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2215 PPCII::MO_PIC_FLAG); 2216 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2217 } 2218 2219 SDValue CPIHi = 2220 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2221 SDValue CPILo = 2222 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2223 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2224 } 2225 2226 // For 64-bit PowerPC, prefer the more compact relative encodings. 2227 // This trades 32 bits per jump table entry for one or two instructions 2228 // on the jump site. 2229 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2230 if (isJumpTableRelative()) 2231 return MachineJumpTableInfo::EK_LabelDifference32; 2232 2233 return TargetLowering::getJumpTableEncoding(); 2234 } 2235 2236 bool PPCTargetLowering::isJumpTableRelative() const { 2237 if (Subtarget.isPPC64()) 2238 return true; 2239 return TargetLowering::isJumpTableRelative(); 2240 } 2241 2242 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2243 SelectionDAG &DAG) const { 2244 if (!Subtarget.isPPC64()) 2245 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2246 2247 switch (getTargetMachine().getCodeModel()) { 2248 case CodeModel::Default: 2249 case CodeModel::Small: 2250 case CodeModel::Medium: 2251 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2252 default: 2253 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2254 getPointerTy(DAG.getDataLayout())); 2255 } 2256 } 2257 2258 const MCExpr * 2259 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2260 unsigned JTI, 2261 MCContext &Ctx) const { 2262 if (!Subtarget.isPPC64()) 2263 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2264 2265 switch (getTargetMachine().getCodeModel()) { 2266 case CodeModel::Default: 2267 case CodeModel::Small: 2268 case CodeModel::Medium: 2269 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2270 default: 2271 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2272 } 2273 } 2274 2275 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2276 EVT PtrVT = Op.getValueType(); 2277 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2278 2279 // 64-bit SVR4 ABI code is always position-independent. 2280 // The actual address of the GlobalValue is stored in the TOC. 2281 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2282 setUsesTOCBasePtr(DAG); 2283 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2284 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2285 } 2286 2287 unsigned MOHiFlag, MOLoFlag; 2288 bool IsPIC = isPositionIndependent(); 2289 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2290 2291 if (IsPIC && Subtarget.isSVR4ABI()) { 2292 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2293 PPCII::MO_PIC_FLAG); 2294 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2295 } 2296 2297 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2298 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2299 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2300 } 2301 2302 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2303 SelectionDAG &DAG) const { 2304 EVT PtrVT = Op.getValueType(); 2305 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2306 const BlockAddress *BA = BASDN->getBlockAddress(); 2307 2308 // 64-bit SVR4 ABI code is always position-independent. 2309 // The actual BlockAddress is stored in the TOC. 2310 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2311 setUsesTOCBasePtr(DAG); 2312 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2313 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2314 } 2315 2316 unsigned MOHiFlag, MOLoFlag; 2317 bool IsPIC = isPositionIndependent(); 2318 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2319 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2320 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2321 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2322 } 2323 2324 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2325 SelectionDAG &DAG) const { 2326 // FIXME: TLS addresses currently use medium model code sequences, 2327 // which is the most useful form. Eventually support for small and 2328 // large models could be added if users need it, at the cost of 2329 // additional complexity. 2330 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2331 if (DAG.getTarget().Options.EmulatedTLS) 2332 return LowerToTLSEmulatedModel(GA, DAG); 2333 2334 SDLoc dl(GA); 2335 const GlobalValue *GV = GA->getGlobal(); 2336 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2337 bool is64bit = Subtarget.isPPC64(); 2338 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2339 PICLevel::Level picLevel = M->getPICLevel(); 2340 2341 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2342 2343 if (Model == TLSModel::LocalExec) { 2344 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2345 PPCII::MO_TPREL_HA); 2346 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2347 PPCII::MO_TPREL_LO); 2348 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2349 is64bit ? MVT::i64 : MVT::i32); 2350 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2351 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2352 } 2353 2354 if (Model == TLSModel::InitialExec) { 2355 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2356 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2357 PPCII::MO_TLS); 2358 SDValue GOTPtr; 2359 if (is64bit) { 2360 setUsesTOCBasePtr(DAG); 2361 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2362 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2363 PtrVT, GOTReg, TGA); 2364 } else 2365 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2366 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2367 PtrVT, TGA, GOTPtr); 2368 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2369 } 2370 2371 if (Model == TLSModel::GeneralDynamic) { 2372 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2373 SDValue GOTPtr; 2374 if (is64bit) { 2375 setUsesTOCBasePtr(DAG); 2376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2377 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2378 GOTReg, TGA); 2379 } else { 2380 if (picLevel == PICLevel::SmallPIC) 2381 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2382 else 2383 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2384 } 2385 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2386 GOTPtr, TGA, TGA); 2387 } 2388 2389 if (Model == TLSModel::LocalDynamic) { 2390 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2391 SDValue GOTPtr; 2392 if (is64bit) { 2393 setUsesTOCBasePtr(DAG); 2394 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2395 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2396 GOTReg, TGA); 2397 } else { 2398 if (picLevel == PICLevel::SmallPIC) 2399 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2400 else 2401 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2402 } 2403 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2404 PtrVT, GOTPtr, TGA, TGA); 2405 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2406 PtrVT, TLSAddr, TGA); 2407 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2408 } 2409 2410 llvm_unreachable("Unknown TLS model!"); 2411 } 2412 2413 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2414 SelectionDAG &DAG) const { 2415 EVT PtrVT = Op.getValueType(); 2416 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2417 SDLoc DL(GSDN); 2418 const GlobalValue *GV = GSDN->getGlobal(); 2419 2420 // 64-bit SVR4 ABI code is always position-independent. 2421 // The actual address of the GlobalValue is stored in the TOC. 2422 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2423 setUsesTOCBasePtr(DAG); 2424 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2425 return getTOCEntry(DAG, DL, true, GA); 2426 } 2427 2428 unsigned MOHiFlag, MOLoFlag; 2429 bool IsPIC = isPositionIndependent(); 2430 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2431 2432 if (IsPIC && Subtarget.isSVR4ABI()) { 2433 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2434 GSDN->getOffset(), 2435 PPCII::MO_PIC_FLAG); 2436 return getTOCEntry(DAG, DL, false, GA); 2437 } 2438 2439 SDValue GAHi = 2440 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2441 SDValue GALo = 2442 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2443 2444 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2445 2446 // If the global reference is actually to a non-lazy-pointer, we have to do an 2447 // extra load to get the address of the global. 2448 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2449 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2450 return Ptr; 2451 } 2452 2453 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2454 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2455 SDLoc dl(Op); 2456 2457 if (Op.getValueType() == MVT::v2i64) { 2458 // When the operands themselves are v2i64 values, we need to do something 2459 // special because VSX has no underlying comparison operations for these. 2460 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2461 // Equality can be handled by casting to the legal type for Altivec 2462 // comparisons, everything else needs to be expanded. 2463 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2464 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2465 DAG.getSetCC(dl, MVT::v4i32, 2466 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2467 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2468 CC)); 2469 } 2470 2471 return SDValue(); 2472 } 2473 2474 // We handle most of these in the usual way. 2475 return Op; 2476 } 2477 2478 // If we're comparing for equality to zero, expose the fact that this is 2479 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2480 // fold the new nodes. 2481 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2482 return V; 2483 2484 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2485 // Leave comparisons against 0 and -1 alone for now, since they're usually 2486 // optimized. FIXME: revisit this when we can custom lower all setcc 2487 // optimizations. 2488 if (C->isAllOnesValue() || C->isNullValue()) 2489 return SDValue(); 2490 } 2491 2492 // If we have an integer seteq/setne, turn it into a compare against zero 2493 // by xor'ing the rhs with the lhs, which is faster than setting a 2494 // condition register, reading it back out, and masking the correct bit. The 2495 // normal approach here uses sub to do this instead of xor. Using xor exposes 2496 // the result to other bit-twiddling opportunities. 2497 EVT LHSVT = Op.getOperand(0).getValueType(); 2498 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2499 EVT VT = Op.getValueType(); 2500 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2501 Op.getOperand(1)); 2502 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2503 } 2504 return SDValue(); 2505 } 2506 2507 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2508 SDNode *Node = Op.getNode(); 2509 EVT VT = Node->getValueType(0); 2510 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2511 SDValue InChain = Node->getOperand(0); 2512 SDValue VAListPtr = Node->getOperand(1); 2513 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2514 SDLoc dl(Node); 2515 2516 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2517 2518 // gpr_index 2519 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2520 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2521 InChain = GprIndex.getValue(1); 2522 2523 if (VT == MVT::i64) { 2524 // Check if GprIndex is even 2525 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2526 DAG.getConstant(1, dl, MVT::i32)); 2527 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2528 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2529 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2530 DAG.getConstant(1, dl, MVT::i32)); 2531 // Align GprIndex to be even if it isn't 2532 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2533 GprIndex); 2534 } 2535 2536 // fpr index is 1 byte after gpr 2537 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2538 DAG.getConstant(1, dl, MVT::i32)); 2539 2540 // fpr 2541 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2542 FprPtr, MachinePointerInfo(SV), MVT::i8); 2543 InChain = FprIndex.getValue(1); 2544 2545 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2546 DAG.getConstant(8, dl, MVT::i32)); 2547 2548 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2549 DAG.getConstant(4, dl, MVT::i32)); 2550 2551 // areas 2552 SDValue OverflowArea = 2553 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2554 InChain = OverflowArea.getValue(1); 2555 2556 SDValue RegSaveArea = 2557 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2558 InChain = RegSaveArea.getValue(1); 2559 2560 // select overflow_area if index > 8 2561 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2562 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2563 2564 // adjustment constant gpr_index * 4/8 2565 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2566 VT.isInteger() ? GprIndex : FprIndex, 2567 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2568 MVT::i32)); 2569 2570 // OurReg = RegSaveArea + RegConstant 2571 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2572 RegConstant); 2573 2574 // Floating types are 32 bytes into RegSaveArea 2575 if (VT.isFloatingPoint()) 2576 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2577 DAG.getConstant(32, dl, MVT::i32)); 2578 2579 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2580 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2581 VT.isInteger() ? GprIndex : FprIndex, 2582 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2583 MVT::i32)); 2584 2585 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2586 VT.isInteger() ? VAListPtr : FprPtr, 2587 MachinePointerInfo(SV), MVT::i8); 2588 2589 // determine if we should load from reg_save_area or overflow_area 2590 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2591 2592 // increase overflow_area by 4/8 if gpr/fpr > 8 2593 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2594 DAG.getConstant(VT.isInteger() ? 4 : 8, 2595 dl, MVT::i32)); 2596 2597 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2598 OverflowAreaPlusN); 2599 2600 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2601 MachinePointerInfo(), MVT::i32); 2602 2603 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2604 } 2605 2606 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2607 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2608 2609 // We have to copy the entire va_list struct: 2610 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2611 return DAG.getMemcpy(Op.getOperand(0), Op, 2612 Op.getOperand(1), Op.getOperand(2), 2613 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2614 false, MachinePointerInfo(), MachinePointerInfo()); 2615 } 2616 2617 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2618 SelectionDAG &DAG) const { 2619 return Op.getOperand(0); 2620 } 2621 2622 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2623 SelectionDAG &DAG) const { 2624 SDValue Chain = Op.getOperand(0); 2625 SDValue Trmp = Op.getOperand(1); // trampoline 2626 SDValue FPtr = Op.getOperand(2); // nested function 2627 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2628 SDLoc dl(Op); 2629 2630 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2631 bool isPPC64 = (PtrVT == MVT::i64); 2632 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2633 2634 TargetLowering::ArgListTy Args; 2635 TargetLowering::ArgListEntry Entry; 2636 2637 Entry.Ty = IntPtrTy; 2638 Entry.Node = Trmp; Args.push_back(Entry); 2639 2640 // TrampSize == (isPPC64 ? 48 : 40); 2641 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2642 isPPC64 ? MVT::i64 : MVT::i32); 2643 Args.push_back(Entry); 2644 2645 Entry.Node = FPtr; Args.push_back(Entry); 2646 Entry.Node = Nest; Args.push_back(Entry); 2647 2648 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2649 TargetLowering::CallLoweringInfo CLI(DAG); 2650 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 2651 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2652 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 2653 2654 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2655 return CallResult.second; 2656 } 2657 2658 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2659 MachineFunction &MF = DAG.getMachineFunction(); 2660 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2661 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2662 2663 SDLoc dl(Op); 2664 2665 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2666 // vastart just stores the address of the VarArgsFrameIndex slot into the 2667 // memory location argument. 2668 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2669 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2670 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2671 MachinePointerInfo(SV)); 2672 } 2673 2674 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2675 // We suppose the given va_list is already allocated. 2676 // 2677 // typedef struct { 2678 // char gpr; /* index into the array of 8 GPRs 2679 // * stored in the register save area 2680 // * gpr=0 corresponds to r3, 2681 // * gpr=1 to r4, etc. 2682 // */ 2683 // char fpr; /* index into the array of 8 FPRs 2684 // * stored in the register save area 2685 // * fpr=0 corresponds to f1, 2686 // * fpr=1 to f2, etc. 2687 // */ 2688 // char *overflow_arg_area; 2689 // /* location on stack that holds 2690 // * the next overflow argument 2691 // */ 2692 // char *reg_save_area; 2693 // /* where r3:r10 and f1:f8 (if saved) 2694 // * are stored 2695 // */ 2696 // } va_list[1]; 2697 2698 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2699 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2700 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2701 PtrVT); 2702 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2703 PtrVT); 2704 2705 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2706 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2707 2708 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2709 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2710 2711 uint64_t FPROffset = 1; 2712 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2713 2714 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2715 2716 // Store first byte : number of int regs 2717 SDValue firstStore = 2718 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2719 MachinePointerInfo(SV), MVT::i8); 2720 uint64_t nextOffset = FPROffset; 2721 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2722 ConstFPROffset); 2723 2724 // Store second byte : number of float regs 2725 SDValue secondStore = 2726 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2727 MachinePointerInfo(SV, nextOffset), MVT::i8); 2728 nextOffset += StackOffset; 2729 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2730 2731 // Store second word : arguments given on stack 2732 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2733 MachinePointerInfo(SV, nextOffset)); 2734 nextOffset += FrameOffset; 2735 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2736 2737 // Store third word : arguments given in registers 2738 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2739 MachinePointerInfo(SV, nextOffset)); 2740 } 2741 2742 #include "PPCGenCallingConv.inc" 2743 2744 // Function whose sole purpose is to kill compiler warnings 2745 // stemming from unused functions included from PPCGenCallingConv.inc. 2746 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2747 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2748 } 2749 2750 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2751 CCValAssign::LocInfo &LocInfo, 2752 ISD::ArgFlagsTy &ArgFlags, 2753 CCState &State) { 2754 return true; 2755 } 2756 2757 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2758 MVT &LocVT, 2759 CCValAssign::LocInfo &LocInfo, 2760 ISD::ArgFlagsTy &ArgFlags, 2761 CCState &State) { 2762 static const MCPhysReg ArgRegs[] = { 2763 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2764 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2765 }; 2766 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2767 2768 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2769 2770 // Skip one register if the first unallocated register has an even register 2771 // number and there are still argument registers available which have not been 2772 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2773 // need to skip a register if RegNum is odd. 2774 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2775 State.AllocateReg(ArgRegs[RegNum]); 2776 } 2777 2778 // Always return false here, as this function only makes sure that the first 2779 // unallocated register has an odd register number and does not actually 2780 // allocate a register for the current argument. 2781 return false; 2782 } 2783 2784 bool 2785 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 2786 MVT &LocVT, 2787 CCValAssign::LocInfo &LocInfo, 2788 ISD::ArgFlagsTy &ArgFlags, 2789 CCState &State) { 2790 static const MCPhysReg ArgRegs[] = { 2791 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2792 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2793 }; 2794 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2795 2796 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2797 int RegsLeft = NumArgRegs - RegNum; 2798 2799 // Skip if there is not enough registers left for long double type (4 gpr regs 2800 // in soft float mode) and put long double argument on the stack. 2801 if (RegNum != NumArgRegs && RegsLeft < 4) { 2802 for (int i = 0; i < RegsLeft; i++) { 2803 State.AllocateReg(ArgRegs[RegNum + i]); 2804 } 2805 } 2806 2807 return false; 2808 } 2809 2810 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2811 MVT &LocVT, 2812 CCValAssign::LocInfo &LocInfo, 2813 ISD::ArgFlagsTy &ArgFlags, 2814 CCState &State) { 2815 static const MCPhysReg ArgRegs[] = { 2816 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2817 PPC::F8 2818 }; 2819 2820 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2821 2822 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2823 2824 // If there is only one Floating-point register left we need to put both f64 2825 // values of a split ppc_fp128 value on the stack. 2826 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2827 State.AllocateReg(ArgRegs[RegNum]); 2828 } 2829 2830 // Always return false here, as this function only makes sure that the two f64 2831 // values a ppc_fp128 value is split into are both passed in registers or both 2832 // passed on the stack and does not actually allocate a register for the 2833 // current argument. 2834 return false; 2835 } 2836 2837 /// FPR - The set of FP registers that should be allocated for arguments, 2838 /// on Darwin. 2839 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2840 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2841 PPC::F11, PPC::F12, PPC::F13}; 2842 2843 /// QFPR - The set of QPX registers that should be allocated for arguments. 2844 static const MCPhysReg QFPR[] = { 2845 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2846 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2847 2848 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2849 /// the stack. 2850 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2851 unsigned PtrByteSize) { 2852 unsigned ArgSize = ArgVT.getStoreSize(); 2853 if (Flags.isByVal()) 2854 ArgSize = Flags.getByValSize(); 2855 2856 // Round up to multiples of the pointer size, except for array members, 2857 // which are always packed. 2858 if (!Flags.isInConsecutiveRegs()) 2859 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2860 2861 return ArgSize; 2862 } 2863 2864 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2865 /// on the stack. 2866 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2867 ISD::ArgFlagsTy Flags, 2868 unsigned PtrByteSize) { 2869 unsigned Align = PtrByteSize; 2870 2871 // Altivec parameters are padded to a 16 byte boundary. 2872 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2873 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2874 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2875 ArgVT == MVT::v1i128) 2876 Align = 16; 2877 // QPX vector types stored in double-precision are padded to a 32 byte 2878 // boundary. 2879 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2880 Align = 32; 2881 2882 // ByVal parameters are aligned as requested. 2883 if (Flags.isByVal()) { 2884 unsigned BVAlign = Flags.getByValAlign(); 2885 if (BVAlign > PtrByteSize) { 2886 if (BVAlign % PtrByteSize != 0) 2887 llvm_unreachable( 2888 "ByVal alignment is not a multiple of the pointer size"); 2889 2890 Align = BVAlign; 2891 } 2892 } 2893 2894 // Array members are always packed to their original alignment. 2895 if (Flags.isInConsecutiveRegs()) { 2896 // If the array member was split into multiple registers, the first 2897 // needs to be aligned to the size of the full type. (Except for 2898 // ppcf128, which is only aligned as its f64 components.) 2899 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2900 Align = OrigVT.getStoreSize(); 2901 else 2902 Align = ArgVT.getStoreSize(); 2903 } 2904 2905 return Align; 2906 } 2907 2908 /// CalculateStackSlotUsed - Return whether this argument will use its 2909 /// stack slot (instead of being passed in registers). ArgOffset, 2910 /// AvailableFPRs, and AvailableVRs must hold the current argument 2911 /// position, and will be updated to account for this argument. 2912 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2913 ISD::ArgFlagsTy Flags, 2914 unsigned PtrByteSize, 2915 unsigned LinkageSize, 2916 unsigned ParamAreaSize, 2917 unsigned &ArgOffset, 2918 unsigned &AvailableFPRs, 2919 unsigned &AvailableVRs, bool HasQPX) { 2920 bool UseMemory = false; 2921 2922 // Respect alignment of argument on the stack. 2923 unsigned Align = 2924 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2925 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2926 // If there's no space left in the argument save area, we must 2927 // use memory (this check also catches zero-sized arguments). 2928 if (ArgOffset >= LinkageSize + ParamAreaSize) 2929 UseMemory = true; 2930 2931 // Allocate argument on the stack. 2932 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2933 if (Flags.isInConsecutiveRegsLast()) 2934 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2935 // If we overran the argument save area, we must use memory 2936 // (this check catches arguments passed partially in memory) 2937 if (ArgOffset > LinkageSize + ParamAreaSize) 2938 UseMemory = true; 2939 2940 // However, if the argument is actually passed in an FPR or a VR, 2941 // we don't use memory after all. 2942 if (!Flags.isByVal()) { 2943 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2944 // QPX registers overlap with the scalar FP registers. 2945 (HasQPX && (ArgVT == MVT::v4f32 || 2946 ArgVT == MVT::v4f64 || 2947 ArgVT == MVT::v4i1))) 2948 if (AvailableFPRs > 0) { 2949 --AvailableFPRs; 2950 return false; 2951 } 2952 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2953 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2954 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2955 ArgVT == MVT::v1i128) 2956 if (AvailableVRs > 0) { 2957 --AvailableVRs; 2958 return false; 2959 } 2960 } 2961 2962 return UseMemory; 2963 } 2964 2965 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2966 /// ensure minimum alignment required for target. 2967 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2968 unsigned NumBytes) { 2969 unsigned TargetAlign = Lowering->getStackAlignment(); 2970 unsigned AlignMask = TargetAlign - 1; 2971 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2972 return NumBytes; 2973 } 2974 2975 SDValue PPCTargetLowering::LowerFormalArguments( 2976 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2977 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2978 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2979 if (Subtarget.isSVR4ABI()) { 2980 if (Subtarget.isPPC64()) 2981 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2982 dl, DAG, InVals); 2983 else 2984 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2985 dl, DAG, InVals); 2986 } else { 2987 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2988 dl, DAG, InVals); 2989 } 2990 } 2991 2992 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2993 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2994 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2995 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2996 2997 // 32-bit SVR4 ABI Stack Frame Layout: 2998 // +-----------------------------------+ 2999 // +--> | Back chain | 3000 // | +-----------------------------------+ 3001 // | | Floating-point register save area | 3002 // | +-----------------------------------+ 3003 // | | General register save area | 3004 // | +-----------------------------------+ 3005 // | | CR save word | 3006 // | +-----------------------------------+ 3007 // | | VRSAVE save word | 3008 // | +-----------------------------------+ 3009 // | | Alignment padding | 3010 // | +-----------------------------------+ 3011 // | | Vector register save area | 3012 // | +-----------------------------------+ 3013 // | | Local variable space | 3014 // | +-----------------------------------+ 3015 // | | Parameter list area | 3016 // | +-----------------------------------+ 3017 // | | LR save word | 3018 // | +-----------------------------------+ 3019 // SP--> +--- | Back chain | 3020 // +-----------------------------------+ 3021 // 3022 // Specifications: 3023 // System V Application Binary Interface PowerPC Processor Supplement 3024 // AltiVec Technology Programming Interface Manual 3025 3026 MachineFunction &MF = DAG.getMachineFunction(); 3027 MachineFrameInfo &MFI = MF.getFrameInfo(); 3028 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3029 3030 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3031 // Potential tail calls could cause overwriting of argument stack slots. 3032 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3033 (CallConv == CallingConv::Fast)); 3034 unsigned PtrByteSize = 4; 3035 3036 // Assign locations to all of the incoming arguments. 3037 SmallVector<CCValAssign, 16> ArgLocs; 3038 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3039 *DAG.getContext()); 3040 3041 // Reserve space for the linkage area on the stack. 3042 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3043 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3044 if (useSoftFloat()) 3045 CCInfo.PreAnalyzeFormalArguments(Ins); 3046 3047 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3048 CCInfo.clearWasPPCF128(); 3049 3050 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3051 CCValAssign &VA = ArgLocs[i]; 3052 3053 // Arguments stored in registers. 3054 if (VA.isRegLoc()) { 3055 const TargetRegisterClass *RC; 3056 EVT ValVT = VA.getValVT(); 3057 3058 switch (ValVT.getSimpleVT().SimpleTy) { 3059 default: 3060 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3061 case MVT::i1: 3062 case MVT::i32: 3063 RC = &PPC::GPRCRegClass; 3064 break; 3065 case MVT::f32: 3066 if (Subtarget.hasP8Vector()) 3067 RC = &PPC::VSSRCRegClass; 3068 else 3069 RC = &PPC::F4RCRegClass; 3070 break; 3071 case MVT::f64: 3072 if (Subtarget.hasVSX()) 3073 RC = &PPC::VSFRCRegClass; 3074 else 3075 RC = &PPC::F8RCRegClass; 3076 break; 3077 case MVT::v16i8: 3078 case MVT::v8i16: 3079 case MVT::v4i32: 3080 RC = &PPC::VRRCRegClass; 3081 break; 3082 case MVT::v4f32: 3083 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3084 break; 3085 case MVT::v2f64: 3086 case MVT::v2i64: 3087 RC = &PPC::VRRCRegClass; 3088 break; 3089 case MVT::v4f64: 3090 RC = &PPC::QFRCRegClass; 3091 break; 3092 case MVT::v4i1: 3093 RC = &PPC::QBRCRegClass; 3094 break; 3095 } 3096 3097 // Transform the arguments stored in physical registers into virtual ones. 3098 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3099 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3100 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3101 3102 if (ValVT == MVT::i1) 3103 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3104 3105 InVals.push_back(ArgValue); 3106 } else { 3107 // Argument stored in memory. 3108 assert(VA.isMemLoc()); 3109 3110 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3111 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3112 isImmutable); 3113 3114 // Create load nodes to retrieve arguments from the stack. 3115 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3116 InVals.push_back( 3117 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3118 } 3119 } 3120 3121 // Assign locations to all of the incoming aggregate by value arguments. 3122 // Aggregates passed by value are stored in the local variable space of the 3123 // caller's stack frame, right above the parameter list area. 3124 SmallVector<CCValAssign, 16> ByValArgLocs; 3125 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3126 ByValArgLocs, *DAG.getContext()); 3127 3128 // Reserve stack space for the allocations in CCInfo. 3129 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3130 3131 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3132 3133 // Area that is at least reserved in the caller of this function. 3134 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3135 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3136 3137 // Set the size that is at least reserved in caller of this function. Tail 3138 // call optimized function's reserved stack space needs to be aligned so that 3139 // taking the difference between two stack areas will result in an aligned 3140 // stack. 3141 MinReservedArea = 3142 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3143 FuncInfo->setMinReservedArea(MinReservedArea); 3144 3145 SmallVector<SDValue, 8> MemOps; 3146 3147 // If the function takes variable number of arguments, make a frame index for 3148 // the start of the first vararg value... for expansion of llvm.va_start. 3149 if (isVarArg) { 3150 static const MCPhysReg GPArgRegs[] = { 3151 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3152 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3153 }; 3154 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3155 3156 static const MCPhysReg FPArgRegs[] = { 3157 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3158 PPC::F8 3159 }; 3160 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3161 3162 if (useSoftFloat()) 3163 NumFPArgRegs = 0; 3164 3165 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3166 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3167 3168 // Make room for NumGPArgRegs and NumFPArgRegs. 3169 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3170 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3171 3172 FuncInfo->setVarArgsStackOffset( 3173 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3174 CCInfo.getNextStackOffset(), true)); 3175 3176 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3177 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3178 3179 // The fixed integer arguments of a variadic function are stored to the 3180 // VarArgsFrameIndex on the stack so that they may be loaded by 3181 // dereferencing the result of va_next. 3182 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3183 // Get an existing live-in vreg, or add a new one. 3184 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3185 if (!VReg) 3186 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3187 3188 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3189 SDValue Store = 3190 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3191 MemOps.push_back(Store); 3192 // Increment the address by four for the next argument to store 3193 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3194 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3195 } 3196 3197 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3198 // is set. 3199 // The double arguments are stored to the VarArgsFrameIndex 3200 // on the stack. 3201 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3202 // Get an existing live-in vreg, or add a new one. 3203 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3204 if (!VReg) 3205 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3206 3207 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3208 SDValue Store = 3209 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3210 MemOps.push_back(Store); 3211 // Increment the address by eight for the next argument to store 3212 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3213 PtrVT); 3214 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3215 } 3216 } 3217 3218 if (!MemOps.empty()) 3219 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3220 3221 return Chain; 3222 } 3223 3224 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3225 // value to MVT::i64 and then truncate to the correct register size. 3226 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3227 EVT ObjectVT, SelectionDAG &DAG, 3228 SDValue ArgVal, 3229 const SDLoc &dl) const { 3230 if (Flags.isSExt()) 3231 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3232 DAG.getValueType(ObjectVT)); 3233 else if (Flags.isZExt()) 3234 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3235 DAG.getValueType(ObjectVT)); 3236 3237 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3238 } 3239 3240 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3241 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3242 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3243 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3244 // TODO: add description of PPC stack frame format, or at least some docs. 3245 // 3246 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3247 bool isLittleEndian = Subtarget.isLittleEndian(); 3248 MachineFunction &MF = DAG.getMachineFunction(); 3249 MachineFrameInfo &MFI = MF.getFrameInfo(); 3250 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3251 3252 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3253 "fastcc not supported on varargs functions"); 3254 3255 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3256 // Potential tail calls could cause overwriting of argument stack slots. 3257 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3258 (CallConv == CallingConv::Fast)); 3259 unsigned PtrByteSize = 8; 3260 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3261 3262 static const MCPhysReg GPR[] = { 3263 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3264 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3265 }; 3266 static const MCPhysReg VR[] = { 3267 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3268 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3269 }; 3270 3271 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3272 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3273 const unsigned Num_VR_Regs = array_lengthof(VR); 3274 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3275 3276 // Do a first pass over the arguments to determine whether the ABI 3277 // guarantees that our caller has allocated the parameter save area 3278 // on its stack frame. In the ELFv1 ABI, this is always the case; 3279 // in the ELFv2 ABI, it is true if this is a vararg function or if 3280 // any parameter is located in a stack slot. 3281 3282 bool HasParameterArea = !isELFv2ABI || isVarArg; 3283 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3284 unsigned NumBytes = LinkageSize; 3285 unsigned AvailableFPRs = Num_FPR_Regs; 3286 unsigned AvailableVRs = Num_VR_Regs; 3287 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3288 if (Ins[i].Flags.isNest()) 3289 continue; 3290 3291 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3292 PtrByteSize, LinkageSize, ParamAreaSize, 3293 NumBytes, AvailableFPRs, AvailableVRs, 3294 Subtarget.hasQPX())) 3295 HasParameterArea = true; 3296 } 3297 3298 // Add DAG nodes to load the arguments or copy them out of registers. On 3299 // entry to a function on PPC, the arguments start after the linkage area, 3300 // although the first ones are often in registers. 3301 3302 unsigned ArgOffset = LinkageSize; 3303 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3304 unsigned &QFPR_idx = FPR_idx; 3305 SmallVector<SDValue, 8> MemOps; 3306 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3307 unsigned CurArgIdx = 0; 3308 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3309 SDValue ArgVal; 3310 bool needsLoad = false; 3311 EVT ObjectVT = Ins[ArgNo].VT; 3312 EVT OrigVT = Ins[ArgNo].ArgVT; 3313 unsigned ObjSize = ObjectVT.getStoreSize(); 3314 unsigned ArgSize = ObjSize; 3315 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3316 if (Ins[ArgNo].isOrigArg()) { 3317 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3318 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3319 } 3320 // We re-align the argument offset for each argument, except when using the 3321 // fast calling convention, when we need to make sure we do that only when 3322 // we'll actually use a stack slot. 3323 unsigned CurArgOffset, Align; 3324 auto ComputeArgOffset = [&]() { 3325 /* Respect alignment of argument on the stack. */ 3326 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3327 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3328 CurArgOffset = ArgOffset; 3329 }; 3330 3331 if (CallConv != CallingConv::Fast) { 3332 ComputeArgOffset(); 3333 3334 /* Compute GPR index associated with argument offset. */ 3335 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3336 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3337 } 3338 3339 // FIXME the codegen can be much improved in some cases. 3340 // We do not have to keep everything in memory. 3341 if (Flags.isByVal()) { 3342 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3343 3344 if (CallConv == CallingConv::Fast) 3345 ComputeArgOffset(); 3346 3347 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3348 ObjSize = Flags.getByValSize(); 3349 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3350 // Empty aggregate parameters do not take up registers. Examples: 3351 // struct { } a; 3352 // union { } b; 3353 // int c[0]; 3354 // etc. However, we have to provide a place-holder in InVals, so 3355 // pretend we have an 8-byte item at the current address for that 3356 // purpose. 3357 if (!ObjSize) { 3358 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3359 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3360 InVals.push_back(FIN); 3361 continue; 3362 } 3363 3364 // Create a stack object covering all stack doublewords occupied 3365 // by the argument. If the argument is (fully or partially) on 3366 // the stack, or if the argument is fully in registers but the 3367 // caller has allocated the parameter save anyway, we can refer 3368 // directly to the caller's stack frame. Otherwise, create a 3369 // local copy in our own frame. 3370 int FI; 3371 if (HasParameterArea || 3372 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3373 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3374 else 3375 FI = MFI.CreateStackObject(ArgSize, Align, false); 3376 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3377 3378 // Handle aggregates smaller than 8 bytes. 3379 if (ObjSize < PtrByteSize) { 3380 // The value of the object is its address, which differs from the 3381 // address of the enclosing doubleword on big-endian systems. 3382 SDValue Arg = FIN; 3383 if (!isLittleEndian) { 3384 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3385 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3386 } 3387 InVals.push_back(Arg); 3388 3389 if (GPR_idx != Num_GPR_Regs) { 3390 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3391 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3392 SDValue Store; 3393 3394 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3395 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3396 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3397 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3398 MachinePointerInfo(&*FuncArg), ObjType); 3399 } else { 3400 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3401 // store the whole register as-is to the parameter save area 3402 // slot. 3403 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3404 MachinePointerInfo(&*FuncArg)); 3405 } 3406 3407 MemOps.push_back(Store); 3408 } 3409 // Whether we copied from a register or not, advance the offset 3410 // into the parameter save area by a full doubleword. 3411 ArgOffset += PtrByteSize; 3412 continue; 3413 } 3414 3415 // The value of the object is its address, which is the address of 3416 // its first stack doubleword. 3417 InVals.push_back(FIN); 3418 3419 // Store whatever pieces of the object are in registers to memory. 3420 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3421 if (GPR_idx == Num_GPR_Regs) 3422 break; 3423 3424 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3425 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3426 SDValue Addr = FIN; 3427 if (j) { 3428 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3429 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3430 } 3431 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3432 MachinePointerInfo(&*FuncArg, j)); 3433 MemOps.push_back(Store); 3434 ++GPR_idx; 3435 } 3436 ArgOffset += ArgSize; 3437 continue; 3438 } 3439 3440 switch (ObjectVT.getSimpleVT().SimpleTy) { 3441 default: llvm_unreachable("Unhandled argument type!"); 3442 case MVT::i1: 3443 case MVT::i32: 3444 case MVT::i64: 3445 if (Flags.isNest()) { 3446 // The 'nest' parameter, if any, is passed in R11. 3447 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3448 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3449 3450 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3451 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3452 3453 break; 3454 } 3455 3456 // These can be scalar arguments or elements of an integer array type 3457 // passed directly. Clang may use those instead of "byval" aggregate 3458 // types to avoid forcing arguments to memory unnecessarily. 3459 if (GPR_idx != Num_GPR_Regs) { 3460 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3461 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3462 3463 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3464 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3465 // value to MVT::i64 and then truncate to the correct register size. 3466 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3467 } else { 3468 if (CallConv == CallingConv::Fast) 3469 ComputeArgOffset(); 3470 3471 needsLoad = true; 3472 ArgSize = PtrByteSize; 3473 } 3474 if (CallConv != CallingConv::Fast || needsLoad) 3475 ArgOffset += 8; 3476 break; 3477 3478 case MVT::f32: 3479 case MVT::f64: 3480 // These can be scalar arguments or elements of a float array type 3481 // passed directly. The latter are used to implement ELFv2 homogenous 3482 // float aggregates. 3483 if (FPR_idx != Num_FPR_Regs) { 3484 unsigned VReg; 3485 3486 if (ObjectVT == MVT::f32) 3487 VReg = MF.addLiveIn(FPR[FPR_idx], 3488 Subtarget.hasP8Vector() 3489 ? &PPC::VSSRCRegClass 3490 : &PPC::F4RCRegClass); 3491 else 3492 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3493 ? &PPC::VSFRCRegClass 3494 : &PPC::F8RCRegClass); 3495 3496 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3497 ++FPR_idx; 3498 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3499 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3500 // once we support fp <-> gpr moves. 3501 3502 // This can only ever happen in the presence of f32 array types, 3503 // since otherwise we never run out of FPRs before running out 3504 // of GPRs. 3505 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3506 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3507 3508 if (ObjectVT == MVT::f32) { 3509 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3510 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3511 DAG.getConstant(32, dl, MVT::i32)); 3512 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3513 } 3514 3515 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3516 } else { 3517 if (CallConv == CallingConv::Fast) 3518 ComputeArgOffset(); 3519 3520 needsLoad = true; 3521 } 3522 3523 // When passing an array of floats, the array occupies consecutive 3524 // space in the argument area; only round up to the next doubleword 3525 // at the end of the array. Otherwise, each float takes 8 bytes. 3526 if (CallConv != CallingConv::Fast || needsLoad) { 3527 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3528 ArgOffset += ArgSize; 3529 if (Flags.isInConsecutiveRegsLast()) 3530 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3531 } 3532 break; 3533 case MVT::v4f32: 3534 case MVT::v4i32: 3535 case MVT::v8i16: 3536 case MVT::v16i8: 3537 case MVT::v2f64: 3538 case MVT::v2i64: 3539 case MVT::v1i128: 3540 if (!Subtarget.hasQPX()) { 3541 // These can be scalar arguments or elements of a vector array type 3542 // passed directly. The latter are used to implement ELFv2 homogenous 3543 // vector aggregates. 3544 if (VR_idx != Num_VR_Regs) { 3545 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3546 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3547 ++VR_idx; 3548 } else { 3549 if (CallConv == CallingConv::Fast) 3550 ComputeArgOffset(); 3551 3552 needsLoad = true; 3553 } 3554 if (CallConv != CallingConv::Fast || needsLoad) 3555 ArgOffset += 16; 3556 break; 3557 } // not QPX 3558 3559 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3560 "Invalid QPX parameter type"); 3561 /* fall through */ 3562 3563 case MVT::v4f64: 3564 case MVT::v4i1: 3565 // QPX vectors are treated like their scalar floating-point subregisters 3566 // (except that they're larger). 3567 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3568 if (QFPR_idx != Num_QFPR_Regs) { 3569 const TargetRegisterClass *RC; 3570 switch (ObjectVT.getSimpleVT().SimpleTy) { 3571 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3572 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3573 default: RC = &PPC::QBRCRegClass; break; 3574 } 3575 3576 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3577 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3578 ++QFPR_idx; 3579 } else { 3580 if (CallConv == CallingConv::Fast) 3581 ComputeArgOffset(); 3582 needsLoad = true; 3583 } 3584 if (CallConv != CallingConv::Fast || needsLoad) 3585 ArgOffset += Sz; 3586 break; 3587 } 3588 3589 // We need to load the argument to a virtual register if we determined 3590 // above that we ran out of physical registers of the appropriate type. 3591 if (needsLoad) { 3592 if (ObjSize < ArgSize && !isLittleEndian) 3593 CurArgOffset += ArgSize - ObjSize; 3594 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3595 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3596 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3597 } 3598 3599 InVals.push_back(ArgVal); 3600 } 3601 3602 // Area that is at least reserved in the caller of this function. 3603 unsigned MinReservedArea; 3604 if (HasParameterArea) 3605 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3606 else 3607 MinReservedArea = LinkageSize; 3608 3609 // Set the size that is at least reserved in caller of this function. Tail 3610 // call optimized functions' reserved stack space needs to be aligned so that 3611 // taking the difference between two stack areas will result in an aligned 3612 // stack. 3613 MinReservedArea = 3614 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3615 FuncInfo->setMinReservedArea(MinReservedArea); 3616 3617 // If the function takes variable number of arguments, make a frame index for 3618 // the start of the first vararg value... for expansion of llvm.va_start. 3619 if (isVarArg) { 3620 int Depth = ArgOffset; 3621 3622 FuncInfo->setVarArgsFrameIndex( 3623 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3624 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3625 3626 // If this function is vararg, store any remaining integer argument regs 3627 // to their spots on the stack so that they may be loaded by dereferencing 3628 // the result of va_next. 3629 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3630 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3631 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3632 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3633 SDValue Store = 3634 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3635 MemOps.push_back(Store); 3636 // Increment the address by four for the next argument to store 3637 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3638 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3639 } 3640 } 3641 3642 if (!MemOps.empty()) 3643 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3644 3645 return Chain; 3646 } 3647 3648 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3649 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3650 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3651 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3652 // TODO: add description of PPC stack frame format, or at least some docs. 3653 // 3654 MachineFunction &MF = DAG.getMachineFunction(); 3655 MachineFrameInfo &MFI = MF.getFrameInfo(); 3656 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3657 3658 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3659 bool isPPC64 = PtrVT == MVT::i64; 3660 // Potential tail calls could cause overwriting of argument stack slots. 3661 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3662 (CallConv == CallingConv::Fast)); 3663 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3664 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3665 unsigned ArgOffset = LinkageSize; 3666 // Area that is at least reserved in caller of this function. 3667 unsigned MinReservedArea = ArgOffset; 3668 3669 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3670 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3671 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3672 }; 3673 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3674 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3675 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3676 }; 3677 static const MCPhysReg VR[] = { 3678 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3679 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3680 }; 3681 3682 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3683 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3684 const unsigned Num_VR_Regs = array_lengthof( VR); 3685 3686 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3687 3688 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3689 3690 // In 32-bit non-varargs functions, the stack space for vectors is after the 3691 // stack space for non-vectors. We do not use this space unless we have 3692 // too many vectors to fit in registers, something that only occurs in 3693 // constructed examples:), but we have to walk the arglist to figure 3694 // that out...for the pathological case, compute VecArgOffset as the 3695 // start of the vector parameter area. Computing VecArgOffset is the 3696 // entire point of the following loop. 3697 unsigned VecArgOffset = ArgOffset; 3698 if (!isVarArg && !isPPC64) { 3699 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3700 ++ArgNo) { 3701 EVT ObjectVT = Ins[ArgNo].VT; 3702 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3703 3704 if (Flags.isByVal()) { 3705 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3706 unsigned ObjSize = Flags.getByValSize(); 3707 unsigned ArgSize = 3708 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3709 VecArgOffset += ArgSize; 3710 continue; 3711 } 3712 3713 switch(ObjectVT.getSimpleVT().SimpleTy) { 3714 default: llvm_unreachable("Unhandled argument type!"); 3715 case MVT::i1: 3716 case MVT::i32: 3717 case MVT::f32: 3718 VecArgOffset += 4; 3719 break; 3720 case MVT::i64: // PPC64 3721 case MVT::f64: 3722 // FIXME: We are guaranteed to be !isPPC64 at this point. 3723 // Does MVT::i64 apply? 3724 VecArgOffset += 8; 3725 break; 3726 case MVT::v4f32: 3727 case MVT::v4i32: 3728 case MVT::v8i16: 3729 case MVT::v16i8: 3730 // Nothing to do, we're only looking at Nonvector args here. 3731 break; 3732 } 3733 } 3734 } 3735 // We've found where the vector parameter area in memory is. Skip the 3736 // first 12 parameters; these don't use that memory. 3737 VecArgOffset = ((VecArgOffset+15)/16)*16; 3738 VecArgOffset += 12*16; 3739 3740 // Add DAG nodes to load the arguments or copy them out of registers. On 3741 // entry to a function on PPC, the arguments start after the linkage area, 3742 // although the first ones are often in registers. 3743 3744 SmallVector<SDValue, 8> MemOps; 3745 unsigned nAltivecParamsAtEnd = 0; 3746 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3747 unsigned CurArgIdx = 0; 3748 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3749 SDValue ArgVal; 3750 bool needsLoad = false; 3751 EVT ObjectVT = Ins[ArgNo].VT; 3752 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3753 unsigned ArgSize = ObjSize; 3754 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3755 if (Ins[ArgNo].isOrigArg()) { 3756 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3757 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3758 } 3759 unsigned CurArgOffset = ArgOffset; 3760 3761 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3762 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3763 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3764 if (isVarArg || isPPC64) { 3765 MinReservedArea = ((MinReservedArea+15)/16)*16; 3766 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3767 Flags, 3768 PtrByteSize); 3769 } else nAltivecParamsAtEnd++; 3770 } else 3771 // Calculate min reserved area. 3772 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3773 Flags, 3774 PtrByteSize); 3775 3776 // FIXME the codegen can be much improved in some cases. 3777 // We do not have to keep everything in memory. 3778 if (Flags.isByVal()) { 3779 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3780 3781 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3782 ObjSize = Flags.getByValSize(); 3783 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3784 // Objects of size 1 and 2 are right justified, everything else is 3785 // left justified. This means the memory address is adjusted forwards. 3786 if (ObjSize==1 || ObjSize==2) { 3787 CurArgOffset = CurArgOffset + (4 - ObjSize); 3788 } 3789 // The value of the object is its address. 3790 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 3791 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3792 InVals.push_back(FIN); 3793 if (ObjSize==1 || ObjSize==2) { 3794 if (GPR_idx != Num_GPR_Regs) { 3795 unsigned VReg; 3796 if (isPPC64) 3797 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3798 else 3799 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3800 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3801 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3802 SDValue Store = 3803 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3804 MachinePointerInfo(&*FuncArg), ObjType); 3805 MemOps.push_back(Store); 3806 ++GPR_idx; 3807 } 3808 3809 ArgOffset += PtrByteSize; 3810 3811 continue; 3812 } 3813 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3814 // Store whatever pieces of the object are in registers 3815 // to memory. ArgOffset will be the address of the beginning 3816 // of the object. 3817 if (GPR_idx != Num_GPR_Regs) { 3818 unsigned VReg; 3819 if (isPPC64) 3820 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3821 else 3822 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3823 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3824 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3825 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3826 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3827 MachinePointerInfo(&*FuncArg, j)); 3828 MemOps.push_back(Store); 3829 ++GPR_idx; 3830 ArgOffset += PtrByteSize; 3831 } else { 3832 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3833 break; 3834 } 3835 } 3836 continue; 3837 } 3838 3839 switch (ObjectVT.getSimpleVT().SimpleTy) { 3840 default: llvm_unreachable("Unhandled argument type!"); 3841 case MVT::i1: 3842 case MVT::i32: 3843 if (!isPPC64) { 3844 if (GPR_idx != Num_GPR_Regs) { 3845 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3846 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3847 3848 if (ObjectVT == MVT::i1) 3849 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3850 3851 ++GPR_idx; 3852 } else { 3853 needsLoad = true; 3854 ArgSize = PtrByteSize; 3855 } 3856 // All int arguments reserve stack space in the Darwin ABI. 3857 ArgOffset += PtrByteSize; 3858 break; 3859 } 3860 LLVM_FALLTHROUGH; 3861 case MVT::i64: // PPC64 3862 if (GPR_idx != Num_GPR_Regs) { 3863 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3864 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3865 3866 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3867 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3868 // value to MVT::i64 and then truncate to the correct register size. 3869 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3870 3871 ++GPR_idx; 3872 } else { 3873 needsLoad = true; 3874 ArgSize = PtrByteSize; 3875 } 3876 // All int arguments reserve stack space in the Darwin ABI. 3877 ArgOffset += 8; 3878 break; 3879 3880 case MVT::f32: 3881 case MVT::f64: 3882 // Every 4 bytes of argument space consumes one of the GPRs available for 3883 // argument passing. 3884 if (GPR_idx != Num_GPR_Regs) { 3885 ++GPR_idx; 3886 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3887 ++GPR_idx; 3888 } 3889 if (FPR_idx != Num_FPR_Regs) { 3890 unsigned VReg; 3891 3892 if (ObjectVT == MVT::f32) 3893 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3894 else 3895 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3896 3897 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3898 ++FPR_idx; 3899 } else { 3900 needsLoad = true; 3901 } 3902 3903 // All FP arguments reserve stack space in the Darwin ABI. 3904 ArgOffset += isPPC64 ? 8 : ObjSize; 3905 break; 3906 case MVT::v4f32: 3907 case MVT::v4i32: 3908 case MVT::v8i16: 3909 case MVT::v16i8: 3910 // Note that vector arguments in registers don't reserve stack space, 3911 // except in varargs functions. 3912 if (VR_idx != Num_VR_Regs) { 3913 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3914 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3915 if (isVarArg) { 3916 while ((ArgOffset % 16) != 0) { 3917 ArgOffset += PtrByteSize; 3918 if (GPR_idx != Num_GPR_Regs) 3919 GPR_idx++; 3920 } 3921 ArgOffset += 16; 3922 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3923 } 3924 ++VR_idx; 3925 } else { 3926 if (!isVarArg && !isPPC64) { 3927 // Vectors go after all the nonvectors. 3928 CurArgOffset = VecArgOffset; 3929 VecArgOffset += 16; 3930 } else { 3931 // Vectors are aligned. 3932 ArgOffset = ((ArgOffset+15)/16)*16; 3933 CurArgOffset = ArgOffset; 3934 ArgOffset += 16; 3935 } 3936 needsLoad = true; 3937 } 3938 break; 3939 } 3940 3941 // We need to load the argument to a virtual register if we determined above 3942 // that we ran out of physical registers of the appropriate type. 3943 if (needsLoad) { 3944 int FI = MFI.CreateFixedObject(ObjSize, 3945 CurArgOffset + (ArgSize - ObjSize), 3946 isImmutable); 3947 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3948 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3949 } 3950 3951 InVals.push_back(ArgVal); 3952 } 3953 3954 // Allow for Altivec parameters at the end, if needed. 3955 if (nAltivecParamsAtEnd) { 3956 MinReservedArea = ((MinReservedArea+15)/16)*16; 3957 MinReservedArea += 16*nAltivecParamsAtEnd; 3958 } 3959 3960 // Area that is at least reserved in the caller of this function. 3961 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3962 3963 // Set the size that is at least reserved in caller of this function. Tail 3964 // call optimized functions' reserved stack space needs to be aligned so that 3965 // taking the difference between two stack areas will result in an aligned 3966 // stack. 3967 MinReservedArea = 3968 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3969 FuncInfo->setMinReservedArea(MinReservedArea); 3970 3971 // If the function takes variable number of arguments, make a frame index for 3972 // the start of the first vararg value... for expansion of llvm.va_start. 3973 if (isVarArg) { 3974 int Depth = ArgOffset; 3975 3976 FuncInfo->setVarArgsFrameIndex( 3977 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3978 Depth, true)); 3979 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3980 3981 // If this function is vararg, store any remaining integer argument regs 3982 // to their spots on the stack so that they may be loaded by dereferencing 3983 // the result of va_next. 3984 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3985 unsigned VReg; 3986 3987 if (isPPC64) 3988 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3989 else 3990 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3991 3992 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3993 SDValue Store = 3994 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3995 MemOps.push_back(Store); 3996 // Increment the address by four for the next argument to store 3997 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3998 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3999 } 4000 } 4001 4002 if (!MemOps.empty()) 4003 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4004 4005 return Chain; 4006 } 4007 4008 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4009 /// adjusted to accommodate the arguments for the tailcall. 4010 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4011 unsigned ParamSize) { 4012 4013 if (!isTailCall) return 0; 4014 4015 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4016 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4017 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4018 // Remember only if the new adjustement is bigger. 4019 if (SPDiff < FI->getTailCallSPDelta()) 4020 FI->setTailCallSPDelta(SPDiff); 4021 4022 return SPDiff; 4023 } 4024 4025 static bool isFunctionGlobalAddress(SDValue Callee); 4026 4027 static bool 4028 resideInSameSection(const Function *Caller, SDValue Callee, 4029 const TargetMachine &TM) { 4030 // If !G, Callee can be an external symbol. 4031 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4032 if (!G) 4033 return false; 4034 4035 const GlobalValue *GV = G->getGlobal(); 4036 if (!GV->isStrongDefinitionForLinker()) 4037 return false; 4038 4039 // Any explicitly-specified sections and section prefixes must also match. 4040 // Also, if we're using -ffunction-sections, then each function is always in 4041 // a different section (the same is true for COMDAT functions). 4042 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4043 GV->getSection() != Caller->getSection()) 4044 return false; 4045 if (const auto *F = dyn_cast<Function>(GV)) { 4046 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4047 return false; 4048 } 4049 4050 // If the callee might be interposed, then we can't assume the ultimate call 4051 // target will be in the same section. Even in cases where we can assume that 4052 // interposition won't happen, in any case where the linker might insert a 4053 // stub to allow for interposition, we must generate code as though 4054 // interposition might occur. To understand why this matters, consider a 4055 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4056 // in the same section, but a is in a different module (i.e. has a different 4057 // TOC base pointer). If the linker allows for interposition between b and c, 4058 // then it will generate a stub for the call edge between b and c which will 4059 // save the TOC pointer into the designated stack slot allocated by b. If we 4060 // return true here, and therefore allow a tail call between b and c, that 4061 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4062 // pointer into the stack slot allocated by a (where the a -> b stub saved 4063 // a's TOC base pointer). If we're not considering a tail call, but rather, 4064 // whether a nop is needed after the call instruction in b, because the linker 4065 // will insert a stub, it might complain about a missing nop if we omit it 4066 // (although many don't complain in this case). 4067 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4068 return false; 4069 4070 return true; 4071 } 4072 4073 static bool 4074 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4075 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4076 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4077 4078 const unsigned PtrByteSize = 8; 4079 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4080 4081 static const MCPhysReg GPR[] = { 4082 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4083 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4084 }; 4085 static const MCPhysReg VR[] = { 4086 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4087 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4088 }; 4089 4090 const unsigned NumGPRs = array_lengthof(GPR); 4091 const unsigned NumFPRs = 13; 4092 const unsigned NumVRs = array_lengthof(VR); 4093 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4094 4095 unsigned NumBytes = LinkageSize; 4096 unsigned AvailableFPRs = NumFPRs; 4097 unsigned AvailableVRs = NumVRs; 4098 4099 for (const ISD::OutputArg& Param : Outs) { 4100 if (Param.Flags.isNest()) continue; 4101 4102 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4103 PtrByteSize, LinkageSize, ParamAreaSize, 4104 NumBytes, AvailableFPRs, AvailableVRs, 4105 Subtarget.hasQPX())) 4106 return true; 4107 } 4108 return false; 4109 } 4110 4111 static bool 4112 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 4113 if (CS->arg_size() != CallerFn->arg_size()) 4114 return false; 4115 4116 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 4117 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 4118 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4119 4120 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4121 const Value* CalleeArg = *CalleeArgIter; 4122 const Value* CallerArg = &(*CallerArgIter); 4123 if (CalleeArg == CallerArg) 4124 continue; 4125 4126 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4127 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4128 // } 4129 // 1st argument of callee is undef and has the same type as caller. 4130 if (CalleeArg->getType() == CallerArg->getType() && 4131 isa<UndefValue>(CalleeArg)) 4132 continue; 4133 4134 return false; 4135 } 4136 4137 return true; 4138 } 4139 4140 bool 4141 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4142 SDValue Callee, 4143 CallingConv::ID CalleeCC, 4144 ImmutableCallSite *CS, 4145 bool isVarArg, 4146 const SmallVectorImpl<ISD::OutputArg> &Outs, 4147 const SmallVectorImpl<ISD::InputArg> &Ins, 4148 SelectionDAG& DAG) const { 4149 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4150 4151 if (DisableSCO && !TailCallOpt) return false; 4152 4153 // Variadic argument functions are not supported. 4154 if (isVarArg) return false; 4155 4156 MachineFunction &MF = DAG.getMachineFunction(); 4157 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4158 4159 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 4160 // the same calling convention 4161 if (CallerCC != CalleeCC) return false; 4162 4163 // SCO support C calling convention 4164 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 4165 return false; 4166 4167 // Caller contains any byval parameter is not supported. 4168 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4169 return false; 4170 4171 // Callee contains any byval parameter is not supported, too. 4172 // Note: This is a quick work around, because in some cases, e.g. 4173 // caller's stack size > callee's stack size, we are still able to apply 4174 // sibling call optimization. See: https://reviews.llvm.org/D23441#513574 4175 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4176 return false; 4177 4178 // No TCO/SCO on indirect call because Caller have to restore its TOC 4179 if (!isFunctionGlobalAddress(Callee) && 4180 !isa<ExternalSymbolSDNode>(Callee)) 4181 return false; 4182 4183 // Check if Callee resides in the same section, because for now, PPC64 SVR4 4184 // ABI (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4185 // section. 4186 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4187 if (!resideInSameSection(MF.getFunction(), Callee, getTargetMachine())) 4188 return false; 4189 4190 // TCO allows altering callee ABI, so we don't have to check further. 4191 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4192 return true; 4193 4194 if (DisableSCO) return false; 4195 4196 // If callee use the same argument list that caller is using, then we can 4197 // apply SCO on this case. If it is not, then we need to check if callee needs 4198 // stack for passing arguments. 4199 if (!hasSameArgumentList(MF.getFunction(), CS) && 4200 needStackSlotPassParameters(Subtarget, Outs)) { 4201 return false; 4202 } 4203 4204 return true; 4205 } 4206 4207 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4208 /// for tail call optimization. Targets which want to do tail call 4209 /// optimization should implement this function. 4210 bool 4211 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4212 CallingConv::ID CalleeCC, 4213 bool isVarArg, 4214 const SmallVectorImpl<ISD::InputArg> &Ins, 4215 SelectionDAG& DAG) const { 4216 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4217 return false; 4218 4219 // Variable argument functions are not supported. 4220 if (isVarArg) 4221 return false; 4222 4223 MachineFunction &MF = DAG.getMachineFunction(); 4224 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4225 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4226 // Functions containing by val parameters are not supported. 4227 for (unsigned i = 0; i != Ins.size(); i++) { 4228 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4229 if (Flags.isByVal()) return false; 4230 } 4231 4232 // Non-PIC/GOT tail calls are supported. 4233 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4234 return true; 4235 4236 // At the moment we can only do local tail calls (in same module, hidden 4237 // or protected) if we are generating PIC. 4238 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4239 return G->getGlobal()->hasHiddenVisibility() 4240 || G->getGlobal()->hasProtectedVisibility(); 4241 } 4242 4243 return false; 4244 } 4245 4246 /// isCallCompatibleAddress - Return the immediate to use if the specified 4247 /// 32-bit value is representable in the immediate field of a BxA instruction. 4248 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4249 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4250 if (!C) return nullptr; 4251 4252 int Addr = C->getZExtValue(); 4253 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4254 SignExtend32<26>(Addr) != Addr) 4255 return nullptr; // Top 6 bits have to be sext of immediate. 4256 4257 return DAG 4258 .getConstant( 4259 (int)C->getZExtValue() >> 2, SDLoc(Op), 4260 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4261 .getNode(); 4262 } 4263 4264 namespace { 4265 4266 struct TailCallArgumentInfo { 4267 SDValue Arg; 4268 SDValue FrameIdxOp; 4269 int FrameIdx = 0; 4270 4271 TailCallArgumentInfo() = default; 4272 }; 4273 4274 } // end anonymous namespace 4275 4276 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4277 static void StoreTailCallArgumentsToStackSlot( 4278 SelectionDAG &DAG, SDValue Chain, 4279 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4280 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4281 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4282 SDValue Arg = TailCallArgs[i].Arg; 4283 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4284 int FI = TailCallArgs[i].FrameIdx; 4285 // Store relative to framepointer. 4286 MemOpChains.push_back(DAG.getStore( 4287 Chain, dl, Arg, FIN, 4288 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4289 } 4290 } 4291 4292 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4293 /// the appropriate stack slot for the tail call optimized function call. 4294 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4295 SDValue OldRetAddr, SDValue OldFP, 4296 int SPDiff, const SDLoc &dl) { 4297 if (SPDiff) { 4298 // Calculate the new stack slot for the return address. 4299 MachineFunction &MF = DAG.getMachineFunction(); 4300 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4301 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4302 bool isPPC64 = Subtarget.isPPC64(); 4303 int SlotSize = isPPC64 ? 8 : 4; 4304 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4305 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4306 NewRetAddrLoc, true); 4307 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4308 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4309 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4310 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4311 4312 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4313 // slot as the FP is never overwritten. 4314 if (Subtarget.isDarwinABI()) { 4315 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4316 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4317 true); 4318 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4319 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4320 MachinePointerInfo::getFixedStack( 4321 DAG.getMachineFunction(), NewFPIdx)); 4322 } 4323 } 4324 return Chain; 4325 } 4326 4327 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4328 /// the position of the argument. 4329 static void 4330 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4331 SDValue Arg, int SPDiff, unsigned ArgOffset, 4332 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4333 int Offset = ArgOffset + SPDiff; 4334 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4335 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4336 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4337 SDValue FIN = DAG.getFrameIndex(FI, VT); 4338 TailCallArgumentInfo Info; 4339 Info.Arg = Arg; 4340 Info.FrameIdxOp = FIN; 4341 Info.FrameIdx = FI; 4342 TailCallArguments.push_back(Info); 4343 } 4344 4345 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4346 /// stack slot. Returns the chain as result and the loaded frame pointers in 4347 /// LROpOut/FPOpout. Used when tail calling. 4348 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4349 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4350 SDValue &FPOpOut, const SDLoc &dl) const { 4351 if (SPDiff) { 4352 // Load the LR and FP stack slot for later adjusting. 4353 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4354 LROpOut = getReturnAddrFrameIndex(DAG); 4355 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4356 Chain = SDValue(LROpOut.getNode(), 1); 4357 4358 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4359 // slot as the FP is never overwritten. 4360 if (Subtarget.isDarwinABI()) { 4361 FPOpOut = getFramePointerFrameIndex(DAG); 4362 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4363 Chain = SDValue(FPOpOut.getNode(), 1); 4364 } 4365 } 4366 return Chain; 4367 } 4368 4369 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4370 /// by "Src" to address "Dst" of size "Size". Alignment information is 4371 /// specified by the specific parameter attribute. The copy will be passed as 4372 /// a byval function parameter. 4373 /// Sometimes what we are copying is the end of a larger object, the part that 4374 /// does not fit in registers. 4375 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4376 SDValue Chain, ISD::ArgFlagsTy Flags, 4377 SelectionDAG &DAG, const SDLoc &dl) { 4378 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4379 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4380 false, false, false, MachinePointerInfo(), 4381 MachinePointerInfo()); 4382 } 4383 4384 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4385 /// tail calls. 4386 static void LowerMemOpCallTo( 4387 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4388 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4389 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4390 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4391 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4392 if (!isTailCall) { 4393 if (isVector) { 4394 SDValue StackPtr; 4395 if (isPPC64) 4396 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4397 else 4398 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4399 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4400 DAG.getConstant(ArgOffset, dl, PtrVT)); 4401 } 4402 MemOpChains.push_back( 4403 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4404 // Calculate and remember argument location. 4405 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4406 TailCallArguments); 4407 } 4408 4409 static void 4410 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4411 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4412 SDValue FPOp, 4413 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4414 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4415 // might overwrite each other in case of tail call optimization. 4416 SmallVector<SDValue, 8> MemOpChains2; 4417 // Do not flag preceding copytoreg stuff together with the following stuff. 4418 InFlag = SDValue(); 4419 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4420 MemOpChains2, dl); 4421 if (!MemOpChains2.empty()) 4422 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4423 4424 // Store the return address to the appropriate stack slot. 4425 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4426 4427 // Emit callseq_end just before tailcall node. 4428 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4429 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4430 InFlag = Chain.getValue(1); 4431 } 4432 4433 // Is this global address that of a function that can be called by name? (as 4434 // opposed to something that must hold a descriptor for an indirect call). 4435 static bool isFunctionGlobalAddress(SDValue Callee) { 4436 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4437 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4438 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4439 return false; 4440 4441 return G->getGlobal()->getValueType()->isFunctionTy(); 4442 } 4443 4444 return false; 4445 } 4446 4447 static unsigned 4448 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4449 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4450 bool isPatchPoint, bool hasNest, 4451 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4452 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4453 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4454 bool isPPC64 = Subtarget.isPPC64(); 4455 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4456 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4457 4458 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4459 NodeTys.push_back(MVT::Other); // Returns a chain 4460 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4461 4462 unsigned CallOpc = PPCISD::CALL; 4463 4464 bool needIndirectCall = true; 4465 if (!isSVR4ABI || !isPPC64) 4466 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4467 // If this is an absolute destination address, use the munged value. 4468 Callee = SDValue(Dest, 0); 4469 needIndirectCall = false; 4470 } 4471 4472 // PC-relative references to external symbols should go through $stub, unless 4473 // we're building with the leopard linker or later, which automatically 4474 // synthesizes these stubs. 4475 const TargetMachine &TM = DAG.getTarget(); 4476 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4477 const GlobalValue *GV = nullptr; 4478 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4479 GV = G->getGlobal(); 4480 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4481 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4482 4483 if (isFunctionGlobalAddress(Callee)) { 4484 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4485 // A call to a TLS address is actually an indirect call to a 4486 // thread-specific pointer. 4487 unsigned OpFlags = 0; 4488 if (UsePlt) 4489 OpFlags = PPCII::MO_PLT; 4490 4491 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4492 // every direct call is) turn it into a TargetGlobalAddress / 4493 // TargetExternalSymbol node so that legalize doesn't hack it. 4494 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4495 Callee.getValueType(), 0, OpFlags); 4496 needIndirectCall = false; 4497 } 4498 4499 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4500 unsigned char OpFlags = 0; 4501 4502 if (UsePlt) 4503 OpFlags = PPCII::MO_PLT; 4504 4505 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4506 OpFlags); 4507 needIndirectCall = false; 4508 } 4509 4510 if (isPatchPoint) { 4511 // We'll form an invalid direct call when lowering a patchpoint; the full 4512 // sequence for an indirect call is complicated, and many of the 4513 // instructions introduced might have side effects (and, thus, can't be 4514 // removed later). The call itself will be removed as soon as the 4515 // argument/return lowering is complete, so the fact that it has the wrong 4516 // kind of operands should not really matter. 4517 needIndirectCall = false; 4518 } 4519 4520 if (needIndirectCall) { 4521 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4522 // to do the call, we can't use PPCISD::CALL. 4523 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4524 4525 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4526 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4527 // entry point, but to the function descriptor (the function entry point 4528 // address is part of the function descriptor though). 4529 // The function descriptor is a three doubleword structure with the 4530 // following fields: function entry point, TOC base address and 4531 // environment pointer. 4532 // Thus for a call through a function pointer, the following actions need 4533 // to be performed: 4534 // 1. Save the TOC of the caller in the TOC save area of its stack 4535 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4536 // 2. Load the address of the function entry point from the function 4537 // descriptor. 4538 // 3. Load the TOC of the callee from the function descriptor into r2. 4539 // 4. Load the environment pointer from the function descriptor into 4540 // r11. 4541 // 5. Branch to the function entry point address. 4542 // 6. On return of the callee, the TOC of the caller needs to be 4543 // restored (this is done in FinishCall()). 4544 // 4545 // The loads are scheduled at the beginning of the call sequence, and the 4546 // register copies are flagged together to ensure that no other 4547 // operations can be scheduled in between. E.g. without flagging the 4548 // copies together, a TOC access in the caller could be scheduled between 4549 // the assignment of the callee TOC and the branch to the callee, which 4550 // results in the TOC access going through the TOC of the callee instead 4551 // of going through the TOC of the caller, which leads to incorrect code. 4552 4553 // Load the address of the function entry point from the function 4554 // descriptor. 4555 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4556 if (LDChain.getValueType() == MVT::Glue) 4557 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4558 4559 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4560 ? (MachineMemOperand::MODereferenceable | 4561 MachineMemOperand::MOInvariant) 4562 : MachineMemOperand::MONone; 4563 4564 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4565 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4566 /* Alignment = */ 8, MMOFlags); 4567 4568 // Load environment pointer into r11. 4569 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4570 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4571 SDValue LoadEnvPtr = 4572 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4573 /* Alignment = */ 8, MMOFlags); 4574 4575 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4576 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4577 SDValue TOCPtr = 4578 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4579 /* Alignment = */ 8, MMOFlags); 4580 4581 setUsesTOCBasePtr(DAG); 4582 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4583 InFlag); 4584 Chain = TOCVal.getValue(0); 4585 InFlag = TOCVal.getValue(1); 4586 4587 // If the function call has an explicit 'nest' parameter, it takes the 4588 // place of the environment pointer. 4589 if (!hasNest) { 4590 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4591 InFlag); 4592 4593 Chain = EnvVal.getValue(0); 4594 InFlag = EnvVal.getValue(1); 4595 } 4596 4597 MTCTROps[0] = Chain; 4598 MTCTROps[1] = LoadFuncPtr; 4599 MTCTROps[2] = InFlag; 4600 } 4601 4602 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4603 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4604 InFlag = Chain.getValue(1); 4605 4606 NodeTys.clear(); 4607 NodeTys.push_back(MVT::Other); 4608 NodeTys.push_back(MVT::Glue); 4609 Ops.push_back(Chain); 4610 CallOpc = PPCISD::BCTRL; 4611 Callee.setNode(nullptr); 4612 // Add use of X11 (holding environment pointer) 4613 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4614 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4615 // Add CTR register as callee so a bctr can be emitted later. 4616 if (isTailCall) 4617 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4618 } 4619 4620 // If this is a direct call, pass the chain and the callee. 4621 if (Callee.getNode()) { 4622 Ops.push_back(Chain); 4623 Ops.push_back(Callee); 4624 } 4625 // If this is a tail call add stack pointer delta. 4626 if (isTailCall) 4627 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4628 4629 // Add argument registers to the end of the list so that they are known live 4630 // into the call. 4631 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4632 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4633 RegsToPass[i].second.getValueType())); 4634 4635 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4636 // into the call. 4637 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4638 setUsesTOCBasePtr(DAG); 4639 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4640 } 4641 4642 return CallOpc; 4643 } 4644 4645 SDValue PPCTargetLowering::LowerCallResult( 4646 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4647 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4648 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4649 SmallVector<CCValAssign, 16> RVLocs; 4650 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4651 *DAG.getContext()); 4652 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4653 4654 // Copy all of the result registers out of their specified physreg. 4655 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4656 CCValAssign &VA = RVLocs[i]; 4657 assert(VA.isRegLoc() && "Can only return in registers!"); 4658 4659 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4660 VA.getLocReg(), VA.getLocVT(), InFlag); 4661 Chain = Val.getValue(1); 4662 InFlag = Val.getValue(2); 4663 4664 switch (VA.getLocInfo()) { 4665 default: llvm_unreachable("Unknown loc info!"); 4666 case CCValAssign::Full: break; 4667 case CCValAssign::AExt: 4668 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4669 break; 4670 case CCValAssign::ZExt: 4671 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4672 DAG.getValueType(VA.getValVT())); 4673 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4674 break; 4675 case CCValAssign::SExt: 4676 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4677 DAG.getValueType(VA.getValVT())); 4678 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4679 break; 4680 } 4681 4682 InVals.push_back(Val); 4683 } 4684 4685 return Chain; 4686 } 4687 4688 SDValue PPCTargetLowering::FinishCall( 4689 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4690 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 4691 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4692 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4693 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4694 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4695 std::vector<EVT> NodeTys; 4696 SmallVector<SDValue, 8> Ops; 4697 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4698 SPDiff, isTailCall, isPatchPoint, hasNest, 4699 RegsToPass, Ops, NodeTys, CS, Subtarget); 4700 4701 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4702 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4703 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4704 4705 // When performing tail call optimization the callee pops its arguments off 4706 // the stack. Account for this here so these bytes can be pushed back on in 4707 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4708 int BytesCalleePops = 4709 (CallConv == CallingConv::Fast && 4710 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4711 4712 // Add a register mask operand representing the call-preserved registers. 4713 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4714 const uint32_t *Mask = 4715 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4716 assert(Mask && "Missing call preserved mask for calling convention"); 4717 Ops.push_back(DAG.getRegisterMask(Mask)); 4718 4719 if (InFlag.getNode()) 4720 Ops.push_back(InFlag); 4721 4722 // Emit tail call. 4723 if (isTailCall) { 4724 assert(((Callee.getOpcode() == ISD::Register && 4725 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4726 Callee.getOpcode() == ISD::TargetExternalSymbol || 4727 Callee.getOpcode() == ISD::TargetGlobalAddress || 4728 isa<ConstantSDNode>(Callee)) && 4729 "Expecting an global address, external symbol, absolute value or register"); 4730 4731 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 4732 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4733 } 4734 4735 // Add a NOP immediately after the branch instruction when using the 64-bit 4736 // SVR4 ABI. At link time, if caller and callee are in a different module and 4737 // thus have a different TOC, the call will be replaced with a call to a stub 4738 // function which saves the current TOC, loads the TOC of the callee and 4739 // branches to the callee. The NOP will be replaced with a load instruction 4740 // which restores the TOC of the caller from the TOC save slot of the current 4741 // stack frame. If caller and callee belong to the same module (and have the 4742 // same TOC), the NOP will remain unchanged. 4743 4744 MachineFunction &MF = DAG.getMachineFunction(); 4745 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4746 !isPatchPoint) { 4747 if (CallOpc == PPCISD::BCTRL) { 4748 // This is a call through a function pointer. 4749 // Restore the caller TOC from the save area into R2. 4750 // See PrepareCall() for more information about calls through function 4751 // pointers in the 64-bit SVR4 ABI. 4752 // We are using a target-specific load with r2 hard coded, because the 4753 // result of a target-independent load would never go directly into r2, 4754 // since r2 is a reserved register (which prevents the register allocator 4755 // from allocating it), resulting in an additional register being 4756 // allocated and an unnecessary move instruction being generated. 4757 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4758 4759 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4760 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4761 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4762 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4763 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4764 4765 // The address needs to go after the chain input but before the flag (or 4766 // any other variadic arguments). 4767 Ops.insert(std::next(Ops.begin()), AddTOC); 4768 } else if (CallOpc == PPCISD::CALL && 4769 !resideInSameSection(MF.getFunction(), Callee, DAG.getTarget())) { 4770 // Otherwise insert NOP for non-local calls. 4771 CallOpc = PPCISD::CALL_NOP; 4772 } 4773 } 4774 4775 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4776 InFlag = Chain.getValue(1); 4777 4778 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4779 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4780 InFlag, dl); 4781 if (!Ins.empty()) 4782 InFlag = Chain.getValue(1); 4783 4784 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4785 Ins, dl, DAG, InVals); 4786 } 4787 4788 SDValue 4789 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4790 SmallVectorImpl<SDValue> &InVals) const { 4791 SelectionDAG &DAG = CLI.DAG; 4792 SDLoc &dl = CLI.DL; 4793 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4794 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4795 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4796 SDValue Chain = CLI.Chain; 4797 SDValue Callee = CLI.Callee; 4798 bool &isTailCall = CLI.IsTailCall; 4799 CallingConv::ID CallConv = CLI.CallConv; 4800 bool isVarArg = CLI.IsVarArg; 4801 bool isPatchPoint = CLI.IsPatchPoint; 4802 ImmutableCallSite *CS = CLI.CS; 4803 4804 if (isTailCall) { 4805 if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall())) 4806 isTailCall = false; 4807 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4808 isTailCall = 4809 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4810 isVarArg, Outs, Ins, DAG); 4811 else 4812 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4813 Ins, DAG); 4814 if (isTailCall) { 4815 ++NumTailCalls; 4816 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4817 ++NumSiblingCalls; 4818 4819 assert(isa<GlobalAddressSDNode>(Callee) && 4820 "Callee should be an llvm::Function object."); 4821 DEBUG( 4822 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4823 const unsigned Width = 80 - strlen("TCO caller: ") 4824 - strlen(", callee linkage: 0, 0"); 4825 dbgs() << "TCO caller: " 4826 << left_justify(DAG.getMachineFunction().getName(), Width) 4827 << ", callee linkage: " 4828 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4829 ); 4830 } 4831 } 4832 4833 if (!isTailCall && CS && CS->isMustTailCall()) 4834 report_fatal_error("failed to perform tail call elimination on a call " 4835 "site marked musttail"); 4836 4837 // When long calls (i.e. indirect calls) are always used, calls are always 4838 // made via function pointer. If we have a function name, first translate it 4839 // into a pointer. 4840 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 4841 !isTailCall) 4842 Callee = LowerGlobalAddress(Callee, DAG); 4843 4844 if (Subtarget.isSVR4ABI()) { 4845 if (Subtarget.isPPC64()) 4846 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4847 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4848 dl, DAG, InVals, CS); 4849 else 4850 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4851 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4852 dl, DAG, InVals, CS); 4853 } 4854 4855 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4856 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4857 dl, DAG, InVals, CS); 4858 } 4859 4860 SDValue PPCTargetLowering::LowerCall_32SVR4( 4861 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4862 bool isTailCall, bool isPatchPoint, 4863 const SmallVectorImpl<ISD::OutputArg> &Outs, 4864 const SmallVectorImpl<SDValue> &OutVals, 4865 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4866 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4867 ImmutableCallSite *CS) const { 4868 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4869 // of the 32-bit SVR4 ABI stack frame layout. 4870 4871 assert((CallConv == CallingConv::C || 4872 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4873 4874 unsigned PtrByteSize = 4; 4875 4876 MachineFunction &MF = DAG.getMachineFunction(); 4877 4878 // Mark this function as potentially containing a function that contains a 4879 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4880 // and restoring the callers stack pointer in this functions epilog. This is 4881 // done because by tail calling the called function might overwrite the value 4882 // in this function's (MF) stack pointer stack slot 0(SP). 4883 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4884 CallConv == CallingConv::Fast) 4885 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4886 4887 // Count how many bytes are to be pushed on the stack, including the linkage 4888 // area, parameter list area and the part of the local variable space which 4889 // contains copies of aggregates which are passed by value. 4890 4891 // Assign locations to all of the outgoing arguments. 4892 SmallVector<CCValAssign, 16> ArgLocs; 4893 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 4894 4895 // Reserve space for the linkage area on the stack. 4896 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4897 PtrByteSize); 4898 if (useSoftFloat()) 4899 CCInfo.PreAnalyzeCallOperands(Outs); 4900 4901 if (isVarArg) { 4902 // Handle fixed and variable vector arguments differently. 4903 // Fixed vector arguments go into registers as long as registers are 4904 // available. Variable vector arguments always go into memory. 4905 unsigned NumArgs = Outs.size(); 4906 4907 for (unsigned i = 0; i != NumArgs; ++i) { 4908 MVT ArgVT = Outs[i].VT; 4909 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4910 bool Result; 4911 4912 if (Outs[i].IsFixed) { 4913 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4914 CCInfo); 4915 } else { 4916 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4917 ArgFlags, CCInfo); 4918 } 4919 4920 if (Result) { 4921 #ifndef NDEBUG 4922 errs() << "Call operand #" << i << " has unhandled type " 4923 << EVT(ArgVT).getEVTString() << "\n"; 4924 #endif 4925 llvm_unreachable(nullptr); 4926 } 4927 } 4928 } else { 4929 // All arguments are treated the same. 4930 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4931 } 4932 CCInfo.clearWasPPCF128(); 4933 4934 // Assign locations to all of the outgoing aggregate by value arguments. 4935 SmallVector<CCValAssign, 16> ByValArgLocs; 4936 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 4937 4938 // Reserve stack space for the allocations in CCInfo. 4939 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4940 4941 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4942 4943 // Size of the linkage area, parameter list area and the part of the local 4944 // space variable where copies of aggregates which are passed by value are 4945 // stored. 4946 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4947 4948 // Calculate by how many bytes the stack has to be adjusted in case of tail 4949 // call optimization. 4950 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4951 4952 // Adjust the stack pointer for the new arguments... 4953 // These operations are automatically eliminated by the prolog/epilog pass 4954 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4955 dl); 4956 SDValue CallSeqStart = Chain; 4957 4958 // Load the return address and frame pointer so it can be moved somewhere else 4959 // later. 4960 SDValue LROp, FPOp; 4961 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 4962 4963 // Set up a copy of the stack pointer for use loading and storing any 4964 // arguments that may not fit in the registers available for argument 4965 // passing. 4966 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4967 4968 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4969 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4970 SmallVector<SDValue, 8> MemOpChains; 4971 4972 bool seenFloatArg = false; 4973 // Walk the register/memloc assignments, inserting copies/loads. 4974 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4975 i != e; 4976 ++i) { 4977 CCValAssign &VA = ArgLocs[i]; 4978 SDValue Arg = OutVals[i]; 4979 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4980 4981 if (Flags.isByVal()) { 4982 // Argument is an aggregate which is passed by value, thus we need to 4983 // create a copy of it in the local variable space of the current stack 4984 // frame (which is the stack frame of the caller) and pass the address of 4985 // this copy to the callee. 4986 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4987 CCValAssign &ByValVA = ByValArgLocs[j++]; 4988 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4989 4990 // Memory reserved in the local variable space of the callers stack frame. 4991 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4992 4993 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4994 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4995 StackPtr, PtrOff); 4996 4997 // Create a copy of the argument in the local area of the current 4998 // stack frame. 4999 SDValue MemcpyCall = 5000 CreateCopyOfByValArgument(Arg, PtrOff, 5001 CallSeqStart.getNode()->getOperand(0), 5002 Flags, DAG, dl); 5003 5004 // This must go outside the CALLSEQ_START..END. 5005 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5006 CallSeqStart.getNode()->getOperand(1), 5007 SDLoc(MemcpyCall)); 5008 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5009 NewCallSeqStart.getNode()); 5010 Chain = CallSeqStart = NewCallSeqStart; 5011 5012 // Pass the address of the aggregate copy on the stack either in a 5013 // physical register or in the parameter list area of the current stack 5014 // frame to the callee. 5015 Arg = PtrOff; 5016 } 5017 5018 if (VA.isRegLoc()) { 5019 if (Arg.getValueType() == MVT::i1) 5020 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 5021 5022 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5023 // Put argument in a physical register. 5024 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5025 } else { 5026 // Put argument in the parameter list area of the current stack frame. 5027 assert(VA.isMemLoc()); 5028 unsigned LocMemOffset = VA.getLocMemOffset(); 5029 5030 if (!isTailCall) { 5031 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5032 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5033 StackPtr, PtrOff); 5034 5035 MemOpChains.push_back( 5036 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5037 } else { 5038 // Calculate and remember argument location. 5039 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5040 TailCallArguments); 5041 } 5042 } 5043 } 5044 5045 if (!MemOpChains.empty()) 5046 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5047 5048 // Build a sequence of copy-to-reg nodes chained together with token chain 5049 // and flag operands which copy the outgoing args into the appropriate regs. 5050 SDValue InFlag; 5051 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5052 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5053 RegsToPass[i].second, InFlag); 5054 InFlag = Chain.getValue(1); 5055 } 5056 5057 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5058 // registers. 5059 if (isVarArg) { 5060 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5061 SDValue Ops[] = { Chain, InFlag }; 5062 5063 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5064 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5065 5066 InFlag = Chain.getValue(1); 5067 } 5068 5069 if (isTailCall) 5070 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5071 TailCallArguments); 5072 5073 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5074 /* unused except on PPC64 ELFv1 */ false, DAG, 5075 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5076 NumBytes, Ins, InVals, CS); 5077 } 5078 5079 // Copy an argument into memory, being careful to do this outside the 5080 // call sequence for the call to which the argument belongs. 5081 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5082 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5083 SelectionDAG &DAG, const SDLoc &dl) const { 5084 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5085 CallSeqStart.getNode()->getOperand(0), 5086 Flags, DAG, dl); 5087 // The MEMCPY must go outside the CALLSEQ_START..END. 5088 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5089 CallSeqStart.getNode()->getOperand(1), 5090 SDLoc(MemcpyCall)); 5091 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5092 NewCallSeqStart.getNode()); 5093 return NewCallSeqStart; 5094 } 5095 5096 SDValue PPCTargetLowering::LowerCall_64SVR4( 5097 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5098 bool isTailCall, bool isPatchPoint, 5099 const SmallVectorImpl<ISD::OutputArg> &Outs, 5100 const SmallVectorImpl<SDValue> &OutVals, 5101 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5102 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5103 ImmutableCallSite *CS) const { 5104 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5105 bool isLittleEndian = Subtarget.isLittleEndian(); 5106 unsigned NumOps = Outs.size(); 5107 bool hasNest = false; 5108 bool IsSibCall = false; 5109 5110 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5111 unsigned PtrByteSize = 8; 5112 5113 MachineFunction &MF = DAG.getMachineFunction(); 5114 5115 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5116 IsSibCall = true; 5117 5118 // Mark this function as potentially containing a function that contains a 5119 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5120 // and restoring the callers stack pointer in this functions epilog. This is 5121 // done because by tail calling the called function might overwrite the value 5122 // in this function's (MF) stack pointer stack slot 0(SP). 5123 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5124 CallConv == CallingConv::Fast) 5125 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5126 5127 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5128 "fastcc not supported on varargs functions"); 5129 5130 // Count how many bytes are to be pushed on the stack, including the linkage 5131 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5132 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5133 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5134 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5135 unsigned NumBytes = LinkageSize; 5136 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5137 unsigned &QFPR_idx = FPR_idx; 5138 5139 static const MCPhysReg GPR[] = { 5140 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5141 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5142 }; 5143 static const MCPhysReg VR[] = { 5144 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5145 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5146 }; 5147 5148 const unsigned NumGPRs = array_lengthof(GPR); 5149 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5150 const unsigned NumVRs = array_lengthof(VR); 5151 const unsigned NumQFPRs = NumFPRs; 5152 5153 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5154 // can be passed to the callee in registers. 5155 // For the fast calling convention, there is another check below. 5156 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5157 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5158 if (!HasParameterArea) { 5159 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5160 unsigned AvailableFPRs = NumFPRs; 5161 unsigned AvailableVRs = NumVRs; 5162 unsigned NumBytesTmp = NumBytes; 5163 for (unsigned i = 0; i != NumOps; ++i) { 5164 if (Outs[i].Flags.isNest()) continue; 5165 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5166 PtrByteSize, LinkageSize, ParamAreaSize, 5167 NumBytesTmp, AvailableFPRs, AvailableVRs, 5168 Subtarget.hasQPX())) 5169 HasParameterArea = true; 5170 } 5171 } 5172 5173 // When using the fast calling convention, we don't provide backing for 5174 // arguments that will be in registers. 5175 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5176 5177 // Add up all the space actually used. 5178 for (unsigned i = 0; i != NumOps; ++i) { 5179 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5180 EVT ArgVT = Outs[i].VT; 5181 EVT OrigVT = Outs[i].ArgVT; 5182 5183 if (Flags.isNest()) 5184 continue; 5185 5186 if (CallConv == CallingConv::Fast) { 5187 if (Flags.isByVal()) 5188 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5189 else 5190 switch (ArgVT.getSimpleVT().SimpleTy) { 5191 default: llvm_unreachable("Unexpected ValueType for argument!"); 5192 case MVT::i1: 5193 case MVT::i32: 5194 case MVT::i64: 5195 if (++NumGPRsUsed <= NumGPRs) 5196 continue; 5197 break; 5198 case MVT::v4i32: 5199 case MVT::v8i16: 5200 case MVT::v16i8: 5201 case MVT::v2f64: 5202 case MVT::v2i64: 5203 case MVT::v1i128: 5204 if (++NumVRsUsed <= NumVRs) 5205 continue; 5206 break; 5207 case MVT::v4f32: 5208 // When using QPX, this is handled like a FP register, otherwise, it 5209 // is an Altivec register. 5210 if (Subtarget.hasQPX()) { 5211 if (++NumFPRsUsed <= NumFPRs) 5212 continue; 5213 } else { 5214 if (++NumVRsUsed <= NumVRs) 5215 continue; 5216 } 5217 break; 5218 case MVT::f32: 5219 case MVT::f64: 5220 case MVT::v4f64: // QPX 5221 case MVT::v4i1: // QPX 5222 if (++NumFPRsUsed <= NumFPRs) 5223 continue; 5224 break; 5225 } 5226 } 5227 5228 /* Respect alignment of argument on the stack. */ 5229 unsigned Align = 5230 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5231 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5232 5233 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5234 if (Flags.isInConsecutiveRegsLast()) 5235 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5236 } 5237 5238 unsigned NumBytesActuallyUsed = NumBytes; 5239 5240 // In the old ELFv1 ABI, 5241 // the prolog code of the callee may store up to 8 GPR argument registers to 5242 // the stack, allowing va_start to index over them in memory if its varargs. 5243 // Because we cannot tell if this is needed on the caller side, we have to 5244 // conservatively assume that it is needed. As such, make sure we have at 5245 // least enough stack space for the caller to store the 8 GPRs. 5246 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5247 // really requires memory operands, e.g. a vararg function. 5248 if (HasParameterArea) 5249 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5250 else 5251 NumBytes = LinkageSize; 5252 5253 // Tail call needs the stack to be aligned. 5254 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5255 CallConv == CallingConv::Fast) 5256 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5257 5258 int SPDiff = 0; 5259 5260 // Calculate by how many bytes the stack has to be adjusted in case of tail 5261 // call optimization. 5262 if (!IsSibCall) 5263 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5264 5265 // To protect arguments on the stack from being clobbered in a tail call, 5266 // force all the loads to happen before doing any other lowering. 5267 if (isTailCall) 5268 Chain = DAG.getStackArgumentTokenFactor(Chain); 5269 5270 // Adjust the stack pointer for the new arguments... 5271 // These operations are automatically eliminated by the prolog/epilog pass 5272 if (!IsSibCall) 5273 Chain = DAG.getCALLSEQ_START(Chain, 5274 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5275 SDValue CallSeqStart = Chain; 5276 5277 // Load the return address and frame pointer so it can be move somewhere else 5278 // later. 5279 SDValue LROp, FPOp; 5280 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5281 5282 // Set up a copy of the stack pointer for use loading and storing any 5283 // arguments that may not fit in the registers available for argument 5284 // passing. 5285 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5286 5287 // Figure out which arguments are going to go in registers, and which in 5288 // memory. Also, if this is a vararg function, floating point operations 5289 // must be stored to our stack, and loaded into integer regs as well, if 5290 // any integer regs are available for argument passing. 5291 unsigned ArgOffset = LinkageSize; 5292 5293 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5294 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5295 5296 SmallVector<SDValue, 8> MemOpChains; 5297 for (unsigned i = 0; i != NumOps; ++i) { 5298 SDValue Arg = OutVals[i]; 5299 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5300 EVT ArgVT = Outs[i].VT; 5301 EVT OrigVT = Outs[i].ArgVT; 5302 5303 // PtrOff will be used to store the current argument to the stack if a 5304 // register cannot be found for it. 5305 SDValue PtrOff; 5306 5307 // We re-align the argument offset for each argument, except when using the 5308 // fast calling convention, when we need to make sure we do that only when 5309 // we'll actually use a stack slot. 5310 auto ComputePtrOff = [&]() { 5311 /* Respect alignment of argument on the stack. */ 5312 unsigned Align = 5313 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5314 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5315 5316 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5317 5318 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5319 }; 5320 5321 if (CallConv != CallingConv::Fast) { 5322 ComputePtrOff(); 5323 5324 /* Compute GPR index associated with argument offset. */ 5325 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5326 GPR_idx = std::min(GPR_idx, NumGPRs); 5327 } 5328 5329 // Promote integers to 64-bit values. 5330 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5331 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5332 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5333 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5334 } 5335 5336 // FIXME memcpy is used way more than necessary. Correctness first. 5337 // Note: "by value" is code for passing a structure by value, not 5338 // basic types. 5339 if (Flags.isByVal()) { 5340 // Note: Size includes alignment padding, so 5341 // struct x { short a; char b; } 5342 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5343 // These are the proper values we need for right-justifying the 5344 // aggregate in a parameter register. 5345 unsigned Size = Flags.getByValSize(); 5346 5347 // An empty aggregate parameter takes up no storage and no 5348 // registers. 5349 if (Size == 0) 5350 continue; 5351 5352 if (CallConv == CallingConv::Fast) 5353 ComputePtrOff(); 5354 5355 // All aggregates smaller than 8 bytes must be passed right-justified. 5356 if (Size==1 || Size==2 || Size==4) { 5357 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5358 if (GPR_idx != NumGPRs) { 5359 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5360 MachinePointerInfo(), VT); 5361 MemOpChains.push_back(Load.getValue(1)); 5362 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5363 5364 ArgOffset += PtrByteSize; 5365 continue; 5366 } 5367 } 5368 5369 if (GPR_idx == NumGPRs && Size < 8) { 5370 SDValue AddPtr = PtrOff; 5371 if (!isLittleEndian) { 5372 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5373 PtrOff.getValueType()); 5374 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5375 } 5376 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5377 CallSeqStart, 5378 Flags, DAG, dl); 5379 ArgOffset += PtrByteSize; 5380 continue; 5381 } 5382 // Copy entire object into memory. There are cases where gcc-generated 5383 // code assumes it is there, even if it could be put entirely into 5384 // registers. (This is not what the doc says.) 5385 5386 // FIXME: The above statement is likely due to a misunderstanding of the 5387 // documents. All arguments must be copied into the parameter area BY 5388 // THE CALLEE in the event that the callee takes the address of any 5389 // formal argument. That has not yet been implemented. However, it is 5390 // reasonable to use the stack area as a staging area for the register 5391 // load. 5392 5393 // Skip this for small aggregates, as we will use the same slot for a 5394 // right-justified copy, below. 5395 if (Size >= 8) 5396 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5397 CallSeqStart, 5398 Flags, DAG, dl); 5399 5400 // When a register is available, pass a small aggregate right-justified. 5401 if (Size < 8 && GPR_idx != NumGPRs) { 5402 // The easiest way to get this right-justified in a register 5403 // is to copy the structure into the rightmost portion of a 5404 // local variable slot, then load the whole slot into the 5405 // register. 5406 // FIXME: The memcpy seems to produce pretty awful code for 5407 // small aggregates, particularly for packed ones. 5408 // FIXME: It would be preferable to use the slot in the 5409 // parameter save area instead of a new local variable. 5410 SDValue AddPtr = PtrOff; 5411 if (!isLittleEndian) { 5412 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5413 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5414 } 5415 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5416 CallSeqStart, 5417 Flags, DAG, dl); 5418 5419 // Load the slot into the register. 5420 SDValue Load = 5421 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5422 MemOpChains.push_back(Load.getValue(1)); 5423 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5424 5425 // Done with this argument. 5426 ArgOffset += PtrByteSize; 5427 continue; 5428 } 5429 5430 // For aggregates larger than PtrByteSize, copy the pieces of the 5431 // object that fit into registers from the parameter save area. 5432 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5433 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5434 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5435 if (GPR_idx != NumGPRs) { 5436 SDValue Load = 5437 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5438 MemOpChains.push_back(Load.getValue(1)); 5439 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5440 ArgOffset += PtrByteSize; 5441 } else { 5442 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5443 break; 5444 } 5445 } 5446 continue; 5447 } 5448 5449 switch (Arg.getSimpleValueType().SimpleTy) { 5450 default: llvm_unreachable("Unexpected ValueType for argument!"); 5451 case MVT::i1: 5452 case MVT::i32: 5453 case MVT::i64: 5454 if (Flags.isNest()) { 5455 // The 'nest' parameter, if any, is passed in R11. 5456 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5457 hasNest = true; 5458 break; 5459 } 5460 5461 // These can be scalar arguments or elements of an integer array type 5462 // passed directly. Clang may use those instead of "byval" aggregate 5463 // types to avoid forcing arguments to memory unnecessarily. 5464 if (GPR_idx != NumGPRs) { 5465 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5466 } else { 5467 if (CallConv == CallingConv::Fast) 5468 ComputePtrOff(); 5469 5470 assert(HasParameterArea && 5471 "Parameter area must exist to pass an argument in memory."); 5472 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5473 true, isTailCall, false, MemOpChains, 5474 TailCallArguments, dl); 5475 if (CallConv == CallingConv::Fast) 5476 ArgOffset += PtrByteSize; 5477 } 5478 if (CallConv != CallingConv::Fast) 5479 ArgOffset += PtrByteSize; 5480 break; 5481 case MVT::f32: 5482 case MVT::f64: { 5483 // These can be scalar arguments or elements of a float array type 5484 // passed directly. The latter are used to implement ELFv2 homogenous 5485 // float aggregates. 5486 5487 // Named arguments go into FPRs first, and once they overflow, the 5488 // remaining arguments go into GPRs and then the parameter save area. 5489 // Unnamed arguments for vararg functions always go to GPRs and 5490 // then the parameter save area. For now, put all arguments to vararg 5491 // routines always in both locations (FPR *and* GPR or stack slot). 5492 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5493 bool NeededLoad = false; 5494 5495 // First load the argument into the next available FPR. 5496 if (FPR_idx != NumFPRs) 5497 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5498 5499 // Next, load the argument into GPR or stack slot if needed. 5500 if (!NeedGPROrStack) 5501 ; 5502 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5503 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5504 // once we support fp <-> gpr moves. 5505 5506 // In the non-vararg case, this can only ever happen in the 5507 // presence of f32 array types, since otherwise we never run 5508 // out of FPRs before running out of GPRs. 5509 SDValue ArgVal; 5510 5511 // Double values are always passed in a single GPR. 5512 if (Arg.getValueType() != MVT::f32) { 5513 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5514 5515 // Non-array float values are extended and passed in a GPR. 5516 } else if (!Flags.isInConsecutiveRegs()) { 5517 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5518 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5519 5520 // If we have an array of floats, we collect every odd element 5521 // together with its predecessor into one GPR. 5522 } else if (ArgOffset % PtrByteSize != 0) { 5523 SDValue Lo, Hi; 5524 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5525 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5526 if (!isLittleEndian) 5527 std::swap(Lo, Hi); 5528 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5529 5530 // The final element, if even, goes into the first half of a GPR. 5531 } else if (Flags.isInConsecutiveRegsLast()) { 5532 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5533 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5534 if (!isLittleEndian) 5535 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5536 DAG.getConstant(32, dl, MVT::i32)); 5537 5538 // Non-final even elements are skipped; they will be handled 5539 // together the with subsequent argument on the next go-around. 5540 } else 5541 ArgVal = SDValue(); 5542 5543 if (ArgVal.getNode()) 5544 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5545 } else { 5546 if (CallConv == CallingConv::Fast) 5547 ComputePtrOff(); 5548 5549 // Single-precision floating-point values are mapped to the 5550 // second (rightmost) word of the stack doubleword. 5551 if (Arg.getValueType() == MVT::f32 && 5552 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5553 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5554 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5555 } 5556 5557 assert(HasParameterArea && 5558 "Parameter area must exist to pass an argument in memory."); 5559 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5560 true, isTailCall, false, MemOpChains, 5561 TailCallArguments, dl); 5562 5563 NeededLoad = true; 5564 } 5565 // When passing an array of floats, the array occupies consecutive 5566 // space in the argument area; only round up to the next doubleword 5567 // at the end of the array. Otherwise, each float takes 8 bytes. 5568 if (CallConv != CallingConv::Fast || NeededLoad) { 5569 ArgOffset += (Arg.getValueType() == MVT::f32 && 5570 Flags.isInConsecutiveRegs()) ? 4 : 8; 5571 if (Flags.isInConsecutiveRegsLast()) 5572 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5573 } 5574 break; 5575 } 5576 case MVT::v4f32: 5577 case MVT::v4i32: 5578 case MVT::v8i16: 5579 case MVT::v16i8: 5580 case MVT::v2f64: 5581 case MVT::v2i64: 5582 case MVT::v1i128: 5583 if (!Subtarget.hasQPX()) { 5584 // These can be scalar arguments or elements of a vector array type 5585 // passed directly. The latter are used to implement ELFv2 homogenous 5586 // vector aggregates. 5587 5588 // For a varargs call, named arguments go into VRs or on the stack as 5589 // usual; unnamed arguments always go to the stack or the corresponding 5590 // GPRs when within range. For now, we always put the value in both 5591 // locations (or even all three). 5592 if (isVarArg) { 5593 assert(HasParameterArea && 5594 "Parameter area must exist if we have a varargs call."); 5595 // We could elide this store in the case where the object fits 5596 // entirely in R registers. Maybe later. 5597 SDValue Store = 5598 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5599 MemOpChains.push_back(Store); 5600 if (VR_idx != NumVRs) { 5601 SDValue Load = 5602 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5603 MemOpChains.push_back(Load.getValue(1)); 5604 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5605 } 5606 ArgOffset += 16; 5607 for (unsigned i=0; i<16; i+=PtrByteSize) { 5608 if (GPR_idx == NumGPRs) 5609 break; 5610 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5611 DAG.getConstant(i, dl, PtrVT)); 5612 SDValue Load = 5613 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5614 MemOpChains.push_back(Load.getValue(1)); 5615 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5616 } 5617 break; 5618 } 5619 5620 // Non-varargs Altivec params go into VRs or on the stack. 5621 if (VR_idx != NumVRs) { 5622 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5623 } else { 5624 if (CallConv == CallingConv::Fast) 5625 ComputePtrOff(); 5626 5627 assert(HasParameterArea && 5628 "Parameter area must exist to pass an argument in memory."); 5629 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5630 true, isTailCall, true, MemOpChains, 5631 TailCallArguments, dl); 5632 if (CallConv == CallingConv::Fast) 5633 ArgOffset += 16; 5634 } 5635 5636 if (CallConv != CallingConv::Fast) 5637 ArgOffset += 16; 5638 break; 5639 } // not QPX 5640 5641 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5642 "Invalid QPX parameter type"); 5643 5644 /* fall through */ 5645 case MVT::v4f64: 5646 case MVT::v4i1: { 5647 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5648 if (isVarArg) { 5649 assert(HasParameterArea && 5650 "Parameter area must exist if we have a varargs call."); 5651 // We could elide this store in the case where the object fits 5652 // entirely in R registers. Maybe later. 5653 SDValue Store = 5654 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5655 MemOpChains.push_back(Store); 5656 if (QFPR_idx != NumQFPRs) { 5657 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5658 PtrOff, MachinePointerInfo()); 5659 MemOpChains.push_back(Load.getValue(1)); 5660 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5661 } 5662 ArgOffset += (IsF32 ? 16 : 32); 5663 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5664 if (GPR_idx == NumGPRs) 5665 break; 5666 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5667 DAG.getConstant(i, dl, PtrVT)); 5668 SDValue Load = 5669 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5670 MemOpChains.push_back(Load.getValue(1)); 5671 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5672 } 5673 break; 5674 } 5675 5676 // Non-varargs QPX params go into registers or on the stack. 5677 if (QFPR_idx != NumQFPRs) { 5678 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5679 } else { 5680 if (CallConv == CallingConv::Fast) 5681 ComputePtrOff(); 5682 5683 assert(HasParameterArea && 5684 "Parameter area must exist to pass an argument in memory."); 5685 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5686 true, isTailCall, true, MemOpChains, 5687 TailCallArguments, dl); 5688 if (CallConv == CallingConv::Fast) 5689 ArgOffset += (IsF32 ? 16 : 32); 5690 } 5691 5692 if (CallConv != CallingConv::Fast) 5693 ArgOffset += (IsF32 ? 16 : 32); 5694 break; 5695 } 5696 } 5697 } 5698 5699 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 5700 "mismatch in size of parameter area"); 5701 (void)NumBytesActuallyUsed; 5702 5703 if (!MemOpChains.empty()) 5704 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5705 5706 // Check if this is an indirect call (MTCTR/BCTRL). 5707 // See PrepareCall() for more information about calls through function 5708 // pointers in the 64-bit SVR4 ABI. 5709 if (!isTailCall && !isPatchPoint && 5710 !isFunctionGlobalAddress(Callee) && 5711 !isa<ExternalSymbolSDNode>(Callee)) { 5712 // Load r2 into a virtual register and store it to the TOC save area. 5713 setUsesTOCBasePtr(DAG); 5714 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5715 // TOC save area offset. 5716 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5717 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5718 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5719 Chain = DAG.getStore( 5720 Val.getValue(1), dl, Val, AddPtr, 5721 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 5722 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5723 // This does not mean the MTCTR instruction must use R12; it's easier 5724 // to model this as an extra parameter, so do that. 5725 if (isELFv2ABI && !isPatchPoint) 5726 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5727 } 5728 5729 // Build a sequence of copy-to-reg nodes chained together with token chain 5730 // and flag operands which copy the outgoing args into the appropriate regs. 5731 SDValue InFlag; 5732 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5733 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5734 RegsToPass[i].second, InFlag); 5735 InFlag = Chain.getValue(1); 5736 } 5737 5738 if (isTailCall && !IsSibCall) 5739 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5740 TailCallArguments); 5741 5742 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 5743 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5744 SPDiff, NumBytes, Ins, InVals, CS); 5745 } 5746 5747 SDValue PPCTargetLowering::LowerCall_Darwin( 5748 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5749 bool isTailCall, bool isPatchPoint, 5750 const SmallVectorImpl<ISD::OutputArg> &Outs, 5751 const SmallVectorImpl<SDValue> &OutVals, 5752 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5753 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5754 ImmutableCallSite *CS) const { 5755 unsigned NumOps = Outs.size(); 5756 5757 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5758 bool isPPC64 = PtrVT == MVT::i64; 5759 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5760 5761 MachineFunction &MF = DAG.getMachineFunction(); 5762 5763 // Mark this function as potentially containing a function that contains a 5764 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5765 // and restoring the callers stack pointer in this functions epilog. This is 5766 // done because by tail calling the called function might overwrite the value 5767 // in this function's (MF) stack pointer stack slot 0(SP). 5768 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5769 CallConv == CallingConv::Fast) 5770 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5771 5772 // Count how many bytes are to be pushed on the stack, including the linkage 5773 // area, and parameter passing area. We start with 24/48 bytes, which is 5774 // prereserved space for [SP][CR][LR][3 x unused]. 5775 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5776 unsigned NumBytes = LinkageSize; 5777 5778 // Add up all the space actually used. 5779 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5780 // they all go in registers, but we must reserve stack space for them for 5781 // possible use by the caller. In varargs or 64-bit calls, parameters are 5782 // assigned stack space in order, with padding so Altivec parameters are 5783 // 16-byte aligned. 5784 unsigned nAltivecParamsAtEnd = 0; 5785 for (unsigned i = 0; i != NumOps; ++i) { 5786 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5787 EVT ArgVT = Outs[i].VT; 5788 // Varargs Altivec parameters are padded to a 16 byte boundary. 5789 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5790 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5791 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5792 if (!isVarArg && !isPPC64) { 5793 // Non-varargs Altivec parameters go after all the non-Altivec 5794 // parameters; handle those later so we know how much padding we need. 5795 nAltivecParamsAtEnd++; 5796 continue; 5797 } 5798 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5799 NumBytes = ((NumBytes+15)/16)*16; 5800 } 5801 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5802 } 5803 5804 // Allow for Altivec parameters at the end, if needed. 5805 if (nAltivecParamsAtEnd) { 5806 NumBytes = ((NumBytes+15)/16)*16; 5807 NumBytes += 16*nAltivecParamsAtEnd; 5808 } 5809 5810 // The prolog code of the callee may store up to 8 GPR argument registers to 5811 // the stack, allowing va_start to index over them in memory if its varargs. 5812 // Because we cannot tell if this is needed on the caller side, we have to 5813 // conservatively assume that it is needed. As such, make sure we have at 5814 // least enough stack space for the caller to store the 8 GPRs. 5815 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5816 5817 // Tail call needs the stack to be aligned. 5818 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5819 CallConv == CallingConv::Fast) 5820 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5821 5822 // Calculate by how many bytes the stack has to be adjusted in case of tail 5823 // call optimization. 5824 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5825 5826 // To protect arguments on the stack from being clobbered in a tail call, 5827 // force all the loads to happen before doing any other lowering. 5828 if (isTailCall) 5829 Chain = DAG.getStackArgumentTokenFactor(Chain); 5830 5831 // Adjust the stack pointer for the new arguments... 5832 // These operations are automatically eliminated by the prolog/epilog pass 5833 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5834 dl); 5835 SDValue CallSeqStart = Chain; 5836 5837 // Load the return address and frame pointer so it can be move somewhere else 5838 // later. 5839 SDValue LROp, FPOp; 5840 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5841 5842 // Set up a copy of the stack pointer for use loading and storing any 5843 // arguments that may not fit in the registers available for argument 5844 // passing. 5845 SDValue StackPtr; 5846 if (isPPC64) 5847 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5848 else 5849 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5850 5851 // Figure out which arguments are going to go in registers, and which in 5852 // memory. Also, if this is a vararg function, floating point operations 5853 // must be stored to our stack, and loaded into integer regs as well, if 5854 // any integer regs are available for argument passing. 5855 unsigned ArgOffset = LinkageSize; 5856 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5857 5858 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5859 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5860 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5861 }; 5862 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5863 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5864 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5865 }; 5866 static const MCPhysReg VR[] = { 5867 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5868 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5869 }; 5870 const unsigned NumGPRs = array_lengthof(GPR_32); 5871 const unsigned NumFPRs = 13; 5872 const unsigned NumVRs = array_lengthof(VR); 5873 5874 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5875 5876 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5877 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5878 5879 SmallVector<SDValue, 8> MemOpChains; 5880 for (unsigned i = 0; i != NumOps; ++i) { 5881 SDValue Arg = OutVals[i]; 5882 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5883 5884 // PtrOff will be used to store the current argument to the stack if a 5885 // register cannot be found for it. 5886 SDValue PtrOff; 5887 5888 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5889 5890 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5891 5892 // On PPC64, promote integers to 64-bit values. 5893 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5894 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5895 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5896 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5897 } 5898 5899 // FIXME memcpy is used way more than necessary. Correctness first. 5900 // Note: "by value" is code for passing a structure by value, not 5901 // basic types. 5902 if (Flags.isByVal()) { 5903 unsigned Size = Flags.getByValSize(); 5904 // Very small objects are passed right-justified. Everything else is 5905 // passed left-justified. 5906 if (Size==1 || Size==2) { 5907 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5908 if (GPR_idx != NumGPRs) { 5909 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5910 MachinePointerInfo(), VT); 5911 MemOpChains.push_back(Load.getValue(1)); 5912 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5913 5914 ArgOffset += PtrByteSize; 5915 } else { 5916 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5917 PtrOff.getValueType()); 5918 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5919 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5920 CallSeqStart, 5921 Flags, DAG, dl); 5922 ArgOffset += PtrByteSize; 5923 } 5924 continue; 5925 } 5926 // Copy entire object into memory. There are cases where gcc-generated 5927 // code assumes it is there, even if it could be put entirely into 5928 // registers. (This is not what the doc says.) 5929 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5930 CallSeqStart, 5931 Flags, DAG, dl); 5932 5933 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5934 // copy the pieces of the object that fit into registers from the 5935 // parameter save area. 5936 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5937 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5938 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5939 if (GPR_idx != NumGPRs) { 5940 SDValue Load = 5941 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5942 MemOpChains.push_back(Load.getValue(1)); 5943 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5944 ArgOffset += PtrByteSize; 5945 } else { 5946 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5947 break; 5948 } 5949 } 5950 continue; 5951 } 5952 5953 switch (Arg.getSimpleValueType().SimpleTy) { 5954 default: llvm_unreachable("Unexpected ValueType for argument!"); 5955 case MVT::i1: 5956 case MVT::i32: 5957 case MVT::i64: 5958 if (GPR_idx != NumGPRs) { 5959 if (Arg.getValueType() == MVT::i1) 5960 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5961 5962 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5963 } else { 5964 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5965 isPPC64, isTailCall, false, MemOpChains, 5966 TailCallArguments, dl); 5967 } 5968 ArgOffset += PtrByteSize; 5969 break; 5970 case MVT::f32: 5971 case MVT::f64: 5972 if (FPR_idx != NumFPRs) { 5973 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5974 5975 if (isVarArg) { 5976 SDValue Store = 5977 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5978 MemOpChains.push_back(Store); 5979 5980 // Float varargs are always shadowed in available integer registers 5981 if (GPR_idx != NumGPRs) { 5982 SDValue Load = 5983 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5984 MemOpChains.push_back(Load.getValue(1)); 5985 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5986 } 5987 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5988 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5989 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5990 SDValue Load = 5991 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5992 MemOpChains.push_back(Load.getValue(1)); 5993 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5994 } 5995 } else { 5996 // If we have any FPRs remaining, we may also have GPRs remaining. 5997 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5998 // GPRs. 5999 if (GPR_idx != NumGPRs) 6000 ++GPR_idx; 6001 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6002 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6003 ++GPR_idx; 6004 } 6005 } else 6006 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6007 isPPC64, isTailCall, false, MemOpChains, 6008 TailCallArguments, dl); 6009 if (isPPC64) 6010 ArgOffset += 8; 6011 else 6012 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6013 break; 6014 case MVT::v4f32: 6015 case MVT::v4i32: 6016 case MVT::v8i16: 6017 case MVT::v16i8: 6018 if (isVarArg) { 6019 // These go aligned on the stack, or in the corresponding R registers 6020 // when within range. The Darwin PPC ABI doc claims they also go in 6021 // V registers; in fact gcc does this only for arguments that are 6022 // prototyped, not for those that match the ... We do it for all 6023 // arguments, seems to work. 6024 while (ArgOffset % 16 !=0) { 6025 ArgOffset += PtrByteSize; 6026 if (GPR_idx != NumGPRs) 6027 GPR_idx++; 6028 } 6029 // We could elide this store in the case where the object fits 6030 // entirely in R registers. Maybe later. 6031 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6032 DAG.getConstant(ArgOffset, dl, PtrVT)); 6033 SDValue Store = 6034 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6035 MemOpChains.push_back(Store); 6036 if (VR_idx != NumVRs) { 6037 SDValue Load = 6038 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6039 MemOpChains.push_back(Load.getValue(1)); 6040 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6041 } 6042 ArgOffset += 16; 6043 for (unsigned i=0; i<16; i+=PtrByteSize) { 6044 if (GPR_idx == NumGPRs) 6045 break; 6046 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6047 DAG.getConstant(i, dl, PtrVT)); 6048 SDValue Load = 6049 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6050 MemOpChains.push_back(Load.getValue(1)); 6051 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6052 } 6053 break; 6054 } 6055 6056 // Non-varargs Altivec params generally go in registers, but have 6057 // stack space allocated at the end. 6058 if (VR_idx != NumVRs) { 6059 // Doesn't have GPR space allocated. 6060 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6061 } else if (nAltivecParamsAtEnd==0) { 6062 // We are emitting Altivec params in order. 6063 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6064 isPPC64, isTailCall, true, MemOpChains, 6065 TailCallArguments, dl); 6066 ArgOffset += 16; 6067 } 6068 break; 6069 } 6070 } 6071 // If all Altivec parameters fit in registers, as they usually do, 6072 // they get stack space following the non-Altivec parameters. We 6073 // don't track this here because nobody below needs it. 6074 // If there are more Altivec parameters than fit in registers emit 6075 // the stores here. 6076 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6077 unsigned j = 0; 6078 // Offset is aligned; skip 1st 12 params which go in V registers. 6079 ArgOffset = ((ArgOffset+15)/16)*16; 6080 ArgOffset += 12*16; 6081 for (unsigned i = 0; i != NumOps; ++i) { 6082 SDValue Arg = OutVals[i]; 6083 EVT ArgType = Outs[i].VT; 6084 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6085 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6086 if (++j > NumVRs) { 6087 SDValue PtrOff; 6088 // We are emitting Altivec params in order. 6089 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6090 isPPC64, isTailCall, true, MemOpChains, 6091 TailCallArguments, dl); 6092 ArgOffset += 16; 6093 } 6094 } 6095 } 6096 } 6097 6098 if (!MemOpChains.empty()) 6099 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6100 6101 // On Darwin, R12 must contain the address of an indirect callee. This does 6102 // not mean the MTCTR instruction must use R12; it's easier to model this as 6103 // an extra parameter, so do that. 6104 if (!isTailCall && 6105 !isFunctionGlobalAddress(Callee) && 6106 !isa<ExternalSymbolSDNode>(Callee) && 6107 !isBLACompatibleAddress(Callee, DAG)) 6108 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6109 PPC::R12), Callee)); 6110 6111 // Build a sequence of copy-to-reg nodes chained together with token chain 6112 // and flag operands which copy the outgoing args into the appropriate regs. 6113 SDValue InFlag; 6114 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6115 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6116 RegsToPass[i].second, InFlag); 6117 InFlag = Chain.getValue(1); 6118 } 6119 6120 if (isTailCall) 6121 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6122 TailCallArguments); 6123 6124 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6125 /* unused except on PPC64 ELFv1 */ false, DAG, 6126 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6127 NumBytes, Ins, InVals, CS); 6128 } 6129 6130 bool 6131 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6132 MachineFunction &MF, bool isVarArg, 6133 const SmallVectorImpl<ISD::OutputArg> &Outs, 6134 LLVMContext &Context) const { 6135 SmallVector<CCValAssign, 16> RVLocs; 6136 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6137 return CCInfo.CheckReturn(Outs, RetCC_PPC); 6138 } 6139 6140 SDValue 6141 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6142 bool isVarArg, 6143 const SmallVectorImpl<ISD::OutputArg> &Outs, 6144 const SmallVectorImpl<SDValue> &OutVals, 6145 const SDLoc &dl, SelectionDAG &DAG) const { 6146 SmallVector<CCValAssign, 16> RVLocs; 6147 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6148 *DAG.getContext()); 6149 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6150 6151 SDValue Flag; 6152 SmallVector<SDValue, 4> RetOps(1, Chain); 6153 6154 // Copy the result values into the output registers. 6155 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6156 CCValAssign &VA = RVLocs[i]; 6157 assert(VA.isRegLoc() && "Can only return in registers!"); 6158 6159 SDValue Arg = OutVals[i]; 6160 6161 switch (VA.getLocInfo()) { 6162 default: llvm_unreachable("Unknown loc info!"); 6163 case CCValAssign::Full: break; 6164 case CCValAssign::AExt: 6165 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6166 break; 6167 case CCValAssign::ZExt: 6168 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6169 break; 6170 case CCValAssign::SExt: 6171 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6172 break; 6173 } 6174 6175 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6176 Flag = Chain.getValue(1); 6177 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6178 } 6179 6180 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6181 const MCPhysReg *I = 6182 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6183 if (I) { 6184 for (; *I; ++I) { 6185 6186 if (PPC::G8RCRegClass.contains(*I)) 6187 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6188 else if (PPC::F8RCRegClass.contains(*I)) 6189 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6190 else if (PPC::CRRCRegClass.contains(*I)) 6191 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6192 else if (PPC::VRRCRegClass.contains(*I)) 6193 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6194 else 6195 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6196 } 6197 } 6198 6199 RetOps[0] = Chain; // Update chain. 6200 6201 // Add the flag if we have it. 6202 if (Flag.getNode()) 6203 RetOps.push_back(Flag); 6204 6205 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6206 } 6207 6208 SDValue 6209 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6210 SelectionDAG &DAG) const { 6211 SDLoc dl(Op); 6212 6213 // Get the corect type for integers. 6214 EVT IntVT = Op.getValueType(); 6215 6216 // Get the inputs. 6217 SDValue Chain = Op.getOperand(0); 6218 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6219 // Build a DYNAREAOFFSET node. 6220 SDValue Ops[2] = {Chain, FPSIdx}; 6221 SDVTList VTs = DAG.getVTList(IntVT); 6222 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6223 } 6224 6225 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6226 SelectionDAG &DAG) const { 6227 // When we pop the dynamic allocation we need to restore the SP link. 6228 SDLoc dl(Op); 6229 6230 // Get the corect type for pointers. 6231 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6232 6233 // Construct the stack pointer operand. 6234 bool isPPC64 = Subtarget.isPPC64(); 6235 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6236 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6237 6238 // Get the operands for the STACKRESTORE. 6239 SDValue Chain = Op.getOperand(0); 6240 SDValue SaveSP = Op.getOperand(1); 6241 6242 // Load the old link SP. 6243 SDValue LoadLinkSP = 6244 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6245 6246 // Restore the stack pointer. 6247 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6248 6249 // Store the old link SP. 6250 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6251 } 6252 6253 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6254 MachineFunction &MF = DAG.getMachineFunction(); 6255 bool isPPC64 = Subtarget.isPPC64(); 6256 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6257 6258 // Get current frame pointer save index. The users of this index will be 6259 // primarily DYNALLOC instructions. 6260 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6261 int RASI = FI->getReturnAddrSaveIndex(); 6262 6263 // If the frame pointer save index hasn't been defined yet. 6264 if (!RASI) { 6265 // Find out what the fix offset of the frame pointer save area. 6266 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6267 // Allocate the frame index for frame pointer save area. 6268 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6269 // Save the result. 6270 FI->setReturnAddrSaveIndex(RASI); 6271 } 6272 return DAG.getFrameIndex(RASI, PtrVT); 6273 } 6274 6275 SDValue 6276 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6277 MachineFunction &MF = DAG.getMachineFunction(); 6278 bool isPPC64 = Subtarget.isPPC64(); 6279 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6280 6281 // Get current frame pointer save index. The users of this index will be 6282 // primarily DYNALLOC instructions. 6283 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6284 int FPSI = FI->getFramePointerSaveIndex(); 6285 6286 // If the frame pointer save index hasn't been defined yet. 6287 if (!FPSI) { 6288 // Find out what the fix offset of the frame pointer save area. 6289 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6290 // Allocate the frame index for frame pointer save area. 6291 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6292 // Save the result. 6293 FI->setFramePointerSaveIndex(FPSI); 6294 } 6295 return DAG.getFrameIndex(FPSI, PtrVT); 6296 } 6297 6298 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6299 SelectionDAG &DAG) const { 6300 // Get the inputs. 6301 SDValue Chain = Op.getOperand(0); 6302 SDValue Size = Op.getOperand(1); 6303 SDLoc dl(Op); 6304 6305 // Get the corect type for pointers. 6306 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6307 // Negate the size. 6308 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6309 DAG.getConstant(0, dl, PtrVT), Size); 6310 // Construct a node for the frame pointer save index. 6311 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6312 // Build a DYNALLOC node. 6313 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6314 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6315 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6316 } 6317 6318 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6319 SelectionDAG &DAG) const { 6320 MachineFunction &MF = DAG.getMachineFunction(); 6321 6322 bool isPPC64 = Subtarget.isPPC64(); 6323 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6324 6325 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6326 return DAG.getFrameIndex(FI, PtrVT); 6327 } 6328 6329 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6330 SelectionDAG &DAG) const { 6331 SDLoc DL(Op); 6332 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6333 DAG.getVTList(MVT::i32, MVT::Other), 6334 Op.getOperand(0), Op.getOperand(1)); 6335 } 6336 6337 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6338 SelectionDAG &DAG) const { 6339 SDLoc DL(Op); 6340 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6341 Op.getOperand(0), Op.getOperand(1)); 6342 } 6343 6344 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6345 if (Op.getValueType().isVector()) 6346 return LowerVectorLoad(Op, DAG); 6347 6348 assert(Op.getValueType() == MVT::i1 && 6349 "Custom lowering only for i1 loads"); 6350 6351 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6352 6353 SDLoc dl(Op); 6354 LoadSDNode *LD = cast<LoadSDNode>(Op); 6355 6356 SDValue Chain = LD->getChain(); 6357 SDValue BasePtr = LD->getBasePtr(); 6358 MachineMemOperand *MMO = LD->getMemOperand(); 6359 6360 SDValue NewLD = 6361 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6362 BasePtr, MVT::i8, MMO); 6363 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6364 6365 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6366 return DAG.getMergeValues(Ops, dl); 6367 } 6368 6369 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6370 if (Op.getOperand(1).getValueType().isVector()) 6371 return LowerVectorStore(Op, DAG); 6372 6373 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6374 "Custom lowering only for i1 stores"); 6375 6376 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6377 6378 SDLoc dl(Op); 6379 StoreSDNode *ST = cast<StoreSDNode>(Op); 6380 6381 SDValue Chain = ST->getChain(); 6382 SDValue BasePtr = ST->getBasePtr(); 6383 SDValue Value = ST->getValue(); 6384 MachineMemOperand *MMO = ST->getMemOperand(); 6385 6386 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6387 Value); 6388 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6389 } 6390 6391 // FIXME: Remove this once the ANDI glue bug is fixed: 6392 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6393 assert(Op.getValueType() == MVT::i1 && 6394 "Custom lowering only for i1 results"); 6395 6396 SDLoc DL(Op); 6397 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6398 Op.getOperand(0)); 6399 } 6400 6401 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6402 /// possible. 6403 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6404 // Not FP? Not a fsel. 6405 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6406 !Op.getOperand(2).getValueType().isFloatingPoint()) 6407 return Op; 6408 6409 // We might be able to do better than this under some circumstances, but in 6410 // general, fsel-based lowering of select is a finite-math-only optimization. 6411 // For more information, see section F.3 of the 2.06 ISA specification. 6412 if (!DAG.getTarget().Options.NoInfsFPMath || 6413 !DAG.getTarget().Options.NoNaNsFPMath) 6414 return Op; 6415 // TODO: Propagate flags from the select rather than global settings. 6416 SDNodeFlags Flags; 6417 Flags.setNoInfs(true); 6418 Flags.setNoNaNs(true); 6419 6420 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6421 6422 EVT ResVT = Op.getValueType(); 6423 EVT CmpVT = Op.getOperand(0).getValueType(); 6424 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6425 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6426 SDLoc dl(Op); 6427 6428 // If the RHS of the comparison is a 0.0, we don't need to do the 6429 // subtraction at all. 6430 SDValue Sel1; 6431 if (isFloatingPointZero(RHS)) 6432 switch (CC) { 6433 default: break; // SETUO etc aren't handled by fsel. 6434 case ISD::SETNE: 6435 std::swap(TV, FV); 6436 case ISD::SETEQ: 6437 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6438 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6439 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6440 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6441 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6442 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6443 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6444 case ISD::SETULT: 6445 case ISD::SETLT: 6446 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6447 case ISD::SETOGE: 6448 case ISD::SETGE: 6449 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6450 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6451 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6452 case ISD::SETUGT: 6453 case ISD::SETGT: 6454 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6455 case ISD::SETOLE: 6456 case ISD::SETLE: 6457 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6458 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6459 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6460 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6461 } 6462 6463 SDValue Cmp; 6464 switch (CC) { 6465 default: break; // SETUO etc aren't handled by fsel. 6466 case ISD::SETNE: 6467 std::swap(TV, FV); 6468 case ISD::SETEQ: 6469 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6470 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6471 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6472 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6473 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6474 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6475 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6476 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6477 case ISD::SETULT: 6478 case ISD::SETLT: 6479 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6480 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6481 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6482 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6483 case ISD::SETOGE: 6484 case ISD::SETGE: 6485 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6486 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6487 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6488 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6489 case ISD::SETUGT: 6490 case ISD::SETGT: 6491 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6492 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6493 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6494 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6495 case ISD::SETOLE: 6496 case ISD::SETLE: 6497 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6498 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6499 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6500 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6501 } 6502 return Op; 6503 } 6504 6505 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6506 SelectionDAG &DAG, 6507 const SDLoc &dl) const { 6508 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6509 SDValue Src = Op.getOperand(0); 6510 if (Src.getValueType() == MVT::f32) 6511 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6512 6513 SDValue Tmp; 6514 switch (Op.getSimpleValueType().SimpleTy) { 6515 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6516 case MVT::i32: 6517 Tmp = DAG.getNode( 6518 Op.getOpcode() == ISD::FP_TO_SINT 6519 ? PPCISD::FCTIWZ 6520 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6521 dl, MVT::f64, Src); 6522 break; 6523 case MVT::i64: 6524 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6525 "i64 FP_TO_UINT is supported only with FPCVT"); 6526 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6527 PPCISD::FCTIDUZ, 6528 dl, MVT::f64, Src); 6529 break; 6530 } 6531 6532 // Convert the FP value to an int value through memory. 6533 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6534 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6535 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6536 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6537 MachinePointerInfo MPI = 6538 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6539 6540 // Emit a store to the stack slot. 6541 SDValue Chain; 6542 if (i32Stack) { 6543 MachineFunction &MF = DAG.getMachineFunction(); 6544 MachineMemOperand *MMO = 6545 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6546 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6547 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6548 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6549 } else 6550 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6551 6552 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6553 // add in a bias on big endian. 6554 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6555 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6556 DAG.getConstant(4, dl, FIPtr.getValueType())); 6557 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6558 } 6559 6560 RLI.Chain = Chain; 6561 RLI.Ptr = FIPtr; 6562 RLI.MPI = MPI; 6563 } 6564 6565 /// \brief Custom lowers floating point to integer conversions to use 6566 /// the direct move instructions available in ISA 2.07 to avoid the 6567 /// need for load/store combinations. 6568 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6569 SelectionDAG &DAG, 6570 const SDLoc &dl) const { 6571 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6572 SDValue Src = Op.getOperand(0); 6573 6574 if (Src.getValueType() == MVT::f32) 6575 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6576 6577 SDValue Tmp; 6578 switch (Op.getSimpleValueType().SimpleTy) { 6579 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6580 case MVT::i32: 6581 Tmp = DAG.getNode( 6582 Op.getOpcode() == ISD::FP_TO_SINT 6583 ? PPCISD::FCTIWZ 6584 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6585 dl, MVT::f64, Src); 6586 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6587 break; 6588 case MVT::i64: 6589 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6590 "i64 FP_TO_UINT is supported only with FPCVT"); 6591 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6592 PPCISD::FCTIDUZ, 6593 dl, MVT::f64, Src); 6594 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6595 break; 6596 } 6597 return Tmp; 6598 } 6599 6600 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6601 const SDLoc &dl) const { 6602 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6603 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6604 6605 ReuseLoadInfo RLI; 6606 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6607 6608 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6609 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6610 } 6611 6612 // We're trying to insert a regular store, S, and then a load, L. If the 6613 // incoming value, O, is a load, we might just be able to have our load use the 6614 // address used by O. However, we don't know if anything else will store to 6615 // that address before we can load from it. To prevent this situation, we need 6616 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6617 // the same chain operand as O, we create a token factor from the chain results 6618 // of O and L, and we replace all uses of O's chain result with that token 6619 // factor (see spliceIntoChain below for this last part). 6620 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6621 ReuseLoadInfo &RLI, 6622 SelectionDAG &DAG, 6623 ISD::LoadExtType ET) const { 6624 SDLoc dl(Op); 6625 if (ET == ISD::NON_EXTLOAD && 6626 (Op.getOpcode() == ISD::FP_TO_UINT || 6627 Op.getOpcode() == ISD::FP_TO_SINT) && 6628 isOperationLegalOrCustom(Op.getOpcode(), 6629 Op.getOperand(0).getValueType())) { 6630 6631 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6632 return true; 6633 } 6634 6635 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6636 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6637 LD->isNonTemporal()) 6638 return false; 6639 if (LD->getMemoryVT() != MemVT) 6640 return false; 6641 6642 RLI.Ptr = LD->getBasePtr(); 6643 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6644 assert(LD->getAddressingMode() == ISD::PRE_INC && 6645 "Non-pre-inc AM on PPC?"); 6646 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6647 LD->getOffset()); 6648 } 6649 6650 RLI.Chain = LD->getChain(); 6651 RLI.MPI = LD->getPointerInfo(); 6652 RLI.IsDereferenceable = LD->isDereferenceable(); 6653 RLI.IsInvariant = LD->isInvariant(); 6654 RLI.Alignment = LD->getAlignment(); 6655 RLI.AAInfo = LD->getAAInfo(); 6656 RLI.Ranges = LD->getRanges(); 6657 6658 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6659 return true; 6660 } 6661 6662 // Given the head of the old chain, ResChain, insert a token factor containing 6663 // it and NewResChain, and make users of ResChain now be users of that token 6664 // factor. 6665 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6666 SDValue NewResChain, 6667 SelectionDAG &DAG) const { 6668 if (!ResChain) 6669 return; 6670 6671 SDLoc dl(NewResChain); 6672 6673 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6674 NewResChain, DAG.getUNDEF(MVT::Other)); 6675 assert(TF.getNode() != NewResChain.getNode() && 6676 "A new TF really is required here"); 6677 6678 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6679 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6680 } 6681 6682 /// \brief Analyze profitability of direct move 6683 /// prefer float load to int load plus direct move 6684 /// when there is no integer use of int load 6685 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 6686 SDNode *Origin = Op.getOperand(0).getNode(); 6687 if (Origin->getOpcode() != ISD::LOAD) 6688 return true; 6689 6690 // If there is no LXSIBZX/LXSIHZX, like Power8, 6691 // prefer direct move if the memory size is 1 or 2 bytes. 6692 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 6693 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 6694 return true; 6695 6696 for (SDNode::use_iterator UI = Origin->use_begin(), 6697 UE = Origin->use_end(); 6698 UI != UE; ++UI) { 6699 6700 // Only look at the users of the loaded value. 6701 if (UI.getUse().get().getResNo() != 0) 6702 continue; 6703 6704 if (UI->getOpcode() != ISD::SINT_TO_FP && 6705 UI->getOpcode() != ISD::UINT_TO_FP) 6706 return true; 6707 } 6708 6709 return false; 6710 } 6711 6712 /// \brief Custom lowers integer to floating point conversions to use 6713 /// the direct move instructions available in ISA 2.07 to avoid the 6714 /// need for load/store combinations. 6715 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6716 SelectionDAG &DAG, 6717 const SDLoc &dl) const { 6718 assert((Op.getValueType() == MVT::f32 || 6719 Op.getValueType() == MVT::f64) && 6720 "Invalid floating point type as target of conversion"); 6721 assert(Subtarget.hasFPCVT() && 6722 "Int to FP conversions with direct moves require FPCVT"); 6723 SDValue FP; 6724 SDValue Src = Op.getOperand(0); 6725 bool SinglePrec = Op.getValueType() == MVT::f32; 6726 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6727 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6728 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6729 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6730 6731 if (WordInt) { 6732 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6733 dl, MVT::f64, Src); 6734 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6735 } 6736 else { 6737 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6738 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6739 } 6740 6741 return FP; 6742 } 6743 6744 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6745 SelectionDAG &DAG) const { 6746 SDLoc dl(Op); 6747 6748 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6749 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6750 return SDValue(); 6751 6752 SDValue Value = Op.getOperand(0); 6753 // The values are now known to be -1 (false) or 1 (true). To convert this 6754 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6755 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6756 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6757 6758 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6759 6760 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6761 6762 if (Op.getValueType() != MVT::v4f64) 6763 Value = DAG.getNode(ISD::FP_ROUND, dl, 6764 Op.getValueType(), Value, 6765 DAG.getIntPtrConstant(1, dl)); 6766 return Value; 6767 } 6768 6769 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6770 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6771 return SDValue(); 6772 6773 if (Op.getOperand(0).getValueType() == MVT::i1) 6774 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6775 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6776 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6777 6778 // If we have direct moves, we can do all the conversion, skip the store/load 6779 // however, without FPCVT we can't do most conversions. 6780 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6781 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6782 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6783 6784 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6785 "UINT_TO_FP is supported only with FPCVT"); 6786 6787 // If we have FCFIDS, then use it when converting to single-precision. 6788 // Otherwise, convert to double-precision and then round. 6789 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6790 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6791 : PPCISD::FCFIDS) 6792 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6793 : PPCISD::FCFID); 6794 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6795 ? MVT::f32 6796 : MVT::f64; 6797 6798 if (Op.getOperand(0).getValueType() == MVT::i64) { 6799 SDValue SINT = Op.getOperand(0); 6800 // When converting to single-precision, we actually need to convert 6801 // to double-precision first and then round to single-precision. 6802 // To avoid double-rounding effects during that operation, we have 6803 // to prepare the input operand. Bits that might be truncated when 6804 // converting to double-precision are replaced by a bit that won't 6805 // be lost at this stage, but is below the single-precision rounding 6806 // position. 6807 // 6808 // However, if -enable-unsafe-fp-math is in effect, accept double 6809 // rounding to avoid the extra overhead. 6810 if (Op.getValueType() == MVT::f32 && 6811 !Subtarget.hasFPCVT() && 6812 !DAG.getTarget().Options.UnsafeFPMath) { 6813 6814 // Twiddle input to make sure the low 11 bits are zero. (If this 6815 // is the case, we are guaranteed the value will fit into the 53 bit 6816 // mantissa of an IEEE double-precision value without rounding.) 6817 // If any of those low 11 bits were not zero originally, make sure 6818 // bit 12 (value 2048) is set instead, so that the final rounding 6819 // to single-precision gets the correct result. 6820 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6821 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6822 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6823 Round, DAG.getConstant(2047, dl, MVT::i64)); 6824 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6825 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6826 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6827 6828 // However, we cannot use that value unconditionally: if the magnitude 6829 // of the input value is small, the bit-twiddling we did above might 6830 // end up visibly changing the output. Fortunately, in that case, we 6831 // don't need to twiddle bits since the original input will convert 6832 // exactly to double-precision floating-point already. Therefore, 6833 // construct a conditional to use the original value if the top 11 6834 // bits are all sign-bit copies, and use the rounded value computed 6835 // above otherwise. 6836 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6837 SINT, DAG.getConstant(53, dl, MVT::i32)); 6838 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6839 Cond, DAG.getConstant(1, dl, MVT::i64)); 6840 Cond = DAG.getSetCC(dl, MVT::i32, 6841 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6842 6843 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6844 } 6845 6846 ReuseLoadInfo RLI; 6847 SDValue Bits; 6848 6849 MachineFunction &MF = DAG.getMachineFunction(); 6850 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6851 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6852 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6853 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6854 } else if (Subtarget.hasLFIWAX() && 6855 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6856 MachineMemOperand *MMO = 6857 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6858 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6859 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6860 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6861 DAG.getVTList(MVT::f64, MVT::Other), 6862 Ops, MVT::i32, MMO); 6863 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6864 } else if (Subtarget.hasFPCVT() && 6865 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6866 MachineMemOperand *MMO = 6867 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6868 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6869 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6870 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6871 DAG.getVTList(MVT::f64, MVT::Other), 6872 Ops, MVT::i32, MMO); 6873 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6874 } else if (((Subtarget.hasLFIWAX() && 6875 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6876 (Subtarget.hasFPCVT() && 6877 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6878 SINT.getOperand(0).getValueType() == MVT::i32) { 6879 MachineFrameInfo &MFI = MF.getFrameInfo(); 6880 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6881 6882 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6883 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6884 6885 SDValue Store = 6886 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6887 MachinePointerInfo::getFixedStack( 6888 DAG.getMachineFunction(), FrameIdx)); 6889 6890 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6891 "Expected an i32 store"); 6892 6893 RLI.Ptr = FIdx; 6894 RLI.Chain = Store; 6895 RLI.MPI = 6896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6897 RLI.Alignment = 4; 6898 6899 MachineMemOperand *MMO = 6900 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6901 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6902 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6903 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6904 PPCISD::LFIWZX : PPCISD::LFIWAX, 6905 dl, DAG.getVTList(MVT::f64, MVT::Other), 6906 Ops, MVT::i32, MMO); 6907 } else 6908 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6909 6910 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6911 6912 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6913 FP = DAG.getNode(ISD::FP_ROUND, dl, 6914 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6915 return FP; 6916 } 6917 6918 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6919 "Unhandled INT_TO_FP type in custom expander!"); 6920 // Since we only generate this in 64-bit mode, we can take advantage of 6921 // 64-bit registers. In particular, sign extend the input value into the 6922 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6923 // then lfd it and fcfid it. 6924 MachineFunction &MF = DAG.getMachineFunction(); 6925 MachineFrameInfo &MFI = MF.getFrameInfo(); 6926 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6927 6928 SDValue Ld; 6929 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6930 ReuseLoadInfo RLI; 6931 bool ReusingLoad; 6932 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6933 DAG))) { 6934 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6935 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6936 6937 SDValue Store = 6938 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6939 MachinePointerInfo::getFixedStack( 6940 DAG.getMachineFunction(), FrameIdx)); 6941 6942 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6943 "Expected an i32 store"); 6944 6945 RLI.Ptr = FIdx; 6946 RLI.Chain = Store; 6947 RLI.MPI = 6948 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6949 RLI.Alignment = 4; 6950 } 6951 6952 MachineMemOperand *MMO = 6953 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6954 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6955 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6956 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6957 PPCISD::LFIWZX : PPCISD::LFIWAX, 6958 dl, DAG.getVTList(MVT::f64, MVT::Other), 6959 Ops, MVT::i32, MMO); 6960 if (ReusingLoad) 6961 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6962 } else { 6963 assert(Subtarget.isPPC64() && 6964 "i32->FP without LFIWAX supported only on PPC64"); 6965 6966 int FrameIdx = MFI.CreateStackObject(8, 8, false); 6967 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6968 6969 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6970 Op.getOperand(0)); 6971 6972 // STD the extended value into the stack slot. 6973 SDValue Store = DAG.getStore( 6974 DAG.getEntryNode(), dl, Ext64, FIdx, 6975 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6976 6977 // Load the value as a double. 6978 Ld = DAG.getLoad( 6979 MVT::f64, dl, Store, FIdx, 6980 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6981 } 6982 6983 // FCFID it and return it. 6984 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6985 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6986 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6987 DAG.getIntPtrConstant(0, dl)); 6988 return FP; 6989 } 6990 6991 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6992 SelectionDAG &DAG) const { 6993 SDLoc dl(Op); 6994 /* 6995 The rounding mode is in bits 30:31 of FPSR, and has the following 6996 settings: 6997 00 Round to nearest 6998 01 Round to 0 6999 10 Round to +inf 7000 11 Round to -inf 7001 7002 FLT_ROUNDS, on the other hand, expects the following: 7003 -1 Undefined 7004 0 Round to 0 7005 1 Round to nearest 7006 2 Round to +inf 7007 3 Round to -inf 7008 7009 To perform the conversion, we do: 7010 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7011 */ 7012 7013 MachineFunction &MF = DAG.getMachineFunction(); 7014 EVT VT = Op.getValueType(); 7015 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7016 7017 // Save FP Control Word to register 7018 EVT NodeTys[] = { 7019 MVT::f64, // return register 7020 MVT::Glue // unused in this context 7021 }; 7022 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7023 7024 // Save FP register to stack slot 7025 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7026 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7027 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7028 MachinePointerInfo()); 7029 7030 // Load FP Control Word from low 32 bits of stack slot. 7031 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7032 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7033 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7034 7035 // Transform as necessary 7036 SDValue CWD1 = 7037 DAG.getNode(ISD::AND, dl, MVT::i32, 7038 CWD, DAG.getConstant(3, dl, MVT::i32)); 7039 SDValue CWD2 = 7040 DAG.getNode(ISD::SRL, dl, MVT::i32, 7041 DAG.getNode(ISD::AND, dl, MVT::i32, 7042 DAG.getNode(ISD::XOR, dl, MVT::i32, 7043 CWD, DAG.getConstant(3, dl, MVT::i32)), 7044 DAG.getConstant(3, dl, MVT::i32)), 7045 DAG.getConstant(1, dl, MVT::i32)); 7046 7047 SDValue RetVal = 7048 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7049 7050 return DAG.getNode((VT.getSizeInBits() < 16 ? 7051 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7052 } 7053 7054 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7055 EVT VT = Op.getValueType(); 7056 unsigned BitWidth = VT.getSizeInBits(); 7057 SDLoc dl(Op); 7058 assert(Op.getNumOperands() == 3 && 7059 VT == Op.getOperand(1).getValueType() && 7060 "Unexpected SHL!"); 7061 7062 // Expand into a bunch of logical ops. Note that these ops 7063 // depend on the PPC behavior for oversized shift amounts. 7064 SDValue Lo = Op.getOperand(0); 7065 SDValue Hi = Op.getOperand(1); 7066 SDValue Amt = Op.getOperand(2); 7067 EVT AmtVT = Amt.getValueType(); 7068 7069 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7070 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7071 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7072 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7073 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7074 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7075 DAG.getConstant(-BitWidth, dl, AmtVT)); 7076 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7077 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7078 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7079 SDValue OutOps[] = { OutLo, OutHi }; 7080 return DAG.getMergeValues(OutOps, dl); 7081 } 7082 7083 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7084 EVT VT = Op.getValueType(); 7085 SDLoc dl(Op); 7086 unsigned BitWidth = VT.getSizeInBits(); 7087 assert(Op.getNumOperands() == 3 && 7088 VT == Op.getOperand(1).getValueType() && 7089 "Unexpected SRL!"); 7090 7091 // Expand into a bunch of logical ops. Note that these ops 7092 // depend on the PPC behavior for oversized shift amounts. 7093 SDValue Lo = Op.getOperand(0); 7094 SDValue Hi = Op.getOperand(1); 7095 SDValue Amt = Op.getOperand(2); 7096 EVT AmtVT = Amt.getValueType(); 7097 7098 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7099 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7100 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7101 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7102 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7103 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7104 DAG.getConstant(-BitWidth, dl, AmtVT)); 7105 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7106 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7107 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7108 SDValue OutOps[] = { OutLo, OutHi }; 7109 return DAG.getMergeValues(OutOps, dl); 7110 } 7111 7112 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7113 SDLoc dl(Op); 7114 EVT VT = Op.getValueType(); 7115 unsigned BitWidth = VT.getSizeInBits(); 7116 assert(Op.getNumOperands() == 3 && 7117 VT == Op.getOperand(1).getValueType() && 7118 "Unexpected SRA!"); 7119 7120 // Expand into a bunch of logical ops, followed by a select_cc. 7121 SDValue Lo = Op.getOperand(0); 7122 SDValue Hi = Op.getOperand(1); 7123 SDValue Amt = Op.getOperand(2); 7124 EVT AmtVT = Amt.getValueType(); 7125 7126 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7127 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7128 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7129 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7130 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7131 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7132 DAG.getConstant(-BitWidth, dl, AmtVT)); 7133 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7134 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7135 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7136 Tmp4, Tmp6, ISD::SETLE); 7137 SDValue OutOps[] = { OutLo, OutHi }; 7138 return DAG.getMergeValues(OutOps, dl); 7139 } 7140 7141 //===----------------------------------------------------------------------===// 7142 // Vector related lowering. 7143 // 7144 7145 /// BuildSplatI - Build a canonical splati of Val with an element size of 7146 /// SplatSize. Cast the result to VT. 7147 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7148 SelectionDAG &DAG, const SDLoc &dl) { 7149 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7150 7151 static const MVT VTys[] = { // canonical VT to use for each size. 7152 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7153 }; 7154 7155 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7156 7157 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7158 if (Val == -1) 7159 SplatSize = 1; 7160 7161 EVT CanonicalVT = VTys[SplatSize-1]; 7162 7163 // Build a canonical splat for this value. 7164 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7165 } 7166 7167 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7168 /// specified intrinsic ID. 7169 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7170 const SDLoc &dl, EVT DestVT = MVT::Other) { 7171 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7172 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7173 DAG.getConstant(IID, dl, MVT::i32), Op); 7174 } 7175 7176 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7177 /// specified intrinsic ID. 7178 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7179 SelectionDAG &DAG, const SDLoc &dl, 7180 EVT DestVT = MVT::Other) { 7181 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7182 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7183 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7184 } 7185 7186 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7187 /// specified intrinsic ID. 7188 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7189 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7190 EVT DestVT = MVT::Other) { 7191 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7192 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7193 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7194 } 7195 7196 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7197 /// amount. The result has the specified value type. 7198 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7199 SelectionDAG &DAG, const SDLoc &dl) { 7200 // Force LHS/RHS to be the right type. 7201 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7202 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7203 7204 int Ops[16]; 7205 for (unsigned i = 0; i != 16; ++i) 7206 Ops[i] = i + Amt; 7207 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7208 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7209 } 7210 7211 /// Do we have an efficient pattern in a .td file for this node? 7212 /// 7213 /// \param V - pointer to the BuildVectorSDNode being matched 7214 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7215 /// 7216 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7217 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7218 /// the opposite is true (expansion is beneficial) are: 7219 /// - The node builds a vector out of integers that are not 32 or 64-bits 7220 /// - The node builds a vector out of constants 7221 /// - The node is a "load-and-splat" 7222 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7223 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7224 bool HasDirectMove) { 7225 EVT VecVT = V->getValueType(0); 7226 bool RightType = VecVT == MVT::v2f64 || VecVT == MVT::v4f32 || 7227 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7228 if (!RightType) 7229 return false; 7230 7231 bool IsSplat = true; 7232 bool IsLoad = false; 7233 SDValue Op0 = V->getOperand(0); 7234 7235 // This function is called in a block that confirms the node is not a constant 7236 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7237 // different constants. 7238 if (V->isConstant()) 7239 return false; 7240 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7241 if (V->getOperand(i).isUndef()) 7242 return false; 7243 // We want to expand nodes that represent load-and-splat even if the 7244 // loaded value is a floating point truncation or conversion to int. 7245 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7246 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7247 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7248 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7249 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7250 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7251 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7252 IsLoad = true; 7253 // If the operands are different or the input is not a load and has more 7254 // uses than just this BV node, then it isn't a splat. 7255 if (V->getOperand(i) != Op0 || 7256 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7257 IsSplat = false; 7258 } 7259 return !(IsSplat && IsLoad); 7260 } 7261 7262 // If this is a case we can't handle, return null and let the default 7263 // expansion code take care of it. If we CAN select this case, and if it 7264 // selects to a single instruction, return Op. Otherwise, if we can codegen 7265 // this case more efficiently than a constant pool load, lower it to the 7266 // sequence of ops that should be used. 7267 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7268 SelectionDAG &DAG) const { 7269 SDLoc dl(Op); 7270 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7271 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7272 7273 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7274 // We first build an i32 vector, load it into a QPX register, 7275 // then convert it to a floating-point vector and compare it 7276 // to a zero vector to get the boolean result. 7277 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7278 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7279 MachinePointerInfo PtrInfo = 7280 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7281 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7282 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7283 7284 assert(BVN->getNumOperands() == 4 && 7285 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7286 7287 bool IsConst = true; 7288 for (unsigned i = 0; i < 4; ++i) { 7289 if (BVN->getOperand(i).isUndef()) continue; 7290 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7291 IsConst = false; 7292 break; 7293 } 7294 } 7295 7296 if (IsConst) { 7297 Constant *One = 7298 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7299 Constant *NegOne = 7300 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7301 7302 Constant *CV[4]; 7303 for (unsigned i = 0; i < 4; ++i) { 7304 if (BVN->getOperand(i).isUndef()) 7305 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7306 else if (isNullConstant(BVN->getOperand(i))) 7307 CV[i] = NegOne; 7308 else 7309 CV[i] = One; 7310 } 7311 7312 Constant *CP = ConstantVector::get(CV); 7313 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7314 16 /* alignment */); 7315 7316 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7317 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7318 return DAG.getMemIntrinsicNode( 7319 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7320 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7321 } 7322 7323 SmallVector<SDValue, 4> Stores; 7324 for (unsigned i = 0; i < 4; ++i) { 7325 if (BVN->getOperand(i).isUndef()) continue; 7326 7327 unsigned Offset = 4*i; 7328 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7329 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7330 7331 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7332 if (StoreSize > 4) { 7333 Stores.push_back( 7334 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7335 PtrInfo.getWithOffset(Offset), MVT::i32)); 7336 } else { 7337 SDValue StoreValue = BVN->getOperand(i); 7338 if (StoreSize < 4) 7339 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7340 7341 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7342 PtrInfo.getWithOffset(Offset))); 7343 } 7344 } 7345 7346 SDValue StoreChain; 7347 if (!Stores.empty()) 7348 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7349 else 7350 StoreChain = DAG.getEntryNode(); 7351 7352 // Now load from v4i32 into the QPX register; this will extend it to 7353 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7354 // is typed as v4f64 because the QPX register integer states are not 7355 // explicitly represented. 7356 7357 SDValue Ops[] = {StoreChain, 7358 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7359 FIdx}; 7360 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7361 7362 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7363 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7364 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7365 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7366 LoadedVect); 7367 7368 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7369 7370 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7371 } 7372 7373 // All other QPX vectors are handled by generic code. 7374 if (Subtarget.hasQPX()) 7375 return SDValue(); 7376 7377 // Check if this is a splat of a constant value. 7378 APInt APSplatBits, APSplatUndef; 7379 unsigned SplatBitSize; 7380 bool HasAnyUndefs; 7381 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7382 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7383 SplatBitSize > 32) { 7384 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7385 // lowered to VSX instructions under certain conditions. 7386 // Without VSX, there is no pattern more efficient than expanding the node. 7387 if (Subtarget.hasVSX() && 7388 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove())) 7389 return Op; 7390 return SDValue(); 7391 } 7392 7393 unsigned SplatBits = APSplatBits.getZExtValue(); 7394 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7395 unsigned SplatSize = SplatBitSize / 8; 7396 7397 // First, handle single instruction cases. 7398 7399 // All zeros? 7400 if (SplatBits == 0) { 7401 // Canonicalize all zero vectors to be v4i32. 7402 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7403 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7404 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7405 } 7406 return Op; 7407 } 7408 7409 // We have XXSPLTIB for constant splats one byte wide 7410 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7411 // This is a splat of 1-byte elements with some elements potentially undef. 7412 // Rather than trying to match undef in the SDAG patterns, ensure that all 7413 // elements are the same constant. 7414 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7415 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7416 dl, MVT::i32)); 7417 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7418 if (Op.getValueType() != MVT::v16i8) 7419 return DAG.getBitcast(Op.getValueType(), NewBV); 7420 return NewBV; 7421 } 7422 return Op; 7423 } 7424 7425 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7426 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7427 (32-SplatBitSize)); 7428 if (SextVal >= -16 && SextVal <= 15) 7429 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7430 7431 // Two instruction sequences. 7432 7433 // If this value is in the range [-32,30] and is even, use: 7434 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7435 // If this value is in the range [17,31] and is odd, use: 7436 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7437 // If this value is in the range [-31,-17] and is odd, use: 7438 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7439 // Note the last two are three-instruction sequences. 7440 if (SextVal >= -32 && SextVal <= 31) { 7441 // To avoid having these optimizations undone by constant folding, 7442 // we convert to a pseudo that will be expanded later into one of 7443 // the above forms. 7444 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7445 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7446 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7447 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7448 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7449 if (VT == Op.getValueType()) 7450 return RetVal; 7451 else 7452 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7453 } 7454 7455 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7456 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7457 // for fneg/fabs. 7458 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7459 // Make -1 and vspltisw -1: 7460 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7461 7462 // Make the VSLW intrinsic, computing 0x8000_0000. 7463 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7464 OnesV, DAG, dl); 7465 7466 // xor by OnesV to invert it. 7467 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7468 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7469 } 7470 7471 // Check to see if this is a wide variety of vsplti*, binop self cases. 7472 static const signed char SplatCsts[] = { 7473 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7474 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7475 }; 7476 7477 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7478 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7479 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7480 int i = SplatCsts[idx]; 7481 7482 // Figure out what shift amount will be used by altivec if shifted by i in 7483 // this splat size. 7484 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7485 7486 // vsplti + shl self. 7487 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7488 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7489 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7490 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7491 Intrinsic::ppc_altivec_vslw 7492 }; 7493 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7494 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7495 } 7496 7497 // vsplti + srl self. 7498 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7499 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7500 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7501 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7502 Intrinsic::ppc_altivec_vsrw 7503 }; 7504 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7505 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7506 } 7507 7508 // vsplti + sra self. 7509 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7510 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7511 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7512 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7513 Intrinsic::ppc_altivec_vsraw 7514 }; 7515 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7516 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7517 } 7518 7519 // vsplti + rol self. 7520 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7521 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7522 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7523 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7524 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7525 Intrinsic::ppc_altivec_vrlw 7526 }; 7527 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7528 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7529 } 7530 7531 // t = vsplti c, result = vsldoi t, t, 1 7532 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7533 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7534 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7535 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7536 } 7537 // t = vsplti c, result = vsldoi t, t, 2 7538 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7539 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7540 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7541 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7542 } 7543 // t = vsplti c, result = vsldoi t, t, 3 7544 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7545 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7546 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7547 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7548 } 7549 } 7550 7551 return SDValue(); 7552 } 7553 7554 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7555 /// the specified operations to build the shuffle. 7556 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7557 SDValue RHS, SelectionDAG &DAG, 7558 const SDLoc &dl) { 7559 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7560 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7561 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7562 7563 enum { 7564 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7565 OP_VMRGHW, 7566 OP_VMRGLW, 7567 OP_VSPLTISW0, 7568 OP_VSPLTISW1, 7569 OP_VSPLTISW2, 7570 OP_VSPLTISW3, 7571 OP_VSLDOI4, 7572 OP_VSLDOI8, 7573 OP_VSLDOI12 7574 }; 7575 7576 if (OpNum == OP_COPY) { 7577 if (LHSID == (1*9+2)*9+3) return LHS; 7578 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7579 return RHS; 7580 } 7581 7582 SDValue OpLHS, OpRHS; 7583 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7584 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7585 7586 int ShufIdxs[16]; 7587 switch (OpNum) { 7588 default: llvm_unreachable("Unknown i32 permute!"); 7589 case OP_VMRGHW: 7590 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7591 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7592 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7593 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7594 break; 7595 case OP_VMRGLW: 7596 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7597 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7598 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7599 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7600 break; 7601 case OP_VSPLTISW0: 7602 for (unsigned i = 0; i != 16; ++i) 7603 ShufIdxs[i] = (i&3)+0; 7604 break; 7605 case OP_VSPLTISW1: 7606 for (unsigned i = 0; i != 16; ++i) 7607 ShufIdxs[i] = (i&3)+4; 7608 break; 7609 case OP_VSPLTISW2: 7610 for (unsigned i = 0; i != 16; ++i) 7611 ShufIdxs[i] = (i&3)+8; 7612 break; 7613 case OP_VSPLTISW3: 7614 for (unsigned i = 0; i != 16; ++i) 7615 ShufIdxs[i] = (i&3)+12; 7616 break; 7617 case OP_VSLDOI4: 7618 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7619 case OP_VSLDOI8: 7620 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7621 case OP_VSLDOI12: 7622 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7623 } 7624 EVT VT = OpLHS.getValueType(); 7625 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7626 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7627 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7628 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7629 } 7630 7631 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7632 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7633 /// return the code it can be lowered into. Worst case, it can always be 7634 /// lowered into a vperm. 7635 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7636 SelectionDAG &DAG) const { 7637 SDLoc dl(Op); 7638 SDValue V1 = Op.getOperand(0); 7639 SDValue V2 = Op.getOperand(1); 7640 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7641 EVT VT = Op.getValueType(); 7642 bool isLittleEndian = Subtarget.isLittleEndian(); 7643 7644 unsigned ShiftElts, InsertAtByte; 7645 bool Swap; 7646 if (Subtarget.hasP9Vector() && 7647 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 7648 isLittleEndian)) { 7649 if (Swap) 7650 std::swap(V1, V2); 7651 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7652 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 7653 if (ShiftElts) { 7654 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 7655 DAG.getConstant(ShiftElts, dl, MVT::i32)); 7656 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl, 7657 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7658 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7659 } 7660 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2, 7661 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7662 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7663 } 7664 7665 if (Subtarget.hasVSX()) { 7666 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7667 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7668 7669 // If the source for the shuffle is a scalar_to_vector that came from a 7670 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 7671 if (Subtarget.hasP9Vector() && 7672 ((isLittleEndian && SplatIdx == 3) || 7673 (!isLittleEndian && SplatIdx == 0))) { 7674 SDValue Src = V1.getOperand(0); 7675 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 7676 Src.getOperand(0).getOpcode() == ISD::LOAD && 7677 Src.getOperand(0).hasOneUse()) 7678 return V1; 7679 } 7680 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7681 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7682 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7683 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7684 } 7685 7686 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 7687 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 7688 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 7689 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 7690 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 7691 } 7692 } 7693 7694 if (Subtarget.hasQPX()) { 7695 if (VT.getVectorNumElements() != 4) 7696 return SDValue(); 7697 7698 if (V2.isUndef()) V2 = V1; 7699 7700 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7701 if (AlignIdx != -1) { 7702 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7703 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7704 } else if (SVOp->isSplat()) { 7705 int SplatIdx = SVOp->getSplatIndex(); 7706 if (SplatIdx >= 4) { 7707 std::swap(V1, V2); 7708 SplatIdx -= 4; 7709 } 7710 7711 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7712 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7713 } 7714 7715 // Lower this into a qvgpci/qvfperm pair. 7716 7717 // Compute the qvgpci literal 7718 unsigned idx = 0; 7719 for (unsigned i = 0; i < 4; ++i) { 7720 int m = SVOp->getMaskElt(i); 7721 unsigned mm = m >= 0 ? (unsigned) m : i; 7722 idx |= mm << (3-i)*3; 7723 } 7724 7725 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7726 DAG.getConstant(idx, dl, MVT::i32)); 7727 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7728 } 7729 7730 // Cases that are handled by instructions that take permute immediates 7731 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7732 // selected by the instruction selector. 7733 if (V2.isUndef()) { 7734 if (PPC::isSplatShuffleMask(SVOp, 1) || 7735 PPC::isSplatShuffleMask(SVOp, 2) || 7736 PPC::isSplatShuffleMask(SVOp, 4) || 7737 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7738 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7739 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7740 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7741 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7742 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7743 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7744 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7745 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7746 (Subtarget.hasP8Altivec() && ( 7747 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7748 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7749 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7750 return Op; 7751 } 7752 } 7753 7754 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7755 // and produce a fixed permutation. If any of these match, do not lower to 7756 // VPERM. 7757 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7758 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7759 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7760 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7761 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7762 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7763 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7764 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7765 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7766 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7767 (Subtarget.hasP8Altivec() && ( 7768 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7769 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7770 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7771 return Op; 7772 7773 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7774 // perfect shuffle table to emit an optimal matching sequence. 7775 ArrayRef<int> PermMask = SVOp->getMask(); 7776 7777 unsigned PFIndexes[4]; 7778 bool isFourElementShuffle = true; 7779 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7780 unsigned EltNo = 8; // Start out undef. 7781 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7782 if (PermMask[i*4+j] < 0) 7783 continue; // Undef, ignore it. 7784 7785 unsigned ByteSource = PermMask[i*4+j]; 7786 if ((ByteSource & 3) != j) { 7787 isFourElementShuffle = false; 7788 break; 7789 } 7790 7791 if (EltNo == 8) { 7792 EltNo = ByteSource/4; 7793 } else if (EltNo != ByteSource/4) { 7794 isFourElementShuffle = false; 7795 break; 7796 } 7797 } 7798 PFIndexes[i] = EltNo; 7799 } 7800 7801 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7802 // perfect shuffle vector to determine if it is cost effective to do this as 7803 // discrete instructions, or whether we should use a vperm. 7804 // For now, we skip this for little endian until such time as we have a 7805 // little-endian perfect shuffle table. 7806 if (isFourElementShuffle && !isLittleEndian) { 7807 // Compute the index in the perfect shuffle table. 7808 unsigned PFTableIndex = 7809 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7810 7811 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7812 unsigned Cost = (PFEntry >> 30); 7813 7814 // Determining when to avoid vperm is tricky. Many things affect the cost 7815 // of vperm, particularly how many times the perm mask needs to be computed. 7816 // For example, if the perm mask can be hoisted out of a loop or is already 7817 // used (perhaps because there are multiple permutes with the same shuffle 7818 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7819 // the loop requires an extra register. 7820 // 7821 // As a compromise, we only emit discrete instructions if the shuffle can be 7822 // generated in 3 or fewer operations. When we have loop information 7823 // available, if this block is within a loop, we should avoid using vperm 7824 // for 3-operation perms and use a constant pool load instead. 7825 if (Cost < 3) 7826 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7827 } 7828 7829 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7830 // vector that will get spilled to the constant pool. 7831 if (V2.isUndef()) V2 = V1; 7832 7833 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7834 // that it is in input element units, not in bytes. Convert now. 7835 7836 // For little endian, the order of the input vectors is reversed, and 7837 // the permutation mask is complemented with respect to 31. This is 7838 // necessary to produce proper semantics with the big-endian-biased vperm 7839 // instruction. 7840 EVT EltVT = V1.getValueType().getVectorElementType(); 7841 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7842 7843 SmallVector<SDValue, 16> ResultMask; 7844 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7845 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7846 7847 for (unsigned j = 0; j != BytesPerElement; ++j) 7848 if (isLittleEndian) 7849 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7850 dl, MVT::i32)); 7851 else 7852 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7853 MVT::i32)); 7854 } 7855 7856 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7857 if (isLittleEndian) 7858 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7859 V2, V1, VPermMask); 7860 else 7861 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7862 V1, V2, VPermMask); 7863 } 7864 7865 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7866 /// vector comparison. If it is, return true and fill in Opc/isDot with 7867 /// information about the intrinsic. 7868 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7869 bool &isDot, const PPCSubtarget &Subtarget) { 7870 unsigned IntrinsicID = 7871 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7872 CompareOpc = -1; 7873 isDot = false; 7874 switch (IntrinsicID) { 7875 default: 7876 return false; 7877 // Comparison predicates. 7878 case Intrinsic::ppc_altivec_vcmpbfp_p: 7879 CompareOpc = 966; 7880 isDot = true; 7881 break; 7882 case Intrinsic::ppc_altivec_vcmpeqfp_p: 7883 CompareOpc = 198; 7884 isDot = true; 7885 break; 7886 case Intrinsic::ppc_altivec_vcmpequb_p: 7887 CompareOpc = 6; 7888 isDot = true; 7889 break; 7890 case Intrinsic::ppc_altivec_vcmpequh_p: 7891 CompareOpc = 70; 7892 isDot = true; 7893 break; 7894 case Intrinsic::ppc_altivec_vcmpequw_p: 7895 CompareOpc = 134; 7896 isDot = true; 7897 break; 7898 case Intrinsic::ppc_altivec_vcmpequd_p: 7899 if (Subtarget.hasP8Altivec()) { 7900 CompareOpc = 199; 7901 isDot = true; 7902 } else 7903 return false; 7904 break; 7905 case Intrinsic::ppc_altivec_vcmpneb_p: 7906 case Intrinsic::ppc_altivec_vcmpneh_p: 7907 case Intrinsic::ppc_altivec_vcmpnew_p: 7908 case Intrinsic::ppc_altivec_vcmpnezb_p: 7909 case Intrinsic::ppc_altivec_vcmpnezh_p: 7910 case Intrinsic::ppc_altivec_vcmpnezw_p: 7911 if (Subtarget.hasP9Altivec()) { 7912 switch (IntrinsicID) { 7913 default: 7914 llvm_unreachable("Unknown comparison intrinsic."); 7915 case Intrinsic::ppc_altivec_vcmpneb_p: 7916 CompareOpc = 7; 7917 break; 7918 case Intrinsic::ppc_altivec_vcmpneh_p: 7919 CompareOpc = 71; 7920 break; 7921 case Intrinsic::ppc_altivec_vcmpnew_p: 7922 CompareOpc = 135; 7923 break; 7924 case Intrinsic::ppc_altivec_vcmpnezb_p: 7925 CompareOpc = 263; 7926 break; 7927 case Intrinsic::ppc_altivec_vcmpnezh_p: 7928 CompareOpc = 327; 7929 break; 7930 case Intrinsic::ppc_altivec_vcmpnezw_p: 7931 CompareOpc = 391; 7932 break; 7933 } 7934 isDot = true; 7935 } else 7936 return false; 7937 break; 7938 case Intrinsic::ppc_altivec_vcmpgefp_p: 7939 CompareOpc = 454; 7940 isDot = true; 7941 break; 7942 case Intrinsic::ppc_altivec_vcmpgtfp_p: 7943 CompareOpc = 710; 7944 isDot = true; 7945 break; 7946 case Intrinsic::ppc_altivec_vcmpgtsb_p: 7947 CompareOpc = 774; 7948 isDot = true; 7949 break; 7950 case Intrinsic::ppc_altivec_vcmpgtsh_p: 7951 CompareOpc = 838; 7952 isDot = true; 7953 break; 7954 case Intrinsic::ppc_altivec_vcmpgtsw_p: 7955 CompareOpc = 902; 7956 isDot = true; 7957 break; 7958 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7959 if (Subtarget.hasP8Altivec()) { 7960 CompareOpc = 967; 7961 isDot = true; 7962 } else 7963 return false; 7964 break; 7965 case Intrinsic::ppc_altivec_vcmpgtub_p: 7966 CompareOpc = 518; 7967 isDot = true; 7968 break; 7969 case Intrinsic::ppc_altivec_vcmpgtuh_p: 7970 CompareOpc = 582; 7971 isDot = true; 7972 break; 7973 case Intrinsic::ppc_altivec_vcmpgtuw_p: 7974 CompareOpc = 646; 7975 isDot = true; 7976 break; 7977 case Intrinsic::ppc_altivec_vcmpgtud_p: 7978 if (Subtarget.hasP8Altivec()) { 7979 CompareOpc = 711; 7980 isDot = true; 7981 } else 7982 return false; 7983 break; 7984 7985 // VSX predicate comparisons use the same infrastructure 7986 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7987 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7988 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7989 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7990 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7991 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7992 if (Subtarget.hasVSX()) { 7993 switch (IntrinsicID) { 7994 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7995 CompareOpc = 99; 7996 break; 7997 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7998 CompareOpc = 115; 7999 break; 8000 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8001 CompareOpc = 107; 8002 break; 8003 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8004 CompareOpc = 67; 8005 break; 8006 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8007 CompareOpc = 83; 8008 break; 8009 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8010 CompareOpc = 75; 8011 break; 8012 } 8013 isDot = true; 8014 } else 8015 return false; 8016 break; 8017 8018 // Normal Comparisons. 8019 case Intrinsic::ppc_altivec_vcmpbfp: 8020 CompareOpc = 966; 8021 break; 8022 case Intrinsic::ppc_altivec_vcmpeqfp: 8023 CompareOpc = 198; 8024 break; 8025 case Intrinsic::ppc_altivec_vcmpequb: 8026 CompareOpc = 6; 8027 break; 8028 case Intrinsic::ppc_altivec_vcmpequh: 8029 CompareOpc = 70; 8030 break; 8031 case Intrinsic::ppc_altivec_vcmpequw: 8032 CompareOpc = 134; 8033 break; 8034 case Intrinsic::ppc_altivec_vcmpequd: 8035 if (Subtarget.hasP8Altivec()) 8036 CompareOpc = 199; 8037 else 8038 return false; 8039 break; 8040 case Intrinsic::ppc_altivec_vcmpneb: 8041 case Intrinsic::ppc_altivec_vcmpneh: 8042 case Intrinsic::ppc_altivec_vcmpnew: 8043 case Intrinsic::ppc_altivec_vcmpnezb: 8044 case Intrinsic::ppc_altivec_vcmpnezh: 8045 case Intrinsic::ppc_altivec_vcmpnezw: 8046 if (Subtarget.hasP9Altivec()) 8047 switch (IntrinsicID) { 8048 default: 8049 llvm_unreachable("Unknown comparison intrinsic."); 8050 case Intrinsic::ppc_altivec_vcmpneb: 8051 CompareOpc = 7; 8052 break; 8053 case Intrinsic::ppc_altivec_vcmpneh: 8054 CompareOpc = 71; 8055 break; 8056 case Intrinsic::ppc_altivec_vcmpnew: 8057 CompareOpc = 135; 8058 break; 8059 case Intrinsic::ppc_altivec_vcmpnezb: 8060 CompareOpc = 263; 8061 break; 8062 case Intrinsic::ppc_altivec_vcmpnezh: 8063 CompareOpc = 327; 8064 break; 8065 case Intrinsic::ppc_altivec_vcmpnezw: 8066 CompareOpc = 391; 8067 break; 8068 } 8069 else 8070 return false; 8071 break; 8072 case Intrinsic::ppc_altivec_vcmpgefp: 8073 CompareOpc = 454; 8074 break; 8075 case Intrinsic::ppc_altivec_vcmpgtfp: 8076 CompareOpc = 710; 8077 break; 8078 case Intrinsic::ppc_altivec_vcmpgtsb: 8079 CompareOpc = 774; 8080 break; 8081 case Intrinsic::ppc_altivec_vcmpgtsh: 8082 CompareOpc = 838; 8083 break; 8084 case Intrinsic::ppc_altivec_vcmpgtsw: 8085 CompareOpc = 902; 8086 break; 8087 case Intrinsic::ppc_altivec_vcmpgtsd: 8088 if (Subtarget.hasP8Altivec()) 8089 CompareOpc = 967; 8090 else 8091 return false; 8092 break; 8093 case Intrinsic::ppc_altivec_vcmpgtub: 8094 CompareOpc = 518; 8095 break; 8096 case Intrinsic::ppc_altivec_vcmpgtuh: 8097 CompareOpc = 582; 8098 break; 8099 case Intrinsic::ppc_altivec_vcmpgtuw: 8100 CompareOpc = 646; 8101 break; 8102 case Intrinsic::ppc_altivec_vcmpgtud: 8103 if (Subtarget.hasP8Altivec()) 8104 CompareOpc = 711; 8105 else 8106 return false; 8107 break; 8108 } 8109 return true; 8110 } 8111 8112 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8113 /// lower, do it, otherwise return null. 8114 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8115 SelectionDAG &DAG) const { 8116 unsigned IntrinsicID = 8117 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8118 8119 if (IntrinsicID == Intrinsic::thread_pointer) { 8120 // Reads the thread pointer register, used for __builtin_thread_pointer. 8121 bool is64bit = Subtarget.isPPC64(); 8122 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 8123 is64bit ? MVT::i64 : MVT::i32); 8124 } 8125 8126 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8127 // opcode number of the comparison. 8128 SDLoc dl(Op); 8129 int CompareOpc; 8130 bool isDot; 8131 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8132 return SDValue(); // Don't custom lower most intrinsics. 8133 8134 // If this is a non-dot comparison, make the VCMP node and we are done. 8135 if (!isDot) { 8136 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8137 Op.getOperand(1), Op.getOperand(2), 8138 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8139 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8140 } 8141 8142 // Create the PPCISD altivec 'dot' comparison node. 8143 SDValue Ops[] = { 8144 Op.getOperand(2), // LHS 8145 Op.getOperand(3), // RHS 8146 DAG.getConstant(CompareOpc, dl, MVT::i32) 8147 }; 8148 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8149 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8150 8151 // Now that we have the comparison, emit a copy from the CR to a GPR. 8152 // This is flagged to the above dot comparison. 8153 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 8154 DAG.getRegister(PPC::CR6, MVT::i32), 8155 CompNode.getValue(1)); 8156 8157 // Unpack the result based on how the target uses it. 8158 unsigned BitNo; // Bit # of CR6. 8159 bool InvertBit; // Invert result? 8160 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 8161 default: // Can't happen, don't crash on invalid number though. 8162 case 0: // Return the value of the EQ bit of CR6. 8163 BitNo = 0; InvertBit = false; 8164 break; 8165 case 1: // Return the inverted value of the EQ bit of CR6. 8166 BitNo = 0; InvertBit = true; 8167 break; 8168 case 2: // Return the value of the LT bit of CR6. 8169 BitNo = 2; InvertBit = false; 8170 break; 8171 case 3: // Return the inverted value of the LT bit of CR6. 8172 BitNo = 2; InvertBit = true; 8173 break; 8174 } 8175 8176 // Shift the bit into the low position. 8177 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 8178 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 8179 // Isolate the bit. 8180 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 8181 DAG.getConstant(1, dl, MVT::i32)); 8182 8183 // If we are supposed to, toggle the bit. 8184 if (InvertBit) 8185 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 8186 DAG.getConstant(1, dl, MVT::i32)); 8187 return Flags; 8188 } 8189 8190 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 8191 SelectionDAG &DAG) const { 8192 SDLoc dl(Op); 8193 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 8194 // instructions), but for smaller types, we need to first extend up to v2i32 8195 // before doing going farther. 8196 if (Op.getValueType() == MVT::v2i64) { 8197 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 8198 if (ExtVT != MVT::v2i32) { 8199 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 8200 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 8201 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 8202 ExtVT.getVectorElementType(), 4))); 8203 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 8204 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 8205 DAG.getValueType(MVT::v2i32)); 8206 } 8207 8208 return Op; 8209 } 8210 8211 return SDValue(); 8212 } 8213 8214 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 8215 SelectionDAG &DAG) const { 8216 SDLoc dl(Op); 8217 // Create a stack slot that is 16-byte aligned. 8218 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8219 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8220 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8221 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8222 8223 // Store the input value into Value#0 of the stack slot. 8224 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8225 MachinePointerInfo()); 8226 // Load it out. 8227 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 8228 } 8229 8230 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8231 SelectionDAG &DAG) const { 8232 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 8233 "Should only be called for ISD::INSERT_VECTOR_ELT"); 8234 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8235 // We have legal lowering for constant indices but not for variable ones. 8236 if (C) 8237 return Op; 8238 return SDValue(); 8239 } 8240 8241 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8242 SelectionDAG &DAG) const { 8243 SDLoc dl(Op); 8244 SDNode *N = Op.getNode(); 8245 8246 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 8247 "Unknown extract_vector_elt type"); 8248 8249 SDValue Value = N->getOperand(0); 8250 8251 // The first part of this is like the store lowering except that we don't 8252 // need to track the chain. 8253 8254 // The values are now known to be -1 (false) or 1 (true). To convert this 8255 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8256 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8257 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8258 8259 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8260 // understand how to form the extending load. 8261 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8262 8263 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8264 8265 // Now convert to an integer and store. 8266 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8267 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8268 Value); 8269 8270 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8271 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8272 MachinePointerInfo PtrInfo = 8273 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8274 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8275 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8276 8277 SDValue StoreChain = DAG.getEntryNode(); 8278 SDValue Ops[] = {StoreChain, 8279 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8280 Value, FIdx}; 8281 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8282 8283 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8284 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8285 8286 // Extract the value requested. 8287 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8288 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8289 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8290 8291 SDValue IntVal = 8292 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 8293 8294 if (!Subtarget.useCRBits()) 8295 return IntVal; 8296 8297 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 8298 } 8299 8300 /// Lowering for QPX v4i1 loads 8301 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 8302 SelectionDAG &DAG) const { 8303 SDLoc dl(Op); 8304 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 8305 SDValue LoadChain = LN->getChain(); 8306 SDValue BasePtr = LN->getBasePtr(); 8307 8308 if (Op.getValueType() == MVT::v4f64 || 8309 Op.getValueType() == MVT::v4f32) { 8310 EVT MemVT = LN->getMemoryVT(); 8311 unsigned Alignment = LN->getAlignment(); 8312 8313 // If this load is properly aligned, then it is legal. 8314 if (Alignment >= MemVT.getStoreSize()) 8315 return Op; 8316 8317 EVT ScalarVT = Op.getValueType().getScalarType(), 8318 ScalarMemVT = MemVT.getScalarType(); 8319 unsigned Stride = ScalarMemVT.getStoreSize(); 8320 8321 SDValue Vals[4], LoadChains[4]; 8322 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8323 SDValue Load; 8324 if (ScalarVT != ScalarMemVT) 8325 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 8326 BasePtr, 8327 LN->getPointerInfo().getWithOffset(Idx * Stride), 8328 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8329 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8330 else 8331 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 8332 LN->getPointerInfo().getWithOffset(Idx * Stride), 8333 MinAlign(Alignment, Idx * Stride), 8334 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8335 8336 if (Idx == 0 && LN->isIndexed()) { 8337 assert(LN->getAddressingMode() == ISD::PRE_INC && 8338 "Unknown addressing mode on vector load"); 8339 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 8340 LN->getAddressingMode()); 8341 } 8342 8343 Vals[Idx] = Load; 8344 LoadChains[Idx] = Load.getValue(1); 8345 8346 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8347 DAG.getConstant(Stride, dl, 8348 BasePtr.getValueType())); 8349 } 8350 8351 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8352 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 8353 8354 if (LN->isIndexed()) { 8355 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 8356 return DAG.getMergeValues(RetOps, dl); 8357 } 8358 8359 SDValue RetOps[] = { Value, TF }; 8360 return DAG.getMergeValues(RetOps, dl); 8361 } 8362 8363 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 8364 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 8365 8366 // To lower v4i1 from a byte array, we load the byte elements of the 8367 // vector and then reuse the BUILD_VECTOR logic. 8368 8369 SDValue VectElmts[4], VectElmtChains[4]; 8370 for (unsigned i = 0; i < 4; ++i) { 8371 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8372 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8373 8374 VectElmts[i] = DAG.getExtLoad( 8375 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 8376 LN->getPointerInfo().getWithOffset(i), MVT::i8, 8377 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8378 VectElmtChains[i] = VectElmts[i].getValue(1); 8379 } 8380 8381 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8382 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8383 8384 SDValue RVals[] = { Value, LoadChain }; 8385 return DAG.getMergeValues(RVals, dl); 8386 } 8387 8388 /// Lowering for QPX v4i1 stores 8389 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8390 SelectionDAG &DAG) const { 8391 SDLoc dl(Op); 8392 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8393 SDValue StoreChain = SN->getChain(); 8394 SDValue BasePtr = SN->getBasePtr(); 8395 SDValue Value = SN->getValue(); 8396 8397 if (Value.getValueType() == MVT::v4f64 || 8398 Value.getValueType() == MVT::v4f32) { 8399 EVT MemVT = SN->getMemoryVT(); 8400 unsigned Alignment = SN->getAlignment(); 8401 8402 // If this store is properly aligned, then it is legal. 8403 if (Alignment >= MemVT.getStoreSize()) 8404 return Op; 8405 8406 EVT ScalarVT = Value.getValueType().getScalarType(), 8407 ScalarMemVT = MemVT.getScalarType(); 8408 unsigned Stride = ScalarMemVT.getStoreSize(); 8409 8410 SDValue Stores[4]; 8411 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8412 SDValue Ex = DAG.getNode( 8413 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8414 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8415 SDValue Store; 8416 if (ScalarVT != ScalarMemVT) 8417 Store = 8418 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8419 SN->getPointerInfo().getWithOffset(Idx * Stride), 8420 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8421 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8422 else 8423 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 8424 SN->getPointerInfo().getWithOffset(Idx * Stride), 8425 MinAlign(Alignment, Idx * Stride), 8426 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8427 8428 if (Idx == 0 && SN->isIndexed()) { 8429 assert(SN->getAddressingMode() == ISD::PRE_INC && 8430 "Unknown addressing mode on vector store"); 8431 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8432 SN->getAddressingMode()); 8433 } 8434 8435 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8436 DAG.getConstant(Stride, dl, 8437 BasePtr.getValueType())); 8438 Stores[Idx] = Store; 8439 } 8440 8441 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8442 8443 if (SN->isIndexed()) { 8444 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8445 return DAG.getMergeValues(RetOps, dl); 8446 } 8447 8448 return TF; 8449 } 8450 8451 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8452 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8453 8454 // The values are now known to be -1 (false) or 1 (true). To convert this 8455 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8456 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8457 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8458 8459 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8460 // understand how to form the extending load. 8461 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8462 8463 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8464 8465 // Now convert to an integer and store. 8466 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8467 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8468 Value); 8469 8470 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8471 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8472 MachinePointerInfo PtrInfo = 8473 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8474 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8475 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8476 8477 SDValue Ops[] = {StoreChain, 8478 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8479 Value, FIdx}; 8480 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8481 8482 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8483 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8484 8485 // Move data into the byte array. 8486 SDValue Loads[4], LoadChains[4]; 8487 for (unsigned i = 0; i < 4; ++i) { 8488 unsigned Offset = 4*i; 8489 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8490 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8491 8492 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8493 PtrInfo.getWithOffset(Offset)); 8494 LoadChains[i] = Loads[i].getValue(1); 8495 } 8496 8497 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8498 8499 SDValue Stores[4]; 8500 for (unsigned i = 0; i < 4; ++i) { 8501 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8502 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8503 8504 Stores[i] = DAG.getTruncStore( 8505 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8506 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 8507 SN->getAAInfo()); 8508 } 8509 8510 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8511 8512 return StoreChain; 8513 } 8514 8515 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8516 SDLoc dl(Op); 8517 if (Op.getValueType() == MVT::v4i32) { 8518 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8519 8520 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8521 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8522 8523 SDValue RHSSwap = // = vrlw RHS, 16 8524 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8525 8526 // Shrinkify inputs to v8i16. 8527 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8528 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8529 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8530 8531 // Low parts multiplied together, generating 32-bit results (we ignore the 8532 // top parts). 8533 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8534 LHS, RHS, DAG, dl, MVT::v4i32); 8535 8536 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8537 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8538 // Shift the high parts up 16 bits. 8539 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8540 Neg16, DAG, dl); 8541 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8542 } else if (Op.getValueType() == MVT::v8i16) { 8543 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8544 8545 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8546 8547 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8548 LHS, RHS, Zero, DAG, dl); 8549 } else if (Op.getValueType() == MVT::v16i8) { 8550 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8551 bool isLittleEndian = Subtarget.isLittleEndian(); 8552 8553 // Multiply the even 8-bit parts, producing 16-bit sums. 8554 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8555 LHS, RHS, DAG, dl, MVT::v8i16); 8556 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8557 8558 // Multiply the odd 8-bit parts, producing 16-bit sums. 8559 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8560 LHS, RHS, DAG, dl, MVT::v8i16); 8561 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8562 8563 // Merge the results together. Because vmuleub and vmuloub are 8564 // instructions with a big-endian bias, we must reverse the 8565 // element numbering and reverse the meaning of "odd" and "even" 8566 // when generating little endian code. 8567 int Ops[16]; 8568 for (unsigned i = 0; i != 8; ++i) { 8569 if (isLittleEndian) { 8570 Ops[i*2 ] = 2*i; 8571 Ops[i*2+1] = 2*i+16; 8572 } else { 8573 Ops[i*2 ] = 2*i+1; 8574 Ops[i*2+1] = 2*i+1+16; 8575 } 8576 } 8577 if (isLittleEndian) 8578 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8579 else 8580 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8581 } else { 8582 llvm_unreachable("Unknown mul to lower!"); 8583 } 8584 } 8585 8586 /// LowerOperation - Provide custom lowering hooks for some operations. 8587 /// 8588 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8589 switch (Op.getOpcode()) { 8590 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8591 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8592 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8593 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8594 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8595 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8596 case ISD::SETCC: return LowerSETCC(Op, DAG); 8597 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8598 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8599 case ISD::VASTART: 8600 return LowerVASTART(Op, DAG); 8601 8602 case ISD::VAARG: 8603 return LowerVAARG(Op, DAG); 8604 8605 case ISD::VACOPY: 8606 return LowerVACOPY(Op, DAG); 8607 8608 case ISD::STACKRESTORE: 8609 return LowerSTACKRESTORE(Op, DAG); 8610 8611 case ISD::DYNAMIC_STACKALLOC: 8612 return LowerDYNAMIC_STACKALLOC(Op, DAG); 8613 8614 case ISD::GET_DYNAMIC_AREA_OFFSET: 8615 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 8616 8617 case ISD::EH_DWARF_CFA: 8618 return LowerEH_DWARF_CFA(Op, DAG); 8619 8620 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8621 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8622 8623 case ISD::LOAD: return LowerLOAD(Op, DAG); 8624 case ISD::STORE: return LowerSTORE(Op, DAG); 8625 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8626 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8627 case ISD::FP_TO_UINT: 8628 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8629 SDLoc(Op)); 8630 case ISD::UINT_TO_FP: 8631 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8632 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8633 8634 // Lower 64-bit shifts. 8635 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8636 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8637 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8638 8639 // Vector-related lowering. 8640 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8641 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8642 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8643 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8644 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8645 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8646 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 8647 case ISD::MUL: return LowerMUL(Op, DAG); 8648 8649 // For counter-based loop handling. 8650 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8651 8652 // Frame & Return address. 8653 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8654 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8655 } 8656 } 8657 8658 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8659 SmallVectorImpl<SDValue>&Results, 8660 SelectionDAG &DAG) const { 8661 SDLoc dl(N); 8662 switch (N->getOpcode()) { 8663 default: 8664 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8665 case ISD::READCYCLECOUNTER: { 8666 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8667 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8668 8669 Results.push_back(RTB); 8670 Results.push_back(RTB.getValue(1)); 8671 Results.push_back(RTB.getValue(2)); 8672 break; 8673 } 8674 case ISD::INTRINSIC_W_CHAIN: { 8675 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8676 Intrinsic::ppc_is_decremented_ctr_nonzero) 8677 break; 8678 8679 assert(N->getValueType(0) == MVT::i1 && 8680 "Unexpected result type for CTR decrement intrinsic"); 8681 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8682 N->getValueType(0)); 8683 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8684 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8685 N->getOperand(1)); 8686 8687 Results.push_back(NewInt); 8688 Results.push_back(NewInt.getValue(1)); 8689 break; 8690 } 8691 case ISD::VAARG: { 8692 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8693 return; 8694 8695 EVT VT = N->getValueType(0); 8696 8697 if (VT == MVT::i64) { 8698 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 8699 8700 Results.push_back(NewNode); 8701 Results.push_back(NewNode.getValue(1)); 8702 } 8703 return; 8704 } 8705 case ISD::FP_ROUND_INREG: { 8706 assert(N->getValueType(0) == MVT::ppcf128); 8707 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8708 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8709 MVT::f64, N->getOperand(0), 8710 DAG.getIntPtrConstant(0, dl)); 8711 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8712 MVT::f64, N->getOperand(0), 8713 DAG.getIntPtrConstant(1, dl)); 8714 8715 // Add the two halves of the long double in round-to-zero mode. 8716 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8717 8718 // We know the low half is about to be thrown away, so just use something 8719 // convenient. 8720 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8721 FPreg, FPreg)); 8722 return; 8723 } 8724 case ISD::FP_TO_SINT: 8725 case ISD::FP_TO_UINT: 8726 // LowerFP_TO_INT() can only handle f32 and f64. 8727 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8728 return; 8729 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8730 return; 8731 } 8732 } 8733 8734 //===----------------------------------------------------------------------===// 8735 // Other Lowering Code 8736 //===----------------------------------------------------------------------===// 8737 8738 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8739 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8740 Function *Func = Intrinsic::getDeclaration(M, Id); 8741 return Builder.CreateCall(Func, {}); 8742 } 8743 8744 // The mappings for emitLeading/TrailingFence is taken from 8745 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8746 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8747 AtomicOrdering Ord, bool IsStore, 8748 bool IsLoad) const { 8749 if (Ord == AtomicOrdering::SequentiallyConsistent) 8750 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8751 if (isReleaseOrStronger(Ord)) 8752 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8753 return nullptr; 8754 } 8755 8756 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8757 AtomicOrdering Ord, bool IsStore, 8758 bool IsLoad) const { 8759 if (IsLoad && isAcquireOrStronger(Ord)) 8760 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8761 // FIXME: this is too conservative, a dependent branch + isync is enough. 8762 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8763 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8764 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8765 return nullptr; 8766 } 8767 8768 MachineBasicBlock * 8769 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 8770 unsigned AtomicSize, 8771 unsigned BinOpcode, 8772 unsigned CmpOpcode, 8773 unsigned CmpPred) const { 8774 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8775 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8776 8777 auto LoadMnemonic = PPC::LDARX; 8778 auto StoreMnemonic = PPC::STDCX; 8779 switch (AtomicSize) { 8780 default: 8781 llvm_unreachable("Unexpected size of atomic entity"); 8782 case 1: 8783 LoadMnemonic = PPC::LBARX; 8784 StoreMnemonic = PPC::STBCX; 8785 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8786 break; 8787 case 2: 8788 LoadMnemonic = PPC::LHARX; 8789 StoreMnemonic = PPC::STHCX; 8790 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8791 break; 8792 case 4: 8793 LoadMnemonic = PPC::LWARX; 8794 StoreMnemonic = PPC::STWCX; 8795 break; 8796 case 8: 8797 LoadMnemonic = PPC::LDARX; 8798 StoreMnemonic = PPC::STDCX; 8799 break; 8800 } 8801 8802 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8803 MachineFunction *F = BB->getParent(); 8804 MachineFunction::iterator It = ++BB->getIterator(); 8805 8806 unsigned dest = MI.getOperand(0).getReg(); 8807 unsigned ptrA = MI.getOperand(1).getReg(); 8808 unsigned ptrB = MI.getOperand(2).getReg(); 8809 unsigned incr = MI.getOperand(3).getReg(); 8810 DebugLoc dl = MI.getDebugLoc(); 8811 8812 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8813 MachineBasicBlock *loop2MBB = 8814 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8815 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8816 F->insert(It, loopMBB); 8817 if (CmpOpcode) 8818 F->insert(It, loop2MBB); 8819 F->insert(It, exitMBB); 8820 exitMBB->splice(exitMBB->begin(), BB, 8821 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8822 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8823 8824 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8825 unsigned TmpReg = (!BinOpcode) ? incr : 8826 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8827 : &PPC::GPRCRegClass); 8828 8829 // thisMBB: 8830 // ... 8831 // fallthrough --> loopMBB 8832 BB->addSuccessor(loopMBB); 8833 8834 // loopMBB: 8835 // l[wd]arx dest, ptr 8836 // add r0, dest, incr 8837 // st[wd]cx. r0, ptr 8838 // bne- loopMBB 8839 // fallthrough --> exitMBB 8840 8841 // For max/min... 8842 // loopMBB: 8843 // l[wd]arx dest, ptr 8844 // cmpl?[wd] incr, dest 8845 // bgt exitMBB 8846 // loop2MBB: 8847 // st[wd]cx. dest, ptr 8848 // bne- loopMBB 8849 // fallthrough --> exitMBB 8850 8851 BB = loopMBB; 8852 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8853 .addReg(ptrA).addReg(ptrB); 8854 if (BinOpcode) 8855 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8856 if (CmpOpcode) { 8857 // Signed comparisons of byte or halfword values must be sign-extended. 8858 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 8859 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8860 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 8861 ExtReg).addReg(dest); 8862 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8863 .addReg(incr).addReg(ExtReg); 8864 } else 8865 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8866 .addReg(incr).addReg(dest); 8867 8868 BuildMI(BB, dl, TII->get(PPC::BCC)) 8869 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8870 BB->addSuccessor(loop2MBB); 8871 BB->addSuccessor(exitMBB); 8872 BB = loop2MBB; 8873 } 8874 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8875 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8876 BuildMI(BB, dl, TII->get(PPC::BCC)) 8877 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8878 BB->addSuccessor(loopMBB); 8879 BB->addSuccessor(exitMBB); 8880 8881 // exitMBB: 8882 // ... 8883 BB = exitMBB; 8884 return BB; 8885 } 8886 8887 MachineBasicBlock * 8888 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 8889 MachineBasicBlock *BB, 8890 bool is8bit, // operation 8891 unsigned BinOpcode, 8892 unsigned CmpOpcode, 8893 unsigned CmpPred) const { 8894 // If we support part-word atomic mnemonics, just use them 8895 if (Subtarget.hasPartwordAtomics()) 8896 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 8897 CmpOpcode, CmpPred); 8898 8899 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8900 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8901 // In 64 bit mode we have to use 64 bits for addresses, even though the 8902 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8903 // registers without caring whether they're 32 or 64, but here we're 8904 // doing actual arithmetic on the addresses. 8905 bool is64bit = Subtarget.isPPC64(); 8906 bool isLittleEndian = Subtarget.isLittleEndian(); 8907 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8908 8909 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8910 MachineFunction *F = BB->getParent(); 8911 MachineFunction::iterator It = ++BB->getIterator(); 8912 8913 unsigned dest = MI.getOperand(0).getReg(); 8914 unsigned ptrA = MI.getOperand(1).getReg(); 8915 unsigned ptrB = MI.getOperand(2).getReg(); 8916 unsigned incr = MI.getOperand(3).getReg(); 8917 DebugLoc dl = MI.getDebugLoc(); 8918 8919 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8920 MachineBasicBlock *loop2MBB = 8921 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8922 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8923 F->insert(It, loopMBB); 8924 if (CmpOpcode) 8925 F->insert(It, loop2MBB); 8926 F->insert(It, exitMBB); 8927 exitMBB->splice(exitMBB->begin(), BB, 8928 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8929 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8930 8931 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8932 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8933 : &PPC::GPRCRegClass; 8934 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8935 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8936 unsigned ShiftReg = 8937 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 8938 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8939 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8940 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8941 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8942 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8943 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8944 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8945 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8946 unsigned Ptr1Reg; 8947 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8948 8949 // thisMBB: 8950 // ... 8951 // fallthrough --> loopMBB 8952 BB->addSuccessor(loopMBB); 8953 8954 // The 4-byte load must be aligned, while a char or short may be 8955 // anywhere in the word. Hence all this nasty bookkeeping code. 8956 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8957 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8958 // xori shift, shift1, 24 [16] 8959 // rlwinm ptr, ptr1, 0, 0, 29 8960 // slw incr2, incr, shift 8961 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8962 // slw mask, mask2, shift 8963 // loopMBB: 8964 // lwarx tmpDest, ptr 8965 // add tmp, tmpDest, incr2 8966 // andc tmp2, tmpDest, mask 8967 // and tmp3, tmp, mask 8968 // or tmp4, tmp3, tmp2 8969 // stwcx. tmp4, ptr 8970 // bne- loopMBB 8971 // fallthrough --> exitMBB 8972 // srw dest, tmpDest, shift 8973 if (ptrA != ZeroReg) { 8974 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8975 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8976 .addReg(ptrA).addReg(ptrB); 8977 } else { 8978 Ptr1Reg = ptrB; 8979 } 8980 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8981 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8982 if (!isLittleEndian) 8983 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8984 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8985 if (is64bit) 8986 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8987 .addReg(Ptr1Reg).addImm(0).addImm(61); 8988 else 8989 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8990 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8991 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8992 .addReg(incr).addReg(ShiftReg); 8993 if (is8bit) 8994 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8995 else { 8996 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8997 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8998 } 8999 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9000 .addReg(Mask2Reg).addReg(ShiftReg); 9001 9002 BB = loopMBB; 9003 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9004 .addReg(ZeroReg).addReg(PtrReg); 9005 if (BinOpcode) 9006 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9007 .addReg(Incr2Reg).addReg(TmpDestReg); 9008 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9009 .addReg(TmpDestReg).addReg(MaskReg); 9010 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9011 .addReg(TmpReg).addReg(MaskReg); 9012 if (CmpOpcode) { 9013 // For unsigned comparisons, we can directly compare the shifted values. 9014 // For signed comparisons we shift and sign extend. 9015 unsigned SReg = RegInfo.createVirtualRegister(RC); 9016 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9017 .addReg(TmpDestReg).addReg(MaskReg); 9018 unsigned ValueReg = SReg; 9019 unsigned CmpReg = Incr2Reg; 9020 if (CmpOpcode == PPC::CMPW) { 9021 ValueReg = RegInfo.createVirtualRegister(RC); 9022 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9023 .addReg(SReg).addReg(ShiftReg); 9024 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9025 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9026 .addReg(ValueReg); 9027 ValueReg = ValueSReg; 9028 CmpReg = incr; 9029 } 9030 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9031 .addReg(CmpReg).addReg(ValueReg); 9032 BuildMI(BB, dl, TII->get(PPC::BCC)) 9033 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9034 BB->addSuccessor(loop2MBB); 9035 BB->addSuccessor(exitMBB); 9036 BB = loop2MBB; 9037 } 9038 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9039 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9040 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9041 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9042 BuildMI(BB, dl, TII->get(PPC::BCC)) 9043 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9044 BB->addSuccessor(loopMBB); 9045 BB->addSuccessor(exitMBB); 9046 9047 // exitMBB: 9048 // ... 9049 BB = exitMBB; 9050 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9051 .addReg(ShiftReg); 9052 return BB; 9053 } 9054 9055 llvm::MachineBasicBlock * 9056 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 9057 MachineBasicBlock *MBB) const { 9058 DebugLoc DL = MI.getDebugLoc(); 9059 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9060 9061 MachineFunction *MF = MBB->getParent(); 9062 MachineRegisterInfo &MRI = MF->getRegInfo(); 9063 9064 const BasicBlock *BB = MBB->getBasicBlock(); 9065 MachineFunction::iterator I = ++MBB->getIterator(); 9066 9067 // Memory Reference 9068 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9069 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9070 9071 unsigned DstReg = MI.getOperand(0).getReg(); 9072 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 9073 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 9074 unsigned mainDstReg = MRI.createVirtualRegister(RC); 9075 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 9076 9077 MVT PVT = getPointerTy(MF->getDataLayout()); 9078 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9079 "Invalid Pointer Size!"); 9080 // For v = setjmp(buf), we generate 9081 // 9082 // thisMBB: 9083 // SjLjSetup mainMBB 9084 // bl mainMBB 9085 // v_restore = 1 9086 // b sinkMBB 9087 // 9088 // mainMBB: 9089 // buf[LabelOffset] = LR 9090 // v_main = 0 9091 // 9092 // sinkMBB: 9093 // v = phi(main, restore) 9094 // 9095 9096 MachineBasicBlock *thisMBB = MBB; 9097 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 9098 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 9099 MF->insert(I, mainMBB); 9100 MF->insert(I, sinkMBB); 9101 9102 MachineInstrBuilder MIB; 9103 9104 // Transfer the remainder of BB and its successor edges to sinkMBB. 9105 sinkMBB->splice(sinkMBB->begin(), MBB, 9106 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 9107 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 9108 9109 // Note that the structure of the jmp_buf used here is not compatible 9110 // with that used by libc, and is not designed to be. Specifically, it 9111 // stores only those 'reserved' registers that LLVM does not otherwise 9112 // understand how to spill. Also, by convention, by the time this 9113 // intrinsic is called, Clang has already stored the frame address in the 9114 // first slot of the buffer and stack address in the third. Following the 9115 // X86 target code, we'll store the jump address in the second slot. We also 9116 // need to save the TOC pointer (R2) to handle jumps between shared 9117 // libraries, and that will be stored in the fourth slot. The thread 9118 // identifier (R13) is not affected. 9119 9120 // thisMBB: 9121 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9122 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9123 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9124 9125 // Prepare IP either in reg. 9126 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 9127 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 9128 unsigned BufReg = MI.getOperand(1).getReg(); 9129 9130 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 9131 setUsesTOCBasePtr(*MBB->getParent()); 9132 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 9133 .addReg(PPC::X2) 9134 .addImm(TOCOffset) 9135 .addReg(BufReg); 9136 MIB.setMemRefs(MMOBegin, MMOEnd); 9137 } 9138 9139 // Naked functions never have a base pointer, and so we use r1. For all 9140 // other functions, this decision must be delayed until during PEI. 9141 unsigned BaseReg; 9142 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 9143 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 9144 else 9145 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 9146 9147 MIB = BuildMI(*thisMBB, MI, DL, 9148 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 9149 .addReg(BaseReg) 9150 .addImm(BPOffset) 9151 .addReg(BufReg); 9152 MIB.setMemRefs(MMOBegin, MMOEnd); 9153 9154 // Setup 9155 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 9156 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9157 MIB.addRegMask(TRI->getNoPreservedMask()); 9158 9159 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 9160 9161 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 9162 .addMBB(mainMBB); 9163 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 9164 9165 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 9166 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 9167 9168 // mainMBB: 9169 // mainDstReg = 0 9170 MIB = 9171 BuildMI(mainMBB, DL, 9172 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 9173 9174 // Store IP 9175 if (Subtarget.isPPC64()) { 9176 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 9177 .addReg(LabelReg) 9178 .addImm(LabelOffset) 9179 .addReg(BufReg); 9180 } else { 9181 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 9182 .addReg(LabelReg) 9183 .addImm(LabelOffset) 9184 .addReg(BufReg); 9185 } 9186 9187 MIB.setMemRefs(MMOBegin, MMOEnd); 9188 9189 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 9190 mainMBB->addSuccessor(sinkMBB); 9191 9192 // sinkMBB: 9193 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 9194 TII->get(PPC::PHI), DstReg) 9195 .addReg(mainDstReg).addMBB(mainMBB) 9196 .addReg(restoreDstReg).addMBB(thisMBB); 9197 9198 MI.eraseFromParent(); 9199 return sinkMBB; 9200 } 9201 9202 MachineBasicBlock * 9203 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 9204 MachineBasicBlock *MBB) const { 9205 DebugLoc DL = MI.getDebugLoc(); 9206 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9207 9208 MachineFunction *MF = MBB->getParent(); 9209 MachineRegisterInfo &MRI = MF->getRegInfo(); 9210 9211 // Memory Reference 9212 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9213 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9214 9215 MVT PVT = getPointerTy(MF->getDataLayout()); 9216 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9217 "Invalid Pointer Size!"); 9218 9219 const TargetRegisterClass *RC = 9220 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 9221 unsigned Tmp = MRI.createVirtualRegister(RC); 9222 // Since FP is only updated here but NOT referenced, it's treated as GPR. 9223 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 9224 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 9225 unsigned BP = 9226 (PVT == MVT::i64) 9227 ? PPC::X30 9228 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 9229 : PPC::R30); 9230 9231 MachineInstrBuilder MIB; 9232 9233 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9234 const int64_t SPOffset = 2 * PVT.getStoreSize(); 9235 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9236 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9237 9238 unsigned BufReg = MI.getOperand(0).getReg(); 9239 9240 // Reload FP (the jumped-to function may not have had a 9241 // frame pointer, and if so, then its r31 will be restored 9242 // as necessary). 9243 if (PVT == MVT::i64) { 9244 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 9245 .addImm(0) 9246 .addReg(BufReg); 9247 } else { 9248 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 9249 .addImm(0) 9250 .addReg(BufReg); 9251 } 9252 MIB.setMemRefs(MMOBegin, MMOEnd); 9253 9254 // Reload IP 9255 if (PVT == MVT::i64) { 9256 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 9257 .addImm(LabelOffset) 9258 .addReg(BufReg); 9259 } else { 9260 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 9261 .addImm(LabelOffset) 9262 .addReg(BufReg); 9263 } 9264 MIB.setMemRefs(MMOBegin, MMOEnd); 9265 9266 // Reload SP 9267 if (PVT == MVT::i64) { 9268 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 9269 .addImm(SPOffset) 9270 .addReg(BufReg); 9271 } else { 9272 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 9273 .addImm(SPOffset) 9274 .addReg(BufReg); 9275 } 9276 MIB.setMemRefs(MMOBegin, MMOEnd); 9277 9278 // Reload BP 9279 if (PVT == MVT::i64) { 9280 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 9281 .addImm(BPOffset) 9282 .addReg(BufReg); 9283 } else { 9284 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 9285 .addImm(BPOffset) 9286 .addReg(BufReg); 9287 } 9288 MIB.setMemRefs(MMOBegin, MMOEnd); 9289 9290 // Reload TOC 9291 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 9292 setUsesTOCBasePtr(*MBB->getParent()); 9293 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 9294 .addImm(TOCOffset) 9295 .addReg(BufReg); 9296 9297 MIB.setMemRefs(MMOBegin, MMOEnd); 9298 } 9299 9300 // Jump 9301 BuildMI(*MBB, MI, DL, 9302 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 9303 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 9304 9305 MI.eraseFromParent(); 9306 return MBB; 9307 } 9308 9309 MachineBasicBlock * 9310 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9311 MachineBasicBlock *BB) const { 9312 if (MI.getOpcode() == TargetOpcode::STACKMAP || 9313 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9314 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 9315 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9316 // Call lowering should have added an r2 operand to indicate a dependence 9317 // on the TOC base pointer value. It can't however, because there is no 9318 // way to mark the dependence as implicit there, and so the stackmap code 9319 // will confuse it with a regular operand. Instead, add the dependence 9320 // here. 9321 setUsesTOCBasePtr(*BB->getParent()); 9322 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 9323 } 9324 9325 return emitPatchPoint(MI, BB); 9326 } 9327 9328 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 9329 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 9330 return emitEHSjLjSetJmp(MI, BB); 9331 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 9332 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 9333 return emitEHSjLjLongJmp(MI, BB); 9334 } 9335 9336 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9337 9338 // To "insert" these instructions we actually have to insert their 9339 // control-flow patterns. 9340 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9341 MachineFunction::iterator It = ++BB->getIterator(); 9342 9343 MachineFunction *F = BB->getParent(); 9344 9345 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9346 MI.getOpcode() == PPC::SELECT_CC_I8 || 9347 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 9348 SmallVector<MachineOperand, 2> Cond; 9349 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9350 MI.getOpcode() == PPC::SELECT_CC_I8) 9351 Cond.push_back(MI.getOperand(4)); 9352 else 9353 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 9354 Cond.push_back(MI.getOperand(1)); 9355 9356 DebugLoc dl = MI.getDebugLoc(); 9357 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 9358 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 9359 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9360 MI.getOpcode() == PPC::SELECT_CC_I8 || 9361 MI.getOpcode() == PPC::SELECT_CC_F4 || 9362 MI.getOpcode() == PPC::SELECT_CC_F8 || 9363 MI.getOpcode() == PPC::SELECT_CC_QFRC || 9364 MI.getOpcode() == PPC::SELECT_CC_QSRC || 9365 MI.getOpcode() == PPC::SELECT_CC_QBRC || 9366 MI.getOpcode() == PPC::SELECT_CC_VRRC || 9367 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 9368 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 9369 MI.getOpcode() == PPC::SELECT_CC_VSRC || 9370 MI.getOpcode() == PPC::SELECT_I4 || 9371 MI.getOpcode() == PPC::SELECT_I8 || 9372 MI.getOpcode() == PPC::SELECT_F4 || 9373 MI.getOpcode() == PPC::SELECT_F8 || 9374 MI.getOpcode() == PPC::SELECT_QFRC || 9375 MI.getOpcode() == PPC::SELECT_QSRC || 9376 MI.getOpcode() == PPC::SELECT_QBRC || 9377 MI.getOpcode() == PPC::SELECT_VRRC || 9378 MI.getOpcode() == PPC::SELECT_VSFRC || 9379 MI.getOpcode() == PPC::SELECT_VSSRC || 9380 MI.getOpcode() == PPC::SELECT_VSRC) { 9381 // The incoming instruction knows the destination vreg to set, the 9382 // condition code register to branch on, the true/false values to 9383 // select between, and a branch opcode to use. 9384 9385 // thisMBB: 9386 // ... 9387 // TrueVal = ... 9388 // cmpTY ccX, r1, r2 9389 // bCC copy1MBB 9390 // fallthrough --> copy0MBB 9391 MachineBasicBlock *thisMBB = BB; 9392 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 9393 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9394 DebugLoc dl = MI.getDebugLoc(); 9395 F->insert(It, copy0MBB); 9396 F->insert(It, sinkMBB); 9397 9398 // Transfer the remainder of BB and its successor edges to sinkMBB. 9399 sinkMBB->splice(sinkMBB->begin(), BB, 9400 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9401 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9402 9403 // Next, add the true and fallthrough blocks as its successors. 9404 BB->addSuccessor(copy0MBB); 9405 BB->addSuccessor(sinkMBB); 9406 9407 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 9408 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 9409 MI.getOpcode() == PPC::SELECT_QFRC || 9410 MI.getOpcode() == PPC::SELECT_QSRC || 9411 MI.getOpcode() == PPC::SELECT_QBRC || 9412 MI.getOpcode() == PPC::SELECT_VRRC || 9413 MI.getOpcode() == PPC::SELECT_VSFRC || 9414 MI.getOpcode() == PPC::SELECT_VSSRC || 9415 MI.getOpcode() == PPC::SELECT_VSRC) { 9416 BuildMI(BB, dl, TII->get(PPC::BC)) 9417 .addReg(MI.getOperand(1).getReg()) 9418 .addMBB(sinkMBB); 9419 } else { 9420 unsigned SelectPred = MI.getOperand(4).getImm(); 9421 BuildMI(BB, dl, TII->get(PPC::BCC)) 9422 .addImm(SelectPred) 9423 .addReg(MI.getOperand(1).getReg()) 9424 .addMBB(sinkMBB); 9425 } 9426 9427 // copy0MBB: 9428 // %FalseValue = ... 9429 // # fallthrough to sinkMBB 9430 BB = copy0MBB; 9431 9432 // Update machine-CFG edges 9433 BB->addSuccessor(sinkMBB); 9434 9435 // sinkMBB: 9436 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9437 // ... 9438 BB = sinkMBB; 9439 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 9440 .addReg(MI.getOperand(3).getReg()) 9441 .addMBB(copy0MBB) 9442 .addReg(MI.getOperand(2).getReg()) 9443 .addMBB(thisMBB); 9444 } else if (MI.getOpcode() == PPC::ReadTB) { 9445 // To read the 64-bit time-base register on a 32-bit target, we read the 9446 // two halves. Should the counter have wrapped while it was being read, we 9447 // need to try again. 9448 // ... 9449 // readLoop: 9450 // mfspr Rx,TBU # load from TBU 9451 // mfspr Ry,TB # load from TB 9452 // mfspr Rz,TBU # load from TBU 9453 // cmpw crX,Rx,Rz # check if 'old'='new' 9454 // bne readLoop # branch if they're not equal 9455 // ... 9456 9457 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9458 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9459 DebugLoc dl = MI.getDebugLoc(); 9460 F->insert(It, readMBB); 9461 F->insert(It, sinkMBB); 9462 9463 // Transfer the remainder of BB and its successor edges to sinkMBB. 9464 sinkMBB->splice(sinkMBB->begin(), BB, 9465 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9466 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9467 9468 BB->addSuccessor(readMBB); 9469 BB = readMBB; 9470 9471 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9472 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9473 unsigned LoReg = MI.getOperand(0).getReg(); 9474 unsigned HiReg = MI.getOperand(1).getReg(); 9475 9476 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9477 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9478 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9479 9480 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9481 9482 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9483 .addReg(HiReg).addReg(ReadAgainReg); 9484 BuildMI(BB, dl, TII->get(PPC::BCC)) 9485 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9486 9487 BB->addSuccessor(readMBB); 9488 BB->addSuccessor(sinkMBB); 9489 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9490 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9491 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9492 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9493 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9494 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9495 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9496 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9497 9498 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9499 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9500 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9501 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9502 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9503 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9504 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9505 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9506 9507 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9508 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9509 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9510 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9511 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9512 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9513 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9514 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9515 9516 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9517 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9518 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9519 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9520 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9521 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9522 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9523 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9524 9525 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9526 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9527 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9528 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9529 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9530 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9531 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9532 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9533 9534 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9535 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9536 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9537 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9538 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9539 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9540 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9541 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9542 9543 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 9544 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 9545 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 9546 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 9547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 9548 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 9549 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 9550 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 9551 9552 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 9553 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 9554 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 9555 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 9556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 9557 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 9558 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 9559 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 9560 9561 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 9562 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 9563 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 9564 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 9565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 9566 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 9567 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 9568 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 9569 9570 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 9571 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 9572 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 9573 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 9574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 9575 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 9576 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 9577 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 9578 9579 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 9580 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9581 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 9582 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9583 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 9584 BB = EmitAtomicBinary(MI, BB, 4, 0); 9585 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 9586 BB = EmitAtomicBinary(MI, BB, 8, 0); 9587 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9588 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9589 (Subtarget.hasPartwordAtomics() && 9590 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9591 (Subtarget.hasPartwordAtomics() && 9592 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9593 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9594 9595 auto LoadMnemonic = PPC::LDARX; 9596 auto StoreMnemonic = PPC::STDCX; 9597 switch (MI.getOpcode()) { 9598 default: 9599 llvm_unreachable("Compare and swap of unknown size"); 9600 case PPC::ATOMIC_CMP_SWAP_I8: 9601 LoadMnemonic = PPC::LBARX; 9602 StoreMnemonic = PPC::STBCX; 9603 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9604 break; 9605 case PPC::ATOMIC_CMP_SWAP_I16: 9606 LoadMnemonic = PPC::LHARX; 9607 StoreMnemonic = PPC::STHCX; 9608 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9609 break; 9610 case PPC::ATOMIC_CMP_SWAP_I32: 9611 LoadMnemonic = PPC::LWARX; 9612 StoreMnemonic = PPC::STWCX; 9613 break; 9614 case PPC::ATOMIC_CMP_SWAP_I64: 9615 LoadMnemonic = PPC::LDARX; 9616 StoreMnemonic = PPC::STDCX; 9617 break; 9618 } 9619 unsigned dest = MI.getOperand(0).getReg(); 9620 unsigned ptrA = MI.getOperand(1).getReg(); 9621 unsigned ptrB = MI.getOperand(2).getReg(); 9622 unsigned oldval = MI.getOperand(3).getReg(); 9623 unsigned newval = MI.getOperand(4).getReg(); 9624 DebugLoc dl = MI.getDebugLoc(); 9625 9626 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9627 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9628 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9629 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9630 F->insert(It, loop1MBB); 9631 F->insert(It, loop2MBB); 9632 F->insert(It, midMBB); 9633 F->insert(It, exitMBB); 9634 exitMBB->splice(exitMBB->begin(), BB, 9635 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9636 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9637 9638 // thisMBB: 9639 // ... 9640 // fallthrough --> loopMBB 9641 BB->addSuccessor(loop1MBB); 9642 9643 // loop1MBB: 9644 // l[bhwd]arx dest, ptr 9645 // cmp[wd] dest, oldval 9646 // bne- midMBB 9647 // loop2MBB: 9648 // st[bhwd]cx. newval, ptr 9649 // bne- loopMBB 9650 // b exitBB 9651 // midMBB: 9652 // st[bhwd]cx. dest, ptr 9653 // exitBB: 9654 BB = loop1MBB; 9655 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9656 .addReg(ptrA).addReg(ptrB); 9657 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9658 .addReg(oldval).addReg(dest); 9659 BuildMI(BB, dl, TII->get(PPC::BCC)) 9660 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9661 BB->addSuccessor(loop2MBB); 9662 BB->addSuccessor(midMBB); 9663 9664 BB = loop2MBB; 9665 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9666 .addReg(newval).addReg(ptrA).addReg(ptrB); 9667 BuildMI(BB, dl, TII->get(PPC::BCC)) 9668 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9669 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9670 BB->addSuccessor(loop1MBB); 9671 BB->addSuccessor(exitMBB); 9672 9673 BB = midMBB; 9674 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9675 .addReg(dest).addReg(ptrA).addReg(ptrB); 9676 BB->addSuccessor(exitMBB); 9677 9678 // exitMBB: 9679 // ... 9680 BB = exitMBB; 9681 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9682 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9683 // We must use 64-bit registers for addresses when targeting 64-bit, 9684 // since we're actually doing arithmetic on them. Other registers 9685 // can be 32-bit. 9686 bool is64bit = Subtarget.isPPC64(); 9687 bool isLittleEndian = Subtarget.isLittleEndian(); 9688 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9689 9690 unsigned dest = MI.getOperand(0).getReg(); 9691 unsigned ptrA = MI.getOperand(1).getReg(); 9692 unsigned ptrB = MI.getOperand(2).getReg(); 9693 unsigned oldval = MI.getOperand(3).getReg(); 9694 unsigned newval = MI.getOperand(4).getReg(); 9695 DebugLoc dl = MI.getDebugLoc(); 9696 9697 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9698 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9699 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9700 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9701 F->insert(It, loop1MBB); 9702 F->insert(It, loop2MBB); 9703 F->insert(It, midMBB); 9704 F->insert(It, exitMBB); 9705 exitMBB->splice(exitMBB->begin(), BB, 9706 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9707 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9708 9709 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9710 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9711 : &PPC::GPRCRegClass; 9712 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9713 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9714 unsigned ShiftReg = 9715 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9716 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9717 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9718 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9719 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9720 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9721 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9722 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9723 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9724 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9725 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9726 unsigned Ptr1Reg; 9727 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9728 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9729 // thisMBB: 9730 // ... 9731 // fallthrough --> loopMBB 9732 BB->addSuccessor(loop1MBB); 9733 9734 // The 4-byte load must be aligned, while a char or short may be 9735 // anywhere in the word. Hence all this nasty bookkeeping code. 9736 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9737 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9738 // xori shift, shift1, 24 [16] 9739 // rlwinm ptr, ptr1, 0, 0, 29 9740 // slw newval2, newval, shift 9741 // slw oldval2, oldval,shift 9742 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9743 // slw mask, mask2, shift 9744 // and newval3, newval2, mask 9745 // and oldval3, oldval2, mask 9746 // loop1MBB: 9747 // lwarx tmpDest, ptr 9748 // and tmp, tmpDest, mask 9749 // cmpw tmp, oldval3 9750 // bne- midMBB 9751 // loop2MBB: 9752 // andc tmp2, tmpDest, mask 9753 // or tmp4, tmp2, newval3 9754 // stwcx. tmp4, ptr 9755 // bne- loop1MBB 9756 // b exitBB 9757 // midMBB: 9758 // stwcx. tmpDest, ptr 9759 // exitBB: 9760 // srw dest, tmpDest, shift 9761 if (ptrA != ZeroReg) { 9762 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9763 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9764 .addReg(ptrA).addReg(ptrB); 9765 } else { 9766 Ptr1Reg = ptrB; 9767 } 9768 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9769 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9770 if (!isLittleEndian) 9771 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9772 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9773 if (is64bit) 9774 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9775 .addReg(Ptr1Reg).addImm(0).addImm(61); 9776 else 9777 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9778 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9779 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9780 .addReg(newval).addReg(ShiftReg); 9781 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9782 .addReg(oldval).addReg(ShiftReg); 9783 if (is8bit) 9784 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9785 else { 9786 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9787 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9788 .addReg(Mask3Reg).addImm(65535); 9789 } 9790 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9791 .addReg(Mask2Reg).addReg(ShiftReg); 9792 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9793 .addReg(NewVal2Reg).addReg(MaskReg); 9794 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9795 .addReg(OldVal2Reg).addReg(MaskReg); 9796 9797 BB = loop1MBB; 9798 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9799 .addReg(ZeroReg).addReg(PtrReg); 9800 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9801 .addReg(TmpDestReg).addReg(MaskReg); 9802 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9803 .addReg(TmpReg).addReg(OldVal3Reg); 9804 BuildMI(BB, dl, TII->get(PPC::BCC)) 9805 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9806 BB->addSuccessor(loop2MBB); 9807 BB->addSuccessor(midMBB); 9808 9809 BB = loop2MBB; 9810 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9811 .addReg(TmpDestReg).addReg(MaskReg); 9812 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9813 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9814 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9815 .addReg(ZeroReg).addReg(PtrReg); 9816 BuildMI(BB, dl, TII->get(PPC::BCC)) 9817 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9818 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9819 BB->addSuccessor(loop1MBB); 9820 BB->addSuccessor(exitMBB); 9821 9822 BB = midMBB; 9823 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9824 .addReg(ZeroReg).addReg(PtrReg); 9825 BB->addSuccessor(exitMBB); 9826 9827 // exitMBB: 9828 // ... 9829 BB = exitMBB; 9830 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9831 .addReg(ShiftReg); 9832 } else if (MI.getOpcode() == PPC::FADDrtz) { 9833 // This pseudo performs an FADD with rounding mode temporarily forced 9834 // to round-to-zero. We emit this via custom inserter since the FPSCR 9835 // is not modeled at the SelectionDAG level. 9836 unsigned Dest = MI.getOperand(0).getReg(); 9837 unsigned Src1 = MI.getOperand(1).getReg(); 9838 unsigned Src2 = MI.getOperand(2).getReg(); 9839 DebugLoc dl = MI.getDebugLoc(); 9840 9841 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9842 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9843 9844 // Save FPSCR value. 9845 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9846 9847 // Set rounding mode to round-to-zero. 9848 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9849 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9850 9851 // Perform addition. 9852 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9853 9854 // Restore FPSCR value. 9855 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9856 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9857 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 9858 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9859 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9860 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9861 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 9862 ? PPC::ANDIo8 9863 : PPC::ANDIo; 9864 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9865 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9866 9867 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9868 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9869 &PPC::GPRCRegClass : 9870 &PPC::G8RCRegClass); 9871 9872 DebugLoc dl = MI.getDebugLoc(); 9873 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9874 .addReg(MI.getOperand(1).getReg()) 9875 .addImm(1); 9876 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9877 MI.getOperand(0).getReg()) 9878 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9879 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 9880 DebugLoc Dl = MI.getDebugLoc(); 9881 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9882 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9883 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9884 return BB; 9885 } else { 9886 llvm_unreachable("Unexpected instr type to insert"); 9887 } 9888 9889 MI.eraseFromParent(); // The pseudo instruction is gone now. 9890 return BB; 9891 } 9892 9893 //===----------------------------------------------------------------------===// 9894 // Target Optimization Hooks 9895 //===----------------------------------------------------------------------===// 9896 9897 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 9898 // For the estimates, convergence is quadratic, so we essentially double the 9899 // number of digits correct after every iteration. For both FRE and FRSQRTE, 9900 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 9901 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 9902 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 9903 if (VT.getScalarType() == MVT::f64) 9904 RefinementSteps++; 9905 return RefinementSteps; 9906 } 9907 9908 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 9909 int Enabled, int &RefinementSteps, 9910 bool &UseOneConstNR, 9911 bool Reciprocal) const { 9912 EVT VT = Operand.getValueType(); 9913 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9914 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9915 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9916 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9917 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9918 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9919 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9920 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9921 9922 UseOneConstNR = true; 9923 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9924 } 9925 return SDValue(); 9926 } 9927 9928 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 9929 int Enabled, 9930 int &RefinementSteps) const { 9931 EVT VT = Operand.getValueType(); 9932 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9933 (VT == MVT::f64 && Subtarget.hasFRE()) || 9934 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9935 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9936 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9937 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9938 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9939 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9940 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9941 } 9942 return SDValue(); 9943 } 9944 9945 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9946 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9947 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9948 // enabled for division), this functionality is redundant with the default 9949 // combiner logic (once the division -> reciprocal/multiply transformation 9950 // has taken place). As a result, this matters more for older cores than for 9951 // newer ones. 9952 9953 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9954 // reciprocal if there are two or more FDIVs (for embedded cores with only 9955 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9956 switch (Subtarget.getDarwinDirective()) { 9957 default: 9958 return 3; 9959 case PPC::DIR_440: 9960 case PPC::DIR_A2: 9961 case PPC::DIR_E500mc: 9962 case PPC::DIR_E5500: 9963 return 2; 9964 } 9965 } 9966 9967 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9968 // collapsed, and so we need to look through chains of them. 9969 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9970 int64_t& Offset, SelectionDAG &DAG) { 9971 if (DAG.isBaseWithConstantOffset(Loc)) { 9972 Base = Loc.getOperand(0); 9973 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9974 9975 // The base might itself be a base plus an offset, and if so, accumulate 9976 // that as well. 9977 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9978 } 9979 } 9980 9981 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9982 unsigned Bytes, int Dist, 9983 SelectionDAG &DAG) { 9984 if (VT.getSizeInBits() / 8 != Bytes) 9985 return false; 9986 9987 SDValue BaseLoc = Base->getBasePtr(); 9988 if (Loc.getOpcode() == ISD::FrameIndex) { 9989 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9990 return false; 9991 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9992 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9993 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9994 int FS = MFI.getObjectSize(FI); 9995 int BFS = MFI.getObjectSize(BFI); 9996 if (FS != BFS || FS != (int)Bytes) return false; 9997 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 9998 } 9999 10000 SDValue Base1 = Loc, Base2 = BaseLoc; 10001 int64_t Offset1 = 0, Offset2 = 0; 10002 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10003 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10004 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10005 return true; 10006 10007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10008 const GlobalValue *GV1 = nullptr; 10009 const GlobalValue *GV2 = nullptr; 10010 Offset1 = 0; 10011 Offset2 = 0; 10012 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10013 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10014 if (isGA1 && isGA2 && GV1 == GV2) 10015 return Offset1 == (Offset2 + Dist*Bytes); 10016 return false; 10017 } 10018 10019 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10020 // not enforce equality of the chain operands. 10021 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10022 unsigned Bytes, int Dist, 10023 SelectionDAG &DAG) { 10024 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10025 EVT VT = LS->getMemoryVT(); 10026 SDValue Loc = LS->getBasePtr(); 10027 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10028 } 10029 10030 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10031 EVT VT; 10032 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10033 default: return false; 10034 case Intrinsic::ppc_qpx_qvlfd: 10035 case Intrinsic::ppc_qpx_qvlfda: 10036 VT = MVT::v4f64; 10037 break; 10038 case Intrinsic::ppc_qpx_qvlfs: 10039 case Intrinsic::ppc_qpx_qvlfsa: 10040 VT = MVT::v4f32; 10041 break; 10042 case Intrinsic::ppc_qpx_qvlfcd: 10043 case Intrinsic::ppc_qpx_qvlfcda: 10044 VT = MVT::v2f64; 10045 break; 10046 case Intrinsic::ppc_qpx_qvlfcs: 10047 case Intrinsic::ppc_qpx_qvlfcsa: 10048 VT = MVT::v2f32; 10049 break; 10050 case Intrinsic::ppc_qpx_qvlfiwa: 10051 case Intrinsic::ppc_qpx_qvlfiwz: 10052 case Intrinsic::ppc_altivec_lvx: 10053 case Intrinsic::ppc_altivec_lvxl: 10054 case Intrinsic::ppc_vsx_lxvw4x: 10055 case Intrinsic::ppc_vsx_lxvw4x_be: 10056 VT = MVT::v4i32; 10057 break; 10058 case Intrinsic::ppc_vsx_lxvd2x: 10059 case Intrinsic::ppc_vsx_lxvd2x_be: 10060 VT = MVT::v2f64; 10061 break; 10062 case Intrinsic::ppc_altivec_lvebx: 10063 VT = MVT::i8; 10064 break; 10065 case Intrinsic::ppc_altivec_lvehx: 10066 VT = MVT::i16; 10067 break; 10068 case Intrinsic::ppc_altivec_lvewx: 10069 VT = MVT::i32; 10070 break; 10071 } 10072 10073 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 10074 } 10075 10076 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 10077 EVT VT; 10078 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10079 default: return false; 10080 case Intrinsic::ppc_qpx_qvstfd: 10081 case Intrinsic::ppc_qpx_qvstfda: 10082 VT = MVT::v4f64; 10083 break; 10084 case Intrinsic::ppc_qpx_qvstfs: 10085 case Intrinsic::ppc_qpx_qvstfsa: 10086 VT = MVT::v4f32; 10087 break; 10088 case Intrinsic::ppc_qpx_qvstfcd: 10089 case Intrinsic::ppc_qpx_qvstfcda: 10090 VT = MVT::v2f64; 10091 break; 10092 case Intrinsic::ppc_qpx_qvstfcs: 10093 case Intrinsic::ppc_qpx_qvstfcsa: 10094 VT = MVT::v2f32; 10095 break; 10096 case Intrinsic::ppc_qpx_qvstfiw: 10097 case Intrinsic::ppc_qpx_qvstfiwa: 10098 case Intrinsic::ppc_altivec_stvx: 10099 case Intrinsic::ppc_altivec_stvxl: 10100 case Intrinsic::ppc_vsx_stxvw4x: 10101 VT = MVT::v4i32; 10102 break; 10103 case Intrinsic::ppc_vsx_stxvd2x: 10104 VT = MVT::v2f64; 10105 break; 10106 case Intrinsic::ppc_vsx_stxvw4x_be: 10107 VT = MVT::v4i32; 10108 break; 10109 case Intrinsic::ppc_vsx_stxvd2x_be: 10110 VT = MVT::v2f64; 10111 break; 10112 case Intrinsic::ppc_altivec_stvebx: 10113 VT = MVT::i8; 10114 break; 10115 case Intrinsic::ppc_altivec_stvehx: 10116 VT = MVT::i16; 10117 break; 10118 case Intrinsic::ppc_altivec_stvewx: 10119 VT = MVT::i32; 10120 break; 10121 } 10122 10123 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 10124 } 10125 10126 return false; 10127 } 10128 10129 // Return true is there is a nearyby consecutive load to the one provided 10130 // (regardless of alignment). We search up and down the chain, looking though 10131 // token factors and other loads (but nothing else). As a result, a true result 10132 // indicates that it is safe to create a new consecutive load adjacent to the 10133 // load provided. 10134 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 10135 SDValue Chain = LD->getChain(); 10136 EVT VT = LD->getMemoryVT(); 10137 10138 SmallSet<SDNode *, 16> LoadRoots; 10139 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 10140 SmallSet<SDNode *, 16> Visited; 10141 10142 // First, search up the chain, branching to follow all token-factor operands. 10143 // If we find a consecutive load, then we're done, otherwise, record all 10144 // nodes just above the top-level loads and token factors. 10145 while (!Queue.empty()) { 10146 SDNode *ChainNext = Queue.pop_back_val(); 10147 if (!Visited.insert(ChainNext).second) 10148 continue; 10149 10150 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 10151 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10152 return true; 10153 10154 if (!Visited.count(ChainLD->getChain().getNode())) 10155 Queue.push_back(ChainLD->getChain().getNode()); 10156 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 10157 for (const SDUse &O : ChainNext->ops()) 10158 if (!Visited.count(O.getNode())) 10159 Queue.push_back(O.getNode()); 10160 } else 10161 LoadRoots.insert(ChainNext); 10162 } 10163 10164 // Second, search down the chain, starting from the top-level nodes recorded 10165 // in the first phase. These top-level nodes are the nodes just above all 10166 // loads and token factors. Starting with their uses, recursively look though 10167 // all loads (just the chain uses) and token factors to find a consecutive 10168 // load. 10169 Visited.clear(); 10170 Queue.clear(); 10171 10172 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 10173 IE = LoadRoots.end(); I != IE; ++I) { 10174 Queue.push_back(*I); 10175 10176 while (!Queue.empty()) { 10177 SDNode *LoadRoot = Queue.pop_back_val(); 10178 if (!Visited.insert(LoadRoot).second) 10179 continue; 10180 10181 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 10182 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10183 return true; 10184 10185 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 10186 UE = LoadRoot->use_end(); UI != UE; ++UI) 10187 if (((isa<MemSDNode>(*UI) && 10188 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 10189 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 10190 Queue.push_back(*UI); 10191 } 10192 } 10193 10194 return false; 10195 } 10196 10197 /// This function is called when we have proved that a SETCC node can be replaced 10198 /// by subtraction (and other supporting instructions) so that the result of 10199 /// comparison is kept in a GPR instead of CR. This function is purely for 10200 /// codegen purposes and has some flags to guide the codegen process. 10201 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 10202 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 10203 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10204 10205 // Zero extend the operands to the largest legal integer. Originally, they 10206 // must be of a strictly smaller size. 10207 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 10208 DAG.getConstant(Size, DL, MVT::i32)); 10209 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 10210 DAG.getConstant(Size, DL, MVT::i32)); 10211 10212 // Swap if needed. Depends on the condition code. 10213 if (Swap) 10214 std::swap(Op0, Op1); 10215 10216 // Subtract extended integers. 10217 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 10218 10219 // Move the sign bit to the least significant position and zero out the rest. 10220 // Now the least significant bit carries the result of original comparison. 10221 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 10222 DAG.getConstant(Size - 1, DL, MVT::i32)); 10223 auto Final = Shifted; 10224 10225 // Complement the result if needed. Based on the condition code. 10226 if (Complement) 10227 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 10228 DAG.getConstant(1, DL, MVT::i64)); 10229 10230 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 10231 } 10232 10233 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 10234 DAGCombinerInfo &DCI) const { 10235 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10236 10237 SelectionDAG &DAG = DCI.DAG; 10238 SDLoc DL(N); 10239 10240 // Size of integers being compared has a critical role in the following 10241 // analysis, so we prefer to do this when all types are legal. 10242 if (!DCI.isAfterLegalizeVectorOps()) 10243 return SDValue(); 10244 10245 // If all users of SETCC extend its value to a legal integer type 10246 // then we replace SETCC with a subtraction 10247 for (SDNode::use_iterator UI = N->use_begin(), 10248 UE = N->use_end(); UI != UE; ++UI) { 10249 if (UI->getOpcode() != ISD::ZERO_EXTEND) 10250 return SDValue(); 10251 } 10252 10253 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10254 auto OpSize = N->getOperand(0).getValueSizeInBits(); 10255 10256 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 10257 10258 if (OpSize < Size) { 10259 switch (CC) { 10260 default: break; 10261 case ISD::SETULT: 10262 return generateEquivalentSub(N, Size, false, false, DL, DAG); 10263 case ISD::SETULE: 10264 return generateEquivalentSub(N, Size, true, true, DL, DAG); 10265 case ISD::SETUGT: 10266 return generateEquivalentSub(N, Size, false, true, DL, DAG); 10267 case ISD::SETUGE: 10268 return generateEquivalentSub(N, Size, true, false, DL, DAG); 10269 } 10270 } 10271 10272 return SDValue(); 10273 } 10274 10275 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 10276 DAGCombinerInfo &DCI) const { 10277 SelectionDAG &DAG = DCI.DAG; 10278 SDLoc dl(N); 10279 10280 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 10281 // If we're tracking CR bits, we need to be careful that we don't have: 10282 // trunc(binary-ops(zext(x), zext(y))) 10283 // or 10284 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 10285 // such that we're unnecessarily moving things into GPRs when it would be 10286 // better to keep them in CR bits. 10287 10288 // Note that trunc here can be an actual i1 trunc, or can be the effective 10289 // truncation that comes from a setcc or select_cc. 10290 if (N->getOpcode() == ISD::TRUNCATE && 10291 N->getValueType(0) != MVT::i1) 10292 return SDValue(); 10293 10294 if (N->getOperand(0).getValueType() != MVT::i32 && 10295 N->getOperand(0).getValueType() != MVT::i64) 10296 return SDValue(); 10297 10298 if (N->getOpcode() == ISD::SETCC || 10299 N->getOpcode() == ISD::SELECT_CC) { 10300 // If we're looking at a comparison, then we need to make sure that the 10301 // high bits (all except for the first) don't matter the result. 10302 ISD::CondCode CC = 10303 cast<CondCodeSDNode>(N->getOperand( 10304 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 10305 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 10306 10307 if (ISD::isSignedIntSetCC(CC)) { 10308 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 10309 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 10310 return SDValue(); 10311 } else if (ISD::isUnsignedIntSetCC(CC)) { 10312 if (!DAG.MaskedValueIsZero(N->getOperand(0), 10313 APInt::getHighBitsSet(OpBits, OpBits-1)) || 10314 !DAG.MaskedValueIsZero(N->getOperand(1), 10315 APInt::getHighBitsSet(OpBits, OpBits-1))) 10316 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 10317 : SDValue()); 10318 } else { 10319 // This is neither a signed nor an unsigned comparison, just make sure 10320 // that the high bits are equal. 10321 APInt Op1Zero, Op1One; 10322 APInt Op2Zero, Op2One; 10323 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 10324 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 10325 10326 // We don't really care about what is known about the first bit (if 10327 // anything), so clear it in all masks prior to comparing them. 10328 Op1Zero.clearBit(0); Op1One.clearBit(0); 10329 Op2Zero.clearBit(0); Op2One.clearBit(0); 10330 10331 if (Op1Zero != Op2Zero || Op1One != Op2One) 10332 return SDValue(); 10333 } 10334 } 10335 10336 // We now know that the higher-order bits are irrelevant, we just need to 10337 // make sure that all of the intermediate operations are bit operations, and 10338 // all inputs are extensions. 10339 if (N->getOperand(0).getOpcode() != ISD::AND && 10340 N->getOperand(0).getOpcode() != ISD::OR && 10341 N->getOperand(0).getOpcode() != ISD::XOR && 10342 N->getOperand(0).getOpcode() != ISD::SELECT && 10343 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 10344 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 10345 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 10346 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 10347 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 10348 return SDValue(); 10349 10350 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 10351 N->getOperand(1).getOpcode() != ISD::AND && 10352 N->getOperand(1).getOpcode() != ISD::OR && 10353 N->getOperand(1).getOpcode() != ISD::XOR && 10354 N->getOperand(1).getOpcode() != ISD::SELECT && 10355 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 10356 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 10357 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 10358 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 10359 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 10360 return SDValue(); 10361 10362 SmallVector<SDValue, 4> Inputs; 10363 SmallVector<SDValue, 8> BinOps, PromOps; 10364 SmallPtrSet<SDNode *, 16> Visited; 10365 10366 for (unsigned i = 0; i < 2; ++i) { 10367 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10368 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10369 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10370 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10371 isa<ConstantSDNode>(N->getOperand(i))) 10372 Inputs.push_back(N->getOperand(i)); 10373 else 10374 BinOps.push_back(N->getOperand(i)); 10375 10376 if (N->getOpcode() == ISD::TRUNCATE) 10377 break; 10378 } 10379 10380 // Visit all inputs, collect all binary operations (and, or, xor and 10381 // select) that are all fed by extensions. 10382 while (!BinOps.empty()) { 10383 SDValue BinOp = BinOps.back(); 10384 BinOps.pop_back(); 10385 10386 if (!Visited.insert(BinOp.getNode()).second) 10387 continue; 10388 10389 PromOps.push_back(BinOp); 10390 10391 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10392 // The condition of the select is not promoted. 10393 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10394 continue; 10395 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10396 continue; 10397 10398 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10399 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10400 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10401 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10402 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10403 Inputs.push_back(BinOp.getOperand(i)); 10404 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10405 BinOp.getOperand(i).getOpcode() == ISD::OR || 10406 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10407 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10408 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 10409 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10410 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10411 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10412 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 10413 BinOps.push_back(BinOp.getOperand(i)); 10414 } else { 10415 // We have an input that is not an extension or another binary 10416 // operation; we'll abort this transformation. 10417 return SDValue(); 10418 } 10419 } 10420 } 10421 10422 // Make sure that this is a self-contained cluster of operations (which 10423 // is not quite the same thing as saying that everything has only one 10424 // use). 10425 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10426 if (isa<ConstantSDNode>(Inputs[i])) 10427 continue; 10428 10429 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10430 UE = Inputs[i].getNode()->use_end(); 10431 UI != UE; ++UI) { 10432 SDNode *User = *UI; 10433 if (User != N && !Visited.count(User)) 10434 return SDValue(); 10435 10436 // Make sure that we're not going to promote the non-output-value 10437 // operand(s) or SELECT or SELECT_CC. 10438 // FIXME: Although we could sometimes handle this, and it does occur in 10439 // practice that one of the condition inputs to the select is also one of 10440 // the outputs, we currently can't deal with this. 10441 if (User->getOpcode() == ISD::SELECT) { 10442 if (User->getOperand(0) == Inputs[i]) 10443 return SDValue(); 10444 } else if (User->getOpcode() == ISD::SELECT_CC) { 10445 if (User->getOperand(0) == Inputs[i] || 10446 User->getOperand(1) == Inputs[i]) 10447 return SDValue(); 10448 } 10449 } 10450 } 10451 10452 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10453 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10454 UE = PromOps[i].getNode()->use_end(); 10455 UI != UE; ++UI) { 10456 SDNode *User = *UI; 10457 if (User != N && !Visited.count(User)) 10458 return SDValue(); 10459 10460 // Make sure that we're not going to promote the non-output-value 10461 // operand(s) or SELECT or SELECT_CC. 10462 // FIXME: Although we could sometimes handle this, and it does occur in 10463 // practice that one of the condition inputs to the select is also one of 10464 // the outputs, we currently can't deal with this. 10465 if (User->getOpcode() == ISD::SELECT) { 10466 if (User->getOperand(0) == PromOps[i]) 10467 return SDValue(); 10468 } else if (User->getOpcode() == ISD::SELECT_CC) { 10469 if (User->getOperand(0) == PromOps[i] || 10470 User->getOperand(1) == PromOps[i]) 10471 return SDValue(); 10472 } 10473 } 10474 } 10475 10476 // Replace all inputs with the extension operand. 10477 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10478 // Constants may have users outside the cluster of to-be-promoted nodes, 10479 // and so we need to replace those as we do the promotions. 10480 if (isa<ConstantSDNode>(Inputs[i])) 10481 continue; 10482 else 10483 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 10484 } 10485 10486 std::list<HandleSDNode> PromOpHandles; 10487 for (auto &PromOp : PromOps) 10488 PromOpHandles.emplace_back(PromOp); 10489 10490 // Replace all operations (these are all the same, but have a different 10491 // (i1) return type). DAG.getNode will validate that the types of 10492 // a binary operator match, so go through the list in reverse so that 10493 // we've likely promoted both operands first. Any intermediate truncations or 10494 // extensions disappear. 10495 while (!PromOpHandles.empty()) { 10496 SDValue PromOp = PromOpHandles.back().getValue(); 10497 PromOpHandles.pop_back(); 10498 10499 if (PromOp.getOpcode() == ISD::TRUNCATE || 10500 PromOp.getOpcode() == ISD::SIGN_EXTEND || 10501 PromOp.getOpcode() == ISD::ZERO_EXTEND || 10502 PromOp.getOpcode() == ISD::ANY_EXTEND) { 10503 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 10504 PromOp.getOperand(0).getValueType() != MVT::i1) { 10505 // The operand is not yet ready (see comment below). 10506 PromOpHandles.emplace_front(PromOp); 10507 continue; 10508 } 10509 10510 SDValue RepValue = PromOp.getOperand(0); 10511 if (isa<ConstantSDNode>(RepValue)) 10512 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 10513 10514 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 10515 continue; 10516 } 10517 10518 unsigned C; 10519 switch (PromOp.getOpcode()) { 10520 default: C = 0; break; 10521 case ISD::SELECT: C = 1; break; 10522 case ISD::SELECT_CC: C = 2; break; 10523 } 10524 10525 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10526 PromOp.getOperand(C).getValueType() != MVT::i1) || 10527 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10528 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 10529 // The to-be-promoted operands of this node have not yet been 10530 // promoted (this should be rare because we're going through the 10531 // list backward, but if one of the operands has several users in 10532 // this cluster of to-be-promoted nodes, it is possible). 10533 PromOpHandles.emplace_front(PromOp); 10534 continue; 10535 } 10536 10537 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10538 PromOp.getNode()->op_end()); 10539 10540 // If there are any constant inputs, make sure they're replaced now. 10541 for (unsigned i = 0; i < 2; ++i) 10542 if (isa<ConstantSDNode>(Ops[C+i])) 10543 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 10544 10545 DAG.ReplaceAllUsesOfValueWith(PromOp, 10546 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 10547 } 10548 10549 // Now we're left with the initial truncation itself. 10550 if (N->getOpcode() == ISD::TRUNCATE) 10551 return N->getOperand(0); 10552 10553 // Otherwise, this is a comparison. The operands to be compared have just 10554 // changed type (to i1), but everything else is the same. 10555 return SDValue(N, 0); 10556 } 10557 10558 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 10559 DAGCombinerInfo &DCI) const { 10560 SelectionDAG &DAG = DCI.DAG; 10561 SDLoc dl(N); 10562 10563 // If we're tracking CR bits, we need to be careful that we don't have: 10564 // zext(binary-ops(trunc(x), trunc(y))) 10565 // or 10566 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 10567 // such that we're unnecessarily moving things into CR bits that can more 10568 // efficiently stay in GPRs. Note that if we're not certain that the high 10569 // bits are set as required by the final extension, we still may need to do 10570 // some masking to get the proper behavior. 10571 10572 // This same functionality is important on PPC64 when dealing with 10573 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10574 // the return values of functions. Because it is so similar, it is handled 10575 // here as well. 10576 10577 if (N->getValueType(0) != MVT::i32 && 10578 N->getValueType(0) != MVT::i64) 10579 return SDValue(); 10580 10581 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10582 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10583 return SDValue(); 10584 10585 if (N->getOperand(0).getOpcode() != ISD::AND && 10586 N->getOperand(0).getOpcode() != ISD::OR && 10587 N->getOperand(0).getOpcode() != ISD::XOR && 10588 N->getOperand(0).getOpcode() != ISD::SELECT && 10589 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10590 return SDValue(); 10591 10592 SmallVector<SDValue, 4> Inputs; 10593 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10594 SmallPtrSet<SDNode *, 16> Visited; 10595 10596 // Visit all inputs, collect all binary operations (and, or, xor and 10597 // select) that are all fed by truncations. 10598 while (!BinOps.empty()) { 10599 SDValue BinOp = BinOps.back(); 10600 BinOps.pop_back(); 10601 10602 if (!Visited.insert(BinOp.getNode()).second) 10603 continue; 10604 10605 PromOps.push_back(BinOp); 10606 10607 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10608 // The condition of the select is not promoted. 10609 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10610 continue; 10611 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10612 continue; 10613 10614 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10615 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10616 Inputs.push_back(BinOp.getOperand(i)); 10617 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10618 BinOp.getOperand(i).getOpcode() == ISD::OR || 10619 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10620 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10621 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10622 BinOps.push_back(BinOp.getOperand(i)); 10623 } else { 10624 // We have an input that is not a truncation or another binary 10625 // operation; we'll abort this transformation. 10626 return SDValue(); 10627 } 10628 } 10629 } 10630 10631 // The operands of a select that must be truncated when the select is 10632 // promoted because the operand is actually part of the to-be-promoted set. 10633 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10634 10635 // Make sure that this is a self-contained cluster of operations (which 10636 // is not quite the same thing as saying that everything has only one 10637 // use). 10638 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10639 if (isa<ConstantSDNode>(Inputs[i])) 10640 continue; 10641 10642 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10643 UE = Inputs[i].getNode()->use_end(); 10644 UI != UE; ++UI) { 10645 SDNode *User = *UI; 10646 if (User != N && !Visited.count(User)) 10647 return SDValue(); 10648 10649 // If we're going to promote the non-output-value operand(s) or SELECT or 10650 // SELECT_CC, record them for truncation. 10651 if (User->getOpcode() == ISD::SELECT) { 10652 if (User->getOperand(0) == Inputs[i]) 10653 SelectTruncOp[0].insert(std::make_pair(User, 10654 User->getOperand(0).getValueType())); 10655 } else if (User->getOpcode() == ISD::SELECT_CC) { 10656 if (User->getOperand(0) == Inputs[i]) 10657 SelectTruncOp[0].insert(std::make_pair(User, 10658 User->getOperand(0).getValueType())); 10659 if (User->getOperand(1) == Inputs[i]) 10660 SelectTruncOp[1].insert(std::make_pair(User, 10661 User->getOperand(1).getValueType())); 10662 } 10663 } 10664 } 10665 10666 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10667 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10668 UE = PromOps[i].getNode()->use_end(); 10669 UI != UE; ++UI) { 10670 SDNode *User = *UI; 10671 if (User != N && !Visited.count(User)) 10672 return SDValue(); 10673 10674 // If we're going to promote the non-output-value operand(s) or SELECT or 10675 // SELECT_CC, record them for truncation. 10676 if (User->getOpcode() == ISD::SELECT) { 10677 if (User->getOperand(0) == PromOps[i]) 10678 SelectTruncOp[0].insert(std::make_pair(User, 10679 User->getOperand(0).getValueType())); 10680 } else if (User->getOpcode() == ISD::SELECT_CC) { 10681 if (User->getOperand(0) == PromOps[i]) 10682 SelectTruncOp[0].insert(std::make_pair(User, 10683 User->getOperand(0).getValueType())); 10684 if (User->getOperand(1) == PromOps[i]) 10685 SelectTruncOp[1].insert(std::make_pair(User, 10686 User->getOperand(1).getValueType())); 10687 } 10688 } 10689 } 10690 10691 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10692 bool ReallyNeedsExt = false; 10693 if (N->getOpcode() != ISD::ANY_EXTEND) { 10694 // If all of the inputs are not already sign/zero extended, then 10695 // we'll still need to do that at the end. 10696 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10697 if (isa<ConstantSDNode>(Inputs[i])) 10698 continue; 10699 10700 unsigned OpBits = 10701 Inputs[i].getOperand(0).getValueSizeInBits(); 10702 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10703 10704 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10705 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10706 APInt::getHighBitsSet(OpBits, 10707 OpBits-PromBits))) || 10708 (N->getOpcode() == ISD::SIGN_EXTEND && 10709 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10710 (OpBits-(PromBits-1)))) { 10711 ReallyNeedsExt = true; 10712 break; 10713 } 10714 } 10715 } 10716 10717 // Replace all inputs, either with the truncation operand, or a 10718 // truncation or extension to the final output type. 10719 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10720 // Constant inputs need to be replaced with the to-be-promoted nodes that 10721 // use them because they might have users outside of the cluster of 10722 // promoted nodes. 10723 if (isa<ConstantSDNode>(Inputs[i])) 10724 continue; 10725 10726 SDValue InSrc = Inputs[i].getOperand(0); 10727 if (Inputs[i].getValueType() == N->getValueType(0)) 10728 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10729 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10730 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10731 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10732 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10733 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10734 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10735 else 10736 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10737 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10738 } 10739 10740 std::list<HandleSDNode> PromOpHandles; 10741 for (auto &PromOp : PromOps) 10742 PromOpHandles.emplace_back(PromOp); 10743 10744 // Replace all operations (these are all the same, but have a different 10745 // (promoted) return type). DAG.getNode will validate that the types of 10746 // a binary operator match, so go through the list in reverse so that 10747 // we've likely promoted both operands first. 10748 while (!PromOpHandles.empty()) { 10749 SDValue PromOp = PromOpHandles.back().getValue(); 10750 PromOpHandles.pop_back(); 10751 10752 unsigned C; 10753 switch (PromOp.getOpcode()) { 10754 default: C = 0; break; 10755 case ISD::SELECT: C = 1; break; 10756 case ISD::SELECT_CC: C = 2; break; 10757 } 10758 10759 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10760 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10761 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10762 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10763 // The to-be-promoted operands of this node have not yet been 10764 // promoted (this should be rare because we're going through the 10765 // list backward, but if one of the operands has several users in 10766 // this cluster of to-be-promoted nodes, it is possible). 10767 PromOpHandles.emplace_front(PromOp); 10768 continue; 10769 } 10770 10771 // For SELECT and SELECT_CC nodes, we do a similar check for any 10772 // to-be-promoted comparison inputs. 10773 if (PromOp.getOpcode() == ISD::SELECT || 10774 PromOp.getOpcode() == ISD::SELECT_CC) { 10775 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10776 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10777 (SelectTruncOp[1].count(PromOp.getNode()) && 10778 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10779 PromOpHandles.emplace_front(PromOp); 10780 continue; 10781 } 10782 } 10783 10784 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10785 PromOp.getNode()->op_end()); 10786 10787 // If this node has constant inputs, then they'll need to be promoted here. 10788 for (unsigned i = 0; i < 2; ++i) { 10789 if (!isa<ConstantSDNode>(Ops[C+i])) 10790 continue; 10791 if (Ops[C+i].getValueType() == N->getValueType(0)) 10792 continue; 10793 10794 if (N->getOpcode() == ISD::SIGN_EXTEND) 10795 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10796 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10797 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10798 else 10799 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10800 } 10801 10802 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10803 // truncate them again to the original value type. 10804 if (PromOp.getOpcode() == ISD::SELECT || 10805 PromOp.getOpcode() == ISD::SELECT_CC) { 10806 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10807 if (SI0 != SelectTruncOp[0].end()) 10808 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10809 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10810 if (SI1 != SelectTruncOp[1].end()) 10811 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10812 } 10813 10814 DAG.ReplaceAllUsesOfValueWith(PromOp, 10815 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10816 } 10817 10818 // Now we're left with the initial extension itself. 10819 if (!ReallyNeedsExt) 10820 return N->getOperand(0); 10821 10822 // To zero extend, just mask off everything except for the first bit (in the 10823 // i1 case). 10824 if (N->getOpcode() == ISD::ZERO_EXTEND) 10825 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10826 DAG.getConstant(APInt::getLowBitsSet( 10827 N->getValueSizeInBits(0), PromBits), 10828 dl, N->getValueType(0))); 10829 10830 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10831 "Invalid extension type"); 10832 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10833 SDValue ShiftCst = 10834 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10835 return DAG.getNode( 10836 ISD::SRA, dl, N->getValueType(0), 10837 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10838 ShiftCst); 10839 } 10840 10841 /// \brief Reduces the number of fp-to-int conversion when building a vector. 10842 /// 10843 /// If this vector is built out of floating to integer conversions, 10844 /// transform it to a vector built out of floating point values followed by a 10845 /// single floating to integer conversion of the vector. 10846 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 10847 /// becomes (fptosi (build_vector ($A, $B, ...))) 10848 SDValue PPCTargetLowering:: 10849 combineElementTruncationToVectorTruncation(SDNode *N, 10850 DAGCombinerInfo &DCI) const { 10851 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10852 "Should be called with a BUILD_VECTOR node"); 10853 10854 SelectionDAG &DAG = DCI.DAG; 10855 SDLoc dl(N); 10856 10857 SDValue FirstInput = N->getOperand(0); 10858 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 10859 "The input operand must be an fp-to-int conversion."); 10860 10861 // This combine happens after legalization so the fp_to_[su]i nodes are 10862 // already converted to PPCSISD nodes. 10863 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 10864 if (FirstConversion == PPCISD::FCTIDZ || 10865 FirstConversion == PPCISD::FCTIDUZ || 10866 FirstConversion == PPCISD::FCTIWZ || 10867 FirstConversion == PPCISD::FCTIWUZ) { 10868 bool IsSplat = true; 10869 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 10870 FirstConversion == PPCISD::FCTIWUZ; 10871 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 10872 SmallVector<SDValue, 4> Ops; 10873 EVT TargetVT = N->getValueType(0); 10874 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 10875 if (N->getOperand(i).getOpcode() != PPCISD::MFVSR) 10876 return SDValue(); 10877 unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode(); 10878 if (NextConversion != FirstConversion) 10879 return SDValue(); 10880 if (N->getOperand(i) != FirstInput) 10881 IsSplat = false; 10882 } 10883 10884 // If this is a splat, we leave it as-is since there will be only a single 10885 // fp-to-int conversion followed by a splat of the integer. This is better 10886 // for 32-bit and smaller ints and neutral for 64-bit ints. 10887 if (IsSplat) 10888 return SDValue(); 10889 10890 // Now that we know we have the right type of node, get its operands 10891 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 10892 SDValue In = N->getOperand(i).getOperand(0); 10893 // For 32-bit values, we need to add an FP_ROUND node. 10894 if (Is32Bit) { 10895 if (In.isUndef()) 10896 Ops.push_back(DAG.getUNDEF(SrcVT)); 10897 else { 10898 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 10899 MVT::f32, In.getOperand(0), 10900 DAG.getIntPtrConstant(1, dl)); 10901 Ops.push_back(Trunc); 10902 } 10903 } else 10904 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 10905 } 10906 10907 unsigned Opcode; 10908 if (FirstConversion == PPCISD::FCTIDZ || 10909 FirstConversion == PPCISD::FCTIWZ) 10910 Opcode = ISD::FP_TO_SINT; 10911 else 10912 Opcode = ISD::FP_TO_UINT; 10913 10914 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 10915 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 10916 return DAG.getNode(Opcode, dl, TargetVT, BV); 10917 } 10918 return SDValue(); 10919 } 10920 10921 /// \brief Reduce the number of loads when building a vector. 10922 /// 10923 /// Building a vector out of multiple loads can be converted to a load 10924 /// of the vector type if the loads are consecutive. If the loads are 10925 /// consecutive but in descending order, a shuffle is added at the end 10926 /// to reorder the vector. 10927 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 10928 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10929 "Should be called with a BUILD_VECTOR node"); 10930 10931 SDLoc dl(N); 10932 bool InputsAreConsecutiveLoads = true; 10933 bool InputsAreReverseConsecutive = true; 10934 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 10935 SDValue FirstInput = N->getOperand(0); 10936 bool IsRoundOfExtLoad = false; 10937 10938 if (FirstInput.getOpcode() == ISD::FP_ROUND && 10939 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 10940 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 10941 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 10942 } 10943 // Not a build vector of (possibly fp_rounded) loads. 10944 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) 10945 return SDValue(); 10946 10947 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 10948 // If any inputs are fp_round(extload), they all must be. 10949 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 10950 return SDValue(); 10951 10952 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 10953 N->getOperand(i); 10954 if (NextInput.getOpcode() != ISD::LOAD) 10955 return SDValue(); 10956 10957 SDValue PreviousInput = 10958 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 10959 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 10960 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 10961 10962 // If any inputs are fp_round(extload), they all must be. 10963 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 10964 return SDValue(); 10965 10966 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 10967 InputsAreConsecutiveLoads = false; 10968 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 10969 InputsAreReverseConsecutive = false; 10970 10971 // Exit early if the loads are neither consecutive nor reverse consecutive. 10972 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 10973 return SDValue(); 10974 } 10975 10976 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 10977 "The loads cannot be both consecutive and reverse consecutive."); 10978 10979 SDValue FirstLoadOp = 10980 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 10981 SDValue LastLoadOp = 10982 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 10983 N->getOperand(N->getNumOperands()-1); 10984 10985 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 10986 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 10987 if (InputsAreConsecutiveLoads) { 10988 assert(LD1 && "Input needs to be a LoadSDNode."); 10989 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 10990 LD1->getBasePtr(), LD1->getPointerInfo(), 10991 LD1->getAlignment()); 10992 } 10993 if (InputsAreReverseConsecutive) { 10994 assert(LDL && "Input needs to be a LoadSDNode."); 10995 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 10996 LDL->getBasePtr(), LDL->getPointerInfo(), 10997 LDL->getAlignment()); 10998 SmallVector<int, 16> Ops; 10999 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11000 Ops.push_back(i); 11001 11002 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11003 DAG.getUNDEF(N->getValueType(0)), Ops); 11004 } 11005 return SDValue(); 11006 } 11007 11008 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 11009 DAGCombinerInfo &DCI) const { 11010 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11011 "Should be called with a BUILD_VECTOR node"); 11012 11013 SelectionDAG &DAG = DCI.DAG; 11014 SDLoc dl(N); 11015 11016 if (!Subtarget.hasVSX()) 11017 return SDValue(); 11018 11019 // The target independent DAG combiner will leave a build_vector of 11020 // float-to-int conversions intact. We can generate MUCH better code for 11021 // a float-to-int conversion of a vector of floats. 11022 SDValue FirstInput = N->getOperand(0); 11023 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 11024 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 11025 if (Reduced) 11026 return Reduced; 11027 } 11028 11029 // If we're building a vector out of consecutive loads, just load that 11030 // vector type. 11031 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 11032 if (Reduced) 11033 return Reduced; 11034 11035 if (N->getValueType(0) != MVT::v2f64) 11036 return SDValue(); 11037 11038 // Looking for: 11039 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 11040 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 11041 FirstInput.getOpcode() != ISD::UINT_TO_FP) 11042 return SDValue(); 11043 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 11044 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 11045 return SDValue(); 11046 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 11047 return SDValue(); 11048 11049 SDValue Ext1 = FirstInput.getOperand(0); 11050 SDValue Ext2 = N->getOperand(1).getOperand(0); 11051 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11052 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11053 return SDValue(); 11054 11055 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 11056 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 11057 if (!Ext1Op || !Ext2Op) 11058 return SDValue(); 11059 if (Ext1.getValueType() != MVT::i32 || 11060 Ext2.getValueType() != MVT::i32) 11061 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 11062 return SDValue(); 11063 11064 int FirstElem = Ext1Op->getZExtValue(); 11065 int SecondElem = Ext2Op->getZExtValue(); 11066 int SubvecIdx; 11067 if (FirstElem == 0 && SecondElem == 1) 11068 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 11069 else if (FirstElem == 2 && SecondElem == 3) 11070 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 11071 else 11072 return SDValue(); 11073 11074 SDValue SrcVec = Ext1.getOperand(0); 11075 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 11076 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 11077 return DAG.getNode(NodeType, dl, MVT::v2f64, 11078 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 11079 } 11080 11081 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 11082 DAGCombinerInfo &DCI) const { 11083 assert((N->getOpcode() == ISD::SINT_TO_FP || 11084 N->getOpcode() == ISD::UINT_TO_FP) && 11085 "Need an int -> FP conversion node here"); 11086 11087 if (useSoftFloat() || !Subtarget.has64BitSupport()) 11088 return SDValue(); 11089 11090 SelectionDAG &DAG = DCI.DAG; 11091 SDLoc dl(N); 11092 SDValue Op(N, 0); 11093 11094 SDValue FirstOperand(Op.getOperand(0)); 11095 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 11096 (FirstOperand.getValueType() == MVT::i8 || 11097 FirstOperand.getValueType() == MVT::i16); 11098 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 11099 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 11100 bool DstDouble = Op.getValueType() == MVT::f64; 11101 unsigned ConvOp = Signed ? 11102 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 11103 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 11104 SDValue WidthConst = 11105 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 11106 dl, false); 11107 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 11108 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 11109 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 11110 DAG.getVTList(MVT::f64, MVT::Other), 11111 Ops, MVT::i8, LDN->getMemOperand()); 11112 11113 // For signed conversion, we need to sign-extend the value in the VSR 11114 if (Signed) { 11115 SDValue ExtOps[] = { Ld, WidthConst }; 11116 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 11117 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 11118 } else 11119 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 11120 } 11121 11122 // Don't handle ppc_fp128 here or i1 conversions. 11123 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 11124 return SDValue(); 11125 if (Op.getOperand(0).getValueType() == MVT::i1) 11126 return SDValue(); 11127 11128 // For i32 intermediate values, unfortunately, the conversion functions 11129 // leave the upper 32 bits of the value are undefined. Within the set of 11130 // scalar instructions, we have no method for zero- or sign-extending the 11131 // value. Thus, we cannot handle i32 intermediate values here. 11132 if (Op.getOperand(0).getValueType() == MVT::i32) 11133 return SDValue(); 11134 11135 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 11136 "UINT_TO_FP is supported only with FPCVT"); 11137 11138 // If we have FCFIDS, then use it when converting to single-precision. 11139 // Otherwise, convert to double-precision and then round. 11140 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 11141 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 11142 : PPCISD::FCFIDS) 11143 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 11144 : PPCISD::FCFID); 11145 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 11146 ? MVT::f32 11147 : MVT::f64; 11148 11149 // If we're converting from a float, to an int, and back to a float again, 11150 // then we don't need the store/load pair at all. 11151 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 11152 Subtarget.hasFPCVT()) || 11153 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 11154 SDValue Src = Op.getOperand(0).getOperand(0); 11155 if (Src.getValueType() == MVT::f32) { 11156 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 11157 DCI.AddToWorklist(Src.getNode()); 11158 } else if (Src.getValueType() != MVT::f64) { 11159 // Make sure that we don't pick up a ppc_fp128 source value. 11160 return SDValue(); 11161 } 11162 11163 unsigned FCTOp = 11164 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 11165 PPCISD::FCTIDUZ; 11166 11167 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 11168 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 11169 11170 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 11171 FP = DAG.getNode(ISD::FP_ROUND, dl, 11172 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 11173 DCI.AddToWorklist(FP.getNode()); 11174 } 11175 11176 return FP; 11177 } 11178 11179 return SDValue(); 11180 } 11181 11182 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 11183 // builtins) into loads with swaps. 11184 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 11185 DAGCombinerInfo &DCI) const { 11186 SelectionDAG &DAG = DCI.DAG; 11187 SDLoc dl(N); 11188 SDValue Chain; 11189 SDValue Base; 11190 MachineMemOperand *MMO; 11191 11192 switch (N->getOpcode()) { 11193 default: 11194 llvm_unreachable("Unexpected opcode for little endian VSX load"); 11195 case ISD::LOAD: { 11196 LoadSDNode *LD = cast<LoadSDNode>(N); 11197 Chain = LD->getChain(); 11198 Base = LD->getBasePtr(); 11199 MMO = LD->getMemOperand(); 11200 // If the MMO suggests this isn't a load of a full vector, leave 11201 // things alone. For a built-in, we have to make the change for 11202 // correctness, so if there is a size problem that will be a bug. 11203 if (MMO->getSize() < 16) 11204 return SDValue(); 11205 break; 11206 } 11207 case ISD::INTRINSIC_W_CHAIN: { 11208 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 11209 Chain = Intrin->getChain(); 11210 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 11211 // us what we want. Get operand 2 instead. 11212 Base = Intrin->getOperand(2); 11213 MMO = Intrin->getMemOperand(); 11214 break; 11215 } 11216 } 11217 11218 MVT VecTy = N->getValueType(0).getSimpleVT(); 11219 SDValue LoadOps[] = { Chain, Base }; 11220 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 11221 DAG.getVTList(MVT::v2f64, MVT::Other), 11222 LoadOps, MVT::v2f64, MMO); 11223 11224 DCI.AddToWorklist(Load.getNode()); 11225 Chain = Load.getValue(1); 11226 SDValue Swap = DAG.getNode( 11227 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 11228 DCI.AddToWorklist(Swap.getNode()); 11229 11230 // Add a bitcast if the resulting load type doesn't match v2f64. 11231 if (VecTy != MVT::v2f64) { 11232 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 11233 DCI.AddToWorklist(N.getNode()); 11234 // Package {bitcast value, swap's chain} to match Load's shape. 11235 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 11236 N, Swap.getValue(1)); 11237 } 11238 11239 return Swap; 11240 } 11241 11242 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 11243 // builtins) into stores with swaps. 11244 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 11245 DAGCombinerInfo &DCI) const { 11246 SelectionDAG &DAG = DCI.DAG; 11247 SDLoc dl(N); 11248 SDValue Chain; 11249 SDValue Base; 11250 unsigned SrcOpnd; 11251 MachineMemOperand *MMO; 11252 11253 switch (N->getOpcode()) { 11254 default: 11255 llvm_unreachable("Unexpected opcode for little endian VSX store"); 11256 case ISD::STORE: { 11257 StoreSDNode *ST = cast<StoreSDNode>(N); 11258 Chain = ST->getChain(); 11259 Base = ST->getBasePtr(); 11260 MMO = ST->getMemOperand(); 11261 SrcOpnd = 1; 11262 // If the MMO suggests this isn't a store of a full vector, leave 11263 // things alone. For a built-in, we have to make the change for 11264 // correctness, so if there is a size problem that will be a bug. 11265 if (MMO->getSize() < 16) 11266 return SDValue(); 11267 break; 11268 } 11269 case ISD::INTRINSIC_VOID: { 11270 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 11271 Chain = Intrin->getChain(); 11272 // Intrin->getBasePtr() oddly does not get what we want. 11273 Base = Intrin->getOperand(3); 11274 MMO = Intrin->getMemOperand(); 11275 SrcOpnd = 2; 11276 break; 11277 } 11278 } 11279 11280 SDValue Src = N->getOperand(SrcOpnd); 11281 MVT VecTy = Src.getValueType().getSimpleVT(); 11282 11283 // All stores are done as v2f64 and possible bit cast. 11284 if (VecTy != MVT::v2f64) { 11285 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 11286 DCI.AddToWorklist(Src.getNode()); 11287 } 11288 11289 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 11290 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 11291 DCI.AddToWorklist(Swap.getNode()); 11292 Chain = Swap.getValue(1); 11293 SDValue StoreOps[] = { Chain, Swap, Base }; 11294 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 11295 DAG.getVTList(MVT::Other), 11296 StoreOps, VecTy, MMO); 11297 DCI.AddToWorklist(Store.getNode()); 11298 return Store; 11299 } 11300 11301 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 11302 DAGCombinerInfo &DCI) const { 11303 SelectionDAG &DAG = DCI.DAG; 11304 SDLoc dl(N); 11305 switch (N->getOpcode()) { 11306 default: break; 11307 case PPCISD::SHL: 11308 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 11309 return N->getOperand(0); 11310 break; 11311 case PPCISD::SRL: 11312 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 11313 return N->getOperand(0); 11314 break; 11315 case PPCISD::SRA: 11316 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 11317 if (C->isNullValue() || // 0 >>s V -> 0. 11318 C->isAllOnesValue()) // -1 >>s V -> -1. 11319 return N->getOperand(0); 11320 } 11321 break; 11322 case ISD::SIGN_EXTEND: 11323 case ISD::ZERO_EXTEND: 11324 case ISD::ANY_EXTEND: 11325 return DAGCombineExtBoolTrunc(N, DCI); 11326 case ISD::TRUNCATE: 11327 case ISD::SETCC: 11328 case ISD::SELECT_CC: 11329 return DAGCombineTruncBoolExt(N, DCI); 11330 case ISD::SINT_TO_FP: 11331 case ISD::UINT_TO_FP: 11332 return combineFPToIntToFP(N, DCI); 11333 case ISD::STORE: { 11334 EVT Op1VT = N->getOperand(1).getValueType(); 11335 bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) || 11336 (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16)); 11337 11338 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 11339 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 11340 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 11341 ValidTypeForStoreFltAsInt && 11342 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 11343 SDValue Val = N->getOperand(1).getOperand(0); 11344 if (Val.getValueType() == MVT::f32) { 11345 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 11346 DCI.AddToWorklist(Val.getNode()); 11347 } 11348 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 11349 DCI.AddToWorklist(Val.getNode()); 11350 11351 if (Op1VT == MVT::i32) { 11352 SDValue Ops[] = { 11353 N->getOperand(0), Val, N->getOperand(2), 11354 DAG.getValueType(N->getOperand(1).getValueType()) 11355 }; 11356 11357 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 11358 DAG.getVTList(MVT::Other), Ops, 11359 cast<StoreSDNode>(N)->getMemoryVT(), 11360 cast<StoreSDNode>(N)->getMemOperand()); 11361 } else { 11362 unsigned WidthInBytes = 11363 N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2; 11364 SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false); 11365 11366 SDValue Ops[] = { 11367 N->getOperand(0), Val, N->getOperand(2), WidthConst, 11368 DAG.getValueType(N->getOperand(1).getValueType()) 11369 }; 11370 Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl, 11371 DAG.getVTList(MVT::Other), Ops, 11372 cast<StoreSDNode>(N)->getMemoryVT(), 11373 cast<StoreSDNode>(N)->getMemOperand()); 11374 } 11375 11376 DCI.AddToWorklist(Val.getNode()); 11377 return Val; 11378 } 11379 11380 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 11381 if (cast<StoreSDNode>(N)->isUnindexed() && 11382 N->getOperand(1).getOpcode() == ISD::BSWAP && 11383 N->getOperand(1).getNode()->hasOneUse() && 11384 (N->getOperand(1).getValueType() == MVT::i32 || 11385 N->getOperand(1).getValueType() == MVT::i16 || 11386 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11387 N->getOperand(1).getValueType() == MVT::i64))) { 11388 SDValue BSwapOp = N->getOperand(1).getOperand(0); 11389 // Do an any-extend to 32-bits if this is a half-word input. 11390 if (BSwapOp.getValueType() == MVT::i16) 11391 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 11392 11393 // If the type of BSWAP operand is wider than stored memory width 11394 // it need to be shifted to the right side before STBRX. 11395 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 11396 if (Op1VT.bitsGT(mVT)) { 11397 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 11398 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 11399 DAG.getConstant(Shift, dl, MVT::i32)); 11400 // Need to truncate if this is a bswap of i64 stored as i32/i16. 11401 if (Op1VT == MVT::i64) 11402 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 11403 } 11404 11405 SDValue Ops[] = { 11406 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 11407 }; 11408 return 11409 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 11410 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 11411 cast<StoreSDNode>(N)->getMemOperand()); 11412 } 11413 11414 // For little endian, VSX stores require generating xxswapd/lxvd2x. 11415 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11416 EVT VT = N->getOperand(1).getValueType(); 11417 if (VT.isSimple()) { 11418 MVT StoreVT = VT.getSimpleVT(); 11419 if (Subtarget.needsSwapsForVSXMemOps() && 11420 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 11421 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 11422 return expandVSXStoreForLE(N, DCI); 11423 } 11424 break; 11425 } 11426 case ISD::LOAD: { 11427 LoadSDNode *LD = cast<LoadSDNode>(N); 11428 EVT VT = LD->getValueType(0); 11429 11430 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11431 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11432 if (VT.isSimple()) { 11433 MVT LoadVT = VT.getSimpleVT(); 11434 if (Subtarget.needsSwapsForVSXMemOps() && 11435 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 11436 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 11437 return expandVSXLoadForLE(N, DCI); 11438 } 11439 11440 // We sometimes end up with a 64-bit integer load, from which we extract 11441 // two single-precision floating-point numbers. This happens with 11442 // std::complex<float>, and other similar structures, because of the way we 11443 // canonicalize structure copies. However, if we lack direct moves, 11444 // then the final bitcasts from the extracted integer values to the 11445 // floating-point numbers turn into store/load pairs. Even with direct moves, 11446 // just loading the two floating-point numbers is likely better. 11447 auto ReplaceTwoFloatLoad = [&]() { 11448 if (VT != MVT::i64) 11449 return false; 11450 11451 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 11452 LD->isVolatile()) 11453 return false; 11454 11455 // We're looking for a sequence like this: 11456 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 11457 // t16: i64 = srl t13, Constant:i32<32> 11458 // t17: i32 = truncate t16 11459 // t18: f32 = bitcast t17 11460 // t19: i32 = truncate t13 11461 // t20: f32 = bitcast t19 11462 11463 if (!LD->hasNUsesOfValue(2, 0)) 11464 return false; 11465 11466 auto UI = LD->use_begin(); 11467 while (UI.getUse().getResNo() != 0) ++UI; 11468 SDNode *Trunc = *UI++; 11469 while (UI.getUse().getResNo() != 0) ++UI; 11470 SDNode *RightShift = *UI; 11471 if (Trunc->getOpcode() != ISD::TRUNCATE) 11472 std::swap(Trunc, RightShift); 11473 11474 if (Trunc->getOpcode() != ISD::TRUNCATE || 11475 Trunc->getValueType(0) != MVT::i32 || 11476 !Trunc->hasOneUse()) 11477 return false; 11478 if (RightShift->getOpcode() != ISD::SRL || 11479 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 11480 RightShift->getConstantOperandVal(1) != 32 || 11481 !RightShift->hasOneUse()) 11482 return false; 11483 11484 SDNode *Trunc2 = *RightShift->use_begin(); 11485 if (Trunc2->getOpcode() != ISD::TRUNCATE || 11486 Trunc2->getValueType(0) != MVT::i32 || 11487 !Trunc2->hasOneUse()) 11488 return false; 11489 11490 SDNode *Bitcast = *Trunc->use_begin(); 11491 SDNode *Bitcast2 = *Trunc2->use_begin(); 11492 11493 if (Bitcast->getOpcode() != ISD::BITCAST || 11494 Bitcast->getValueType(0) != MVT::f32) 11495 return false; 11496 if (Bitcast2->getOpcode() != ISD::BITCAST || 11497 Bitcast2->getValueType(0) != MVT::f32) 11498 return false; 11499 11500 if (Subtarget.isLittleEndian()) 11501 std::swap(Bitcast, Bitcast2); 11502 11503 // Bitcast has the second float (in memory-layout order) and Bitcast2 11504 // has the first one. 11505 11506 SDValue BasePtr = LD->getBasePtr(); 11507 if (LD->isIndexed()) { 11508 assert(LD->getAddressingMode() == ISD::PRE_INC && 11509 "Non-pre-inc AM on PPC?"); 11510 BasePtr = 11511 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11512 LD->getOffset()); 11513 } 11514 11515 auto MMOFlags = 11516 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 11517 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 11518 LD->getPointerInfo(), LD->getAlignment(), 11519 MMOFlags, LD->getAAInfo()); 11520 SDValue AddPtr = 11521 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 11522 BasePtr, DAG.getIntPtrConstant(4, dl)); 11523 SDValue FloatLoad2 = DAG.getLoad( 11524 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 11525 LD->getPointerInfo().getWithOffset(4), 11526 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 11527 11528 if (LD->isIndexed()) { 11529 // Note that DAGCombine should re-form any pre-increment load(s) from 11530 // what is produced here if that makes sense. 11531 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 11532 } 11533 11534 DCI.CombineTo(Bitcast2, FloatLoad); 11535 DCI.CombineTo(Bitcast, FloatLoad2); 11536 11537 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 11538 SDValue(FloatLoad2.getNode(), 1)); 11539 return true; 11540 }; 11541 11542 if (ReplaceTwoFloatLoad()) 11543 return SDValue(N, 0); 11544 11545 EVT MemVT = LD->getMemoryVT(); 11546 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 11547 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 11548 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 11549 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 11550 if (LD->isUnindexed() && VT.isVector() && 11551 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 11552 // P8 and later hardware should just use LOAD. 11553 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 11554 VT == MVT::v4i32 || VT == MVT::v4f32)) || 11555 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 11556 LD->getAlignment() >= ScalarABIAlignment)) && 11557 LD->getAlignment() < ABIAlignment) { 11558 // This is a type-legal unaligned Altivec or QPX load. 11559 SDValue Chain = LD->getChain(); 11560 SDValue Ptr = LD->getBasePtr(); 11561 bool isLittleEndian = Subtarget.isLittleEndian(); 11562 11563 // This implements the loading of unaligned vectors as described in 11564 // the venerable Apple Velocity Engine overview. Specifically: 11565 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 11566 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 11567 // 11568 // The general idea is to expand a sequence of one or more unaligned 11569 // loads into an alignment-based permutation-control instruction (lvsl 11570 // or lvsr), a series of regular vector loads (which always truncate 11571 // their input address to an aligned address), and a series of 11572 // permutations. The results of these permutations are the requested 11573 // loaded values. The trick is that the last "extra" load is not taken 11574 // from the address you might suspect (sizeof(vector) bytes after the 11575 // last requested load), but rather sizeof(vector) - 1 bytes after the 11576 // last requested vector. The point of this is to avoid a page fault if 11577 // the base address happened to be aligned. This works because if the 11578 // base address is aligned, then adding less than a full vector length 11579 // will cause the last vector in the sequence to be (re)loaded. 11580 // Otherwise, the next vector will be fetched as you might suspect was 11581 // necessary. 11582 11583 // We might be able to reuse the permutation generation from 11584 // a different base address offset from this one by an aligned amount. 11585 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 11586 // optimization later. 11587 Intrinsic::ID Intr, IntrLD, IntrPerm; 11588 MVT PermCntlTy, PermTy, LDTy; 11589 if (Subtarget.hasAltivec()) { 11590 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 11591 Intrinsic::ppc_altivec_lvsl; 11592 IntrLD = Intrinsic::ppc_altivec_lvx; 11593 IntrPerm = Intrinsic::ppc_altivec_vperm; 11594 PermCntlTy = MVT::v16i8; 11595 PermTy = MVT::v4i32; 11596 LDTy = MVT::v4i32; 11597 } else { 11598 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 11599 Intrinsic::ppc_qpx_qvlpcls; 11600 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 11601 Intrinsic::ppc_qpx_qvlfs; 11602 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 11603 PermCntlTy = MVT::v4f64; 11604 PermTy = MVT::v4f64; 11605 LDTy = MemVT.getSimpleVT(); 11606 } 11607 11608 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 11609 11610 // Create the new MMO for the new base load. It is like the original MMO, 11611 // but represents an area in memory almost twice the vector size centered 11612 // on the original address. If the address is unaligned, we might start 11613 // reading up to (sizeof(vector)-1) bytes below the address of the 11614 // original unaligned load. 11615 MachineFunction &MF = DAG.getMachineFunction(); 11616 MachineMemOperand *BaseMMO = 11617 MF.getMachineMemOperand(LD->getMemOperand(), 11618 -(long)MemVT.getStoreSize()+1, 11619 2*MemVT.getStoreSize()-1); 11620 11621 // Create the new base load. 11622 SDValue LDXIntID = 11623 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 11624 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 11625 SDValue BaseLoad = 11626 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11627 DAG.getVTList(PermTy, MVT::Other), 11628 BaseLoadOps, LDTy, BaseMMO); 11629 11630 // Note that the value of IncOffset (which is provided to the next 11631 // load's pointer info offset value, and thus used to calculate the 11632 // alignment), and the value of IncValue (which is actually used to 11633 // increment the pointer value) are different! This is because we 11634 // require the next load to appear to be aligned, even though it 11635 // is actually offset from the base pointer by a lesser amount. 11636 int IncOffset = VT.getSizeInBits() / 8; 11637 int IncValue = IncOffset; 11638 11639 // Walk (both up and down) the chain looking for another load at the real 11640 // (aligned) offset (the alignment of the other load does not matter in 11641 // this case). If found, then do not use the offset reduction trick, as 11642 // that will prevent the loads from being later combined (as they would 11643 // otherwise be duplicates). 11644 if (!findConsecutiveLoad(LD, DAG)) 11645 --IncValue; 11646 11647 SDValue Increment = 11648 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 11649 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 11650 11651 MachineMemOperand *ExtraMMO = 11652 MF.getMachineMemOperand(LD->getMemOperand(), 11653 1, 2*MemVT.getStoreSize()-1); 11654 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 11655 SDValue ExtraLoad = 11656 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11657 DAG.getVTList(PermTy, MVT::Other), 11658 ExtraLoadOps, LDTy, ExtraMMO); 11659 11660 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 11661 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 11662 11663 // Because vperm has a big-endian bias, we must reverse the order 11664 // of the input vectors and complement the permute control vector 11665 // when generating little endian code. We have already handled the 11666 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 11667 // and ExtraLoad here. 11668 SDValue Perm; 11669 if (isLittleEndian) 11670 Perm = BuildIntrinsicOp(IntrPerm, 11671 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 11672 else 11673 Perm = BuildIntrinsicOp(IntrPerm, 11674 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 11675 11676 if (VT != PermTy) 11677 Perm = Subtarget.hasAltivec() ? 11678 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 11679 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 11680 DAG.getTargetConstant(1, dl, MVT::i64)); 11681 // second argument is 1 because this rounding 11682 // is always exact. 11683 11684 // The output of the permutation is our loaded result, the TokenFactor is 11685 // our new chain. 11686 DCI.CombineTo(N, Perm, TF); 11687 return SDValue(N, 0); 11688 } 11689 } 11690 break; 11691 case ISD::INTRINSIC_WO_CHAIN: { 11692 bool isLittleEndian = Subtarget.isLittleEndian(); 11693 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 11694 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 11695 : Intrinsic::ppc_altivec_lvsl); 11696 if ((IID == Intr || 11697 IID == Intrinsic::ppc_qpx_qvlpcld || 11698 IID == Intrinsic::ppc_qpx_qvlpcls) && 11699 N->getOperand(1)->getOpcode() == ISD::ADD) { 11700 SDValue Add = N->getOperand(1); 11701 11702 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 11703 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 11704 11705 if (DAG.MaskedValueIsZero(Add->getOperand(1), 11706 APInt::getAllOnesValue(Bits /* alignment */) 11707 .zext(Add.getScalarValueSizeInBits()))) { 11708 SDNode *BasePtr = Add->getOperand(0).getNode(); 11709 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11710 UE = BasePtr->use_end(); 11711 UI != UE; ++UI) { 11712 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11713 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 11714 // We've found another LVSL/LVSR, and this address is an aligned 11715 // multiple of that one. The results will be the same, so use the 11716 // one we've just found instead. 11717 11718 return SDValue(*UI, 0); 11719 } 11720 } 11721 } 11722 11723 if (isa<ConstantSDNode>(Add->getOperand(1))) { 11724 SDNode *BasePtr = Add->getOperand(0).getNode(); 11725 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11726 UE = BasePtr->use_end(); UI != UE; ++UI) { 11727 if (UI->getOpcode() == ISD::ADD && 11728 isa<ConstantSDNode>(UI->getOperand(1)) && 11729 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 11730 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 11731 (1ULL << Bits) == 0) { 11732 SDNode *OtherAdd = *UI; 11733 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 11734 VE = OtherAdd->use_end(); VI != VE; ++VI) { 11735 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11736 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 11737 return SDValue(*VI, 0); 11738 } 11739 } 11740 } 11741 } 11742 } 11743 } 11744 } 11745 11746 break; 11747 case ISD::INTRINSIC_W_CHAIN: 11748 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11749 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11750 if (Subtarget.needsSwapsForVSXMemOps()) { 11751 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11752 default: 11753 break; 11754 case Intrinsic::ppc_vsx_lxvw4x: 11755 case Intrinsic::ppc_vsx_lxvd2x: 11756 return expandVSXLoadForLE(N, DCI); 11757 } 11758 } 11759 break; 11760 case ISD::INTRINSIC_VOID: 11761 // For little endian, VSX stores require generating xxswapd/stxvd2x. 11762 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11763 if (Subtarget.needsSwapsForVSXMemOps()) { 11764 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11765 default: 11766 break; 11767 case Intrinsic::ppc_vsx_stxvw4x: 11768 case Intrinsic::ppc_vsx_stxvd2x: 11769 return expandVSXStoreForLE(N, DCI); 11770 } 11771 } 11772 break; 11773 case ISD::BSWAP: 11774 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 11775 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 11776 N->getOperand(0).hasOneUse() && 11777 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 11778 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11779 N->getValueType(0) == MVT::i64))) { 11780 SDValue Load = N->getOperand(0); 11781 LoadSDNode *LD = cast<LoadSDNode>(Load); 11782 // Create the byte-swapping load. 11783 SDValue Ops[] = { 11784 LD->getChain(), // Chain 11785 LD->getBasePtr(), // Ptr 11786 DAG.getValueType(N->getValueType(0)) // VT 11787 }; 11788 SDValue BSLoad = 11789 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 11790 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 11791 MVT::i64 : MVT::i32, MVT::Other), 11792 Ops, LD->getMemoryVT(), LD->getMemOperand()); 11793 11794 // If this is an i16 load, insert the truncate. 11795 SDValue ResVal = BSLoad; 11796 if (N->getValueType(0) == MVT::i16) 11797 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 11798 11799 // First, combine the bswap away. This makes the value produced by the 11800 // load dead. 11801 DCI.CombineTo(N, ResVal); 11802 11803 // Next, combine the load away, we give it a bogus result value but a real 11804 // chain result. The result value is dead because the bswap is dead. 11805 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 11806 11807 // Return N so it doesn't get rechecked! 11808 return SDValue(N, 0); 11809 } 11810 break; 11811 case PPCISD::VCMP: 11812 // If a VCMPo node already exists with exactly the same operands as this 11813 // node, use its result instead of this node (VCMPo computes both a CR6 and 11814 // a normal output). 11815 // 11816 if (!N->getOperand(0).hasOneUse() && 11817 !N->getOperand(1).hasOneUse() && 11818 !N->getOperand(2).hasOneUse()) { 11819 11820 // Scan all of the users of the LHS, looking for VCMPo's that match. 11821 SDNode *VCMPoNode = nullptr; 11822 11823 SDNode *LHSN = N->getOperand(0).getNode(); 11824 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 11825 UI != E; ++UI) 11826 if (UI->getOpcode() == PPCISD::VCMPo && 11827 UI->getOperand(1) == N->getOperand(1) && 11828 UI->getOperand(2) == N->getOperand(2) && 11829 UI->getOperand(0) == N->getOperand(0)) { 11830 VCMPoNode = *UI; 11831 break; 11832 } 11833 11834 // If there is no VCMPo node, or if the flag value has a single use, don't 11835 // transform this. 11836 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 11837 break; 11838 11839 // Look at the (necessarily single) use of the flag value. If it has a 11840 // chain, this transformation is more complex. Note that multiple things 11841 // could use the value result, which we should ignore. 11842 SDNode *FlagUser = nullptr; 11843 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 11844 FlagUser == nullptr; ++UI) { 11845 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 11846 SDNode *User = *UI; 11847 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 11848 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 11849 FlagUser = User; 11850 break; 11851 } 11852 } 11853 } 11854 11855 // If the user is a MFOCRF instruction, we know this is safe. 11856 // Otherwise we give up for right now. 11857 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 11858 return SDValue(VCMPoNode, 0); 11859 } 11860 break; 11861 case ISD::BRCOND: { 11862 SDValue Cond = N->getOperand(1); 11863 SDValue Target = N->getOperand(2); 11864 11865 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11866 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11867 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11868 11869 // We now need to make the intrinsic dead (it cannot be instruction 11870 // selected). 11871 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11872 assert(Cond.getNode()->hasOneUse() && 11873 "Counter decrement has more than one use"); 11874 11875 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11876 N->getOperand(0), Target); 11877 } 11878 } 11879 break; 11880 case ISD::BR_CC: { 11881 // If this is a branch on an altivec predicate comparison, lower this so 11882 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11883 // lowering is done pre-legalize, because the legalizer lowers the predicate 11884 // compare down to code that is difficult to reassemble. 11885 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11886 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11887 11888 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11889 // value. If so, pass-through the AND to get to the intrinsic. 11890 if (LHS.getOpcode() == ISD::AND && 11891 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11892 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11893 Intrinsic::ppc_is_decremented_ctr_nonzero && 11894 isa<ConstantSDNode>(LHS.getOperand(1)) && 11895 !isNullConstant(LHS.getOperand(1))) 11896 LHS = LHS.getOperand(0); 11897 11898 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11899 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11900 Intrinsic::ppc_is_decremented_ctr_nonzero && 11901 isa<ConstantSDNode>(RHS)) { 11902 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11903 "Counter decrement comparison is not EQ or NE"); 11904 11905 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11906 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11907 (CC == ISD::SETNE && !Val); 11908 11909 // We now need to make the intrinsic dead (it cannot be instruction 11910 // selected). 11911 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11912 assert(LHS.getNode()->hasOneUse() && 11913 "Counter decrement has more than one use"); 11914 11915 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11916 N->getOperand(0), N->getOperand(4)); 11917 } 11918 11919 int CompareOpc; 11920 bool isDot; 11921 11922 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11923 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11924 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11925 assert(isDot && "Can't compare against a vector result!"); 11926 11927 // If this is a comparison against something other than 0/1, then we know 11928 // that the condition is never/always true. 11929 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11930 if (Val != 0 && Val != 1) { 11931 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11932 return N->getOperand(0); 11933 // Always !=, turn it into an unconditional branch. 11934 return DAG.getNode(ISD::BR, dl, MVT::Other, 11935 N->getOperand(0), N->getOperand(4)); 11936 } 11937 11938 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11939 11940 // Create the PPCISD altivec 'dot' comparison node. 11941 SDValue Ops[] = { 11942 LHS.getOperand(2), // LHS of compare 11943 LHS.getOperand(3), // RHS of compare 11944 DAG.getConstant(CompareOpc, dl, MVT::i32) 11945 }; 11946 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11947 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11948 11949 // Unpack the result based on how the target uses it. 11950 PPC::Predicate CompOpc; 11951 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11952 default: // Can't happen, don't crash on invalid number though. 11953 case 0: // Branch on the value of the EQ bit of CR6. 11954 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11955 break; 11956 case 1: // Branch on the inverted value of the EQ bit of CR6. 11957 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11958 break; 11959 case 2: // Branch on the value of the LT bit of CR6. 11960 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11961 break; 11962 case 3: // Branch on the inverted value of the LT bit of CR6. 11963 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11964 break; 11965 } 11966 11967 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11968 DAG.getConstant(CompOpc, dl, MVT::i32), 11969 DAG.getRegister(PPC::CR6, MVT::i32), 11970 N->getOperand(4), CompNode.getValue(1)); 11971 } 11972 break; 11973 } 11974 case ISD::BUILD_VECTOR: 11975 return DAGCombineBuildVector(N, DCI); 11976 } 11977 11978 return SDValue(); 11979 } 11980 11981 SDValue 11982 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11983 SelectionDAG &DAG, 11984 std::vector<SDNode *> *Created) const { 11985 // fold (sdiv X, pow2) 11986 EVT VT = N->getValueType(0); 11987 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11988 return SDValue(); 11989 if ((VT != MVT::i32 && VT != MVT::i64) || 11990 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11991 return SDValue(); 11992 11993 SDLoc DL(N); 11994 SDValue N0 = N->getOperand(0); 11995 11996 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11997 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11998 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11999 12000 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 12001 if (Created) 12002 Created->push_back(Op.getNode()); 12003 12004 if (IsNegPow2) { 12005 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 12006 if (Created) 12007 Created->push_back(Op.getNode()); 12008 } 12009 12010 return Op; 12011 } 12012 12013 //===----------------------------------------------------------------------===// 12014 // Inline Assembly Support 12015 //===----------------------------------------------------------------------===// 12016 12017 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 12018 APInt &KnownZero, 12019 APInt &KnownOne, 12020 const APInt &DemandedElts, 12021 const SelectionDAG &DAG, 12022 unsigned Depth) const { 12023 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 12024 switch (Op.getOpcode()) { 12025 default: break; 12026 case PPCISD::LBRX: { 12027 // lhbrx is known to have the top bits cleared out. 12028 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 12029 KnownZero = 0xFFFF0000; 12030 break; 12031 } 12032 case ISD::INTRINSIC_WO_CHAIN: { 12033 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 12034 default: break; 12035 case Intrinsic::ppc_altivec_vcmpbfp_p: 12036 case Intrinsic::ppc_altivec_vcmpeqfp_p: 12037 case Intrinsic::ppc_altivec_vcmpequb_p: 12038 case Intrinsic::ppc_altivec_vcmpequh_p: 12039 case Intrinsic::ppc_altivec_vcmpequw_p: 12040 case Intrinsic::ppc_altivec_vcmpequd_p: 12041 case Intrinsic::ppc_altivec_vcmpgefp_p: 12042 case Intrinsic::ppc_altivec_vcmpgtfp_p: 12043 case Intrinsic::ppc_altivec_vcmpgtsb_p: 12044 case Intrinsic::ppc_altivec_vcmpgtsh_p: 12045 case Intrinsic::ppc_altivec_vcmpgtsw_p: 12046 case Intrinsic::ppc_altivec_vcmpgtsd_p: 12047 case Intrinsic::ppc_altivec_vcmpgtub_p: 12048 case Intrinsic::ppc_altivec_vcmpgtuh_p: 12049 case Intrinsic::ppc_altivec_vcmpgtuw_p: 12050 case Intrinsic::ppc_altivec_vcmpgtud_p: 12051 KnownZero = ~1U; // All bits but the low one are known to be zero. 12052 break; 12053 } 12054 } 12055 } 12056 } 12057 12058 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12059 switch (Subtarget.getDarwinDirective()) { 12060 default: break; 12061 case PPC::DIR_970: 12062 case PPC::DIR_PWR4: 12063 case PPC::DIR_PWR5: 12064 case PPC::DIR_PWR5X: 12065 case PPC::DIR_PWR6: 12066 case PPC::DIR_PWR6X: 12067 case PPC::DIR_PWR7: 12068 case PPC::DIR_PWR8: 12069 case PPC::DIR_PWR9: { 12070 if (!ML) 12071 break; 12072 12073 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 12074 12075 // For small loops (between 5 and 8 instructions), align to a 32-byte 12076 // boundary so that the entire loop fits in one instruction-cache line. 12077 uint64_t LoopSize = 0; 12078 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 12079 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 12080 LoopSize += TII->getInstSizeInBytes(*J); 12081 if (LoopSize > 32) 12082 break; 12083 } 12084 12085 if (LoopSize > 16 && LoopSize <= 32) 12086 return 5; 12087 12088 break; 12089 } 12090 } 12091 12092 return TargetLowering::getPrefLoopAlignment(ML); 12093 } 12094 12095 /// getConstraintType - Given a constraint, return the type of 12096 /// constraint it is for this target. 12097 PPCTargetLowering::ConstraintType 12098 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 12099 if (Constraint.size() == 1) { 12100 switch (Constraint[0]) { 12101 default: break; 12102 case 'b': 12103 case 'r': 12104 case 'f': 12105 case 'd': 12106 case 'v': 12107 case 'y': 12108 return C_RegisterClass; 12109 case 'Z': 12110 // FIXME: While Z does indicate a memory constraint, it specifically 12111 // indicates an r+r address (used in conjunction with the 'y' modifier 12112 // in the replacement string). Currently, we're forcing the base 12113 // register to be r0 in the asm printer (which is interpreted as zero) 12114 // and forming the complete address in the second register. This is 12115 // suboptimal. 12116 return C_Memory; 12117 } 12118 } else if (Constraint == "wc") { // individual CR bits. 12119 return C_RegisterClass; 12120 } else if (Constraint == "wa" || Constraint == "wd" || 12121 Constraint == "wf" || Constraint == "ws") { 12122 return C_RegisterClass; // VSX registers. 12123 } 12124 return TargetLowering::getConstraintType(Constraint); 12125 } 12126 12127 /// Examine constraint type and operand type and determine a weight value. 12128 /// This object must already have been set up with the operand type 12129 /// and the current alternative constraint selected. 12130 TargetLowering::ConstraintWeight 12131 PPCTargetLowering::getSingleConstraintMatchWeight( 12132 AsmOperandInfo &info, const char *constraint) const { 12133 ConstraintWeight weight = CW_Invalid; 12134 Value *CallOperandVal = info.CallOperandVal; 12135 // If we don't have a value, we can't do a match, 12136 // but allow it at the lowest weight. 12137 if (!CallOperandVal) 12138 return CW_Default; 12139 Type *type = CallOperandVal->getType(); 12140 12141 // Look at the constraint type. 12142 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 12143 return CW_Register; // an individual CR bit. 12144 else if ((StringRef(constraint) == "wa" || 12145 StringRef(constraint) == "wd" || 12146 StringRef(constraint) == "wf") && 12147 type->isVectorTy()) 12148 return CW_Register; 12149 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 12150 return CW_Register; 12151 12152 switch (*constraint) { 12153 default: 12154 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 12155 break; 12156 case 'b': 12157 if (type->isIntegerTy()) 12158 weight = CW_Register; 12159 break; 12160 case 'f': 12161 if (type->isFloatTy()) 12162 weight = CW_Register; 12163 break; 12164 case 'd': 12165 if (type->isDoubleTy()) 12166 weight = CW_Register; 12167 break; 12168 case 'v': 12169 if (type->isVectorTy()) 12170 weight = CW_Register; 12171 break; 12172 case 'y': 12173 weight = CW_Register; 12174 break; 12175 case 'Z': 12176 weight = CW_Memory; 12177 break; 12178 } 12179 return weight; 12180 } 12181 12182 std::pair<unsigned, const TargetRegisterClass *> 12183 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 12184 StringRef Constraint, 12185 MVT VT) const { 12186 if (Constraint.size() == 1) { 12187 // GCC RS6000 Constraint Letters 12188 switch (Constraint[0]) { 12189 case 'b': // R1-R31 12190 if (VT == MVT::i64 && Subtarget.isPPC64()) 12191 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 12192 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 12193 case 'r': // R0-R31 12194 if (VT == MVT::i64 && Subtarget.isPPC64()) 12195 return std::make_pair(0U, &PPC::G8RCRegClass); 12196 return std::make_pair(0U, &PPC::GPRCRegClass); 12197 // 'd' and 'f' constraints are both defined to be "the floating point 12198 // registers", where one is for 32-bit and the other for 64-bit. We don't 12199 // really care overly much here so just give them all the same reg classes. 12200 case 'd': 12201 case 'f': 12202 if (VT == MVT::f32 || VT == MVT::i32) 12203 return std::make_pair(0U, &PPC::F4RCRegClass); 12204 if (VT == MVT::f64 || VT == MVT::i64) 12205 return std::make_pair(0U, &PPC::F8RCRegClass); 12206 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 12207 return std::make_pair(0U, &PPC::QFRCRegClass); 12208 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 12209 return std::make_pair(0U, &PPC::QSRCRegClass); 12210 break; 12211 case 'v': 12212 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 12213 return std::make_pair(0U, &PPC::QFRCRegClass); 12214 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 12215 return std::make_pair(0U, &PPC::QSRCRegClass); 12216 if (Subtarget.hasAltivec()) 12217 return std::make_pair(0U, &PPC::VRRCRegClass); 12218 case 'y': // crrc 12219 return std::make_pair(0U, &PPC::CRRCRegClass); 12220 } 12221 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 12222 // An individual CR bit. 12223 return std::make_pair(0U, &PPC::CRBITRCRegClass); 12224 } else if ((Constraint == "wa" || Constraint == "wd" || 12225 Constraint == "wf") && Subtarget.hasVSX()) { 12226 return std::make_pair(0U, &PPC::VSRCRegClass); 12227 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 12228 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 12229 return std::make_pair(0U, &PPC::VSSRCRegClass); 12230 else 12231 return std::make_pair(0U, &PPC::VSFRCRegClass); 12232 } 12233 12234 std::pair<unsigned, const TargetRegisterClass *> R = 12235 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12236 12237 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 12238 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 12239 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 12240 // register. 12241 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 12242 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 12243 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 12244 PPC::GPRCRegClass.contains(R.first)) 12245 return std::make_pair(TRI->getMatchingSuperReg(R.first, 12246 PPC::sub_32, &PPC::G8RCRegClass), 12247 &PPC::G8RCRegClass); 12248 12249 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 12250 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 12251 R.first = PPC::CR0; 12252 R.second = &PPC::CRRCRegClass; 12253 } 12254 12255 return R; 12256 } 12257 12258 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 12259 /// vector. If it is invalid, don't add anything to Ops. 12260 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12261 std::string &Constraint, 12262 std::vector<SDValue>&Ops, 12263 SelectionDAG &DAG) const { 12264 SDValue Result; 12265 12266 // Only support length 1 constraints. 12267 if (Constraint.length() > 1) return; 12268 12269 char Letter = Constraint[0]; 12270 switch (Letter) { 12271 default: break; 12272 case 'I': 12273 case 'J': 12274 case 'K': 12275 case 'L': 12276 case 'M': 12277 case 'N': 12278 case 'O': 12279 case 'P': { 12280 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 12281 if (!CST) return; // Must be an immediate to match. 12282 SDLoc dl(Op); 12283 int64_t Value = CST->getSExtValue(); 12284 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 12285 // numbers are printed as such. 12286 switch (Letter) { 12287 default: llvm_unreachable("Unknown constraint letter!"); 12288 case 'I': // "I" is a signed 16-bit constant. 12289 if (isInt<16>(Value)) 12290 Result = DAG.getTargetConstant(Value, dl, TCVT); 12291 break; 12292 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 12293 if (isShiftedUInt<16, 16>(Value)) 12294 Result = DAG.getTargetConstant(Value, dl, TCVT); 12295 break; 12296 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 12297 if (isShiftedInt<16, 16>(Value)) 12298 Result = DAG.getTargetConstant(Value, dl, TCVT); 12299 break; 12300 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 12301 if (isUInt<16>(Value)) 12302 Result = DAG.getTargetConstant(Value, dl, TCVT); 12303 break; 12304 case 'M': // "M" is a constant that is greater than 31. 12305 if (Value > 31) 12306 Result = DAG.getTargetConstant(Value, dl, TCVT); 12307 break; 12308 case 'N': // "N" is a positive constant that is an exact power of two. 12309 if (Value > 0 && isPowerOf2_64(Value)) 12310 Result = DAG.getTargetConstant(Value, dl, TCVT); 12311 break; 12312 case 'O': // "O" is the constant zero. 12313 if (Value == 0) 12314 Result = DAG.getTargetConstant(Value, dl, TCVT); 12315 break; 12316 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 12317 if (isInt<16>(-Value)) 12318 Result = DAG.getTargetConstant(Value, dl, TCVT); 12319 break; 12320 } 12321 break; 12322 } 12323 } 12324 12325 if (Result.getNode()) { 12326 Ops.push_back(Result); 12327 return; 12328 } 12329 12330 // Handle standard constraint letters. 12331 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12332 } 12333 12334 // isLegalAddressingMode - Return true if the addressing mode represented 12335 // by AM is legal for this target, for a load/store of the specified type. 12336 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 12337 const AddrMode &AM, Type *Ty, 12338 unsigned AS) const { 12339 // PPC does not allow r+i addressing modes for vectors! 12340 if (Ty->isVectorTy() && AM.BaseOffs != 0) 12341 return false; 12342 12343 // PPC allows a sign-extended 16-bit immediate field. 12344 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 12345 return false; 12346 12347 // No global is ever allowed as a base. 12348 if (AM.BaseGV) 12349 return false; 12350 12351 // PPC only support r+r, 12352 switch (AM.Scale) { 12353 case 0: // "r+i" or just "i", depending on HasBaseReg. 12354 break; 12355 case 1: 12356 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 12357 return false; 12358 // Otherwise we have r+r or r+i. 12359 break; 12360 case 2: 12361 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 12362 return false; 12363 // Allow 2*r as r+r. 12364 break; 12365 default: 12366 // No other scales are supported. 12367 return false; 12368 } 12369 12370 return true; 12371 } 12372 12373 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 12374 SelectionDAG &DAG) const { 12375 MachineFunction &MF = DAG.getMachineFunction(); 12376 MachineFrameInfo &MFI = MF.getFrameInfo(); 12377 MFI.setReturnAddressIsTaken(true); 12378 12379 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 12380 return SDValue(); 12381 12382 SDLoc dl(Op); 12383 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 12384 12385 // Make sure the function does not optimize away the store of the RA to 12386 // the stack. 12387 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 12388 FuncInfo->setLRStoreRequired(); 12389 bool isPPC64 = Subtarget.isPPC64(); 12390 auto PtrVT = getPointerTy(MF.getDataLayout()); 12391 12392 if (Depth > 0) { 12393 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 12394 SDValue Offset = 12395 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 12396 isPPC64 ? MVT::i64 : MVT::i32); 12397 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 12398 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 12399 MachinePointerInfo()); 12400 } 12401 12402 // Just load the return address off the stack. 12403 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 12404 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 12405 MachinePointerInfo()); 12406 } 12407 12408 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 12409 SelectionDAG &DAG) const { 12410 SDLoc dl(Op); 12411 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 12412 12413 MachineFunction &MF = DAG.getMachineFunction(); 12414 MachineFrameInfo &MFI = MF.getFrameInfo(); 12415 MFI.setFrameAddressIsTaken(true); 12416 12417 EVT PtrVT = getPointerTy(MF.getDataLayout()); 12418 bool isPPC64 = PtrVT == MVT::i64; 12419 12420 // Naked functions never have a frame pointer, and so we use r1. For all 12421 // other functions, this decision must be delayed until during PEI. 12422 unsigned FrameReg; 12423 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 12424 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 12425 else 12426 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 12427 12428 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 12429 PtrVT); 12430 while (Depth--) 12431 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 12432 FrameAddr, MachinePointerInfo()); 12433 return FrameAddr; 12434 } 12435 12436 // FIXME? Maybe this could be a TableGen attribute on some registers and 12437 // this table could be generated automatically from RegInfo. 12438 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 12439 SelectionDAG &DAG) const { 12440 bool isPPC64 = Subtarget.isPPC64(); 12441 bool isDarwinABI = Subtarget.isDarwinABI(); 12442 12443 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 12444 (!isPPC64 && VT != MVT::i32)) 12445 report_fatal_error("Invalid register global variable type"); 12446 12447 bool is64Bit = isPPC64 && VT == MVT::i64; 12448 unsigned Reg = StringSwitch<unsigned>(RegName) 12449 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 12450 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 12451 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 12452 (is64Bit ? PPC::X13 : PPC::R13)) 12453 .Default(0); 12454 12455 if (Reg) 12456 return Reg; 12457 report_fatal_error("Invalid register name global variable"); 12458 } 12459 12460 bool 12461 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 12462 // The PowerPC target isn't yet aware of offsets. 12463 return false; 12464 } 12465 12466 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 12467 const CallInst &I, 12468 unsigned Intrinsic) const { 12469 switch (Intrinsic) { 12470 case Intrinsic::ppc_qpx_qvlfd: 12471 case Intrinsic::ppc_qpx_qvlfs: 12472 case Intrinsic::ppc_qpx_qvlfcd: 12473 case Intrinsic::ppc_qpx_qvlfcs: 12474 case Intrinsic::ppc_qpx_qvlfiwa: 12475 case Intrinsic::ppc_qpx_qvlfiwz: 12476 case Intrinsic::ppc_altivec_lvx: 12477 case Intrinsic::ppc_altivec_lvxl: 12478 case Intrinsic::ppc_altivec_lvebx: 12479 case Intrinsic::ppc_altivec_lvehx: 12480 case Intrinsic::ppc_altivec_lvewx: 12481 case Intrinsic::ppc_vsx_lxvd2x: 12482 case Intrinsic::ppc_vsx_lxvw4x: { 12483 EVT VT; 12484 switch (Intrinsic) { 12485 case Intrinsic::ppc_altivec_lvebx: 12486 VT = MVT::i8; 12487 break; 12488 case Intrinsic::ppc_altivec_lvehx: 12489 VT = MVT::i16; 12490 break; 12491 case Intrinsic::ppc_altivec_lvewx: 12492 VT = MVT::i32; 12493 break; 12494 case Intrinsic::ppc_vsx_lxvd2x: 12495 VT = MVT::v2f64; 12496 break; 12497 case Intrinsic::ppc_qpx_qvlfd: 12498 VT = MVT::v4f64; 12499 break; 12500 case Intrinsic::ppc_qpx_qvlfs: 12501 VT = MVT::v4f32; 12502 break; 12503 case Intrinsic::ppc_qpx_qvlfcd: 12504 VT = MVT::v2f64; 12505 break; 12506 case Intrinsic::ppc_qpx_qvlfcs: 12507 VT = MVT::v2f32; 12508 break; 12509 default: 12510 VT = MVT::v4i32; 12511 break; 12512 } 12513 12514 Info.opc = ISD::INTRINSIC_W_CHAIN; 12515 Info.memVT = VT; 12516 Info.ptrVal = I.getArgOperand(0); 12517 Info.offset = -VT.getStoreSize()+1; 12518 Info.size = 2*VT.getStoreSize()-1; 12519 Info.align = 1; 12520 Info.vol = false; 12521 Info.readMem = true; 12522 Info.writeMem = false; 12523 return true; 12524 } 12525 case Intrinsic::ppc_qpx_qvlfda: 12526 case Intrinsic::ppc_qpx_qvlfsa: 12527 case Intrinsic::ppc_qpx_qvlfcda: 12528 case Intrinsic::ppc_qpx_qvlfcsa: 12529 case Intrinsic::ppc_qpx_qvlfiwaa: 12530 case Intrinsic::ppc_qpx_qvlfiwza: { 12531 EVT VT; 12532 switch (Intrinsic) { 12533 case Intrinsic::ppc_qpx_qvlfda: 12534 VT = MVT::v4f64; 12535 break; 12536 case Intrinsic::ppc_qpx_qvlfsa: 12537 VT = MVT::v4f32; 12538 break; 12539 case Intrinsic::ppc_qpx_qvlfcda: 12540 VT = MVT::v2f64; 12541 break; 12542 case Intrinsic::ppc_qpx_qvlfcsa: 12543 VT = MVT::v2f32; 12544 break; 12545 default: 12546 VT = MVT::v4i32; 12547 break; 12548 } 12549 12550 Info.opc = ISD::INTRINSIC_W_CHAIN; 12551 Info.memVT = VT; 12552 Info.ptrVal = I.getArgOperand(0); 12553 Info.offset = 0; 12554 Info.size = VT.getStoreSize(); 12555 Info.align = 1; 12556 Info.vol = false; 12557 Info.readMem = true; 12558 Info.writeMem = false; 12559 return true; 12560 } 12561 case Intrinsic::ppc_qpx_qvstfd: 12562 case Intrinsic::ppc_qpx_qvstfs: 12563 case Intrinsic::ppc_qpx_qvstfcd: 12564 case Intrinsic::ppc_qpx_qvstfcs: 12565 case Intrinsic::ppc_qpx_qvstfiw: 12566 case Intrinsic::ppc_altivec_stvx: 12567 case Intrinsic::ppc_altivec_stvxl: 12568 case Intrinsic::ppc_altivec_stvebx: 12569 case Intrinsic::ppc_altivec_stvehx: 12570 case Intrinsic::ppc_altivec_stvewx: 12571 case Intrinsic::ppc_vsx_stxvd2x: 12572 case Intrinsic::ppc_vsx_stxvw4x: { 12573 EVT VT; 12574 switch (Intrinsic) { 12575 case Intrinsic::ppc_altivec_stvebx: 12576 VT = MVT::i8; 12577 break; 12578 case Intrinsic::ppc_altivec_stvehx: 12579 VT = MVT::i16; 12580 break; 12581 case Intrinsic::ppc_altivec_stvewx: 12582 VT = MVT::i32; 12583 break; 12584 case Intrinsic::ppc_vsx_stxvd2x: 12585 VT = MVT::v2f64; 12586 break; 12587 case Intrinsic::ppc_qpx_qvstfd: 12588 VT = MVT::v4f64; 12589 break; 12590 case Intrinsic::ppc_qpx_qvstfs: 12591 VT = MVT::v4f32; 12592 break; 12593 case Intrinsic::ppc_qpx_qvstfcd: 12594 VT = MVT::v2f64; 12595 break; 12596 case Intrinsic::ppc_qpx_qvstfcs: 12597 VT = MVT::v2f32; 12598 break; 12599 default: 12600 VT = MVT::v4i32; 12601 break; 12602 } 12603 12604 Info.opc = ISD::INTRINSIC_VOID; 12605 Info.memVT = VT; 12606 Info.ptrVal = I.getArgOperand(1); 12607 Info.offset = -VT.getStoreSize()+1; 12608 Info.size = 2*VT.getStoreSize()-1; 12609 Info.align = 1; 12610 Info.vol = false; 12611 Info.readMem = false; 12612 Info.writeMem = true; 12613 return true; 12614 } 12615 case Intrinsic::ppc_qpx_qvstfda: 12616 case Intrinsic::ppc_qpx_qvstfsa: 12617 case Intrinsic::ppc_qpx_qvstfcda: 12618 case Intrinsic::ppc_qpx_qvstfcsa: 12619 case Intrinsic::ppc_qpx_qvstfiwa: { 12620 EVT VT; 12621 switch (Intrinsic) { 12622 case Intrinsic::ppc_qpx_qvstfda: 12623 VT = MVT::v4f64; 12624 break; 12625 case Intrinsic::ppc_qpx_qvstfsa: 12626 VT = MVT::v4f32; 12627 break; 12628 case Intrinsic::ppc_qpx_qvstfcda: 12629 VT = MVT::v2f64; 12630 break; 12631 case Intrinsic::ppc_qpx_qvstfcsa: 12632 VT = MVT::v2f32; 12633 break; 12634 default: 12635 VT = MVT::v4i32; 12636 break; 12637 } 12638 12639 Info.opc = ISD::INTRINSIC_VOID; 12640 Info.memVT = VT; 12641 Info.ptrVal = I.getArgOperand(1); 12642 Info.offset = 0; 12643 Info.size = VT.getStoreSize(); 12644 Info.align = 1; 12645 Info.vol = false; 12646 Info.readMem = false; 12647 Info.writeMem = true; 12648 return true; 12649 } 12650 default: 12651 break; 12652 } 12653 12654 return false; 12655 } 12656 12657 /// getOptimalMemOpType - Returns the target specific optimal type for load 12658 /// and store operations as a result of memset, memcpy, and memmove 12659 /// lowering. If DstAlign is zero that means it's safe to destination 12660 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 12661 /// means there isn't a need to check it against alignment requirement, 12662 /// probably because the source does not need to be loaded. If 'IsMemset' is 12663 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 12664 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 12665 /// source is constant so it does not need to be loaded. 12666 /// It returns EVT::Other if the type should be determined using generic 12667 /// target-independent logic. 12668 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 12669 unsigned DstAlign, unsigned SrcAlign, 12670 bool IsMemset, bool ZeroMemset, 12671 bool MemcpyStrSrc, 12672 MachineFunction &MF) const { 12673 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 12674 const Function *F = MF.getFunction(); 12675 // When expanding a memset, require at least two QPX instructions to cover 12676 // the cost of loading the value to be stored from the constant pool. 12677 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 12678 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 12679 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 12680 return MVT::v4f64; 12681 } 12682 12683 // We should use Altivec/VSX loads and stores when available. For unaligned 12684 // addresses, unaligned VSX loads are only fast starting with the P8. 12685 if (Subtarget.hasAltivec() && Size >= 16 && 12686 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 12687 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 12688 return MVT::v4i32; 12689 } 12690 12691 if (Subtarget.isPPC64()) { 12692 return MVT::i64; 12693 } 12694 12695 return MVT::i32; 12696 } 12697 12698 /// \brief Returns true if it is beneficial to convert a load of a constant 12699 /// to just the constant itself. 12700 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 12701 Type *Ty) const { 12702 assert(Ty->isIntegerTy()); 12703 12704 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 12705 return !(BitSize == 0 || BitSize > 64); 12706 } 12707 12708 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 12709 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 12710 return false; 12711 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 12712 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 12713 return NumBits1 == 64 && NumBits2 == 32; 12714 } 12715 12716 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 12717 if (!VT1.isInteger() || !VT2.isInteger()) 12718 return false; 12719 unsigned NumBits1 = VT1.getSizeInBits(); 12720 unsigned NumBits2 = VT2.getSizeInBits(); 12721 return NumBits1 == 64 && NumBits2 == 32; 12722 } 12723 12724 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 12725 // Generally speaking, zexts are not free, but they are free when they can be 12726 // folded with other operations. 12727 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 12728 EVT MemVT = LD->getMemoryVT(); 12729 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 12730 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 12731 (LD->getExtensionType() == ISD::NON_EXTLOAD || 12732 LD->getExtensionType() == ISD::ZEXTLOAD)) 12733 return true; 12734 } 12735 12736 // FIXME: Add other cases... 12737 // - 32-bit shifts with a zext to i64 12738 // - zext after ctlz, bswap, etc. 12739 // - zext after and by a constant mask 12740 12741 return TargetLowering::isZExtFree(Val, VT2); 12742 } 12743 12744 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 12745 assert(VT.isFloatingPoint()); 12746 return true; 12747 } 12748 12749 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 12750 return isInt<16>(Imm) || isUInt<16>(Imm); 12751 } 12752 12753 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 12754 return isInt<16>(Imm) || isUInt<16>(Imm); 12755 } 12756 12757 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 12758 unsigned, 12759 unsigned, 12760 bool *Fast) const { 12761 if (DisablePPCUnaligned) 12762 return false; 12763 12764 // PowerPC supports unaligned memory access for simple non-vector types. 12765 // Although accessing unaligned addresses is not as efficient as accessing 12766 // aligned addresses, it is generally more efficient than manual expansion, 12767 // and generally only traps for software emulation when crossing page 12768 // boundaries. 12769 12770 if (!VT.isSimple()) 12771 return false; 12772 12773 if (VT.getSimpleVT().isVector()) { 12774 if (Subtarget.hasVSX()) { 12775 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 12776 VT != MVT::v4f32 && VT != MVT::v4i32) 12777 return false; 12778 } else { 12779 return false; 12780 } 12781 } 12782 12783 if (VT == MVT::ppcf128) 12784 return false; 12785 12786 if (Fast) 12787 *Fast = true; 12788 12789 return true; 12790 } 12791 12792 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 12793 VT = VT.getScalarType(); 12794 12795 if (!VT.isSimple()) 12796 return false; 12797 12798 switch (VT.getSimpleVT().SimpleTy) { 12799 case MVT::f32: 12800 case MVT::f64: 12801 return true; 12802 default: 12803 break; 12804 } 12805 12806 return false; 12807 } 12808 12809 const MCPhysReg * 12810 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 12811 // LR is a callee-save register, but we must treat it as clobbered by any call 12812 // site. Hence we include LR in the scratch registers, which are in turn added 12813 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 12814 // to CTR, which is used by any indirect call. 12815 static const MCPhysReg ScratchRegs[] = { 12816 PPC::X12, PPC::LR8, PPC::CTR8, 0 12817 }; 12818 12819 return ScratchRegs; 12820 } 12821 12822 unsigned PPCTargetLowering::getExceptionPointerRegister( 12823 const Constant *PersonalityFn) const { 12824 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 12825 } 12826 12827 unsigned PPCTargetLowering::getExceptionSelectorRegister( 12828 const Constant *PersonalityFn) const { 12829 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 12830 } 12831 12832 bool 12833 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 12834 EVT VT , unsigned DefinedValues) const { 12835 if (VT == MVT::v2i64) 12836 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 12837 12838 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 12839 return true; 12840 12841 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 12842 } 12843 12844 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 12845 if (DisableILPPref || Subtarget.enableMachineScheduler()) 12846 return TargetLowering::getSchedulingPreference(N); 12847 12848 return Sched::ILP; 12849 } 12850 12851 // Create a fast isel object. 12852 FastISel * 12853 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 12854 const TargetLibraryInfo *LibInfo) const { 12855 return PPC::createFastISel(FuncInfo, LibInfo); 12856 } 12857 12858 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 12859 if (Subtarget.isDarwinABI()) return; 12860 if (!Subtarget.isPPC64()) return; 12861 12862 // Update IsSplitCSR in PPCFunctionInfo 12863 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 12864 PFI->setIsSplitCSR(true); 12865 } 12866 12867 void PPCTargetLowering::insertCopiesSplitCSR( 12868 MachineBasicBlock *Entry, 12869 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12870 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12871 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12872 if (!IStart) 12873 return; 12874 12875 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12876 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12877 MachineBasicBlock::iterator MBBI = Entry->begin(); 12878 for (const MCPhysReg *I = IStart; *I; ++I) { 12879 const TargetRegisterClass *RC = nullptr; 12880 if (PPC::G8RCRegClass.contains(*I)) 12881 RC = &PPC::G8RCRegClass; 12882 else if (PPC::F8RCRegClass.contains(*I)) 12883 RC = &PPC::F8RCRegClass; 12884 else if (PPC::CRRCRegClass.contains(*I)) 12885 RC = &PPC::CRRCRegClass; 12886 else if (PPC::VRRCRegClass.contains(*I)) 12887 RC = &PPC::VRRCRegClass; 12888 else 12889 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12890 12891 unsigned NewVR = MRI->createVirtualRegister(RC); 12892 // Create copy from CSR to a virtual register. 12893 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12894 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12895 // nounwind. If we want to generalize this later, we may need to emit 12896 // CFI pseudo-instructions. 12897 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12898 Attribute::NoUnwind) && 12899 "Function should be nounwind in insertCopiesSplitCSR!"); 12900 Entry->addLiveIn(*I); 12901 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12902 .addReg(*I); 12903 12904 // Insert the copy-back instructions right before the terminator 12905 for (auto *Exit : Exits) 12906 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12907 TII->get(TargetOpcode::COPY), *I) 12908 .addReg(NewVR); 12909 } 12910 } 12911 12912 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12913 bool PPCTargetLowering::useLoadStackGuardNode() const { 12914 if (!Subtarget.isTargetLinux()) 12915 return TargetLowering::useLoadStackGuardNode(); 12916 return true; 12917 } 12918 12919 // Override to disable global variable loading on Linux. 12920 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12921 if (!Subtarget.isTargetLinux()) 12922 return TargetLowering::insertSSPDeclarations(M); 12923 } 12924 12925 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 12926 if (!VT.isSimple() || !Subtarget.hasVSX()) 12927 return false; 12928 12929 switch(VT.getSimpleVT().SimpleTy) { 12930 default: 12931 // For FP types that are currently not supported by PPC backend, return 12932 // false. Examples: f16, f80. 12933 return false; 12934 case MVT::f32: 12935 case MVT::f64: 12936 case MVT::ppcf128: 12937 return Imm.isPosZero(); 12938 } 12939 } 12940