1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnablePPCPCRelTLS( 125 "enable-ppc-pcrel-tls", 126 cl::desc("enable the use of PC relative memops in TLS instructions on PPC"), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 } else { 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 232 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 233 } 234 235 // PowerPC does not support direct load/store of condition registers. 236 setOperationAction(ISD::LOAD, MVT::i1, Custom); 237 setOperationAction(ISD::STORE, MVT::i1, Custom); 238 239 // FIXME: Remove this once the ANDI glue bug is fixed: 240 if (ANDIGlueBug) 241 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 242 243 for (MVT VT : MVT::integer_valuetypes()) { 244 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 246 setTruncStoreAction(VT, MVT::i1, Expand); 247 } 248 249 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 250 } 251 252 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 253 // PPC (the libcall is not available). 254 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 255 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 256 257 // We do not currently implement these libm ops for PowerPC. 258 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 260 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 261 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 262 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 263 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 264 265 // PowerPC has no SREM/UREM instructions unless we are on P9 266 // On P9 we may use a hardware instruction to compute the remainder. 267 // When the result of both the remainder and the division is required it is 268 // more efficient to compute the remainder from the result of the division 269 // rather than use the remainder instruction. The instructions are legalized 270 // directly because the DivRemPairsPass performs the transformation at the IR 271 // level. 272 if (Subtarget.isISA3_0()) { 273 setOperationAction(ISD::SREM, MVT::i32, Legal); 274 setOperationAction(ISD::UREM, MVT::i32, Legal); 275 setOperationAction(ISD::SREM, MVT::i64, Legal); 276 setOperationAction(ISD::UREM, MVT::i64, Legal); 277 } else { 278 setOperationAction(ISD::SREM, MVT::i32, Expand); 279 setOperationAction(ISD::UREM, MVT::i32, Expand); 280 setOperationAction(ISD::SREM, MVT::i64, Expand); 281 setOperationAction(ISD::UREM, MVT::i64, Expand); 282 } 283 284 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 285 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 286 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 287 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 288 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 289 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 290 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 291 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 292 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 293 294 // Handle constrained floating-point operations of scalar. 295 // TODO: Handle SPE specific operation. 296 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 297 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 298 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 299 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 300 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 301 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 302 303 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 304 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 305 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 306 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 307 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 308 if (Subtarget.hasVSX()) 309 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 310 311 if (Subtarget.hasFSQRT()) { 312 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 314 } 315 316 if (Subtarget.hasFPRND()) { 317 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 321 322 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 323 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 324 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 325 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 326 } 327 328 // We don't support sin/cos/sqrt/fmod/pow 329 setOperationAction(ISD::FSIN , MVT::f64, Expand); 330 setOperationAction(ISD::FCOS , MVT::f64, Expand); 331 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 332 setOperationAction(ISD::FREM , MVT::f64, Expand); 333 setOperationAction(ISD::FPOW , MVT::f64, Expand); 334 setOperationAction(ISD::FSIN , MVT::f32, Expand); 335 setOperationAction(ISD::FCOS , MVT::f32, Expand); 336 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 337 setOperationAction(ISD::FREM , MVT::f32, Expand); 338 setOperationAction(ISD::FPOW , MVT::f32, Expand); 339 if (Subtarget.hasSPE()) { 340 setOperationAction(ISD::FMA , MVT::f64, Expand); 341 setOperationAction(ISD::FMA , MVT::f32, Expand); 342 } else { 343 setOperationAction(ISD::FMA , MVT::f64, Legal); 344 setOperationAction(ISD::FMA , MVT::f32, Legal); 345 } 346 347 if (Subtarget.hasSPE()) 348 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 349 350 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 351 352 // If we're enabling GP optimizations, use hardware square root 353 if (!Subtarget.hasFSQRT() && 354 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 355 Subtarget.hasFRE())) 356 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 357 358 if (!Subtarget.hasFSQRT() && 359 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 360 Subtarget.hasFRES())) 361 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 362 363 if (Subtarget.hasFCPSGN()) { 364 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 365 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 366 } else { 367 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 368 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 369 } 370 371 if (Subtarget.hasFPRND()) { 372 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 373 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 374 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 375 setOperationAction(ISD::FROUND, MVT::f64, Legal); 376 377 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 378 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 379 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 380 setOperationAction(ISD::FROUND, MVT::f32, Legal); 381 } 382 383 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 384 // to speed up scalar BSWAP64. 385 // CTPOP or CTTZ were introduced in P8/P9 respectively 386 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 387 if (Subtarget.hasP9Vector()) 388 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 389 else 390 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 391 if (Subtarget.isISA3_0()) { 392 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 393 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 394 } else { 395 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 396 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 397 } 398 399 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 400 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 401 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 402 } else { 403 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 404 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 405 } 406 407 // PowerPC does not have ROTR 408 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 409 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 410 411 if (!Subtarget.useCRBits()) { 412 // PowerPC does not have Select 413 setOperationAction(ISD::SELECT, MVT::i32, Expand); 414 setOperationAction(ISD::SELECT, MVT::i64, Expand); 415 setOperationAction(ISD::SELECT, MVT::f32, Expand); 416 setOperationAction(ISD::SELECT, MVT::f64, Expand); 417 } 418 419 // PowerPC wants to turn select_cc of FP into fsel when possible. 420 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 421 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 422 423 // PowerPC wants to optimize integer setcc a bit 424 if (!Subtarget.useCRBits()) 425 setOperationAction(ISD::SETCC, MVT::i32, Custom); 426 427 if (Subtarget.hasFPU()) { 428 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 429 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 431 432 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 433 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 435 } 436 437 // PowerPC does not have BRCOND which requires SetCC 438 if (!Subtarget.useCRBits()) 439 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 440 441 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 442 443 if (Subtarget.hasSPE()) { 444 // SPE has built-in conversions 445 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 446 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 447 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 448 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 449 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 450 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 451 } else { 452 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 453 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 454 455 // PowerPC does not have [U|S]INT_TO_FP 456 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 457 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 458 } 459 460 if (Subtarget.hasDirectMove() && isPPC64) { 461 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 462 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 463 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 464 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 465 if (TM.Options.UnsafeFPMath) { 466 setOperationAction(ISD::LRINT, MVT::f64, Legal); 467 setOperationAction(ISD::LRINT, MVT::f32, Legal); 468 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 469 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 470 setOperationAction(ISD::LROUND, MVT::f64, Legal); 471 setOperationAction(ISD::LROUND, MVT::f32, Legal); 472 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 473 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 474 } 475 } else { 476 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 477 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 478 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 479 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 480 } 481 482 // We cannot sextinreg(i1). Expand to shifts. 483 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 484 485 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 486 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 487 // support continuation, user-level threading, and etc.. As a result, no 488 // other SjLj exception interfaces are implemented and please don't build 489 // your own exception handling based on them. 490 // LLVM/Clang supports zero-cost DWARF exception handling. 491 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 492 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 493 494 // We want to legalize GlobalAddress and ConstantPool nodes into the 495 // appropriate instructions to materialize the address. 496 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 497 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 498 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 499 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 500 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 501 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 502 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 503 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 504 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 505 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 506 507 // TRAP is legal. 508 setOperationAction(ISD::TRAP, MVT::Other, Legal); 509 510 // TRAMPOLINE is custom lowered. 511 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 512 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 513 514 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 515 setOperationAction(ISD::VASTART , MVT::Other, Custom); 516 517 if (Subtarget.is64BitELFABI()) { 518 // VAARG always uses double-word chunks, so promote anything smaller. 519 setOperationAction(ISD::VAARG, MVT::i1, Promote); 520 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 521 setOperationAction(ISD::VAARG, MVT::i8, Promote); 522 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 523 setOperationAction(ISD::VAARG, MVT::i16, Promote); 524 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 525 setOperationAction(ISD::VAARG, MVT::i32, Promote); 526 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 527 setOperationAction(ISD::VAARG, MVT::Other, Expand); 528 } else if (Subtarget.is32BitELFABI()) { 529 // VAARG is custom lowered with the 32-bit SVR4 ABI. 530 setOperationAction(ISD::VAARG, MVT::Other, Custom); 531 setOperationAction(ISD::VAARG, MVT::i64, Custom); 532 } else 533 setOperationAction(ISD::VAARG, MVT::Other, Expand); 534 535 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 536 if (Subtarget.is32BitELFABI()) 537 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 538 else 539 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 540 541 // Use the default implementation. 542 setOperationAction(ISD::VAEND , MVT::Other, Expand); 543 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 544 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 545 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 546 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 547 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 548 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 549 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 550 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 551 552 // We want to custom lower some of our intrinsics. 553 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 554 555 // To handle counter-based loop conditions. 556 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 557 558 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 559 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 560 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 561 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 562 563 // Comparisons that require checking two conditions. 564 if (Subtarget.hasSPE()) { 565 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 566 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 567 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 568 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 569 } 570 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 571 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 572 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 573 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 574 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 575 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 576 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 577 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 578 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 579 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 580 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 581 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 582 583 if (Subtarget.has64BitSupport()) { 584 // They also have instructions for converting between i64 and fp. 585 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 586 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 587 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 588 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 589 // This is just the low 32 bits of a (signed) fp->i64 conversion. 590 // We cannot do this with Promote because i64 is not a legal type. 591 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 592 593 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 594 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 595 } else { 596 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 597 if (Subtarget.hasSPE()) { 598 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 599 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 600 } else 601 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 602 } 603 604 // With the instructions enabled under FPCVT, we can do everything. 605 if (Subtarget.hasFPCVT()) { 606 if (Subtarget.has64BitSupport()) { 607 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 608 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 609 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 610 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 611 } 612 613 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 614 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 615 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 616 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 617 } 618 619 if (Subtarget.use64BitRegs()) { 620 // 64-bit PowerPC implementations can support i64 types directly 621 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 622 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 623 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 624 // 64-bit PowerPC wants to expand i128 shifts itself. 625 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 626 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 627 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 628 } else { 629 // 32-bit PowerPC wants to expand i64 shifts itself. 630 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 631 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 632 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 633 } 634 635 // PowerPC has better expansions for funnel shifts than the generic 636 // TargetLowering::expandFunnelShift. 637 if (Subtarget.has64BitSupport()) { 638 setOperationAction(ISD::FSHL, MVT::i64, Custom); 639 setOperationAction(ISD::FSHR, MVT::i64, Custom); 640 } 641 setOperationAction(ISD::FSHL, MVT::i32, Custom); 642 setOperationAction(ISD::FSHR, MVT::i32, Custom); 643 644 if (Subtarget.hasVSX()) { 645 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 646 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 647 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 648 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 649 } 650 651 if (Subtarget.hasAltivec()) { 652 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 653 setOperationAction(ISD::SADDSAT, VT, Legal); 654 setOperationAction(ISD::SSUBSAT, VT, Legal); 655 setOperationAction(ISD::UADDSAT, VT, Legal); 656 setOperationAction(ISD::USUBSAT, VT, Legal); 657 } 658 // First set operation action for all vector types to expand. Then we 659 // will selectively turn on ones that can be effectively codegen'd. 660 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 661 // add/sub are legal for all supported vector VT's. 662 setOperationAction(ISD::ADD, VT, Legal); 663 setOperationAction(ISD::SUB, VT, Legal); 664 665 // For v2i64, these are only valid with P8Vector. This is corrected after 666 // the loop. 667 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 668 setOperationAction(ISD::SMAX, VT, Legal); 669 setOperationAction(ISD::SMIN, VT, Legal); 670 setOperationAction(ISD::UMAX, VT, Legal); 671 setOperationAction(ISD::UMIN, VT, Legal); 672 } 673 else { 674 setOperationAction(ISD::SMAX, VT, Expand); 675 setOperationAction(ISD::SMIN, VT, Expand); 676 setOperationAction(ISD::UMAX, VT, Expand); 677 setOperationAction(ISD::UMIN, VT, Expand); 678 } 679 680 if (Subtarget.hasVSX()) { 681 setOperationAction(ISD::FMAXNUM, VT, Legal); 682 setOperationAction(ISD::FMINNUM, VT, Legal); 683 } 684 685 // Vector instructions introduced in P8 686 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 687 setOperationAction(ISD::CTPOP, VT, Legal); 688 setOperationAction(ISD::CTLZ, VT, Legal); 689 } 690 else { 691 setOperationAction(ISD::CTPOP, VT, Expand); 692 setOperationAction(ISD::CTLZ, VT, Expand); 693 } 694 695 // Vector instructions introduced in P9 696 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 697 setOperationAction(ISD::CTTZ, VT, Legal); 698 else 699 setOperationAction(ISD::CTTZ, VT, Expand); 700 701 // We promote all shuffles to v16i8. 702 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 703 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 704 705 // We promote all non-typed operations to v4i32. 706 setOperationAction(ISD::AND , VT, Promote); 707 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 708 setOperationAction(ISD::OR , VT, Promote); 709 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 710 setOperationAction(ISD::XOR , VT, Promote); 711 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 712 setOperationAction(ISD::LOAD , VT, Promote); 713 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 714 setOperationAction(ISD::SELECT, VT, Promote); 715 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 716 setOperationAction(ISD::VSELECT, VT, Legal); 717 setOperationAction(ISD::SELECT_CC, VT, Promote); 718 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 719 setOperationAction(ISD::STORE, VT, Promote); 720 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 721 722 // No other operations are legal. 723 setOperationAction(ISD::MUL , VT, Expand); 724 setOperationAction(ISD::SDIV, VT, Expand); 725 setOperationAction(ISD::SREM, VT, Expand); 726 setOperationAction(ISD::UDIV, VT, Expand); 727 setOperationAction(ISD::UREM, VT, Expand); 728 setOperationAction(ISD::FDIV, VT, Expand); 729 setOperationAction(ISD::FREM, VT, Expand); 730 setOperationAction(ISD::FNEG, VT, Expand); 731 setOperationAction(ISD::FSQRT, VT, Expand); 732 setOperationAction(ISD::FLOG, VT, Expand); 733 setOperationAction(ISD::FLOG10, VT, Expand); 734 setOperationAction(ISD::FLOG2, VT, Expand); 735 setOperationAction(ISD::FEXP, VT, Expand); 736 setOperationAction(ISD::FEXP2, VT, Expand); 737 setOperationAction(ISD::FSIN, VT, Expand); 738 setOperationAction(ISD::FCOS, VT, Expand); 739 setOperationAction(ISD::FABS, VT, Expand); 740 setOperationAction(ISD::FFLOOR, VT, Expand); 741 setOperationAction(ISD::FCEIL, VT, Expand); 742 setOperationAction(ISD::FTRUNC, VT, Expand); 743 setOperationAction(ISD::FRINT, VT, Expand); 744 setOperationAction(ISD::FNEARBYINT, VT, Expand); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 746 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 747 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 748 setOperationAction(ISD::MULHU, VT, Expand); 749 setOperationAction(ISD::MULHS, VT, Expand); 750 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 751 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 752 setOperationAction(ISD::UDIVREM, VT, Expand); 753 setOperationAction(ISD::SDIVREM, VT, Expand); 754 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 755 setOperationAction(ISD::FPOW, VT, Expand); 756 setOperationAction(ISD::BSWAP, VT, Expand); 757 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 758 setOperationAction(ISD::ROTL, VT, Expand); 759 setOperationAction(ISD::ROTR, VT, Expand); 760 761 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 762 setTruncStoreAction(VT, InnerVT, Expand); 763 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 764 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 765 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 766 } 767 } 768 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 769 if (!Subtarget.hasP8Vector()) { 770 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 771 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 772 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 773 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 774 } 775 776 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 777 setOperationAction(ISD::ABS, VT, Custom); 778 779 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 780 // with merges, splats, etc. 781 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 782 783 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 784 // are cheap, so handle them before they get expanded to scalar. 785 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 786 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 787 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 788 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 789 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 790 791 setOperationAction(ISD::AND , MVT::v4i32, Legal); 792 setOperationAction(ISD::OR , MVT::v4i32, Legal); 793 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 794 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 795 setOperationAction(ISD::SELECT, MVT::v4i32, 796 Subtarget.useCRBits() ? Legal : Expand); 797 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 798 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 799 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 800 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 801 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 802 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 803 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 804 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 805 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 806 807 // Without hasP8Altivec set, v2i64 SMAX isn't available. 808 // But ABS custom lowering requires SMAX support. 809 if (!Subtarget.hasP8Altivec()) 810 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 811 812 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 813 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 814 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 815 if (Subtarget.hasAltivec()) 816 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 817 setOperationAction(ISD::ROTL, VT, Legal); 818 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 819 if (Subtarget.hasP8Altivec()) 820 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 821 822 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 823 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 824 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 825 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 826 827 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 828 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 829 830 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 831 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 832 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 833 } 834 835 if (Subtarget.hasP8Altivec()) 836 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 837 else 838 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 839 840 if (Subtarget.isISA3_1()) { 841 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 842 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 843 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 844 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 845 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 846 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 847 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 848 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 849 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 850 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 851 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 852 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 853 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 854 } 855 856 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 857 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 858 859 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 860 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 861 862 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 863 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 864 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 865 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 866 867 // Altivec does not contain unordered floating-point compare instructions 868 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 869 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 870 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 871 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 872 873 if (Subtarget.hasVSX()) { 874 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 875 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 876 if (Subtarget.hasP8Vector()) { 877 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 878 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 879 } 880 if (Subtarget.hasDirectMove() && isPPC64) { 881 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 882 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 883 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 884 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 885 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 886 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 887 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 888 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 889 } 890 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 891 892 // The nearbyint variants are not allowed to raise the inexact exception 893 // so we can only code-gen them with unsafe math. 894 if (TM.Options.UnsafeFPMath) { 895 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 896 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 897 } 898 899 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 900 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 901 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 902 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 903 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 904 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 905 setOperationAction(ISD::FROUND, MVT::f64, Legal); 906 setOperationAction(ISD::FRINT, MVT::f64, Legal); 907 908 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 909 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 910 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 911 setOperationAction(ISD::FROUND, MVT::f32, Legal); 912 setOperationAction(ISD::FRINT, MVT::f32, Legal); 913 914 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 915 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 916 917 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 918 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 919 920 // Share the Altivec comparison restrictions. 921 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 922 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 923 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 924 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 925 926 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 927 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 928 929 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 930 931 if (Subtarget.hasP8Vector()) 932 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 933 934 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 935 936 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 937 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 938 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 939 940 if (Subtarget.hasP8Altivec()) { 941 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 942 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 943 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 944 945 // 128 bit shifts can be accomplished via 3 instructions for SHL and 946 // SRL, but not for SRA because of the instructions available: 947 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 948 // doing 949 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 950 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 951 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 952 953 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 954 } 955 else { 956 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 957 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 958 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 959 960 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 961 962 // VSX v2i64 only supports non-arithmetic operations. 963 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 964 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 965 } 966 967 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 968 969 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 970 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 971 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 972 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 973 974 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 975 976 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 977 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 978 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 979 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 980 981 // Custom handling for partial vectors of integers converted to 982 // floating point. We already have optimal handling for v2i32 through 983 // the DAG combine, so those aren't necessary. 984 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 985 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 986 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 987 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 988 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 989 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 990 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 991 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 992 993 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 994 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 995 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 996 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 997 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 998 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 999 1000 if (Subtarget.hasDirectMove()) 1001 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1002 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1003 1004 // Handle constrained floating-point operations of vector. 1005 // The predictor is `hasVSX` because altivec instruction has 1006 // no exception but VSX vector instruction has. 1007 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1008 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1009 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1010 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1011 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1012 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1013 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1014 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1015 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 1016 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1017 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1018 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1019 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1020 1021 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1022 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1023 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1024 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1025 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1026 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1028 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1029 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 1030 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1031 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1032 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1033 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1034 1035 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1036 } 1037 1038 if (Subtarget.hasP8Altivec()) { 1039 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1040 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1041 } 1042 1043 if (Subtarget.hasP9Vector()) { 1044 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1045 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1046 1047 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1048 // SRL, but not for SRA because of the instructions available: 1049 // VS{RL} and VS{RL}O. 1050 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1051 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1052 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1053 1054 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1055 setOperationAction(ISD::FADD, MVT::f128, Legal); 1056 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1057 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1058 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1059 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1060 // No extending loads to f128 on PPC. 1061 for (MVT FPT : MVT::fp_valuetypes()) 1062 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1063 setOperationAction(ISD::FMA, MVT::f128, Legal); 1064 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1065 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1066 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1067 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1068 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1069 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1070 1071 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1072 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1073 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1074 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1075 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1076 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1077 1078 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1079 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1080 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1081 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1082 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1083 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1084 // No implementation for these ops for PowerPC. 1085 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1086 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1087 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1088 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1089 setOperationAction(ISD::FREM, MVT::f128, Expand); 1090 1091 // Handle constrained floating-point operations of fp128 1092 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1093 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1094 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1095 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1096 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1097 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1098 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1099 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1100 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1101 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1102 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1103 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1104 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1105 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1106 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1107 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1108 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1109 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1110 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1111 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1112 } 1113 1114 if (Subtarget.hasP9Altivec()) { 1115 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1116 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1117 1118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1121 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1122 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1123 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1124 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1125 } 1126 } 1127 1128 if (Subtarget.has64BitSupport()) 1129 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1130 1131 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1132 1133 if (!isPPC64) { 1134 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1135 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1136 } 1137 1138 setBooleanContents(ZeroOrOneBooleanContent); 1139 1140 if (Subtarget.hasAltivec()) { 1141 // Altivec instructions set fields to all zeros or all ones. 1142 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1143 } 1144 1145 if (!isPPC64) { 1146 // These libcalls are not available in 32-bit. 1147 setLibcallName(RTLIB::SHL_I128, nullptr); 1148 setLibcallName(RTLIB::SRL_I128, nullptr); 1149 setLibcallName(RTLIB::SRA_I128, nullptr); 1150 } 1151 1152 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1153 1154 // We have target-specific dag combine patterns for the following nodes: 1155 setTargetDAGCombine(ISD::ADD); 1156 setTargetDAGCombine(ISD::SHL); 1157 setTargetDAGCombine(ISD::SRA); 1158 setTargetDAGCombine(ISD::SRL); 1159 setTargetDAGCombine(ISD::MUL); 1160 setTargetDAGCombine(ISD::FMA); 1161 setTargetDAGCombine(ISD::SINT_TO_FP); 1162 setTargetDAGCombine(ISD::BUILD_VECTOR); 1163 if (Subtarget.hasFPCVT()) 1164 setTargetDAGCombine(ISD::UINT_TO_FP); 1165 setTargetDAGCombine(ISD::LOAD); 1166 setTargetDAGCombine(ISD::STORE); 1167 setTargetDAGCombine(ISD::BR_CC); 1168 if (Subtarget.useCRBits()) 1169 setTargetDAGCombine(ISD::BRCOND); 1170 setTargetDAGCombine(ISD::BSWAP); 1171 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1172 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1173 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1174 1175 setTargetDAGCombine(ISD::SIGN_EXTEND); 1176 setTargetDAGCombine(ISD::ZERO_EXTEND); 1177 setTargetDAGCombine(ISD::ANY_EXTEND); 1178 1179 setTargetDAGCombine(ISD::TRUNCATE); 1180 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1181 1182 1183 if (Subtarget.useCRBits()) { 1184 setTargetDAGCombine(ISD::TRUNCATE); 1185 setTargetDAGCombine(ISD::SETCC); 1186 setTargetDAGCombine(ISD::SELECT_CC); 1187 } 1188 1189 // Use reciprocal estimates. 1190 if (TM.Options.UnsafeFPMath) { 1191 setTargetDAGCombine(ISD::FDIV); 1192 setTargetDAGCombine(ISD::FSQRT); 1193 } 1194 1195 if (Subtarget.hasP9Altivec()) { 1196 setTargetDAGCombine(ISD::ABS); 1197 setTargetDAGCombine(ISD::VSELECT); 1198 } 1199 1200 setLibcallName(RTLIB::LOG_F128, "logf128"); 1201 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1202 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1203 setLibcallName(RTLIB::EXP_F128, "expf128"); 1204 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1205 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1206 setLibcallName(RTLIB::COS_F128, "cosf128"); 1207 setLibcallName(RTLIB::POW_F128, "powf128"); 1208 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1209 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1210 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1211 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1212 1213 // With 32 condition bits, we don't need to sink (and duplicate) compares 1214 // aggressively in CodeGenPrep. 1215 if (Subtarget.useCRBits()) { 1216 setHasMultipleConditionRegisters(); 1217 setJumpIsExpensive(); 1218 } 1219 1220 setMinFunctionAlignment(Align(4)); 1221 1222 switch (Subtarget.getCPUDirective()) { 1223 default: break; 1224 case PPC::DIR_970: 1225 case PPC::DIR_A2: 1226 case PPC::DIR_E500: 1227 case PPC::DIR_E500mc: 1228 case PPC::DIR_E5500: 1229 case PPC::DIR_PWR4: 1230 case PPC::DIR_PWR5: 1231 case PPC::DIR_PWR5X: 1232 case PPC::DIR_PWR6: 1233 case PPC::DIR_PWR6X: 1234 case PPC::DIR_PWR7: 1235 case PPC::DIR_PWR8: 1236 case PPC::DIR_PWR9: 1237 case PPC::DIR_PWR10: 1238 case PPC::DIR_PWR_FUTURE: 1239 setPrefLoopAlignment(Align(16)); 1240 setPrefFunctionAlignment(Align(16)); 1241 break; 1242 } 1243 1244 if (Subtarget.enableMachineScheduler()) 1245 setSchedulingPreference(Sched::Source); 1246 else 1247 setSchedulingPreference(Sched::Hybrid); 1248 1249 computeRegisterProperties(STI.getRegisterInfo()); 1250 1251 // The Freescale cores do better with aggressive inlining of memcpy and 1252 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1253 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1254 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1255 MaxStoresPerMemset = 32; 1256 MaxStoresPerMemsetOptSize = 16; 1257 MaxStoresPerMemcpy = 32; 1258 MaxStoresPerMemcpyOptSize = 8; 1259 MaxStoresPerMemmove = 32; 1260 MaxStoresPerMemmoveOptSize = 8; 1261 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1262 // The A2 also benefits from (very) aggressive inlining of memcpy and 1263 // friends. The overhead of a the function call, even when warm, can be 1264 // over one hundred cycles. 1265 MaxStoresPerMemset = 128; 1266 MaxStoresPerMemcpy = 128; 1267 MaxStoresPerMemmove = 128; 1268 MaxLoadsPerMemcmp = 128; 1269 } else { 1270 MaxLoadsPerMemcmp = 8; 1271 MaxLoadsPerMemcmpOptSize = 4; 1272 } 1273 1274 // Let the subtarget (CPU) decide if a predictable select is more expensive 1275 // than the corresponding branch. This information is used in CGP to decide 1276 // when to convert selects into branches. 1277 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1278 } 1279 1280 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1281 /// the desired ByVal argument alignment. 1282 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1283 if (MaxAlign == MaxMaxAlign) 1284 return; 1285 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1286 if (MaxMaxAlign >= 32 && 1287 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1288 MaxAlign = Align(32); 1289 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1290 MaxAlign < 16) 1291 MaxAlign = Align(16); 1292 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1293 Align EltAlign; 1294 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1295 if (EltAlign > MaxAlign) 1296 MaxAlign = EltAlign; 1297 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1298 for (auto *EltTy : STy->elements()) { 1299 Align EltAlign; 1300 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1301 if (EltAlign > MaxAlign) 1302 MaxAlign = EltAlign; 1303 if (MaxAlign == MaxMaxAlign) 1304 break; 1305 } 1306 } 1307 } 1308 1309 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1310 /// function arguments in the caller parameter area. 1311 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1312 const DataLayout &DL) const { 1313 // 16byte and wider vectors are passed on 16byte boundary. 1314 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1315 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1316 if (Subtarget.hasAltivec()) 1317 getMaxByValAlign(Ty, Alignment, Align(16)); 1318 return Alignment.value(); 1319 } 1320 1321 bool PPCTargetLowering::useSoftFloat() const { 1322 return Subtarget.useSoftFloat(); 1323 } 1324 1325 bool PPCTargetLowering::hasSPE() const { 1326 return Subtarget.hasSPE(); 1327 } 1328 1329 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1330 return VT.isScalarInteger(); 1331 } 1332 1333 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1334 /// type is cheaper than a multiply followed by a shift. 1335 /// This is true for words and doublewords on 64-bit PowerPC. 1336 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1337 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1338 isOperationLegal(ISD::MULHU, Type))) 1339 return true; 1340 return TargetLowering::isMulhCheaperThanMulShift(Type); 1341 } 1342 1343 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1344 switch ((PPCISD::NodeType)Opcode) { 1345 case PPCISD::FIRST_NUMBER: break; 1346 case PPCISD::FSEL: return "PPCISD::FSEL"; 1347 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1348 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1349 case PPCISD::FCFID: return "PPCISD::FCFID"; 1350 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1351 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1352 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1353 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1354 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1355 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1356 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1357 case PPCISD::FP_TO_UINT_IN_VSR: 1358 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1359 case PPCISD::FP_TO_SINT_IN_VSR: 1360 return "PPCISD::FP_TO_SINT_IN_VSR"; 1361 case PPCISD::FRE: return "PPCISD::FRE"; 1362 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1363 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1364 case PPCISD::VPERM: return "PPCISD::VPERM"; 1365 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1366 case PPCISD::XXSPLTI_SP_TO_DP: 1367 return "PPCISD::XXSPLTI_SP_TO_DP"; 1368 case PPCISD::XXSPLTI32DX: 1369 return "PPCISD::XXSPLTI32DX"; 1370 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1371 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1372 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1373 case PPCISD::CMPB: return "PPCISD::CMPB"; 1374 case PPCISD::Hi: return "PPCISD::Hi"; 1375 case PPCISD::Lo: return "PPCISD::Lo"; 1376 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1377 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1378 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1379 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1380 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1381 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1382 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1383 case PPCISD::SRL: return "PPCISD::SRL"; 1384 case PPCISD::SRA: return "PPCISD::SRA"; 1385 case PPCISD::SHL: return "PPCISD::SHL"; 1386 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1387 case PPCISD::CALL: return "PPCISD::CALL"; 1388 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1389 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1390 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1391 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1392 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1393 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1394 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1395 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1396 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1397 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1398 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1399 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1400 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1401 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1402 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1403 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1404 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1405 case PPCISD::ANDI_rec_1_EQ_BIT: 1406 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1407 case PPCISD::ANDI_rec_1_GT_BIT: 1408 return "PPCISD::ANDI_rec_1_GT_BIT"; 1409 case PPCISD::VCMP: return "PPCISD::VCMP"; 1410 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1411 case PPCISD::LBRX: return "PPCISD::LBRX"; 1412 case PPCISD::STBRX: return "PPCISD::STBRX"; 1413 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1414 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1415 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1416 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1417 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1418 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1419 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1420 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1421 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1422 case PPCISD::ST_VSR_SCAL_INT: 1423 return "PPCISD::ST_VSR_SCAL_INT"; 1424 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1425 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1426 case PPCISD::BDZ: return "PPCISD::BDZ"; 1427 case PPCISD::MFFS: return "PPCISD::MFFS"; 1428 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1429 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1430 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1431 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1432 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1433 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1434 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1435 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1436 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1437 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1438 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1439 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1440 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1441 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1442 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1443 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1444 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1445 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1446 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1447 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1448 case PPCISD::SC: return "PPCISD::SC"; 1449 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1450 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1451 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1452 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1453 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1454 case PPCISD::VABSD: return "PPCISD::VABSD"; 1455 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1456 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1457 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1458 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1459 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1460 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1461 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1462 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1463 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1464 } 1465 return nullptr; 1466 } 1467 1468 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1469 EVT VT) const { 1470 if (!VT.isVector()) 1471 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1472 1473 return VT.changeVectorElementTypeToInteger(); 1474 } 1475 1476 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1477 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1478 return true; 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // Node matching predicates, for use by the tblgen matching code. 1483 //===----------------------------------------------------------------------===// 1484 1485 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1486 static bool isFloatingPointZero(SDValue Op) { 1487 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1488 return CFP->getValueAPF().isZero(); 1489 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1490 // Maybe this has already been legalized into the constant pool? 1491 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1492 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1493 return CFP->getValueAPF().isZero(); 1494 } 1495 return false; 1496 } 1497 1498 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1499 /// true if Op is undef or if it matches the specified value. 1500 static bool isConstantOrUndef(int Op, int Val) { 1501 return Op < 0 || Op == Val; 1502 } 1503 1504 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1505 /// VPKUHUM instruction. 1506 /// The ShuffleKind distinguishes between big-endian operations with 1507 /// two different inputs (0), either-endian operations with two identical 1508 /// inputs (1), and little-endian operations with two different inputs (2). 1509 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1510 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1511 SelectionDAG &DAG) { 1512 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1513 if (ShuffleKind == 0) { 1514 if (IsLE) 1515 return false; 1516 for (unsigned i = 0; i != 16; ++i) 1517 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1518 return false; 1519 } else if (ShuffleKind == 2) { 1520 if (!IsLE) 1521 return false; 1522 for (unsigned i = 0; i != 16; ++i) 1523 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1524 return false; 1525 } else if (ShuffleKind == 1) { 1526 unsigned j = IsLE ? 0 : 1; 1527 for (unsigned i = 0; i != 8; ++i) 1528 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1529 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1530 return false; 1531 } 1532 return true; 1533 } 1534 1535 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1536 /// VPKUWUM instruction. 1537 /// The ShuffleKind distinguishes between big-endian operations with 1538 /// two different inputs (0), either-endian operations with two identical 1539 /// inputs (1), and little-endian operations with two different inputs (2). 1540 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1541 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1542 SelectionDAG &DAG) { 1543 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1544 if (ShuffleKind == 0) { 1545 if (IsLE) 1546 return false; 1547 for (unsigned i = 0; i != 16; i += 2) 1548 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1549 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1550 return false; 1551 } else if (ShuffleKind == 2) { 1552 if (!IsLE) 1553 return false; 1554 for (unsigned i = 0; i != 16; i += 2) 1555 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1556 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1557 return false; 1558 } else if (ShuffleKind == 1) { 1559 unsigned j = IsLE ? 0 : 2; 1560 for (unsigned i = 0; i != 8; i += 2) 1561 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1562 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1563 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1564 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1565 return false; 1566 } 1567 return true; 1568 } 1569 1570 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1571 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1572 /// current subtarget. 1573 /// 1574 /// The ShuffleKind distinguishes between big-endian operations with 1575 /// two different inputs (0), either-endian operations with two identical 1576 /// inputs (1), and little-endian operations with two different inputs (2). 1577 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1578 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1579 SelectionDAG &DAG) { 1580 const PPCSubtarget& Subtarget = 1581 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1582 if (!Subtarget.hasP8Vector()) 1583 return false; 1584 1585 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1586 if (ShuffleKind == 0) { 1587 if (IsLE) 1588 return false; 1589 for (unsigned i = 0; i != 16; i += 4) 1590 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1591 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1592 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1593 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1594 return false; 1595 } else if (ShuffleKind == 2) { 1596 if (!IsLE) 1597 return false; 1598 for (unsigned i = 0; i != 16; i += 4) 1599 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1600 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1601 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1602 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1603 return false; 1604 } else if (ShuffleKind == 1) { 1605 unsigned j = IsLE ? 0 : 4; 1606 for (unsigned i = 0; i != 8; i += 4) 1607 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1608 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1609 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1610 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1611 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1612 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1613 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1614 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 /// isVMerge - Common function, used to match vmrg* shuffles. 1621 /// 1622 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1623 unsigned LHSStart, unsigned RHSStart) { 1624 if (N->getValueType(0) != MVT::v16i8) 1625 return false; 1626 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1627 "Unsupported merge size!"); 1628 1629 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1630 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1631 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1632 LHSStart+j+i*UnitSize) || 1633 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1634 RHSStart+j+i*UnitSize)) 1635 return false; 1636 } 1637 return true; 1638 } 1639 1640 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1641 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1642 /// The ShuffleKind distinguishes between big-endian merges with two 1643 /// different inputs (0), either-endian merges with two identical inputs (1), 1644 /// and little-endian merges with two different inputs (2). For the latter, 1645 /// the input operands are swapped (see PPCInstrAltivec.td). 1646 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1647 unsigned ShuffleKind, SelectionDAG &DAG) { 1648 if (DAG.getDataLayout().isLittleEndian()) { 1649 if (ShuffleKind == 1) // unary 1650 return isVMerge(N, UnitSize, 0, 0); 1651 else if (ShuffleKind == 2) // swapped 1652 return isVMerge(N, UnitSize, 0, 16); 1653 else 1654 return false; 1655 } else { 1656 if (ShuffleKind == 1) // unary 1657 return isVMerge(N, UnitSize, 8, 8); 1658 else if (ShuffleKind == 0) // normal 1659 return isVMerge(N, UnitSize, 8, 24); 1660 else 1661 return false; 1662 } 1663 } 1664 1665 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1666 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1667 /// The ShuffleKind distinguishes between big-endian merges with two 1668 /// different inputs (0), either-endian merges with two identical inputs (1), 1669 /// and little-endian merges with two different inputs (2). For the latter, 1670 /// the input operands are swapped (see PPCInstrAltivec.td). 1671 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1672 unsigned ShuffleKind, SelectionDAG &DAG) { 1673 if (DAG.getDataLayout().isLittleEndian()) { 1674 if (ShuffleKind == 1) // unary 1675 return isVMerge(N, UnitSize, 8, 8); 1676 else if (ShuffleKind == 2) // swapped 1677 return isVMerge(N, UnitSize, 8, 24); 1678 else 1679 return false; 1680 } else { 1681 if (ShuffleKind == 1) // unary 1682 return isVMerge(N, UnitSize, 0, 0); 1683 else if (ShuffleKind == 0) // normal 1684 return isVMerge(N, UnitSize, 0, 16); 1685 else 1686 return false; 1687 } 1688 } 1689 1690 /** 1691 * Common function used to match vmrgew and vmrgow shuffles 1692 * 1693 * The indexOffset determines whether to look for even or odd words in 1694 * the shuffle mask. This is based on the of the endianness of the target 1695 * machine. 1696 * - Little Endian: 1697 * - Use offset of 0 to check for odd elements 1698 * - Use offset of 4 to check for even elements 1699 * - Big Endian: 1700 * - Use offset of 0 to check for even elements 1701 * - Use offset of 4 to check for odd elements 1702 * A detailed description of the vector element ordering for little endian and 1703 * big endian can be found at 1704 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1705 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1706 * compiler differences mean to you 1707 * 1708 * The mask to the shuffle vector instruction specifies the indices of the 1709 * elements from the two input vectors to place in the result. The elements are 1710 * numbered in array-access order, starting with the first vector. These vectors 1711 * are always of type v16i8, thus each vector will contain 16 elements of size 1712 * 8. More info on the shuffle vector can be found in the 1713 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1714 * Language Reference. 1715 * 1716 * The RHSStartValue indicates whether the same input vectors are used (unary) 1717 * or two different input vectors are used, based on the following: 1718 * - If the instruction uses the same vector for both inputs, the range of the 1719 * indices will be 0 to 15. In this case, the RHSStart value passed should 1720 * be 0. 1721 * - If the instruction has two different vectors then the range of the 1722 * indices will be 0 to 31. In this case, the RHSStart value passed should 1723 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1724 * to 31 specify elements in the second vector). 1725 * 1726 * \param[in] N The shuffle vector SD Node to analyze 1727 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1728 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1729 * vector to the shuffle_vector instruction 1730 * \return true iff this shuffle vector represents an even or odd word merge 1731 */ 1732 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1733 unsigned RHSStartValue) { 1734 if (N->getValueType(0) != MVT::v16i8) 1735 return false; 1736 1737 for (unsigned i = 0; i < 2; ++i) 1738 for (unsigned j = 0; j < 4; ++j) 1739 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1740 i*RHSStartValue+j+IndexOffset) || 1741 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1742 i*RHSStartValue+j+IndexOffset+8)) 1743 return false; 1744 return true; 1745 } 1746 1747 /** 1748 * Determine if the specified shuffle mask is suitable for the vmrgew or 1749 * vmrgow instructions. 1750 * 1751 * \param[in] N The shuffle vector SD Node to analyze 1752 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1753 * \param[in] ShuffleKind Identify the type of merge: 1754 * - 0 = big-endian merge with two different inputs; 1755 * - 1 = either-endian merge with two identical inputs; 1756 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1757 * little-endian merges). 1758 * \param[in] DAG The current SelectionDAG 1759 * \return true iff this shuffle mask 1760 */ 1761 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1762 unsigned ShuffleKind, SelectionDAG &DAG) { 1763 if (DAG.getDataLayout().isLittleEndian()) { 1764 unsigned indexOffset = CheckEven ? 4 : 0; 1765 if (ShuffleKind == 1) // Unary 1766 return isVMerge(N, indexOffset, 0); 1767 else if (ShuffleKind == 2) // swapped 1768 return isVMerge(N, indexOffset, 16); 1769 else 1770 return false; 1771 } 1772 else { 1773 unsigned indexOffset = CheckEven ? 0 : 4; 1774 if (ShuffleKind == 1) // Unary 1775 return isVMerge(N, indexOffset, 0); 1776 else if (ShuffleKind == 0) // Normal 1777 return isVMerge(N, indexOffset, 16); 1778 else 1779 return false; 1780 } 1781 return false; 1782 } 1783 1784 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1785 /// amount, otherwise return -1. 1786 /// The ShuffleKind distinguishes between big-endian operations with two 1787 /// different inputs (0), either-endian operations with two identical inputs 1788 /// (1), and little-endian operations with two different inputs (2). For the 1789 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1790 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1791 SelectionDAG &DAG) { 1792 if (N->getValueType(0) != MVT::v16i8) 1793 return -1; 1794 1795 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1796 1797 // Find the first non-undef value in the shuffle mask. 1798 unsigned i; 1799 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1800 /*search*/; 1801 1802 if (i == 16) return -1; // all undef. 1803 1804 // Otherwise, check to see if the rest of the elements are consecutively 1805 // numbered from this value. 1806 unsigned ShiftAmt = SVOp->getMaskElt(i); 1807 if (ShiftAmt < i) return -1; 1808 1809 ShiftAmt -= i; 1810 bool isLE = DAG.getDataLayout().isLittleEndian(); 1811 1812 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1813 // Check the rest of the elements to see if they are consecutive. 1814 for (++i; i != 16; ++i) 1815 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1816 return -1; 1817 } else if (ShuffleKind == 1) { 1818 // Check the rest of the elements to see if they are consecutive. 1819 for (++i; i != 16; ++i) 1820 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1821 return -1; 1822 } else 1823 return -1; 1824 1825 if (isLE) 1826 ShiftAmt = 16 - ShiftAmt; 1827 1828 return ShiftAmt; 1829 } 1830 1831 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1832 /// specifies a splat of a single element that is suitable for input to 1833 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1834 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1835 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1836 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1837 1838 // The consecutive indices need to specify an element, not part of two 1839 // different elements. So abandon ship early if this isn't the case. 1840 if (N->getMaskElt(0) % EltSize != 0) 1841 return false; 1842 1843 // This is a splat operation if each element of the permute is the same, and 1844 // if the value doesn't reference the second vector. 1845 unsigned ElementBase = N->getMaskElt(0); 1846 1847 // FIXME: Handle UNDEF elements too! 1848 if (ElementBase >= 16) 1849 return false; 1850 1851 // Check that the indices are consecutive, in the case of a multi-byte element 1852 // splatted with a v16i8 mask. 1853 for (unsigned i = 1; i != EltSize; ++i) 1854 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1855 return false; 1856 1857 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1858 if (N->getMaskElt(i) < 0) continue; 1859 for (unsigned j = 0; j != EltSize; ++j) 1860 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1861 return false; 1862 } 1863 return true; 1864 } 1865 1866 /// Check that the mask is shuffling N byte elements. Within each N byte 1867 /// element of the mask, the indices could be either in increasing or 1868 /// decreasing order as long as they are consecutive. 1869 /// \param[in] N the shuffle vector SD Node to analyze 1870 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1871 /// Word/DoubleWord/QuadWord). 1872 /// \param[in] StepLen the delta indices number among the N byte element, if 1873 /// the mask is in increasing/decreasing order then it is 1/-1. 1874 /// \return true iff the mask is shuffling N byte elements. 1875 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1876 int StepLen) { 1877 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1878 "Unexpected element width."); 1879 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1880 1881 unsigned NumOfElem = 16 / Width; 1882 unsigned MaskVal[16]; // Width is never greater than 16 1883 for (unsigned i = 0; i < NumOfElem; ++i) { 1884 MaskVal[0] = N->getMaskElt(i * Width); 1885 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1886 return false; 1887 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1888 return false; 1889 } 1890 1891 for (unsigned int j = 1; j < Width; ++j) { 1892 MaskVal[j] = N->getMaskElt(i * Width + j); 1893 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1894 return false; 1895 } 1896 } 1897 } 1898 1899 return true; 1900 } 1901 1902 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1903 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1904 if (!isNByteElemShuffleMask(N, 4, 1)) 1905 return false; 1906 1907 // Now we look at mask elements 0,4,8,12 1908 unsigned M0 = N->getMaskElt(0) / 4; 1909 unsigned M1 = N->getMaskElt(4) / 4; 1910 unsigned M2 = N->getMaskElt(8) / 4; 1911 unsigned M3 = N->getMaskElt(12) / 4; 1912 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1913 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1914 1915 // Below, let H and L be arbitrary elements of the shuffle mask 1916 // where H is in the range [4,7] and L is in the range [0,3]. 1917 // H, 1, 2, 3 or L, 5, 6, 7 1918 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1919 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1920 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1921 InsertAtByte = IsLE ? 12 : 0; 1922 Swap = M0 < 4; 1923 return true; 1924 } 1925 // 0, H, 2, 3 or 4, L, 6, 7 1926 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1927 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1928 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1929 InsertAtByte = IsLE ? 8 : 4; 1930 Swap = M1 < 4; 1931 return true; 1932 } 1933 // 0, 1, H, 3 or 4, 5, L, 7 1934 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1935 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1936 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1937 InsertAtByte = IsLE ? 4 : 8; 1938 Swap = M2 < 4; 1939 return true; 1940 } 1941 // 0, 1, 2, H or 4, 5, 6, L 1942 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1943 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1944 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1945 InsertAtByte = IsLE ? 0 : 12; 1946 Swap = M3 < 4; 1947 return true; 1948 } 1949 1950 // If both vector operands for the shuffle are the same vector, the mask will 1951 // contain only elements from the first one and the second one will be undef. 1952 if (N->getOperand(1).isUndef()) { 1953 ShiftElts = 0; 1954 Swap = true; 1955 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1956 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1957 InsertAtByte = IsLE ? 12 : 0; 1958 return true; 1959 } 1960 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1961 InsertAtByte = IsLE ? 8 : 4; 1962 return true; 1963 } 1964 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1965 InsertAtByte = IsLE ? 4 : 8; 1966 return true; 1967 } 1968 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1969 InsertAtByte = IsLE ? 0 : 12; 1970 return true; 1971 } 1972 } 1973 1974 return false; 1975 } 1976 1977 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1978 bool &Swap, bool IsLE) { 1979 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1980 // Ensure each byte index of the word is consecutive. 1981 if (!isNByteElemShuffleMask(N, 4, 1)) 1982 return false; 1983 1984 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1985 unsigned M0 = N->getMaskElt(0) / 4; 1986 unsigned M1 = N->getMaskElt(4) / 4; 1987 unsigned M2 = N->getMaskElt(8) / 4; 1988 unsigned M3 = N->getMaskElt(12) / 4; 1989 1990 // If both vector operands for the shuffle are the same vector, the mask will 1991 // contain only elements from the first one and the second one will be undef. 1992 if (N->getOperand(1).isUndef()) { 1993 assert(M0 < 4 && "Indexing into an undef vector?"); 1994 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1995 return false; 1996 1997 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1998 Swap = false; 1999 return true; 2000 } 2001 2002 // Ensure each word index of the ShuffleVector Mask is consecutive. 2003 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2004 return false; 2005 2006 if (IsLE) { 2007 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2008 // Input vectors don't need to be swapped if the leading element 2009 // of the result is one of the 3 left elements of the second vector 2010 // (or if there is no shift to be done at all). 2011 Swap = false; 2012 ShiftElts = (8 - M0) % 8; 2013 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2014 // Input vectors need to be swapped if the leading element 2015 // of the result is one of the 3 left elements of the first vector 2016 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2017 Swap = true; 2018 ShiftElts = (4 - M0) % 4; 2019 } 2020 2021 return true; 2022 } else { // BE 2023 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2024 // Input vectors don't need to be swapped if the leading element 2025 // of the result is one of the 4 elements of the first vector. 2026 Swap = false; 2027 ShiftElts = M0; 2028 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2029 // Input vectors need to be swapped if the leading element 2030 // of the result is one of the 4 elements of the right vector. 2031 Swap = true; 2032 ShiftElts = M0 - 4; 2033 } 2034 2035 return true; 2036 } 2037 } 2038 2039 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2040 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2041 2042 if (!isNByteElemShuffleMask(N, Width, -1)) 2043 return false; 2044 2045 for (int i = 0; i < 16; i += Width) 2046 if (N->getMaskElt(i) != i + Width - 1) 2047 return false; 2048 2049 return true; 2050 } 2051 2052 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2053 return isXXBRShuffleMaskHelper(N, 2); 2054 } 2055 2056 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2057 return isXXBRShuffleMaskHelper(N, 4); 2058 } 2059 2060 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2061 return isXXBRShuffleMaskHelper(N, 8); 2062 } 2063 2064 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2065 return isXXBRShuffleMaskHelper(N, 16); 2066 } 2067 2068 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2069 /// if the inputs to the instruction should be swapped and set \p DM to the 2070 /// value for the immediate. 2071 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2072 /// AND element 0 of the result comes from the first input (LE) or second input 2073 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2074 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2075 /// mask. 2076 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2077 bool &Swap, bool IsLE) { 2078 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2079 2080 // Ensure each byte index of the double word is consecutive. 2081 if (!isNByteElemShuffleMask(N, 8, 1)) 2082 return false; 2083 2084 unsigned M0 = N->getMaskElt(0) / 8; 2085 unsigned M1 = N->getMaskElt(8) / 8; 2086 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2087 2088 // If both vector operands for the shuffle are the same vector, the mask will 2089 // contain only elements from the first one and the second one will be undef. 2090 if (N->getOperand(1).isUndef()) { 2091 if ((M0 | M1) < 2) { 2092 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2093 Swap = false; 2094 return true; 2095 } else 2096 return false; 2097 } 2098 2099 if (IsLE) { 2100 if (M0 > 1 && M1 < 2) { 2101 Swap = false; 2102 } else if (M0 < 2 && M1 > 1) { 2103 M0 = (M0 + 2) % 4; 2104 M1 = (M1 + 2) % 4; 2105 Swap = true; 2106 } else 2107 return false; 2108 2109 // Note: if control flow comes here that means Swap is already set above 2110 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2111 return true; 2112 } else { // BE 2113 if (M0 < 2 && M1 > 1) { 2114 Swap = false; 2115 } else if (M0 > 1 && M1 < 2) { 2116 M0 = (M0 + 2) % 4; 2117 M1 = (M1 + 2) % 4; 2118 Swap = true; 2119 } else 2120 return false; 2121 2122 // Note: if control flow comes here that means Swap is already set above 2123 DM = (M0 << 1) + (M1 & 1); 2124 return true; 2125 } 2126 } 2127 2128 2129 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2130 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2131 /// elements are counted from the left of the vector register). 2132 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2133 SelectionDAG &DAG) { 2134 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2135 assert(isSplatShuffleMask(SVOp, EltSize)); 2136 if (DAG.getDataLayout().isLittleEndian()) 2137 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2138 else 2139 return SVOp->getMaskElt(0) / EltSize; 2140 } 2141 2142 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2143 /// by using a vspltis[bhw] instruction of the specified element size, return 2144 /// the constant being splatted. The ByteSize field indicates the number of 2145 /// bytes of each element [124] -> [bhw]. 2146 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2147 SDValue OpVal(nullptr, 0); 2148 2149 // If ByteSize of the splat is bigger than the element size of the 2150 // build_vector, then we have a case where we are checking for a splat where 2151 // multiple elements of the buildvector are folded together into a single 2152 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2153 unsigned EltSize = 16/N->getNumOperands(); 2154 if (EltSize < ByteSize) { 2155 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2156 SDValue UniquedVals[4]; 2157 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2158 2159 // See if all of the elements in the buildvector agree across. 2160 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2161 if (N->getOperand(i).isUndef()) continue; 2162 // If the element isn't a constant, bail fully out. 2163 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2164 2165 if (!UniquedVals[i&(Multiple-1)].getNode()) 2166 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2167 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2168 return SDValue(); // no match. 2169 } 2170 2171 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2172 // either constant or undef values that are identical for each chunk. See 2173 // if these chunks can form into a larger vspltis*. 2174 2175 // Check to see if all of the leading entries are either 0 or -1. If 2176 // neither, then this won't fit into the immediate field. 2177 bool LeadingZero = true; 2178 bool LeadingOnes = true; 2179 for (unsigned i = 0; i != Multiple-1; ++i) { 2180 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2181 2182 LeadingZero &= isNullConstant(UniquedVals[i]); 2183 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2184 } 2185 // Finally, check the least significant entry. 2186 if (LeadingZero) { 2187 if (!UniquedVals[Multiple-1].getNode()) 2188 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2189 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2190 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2191 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2192 } 2193 if (LeadingOnes) { 2194 if (!UniquedVals[Multiple-1].getNode()) 2195 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2196 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2197 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2198 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2199 } 2200 2201 return SDValue(); 2202 } 2203 2204 // Check to see if this buildvec has a single non-undef value in its elements. 2205 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2206 if (N->getOperand(i).isUndef()) continue; 2207 if (!OpVal.getNode()) 2208 OpVal = N->getOperand(i); 2209 else if (OpVal != N->getOperand(i)) 2210 return SDValue(); 2211 } 2212 2213 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2214 2215 unsigned ValSizeInBytes = EltSize; 2216 uint64_t Value = 0; 2217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2218 Value = CN->getZExtValue(); 2219 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2220 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2221 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2222 } 2223 2224 // If the splat value is larger than the element value, then we can never do 2225 // this splat. The only case that we could fit the replicated bits into our 2226 // immediate field for would be zero, and we prefer to use vxor for it. 2227 if (ValSizeInBytes < ByteSize) return SDValue(); 2228 2229 // If the element value is larger than the splat value, check if it consists 2230 // of a repeated bit pattern of size ByteSize. 2231 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2232 return SDValue(); 2233 2234 // Properly sign extend the value. 2235 int MaskVal = SignExtend32(Value, ByteSize * 8); 2236 2237 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2238 if (MaskVal == 0) return SDValue(); 2239 2240 // Finally, if this value fits in a 5 bit sext field, return it 2241 if (SignExtend32<5>(MaskVal) == MaskVal) 2242 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2243 return SDValue(); 2244 } 2245 2246 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2247 /// amount, otherwise return -1. 2248 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2249 EVT VT = N->getValueType(0); 2250 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2251 return -1; 2252 2253 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2254 2255 // Find the first non-undef value in the shuffle mask. 2256 unsigned i; 2257 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2258 /*search*/; 2259 2260 if (i == 4) return -1; // all undef. 2261 2262 // Otherwise, check to see if the rest of the elements are consecutively 2263 // numbered from this value. 2264 unsigned ShiftAmt = SVOp->getMaskElt(i); 2265 if (ShiftAmt < i) return -1; 2266 ShiftAmt -= i; 2267 2268 // Check the rest of the elements to see if they are consecutive. 2269 for (++i; i != 4; ++i) 2270 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2271 return -1; 2272 2273 return ShiftAmt; 2274 } 2275 2276 //===----------------------------------------------------------------------===// 2277 // Addressing Mode Selection 2278 //===----------------------------------------------------------------------===// 2279 2280 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2281 /// or 64-bit immediate, and if the value can be accurately represented as a 2282 /// sign extension from a 16-bit value. If so, this returns true and the 2283 /// immediate. 2284 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2285 if (!isa<ConstantSDNode>(N)) 2286 return false; 2287 2288 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2289 if (N->getValueType(0) == MVT::i32) 2290 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2291 else 2292 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2293 } 2294 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2295 return isIntS16Immediate(Op.getNode(), Imm); 2296 } 2297 2298 2299 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2300 /// be represented as an indexed [r+r] operation. 2301 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2302 SDValue &Index, 2303 SelectionDAG &DAG) const { 2304 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2305 UI != E; ++UI) { 2306 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2307 if (Memop->getMemoryVT() == MVT::f64) { 2308 Base = N.getOperand(0); 2309 Index = N.getOperand(1); 2310 return true; 2311 } 2312 } 2313 } 2314 return false; 2315 } 2316 2317 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2318 /// can be represented as an indexed [r+r] operation. Returns false if it 2319 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2320 /// non-zero and N can be represented by a base register plus a signed 16-bit 2321 /// displacement, make a more precise judgement by checking (displacement % \p 2322 /// EncodingAlignment). 2323 bool PPCTargetLowering::SelectAddressRegReg( 2324 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2325 MaybeAlign EncodingAlignment) const { 2326 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2327 // a [pc+imm]. 2328 if (SelectAddressPCRel(N, Base)) 2329 return false; 2330 2331 int16_t Imm = 0; 2332 if (N.getOpcode() == ISD::ADD) { 2333 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2334 // SPE load/store can only handle 8-bit offsets. 2335 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2336 return true; 2337 if (isIntS16Immediate(N.getOperand(1), Imm) && 2338 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2339 return false; // r+i 2340 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2341 return false; // r+i 2342 2343 Base = N.getOperand(0); 2344 Index = N.getOperand(1); 2345 return true; 2346 } else if (N.getOpcode() == ISD::OR) { 2347 if (isIntS16Immediate(N.getOperand(1), Imm) && 2348 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2349 return false; // r+i can fold it if we can. 2350 2351 // If this is an or of disjoint bitfields, we can codegen this as an add 2352 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2353 // disjoint. 2354 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2355 2356 if (LHSKnown.Zero.getBoolValue()) { 2357 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2358 // If all of the bits are known zero on the LHS or RHS, the add won't 2359 // carry. 2360 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2361 Base = N.getOperand(0); 2362 Index = N.getOperand(1); 2363 return true; 2364 } 2365 } 2366 } 2367 2368 return false; 2369 } 2370 2371 // If we happen to be doing an i64 load or store into a stack slot that has 2372 // less than a 4-byte alignment, then the frame-index elimination may need to 2373 // use an indexed load or store instruction (because the offset may not be a 2374 // multiple of 4). The extra register needed to hold the offset comes from the 2375 // register scavenger, and it is possible that the scavenger will need to use 2376 // an emergency spill slot. As a result, we need to make sure that a spill slot 2377 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2378 // stack slot. 2379 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2380 // FIXME: This does not handle the LWA case. 2381 if (VT != MVT::i64) 2382 return; 2383 2384 // NOTE: We'll exclude negative FIs here, which come from argument 2385 // lowering, because there are no known test cases triggering this problem 2386 // using packed structures (or similar). We can remove this exclusion if 2387 // we find such a test case. The reason why this is so test-case driven is 2388 // because this entire 'fixup' is only to prevent crashes (from the 2389 // register scavenger) on not-really-valid inputs. For example, if we have: 2390 // %a = alloca i1 2391 // %b = bitcast i1* %a to i64* 2392 // store i64* a, i64 b 2393 // then the store should really be marked as 'align 1', but is not. If it 2394 // were marked as 'align 1' then the indexed form would have been 2395 // instruction-selected initially, and the problem this 'fixup' is preventing 2396 // won't happen regardless. 2397 if (FrameIdx < 0) 2398 return; 2399 2400 MachineFunction &MF = DAG.getMachineFunction(); 2401 MachineFrameInfo &MFI = MF.getFrameInfo(); 2402 2403 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2404 return; 2405 2406 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2407 FuncInfo->setHasNonRISpills(); 2408 } 2409 2410 /// Returns true if the address N can be represented by a base register plus 2411 /// a signed 16-bit displacement [r+imm], and if it is not better 2412 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2413 /// displacements that are multiples of that value. 2414 bool PPCTargetLowering::SelectAddressRegImm( 2415 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2416 MaybeAlign EncodingAlignment) const { 2417 // FIXME dl should come from parent load or store, not from address 2418 SDLoc dl(N); 2419 2420 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2421 // a [pc+imm]. 2422 if (SelectAddressPCRel(N, Base)) 2423 return false; 2424 2425 // If this can be more profitably realized as r+r, fail. 2426 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2427 return false; 2428 2429 if (N.getOpcode() == ISD::ADD) { 2430 int16_t imm = 0; 2431 if (isIntS16Immediate(N.getOperand(1), imm) && 2432 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2433 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2434 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2435 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2436 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2437 } else { 2438 Base = N.getOperand(0); 2439 } 2440 return true; // [r+i] 2441 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2442 // Match LOAD (ADD (X, Lo(G))). 2443 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2444 && "Cannot handle constant offsets yet!"); 2445 Disp = N.getOperand(1).getOperand(0); // The global address. 2446 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2447 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2448 Disp.getOpcode() == ISD::TargetConstantPool || 2449 Disp.getOpcode() == ISD::TargetJumpTable); 2450 Base = N.getOperand(0); 2451 return true; // [&g+r] 2452 } 2453 } else if (N.getOpcode() == ISD::OR) { 2454 int16_t imm = 0; 2455 if (isIntS16Immediate(N.getOperand(1), imm) && 2456 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2457 // If this is an or of disjoint bitfields, we can codegen this as an add 2458 // (for better address arithmetic) if the LHS and RHS of the OR are 2459 // provably disjoint. 2460 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2461 2462 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2463 // If all of the bits are known zero on the LHS or RHS, the add won't 2464 // carry. 2465 if (FrameIndexSDNode *FI = 2466 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2467 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2468 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2469 } else { 2470 Base = N.getOperand(0); 2471 } 2472 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2473 return true; 2474 } 2475 } 2476 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2477 // Loading from a constant address. 2478 2479 // If this address fits entirely in a 16-bit sext immediate field, codegen 2480 // this as "d, 0" 2481 int16_t Imm; 2482 if (isIntS16Immediate(CN, Imm) && 2483 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2484 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2485 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2486 CN->getValueType(0)); 2487 return true; 2488 } 2489 2490 // Handle 32-bit sext immediates with LIS + addr mode. 2491 if ((CN->getValueType(0) == MVT::i32 || 2492 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2493 (!EncodingAlignment || 2494 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2495 int Addr = (int)CN->getZExtValue(); 2496 2497 // Otherwise, break this down into an LIS + disp. 2498 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2499 2500 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2501 MVT::i32); 2502 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2503 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2504 return true; 2505 } 2506 } 2507 2508 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2509 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2510 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2511 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2512 } else 2513 Base = N; 2514 return true; // [r+0] 2515 } 2516 2517 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2518 /// represented as an indexed [r+r] operation. 2519 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2520 SDValue &Index, 2521 SelectionDAG &DAG) const { 2522 // Check to see if we can easily represent this as an [r+r] address. This 2523 // will fail if it thinks that the address is more profitably represented as 2524 // reg+imm, e.g. where imm = 0. 2525 if (SelectAddressRegReg(N, Base, Index, DAG)) 2526 return true; 2527 2528 // If the address is the result of an add, we will utilize the fact that the 2529 // address calculation includes an implicit add. However, we can reduce 2530 // register pressure if we do not materialize a constant just for use as the 2531 // index register. We only get rid of the add if it is not an add of a 2532 // value and a 16-bit signed constant and both have a single use. 2533 int16_t imm = 0; 2534 if (N.getOpcode() == ISD::ADD && 2535 (!isIntS16Immediate(N.getOperand(1), imm) || 2536 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2537 Base = N.getOperand(0); 2538 Index = N.getOperand(1); 2539 return true; 2540 } 2541 2542 // Otherwise, do it the hard way, using R0 as the base register. 2543 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2544 N.getValueType()); 2545 Index = N; 2546 return true; 2547 } 2548 2549 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2550 Ty *PCRelCand = dyn_cast<Ty>(N); 2551 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2552 } 2553 2554 /// Returns true if this address is a PC Relative address. 2555 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2556 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2557 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2558 // This is a materialize PC Relative node. Always select this as PC Relative. 2559 Base = N; 2560 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2561 return true; 2562 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2563 isValidPCRelNode<GlobalAddressSDNode>(N) || 2564 isValidPCRelNode<JumpTableSDNode>(N) || 2565 isValidPCRelNode<BlockAddressSDNode>(N)) 2566 return true; 2567 return false; 2568 } 2569 2570 /// Returns true if we should use a direct load into vector instruction 2571 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2572 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2573 2574 // If there are any other uses other than scalar to vector, then we should 2575 // keep it as a scalar load -> direct move pattern to prevent multiple 2576 // loads. 2577 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2578 if (!LD) 2579 return false; 2580 2581 EVT MemVT = LD->getMemoryVT(); 2582 if (!MemVT.isSimple()) 2583 return false; 2584 switch(MemVT.getSimpleVT().SimpleTy) { 2585 case MVT::i64: 2586 break; 2587 case MVT::i32: 2588 if (!ST.hasP8Vector()) 2589 return false; 2590 break; 2591 case MVT::i16: 2592 case MVT::i8: 2593 if (!ST.hasP9Vector()) 2594 return false; 2595 break; 2596 default: 2597 return false; 2598 } 2599 2600 SDValue LoadedVal(N, 0); 2601 if (!LoadedVal.hasOneUse()) 2602 return false; 2603 2604 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2605 UI != UE; ++UI) 2606 if (UI.getUse().get().getResNo() == 0 && 2607 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2608 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2609 return false; 2610 2611 return true; 2612 } 2613 2614 /// getPreIndexedAddressParts - returns true by value, base pointer and 2615 /// offset pointer and addressing mode by reference if the node's address 2616 /// can be legally represented as pre-indexed load / store address. 2617 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2618 SDValue &Offset, 2619 ISD::MemIndexedMode &AM, 2620 SelectionDAG &DAG) const { 2621 if (DisablePPCPreinc) return false; 2622 2623 bool isLoad = true; 2624 SDValue Ptr; 2625 EVT VT; 2626 unsigned Alignment; 2627 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2628 Ptr = LD->getBasePtr(); 2629 VT = LD->getMemoryVT(); 2630 Alignment = LD->getAlignment(); 2631 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2632 Ptr = ST->getBasePtr(); 2633 VT = ST->getMemoryVT(); 2634 Alignment = ST->getAlignment(); 2635 isLoad = false; 2636 } else 2637 return false; 2638 2639 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2640 // instructions because we can fold these into a more efficient instruction 2641 // instead, (such as LXSD). 2642 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2643 return false; 2644 } 2645 2646 // PowerPC doesn't have preinc load/store instructions for vectors 2647 if (VT.isVector()) 2648 return false; 2649 2650 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2651 // Common code will reject creating a pre-inc form if the base pointer 2652 // is a frame index, or if N is a store and the base pointer is either 2653 // the same as or a predecessor of the value being stored. Check for 2654 // those situations here, and try with swapped Base/Offset instead. 2655 bool Swap = false; 2656 2657 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2658 Swap = true; 2659 else if (!isLoad) { 2660 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2661 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2662 Swap = true; 2663 } 2664 2665 if (Swap) 2666 std::swap(Base, Offset); 2667 2668 AM = ISD::PRE_INC; 2669 return true; 2670 } 2671 2672 // LDU/STU can only handle immediates that are a multiple of 4. 2673 if (VT != MVT::i64) { 2674 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2675 return false; 2676 } else { 2677 // LDU/STU need an address with at least 4-byte alignment. 2678 if (Alignment < 4) 2679 return false; 2680 2681 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2682 return false; 2683 } 2684 2685 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2686 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2687 // sext i32 to i64 when addr mode is r+i. 2688 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2689 LD->getExtensionType() == ISD::SEXTLOAD && 2690 isa<ConstantSDNode>(Offset)) 2691 return false; 2692 } 2693 2694 AM = ISD::PRE_INC; 2695 return true; 2696 } 2697 2698 //===----------------------------------------------------------------------===// 2699 // LowerOperation implementation 2700 //===----------------------------------------------------------------------===// 2701 2702 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2703 /// and LoOpFlags to the target MO flags. 2704 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2705 unsigned &HiOpFlags, unsigned &LoOpFlags, 2706 const GlobalValue *GV = nullptr) { 2707 HiOpFlags = PPCII::MO_HA; 2708 LoOpFlags = PPCII::MO_LO; 2709 2710 // Don't use the pic base if not in PIC relocation model. 2711 if (IsPIC) { 2712 HiOpFlags |= PPCII::MO_PIC_FLAG; 2713 LoOpFlags |= PPCII::MO_PIC_FLAG; 2714 } 2715 } 2716 2717 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2718 SelectionDAG &DAG) { 2719 SDLoc DL(HiPart); 2720 EVT PtrVT = HiPart.getValueType(); 2721 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2722 2723 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2724 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2725 2726 // With PIC, the first instruction is actually "GR+hi(&G)". 2727 if (isPIC) 2728 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2729 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2730 2731 // Generate non-pic code that has direct accesses to the constant pool. 2732 // The address of the global is just (hi(&g)+lo(&g)). 2733 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2734 } 2735 2736 static void setUsesTOCBasePtr(MachineFunction &MF) { 2737 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2738 FuncInfo->setUsesTOCBasePtr(); 2739 } 2740 2741 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2742 setUsesTOCBasePtr(DAG.getMachineFunction()); 2743 } 2744 2745 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2746 SDValue GA) const { 2747 const bool Is64Bit = Subtarget.isPPC64(); 2748 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2749 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2750 : Subtarget.isAIXABI() 2751 ? DAG.getRegister(PPC::R2, VT) 2752 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2753 SDValue Ops[] = { GA, Reg }; 2754 return DAG.getMemIntrinsicNode( 2755 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2756 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2757 MachineMemOperand::MOLoad); 2758 } 2759 2760 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2761 SelectionDAG &DAG) const { 2762 EVT PtrVT = Op.getValueType(); 2763 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2764 const Constant *C = CP->getConstVal(); 2765 2766 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2767 // The actual address of the GlobalValue is stored in the TOC. 2768 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2769 if (Subtarget.isUsingPCRelativeCalls()) { 2770 SDLoc DL(CP); 2771 EVT Ty = getPointerTy(DAG.getDataLayout()); 2772 SDValue ConstPool = DAG.getTargetConstantPool( 2773 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2774 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2775 } 2776 setUsesTOCBasePtr(DAG); 2777 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2778 return getTOCEntry(DAG, SDLoc(CP), GA); 2779 } 2780 2781 unsigned MOHiFlag, MOLoFlag; 2782 bool IsPIC = isPositionIndependent(); 2783 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2784 2785 if (IsPIC && Subtarget.isSVR4ABI()) { 2786 SDValue GA = 2787 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2788 return getTOCEntry(DAG, SDLoc(CP), GA); 2789 } 2790 2791 SDValue CPIHi = 2792 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2793 SDValue CPILo = 2794 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2795 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2796 } 2797 2798 // For 64-bit PowerPC, prefer the more compact relative encodings. 2799 // This trades 32 bits per jump table entry for one or two instructions 2800 // on the jump site. 2801 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2802 if (isJumpTableRelative()) 2803 return MachineJumpTableInfo::EK_LabelDifference32; 2804 2805 return TargetLowering::getJumpTableEncoding(); 2806 } 2807 2808 bool PPCTargetLowering::isJumpTableRelative() const { 2809 if (UseAbsoluteJumpTables) 2810 return false; 2811 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2812 return true; 2813 return TargetLowering::isJumpTableRelative(); 2814 } 2815 2816 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2817 SelectionDAG &DAG) const { 2818 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2819 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2820 2821 switch (getTargetMachine().getCodeModel()) { 2822 case CodeModel::Small: 2823 case CodeModel::Medium: 2824 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2825 default: 2826 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2827 getPointerTy(DAG.getDataLayout())); 2828 } 2829 } 2830 2831 const MCExpr * 2832 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2833 unsigned JTI, 2834 MCContext &Ctx) const { 2835 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2836 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2837 2838 switch (getTargetMachine().getCodeModel()) { 2839 case CodeModel::Small: 2840 case CodeModel::Medium: 2841 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2842 default: 2843 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2844 } 2845 } 2846 2847 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2848 EVT PtrVT = Op.getValueType(); 2849 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2850 2851 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2852 if (Subtarget.isUsingPCRelativeCalls()) { 2853 SDLoc DL(JT); 2854 EVT Ty = getPointerTy(DAG.getDataLayout()); 2855 SDValue GA = 2856 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2857 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2858 return MatAddr; 2859 } 2860 2861 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2862 // The actual address of the GlobalValue is stored in the TOC. 2863 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2864 setUsesTOCBasePtr(DAG); 2865 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2866 return getTOCEntry(DAG, SDLoc(JT), GA); 2867 } 2868 2869 unsigned MOHiFlag, MOLoFlag; 2870 bool IsPIC = isPositionIndependent(); 2871 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2872 2873 if (IsPIC && Subtarget.isSVR4ABI()) { 2874 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2875 PPCII::MO_PIC_FLAG); 2876 return getTOCEntry(DAG, SDLoc(GA), GA); 2877 } 2878 2879 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2880 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2881 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2882 } 2883 2884 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2885 SelectionDAG &DAG) const { 2886 EVT PtrVT = Op.getValueType(); 2887 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2888 const BlockAddress *BA = BASDN->getBlockAddress(); 2889 2890 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2891 if (Subtarget.isUsingPCRelativeCalls()) { 2892 SDLoc DL(BASDN); 2893 EVT Ty = getPointerTy(DAG.getDataLayout()); 2894 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2895 PPCII::MO_PCREL_FLAG); 2896 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2897 return MatAddr; 2898 } 2899 2900 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2901 // The actual BlockAddress is stored in the TOC. 2902 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2903 setUsesTOCBasePtr(DAG); 2904 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2905 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2906 } 2907 2908 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2909 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2910 return getTOCEntry( 2911 DAG, SDLoc(BASDN), 2912 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2913 2914 unsigned MOHiFlag, MOLoFlag; 2915 bool IsPIC = isPositionIndependent(); 2916 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2917 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2918 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2919 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2920 } 2921 2922 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2923 SelectionDAG &DAG) const { 2924 // FIXME: TLS addresses currently use medium model code sequences, 2925 // which is the most useful form. Eventually support for small and 2926 // large models could be added if users need it, at the cost of 2927 // additional complexity. 2928 if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS) 2929 report_fatal_error("Thread local storage is not supported with pc-relative" 2930 " addressing - please compile with -mno-pcrel"); 2931 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2932 if (DAG.getTarget().useEmulatedTLS()) 2933 return LowerToTLSEmulatedModel(GA, DAG); 2934 2935 SDLoc dl(GA); 2936 const GlobalValue *GV = GA->getGlobal(); 2937 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2938 bool is64bit = Subtarget.isPPC64(); 2939 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2940 PICLevel::Level picLevel = M->getPICLevel(); 2941 2942 const TargetMachine &TM = getTargetMachine(); 2943 TLSModel::Model Model = TM.getTLSModel(GV); 2944 2945 if (Model == TLSModel::LocalExec) { 2946 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2947 PPCII::MO_TPREL_HA); 2948 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2949 PPCII::MO_TPREL_LO); 2950 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2951 : DAG.getRegister(PPC::R2, MVT::i32); 2952 2953 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2954 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2955 } 2956 2957 if (Model == TLSModel::InitialExec) { 2958 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2959 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2960 PPCII::MO_TLS); 2961 SDValue GOTPtr; 2962 if (is64bit) { 2963 setUsesTOCBasePtr(DAG); 2964 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2965 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2966 PtrVT, GOTReg, TGA); 2967 } else { 2968 if (!TM.isPositionIndependent()) 2969 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2970 else if (picLevel == PICLevel::SmallPIC) 2971 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2972 else 2973 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2974 } 2975 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2976 PtrVT, TGA, GOTPtr); 2977 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2978 } 2979 2980 if (Model == TLSModel::GeneralDynamic) { 2981 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2982 SDValue GOTPtr; 2983 if (is64bit) { 2984 setUsesTOCBasePtr(DAG); 2985 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2986 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2987 GOTReg, TGA); 2988 } else { 2989 if (picLevel == PICLevel::SmallPIC) 2990 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2991 else 2992 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2993 } 2994 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2995 GOTPtr, TGA, TGA); 2996 } 2997 2998 if (Model == TLSModel::LocalDynamic) { 2999 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3000 SDValue GOTPtr; 3001 if (is64bit) { 3002 setUsesTOCBasePtr(DAG); 3003 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3004 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3005 GOTReg, TGA); 3006 } else { 3007 if (picLevel == PICLevel::SmallPIC) 3008 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3009 else 3010 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3011 } 3012 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3013 PtrVT, GOTPtr, TGA, TGA); 3014 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3015 PtrVT, TLSAddr, TGA); 3016 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3017 } 3018 3019 llvm_unreachable("Unknown TLS model!"); 3020 } 3021 3022 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3023 SelectionDAG &DAG) const { 3024 EVT PtrVT = Op.getValueType(); 3025 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3026 SDLoc DL(GSDN); 3027 const GlobalValue *GV = GSDN->getGlobal(); 3028 3029 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3030 // The actual address of the GlobalValue is stored in the TOC. 3031 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3032 if (Subtarget.isUsingPCRelativeCalls()) { 3033 EVT Ty = getPointerTy(DAG.getDataLayout()); 3034 if (isAccessedAsGotIndirect(Op)) { 3035 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3036 PPCII::MO_PCREL_FLAG | 3037 PPCII::MO_GOT_FLAG); 3038 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3039 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3040 MachinePointerInfo()); 3041 return Load; 3042 } else { 3043 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3044 PPCII::MO_PCREL_FLAG); 3045 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3046 } 3047 } 3048 setUsesTOCBasePtr(DAG); 3049 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3050 return getTOCEntry(DAG, DL, GA); 3051 } 3052 3053 unsigned MOHiFlag, MOLoFlag; 3054 bool IsPIC = isPositionIndependent(); 3055 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3056 3057 if (IsPIC && Subtarget.isSVR4ABI()) { 3058 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3059 GSDN->getOffset(), 3060 PPCII::MO_PIC_FLAG); 3061 return getTOCEntry(DAG, DL, GA); 3062 } 3063 3064 SDValue GAHi = 3065 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3066 SDValue GALo = 3067 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3068 3069 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3070 } 3071 3072 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3073 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3074 SDLoc dl(Op); 3075 3076 if (Op.getValueType() == MVT::v2i64) { 3077 // When the operands themselves are v2i64 values, we need to do something 3078 // special because VSX has no underlying comparison operations for these. 3079 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3080 // Equality can be handled by casting to the legal type for Altivec 3081 // comparisons, everything else needs to be expanded. 3082 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3083 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3084 DAG.getSetCC(dl, MVT::v4i32, 3085 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3086 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3087 CC)); 3088 } 3089 3090 return SDValue(); 3091 } 3092 3093 // We handle most of these in the usual way. 3094 return Op; 3095 } 3096 3097 // If we're comparing for equality to zero, expose the fact that this is 3098 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3099 // fold the new nodes. 3100 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3101 return V; 3102 3103 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3104 // Leave comparisons against 0 and -1 alone for now, since they're usually 3105 // optimized. FIXME: revisit this when we can custom lower all setcc 3106 // optimizations. 3107 if (C->isAllOnesValue() || C->isNullValue()) 3108 return SDValue(); 3109 } 3110 3111 // If we have an integer seteq/setne, turn it into a compare against zero 3112 // by xor'ing the rhs with the lhs, which is faster than setting a 3113 // condition register, reading it back out, and masking the correct bit. The 3114 // normal approach here uses sub to do this instead of xor. Using xor exposes 3115 // the result to other bit-twiddling opportunities. 3116 EVT LHSVT = Op.getOperand(0).getValueType(); 3117 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3118 EVT VT = Op.getValueType(); 3119 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3120 Op.getOperand(1)); 3121 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3122 } 3123 return SDValue(); 3124 } 3125 3126 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3127 SDNode *Node = Op.getNode(); 3128 EVT VT = Node->getValueType(0); 3129 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3130 SDValue InChain = Node->getOperand(0); 3131 SDValue VAListPtr = Node->getOperand(1); 3132 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3133 SDLoc dl(Node); 3134 3135 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3136 3137 // gpr_index 3138 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3139 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3140 InChain = GprIndex.getValue(1); 3141 3142 if (VT == MVT::i64) { 3143 // Check if GprIndex is even 3144 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3145 DAG.getConstant(1, dl, MVT::i32)); 3146 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3147 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3148 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3149 DAG.getConstant(1, dl, MVT::i32)); 3150 // Align GprIndex to be even if it isn't 3151 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3152 GprIndex); 3153 } 3154 3155 // fpr index is 1 byte after gpr 3156 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3157 DAG.getConstant(1, dl, MVT::i32)); 3158 3159 // fpr 3160 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3161 FprPtr, MachinePointerInfo(SV), MVT::i8); 3162 InChain = FprIndex.getValue(1); 3163 3164 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3165 DAG.getConstant(8, dl, MVT::i32)); 3166 3167 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3168 DAG.getConstant(4, dl, MVT::i32)); 3169 3170 // areas 3171 SDValue OverflowArea = 3172 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3173 InChain = OverflowArea.getValue(1); 3174 3175 SDValue RegSaveArea = 3176 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3177 InChain = RegSaveArea.getValue(1); 3178 3179 // select overflow_area if index > 8 3180 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3181 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3182 3183 // adjustment constant gpr_index * 4/8 3184 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3185 VT.isInteger() ? GprIndex : FprIndex, 3186 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3187 MVT::i32)); 3188 3189 // OurReg = RegSaveArea + RegConstant 3190 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3191 RegConstant); 3192 3193 // Floating types are 32 bytes into RegSaveArea 3194 if (VT.isFloatingPoint()) 3195 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3196 DAG.getConstant(32, dl, MVT::i32)); 3197 3198 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3199 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3200 VT.isInteger() ? GprIndex : FprIndex, 3201 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3202 MVT::i32)); 3203 3204 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3205 VT.isInteger() ? VAListPtr : FprPtr, 3206 MachinePointerInfo(SV), MVT::i8); 3207 3208 // determine if we should load from reg_save_area or overflow_area 3209 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3210 3211 // increase overflow_area by 4/8 if gpr/fpr > 8 3212 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3213 DAG.getConstant(VT.isInteger() ? 4 : 8, 3214 dl, MVT::i32)); 3215 3216 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3217 OverflowAreaPlusN); 3218 3219 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3220 MachinePointerInfo(), MVT::i32); 3221 3222 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3223 } 3224 3225 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3226 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3227 3228 // We have to copy the entire va_list struct: 3229 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3230 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3231 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3232 false, true, false, MachinePointerInfo(), 3233 MachinePointerInfo()); 3234 } 3235 3236 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3237 SelectionDAG &DAG) const { 3238 if (Subtarget.isAIXABI()) 3239 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3240 3241 return Op.getOperand(0); 3242 } 3243 3244 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3245 SelectionDAG &DAG) const { 3246 if (Subtarget.isAIXABI()) 3247 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3248 3249 SDValue Chain = Op.getOperand(0); 3250 SDValue Trmp = Op.getOperand(1); // trampoline 3251 SDValue FPtr = Op.getOperand(2); // nested function 3252 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3253 SDLoc dl(Op); 3254 3255 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3256 bool isPPC64 = (PtrVT == MVT::i64); 3257 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3258 3259 TargetLowering::ArgListTy Args; 3260 TargetLowering::ArgListEntry Entry; 3261 3262 Entry.Ty = IntPtrTy; 3263 Entry.Node = Trmp; Args.push_back(Entry); 3264 3265 // TrampSize == (isPPC64 ? 48 : 40); 3266 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3267 isPPC64 ? MVT::i64 : MVT::i32); 3268 Args.push_back(Entry); 3269 3270 Entry.Node = FPtr; Args.push_back(Entry); 3271 Entry.Node = Nest; Args.push_back(Entry); 3272 3273 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3274 TargetLowering::CallLoweringInfo CLI(DAG); 3275 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3276 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3277 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3278 3279 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3280 return CallResult.second; 3281 } 3282 3283 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3284 MachineFunction &MF = DAG.getMachineFunction(); 3285 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3286 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3287 3288 SDLoc dl(Op); 3289 3290 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3291 // vastart just stores the address of the VarArgsFrameIndex slot into the 3292 // memory location argument. 3293 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3294 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3295 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3296 MachinePointerInfo(SV)); 3297 } 3298 3299 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3300 // We suppose the given va_list is already allocated. 3301 // 3302 // typedef struct { 3303 // char gpr; /* index into the array of 8 GPRs 3304 // * stored in the register save area 3305 // * gpr=0 corresponds to r3, 3306 // * gpr=1 to r4, etc. 3307 // */ 3308 // char fpr; /* index into the array of 8 FPRs 3309 // * stored in the register save area 3310 // * fpr=0 corresponds to f1, 3311 // * fpr=1 to f2, etc. 3312 // */ 3313 // char *overflow_arg_area; 3314 // /* location on stack that holds 3315 // * the next overflow argument 3316 // */ 3317 // char *reg_save_area; 3318 // /* where r3:r10 and f1:f8 (if saved) 3319 // * are stored 3320 // */ 3321 // } va_list[1]; 3322 3323 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3324 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3325 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3326 PtrVT); 3327 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3328 PtrVT); 3329 3330 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3331 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3332 3333 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3334 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3335 3336 uint64_t FPROffset = 1; 3337 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3338 3339 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3340 3341 // Store first byte : number of int regs 3342 SDValue firstStore = 3343 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3344 MachinePointerInfo(SV), MVT::i8); 3345 uint64_t nextOffset = FPROffset; 3346 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3347 ConstFPROffset); 3348 3349 // Store second byte : number of float regs 3350 SDValue secondStore = 3351 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3352 MachinePointerInfo(SV, nextOffset), MVT::i8); 3353 nextOffset += StackOffset; 3354 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3355 3356 // Store second word : arguments given on stack 3357 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3358 MachinePointerInfo(SV, nextOffset)); 3359 nextOffset += FrameOffset; 3360 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3361 3362 // Store third word : arguments given in registers 3363 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3364 MachinePointerInfo(SV, nextOffset)); 3365 } 3366 3367 /// FPR - The set of FP registers that should be allocated for arguments 3368 /// on Darwin and AIX. 3369 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3370 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3371 PPC::F11, PPC::F12, PPC::F13}; 3372 3373 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3374 /// the stack. 3375 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3376 unsigned PtrByteSize) { 3377 unsigned ArgSize = ArgVT.getStoreSize(); 3378 if (Flags.isByVal()) 3379 ArgSize = Flags.getByValSize(); 3380 3381 // Round up to multiples of the pointer size, except for array members, 3382 // which are always packed. 3383 if (!Flags.isInConsecutiveRegs()) 3384 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3385 3386 return ArgSize; 3387 } 3388 3389 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3390 /// on the stack. 3391 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3392 ISD::ArgFlagsTy Flags, 3393 unsigned PtrByteSize) { 3394 Align Alignment(PtrByteSize); 3395 3396 // Altivec parameters are padded to a 16 byte boundary. 3397 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3398 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3399 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3400 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3401 Alignment = Align(16); 3402 3403 // ByVal parameters are aligned as requested. 3404 if (Flags.isByVal()) { 3405 auto BVAlign = Flags.getNonZeroByValAlign(); 3406 if (BVAlign > PtrByteSize) { 3407 if (BVAlign.value() % PtrByteSize != 0) 3408 llvm_unreachable( 3409 "ByVal alignment is not a multiple of the pointer size"); 3410 3411 Alignment = BVAlign; 3412 } 3413 } 3414 3415 // Array members are always packed to their original alignment. 3416 if (Flags.isInConsecutiveRegs()) { 3417 // If the array member was split into multiple registers, the first 3418 // needs to be aligned to the size of the full type. (Except for 3419 // ppcf128, which is only aligned as its f64 components.) 3420 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3421 Alignment = Align(OrigVT.getStoreSize()); 3422 else 3423 Alignment = Align(ArgVT.getStoreSize()); 3424 } 3425 3426 return Alignment; 3427 } 3428 3429 /// CalculateStackSlotUsed - Return whether this argument will use its 3430 /// stack slot (instead of being passed in registers). ArgOffset, 3431 /// AvailableFPRs, and AvailableVRs must hold the current argument 3432 /// position, and will be updated to account for this argument. 3433 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3434 unsigned PtrByteSize, unsigned LinkageSize, 3435 unsigned ParamAreaSize, unsigned &ArgOffset, 3436 unsigned &AvailableFPRs, 3437 unsigned &AvailableVRs) { 3438 bool UseMemory = false; 3439 3440 // Respect alignment of argument on the stack. 3441 Align Alignment = 3442 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3443 ArgOffset = alignTo(ArgOffset, Alignment); 3444 // If there's no space left in the argument save area, we must 3445 // use memory (this check also catches zero-sized arguments). 3446 if (ArgOffset >= LinkageSize + ParamAreaSize) 3447 UseMemory = true; 3448 3449 // Allocate argument on the stack. 3450 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3451 if (Flags.isInConsecutiveRegsLast()) 3452 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3453 // If we overran the argument save area, we must use memory 3454 // (this check catches arguments passed partially in memory) 3455 if (ArgOffset > LinkageSize + ParamAreaSize) 3456 UseMemory = true; 3457 3458 // However, if the argument is actually passed in an FPR or a VR, 3459 // we don't use memory after all. 3460 if (!Flags.isByVal()) { 3461 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3462 if (AvailableFPRs > 0) { 3463 --AvailableFPRs; 3464 return false; 3465 } 3466 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3467 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3468 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3469 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3470 if (AvailableVRs > 0) { 3471 --AvailableVRs; 3472 return false; 3473 } 3474 } 3475 3476 return UseMemory; 3477 } 3478 3479 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3480 /// ensure minimum alignment required for target. 3481 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3482 unsigned NumBytes) { 3483 return alignTo(NumBytes, Lowering->getStackAlign()); 3484 } 3485 3486 SDValue PPCTargetLowering::LowerFormalArguments( 3487 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3488 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3489 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3490 if (Subtarget.isAIXABI()) 3491 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3492 InVals); 3493 if (Subtarget.is64BitELFABI()) 3494 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3495 InVals); 3496 if (Subtarget.is32BitELFABI()) 3497 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3498 InVals); 3499 3500 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3501 InVals); 3502 } 3503 3504 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3505 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3506 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3507 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3508 3509 // 32-bit SVR4 ABI Stack Frame Layout: 3510 // +-----------------------------------+ 3511 // +--> | Back chain | 3512 // | +-----------------------------------+ 3513 // | | Floating-point register save area | 3514 // | +-----------------------------------+ 3515 // | | General register save area | 3516 // | +-----------------------------------+ 3517 // | | CR save word | 3518 // | +-----------------------------------+ 3519 // | | VRSAVE save word | 3520 // | +-----------------------------------+ 3521 // | | Alignment padding | 3522 // | +-----------------------------------+ 3523 // | | Vector register save area | 3524 // | +-----------------------------------+ 3525 // | | Local variable space | 3526 // | +-----------------------------------+ 3527 // | | Parameter list area | 3528 // | +-----------------------------------+ 3529 // | | LR save word | 3530 // | +-----------------------------------+ 3531 // SP--> +--- | Back chain | 3532 // +-----------------------------------+ 3533 // 3534 // Specifications: 3535 // System V Application Binary Interface PowerPC Processor Supplement 3536 // AltiVec Technology Programming Interface Manual 3537 3538 MachineFunction &MF = DAG.getMachineFunction(); 3539 MachineFrameInfo &MFI = MF.getFrameInfo(); 3540 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3541 3542 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3543 // Potential tail calls could cause overwriting of argument stack slots. 3544 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3545 (CallConv == CallingConv::Fast)); 3546 const Align PtrAlign(4); 3547 3548 // Assign locations to all of the incoming arguments. 3549 SmallVector<CCValAssign, 16> ArgLocs; 3550 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3551 *DAG.getContext()); 3552 3553 // Reserve space for the linkage area on the stack. 3554 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3555 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3556 if (useSoftFloat()) 3557 CCInfo.PreAnalyzeFormalArguments(Ins); 3558 3559 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3560 CCInfo.clearWasPPCF128(); 3561 3562 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3563 CCValAssign &VA = ArgLocs[i]; 3564 3565 // Arguments stored in registers. 3566 if (VA.isRegLoc()) { 3567 const TargetRegisterClass *RC; 3568 EVT ValVT = VA.getValVT(); 3569 3570 switch (ValVT.getSimpleVT().SimpleTy) { 3571 default: 3572 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3573 case MVT::i1: 3574 case MVT::i32: 3575 RC = &PPC::GPRCRegClass; 3576 break; 3577 case MVT::f32: 3578 if (Subtarget.hasP8Vector()) 3579 RC = &PPC::VSSRCRegClass; 3580 else if (Subtarget.hasSPE()) 3581 RC = &PPC::GPRCRegClass; 3582 else 3583 RC = &PPC::F4RCRegClass; 3584 break; 3585 case MVT::f64: 3586 if (Subtarget.hasVSX()) 3587 RC = &PPC::VSFRCRegClass; 3588 else if (Subtarget.hasSPE()) 3589 // SPE passes doubles in GPR pairs. 3590 RC = &PPC::GPRCRegClass; 3591 else 3592 RC = &PPC::F8RCRegClass; 3593 break; 3594 case MVT::v16i8: 3595 case MVT::v8i16: 3596 case MVT::v4i32: 3597 RC = &PPC::VRRCRegClass; 3598 break; 3599 case MVT::v4f32: 3600 RC = &PPC::VRRCRegClass; 3601 break; 3602 case MVT::v2f64: 3603 case MVT::v2i64: 3604 RC = &PPC::VRRCRegClass; 3605 break; 3606 } 3607 3608 SDValue ArgValue; 3609 // Transform the arguments stored in physical registers into 3610 // virtual ones. 3611 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3612 assert(i + 1 < e && "No second half of double precision argument"); 3613 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3614 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3615 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3616 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3617 if (!Subtarget.isLittleEndian()) 3618 std::swap (ArgValueLo, ArgValueHi); 3619 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3620 ArgValueHi); 3621 } else { 3622 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3623 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3624 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3625 if (ValVT == MVT::i1) 3626 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3627 } 3628 3629 InVals.push_back(ArgValue); 3630 } else { 3631 // Argument stored in memory. 3632 assert(VA.isMemLoc()); 3633 3634 // Get the extended size of the argument type in stack 3635 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3636 // Get the actual size of the argument type 3637 unsigned ObjSize = VA.getValVT().getStoreSize(); 3638 unsigned ArgOffset = VA.getLocMemOffset(); 3639 // Stack objects in PPC32 are right justified. 3640 ArgOffset += ArgSize - ObjSize; 3641 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3642 3643 // Create load nodes to retrieve arguments from the stack. 3644 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3645 InVals.push_back( 3646 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3647 } 3648 } 3649 3650 // Assign locations to all of the incoming aggregate by value arguments. 3651 // Aggregates passed by value are stored in the local variable space of the 3652 // caller's stack frame, right above the parameter list area. 3653 SmallVector<CCValAssign, 16> ByValArgLocs; 3654 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3655 ByValArgLocs, *DAG.getContext()); 3656 3657 // Reserve stack space for the allocations in CCInfo. 3658 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3659 3660 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3661 3662 // Area that is at least reserved in the caller of this function. 3663 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3664 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3665 3666 // Set the size that is at least reserved in caller of this function. Tail 3667 // call optimized function's reserved stack space needs to be aligned so that 3668 // taking the difference between two stack areas will result in an aligned 3669 // stack. 3670 MinReservedArea = 3671 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3672 FuncInfo->setMinReservedArea(MinReservedArea); 3673 3674 SmallVector<SDValue, 8> MemOps; 3675 3676 // If the function takes variable number of arguments, make a frame index for 3677 // the start of the first vararg value... for expansion of llvm.va_start. 3678 if (isVarArg) { 3679 static const MCPhysReg GPArgRegs[] = { 3680 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3681 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3682 }; 3683 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3684 3685 static const MCPhysReg FPArgRegs[] = { 3686 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3687 PPC::F8 3688 }; 3689 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3690 3691 if (useSoftFloat() || hasSPE()) 3692 NumFPArgRegs = 0; 3693 3694 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3695 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3696 3697 // Make room for NumGPArgRegs and NumFPArgRegs. 3698 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3699 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3700 3701 FuncInfo->setVarArgsStackOffset( 3702 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3703 CCInfo.getNextStackOffset(), true)); 3704 3705 FuncInfo->setVarArgsFrameIndex( 3706 MFI.CreateStackObject(Depth, Align(8), false)); 3707 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3708 3709 // The fixed integer arguments of a variadic function are stored to the 3710 // VarArgsFrameIndex on the stack so that they may be loaded by 3711 // dereferencing the result of va_next. 3712 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3713 // Get an existing live-in vreg, or add a new one. 3714 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3715 if (!VReg) 3716 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3717 3718 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3719 SDValue Store = 3720 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3721 MemOps.push_back(Store); 3722 // Increment the address by four for the next argument to store 3723 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3724 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3725 } 3726 3727 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3728 // is set. 3729 // The double arguments are stored to the VarArgsFrameIndex 3730 // on the stack. 3731 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3732 // Get an existing live-in vreg, or add a new one. 3733 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3734 if (!VReg) 3735 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3736 3737 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3738 SDValue Store = 3739 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3740 MemOps.push_back(Store); 3741 // Increment the address by eight for the next argument to store 3742 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3743 PtrVT); 3744 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3745 } 3746 } 3747 3748 if (!MemOps.empty()) 3749 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3750 3751 return Chain; 3752 } 3753 3754 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3755 // value to MVT::i64 and then truncate to the correct register size. 3756 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3757 EVT ObjectVT, SelectionDAG &DAG, 3758 SDValue ArgVal, 3759 const SDLoc &dl) const { 3760 if (Flags.isSExt()) 3761 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3762 DAG.getValueType(ObjectVT)); 3763 else if (Flags.isZExt()) 3764 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3765 DAG.getValueType(ObjectVT)); 3766 3767 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3768 } 3769 3770 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3771 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3772 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3773 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3774 // TODO: add description of PPC stack frame format, or at least some docs. 3775 // 3776 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3777 bool isLittleEndian = Subtarget.isLittleEndian(); 3778 MachineFunction &MF = DAG.getMachineFunction(); 3779 MachineFrameInfo &MFI = MF.getFrameInfo(); 3780 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3781 3782 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3783 "fastcc not supported on varargs functions"); 3784 3785 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3786 // Potential tail calls could cause overwriting of argument stack slots. 3787 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3788 (CallConv == CallingConv::Fast)); 3789 unsigned PtrByteSize = 8; 3790 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3791 3792 static const MCPhysReg GPR[] = { 3793 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3794 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3795 }; 3796 static const MCPhysReg VR[] = { 3797 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3798 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3799 }; 3800 3801 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3802 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3803 const unsigned Num_VR_Regs = array_lengthof(VR); 3804 3805 // Do a first pass over the arguments to determine whether the ABI 3806 // guarantees that our caller has allocated the parameter save area 3807 // on its stack frame. In the ELFv1 ABI, this is always the case; 3808 // in the ELFv2 ABI, it is true if this is a vararg function or if 3809 // any parameter is located in a stack slot. 3810 3811 bool HasParameterArea = !isELFv2ABI || isVarArg; 3812 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3813 unsigned NumBytes = LinkageSize; 3814 unsigned AvailableFPRs = Num_FPR_Regs; 3815 unsigned AvailableVRs = Num_VR_Regs; 3816 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3817 if (Ins[i].Flags.isNest()) 3818 continue; 3819 3820 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3821 PtrByteSize, LinkageSize, ParamAreaSize, 3822 NumBytes, AvailableFPRs, AvailableVRs)) 3823 HasParameterArea = true; 3824 } 3825 3826 // Add DAG nodes to load the arguments or copy them out of registers. On 3827 // entry to a function on PPC, the arguments start after the linkage area, 3828 // although the first ones are often in registers. 3829 3830 unsigned ArgOffset = LinkageSize; 3831 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3832 SmallVector<SDValue, 8> MemOps; 3833 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3834 unsigned CurArgIdx = 0; 3835 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3836 SDValue ArgVal; 3837 bool needsLoad = false; 3838 EVT ObjectVT = Ins[ArgNo].VT; 3839 EVT OrigVT = Ins[ArgNo].ArgVT; 3840 unsigned ObjSize = ObjectVT.getStoreSize(); 3841 unsigned ArgSize = ObjSize; 3842 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3843 if (Ins[ArgNo].isOrigArg()) { 3844 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3845 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3846 } 3847 // We re-align the argument offset for each argument, except when using the 3848 // fast calling convention, when we need to make sure we do that only when 3849 // we'll actually use a stack slot. 3850 unsigned CurArgOffset; 3851 Align Alignment; 3852 auto ComputeArgOffset = [&]() { 3853 /* Respect alignment of argument on the stack. */ 3854 Alignment = 3855 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3856 ArgOffset = alignTo(ArgOffset, Alignment); 3857 CurArgOffset = ArgOffset; 3858 }; 3859 3860 if (CallConv != CallingConv::Fast) { 3861 ComputeArgOffset(); 3862 3863 /* Compute GPR index associated with argument offset. */ 3864 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3865 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3866 } 3867 3868 // FIXME the codegen can be much improved in some cases. 3869 // We do not have to keep everything in memory. 3870 if (Flags.isByVal()) { 3871 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3872 3873 if (CallConv == CallingConv::Fast) 3874 ComputeArgOffset(); 3875 3876 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3877 ObjSize = Flags.getByValSize(); 3878 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3879 // Empty aggregate parameters do not take up registers. Examples: 3880 // struct { } a; 3881 // union { } b; 3882 // int c[0]; 3883 // etc. However, we have to provide a place-holder in InVals, so 3884 // pretend we have an 8-byte item at the current address for that 3885 // purpose. 3886 if (!ObjSize) { 3887 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3888 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3889 InVals.push_back(FIN); 3890 continue; 3891 } 3892 3893 // Create a stack object covering all stack doublewords occupied 3894 // by the argument. If the argument is (fully or partially) on 3895 // the stack, or if the argument is fully in registers but the 3896 // caller has allocated the parameter save anyway, we can refer 3897 // directly to the caller's stack frame. Otherwise, create a 3898 // local copy in our own frame. 3899 int FI; 3900 if (HasParameterArea || 3901 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3902 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3903 else 3904 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3905 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3906 3907 // Handle aggregates smaller than 8 bytes. 3908 if (ObjSize < PtrByteSize) { 3909 // The value of the object is its address, which differs from the 3910 // address of the enclosing doubleword on big-endian systems. 3911 SDValue Arg = FIN; 3912 if (!isLittleEndian) { 3913 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3914 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3915 } 3916 InVals.push_back(Arg); 3917 3918 if (GPR_idx != Num_GPR_Regs) { 3919 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3920 FuncInfo->addLiveInAttr(VReg, Flags); 3921 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3922 SDValue Store; 3923 3924 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3925 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3926 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3927 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3928 MachinePointerInfo(&*FuncArg), ObjType); 3929 } else { 3930 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3931 // store the whole register as-is to the parameter save area 3932 // slot. 3933 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3934 MachinePointerInfo(&*FuncArg)); 3935 } 3936 3937 MemOps.push_back(Store); 3938 } 3939 // Whether we copied from a register or not, advance the offset 3940 // into the parameter save area by a full doubleword. 3941 ArgOffset += PtrByteSize; 3942 continue; 3943 } 3944 3945 // The value of the object is its address, which is the address of 3946 // its first stack doubleword. 3947 InVals.push_back(FIN); 3948 3949 // Store whatever pieces of the object are in registers to memory. 3950 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3951 if (GPR_idx == Num_GPR_Regs) 3952 break; 3953 3954 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3955 FuncInfo->addLiveInAttr(VReg, Flags); 3956 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3957 SDValue Addr = FIN; 3958 if (j) { 3959 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3960 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3961 } 3962 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3963 MachinePointerInfo(&*FuncArg, j)); 3964 MemOps.push_back(Store); 3965 ++GPR_idx; 3966 } 3967 ArgOffset += ArgSize; 3968 continue; 3969 } 3970 3971 switch (ObjectVT.getSimpleVT().SimpleTy) { 3972 default: llvm_unreachable("Unhandled argument type!"); 3973 case MVT::i1: 3974 case MVT::i32: 3975 case MVT::i64: 3976 if (Flags.isNest()) { 3977 // The 'nest' parameter, if any, is passed in R11. 3978 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3979 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3980 3981 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3982 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3983 3984 break; 3985 } 3986 3987 // These can be scalar arguments or elements of an integer array type 3988 // passed directly. Clang may use those instead of "byval" aggregate 3989 // types to avoid forcing arguments to memory unnecessarily. 3990 if (GPR_idx != Num_GPR_Regs) { 3991 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3992 FuncInfo->addLiveInAttr(VReg, Flags); 3993 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3994 3995 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3996 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3997 // value to MVT::i64 and then truncate to the correct register size. 3998 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3999 } else { 4000 if (CallConv == CallingConv::Fast) 4001 ComputeArgOffset(); 4002 4003 needsLoad = true; 4004 ArgSize = PtrByteSize; 4005 } 4006 if (CallConv != CallingConv::Fast || needsLoad) 4007 ArgOffset += 8; 4008 break; 4009 4010 case MVT::f32: 4011 case MVT::f64: 4012 // These can be scalar arguments or elements of a float array type 4013 // passed directly. The latter are used to implement ELFv2 homogenous 4014 // float aggregates. 4015 if (FPR_idx != Num_FPR_Regs) { 4016 unsigned VReg; 4017 4018 if (ObjectVT == MVT::f32) 4019 VReg = MF.addLiveIn(FPR[FPR_idx], 4020 Subtarget.hasP8Vector() 4021 ? &PPC::VSSRCRegClass 4022 : &PPC::F4RCRegClass); 4023 else 4024 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4025 ? &PPC::VSFRCRegClass 4026 : &PPC::F8RCRegClass); 4027 4028 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4029 ++FPR_idx; 4030 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4031 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4032 // once we support fp <-> gpr moves. 4033 4034 // This can only ever happen in the presence of f32 array types, 4035 // since otherwise we never run out of FPRs before running out 4036 // of GPRs. 4037 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4038 FuncInfo->addLiveInAttr(VReg, Flags); 4039 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4040 4041 if (ObjectVT == MVT::f32) { 4042 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4043 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4044 DAG.getConstant(32, dl, MVT::i32)); 4045 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4046 } 4047 4048 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4049 } else { 4050 if (CallConv == CallingConv::Fast) 4051 ComputeArgOffset(); 4052 4053 needsLoad = true; 4054 } 4055 4056 // When passing an array of floats, the array occupies consecutive 4057 // space in the argument area; only round up to the next doubleword 4058 // at the end of the array. Otherwise, each float takes 8 bytes. 4059 if (CallConv != CallingConv::Fast || needsLoad) { 4060 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4061 ArgOffset += ArgSize; 4062 if (Flags.isInConsecutiveRegsLast()) 4063 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4064 } 4065 break; 4066 case MVT::v4f32: 4067 case MVT::v4i32: 4068 case MVT::v8i16: 4069 case MVT::v16i8: 4070 case MVT::v2f64: 4071 case MVT::v2i64: 4072 case MVT::v1i128: 4073 case MVT::f128: 4074 // These can be scalar arguments or elements of a vector array type 4075 // passed directly. The latter are used to implement ELFv2 homogenous 4076 // vector aggregates. 4077 if (VR_idx != Num_VR_Regs) { 4078 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4079 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4080 ++VR_idx; 4081 } else { 4082 if (CallConv == CallingConv::Fast) 4083 ComputeArgOffset(); 4084 needsLoad = true; 4085 } 4086 if (CallConv != CallingConv::Fast || needsLoad) 4087 ArgOffset += 16; 4088 break; 4089 } 4090 4091 // We need to load the argument to a virtual register if we determined 4092 // above that we ran out of physical registers of the appropriate type. 4093 if (needsLoad) { 4094 if (ObjSize < ArgSize && !isLittleEndian) 4095 CurArgOffset += ArgSize - ObjSize; 4096 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4097 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4098 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4099 } 4100 4101 InVals.push_back(ArgVal); 4102 } 4103 4104 // Area that is at least reserved in the caller of this function. 4105 unsigned MinReservedArea; 4106 if (HasParameterArea) 4107 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4108 else 4109 MinReservedArea = LinkageSize; 4110 4111 // Set the size that is at least reserved in caller of this function. Tail 4112 // call optimized functions' reserved stack space needs to be aligned so that 4113 // taking the difference between two stack areas will result in an aligned 4114 // stack. 4115 MinReservedArea = 4116 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4117 FuncInfo->setMinReservedArea(MinReservedArea); 4118 4119 // If the function takes variable number of arguments, make a frame index for 4120 // the start of the first vararg value... for expansion of llvm.va_start. 4121 // On ELFv2ABI spec, it writes: 4122 // C programs that are intended to be *portable* across different compilers 4123 // and architectures must use the header file <stdarg.h> to deal with variable 4124 // argument lists. 4125 if (isVarArg && MFI.hasVAStart()) { 4126 int Depth = ArgOffset; 4127 4128 FuncInfo->setVarArgsFrameIndex( 4129 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4130 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4131 4132 // If this function is vararg, store any remaining integer argument regs 4133 // to their spots on the stack so that they may be loaded by dereferencing 4134 // the result of va_next. 4135 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4136 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4137 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4138 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4139 SDValue Store = 4140 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4141 MemOps.push_back(Store); 4142 // Increment the address by four for the next argument to store 4143 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4144 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4145 } 4146 } 4147 4148 if (!MemOps.empty()) 4149 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4150 4151 return Chain; 4152 } 4153 4154 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4155 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4156 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4157 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4158 // TODO: add description of PPC stack frame format, or at least some docs. 4159 // 4160 MachineFunction &MF = DAG.getMachineFunction(); 4161 MachineFrameInfo &MFI = MF.getFrameInfo(); 4162 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4163 4164 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4165 bool isPPC64 = PtrVT == MVT::i64; 4166 // Potential tail calls could cause overwriting of argument stack slots. 4167 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4168 (CallConv == CallingConv::Fast)); 4169 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4170 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4171 unsigned ArgOffset = LinkageSize; 4172 // Area that is at least reserved in caller of this function. 4173 unsigned MinReservedArea = ArgOffset; 4174 4175 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4176 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4177 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4178 }; 4179 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4180 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4181 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4182 }; 4183 static const MCPhysReg VR[] = { 4184 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4185 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4186 }; 4187 4188 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4189 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4190 const unsigned Num_VR_Regs = array_lengthof( VR); 4191 4192 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4193 4194 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4195 4196 // In 32-bit non-varargs functions, the stack space for vectors is after the 4197 // stack space for non-vectors. We do not use this space unless we have 4198 // too many vectors to fit in registers, something that only occurs in 4199 // constructed examples:), but we have to walk the arglist to figure 4200 // that out...for the pathological case, compute VecArgOffset as the 4201 // start of the vector parameter area. Computing VecArgOffset is the 4202 // entire point of the following loop. 4203 unsigned VecArgOffset = ArgOffset; 4204 if (!isVarArg && !isPPC64) { 4205 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4206 ++ArgNo) { 4207 EVT ObjectVT = Ins[ArgNo].VT; 4208 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4209 4210 if (Flags.isByVal()) { 4211 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4212 unsigned ObjSize = Flags.getByValSize(); 4213 unsigned ArgSize = 4214 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4215 VecArgOffset += ArgSize; 4216 continue; 4217 } 4218 4219 switch(ObjectVT.getSimpleVT().SimpleTy) { 4220 default: llvm_unreachable("Unhandled argument type!"); 4221 case MVT::i1: 4222 case MVT::i32: 4223 case MVT::f32: 4224 VecArgOffset += 4; 4225 break; 4226 case MVT::i64: // PPC64 4227 case MVT::f64: 4228 // FIXME: We are guaranteed to be !isPPC64 at this point. 4229 // Does MVT::i64 apply? 4230 VecArgOffset += 8; 4231 break; 4232 case MVT::v4f32: 4233 case MVT::v4i32: 4234 case MVT::v8i16: 4235 case MVT::v16i8: 4236 // Nothing to do, we're only looking at Nonvector args here. 4237 break; 4238 } 4239 } 4240 } 4241 // We've found where the vector parameter area in memory is. Skip the 4242 // first 12 parameters; these don't use that memory. 4243 VecArgOffset = ((VecArgOffset+15)/16)*16; 4244 VecArgOffset += 12*16; 4245 4246 // Add DAG nodes to load the arguments or copy them out of registers. On 4247 // entry to a function on PPC, the arguments start after the linkage area, 4248 // although the first ones are often in registers. 4249 4250 SmallVector<SDValue, 8> MemOps; 4251 unsigned nAltivecParamsAtEnd = 0; 4252 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4253 unsigned CurArgIdx = 0; 4254 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4255 SDValue ArgVal; 4256 bool needsLoad = false; 4257 EVT ObjectVT = Ins[ArgNo].VT; 4258 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4259 unsigned ArgSize = ObjSize; 4260 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4261 if (Ins[ArgNo].isOrigArg()) { 4262 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4263 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4264 } 4265 unsigned CurArgOffset = ArgOffset; 4266 4267 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4268 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4269 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4270 if (isVarArg || isPPC64) { 4271 MinReservedArea = ((MinReservedArea+15)/16)*16; 4272 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4273 Flags, 4274 PtrByteSize); 4275 } else nAltivecParamsAtEnd++; 4276 } else 4277 // Calculate min reserved area. 4278 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4279 Flags, 4280 PtrByteSize); 4281 4282 // FIXME the codegen can be much improved in some cases. 4283 // We do not have to keep everything in memory. 4284 if (Flags.isByVal()) { 4285 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4286 4287 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4288 ObjSize = Flags.getByValSize(); 4289 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4290 // Objects of size 1 and 2 are right justified, everything else is 4291 // left justified. This means the memory address is adjusted forwards. 4292 if (ObjSize==1 || ObjSize==2) { 4293 CurArgOffset = CurArgOffset + (4 - ObjSize); 4294 } 4295 // The value of the object is its address. 4296 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4297 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4298 InVals.push_back(FIN); 4299 if (ObjSize==1 || ObjSize==2) { 4300 if (GPR_idx != Num_GPR_Regs) { 4301 unsigned VReg; 4302 if (isPPC64) 4303 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4304 else 4305 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4306 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4307 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4308 SDValue Store = 4309 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4310 MachinePointerInfo(&*FuncArg), ObjType); 4311 MemOps.push_back(Store); 4312 ++GPR_idx; 4313 } 4314 4315 ArgOffset += PtrByteSize; 4316 4317 continue; 4318 } 4319 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4320 // Store whatever pieces of the object are in registers 4321 // to memory. ArgOffset will be the address of the beginning 4322 // of the object. 4323 if (GPR_idx != Num_GPR_Regs) { 4324 unsigned VReg; 4325 if (isPPC64) 4326 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4327 else 4328 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4329 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4330 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4331 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4332 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4333 MachinePointerInfo(&*FuncArg, j)); 4334 MemOps.push_back(Store); 4335 ++GPR_idx; 4336 ArgOffset += PtrByteSize; 4337 } else { 4338 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4339 break; 4340 } 4341 } 4342 continue; 4343 } 4344 4345 switch (ObjectVT.getSimpleVT().SimpleTy) { 4346 default: llvm_unreachable("Unhandled argument type!"); 4347 case MVT::i1: 4348 case MVT::i32: 4349 if (!isPPC64) { 4350 if (GPR_idx != Num_GPR_Regs) { 4351 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4352 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4353 4354 if (ObjectVT == MVT::i1) 4355 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4356 4357 ++GPR_idx; 4358 } else { 4359 needsLoad = true; 4360 ArgSize = PtrByteSize; 4361 } 4362 // All int arguments reserve stack space in the Darwin ABI. 4363 ArgOffset += PtrByteSize; 4364 break; 4365 } 4366 LLVM_FALLTHROUGH; 4367 case MVT::i64: // PPC64 4368 if (GPR_idx != Num_GPR_Regs) { 4369 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4370 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4371 4372 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4373 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4374 // value to MVT::i64 and then truncate to the correct register size. 4375 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4376 4377 ++GPR_idx; 4378 } else { 4379 needsLoad = true; 4380 ArgSize = PtrByteSize; 4381 } 4382 // All int arguments reserve stack space in the Darwin ABI. 4383 ArgOffset += 8; 4384 break; 4385 4386 case MVT::f32: 4387 case MVT::f64: 4388 // Every 4 bytes of argument space consumes one of the GPRs available for 4389 // argument passing. 4390 if (GPR_idx != Num_GPR_Regs) { 4391 ++GPR_idx; 4392 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4393 ++GPR_idx; 4394 } 4395 if (FPR_idx != Num_FPR_Regs) { 4396 unsigned VReg; 4397 4398 if (ObjectVT == MVT::f32) 4399 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4400 else 4401 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4402 4403 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4404 ++FPR_idx; 4405 } else { 4406 needsLoad = true; 4407 } 4408 4409 // All FP arguments reserve stack space in the Darwin ABI. 4410 ArgOffset += isPPC64 ? 8 : ObjSize; 4411 break; 4412 case MVT::v4f32: 4413 case MVT::v4i32: 4414 case MVT::v8i16: 4415 case MVT::v16i8: 4416 // Note that vector arguments in registers don't reserve stack space, 4417 // except in varargs functions. 4418 if (VR_idx != Num_VR_Regs) { 4419 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4420 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4421 if (isVarArg) { 4422 while ((ArgOffset % 16) != 0) { 4423 ArgOffset += PtrByteSize; 4424 if (GPR_idx != Num_GPR_Regs) 4425 GPR_idx++; 4426 } 4427 ArgOffset += 16; 4428 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4429 } 4430 ++VR_idx; 4431 } else { 4432 if (!isVarArg && !isPPC64) { 4433 // Vectors go after all the nonvectors. 4434 CurArgOffset = VecArgOffset; 4435 VecArgOffset += 16; 4436 } else { 4437 // Vectors are aligned. 4438 ArgOffset = ((ArgOffset+15)/16)*16; 4439 CurArgOffset = ArgOffset; 4440 ArgOffset += 16; 4441 } 4442 needsLoad = true; 4443 } 4444 break; 4445 } 4446 4447 // We need to load the argument to a virtual register if we determined above 4448 // that we ran out of physical registers of the appropriate type. 4449 if (needsLoad) { 4450 int FI = MFI.CreateFixedObject(ObjSize, 4451 CurArgOffset + (ArgSize - ObjSize), 4452 isImmutable); 4453 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4454 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4455 } 4456 4457 InVals.push_back(ArgVal); 4458 } 4459 4460 // Allow for Altivec parameters at the end, if needed. 4461 if (nAltivecParamsAtEnd) { 4462 MinReservedArea = ((MinReservedArea+15)/16)*16; 4463 MinReservedArea += 16*nAltivecParamsAtEnd; 4464 } 4465 4466 // Area that is at least reserved in the caller of this function. 4467 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4468 4469 // Set the size that is at least reserved in caller of this function. Tail 4470 // call optimized functions' reserved stack space needs to be aligned so that 4471 // taking the difference between two stack areas will result in an aligned 4472 // stack. 4473 MinReservedArea = 4474 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4475 FuncInfo->setMinReservedArea(MinReservedArea); 4476 4477 // If the function takes variable number of arguments, make a frame index for 4478 // the start of the first vararg value... for expansion of llvm.va_start. 4479 if (isVarArg) { 4480 int Depth = ArgOffset; 4481 4482 FuncInfo->setVarArgsFrameIndex( 4483 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4484 Depth, true)); 4485 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4486 4487 // If this function is vararg, store any remaining integer argument regs 4488 // to their spots on the stack so that they may be loaded by dereferencing 4489 // the result of va_next. 4490 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4491 unsigned VReg; 4492 4493 if (isPPC64) 4494 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4495 else 4496 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4497 4498 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4499 SDValue Store = 4500 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4501 MemOps.push_back(Store); 4502 // Increment the address by four for the next argument to store 4503 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4504 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4505 } 4506 } 4507 4508 if (!MemOps.empty()) 4509 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4510 4511 return Chain; 4512 } 4513 4514 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4515 /// adjusted to accommodate the arguments for the tailcall. 4516 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4517 unsigned ParamSize) { 4518 4519 if (!isTailCall) return 0; 4520 4521 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4522 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4523 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4524 // Remember only if the new adjustment is bigger. 4525 if (SPDiff < FI->getTailCallSPDelta()) 4526 FI->setTailCallSPDelta(SPDiff); 4527 4528 return SPDiff; 4529 } 4530 4531 static bool isFunctionGlobalAddress(SDValue Callee); 4532 4533 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4534 const TargetMachine &TM) { 4535 // It does not make sense to call callsShareTOCBase() with a caller that 4536 // is PC Relative since PC Relative callers do not have a TOC. 4537 #ifndef NDEBUG 4538 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4539 assert(!STICaller->isUsingPCRelativeCalls() && 4540 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4541 #endif 4542 4543 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4544 // don't have enough information to determine if the caller and callee share 4545 // the same TOC base, so we have to pessimistically assume they don't for 4546 // correctness. 4547 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4548 if (!G) 4549 return false; 4550 4551 const GlobalValue *GV = G->getGlobal(); 4552 4553 // If the callee is preemptable, then the static linker will use a plt-stub 4554 // which saves the toc to the stack, and needs a nop after the call 4555 // instruction to convert to a toc-restore. 4556 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4557 return false; 4558 4559 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4560 // We may need a TOC restore in the situation where the caller requires a 4561 // valid TOC but the callee is PC Relative and does not. 4562 const Function *F = dyn_cast<Function>(GV); 4563 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4564 4565 // If we have an Alias we can try to get the function from there. 4566 if (Alias) { 4567 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4568 F = dyn_cast<Function>(GlobalObj); 4569 } 4570 4571 // If we still have no valid function pointer we do not have enough 4572 // information to determine if the callee uses PC Relative calls so we must 4573 // assume that it does. 4574 if (!F) 4575 return false; 4576 4577 // If the callee uses PC Relative we cannot guarantee that the callee won't 4578 // clobber the TOC of the caller and so we must assume that the two 4579 // functions do not share a TOC base. 4580 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4581 if (STICallee->isUsingPCRelativeCalls()) 4582 return false; 4583 4584 // The medium and large code models are expected to provide a sufficiently 4585 // large TOC to provide all data addressing needs of a module with a 4586 // single TOC. 4587 if (CodeModel::Medium == TM.getCodeModel() || 4588 CodeModel::Large == TM.getCodeModel()) 4589 return true; 4590 4591 // Otherwise we need to ensure callee and caller are in the same section, 4592 // since the linker may allocate multiple TOCs, and we don't know which 4593 // sections will belong to the same TOC base. 4594 if (!GV->isStrongDefinitionForLinker()) 4595 return false; 4596 4597 // Any explicitly-specified sections and section prefixes must also match. 4598 // Also, if we're using -ffunction-sections, then each function is always in 4599 // a different section (the same is true for COMDAT functions). 4600 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4601 GV->getSection() != Caller->getSection()) 4602 return false; 4603 if (const auto *F = dyn_cast<Function>(GV)) { 4604 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4605 return false; 4606 } 4607 4608 return true; 4609 } 4610 4611 static bool 4612 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4613 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4614 assert(Subtarget.is64BitELFABI()); 4615 4616 const unsigned PtrByteSize = 8; 4617 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4618 4619 static const MCPhysReg GPR[] = { 4620 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4621 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4622 }; 4623 static const MCPhysReg VR[] = { 4624 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4625 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4626 }; 4627 4628 const unsigned NumGPRs = array_lengthof(GPR); 4629 const unsigned NumFPRs = 13; 4630 const unsigned NumVRs = array_lengthof(VR); 4631 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4632 4633 unsigned NumBytes = LinkageSize; 4634 unsigned AvailableFPRs = NumFPRs; 4635 unsigned AvailableVRs = NumVRs; 4636 4637 for (const ISD::OutputArg& Param : Outs) { 4638 if (Param.Flags.isNest()) continue; 4639 4640 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4641 LinkageSize, ParamAreaSize, NumBytes, 4642 AvailableFPRs, AvailableVRs)) 4643 return true; 4644 } 4645 return false; 4646 } 4647 4648 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4649 if (CB.arg_size() != CallerFn->arg_size()) 4650 return false; 4651 4652 auto CalleeArgIter = CB.arg_begin(); 4653 auto CalleeArgEnd = CB.arg_end(); 4654 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4655 4656 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4657 const Value* CalleeArg = *CalleeArgIter; 4658 const Value* CallerArg = &(*CallerArgIter); 4659 if (CalleeArg == CallerArg) 4660 continue; 4661 4662 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4663 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4664 // } 4665 // 1st argument of callee is undef and has the same type as caller. 4666 if (CalleeArg->getType() == CallerArg->getType() && 4667 isa<UndefValue>(CalleeArg)) 4668 continue; 4669 4670 return false; 4671 } 4672 4673 return true; 4674 } 4675 4676 // Returns true if TCO is possible between the callers and callees 4677 // calling conventions. 4678 static bool 4679 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4680 CallingConv::ID CalleeCC) { 4681 // Tail calls are possible with fastcc and ccc. 4682 auto isTailCallableCC = [] (CallingConv::ID CC){ 4683 return CC == CallingConv::C || CC == CallingConv::Fast; 4684 }; 4685 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4686 return false; 4687 4688 // We can safely tail call both fastcc and ccc callees from a c calling 4689 // convention caller. If the caller is fastcc, we may have less stack space 4690 // than a non-fastcc caller with the same signature so disable tail-calls in 4691 // that case. 4692 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4693 } 4694 4695 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4696 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4697 const SmallVectorImpl<ISD::OutputArg> &Outs, 4698 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4699 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4700 4701 if (DisableSCO && !TailCallOpt) return false; 4702 4703 // Variadic argument functions are not supported. 4704 if (isVarArg) return false; 4705 4706 auto &Caller = DAG.getMachineFunction().getFunction(); 4707 // Check that the calling conventions are compatible for tco. 4708 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4709 return false; 4710 4711 // Caller contains any byval parameter is not supported. 4712 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4713 return false; 4714 4715 // Callee contains any byval parameter is not supported, too. 4716 // Note: This is a quick work around, because in some cases, e.g. 4717 // caller's stack size > callee's stack size, we are still able to apply 4718 // sibling call optimization. For example, gcc is able to do SCO for caller1 4719 // in the following example, but not for caller2. 4720 // struct test { 4721 // long int a; 4722 // char ary[56]; 4723 // } gTest; 4724 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4725 // b->a = v.a; 4726 // return 0; 4727 // } 4728 // void caller1(struct test a, struct test c, struct test *b) { 4729 // callee(gTest, b); } 4730 // void caller2(struct test *b) { callee(gTest, b); } 4731 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4732 return false; 4733 4734 // If callee and caller use different calling conventions, we cannot pass 4735 // parameters on stack since offsets for the parameter area may be different. 4736 if (Caller.getCallingConv() != CalleeCC && 4737 needStackSlotPassParameters(Subtarget, Outs)) 4738 return false; 4739 4740 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4741 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4742 // callee potentially have different TOC bases then we cannot tail call since 4743 // we need to restore the TOC pointer after the call. 4744 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4745 // We cannot guarantee this for indirect calls or calls to external functions. 4746 // When PC-Relative addressing is used, the concept of the TOC is no longer 4747 // applicable so this check is not required. 4748 // Check first for indirect calls. 4749 if (!Subtarget.isUsingPCRelativeCalls() && 4750 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4751 return false; 4752 4753 // Check if we share the TOC base. 4754 if (!Subtarget.isUsingPCRelativeCalls() && 4755 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4756 return false; 4757 4758 // TCO allows altering callee ABI, so we don't have to check further. 4759 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4760 return true; 4761 4762 if (DisableSCO) return false; 4763 4764 // If callee use the same argument list that caller is using, then we can 4765 // apply SCO on this case. If it is not, then we need to check if callee needs 4766 // stack for passing arguments. 4767 // PC Relative tail calls may not have a CallBase. 4768 // If there is no CallBase we cannot verify if we have the same argument 4769 // list so assume that we don't have the same argument list. 4770 if (CB && !hasSameArgumentList(&Caller, *CB) && 4771 needStackSlotPassParameters(Subtarget, Outs)) 4772 return false; 4773 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4774 return false; 4775 4776 return true; 4777 } 4778 4779 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4780 /// for tail call optimization. Targets which want to do tail call 4781 /// optimization should implement this function. 4782 bool 4783 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4784 CallingConv::ID CalleeCC, 4785 bool isVarArg, 4786 const SmallVectorImpl<ISD::InputArg> &Ins, 4787 SelectionDAG& DAG) const { 4788 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4789 return false; 4790 4791 // Variable argument functions are not supported. 4792 if (isVarArg) 4793 return false; 4794 4795 MachineFunction &MF = DAG.getMachineFunction(); 4796 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4797 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4798 // Functions containing by val parameters are not supported. 4799 for (unsigned i = 0; i != Ins.size(); i++) { 4800 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4801 if (Flags.isByVal()) return false; 4802 } 4803 4804 // Non-PIC/GOT tail calls are supported. 4805 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4806 return true; 4807 4808 // At the moment we can only do local tail calls (in same module, hidden 4809 // or protected) if we are generating PIC. 4810 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4811 return G->getGlobal()->hasHiddenVisibility() 4812 || G->getGlobal()->hasProtectedVisibility(); 4813 } 4814 4815 return false; 4816 } 4817 4818 /// isCallCompatibleAddress - Return the immediate to use if the specified 4819 /// 32-bit value is representable in the immediate field of a BxA instruction. 4820 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4821 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4822 if (!C) return nullptr; 4823 4824 int Addr = C->getZExtValue(); 4825 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4826 SignExtend32<26>(Addr) != Addr) 4827 return nullptr; // Top 6 bits have to be sext of immediate. 4828 4829 return DAG 4830 .getConstant( 4831 (int)C->getZExtValue() >> 2, SDLoc(Op), 4832 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4833 .getNode(); 4834 } 4835 4836 namespace { 4837 4838 struct TailCallArgumentInfo { 4839 SDValue Arg; 4840 SDValue FrameIdxOp; 4841 int FrameIdx = 0; 4842 4843 TailCallArgumentInfo() = default; 4844 }; 4845 4846 } // end anonymous namespace 4847 4848 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4849 static void StoreTailCallArgumentsToStackSlot( 4850 SelectionDAG &DAG, SDValue Chain, 4851 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4852 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4853 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4854 SDValue Arg = TailCallArgs[i].Arg; 4855 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4856 int FI = TailCallArgs[i].FrameIdx; 4857 // Store relative to framepointer. 4858 MemOpChains.push_back(DAG.getStore( 4859 Chain, dl, Arg, FIN, 4860 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4861 } 4862 } 4863 4864 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4865 /// the appropriate stack slot for the tail call optimized function call. 4866 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4867 SDValue OldRetAddr, SDValue OldFP, 4868 int SPDiff, const SDLoc &dl) { 4869 if (SPDiff) { 4870 // Calculate the new stack slot for the return address. 4871 MachineFunction &MF = DAG.getMachineFunction(); 4872 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4873 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4874 bool isPPC64 = Subtarget.isPPC64(); 4875 int SlotSize = isPPC64 ? 8 : 4; 4876 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4877 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4878 NewRetAddrLoc, true); 4879 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4880 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4881 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4882 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4883 } 4884 return Chain; 4885 } 4886 4887 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4888 /// the position of the argument. 4889 static void 4890 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4891 SDValue Arg, int SPDiff, unsigned ArgOffset, 4892 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4893 int Offset = ArgOffset + SPDiff; 4894 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4895 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4896 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4897 SDValue FIN = DAG.getFrameIndex(FI, VT); 4898 TailCallArgumentInfo Info; 4899 Info.Arg = Arg; 4900 Info.FrameIdxOp = FIN; 4901 Info.FrameIdx = FI; 4902 TailCallArguments.push_back(Info); 4903 } 4904 4905 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4906 /// stack slot. Returns the chain as result and the loaded frame pointers in 4907 /// LROpOut/FPOpout. Used when tail calling. 4908 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4909 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4910 SDValue &FPOpOut, const SDLoc &dl) const { 4911 if (SPDiff) { 4912 // Load the LR and FP stack slot for later adjusting. 4913 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4914 LROpOut = getReturnAddrFrameIndex(DAG); 4915 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4916 Chain = SDValue(LROpOut.getNode(), 1); 4917 } 4918 return Chain; 4919 } 4920 4921 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4922 /// by "Src" to address "Dst" of size "Size". Alignment information is 4923 /// specified by the specific parameter attribute. The copy will be passed as 4924 /// a byval function parameter. 4925 /// Sometimes what we are copying is the end of a larger object, the part that 4926 /// does not fit in registers. 4927 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4928 SDValue Chain, ISD::ArgFlagsTy Flags, 4929 SelectionDAG &DAG, const SDLoc &dl) { 4930 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4931 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4932 Flags.getNonZeroByValAlign(), false, false, false, 4933 MachinePointerInfo(), MachinePointerInfo()); 4934 } 4935 4936 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4937 /// tail calls. 4938 static void LowerMemOpCallTo( 4939 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4940 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4941 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4942 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4943 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4944 if (!isTailCall) { 4945 if (isVector) { 4946 SDValue StackPtr; 4947 if (isPPC64) 4948 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4949 else 4950 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4951 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4952 DAG.getConstant(ArgOffset, dl, PtrVT)); 4953 } 4954 MemOpChains.push_back( 4955 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4956 // Calculate and remember argument location. 4957 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4958 TailCallArguments); 4959 } 4960 4961 static void 4962 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4963 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4964 SDValue FPOp, 4965 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4966 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4967 // might overwrite each other in case of tail call optimization. 4968 SmallVector<SDValue, 8> MemOpChains2; 4969 // Do not flag preceding copytoreg stuff together with the following stuff. 4970 InFlag = SDValue(); 4971 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4972 MemOpChains2, dl); 4973 if (!MemOpChains2.empty()) 4974 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4975 4976 // Store the return address to the appropriate stack slot. 4977 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4978 4979 // Emit callseq_end just before tailcall node. 4980 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4981 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4982 InFlag = Chain.getValue(1); 4983 } 4984 4985 // Is this global address that of a function that can be called by name? (as 4986 // opposed to something that must hold a descriptor for an indirect call). 4987 static bool isFunctionGlobalAddress(SDValue Callee) { 4988 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4989 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4990 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4991 return false; 4992 4993 return G->getGlobal()->getValueType()->isFunctionTy(); 4994 } 4995 4996 return false; 4997 } 4998 4999 SDValue PPCTargetLowering::LowerCallResult( 5000 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5001 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5002 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5003 SmallVector<CCValAssign, 16> RVLocs; 5004 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5005 *DAG.getContext()); 5006 5007 CCRetInfo.AnalyzeCallResult( 5008 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5009 ? RetCC_PPC_Cold 5010 : RetCC_PPC); 5011 5012 // Copy all of the result registers out of their specified physreg. 5013 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5014 CCValAssign &VA = RVLocs[i]; 5015 assert(VA.isRegLoc() && "Can only return in registers!"); 5016 5017 SDValue Val; 5018 5019 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5020 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5021 InFlag); 5022 Chain = Lo.getValue(1); 5023 InFlag = Lo.getValue(2); 5024 VA = RVLocs[++i]; // skip ahead to next loc 5025 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5026 InFlag); 5027 Chain = Hi.getValue(1); 5028 InFlag = Hi.getValue(2); 5029 if (!Subtarget.isLittleEndian()) 5030 std::swap (Lo, Hi); 5031 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5032 } else { 5033 Val = DAG.getCopyFromReg(Chain, dl, 5034 VA.getLocReg(), VA.getLocVT(), InFlag); 5035 Chain = Val.getValue(1); 5036 InFlag = Val.getValue(2); 5037 } 5038 5039 switch (VA.getLocInfo()) { 5040 default: llvm_unreachable("Unknown loc info!"); 5041 case CCValAssign::Full: break; 5042 case CCValAssign::AExt: 5043 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5044 break; 5045 case CCValAssign::ZExt: 5046 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5047 DAG.getValueType(VA.getValVT())); 5048 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5049 break; 5050 case CCValAssign::SExt: 5051 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5052 DAG.getValueType(VA.getValVT())); 5053 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5054 break; 5055 } 5056 5057 InVals.push_back(Val); 5058 } 5059 5060 return Chain; 5061 } 5062 5063 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5064 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5065 // PatchPoint calls are not indirect. 5066 if (isPatchPoint) 5067 return false; 5068 5069 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5070 return false; 5071 5072 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5073 // becuase the immediate function pointer points to a descriptor instead of 5074 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5075 // pointer immediate points to the global entry point, while the BLA would 5076 // need to jump to the local entry point (see rL211174). 5077 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5078 isBLACompatibleAddress(Callee, DAG)) 5079 return false; 5080 5081 return true; 5082 } 5083 5084 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5085 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5086 return Subtarget.isAIXABI() || 5087 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5088 } 5089 5090 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5091 const Function &Caller, 5092 const SDValue &Callee, 5093 const PPCSubtarget &Subtarget, 5094 const TargetMachine &TM) { 5095 if (CFlags.IsTailCall) 5096 return PPCISD::TC_RETURN; 5097 5098 // This is a call through a function pointer. 5099 if (CFlags.IsIndirect) { 5100 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5101 // indirect calls. The save of the caller's TOC pointer to the stack will be 5102 // inserted into the DAG as part of call lowering. The restore of the TOC 5103 // pointer is modeled by using a pseudo instruction for the call opcode that 5104 // represents the 2 instruction sequence of an indirect branch and link, 5105 // immediately followed by a load of the TOC pointer from the the stack save 5106 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5107 // as it is not saved or used. 5108 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5109 : PPCISD::BCTRL; 5110 } 5111 5112 if (Subtarget.isUsingPCRelativeCalls()) { 5113 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5114 return PPCISD::CALL_NOTOC; 5115 } 5116 5117 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5118 // immediately following the call instruction if the caller and callee may 5119 // have different TOC bases. At link time if the linker determines the calls 5120 // may not share a TOC base, the call is redirected to a trampoline inserted 5121 // by the linker. The trampoline will (among other things) save the callers 5122 // TOC pointer at an ABI designated offset in the linkage area and the linker 5123 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5124 // into gpr2. 5125 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5126 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5127 : PPCISD::CALL_NOP; 5128 5129 return PPCISD::CALL; 5130 } 5131 5132 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5133 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5134 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5135 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5136 return SDValue(Dest, 0); 5137 5138 // Returns true if the callee is local, and false otherwise. 5139 auto isLocalCallee = [&]() { 5140 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5141 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5142 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5143 5144 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5145 !dyn_cast_or_null<GlobalIFunc>(GV); 5146 }; 5147 5148 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5149 // a static relocation model causes some versions of GNU LD (2.17.50, at 5150 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5151 // built with secure-PLT. 5152 bool UsePlt = 5153 Subtarget.is32BitELFABI() && !isLocalCallee() && 5154 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5155 5156 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5157 const TargetMachine &TM = Subtarget.getTargetMachine(); 5158 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5159 MCSymbolXCOFF *S = 5160 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5161 5162 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5163 return DAG.getMCSymbol(S, PtrVT); 5164 }; 5165 5166 if (isFunctionGlobalAddress(Callee)) { 5167 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5168 5169 if (Subtarget.isAIXABI()) { 5170 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5171 return getAIXFuncEntryPointSymbolSDNode(GV); 5172 } 5173 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5174 UsePlt ? PPCII::MO_PLT : 0); 5175 } 5176 5177 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5178 const char *SymName = S->getSymbol(); 5179 if (Subtarget.isAIXABI()) { 5180 // If there exists a user-declared function whose name is the same as the 5181 // ExternalSymbol's, then we pick up the user-declared version. 5182 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5183 if (const Function *F = 5184 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5185 return getAIXFuncEntryPointSymbolSDNode(F); 5186 5187 // On AIX, direct function calls reference the symbol for the function's 5188 // entry point, which is named by prepending a "." before the function's 5189 // C-linkage name. A Qualname is returned here because an external 5190 // function entry point is a csect with XTY_ER property. 5191 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5192 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5193 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5194 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5195 SectionKind::getMetadata()); 5196 return Sec->getQualNameSymbol(); 5197 }; 5198 5199 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5200 } 5201 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5202 UsePlt ? PPCII::MO_PLT : 0); 5203 } 5204 5205 // No transformation needed. 5206 assert(Callee.getNode() && "What no callee?"); 5207 return Callee; 5208 } 5209 5210 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5211 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5212 "Expected a CALLSEQ_STARTSDNode."); 5213 5214 // The last operand is the chain, except when the node has glue. If the node 5215 // has glue, then the last operand is the glue, and the chain is the second 5216 // last operand. 5217 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5218 if (LastValue.getValueType() != MVT::Glue) 5219 return LastValue; 5220 5221 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5222 } 5223 5224 // Creates the node that moves a functions address into the count register 5225 // to prepare for an indirect call instruction. 5226 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5227 SDValue &Glue, SDValue &Chain, 5228 const SDLoc &dl) { 5229 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5230 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5231 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5232 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5233 // The glue is the second value produced. 5234 Glue = Chain.getValue(1); 5235 } 5236 5237 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5238 SDValue &Glue, SDValue &Chain, 5239 SDValue CallSeqStart, 5240 const CallBase *CB, const SDLoc &dl, 5241 bool hasNest, 5242 const PPCSubtarget &Subtarget) { 5243 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5244 // entry point, but to the function descriptor (the function entry point 5245 // address is part of the function descriptor though). 5246 // The function descriptor is a three doubleword structure with the 5247 // following fields: function entry point, TOC base address and 5248 // environment pointer. 5249 // Thus for a call through a function pointer, the following actions need 5250 // to be performed: 5251 // 1. Save the TOC of the caller in the TOC save area of its stack 5252 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5253 // 2. Load the address of the function entry point from the function 5254 // descriptor. 5255 // 3. Load the TOC of the callee from the function descriptor into r2. 5256 // 4. Load the environment pointer from the function descriptor into 5257 // r11. 5258 // 5. Branch to the function entry point address. 5259 // 6. On return of the callee, the TOC of the caller needs to be 5260 // restored (this is done in FinishCall()). 5261 // 5262 // The loads are scheduled at the beginning of the call sequence, and the 5263 // register copies are flagged together to ensure that no other 5264 // operations can be scheduled in between. E.g. without flagging the 5265 // copies together, a TOC access in the caller could be scheduled between 5266 // the assignment of the callee TOC and the branch to the callee, which leads 5267 // to incorrect code. 5268 5269 // Start by loading the function address from the descriptor. 5270 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5271 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5272 ? (MachineMemOperand::MODereferenceable | 5273 MachineMemOperand::MOInvariant) 5274 : MachineMemOperand::MONone; 5275 5276 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5277 5278 // Registers used in building the DAG. 5279 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5280 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5281 5282 // Offsets of descriptor members. 5283 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5284 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5285 5286 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5287 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5288 5289 // One load for the functions entry point address. 5290 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5291 Alignment, MMOFlags); 5292 5293 // One for loading the TOC anchor for the module that contains the called 5294 // function. 5295 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5296 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5297 SDValue TOCPtr = 5298 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5299 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5300 5301 // One for loading the environment pointer. 5302 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5303 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5304 SDValue LoadEnvPtr = 5305 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5306 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5307 5308 5309 // Then copy the newly loaded TOC anchor to the TOC pointer. 5310 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5311 Chain = TOCVal.getValue(0); 5312 Glue = TOCVal.getValue(1); 5313 5314 // If the function call has an explicit 'nest' parameter, it takes the 5315 // place of the environment pointer. 5316 assert((!hasNest || !Subtarget.isAIXABI()) && 5317 "Nest parameter is not supported on AIX."); 5318 if (!hasNest) { 5319 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5320 Chain = EnvVal.getValue(0); 5321 Glue = EnvVal.getValue(1); 5322 } 5323 5324 // The rest of the indirect call sequence is the same as the non-descriptor 5325 // DAG. 5326 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5327 } 5328 5329 static void 5330 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5331 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5332 SelectionDAG &DAG, 5333 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5334 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5335 const PPCSubtarget &Subtarget) { 5336 const bool IsPPC64 = Subtarget.isPPC64(); 5337 // MVT for a general purpose register. 5338 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5339 5340 // First operand is always the chain. 5341 Ops.push_back(Chain); 5342 5343 // If it's a direct call pass the callee as the second operand. 5344 if (!CFlags.IsIndirect) 5345 Ops.push_back(Callee); 5346 else { 5347 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5348 5349 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5350 // on the stack (this would have been done in `LowerCall_64SVR4` or 5351 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5352 // represents both the indirect branch and a load that restores the TOC 5353 // pointer from the linkage area. The operand for the TOC restore is an add 5354 // of the TOC save offset to the stack pointer. This must be the second 5355 // operand: after the chain input but before any other variadic arguments. 5356 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5357 // saved or used. 5358 if (isTOCSaveRestoreRequired(Subtarget)) { 5359 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5360 5361 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5362 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5363 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5364 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5365 Ops.push_back(AddTOC); 5366 } 5367 5368 // Add the register used for the environment pointer. 5369 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5370 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5371 RegVT)); 5372 5373 5374 // Add CTR register as callee so a bctr can be emitted later. 5375 if (CFlags.IsTailCall) 5376 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5377 } 5378 5379 // If this is a tail call add stack pointer delta. 5380 if (CFlags.IsTailCall) 5381 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5382 5383 // Add argument registers to the end of the list so that they are known live 5384 // into the call. 5385 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5386 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5387 RegsToPass[i].second.getValueType())); 5388 5389 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5390 // no way to mark dependencies as implicit here. 5391 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5392 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5393 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5394 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5395 5396 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5397 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5398 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5399 5400 // Add a register mask operand representing the call-preserved registers. 5401 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5402 const uint32_t *Mask = 5403 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5404 assert(Mask && "Missing call preserved mask for calling convention"); 5405 Ops.push_back(DAG.getRegisterMask(Mask)); 5406 5407 // If the glue is valid, it is the last operand. 5408 if (Glue.getNode()) 5409 Ops.push_back(Glue); 5410 } 5411 5412 SDValue PPCTargetLowering::FinishCall( 5413 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5414 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5415 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5416 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5417 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5418 5419 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5420 Subtarget.isAIXABI()) 5421 setUsesTOCBasePtr(DAG); 5422 5423 unsigned CallOpc = 5424 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5425 Subtarget, DAG.getTarget()); 5426 5427 if (!CFlags.IsIndirect) 5428 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5429 else if (Subtarget.usesFunctionDescriptors()) 5430 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5431 dl, CFlags.HasNest, Subtarget); 5432 else 5433 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5434 5435 // Build the operand list for the call instruction. 5436 SmallVector<SDValue, 8> Ops; 5437 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5438 SPDiff, Subtarget); 5439 5440 // Emit tail call. 5441 if (CFlags.IsTailCall) { 5442 // Indirect tail call when using PC Relative calls do not have the same 5443 // constraints. 5444 assert(((Callee.getOpcode() == ISD::Register && 5445 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5446 Callee.getOpcode() == ISD::TargetExternalSymbol || 5447 Callee.getOpcode() == ISD::TargetGlobalAddress || 5448 isa<ConstantSDNode>(Callee) || 5449 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5450 "Expecting a global address, external symbol, absolute value, " 5451 "register or an indirect tail call when PC Relative calls are " 5452 "used."); 5453 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5454 assert(CallOpc == PPCISD::TC_RETURN && 5455 "Unexpected call opcode for a tail call."); 5456 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5457 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5458 } 5459 5460 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5461 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5462 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5463 Glue = Chain.getValue(1); 5464 5465 // When performing tail call optimization the callee pops its arguments off 5466 // the stack. Account for this here so these bytes can be pushed back on in 5467 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5468 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5469 getTargetMachine().Options.GuaranteedTailCallOpt) 5470 ? NumBytes 5471 : 0; 5472 5473 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5474 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5475 Glue, dl); 5476 Glue = Chain.getValue(1); 5477 5478 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5479 DAG, InVals); 5480 } 5481 5482 SDValue 5483 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5484 SmallVectorImpl<SDValue> &InVals) const { 5485 SelectionDAG &DAG = CLI.DAG; 5486 SDLoc &dl = CLI.DL; 5487 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5488 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5489 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5490 SDValue Chain = CLI.Chain; 5491 SDValue Callee = CLI.Callee; 5492 bool &isTailCall = CLI.IsTailCall; 5493 CallingConv::ID CallConv = CLI.CallConv; 5494 bool isVarArg = CLI.IsVarArg; 5495 bool isPatchPoint = CLI.IsPatchPoint; 5496 const CallBase *CB = CLI.CB; 5497 5498 if (isTailCall) { 5499 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5500 isTailCall = false; 5501 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5502 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5503 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5504 else 5505 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5506 Ins, DAG); 5507 if (isTailCall) { 5508 ++NumTailCalls; 5509 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5510 ++NumSiblingCalls; 5511 5512 // PC Relative calls no longer guarantee that the callee is a Global 5513 // Address Node. The callee could be an indirect tail call in which 5514 // case the SDValue for the callee could be a load (to load the address 5515 // of a function pointer) or it may be a register copy (to move the 5516 // address of the callee from a function parameter into a virtual 5517 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5518 assert((Subtarget.isUsingPCRelativeCalls() || 5519 isa<GlobalAddressSDNode>(Callee)) && 5520 "Callee should be an llvm::Function object."); 5521 5522 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5523 << "\nTCO callee: "); 5524 LLVM_DEBUG(Callee.dump()); 5525 } 5526 } 5527 5528 if (!isTailCall && CB && CB->isMustTailCall()) 5529 report_fatal_error("failed to perform tail call elimination on a call " 5530 "site marked musttail"); 5531 5532 // When long calls (i.e. indirect calls) are always used, calls are always 5533 // made via function pointer. If we have a function name, first translate it 5534 // into a pointer. 5535 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5536 !isTailCall) 5537 Callee = LowerGlobalAddress(Callee, DAG); 5538 5539 CallFlags CFlags( 5540 CallConv, isTailCall, isVarArg, isPatchPoint, 5541 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5542 // hasNest 5543 Subtarget.is64BitELFABI() && 5544 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5545 CLI.NoMerge); 5546 5547 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5548 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5549 InVals, CB); 5550 5551 if (Subtarget.isSVR4ABI()) 5552 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5553 InVals, CB); 5554 5555 if (Subtarget.isAIXABI()) 5556 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5557 InVals, CB); 5558 5559 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5560 InVals, CB); 5561 } 5562 5563 SDValue PPCTargetLowering::LowerCall_32SVR4( 5564 SDValue Chain, SDValue Callee, CallFlags CFlags, 5565 const SmallVectorImpl<ISD::OutputArg> &Outs, 5566 const SmallVectorImpl<SDValue> &OutVals, 5567 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5568 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5569 const CallBase *CB) const { 5570 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5571 // of the 32-bit SVR4 ABI stack frame layout. 5572 5573 const CallingConv::ID CallConv = CFlags.CallConv; 5574 const bool IsVarArg = CFlags.IsVarArg; 5575 const bool IsTailCall = CFlags.IsTailCall; 5576 5577 assert((CallConv == CallingConv::C || 5578 CallConv == CallingConv::Cold || 5579 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5580 5581 const Align PtrAlign(4); 5582 5583 MachineFunction &MF = DAG.getMachineFunction(); 5584 5585 // Mark this function as potentially containing a function that contains a 5586 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5587 // and restoring the callers stack pointer in this functions epilog. This is 5588 // done because by tail calling the called function might overwrite the value 5589 // in this function's (MF) stack pointer stack slot 0(SP). 5590 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5591 CallConv == CallingConv::Fast) 5592 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5593 5594 // Count how many bytes are to be pushed on the stack, including the linkage 5595 // area, parameter list area and the part of the local variable space which 5596 // contains copies of aggregates which are passed by value. 5597 5598 // Assign locations to all of the outgoing arguments. 5599 SmallVector<CCValAssign, 16> ArgLocs; 5600 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5601 5602 // Reserve space for the linkage area on the stack. 5603 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5604 PtrAlign); 5605 if (useSoftFloat()) 5606 CCInfo.PreAnalyzeCallOperands(Outs); 5607 5608 if (IsVarArg) { 5609 // Handle fixed and variable vector arguments differently. 5610 // Fixed vector arguments go into registers as long as registers are 5611 // available. Variable vector arguments always go into memory. 5612 unsigned NumArgs = Outs.size(); 5613 5614 for (unsigned i = 0; i != NumArgs; ++i) { 5615 MVT ArgVT = Outs[i].VT; 5616 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5617 bool Result; 5618 5619 if (Outs[i].IsFixed) { 5620 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5621 CCInfo); 5622 } else { 5623 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5624 ArgFlags, CCInfo); 5625 } 5626 5627 if (Result) { 5628 #ifndef NDEBUG 5629 errs() << "Call operand #" << i << " has unhandled type " 5630 << EVT(ArgVT).getEVTString() << "\n"; 5631 #endif 5632 llvm_unreachable(nullptr); 5633 } 5634 } 5635 } else { 5636 // All arguments are treated the same. 5637 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5638 } 5639 CCInfo.clearWasPPCF128(); 5640 5641 // Assign locations to all of the outgoing aggregate by value arguments. 5642 SmallVector<CCValAssign, 16> ByValArgLocs; 5643 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5644 5645 // Reserve stack space for the allocations in CCInfo. 5646 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5647 5648 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5649 5650 // Size of the linkage area, parameter list area and the part of the local 5651 // space variable where copies of aggregates which are passed by value are 5652 // stored. 5653 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5654 5655 // Calculate by how many bytes the stack has to be adjusted in case of tail 5656 // call optimization. 5657 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5658 5659 // Adjust the stack pointer for the new arguments... 5660 // These operations are automatically eliminated by the prolog/epilog pass 5661 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5662 SDValue CallSeqStart = Chain; 5663 5664 // Load the return address and frame pointer so it can be moved somewhere else 5665 // later. 5666 SDValue LROp, FPOp; 5667 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5668 5669 // Set up a copy of the stack pointer for use loading and storing any 5670 // arguments that may not fit in the registers available for argument 5671 // passing. 5672 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5673 5674 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5675 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5676 SmallVector<SDValue, 8> MemOpChains; 5677 5678 bool seenFloatArg = false; 5679 // Walk the register/memloc assignments, inserting copies/loads. 5680 // i - Tracks the index into the list of registers allocated for the call 5681 // RealArgIdx - Tracks the index into the list of actual function arguments 5682 // j - Tracks the index into the list of byval arguments 5683 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5684 i != e; 5685 ++i, ++RealArgIdx) { 5686 CCValAssign &VA = ArgLocs[i]; 5687 SDValue Arg = OutVals[RealArgIdx]; 5688 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5689 5690 if (Flags.isByVal()) { 5691 // Argument is an aggregate which is passed by value, thus we need to 5692 // create a copy of it in the local variable space of the current stack 5693 // frame (which is the stack frame of the caller) and pass the address of 5694 // this copy to the callee. 5695 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5696 CCValAssign &ByValVA = ByValArgLocs[j++]; 5697 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5698 5699 // Memory reserved in the local variable space of the callers stack frame. 5700 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5701 5702 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5703 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5704 StackPtr, PtrOff); 5705 5706 // Create a copy of the argument in the local area of the current 5707 // stack frame. 5708 SDValue MemcpyCall = 5709 CreateCopyOfByValArgument(Arg, PtrOff, 5710 CallSeqStart.getNode()->getOperand(0), 5711 Flags, DAG, dl); 5712 5713 // This must go outside the CALLSEQ_START..END. 5714 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5715 SDLoc(MemcpyCall)); 5716 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5717 NewCallSeqStart.getNode()); 5718 Chain = CallSeqStart = NewCallSeqStart; 5719 5720 // Pass the address of the aggregate copy on the stack either in a 5721 // physical register or in the parameter list area of the current stack 5722 // frame to the callee. 5723 Arg = PtrOff; 5724 } 5725 5726 // When useCRBits() is true, there can be i1 arguments. 5727 // It is because getRegisterType(MVT::i1) => MVT::i1, 5728 // and for other integer types getRegisterType() => MVT::i32. 5729 // Extend i1 and ensure callee will get i32. 5730 if (Arg.getValueType() == MVT::i1) 5731 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5732 dl, MVT::i32, Arg); 5733 5734 if (VA.isRegLoc()) { 5735 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5736 // Put argument in a physical register. 5737 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5738 bool IsLE = Subtarget.isLittleEndian(); 5739 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5740 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5741 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5742 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5743 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5744 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5745 SVal.getValue(0))); 5746 } else 5747 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5748 } else { 5749 // Put argument in the parameter list area of the current stack frame. 5750 assert(VA.isMemLoc()); 5751 unsigned LocMemOffset = VA.getLocMemOffset(); 5752 5753 if (!IsTailCall) { 5754 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5755 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5756 StackPtr, PtrOff); 5757 5758 MemOpChains.push_back( 5759 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5760 } else { 5761 // Calculate and remember argument location. 5762 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5763 TailCallArguments); 5764 } 5765 } 5766 } 5767 5768 if (!MemOpChains.empty()) 5769 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5770 5771 // Build a sequence of copy-to-reg nodes chained together with token chain 5772 // and flag operands which copy the outgoing args into the appropriate regs. 5773 SDValue InFlag; 5774 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5775 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5776 RegsToPass[i].second, InFlag); 5777 InFlag = Chain.getValue(1); 5778 } 5779 5780 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5781 // registers. 5782 if (IsVarArg) { 5783 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5784 SDValue Ops[] = { Chain, InFlag }; 5785 5786 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5787 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5788 5789 InFlag = Chain.getValue(1); 5790 } 5791 5792 if (IsTailCall) 5793 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5794 TailCallArguments); 5795 5796 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5797 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5798 } 5799 5800 // Copy an argument into memory, being careful to do this outside the 5801 // call sequence for the call to which the argument belongs. 5802 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5803 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5804 SelectionDAG &DAG, const SDLoc &dl) const { 5805 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5806 CallSeqStart.getNode()->getOperand(0), 5807 Flags, DAG, dl); 5808 // The MEMCPY must go outside the CALLSEQ_START..END. 5809 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5810 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5811 SDLoc(MemcpyCall)); 5812 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5813 NewCallSeqStart.getNode()); 5814 return NewCallSeqStart; 5815 } 5816 5817 SDValue PPCTargetLowering::LowerCall_64SVR4( 5818 SDValue Chain, SDValue Callee, CallFlags CFlags, 5819 const SmallVectorImpl<ISD::OutputArg> &Outs, 5820 const SmallVectorImpl<SDValue> &OutVals, 5821 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5822 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5823 const CallBase *CB) const { 5824 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5825 bool isLittleEndian = Subtarget.isLittleEndian(); 5826 unsigned NumOps = Outs.size(); 5827 bool IsSibCall = false; 5828 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5829 5830 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5831 unsigned PtrByteSize = 8; 5832 5833 MachineFunction &MF = DAG.getMachineFunction(); 5834 5835 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5836 IsSibCall = true; 5837 5838 // Mark this function as potentially containing a function that contains a 5839 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5840 // and restoring the callers stack pointer in this functions epilog. This is 5841 // done because by tail calling the called function might overwrite the value 5842 // in this function's (MF) stack pointer stack slot 0(SP). 5843 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5844 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5845 5846 assert(!(IsFastCall && CFlags.IsVarArg) && 5847 "fastcc not supported on varargs functions"); 5848 5849 // Count how many bytes are to be pushed on the stack, including the linkage 5850 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5851 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5852 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5853 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5854 unsigned NumBytes = LinkageSize; 5855 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5856 5857 static const MCPhysReg GPR[] = { 5858 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5859 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5860 }; 5861 static const MCPhysReg VR[] = { 5862 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5863 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5864 }; 5865 5866 const unsigned NumGPRs = array_lengthof(GPR); 5867 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5868 const unsigned NumVRs = array_lengthof(VR); 5869 5870 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5871 // can be passed to the callee in registers. 5872 // For the fast calling convention, there is another check below. 5873 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5874 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5875 if (!HasParameterArea) { 5876 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5877 unsigned AvailableFPRs = NumFPRs; 5878 unsigned AvailableVRs = NumVRs; 5879 unsigned NumBytesTmp = NumBytes; 5880 for (unsigned i = 0; i != NumOps; ++i) { 5881 if (Outs[i].Flags.isNest()) continue; 5882 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5883 PtrByteSize, LinkageSize, ParamAreaSize, 5884 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5885 HasParameterArea = true; 5886 } 5887 } 5888 5889 // When using the fast calling convention, we don't provide backing for 5890 // arguments that will be in registers. 5891 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5892 5893 // Avoid allocating parameter area for fastcc functions if all the arguments 5894 // can be passed in the registers. 5895 if (IsFastCall) 5896 HasParameterArea = false; 5897 5898 // Add up all the space actually used. 5899 for (unsigned i = 0; i != NumOps; ++i) { 5900 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5901 EVT ArgVT = Outs[i].VT; 5902 EVT OrigVT = Outs[i].ArgVT; 5903 5904 if (Flags.isNest()) 5905 continue; 5906 5907 if (IsFastCall) { 5908 if (Flags.isByVal()) { 5909 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5910 if (NumGPRsUsed > NumGPRs) 5911 HasParameterArea = true; 5912 } else { 5913 switch (ArgVT.getSimpleVT().SimpleTy) { 5914 default: llvm_unreachable("Unexpected ValueType for argument!"); 5915 case MVT::i1: 5916 case MVT::i32: 5917 case MVT::i64: 5918 if (++NumGPRsUsed <= NumGPRs) 5919 continue; 5920 break; 5921 case MVT::v4i32: 5922 case MVT::v8i16: 5923 case MVT::v16i8: 5924 case MVT::v2f64: 5925 case MVT::v2i64: 5926 case MVT::v1i128: 5927 case MVT::f128: 5928 if (++NumVRsUsed <= NumVRs) 5929 continue; 5930 break; 5931 case MVT::v4f32: 5932 if (++NumVRsUsed <= NumVRs) 5933 continue; 5934 break; 5935 case MVT::f32: 5936 case MVT::f64: 5937 if (++NumFPRsUsed <= NumFPRs) 5938 continue; 5939 break; 5940 } 5941 HasParameterArea = true; 5942 } 5943 } 5944 5945 /* Respect alignment of argument on the stack. */ 5946 auto Alignement = 5947 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5948 NumBytes = alignTo(NumBytes, Alignement); 5949 5950 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5951 if (Flags.isInConsecutiveRegsLast()) 5952 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5953 } 5954 5955 unsigned NumBytesActuallyUsed = NumBytes; 5956 5957 // In the old ELFv1 ABI, 5958 // the prolog code of the callee may store up to 8 GPR argument registers to 5959 // the stack, allowing va_start to index over them in memory if its varargs. 5960 // Because we cannot tell if this is needed on the caller side, we have to 5961 // conservatively assume that it is needed. As such, make sure we have at 5962 // least enough stack space for the caller to store the 8 GPRs. 5963 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5964 // really requires memory operands, e.g. a vararg function. 5965 if (HasParameterArea) 5966 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5967 else 5968 NumBytes = LinkageSize; 5969 5970 // Tail call needs the stack to be aligned. 5971 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5972 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5973 5974 int SPDiff = 0; 5975 5976 // Calculate by how many bytes the stack has to be adjusted in case of tail 5977 // call optimization. 5978 if (!IsSibCall) 5979 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5980 5981 // To protect arguments on the stack from being clobbered in a tail call, 5982 // force all the loads to happen before doing any other lowering. 5983 if (CFlags.IsTailCall) 5984 Chain = DAG.getStackArgumentTokenFactor(Chain); 5985 5986 // Adjust the stack pointer for the new arguments... 5987 // These operations are automatically eliminated by the prolog/epilog pass 5988 if (!IsSibCall) 5989 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5990 SDValue CallSeqStart = Chain; 5991 5992 // Load the return address and frame pointer so it can be move somewhere else 5993 // later. 5994 SDValue LROp, FPOp; 5995 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5996 5997 // Set up a copy of the stack pointer for use loading and storing any 5998 // arguments that may not fit in the registers available for argument 5999 // passing. 6000 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6001 6002 // Figure out which arguments are going to go in registers, and which in 6003 // memory. Also, if this is a vararg function, floating point operations 6004 // must be stored to our stack, and loaded into integer regs as well, if 6005 // any integer regs are available for argument passing. 6006 unsigned ArgOffset = LinkageSize; 6007 6008 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6009 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6010 6011 SmallVector<SDValue, 8> MemOpChains; 6012 for (unsigned i = 0; i != NumOps; ++i) { 6013 SDValue Arg = OutVals[i]; 6014 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6015 EVT ArgVT = Outs[i].VT; 6016 EVT OrigVT = Outs[i].ArgVT; 6017 6018 // PtrOff will be used to store the current argument to the stack if a 6019 // register cannot be found for it. 6020 SDValue PtrOff; 6021 6022 // We re-align the argument offset for each argument, except when using the 6023 // fast calling convention, when we need to make sure we do that only when 6024 // we'll actually use a stack slot. 6025 auto ComputePtrOff = [&]() { 6026 /* Respect alignment of argument on the stack. */ 6027 auto Alignment = 6028 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6029 ArgOffset = alignTo(ArgOffset, Alignment); 6030 6031 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6032 6033 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6034 }; 6035 6036 if (!IsFastCall) { 6037 ComputePtrOff(); 6038 6039 /* Compute GPR index associated with argument offset. */ 6040 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6041 GPR_idx = std::min(GPR_idx, NumGPRs); 6042 } 6043 6044 // Promote integers to 64-bit values. 6045 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6046 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6047 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6048 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6049 } 6050 6051 // FIXME memcpy is used way more than necessary. Correctness first. 6052 // Note: "by value" is code for passing a structure by value, not 6053 // basic types. 6054 if (Flags.isByVal()) { 6055 // Note: Size includes alignment padding, so 6056 // struct x { short a; char b; } 6057 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6058 // These are the proper values we need for right-justifying the 6059 // aggregate in a parameter register. 6060 unsigned Size = Flags.getByValSize(); 6061 6062 // An empty aggregate parameter takes up no storage and no 6063 // registers. 6064 if (Size == 0) 6065 continue; 6066 6067 if (IsFastCall) 6068 ComputePtrOff(); 6069 6070 // All aggregates smaller than 8 bytes must be passed right-justified. 6071 if (Size==1 || Size==2 || Size==4) { 6072 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6073 if (GPR_idx != NumGPRs) { 6074 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6075 MachinePointerInfo(), VT); 6076 MemOpChains.push_back(Load.getValue(1)); 6077 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6078 6079 ArgOffset += PtrByteSize; 6080 continue; 6081 } 6082 } 6083 6084 if (GPR_idx == NumGPRs && Size < 8) { 6085 SDValue AddPtr = PtrOff; 6086 if (!isLittleEndian) { 6087 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6088 PtrOff.getValueType()); 6089 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6090 } 6091 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6092 CallSeqStart, 6093 Flags, DAG, dl); 6094 ArgOffset += PtrByteSize; 6095 continue; 6096 } 6097 // Copy entire object into memory. There are cases where gcc-generated 6098 // code assumes it is there, even if it could be put entirely into 6099 // registers. (This is not what the doc says.) 6100 6101 // FIXME: The above statement is likely due to a misunderstanding of the 6102 // documents. All arguments must be copied into the parameter area BY 6103 // THE CALLEE in the event that the callee takes the address of any 6104 // formal argument. That has not yet been implemented. However, it is 6105 // reasonable to use the stack area as a staging area for the register 6106 // load. 6107 6108 // Skip this for small aggregates, as we will use the same slot for a 6109 // right-justified copy, below. 6110 if (Size >= 8) 6111 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6112 CallSeqStart, 6113 Flags, DAG, dl); 6114 6115 // When a register is available, pass a small aggregate right-justified. 6116 if (Size < 8 && GPR_idx != NumGPRs) { 6117 // The easiest way to get this right-justified in a register 6118 // is to copy the structure into the rightmost portion of a 6119 // local variable slot, then load the whole slot into the 6120 // register. 6121 // FIXME: The memcpy seems to produce pretty awful code for 6122 // small aggregates, particularly for packed ones. 6123 // FIXME: It would be preferable to use the slot in the 6124 // parameter save area instead of a new local variable. 6125 SDValue AddPtr = PtrOff; 6126 if (!isLittleEndian) { 6127 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6128 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6129 } 6130 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6131 CallSeqStart, 6132 Flags, DAG, dl); 6133 6134 // Load the slot into the register. 6135 SDValue Load = 6136 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6137 MemOpChains.push_back(Load.getValue(1)); 6138 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6139 6140 // Done with this argument. 6141 ArgOffset += PtrByteSize; 6142 continue; 6143 } 6144 6145 // For aggregates larger than PtrByteSize, copy the pieces of the 6146 // object that fit into registers from the parameter save area. 6147 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6148 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6149 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6150 if (GPR_idx != NumGPRs) { 6151 SDValue Load = 6152 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6153 MemOpChains.push_back(Load.getValue(1)); 6154 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6155 ArgOffset += PtrByteSize; 6156 } else { 6157 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6158 break; 6159 } 6160 } 6161 continue; 6162 } 6163 6164 switch (Arg.getSimpleValueType().SimpleTy) { 6165 default: llvm_unreachable("Unexpected ValueType for argument!"); 6166 case MVT::i1: 6167 case MVT::i32: 6168 case MVT::i64: 6169 if (Flags.isNest()) { 6170 // The 'nest' parameter, if any, is passed in R11. 6171 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6172 break; 6173 } 6174 6175 // These can be scalar arguments or elements of an integer array type 6176 // passed directly. Clang may use those instead of "byval" aggregate 6177 // types to avoid forcing arguments to memory unnecessarily. 6178 if (GPR_idx != NumGPRs) { 6179 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6180 } else { 6181 if (IsFastCall) 6182 ComputePtrOff(); 6183 6184 assert(HasParameterArea && 6185 "Parameter area must exist to pass an argument in memory."); 6186 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6187 true, CFlags.IsTailCall, false, MemOpChains, 6188 TailCallArguments, dl); 6189 if (IsFastCall) 6190 ArgOffset += PtrByteSize; 6191 } 6192 if (!IsFastCall) 6193 ArgOffset += PtrByteSize; 6194 break; 6195 case MVT::f32: 6196 case MVT::f64: { 6197 // These can be scalar arguments or elements of a float array type 6198 // passed directly. The latter are used to implement ELFv2 homogenous 6199 // float aggregates. 6200 6201 // Named arguments go into FPRs first, and once they overflow, the 6202 // remaining arguments go into GPRs and then the parameter save area. 6203 // Unnamed arguments for vararg functions always go to GPRs and 6204 // then the parameter save area. For now, put all arguments to vararg 6205 // routines always in both locations (FPR *and* GPR or stack slot). 6206 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6207 bool NeededLoad = false; 6208 6209 // First load the argument into the next available FPR. 6210 if (FPR_idx != NumFPRs) 6211 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6212 6213 // Next, load the argument into GPR or stack slot if needed. 6214 if (!NeedGPROrStack) 6215 ; 6216 else if (GPR_idx != NumGPRs && !IsFastCall) { 6217 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6218 // once we support fp <-> gpr moves. 6219 6220 // In the non-vararg case, this can only ever happen in the 6221 // presence of f32 array types, since otherwise we never run 6222 // out of FPRs before running out of GPRs. 6223 SDValue ArgVal; 6224 6225 // Double values are always passed in a single GPR. 6226 if (Arg.getValueType() != MVT::f32) { 6227 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6228 6229 // Non-array float values are extended and passed in a GPR. 6230 } else if (!Flags.isInConsecutiveRegs()) { 6231 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6232 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6233 6234 // If we have an array of floats, we collect every odd element 6235 // together with its predecessor into one GPR. 6236 } else if (ArgOffset % PtrByteSize != 0) { 6237 SDValue Lo, Hi; 6238 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6239 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6240 if (!isLittleEndian) 6241 std::swap(Lo, Hi); 6242 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6243 6244 // The final element, if even, goes into the first half of a GPR. 6245 } else if (Flags.isInConsecutiveRegsLast()) { 6246 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6247 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6248 if (!isLittleEndian) 6249 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6250 DAG.getConstant(32, dl, MVT::i32)); 6251 6252 // Non-final even elements are skipped; they will be handled 6253 // together the with subsequent argument on the next go-around. 6254 } else 6255 ArgVal = SDValue(); 6256 6257 if (ArgVal.getNode()) 6258 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6259 } else { 6260 if (IsFastCall) 6261 ComputePtrOff(); 6262 6263 // Single-precision floating-point values are mapped to the 6264 // second (rightmost) word of the stack doubleword. 6265 if (Arg.getValueType() == MVT::f32 && 6266 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6267 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6268 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6269 } 6270 6271 assert(HasParameterArea && 6272 "Parameter area must exist to pass an argument in memory."); 6273 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6274 true, CFlags.IsTailCall, false, MemOpChains, 6275 TailCallArguments, dl); 6276 6277 NeededLoad = true; 6278 } 6279 // When passing an array of floats, the array occupies consecutive 6280 // space in the argument area; only round up to the next doubleword 6281 // at the end of the array. Otherwise, each float takes 8 bytes. 6282 if (!IsFastCall || NeededLoad) { 6283 ArgOffset += (Arg.getValueType() == MVT::f32 && 6284 Flags.isInConsecutiveRegs()) ? 4 : 8; 6285 if (Flags.isInConsecutiveRegsLast()) 6286 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6287 } 6288 break; 6289 } 6290 case MVT::v4f32: 6291 case MVT::v4i32: 6292 case MVT::v8i16: 6293 case MVT::v16i8: 6294 case MVT::v2f64: 6295 case MVT::v2i64: 6296 case MVT::v1i128: 6297 case MVT::f128: 6298 // These can be scalar arguments or elements of a vector array type 6299 // passed directly. The latter are used to implement ELFv2 homogenous 6300 // vector aggregates. 6301 6302 // For a varargs call, named arguments go into VRs or on the stack as 6303 // usual; unnamed arguments always go to the stack or the corresponding 6304 // GPRs when within range. For now, we always put the value in both 6305 // locations (or even all three). 6306 if (CFlags.IsVarArg) { 6307 assert(HasParameterArea && 6308 "Parameter area must exist if we have a varargs call."); 6309 // We could elide this store in the case where the object fits 6310 // entirely in R registers. Maybe later. 6311 SDValue Store = 6312 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6313 MemOpChains.push_back(Store); 6314 if (VR_idx != NumVRs) { 6315 SDValue Load = 6316 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6317 MemOpChains.push_back(Load.getValue(1)); 6318 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6319 } 6320 ArgOffset += 16; 6321 for (unsigned i=0; i<16; i+=PtrByteSize) { 6322 if (GPR_idx == NumGPRs) 6323 break; 6324 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6325 DAG.getConstant(i, dl, PtrVT)); 6326 SDValue Load = 6327 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6328 MemOpChains.push_back(Load.getValue(1)); 6329 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6330 } 6331 break; 6332 } 6333 6334 // Non-varargs Altivec params go into VRs or on the stack. 6335 if (VR_idx != NumVRs) { 6336 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6337 } else { 6338 if (IsFastCall) 6339 ComputePtrOff(); 6340 6341 assert(HasParameterArea && 6342 "Parameter area must exist to pass an argument in memory."); 6343 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6344 true, CFlags.IsTailCall, true, MemOpChains, 6345 TailCallArguments, dl); 6346 if (IsFastCall) 6347 ArgOffset += 16; 6348 } 6349 6350 if (!IsFastCall) 6351 ArgOffset += 16; 6352 break; 6353 } 6354 } 6355 6356 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6357 "mismatch in size of parameter area"); 6358 (void)NumBytesActuallyUsed; 6359 6360 if (!MemOpChains.empty()) 6361 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6362 6363 // Check if this is an indirect call (MTCTR/BCTRL). 6364 // See prepareDescriptorIndirectCall and buildCallOperands for more 6365 // information about calls through function pointers in the 64-bit SVR4 ABI. 6366 if (CFlags.IsIndirect) { 6367 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6368 // caller in the TOC save area. 6369 if (isTOCSaveRestoreRequired(Subtarget)) { 6370 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6371 // Load r2 into a virtual register and store it to the TOC save area. 6372 setUsesTOCBasePtr(DAG); 6373 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6374 // TOC save area offset. 6375 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6376 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6377 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6378 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6379 MachinePointerInfo::getStack( 6380 DAG.getMachineFunction(), TOCSaveOffset)); 6381 } 6382 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6383 // This does not mean the MTCTR instruction must use R12; it's easier 6384 // to model this as an extra parameter, so do that. 6385 if (isELFv2ABI && !CFlags.IsPatchPoint) 6386 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6387 } 6388 6389 // Build a sequence of copy-to-reg nodes chained together with token chain 6390 // and flag operands which copy the outgoing args into the appropriate regs. 6391 SDValue InFlag; 6392 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6393 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6394 RegsToPass[i].second, InFlag); 6395 InFlag = Chain.getValue(1); 6396 } 6397 6398 if (CFlags.IsTailCall && !IsSibCall) 6399 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6400 TailCallArguments); 6401 6402 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6403 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6404 } 6405 6406 SDValue PPCTargetLowering::LowerCall_Darwin( 6407 SDValue Chain, SDValue Callee, CallFlags CFlags, 6408 const SmallVectorImpl<ISD::OutputArg> &Outs, 6409 const SmallVectorImpl<SDValue> &OutVals, 6410 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6411 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6412 const CallBase *CB) const { 6413 unsigned NumOps = Outs.size(); 6414 6415 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6416 bool isPPC64 = PtrVT == MVT::i64; 6417 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6418 6419 MachineFunction &MF = DAG.getMachineFunction(); 6420 6421 // Mark this function as potentially containing a function that contains a 6422 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6423 // and restoring the callers stack pointer in this functions epilog. This is 6424 // done because by tail calling the called function might overwrite the value 6425 // in this function's (MF) stack pointer stack slot 0(SP). 6426 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6427 CFlags.CallConv == CallingConv::Fast) 6428 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6429 6430 // Count how many bytes are to be pushed on the stack, including the linkage 6431 // area, and parameter passing area. We start with 24/48 bytes, which is 6432 // prereserved space for [SP][CR][LR][3 x unused]. 6433 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6434 unsigned NumBytes = LinkageSize; 6435 6436 // Add up all the space actually used. 6437 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6438 // they all go in registers, but we must reserve stack space for them for 6439 // possible use by the caller. In varargs or 64-bit calls, parameters are 6440 // assigned stack space in order, with padding so Altivec parameters are 6441 // 16-byte aligned. 6442 unsigned nAltivecParamsAtEnd = 0; 6443 for (unsigned i = 0; i != NumOps; ++i) { 6444 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6445 EVT ArgVT = Outs[i].VT; 6446 // Varargs Altivec parameters are padded to a 16 byte boundary. 6447 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6448 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6449 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6450 if (!CFlags.IsVarArg && !isPPC64) { 6451 // Non-varargs Altivec parameters go after all the non-Altivec 6452 // parameters; handle those later so we know how much padding we need. 6453 nAltivecParamsAtEnd++; 6454 continue; 6455 } 6456 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6457 NumBytes = ((NumBytes+15)/16)*16; 6458 } 6459 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6460 } 6461 6462 // Allow for Altivec parameters at the end, if needed. 6463 if (nAltivecParamsAtEnd) { 6464 NumBytes = ((NumBytes+15)/16)*16; 6465 NumBytes += 16*nAltivecParamsAtEnd; 6466 } 6467 6468 // The prolog code of the callee may store up to 8 GPR argument registers to 6469 // the stack, allowing va_start to index over them in memory if its varargs. 6470 // Because we cannot tell if this is needed on the caller side, we have to 6471 // conservatively assume that it is needed. As such, make sure we have at 6472 // least enough stack space for the caller to store the 8 GPRs. 6473 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6474 6475 // Tail call needs the stack to be aligned. 6476 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6477 CFlags.CallConv == CallingConv::Fast) 6478 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6479 6480 // Calculate by how many bytes the stack has to be adjusted in case of tail 6481 // call optimization. 6482 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6483 6484 // To protect arguments on the stack from being clobbered in a tail call, 6485 // force all the loads to happen before doing any other lowering. 6486 if (CFlags.IsTailCall) 6487 Chain = DAG.getStackArgumentTokenFactor(Chain); 6488 6489 // Adjust the stack pointer for the new arguments... 6490 // These operations are automatically eliminated by the prolog/epilog pass 6491 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6492 SDValue CallSeqStart = Chain; 6493 6494 // Load the return address and frame pointer so it can be move somewhere else 6495 // later. 6496 SDValue LROp, FPOp; 6497 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6498 6499 // Set up a copy of the stack pointer for use loading and storing any 6500 // arguments that may not fit in the registers available for argument 6501 // passing. 6502 SDValue StackPtr; 6503 if (isPPC64) 6504 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6505 else 6506 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6507 6508 // Figure out which arguments are going to go in registers, and which in 6509 // memory. Also, if this is a vararg function, floating point operations 6510 // must be stored to our stack, and loaded into integer regs as well, if 6511 // any integer regs are available for argument passing. 6512 unsigned ArgOffset = LinkageSize; 6513 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6514 6515 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6516 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6517 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6518 }; 6519 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6520 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6521 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6522 }; 6523 static const MCPhysReg VR[] = { 6524 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6525 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6526 }; 6527 const unsigned NumGPRs = array_lengthof(GPR_32); 6528 const unsigned NumFPRs = 13; 6529 const unsigned NumVRs = array_lengthof(VR); 6530 6531 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6532 6533 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6534 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6535 6536 SmallVector<SDValue, 8> MemOpChains; 6537 for (unsigned i = 0; i != NumOps; ++i) { 6538 SDValue Arg = OutVals[i]; 6539 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6540 6541 // PtrOff will be used to store the current argument to the stack if a 6542 // register cannot be found for it. 6543 SDValue PtrOff; 6544 6545 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6546 6547 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6548 6549 // On PPC64, promote integers to 64-bit values. 6550 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6551 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6552 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6553 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6554 } 6555 6556 // FIXME memcpy is used way more than necessary. Correctness first. 6557 // Note: "by value" is code for passing a structure by value, not 6558 // basic types. 6559 if (Flags.isByVal()) { 6560 unsigned Size = Flags.getByValSize(); 6561 // Very small objects are passed right-justified. Everything else is 6562 // passed left-justified. 6563 if (Size==1 || Size==2) { 6564 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6565 if (GPR_idx != NumGPRs) { 6566 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6567 MachinePointerInfo(), VT); 6568 MemOpChains.push_back(Load.getValue(1)); 6569 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6570 6571 ArgOffset += PtrByteSize; 6572 } else { 6573 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6574 PtrOff.getValueType()); 6575 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6576 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6577 CallSeqStart, 6578 Flags, DAG, dl); 6579 ArgOffset += PtrByteSize; 6580 } 6581 continue; 6582 } 6583 // Copy entire object into memory. There are cases where gcc-generated 6584 // code assumes it is there, even if it could be put entirely into 6585 // registers. (This is not what the doc says.) 6586 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6587 CallSeqStart, 6588 Flags, DAG, dl); 6589 6590 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6591 // copy the pieces of the object that fit into registers from the 6592 // parameter save area. 6593 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6594 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6595 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6596 if (GPR_idx != NumGPRs) { 6597 SDValue Load = 6598 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6599 MemOpChains.push_back(Load.getValue(1)); 6600 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6601 ArgOffset += PtrByteSize; 6602 } else { 6603 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6604 break; 6605 } 6606 } 6607 continue; 6608 } 6609 6610 switch (Arg.getSimpleValueType().SimpleTy) { 6611 default: llvm_unreachable("Unexpected ValueType for argument!"); 6612 case MVT::i1: 6613 case MVT::i32: 6614 case MVT::i64: 6615 if (GPR_idx != NumGPRs) { 6616 if (Arg.getValueType() == MVT::i1) 6617 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6618 6619 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6620 } else { 6621 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6622 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6623 TailCallArguments, dl); 6624 } 6625 ArgOffset += PtrByteSize; 6626 break; 6627 case MVT::f32: 6628 case MVT::f64: 6629 if (FPR_idx != NumFPRs) { 6630 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6631 6632 if (CFlags.IsVarArg) { 6633 SDValue Store = 6634 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6635 MemOpChains.push_back(Store); 6636 6637 // Float varargs are always shadowed in available integer registers 6638 if (GPR_idx != NumGPRs) { 6639 SDValue Load = 6640 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6641 MemOpChains.push_back(Load.getValue(1)); 6642 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6643 } 6644 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6645 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6646 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6647 SDValue Load = 6648 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6649 MemOpChains.push_back(Load.getValue(1)); 6650 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6651 } 6652 } else { 6653 // If we have any FPRs remaining, we may also have GPRs remaining. 6654 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6655 // GPRs. 6656 if (GPR_idx != NumGPRs) 6657 ++GPR_idx; 6658 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6659 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6660 ++GPR_idx; 6661 } 6662 } else 6663 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6664 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6665 TailCallArguments, dl); 6666 if (isPPC64) 6667 ArgOffset += 8; 6668 else 6669 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6670 break; 6671 case MVT::v4f32: 6672 case MVT::v4i32: 6673 case MVT::v8i16: 6674 case MVT::v16i8: 6675 if (CFlags.IsVarArg) { 6676 // These go aligned on the stack, or in the corresponding R registers 6677 // when within range. The Darwin PPC ABI doc claims they also go in 6678 // V registers; in fact gcc does this only for arguments that are 6679 // prototyped, not for those that match the ... We do it for all 6680 // arguments, seems to work. 6681 while (ArgOffset % 16 !=0) { 6682 ArgOffset += PtrByteSize; 6683 if (GPR_idx != NumGPRs) 6684 GPR_idx++; 6685 } 6686 // We could elide this store in the case where the object fits 6687 // entirely in R registers. Maybe later. 6688 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6689 DAG.getConstant(ArgOffset, dl, PtrVT)); 6690 SDValue Store = 6691 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6692 MemOpChains.push_back(Store); 6693 if (VR_idx != NumVRs) { 6694 SDValue Load = 6695 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6696 MemOpChains.push_back(Load.getValue(1)); 6697 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6698 } 6699 ArgOffset += 16; 6700 for (unsigned i=0; i<16; i+=PtrByteSize) { 6701 if (GPR_idx == NumGPRs) 6702 break; 6703 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6704 DAG.getConstant(i, dl, PtrVT)); 6705 SDValue Load = 6706 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6707 MemOpChains.push_back(Load.getValue(1)); 6708 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6709 } 6710 break; 6711 } 6712 6713 // Non-varargs Altivec params generally go in registers, but have 6714 // stack space allocated at the end. 6715 if (VR_idx != NumVRs) { 6716 // Doesn't have GPR space allocated. 6717 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6718 } else if (nAltivecParamsAtEnd==0) { 6719 // We are emitting Altivec params in order. 6720 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6721 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6722 TailCallArguments, dl); 6723 ArgOffset += 16; 6724 } 6725 break; 6726 } 6727 } 6728 // If all Altivec parameters fit in registers, as they usually do, 6729 // they get stack space following the non-Altivec parameters. We 6730 // don't track this here because nobody below needs it. 6731 // If there are more Altivec parameters than fit in registers emit 6732 // the stores here. 6733 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6734 unsigned j = 0; 6735 // Offset is aligned; skip 1st 12 params which go in V registers. 6736 ArgOffset = ((ArgOffset+15)/16)*16; 6737 ArgOffset += 12*16; 6738 for (unsigned i = 0; i != NumOps; ++i) { 6739 SDValue Arg = OutVals[i]; 6740 EVT ArgType = Outs[i].VT; 6741 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6742 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6743 if (++j > NumVRs) { 6744 SDValue PtrOff; 6745 // We are emitting Altivec params in order. 6746 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6747 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6748 TailCallArguments, dl); 6749 ArgOffset += 16; 6750 } 6751 } 6752 } 6753 } 6754 6755 if (!MemOpChains.empty()) 6756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6757 6758 // On Darwin, R12 must contain the address of an indirect callee. This does 6759 // not mean the MTCTR instruction must use R12; it's easier to model this as 6760 // an extra parameter, so do that. 6761 if (CFlags.IsIndirect) { 6762 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6763 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6764 PPC::R12), Callee)); 6765 } 6766 6767 // Build a sequence of copy-to-reg nodes chained together with token chain 6768 // and flag operands which copy the outgoing args into the appropriate regs. 6769 SDValue InFlag; 6770 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6771 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6772 RegsToPass[i].second, InFlag); 6773 InFlag = Chain.getValue(1); 6774 } 6775 6776 if (CFlags.IsTailCall) 6777 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6778 TailCallArguments); 6779 6780 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6781 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6782 } 6783 6784 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6785 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6786 CCState &State) { 6787 6788 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6789 State.getMachineFunction().getSubtarget()); 6790 const bool IsPPC64 = Subtarget.isPPC64(); 6791 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6792 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6793 6794 assert((!ValVT.isInteger() || 6795 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6796 "Integer argument exceeds register size: should have been legalized"); 6797 6798 if (ValVT == MVT::f128) 6799 report_fatal_error("f128 is unimplemented on AIX."); 6800 6801 if (ArgFlags.isNest()) 6802 report_fatal_error("Nest arguments are unimplemented."); 6803 6804 if (ValVT.isVector() || LocVT.isVector()) 6805 report_fatal_error("Vector arguments are unimplemented on AIX."); 6806 6807 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6808 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6809 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6810 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6811 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6812 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6813 6814 if (ArgFlags.isByVal()) { 6815 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6816 report_fatal_error("Pass-by-value arguments with alignment greater than " 6817 "register width are not supported."); 6818 6819 const unsigned ByValSize = ArgFlags.getByValSize(); 6820 6821 // An empty aggregate parameter takes up no storage and no registers, 6822 // but needs a MemLoc for a stack slot for the formal arguments side. 6823 if (ByValSize == 0) { 6824 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6825 State.getNextStackOffset(), RegVT, 6826 LocInfo)); 6827 return false; 6828 } 6829 6830 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6831 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6832 for (const unsigned E = Offset + StackSize; Offset < E; 6833 Offset += PtrAlign.value()) { 6834 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6835 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6836 else { 6837 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6838 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6839 LocInfo)); 6840 break; 6841 } 6842 } 6843 return false; 6844 } 6845 6846 // Arguments always reserve parameter save area. 6847 switch (ValVT.SimpleTy) { 6848 default: 6849 report_fatal_error("Unhandled value type for argument."); 6850 case MVT::i64: 6851 // i64 arguments should have been split to i32 for PPC32. 6852 assert(IsPPC64 && "PPC32 should have split i64 values."); 6853 LLVM_FALLTHROUGH; 6854 case MVT::i1: 6855 case MVT::i32: { 6856 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6857 // AIX integer arguments are always passed in register width. 6858 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6859 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6860 : CCValAssign::LocInfo::ZExt; 6861 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6862 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6863 else 6864 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6865 6866 return false; 6867 } 6868 case MVT::f32: 6869 case MVT::f64: { 6870 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6871 const unsigned StoreSize = LocVT.getStoreSize(); 6872 // Floats are always 4-byte aligned in the PSA on AIX. 6873 // This includes f64 in 64-bit mode for ABI compatibility. 6874 const unsigned Offset = 6875 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6876 unsigned FReg = State.AllocateReg(FPR); 6877 if (FReg) 6878 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6879 6880 // Reserve and initialize GPRs or initialize the PSA as required. 6881 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6882 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6883 assert(FReg && "An FPR should be available when a GPR is reserved."); 6884 if (State.isVarArg()) { 6885 // Successfully reserved GPRs are only initialized for vararg calls. 6886 // Custom handling is required for: 6887 // f64 in PPC32 needs to be split into 2 GPRs. 6888 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6889 State.addLoc( 6890 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6891 } 6892 } else { 6893 // If there are insufficient GPRs, the PSA needs to be initialized. 6894 // Initialization occurs even if an FPR was initialized for 6895 // compatibility with the AIX XL compiler. The full memory for the 6896 // argument will be initialized even if a prior word is saved in GPR. 6897 // A custom memLoc is used when the argument also passes in FPR so 6898 // that the callee handling can skip over it easily. 6899 State.addLoc( 6900 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6901 LocInfo) 6902 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6903 break; 6904 } 6905 } 6906 6907 return false; 6908 } 6909 } 6910 return true; 6911 } 6912 6913 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6914 bool IsPPC64) { 6915 assert((IsPPC64 || SVT != MVT::i64) && 6916 "i64 should have been split for 32-bit codegen."); 6917 6918 switch (SVT) { 6919 default: 6920 report_fatal_error("Unexpected value type for formal argument"); 6921 case MVT::i1: 6922 case MVT::i32: 6923 case MVT::i64: 6924 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6925 case MVT::f32: 6926 return &PPC::F4RCRegClass; 6927 case MVT::f64: 6928 return &PPC::F8RCRegClass; 6929 } 6930 } 6931 6932 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6933 SelectionDAG &DAG, SDValue ArgValue, 6934 MVT LocVT, const SDLoc &dl) { 6935 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6936 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6937 6938 if (Flags.isSExt()) 6939 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6940 DAG.getValueType(ValVT)); 6941 else if (Flags.isZExt()) 6942 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6943 DAG.getValueType(ValVT)); 6944 6945 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6946 } 6947 6948 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6949 const unsigned LASize = FL->getLinkageSize(); 6950 6951 if (PPC::GPRCRegClass.contains(Reg)) { 6952 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6953 "Reg must be a valid argument register!"); 6954 return LASize + 4 * (Reg - PPC::R3); 6955 } 6956 6957 if (PPC::G8RCRegClass.contains(Reg)) { 6958 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6959 "Reg must be a valid argument register!"); 6960 return LASize + 8 * (Reg - PPC::X3); 6961 } 6962 6963 llvm_unreachable("Only general purpose registers expected."); 6964 } 6965 6966 // AIX ABI Stack Frame Layout: 6967 // 6968 // Low Memory +--------------------------------------------+ 6969 // SP +---> | Back chain | ---+ 6970 // | +--------------------------------------------+ | 6971 // | | Saved Condition Register | | 6972 // | +--------------------------------------------+ | 6973 // | | Saved Linkage Register | | 6974 // | +--------------------------------------------+ | Linkage Area 6975 // | | Reserved for compilers | | 6976 // | +--------------------------------------------+ | 6977 // | | Reserved for binders | | 6978 // | +--------------------------------------------+ | 6979 // | | Saved TOC pointer | ---+ 6980 // | +--------------------------------------------+ 6981 // | | Parameter save area | 6982 // | +--------------------------------------------+ 6983 // | | Alloca space | 6984 // | +--------------------------------------------+ 6985 // | | Local variable space | 6986 // | +--------------------------------------------+ 6987 // | | Float/int conversion temporary | 6988 // | +--------------------------------------------+ 6989 // | | Save area for AltiVec registers | 6990 // | +--------------------------------------------+ 6991 // | | AltiVec alignment padding | 6992 // | +--------------------------------------------+ 6993 // | | Save area for VRSAVE register | 6994 // | +--------------------------------------------+ 6995 // | | Save area for General Purpose registers | 6996 // | +--------------------------------------------+ 6997 // | | Save area for Floating Point registers | 6998 // | +--------------------------------------------+ 6999 // +---- | Back chain | 7000 // High Memory +--------------------------------------------+ 7001 // 7002 // Specifications: 7003 // AIX 7.2 Assembler Language Reference 7004 // Subroutine linkage convention 7005 7006 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7007 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7008 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7009 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7010 7011 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7012 CallConv == CallingConv::Fast) && 7013 "Unexpected calling convention!"); 7014 7015 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7016 report_fatal_error("Tail call support is unimplemented on AIX."); 7017 7018 if (useSoftFloat()) 7019 report_fatal_error("Soft float support is unimplemented on AIX."); 7020 7021 const PPCSubtarget &Subtarget = 7022 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7023 7024 const bool IsPPC64 = Subtarget.isPPC64(); 7025 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7026 7027 // Assign locations to all of the incoming arguments. 7028 SmallVector<CCValAssign, 16> ArgLocs; 7029 MachineFunction &MF = DAG.getMachineFunction(); 7030 MachineFrameInfo &MFI = MF.getFrameInfo(); 7031 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7032 7033 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7034 // Reserve space for the linkage area on the stack. 7035 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7036 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7037 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7038 7039 SmallVector<SDValue, 8> MemOps; 7040 7041 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7042 CCValAssign &VA = ArgLocs[I++]; 7043 MVT LocVT = VA.getLocVT(); 7044 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7045 7046 // For compatibility with the AIX XL compiler, the float args in the 7047 // parameter save area are initialized even if the argument is available 7048 // in register. The caller is required to initialize both the register 7049 // and memory, however, the callee can choose to expect it in either. 7050 // The memloc is dismissed here because the argument is retrieved from 7051 // the register. 7052 if (VA.isMemLoc() && VA.needsCustom()) 7053 continue; 7054 7055 if (Flags.isByVal() && VA.isMemLoc()) { 7056 const unsigned Size = 7057 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7058 PtrByteSize); 7059 const int FI = MF.getFrameInfo().CreateFixedObject( 7060 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7061 /* IsAliased */ true); 7062 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7063 InVals.push_back(FIN); 7064 7065 continue; 7066 } 7067 7068 if (Flags.isByVal()) { 7069 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7070 7071 const MCPhysReg ArgReg = VA.getLocReg(); 7072 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7073 7074 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7075 report_fatal_error("Over aligned byvals not supported yet."); 7076 7077 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7078 const int FI = MF.getFrameInfo().CreateFixedObject( 7079 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7080 /* IsAliased */ true); 7081 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7082 InVals.push_back(FIN); 7083 7084 // Add live ins for all the RegLocs for the same ByVal. 7085 const TargetRegisterClass *RegClass = 7086 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7087 7088 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7089 unsigned Offset) { 7090 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7091 // Since the callers side has left justified the aggregate in the 7092 // register, we can simply store the entire register into the stack 7093 // slot. 7094 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7095 // The store to the fixedstack object is needed becuase accessing a 7096 // field of the ByVal will use a gep and load. Ideally we will optimize 7097 // to extracting the value from the register directly, and elide the 7098 // stores when the arguments address is not taken, but that will need to 7099 // be future work. 7100 SDValue Store = DAG.getStore( 7101 CopyFrom.getValue(1), dl, CopyFrom, 7102 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7103 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7104 7105 MemOps.push_back(Store); 7106 }; 7107 7108 unsigned Offset = 0; 7109 HandleRegLoc(VA.getLocReg(), Offset); 7110 Offset += PtrByteSize; 7111 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7112 Offset += PtrByteSize) { 7113 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7114 "RegLocs should be for ByVal argument."); 7115 7116 const CCValAssign RL = ArgLocs[I++]; 7117 HandleRegLoc(RL.getLocReg(), Offset); 7118 } 7119 7120 if (Offset != StackSize) { 7121 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7122 "Expected MemLoc for remaining bytes."); 7123 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7124 // Consume the MemLoc.The InVal has already been emitted, so nothing 7125 // more needs to be done. 7126 ++I; 7127 } 7128 7129 continue; 7130 } 7131 7132 EVT ValVT = VA.getValVT(); 7133 if (VA.isRegLoc() && !VA.needsCustom()) { 7134 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7135 unsigned VReg = 7136 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7137 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7138 if (ValVT.isScalarInteger() && 7139 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7140 ArgValue = 7141 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7142 } 7143 InVals.push_back(ArgValue); 7144 continue; 7145 } 7146 if (VA.isMemLoc()) { 7147 const unsigned LocSize = LocVT.getStoreSize(); 7148 const unsigned ValSize = ValVT.getStoreSize(); 7149 assert((ValSize <= LocSize) && 7150 "Object size is larger than size of MemLoc"); 7151 int CurArgOffset = VA.getLocMemOffset(); 7152 // Objects are right-justified because AIX is big-endian. 7153 if (LocSize > ValSize) 7154 CurArgOffset += LocSize - ValSize; 7155 // Potential tail calls could cause overwriting of argument stack slots. 7156 const bool IsImmutable = 7157 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7158 (CallConv == CallingConv::Fast)); 7159 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7160 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7161 SDValue ArgValue = 7162 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7163 InVals.push_back(ArgValue); 7164 continue; 7165 } 7166 } 7167 7168 // On AIX a minimum of 8 words is saved to the parameter save area. 7169 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7170 // Area that is at least reserved in the caller of this function. 7171 unsigned CallerReservedArea = 7172 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7173 7174 // Set the size that is at least reserved in caller of this function. Tail 7175 // call optimized function's reserved stack space needs to be aligned so 7176 // that taking the difference between two stack areas will result in an 7177 // aligned stack. 7178 CallerReservedArea = 7179 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7180 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7181 FuncInfo->setMinReservedArea(CallerReservedArea); 7182 7183 if (isVarArg) { 7184 FuncInfo->setVarArgsFrameIndex( 7185 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7186 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7187 7188 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7189 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7190 7191 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7192 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7193 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7194 7195 // The fixed integer arguments of a variadic function are stored to the 7196 // VarArgsFrameIndex on the stack so that they may be loaded by 7197 // dereferencing the result of va_next. 7198 for (unsigned GPRIndex = 7199 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7200 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7201 7202 const unsigned VReg = 7203 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7204 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7205 7206 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7207 SDValue Store = 7208 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7209 MemOps.push_back(Store); 7210 // Increment the address for the next argument to store. 7211 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7212 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7213 } 7214 } 7215 7216 if (!MemOps.empty()) 7217 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7218 7219 return Chain; 7220 } 7221 7222 SDValue PPCTargetLowering::LowerCall_AIX( 7223 SDValue Chain, SDValue Callee, CallFlags CFlags, 7224 const SmallVectorImpl<ISD::OutputArg> &Outs, 7225 const SmallVectorImpl<SDValue> &OutVals, 7226 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7227 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7228 const CallBase *CB) const { 7229 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7230 // AIX ABI stack frame layout. 7231 7232 assert((CFlags.CallConv == CallingConv::C || 7233 CFlags.CallConv == CallingConv::Cold || 7234 CFlags.CallConv == CallingConv::Fast) && 7235 "Unexpected calling convention!"); 7236 7237 if (CFlags.IsPatchPoint) 7238 report_fatal_error("This call type is unimplemented on AIX."); 7239 7240 const PPCSubtarget& Subtarget = 7241 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7242 if (Subtarget.hasAltivec()) 7243 report_fatal_error("Altivec support is unimplemented on AIX."); 7244 7245 MachineFunction &MF = DAG.getMachineFunction(); 7246 SmallVector<CCValAssign, 16> ArgLocs; 7247 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7248 *DAG.getContext()); 7249 7250 // Reserve space for the linkage save area (LSA) on the stack. 7251 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7252 // [SP][CR][LR][2 x reserved][TOC]. 7253 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7254 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7255 const bool IsPPC64 = Subtarget.isPPC64(); 7256 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7257 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7258 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7259 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7260 7261 // The prolog code of the callee may store up to 8 GPR argument registers to 7262 // the stack, allowing va_start to index over them in memory if the callee 7263 // is variadic. 7264 // Because we cannot tell if this is needed on the caller side, we have to 7265 // conservatively assume that it is needed. As such, make sure we have at 7266 // least enough stack space for the caller to store the 8 GPRs. 7267 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7268 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7269 CCInfo.getNextStackOffset()); 7270 7271 // Adjust the stack pointer for the new arguments... 7272 // These operations are automatically eliminated by the prolog/epilog pass. 7273 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7274 SDValue CallSeqStart = Chain; 7275 7276 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7277 SmallVector<SDValue, 8> MemOpChains; 7278 7279 // Set up a copy of the stack pointer for loading and storing any 7280 // arguments that may not fit in the registers available for argument 7281 // passing. 7282 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7283 : DAG.getRegister(PPC::R1, MVT::i32); 7284 7285 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7286 const unsigned ValNo = ArgLocs[I].getValNo(); 7287 SDValue Arg = OutVals[ValNo]; 7288 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7289 7290 if (Flags.isByVal()) { 7291 const unsigned ByValSize = Flags.getByValSize(); 7292 7293 // Nothing to do for zero-sized ByVals on the caller side. 7294 if (!ByValSize) { 7295 ++I; 7296 continue; 7297 } 7298 7299 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7300 return DAG.getExtLoad( 7301 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7302 (LoadOffset != 0) 7303 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7304 : Arg, 7305 MachinePointerInfo(), VT); 7306 }; 7307 7308 unsigned LoadOffset = 0; 7309 7310 // Initialize registers, which are fully occupied by the by-val argument. 7311 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7312 SDValue Load = GetLoad(PtrVT, LoadOffset); 7313 MemOpChains.push_back(Load.getValue(1)); 7314 LoadOffset += PtrByteSize; 7315 const CCValAssign &ByValVA = ArgLocs[I++]; 7316 assert(ByValVA.getValNo() == ValNo && 7317 "Unexpected location for pass-by-value argument."); 7318 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7319 } 7320 7321 if (LoadOffset == ByValSize) 7322 continue; 7323 7324 // There must be one more loc to handle the remainder. 7325 assert(ArgLocs[I].getValNo() == ValNo && 7326 "Expected additional location for by-value argument."); 7327 7328 if (ArgLocs[I].isMemLoc()) { 7329 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7330 const CCValAssign &ByValVA = ArgLocs[I++]; 7331 ISD::ArgFlagsTy MemcpyFlags = Flags; 7332 // Only memcpy the bytes that don't pass in register. 7333 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7334 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7335 (LoadOffset != 0) 7336 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7337 : Arg, 7338 DAG.getObjectPtrOffset(dl, StackPtr, 7339 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7340 CallSeqStart, MemcpyFlags, DAG, dl); 7341 continue; 7342 } 7343 7344 // Initialize the final register residue. 7345 // Any residue that occupies the final by-val arg register must be 7346 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7347 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7348 // 2 and 1 byte loads. 7349 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7350 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7351 "Unexpected register residue for by-value argument."); 7352 SDValue ResidueVal; 7353 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7354 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7355 const MVT VT = 7356 N == 1 ? MVT::i8 7357 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7358 SDValue Load = GetLoad(VT, LoadOffset); 7359 MemOpChains.push_back(Load.getValue(1)); 7360 LoadOffset += N; 7361 Bytes += N; 7362 7363 // By-val arguments are passed left-justfied in register. 7364 // Every load here needs to be shifted, otherwise a full register load 7365 // should have been used. 7366 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7367 "Unexpected load emitted during handling of pass-by-value " 7368 "argument."); 7369 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7370 EVT ShiftAmountTy = 7371 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7372 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7373 SDValue ShiftedLoad = 7374 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7375 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7376 ShiftedLoad) 7377 : ShiftedLoad; 7378 } 7379 7380 const CCValAssign &ByValVA = ArgLocs[I++]; 7381 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7382 continue; 7383 } 7384 7385 CCValAssign &VA = ArgLocs[I++]; 7386 const MVT LocVT = VA.getLocVT(); 7387 const MVT ValVT = VA.getValVT(); 7388 7389 switch (VA.getLocInfo()) { 7390 default: 7391 report_fatal_error("Unexpected argument extension type."); 7392 case CCValAssign::Full: 7393 break; 7394 case CCValAssign::ZExt: 7395 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7396 break; 7397 case CCValAssign::SExt: 7398 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7399 break; 7400 } 7401 7402 if (VA.isRegLoc() && !VA.needsCustom()) { 7403 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7404 continue; 7405 } 7406 7407 if (VA.isMemLoc()) { 7408 SDValue PtrOff = 7409 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7410 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7411 MemOpChains.push_back( 7412 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7413 7414 continue; 7415 } 7416 7417 // Custom handling is used for GPR initializations for vararg float 7418 // arguments. 7419 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7420 ValVT.isFloatingPoint() && LocVT.isInteger() && 7421 "Unexpected register handling for calling convention."); 7422 7423 SDValue ArgAsInt = 7424 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7425 7426 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7427 // f32 in 32-bit GPR 7428 // f64 in 64-bit GPR 7429 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7430 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7431 // f32 in 64-bit GPR. 7432 RegsToPass.push_back(std::make_pair( 7433 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7434 else { 7435 // f64 in two 32-bit GPRs 7436 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7437 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7438 "Unexpected custom register for argument!"); 7439 CCValAssign &GPR1 = VA; 7440 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7441 DAG.getConstant(32, dl, MVT::i8)); 7442 RegsToPass.push_back(std::make_pair( 7443 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7444 7445 if (I != E) { 7446 // If only 1 GPR was available, there will only be one custom GPR and 7447 // the argument will also pass in memory. 7448 CCValAssign &PeekArg = ArgLocs[I]; 7449 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7450 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7451 CCValAssign &GPR2 = ArgLocs[I++]; 7452 RegsToPass.push_back(std::make_pair( 7453 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7454 } 7455 } 7456 } 7457 } 7458 7459 if (!MemOpChains.empty()) 7460 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7461 7462 // For indirect calls, we need to save the TOC base to the stack for 7463 // restoration after the call. 7464 if (CFlags.IsIndirect) { 7465 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7466 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7467 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7468 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7469 const unsigned TOCSaveOffset = 7470 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7471 7472 setUsesTOCBasePtr(DAG); 7473 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7474 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7475 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7476 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7477 Chain = DAG.getStore( 7478 Val.getValue(1), dl, Val, AddPtr, 7479 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7480 } 7481 7482 // Build a sequence of copy-to-reg nodes chained together with token chain 7483 // and flag operands which copy the outgoing args into the appropriate regs. 7484 SDValue InFlag; 7485 for (auto Reg : RegsToPass) { 7486 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7487 InFlag = Chain.getValue(1); 7488 } 7489 7490 const int SPDiff = 0; 7491 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7492 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7493 } 7494 7495 bool 7496 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7497 MachineFunction &MF, bool isVarArg, 7498 const SmallVectorImpl<ISD::OutputArg> &Outs, 7499 LLVMContext &Context) const { 7500 SmallVector<CCValAssign, 16> RVLocs; 7501 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7502 return CCInfo.CheckReturn( 7503 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7504 ? RetCC_PPC_Cold 7505 : RetCC_PPC); 7506 } 7507 7508 SDValue 7509 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7510 bool isVarArg, 7511 const SmallVectorImpl<ISD::OutputArg> &Outs, 7512 const SmallVectorImpl<SDValue> &OutVals, 7513 const SDLoc &dl, SelectionDAG &DAG) const { 7514 SmallVector<CCValAssign, 16> RVLocs; 7515 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7516 *DAG.getContext()); 7517 CCInfo.AnalyzeReturn(Outs, 7518 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7519 ? RetCC_PPC_Cold 7520 : RetCC_PPC); 7521 7522 SDValue Flag; 7523 SmallVector<SDValue, 4> RetOps(1, Chain); 7524 7525 // Copy the result values into the output registers. 7526 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7527 CCValAssign &VA = RVLocs[i]; 7528 assert(VA.isRegLoc() && "Can only return in registers!"); 7529 7530 SDValue Arg = OutVals[RealResIdx]; 7531 7532 switch (VA.getLocInfo()) { 7533 default: llvm_unreachable("Unknown loc info!"); 7534 case CCValAssign::Full: break; 7535 case CCValAssign::AExt: 7536 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7537 break; 7538 case CCValAssign::ZExt: 7539 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7540 break; 7541 case CCValAssign::SExt: 7542 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7543 break; 7544 } 7545 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7546 bool isLittleEndian = Subtarget.isLittleEndian(); 7547 // Legalize ret f64 -> ret 2 x i32. 7548 SDValue SVal = 7549 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7550 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7551 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7552 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7553 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7554 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7555 Flag = Chain.getValue(1); 7556 VA = RVLocs[++i]; // skip ahead to next loc 7557 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7558 } else 7559 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7560 Flag = Chain.getValue(1); 7561 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7562 } 7563 7564 RetOps[0] = Chain; // Update chain. 7565 7566 // Add the flag if we have it. 7567 if (Flag.getNode()) 7568 RetOps.push_back(Flag); 7569 7570 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7571 } 7572 7573 SDValue 7574 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7575 SelectionDAG &DAG) const { 7576 SDLoc dl(Op); 7577 7578 // Get the correct type for integers. 7579 EVT IntVT = Op.getValueType(); 7580 7581 // Get the inputs. 7582 SDValue Chain = Op.getOperand(0); 7583 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7584 // Build a DYNAREAOFFSET node. 7585 SDValue Ops[2] = {Chain, FPSIdx}; 7586 SDVTList VTs = DAG.getVTList(IntVT); 7587 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7588 } 7589 7590 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7591 SelectionDAG &DAG) const { 7592 // When we pop the dynamic allocation we need to restore the SP link. 7593 SDLoc dl(Op); 7594 7595 // Get the correct type for pointers. 7596 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7597 7598 // Construct the stack pointer operand. 7599 bool isPPC64 = Subtarget.isPPC64(); 7600 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7601 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7602 7603 // Get the operands for the STACKRESTORE. 7604 SDValue Chain = Op.getOperand(0); 7605 SDValue SaveSP = Op.getOperand(1); 7606 7607 // Load the old link SP. 7608 SDValue LoadLinkSP = 7609 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7610 7611 // Restore the stack pointer. 7612 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7613 7614 // Store the old link SP. 7615 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7616 } 7617 7618 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7619 MachineFunction &MF = DAG.getMachineFunction(); 7620 bool isPPC64 = Subtarget.isPPC64(); 7621 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7622 7623 // Get current frame pointer save index. The users of this index will be 7624 // primarily DYNALLOC instructions. 7625 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7626 int RASI = FI->getReturnAddrSaveIndex(); 7627 7628 // If the frame pointer save index hasn't been defined yet. 7629 if (!RASI) { 7630 // Find out what the fix offset of the frame pointer save area. 7631 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7632 // Allocate the frame index for frame pointer save area. 7633 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7634 // Save the result. 7635 FI->setReturnAddrSaveIndex(RASI); 7636 } 7637 return DAG.getFrameIndex(RASI, PtrVT); 7638 } 7639 7640 SDValue 7641 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7642 MachineFunction &MF = DAG.getMachineFunction(); 7643 bool isPPC64 = Subtarget.isPPC64(); 7644 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7645 7646 // Get current frame pointer save index. The users of this index will be 7647 // primarily DYNALLOC instructions. 7648 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7649 int FPSI = FI->getFramePointerSaveIndex(); 7650 7651 // If the frame pointer save index hasn't been defined yet. 7652 if (!FPSI) { 7653 // Find out what the fix offset of the frame pointer save area. 7654 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7655 // Allocate the frame index for frame pointer save area. 7656 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7657 // Save the result. 7658 FI->setFramePointerSaveIndex(FPSI); 7659 } 7660 return DAG.getFrameIndex(FPSI, PtrVT); 7661 } 7662 7663 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7664 SelectionDAG &DAG) const { 7665 MachineFunction &MF = DAG.getMachineFunction(); 7666 // Get the inputs. 7667 SDValue Chain = Op.getOperand(0); 7668 SDValue Size = Op.getOperand(1); 7669 SDLoc dl(Op); 7670 7671 // Get the correct type for pointers. 7672 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7673 // Negate the size. 7674 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7675 DAG.getConstant(0, dl, PtrVT), Size); 7676 // Construct a node for the frame pointer save index. 7677 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7678 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7679 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7680 if (hasInlineStackProbe(MF)) 7681 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7682 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7683 } 7684 7685 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7686 SelectionDAG &DAG) const { 7687 MachineFunction &MF = DAG.getMachineFunction(); 7688 7689 bool isPPC64 = Subtarget.isPPC64(); 7690 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7691 7692 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7693 return DAG.getFrameIndex(FI, PtrVT); 7694 } 7695 7696 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7697 SelectionDAG &DAG) const { 7698 SDLoc DL(Op); 7699 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7700 DAG.getVTList(MVT::i32, MVT::Other), 7701 Op.getOperand(0), Op.getOperand(1)); 7702 } 7703 7704 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7705 SelectionDAG &DAG) const { 7706 SDLoc DL(Op); 7707 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7708 Op.getOperand(0), Op.getOperand(1)); 7709 } 7710 7711 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7712 7713 assert(Op.getValueType() == MVT::i1 && 7714 "Custom lowering only for i1 loads"); 7715 7716 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7717 7718 SDLoc dl(Op); 7719 LoadSDNode *LD = cast<LoadSDNode>(Op); 7720 7721 SDValue Chain = LD->getChain(); 7722 SDValue BasePtr = LD->getBasePtr(); 7723 MachineMemOperand *MMO = LD->getMemOperand(); 7724 7725 SDValue NewLD = 7726 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7727 BasePtr, MVT::i8, MMO); 7728 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7729 7730 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7731 return DAG.getMergeValues(Ops, dl); 7732 } 7733 7734 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7735 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7736 "Custom lowering only for i1 stores"); 7737 7738 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7739 7740 SDLoc dl(Op); 7741 StoreSDNode *ST = cast<StoreSDNode>(Op); 7742 7743 SDValue Chain = ST->getChain(); 7744 SDValue BasePtr = ST->getBasePtr(); 7745 SDValue Value = ST->getValue(); 7746 MachineMemOperand *MMO = ST->getMemOperand(); 7747 7748 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7749 Value); 7750 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7751 } 7752 7753 // FIXME: Remove this once the ANDI glue bug is fixed: 7754 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7755 assert(Op.getValueType() == MVT::i1 && 7756 "Custom lowering only for i1 results"); 7757 7758 SDLoc DL(Op); 7759 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7760 } 7761 7762 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7763 SelectionDAG &DAG) const { 7764 7765 // Implements a vector truncate that fits in a vector register as a shuffle. 7766 // We want to legalize vector truncates down to where the source fits in 7767 // a vector register (and target is therefore smaller than vector register 7768 // size). At that point legalization will try to custom lower the sub-legal 7769 // result and get here - where we can contain the truncate as a single target 7770 // operation. 7771 7772 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7773 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7774 // 7775 // We will implement it for big-endian ordering as this (where x denotes 7776 // undefined): 7777 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7778 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7779 // 7780 // The same operation in little-endian ordering will be: 7781 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7782 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7783 7784 assert(Op.getValueType().isVector() && "Vector type expected."); 7785 7786 SDLoc DL(Op); 7787 SDValue N1 = Op.getOperand(0); 7788 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7789 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7790 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7791 7792 EVT TrgVT = Op.getValueType(); 7793 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7794 EVT EltVT = TrgVT.getVectorElementType(); 7795 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7796 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7797 7798 // First list the elements we want to keep. 7799 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7800 SmallVector<int, 16> ShuffV; 7801 if (Subtarget.isLittleEndian()) 7802 for (unsigned i = 0; i < TrgNumElts; ++i) 7803 ShuffV.push_back(i * SizeMult); 7804 else 7805 for (unsigned i = 1; i <= TrgNumElts; ++i) 7806 ShuffV.push_back(i * SizeMult - 1); 7807 7808 // Populate the remaining elements with undefs. 7809 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7810 // ShuffV.push_back(i + WideNumElts); 7811 ShuffV.push_back(WideNumElts + 1); 7812 7813 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7814 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7815 } 7816 7817 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7818 /// possible. 7819 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7820 // Not FP, or using SPE? Not a fsel. 7821 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7822 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7823 return Op; 7824 7825 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7826 7827 EVT ResVT = Op.getValueType(); 7828 EVT CmpVT = Op.getOperand(0).getValueType(); 7829 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7830 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7831 SDLoc dl(Op); 7832 SDNodeFlags Flags = Op.getNode()->getFlags(); 7833 7834 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7835 // presence of infinities. 7836 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7837 switch (CC) { 7838 default: 7839 break; 7840 case ISD::SETOGT: 7841 case ISD::SETGT: 7842 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7843 case ISD::SETOLT: 7844 case ISD::SETLT: 7845 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7846 } 7847 } 7848 7849 // We might be able to do better than this under some circumstances, but in 7850 // general, fsel-based lowering of select is a finite-math-only optimization. 7851 // For more information, see section F.3 of the 2.06 ISA specification. 7852 // With ISA 3.0 7853 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7854 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7855 return Op; 7856 7857 // If the RHS of the comparison is a 0.0, we don't need to do the 7858 // subtraction at all. 7859 SDValue Sel1; 7860 if (isFloatingPointZero(RHS)) 7861 switch (CC) { 7862 default: break; // SETUO etc aren't handled by fsel. 7863 case ISD::SETNE: 7864 std::swap(TV, FV); 7865 LLVM_FALLTHROUGH; 7866 case ISD::SETEQ: 7867 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7868 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7869 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7870 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7871 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7872 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7873 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7874 case ISD::SETULT: 7875 case ISD::SETLT: 7876 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7877 LLVM_FALLTHROUGH; 7878 case ISD::SETOGE: 7879 case ISD::SETGE: 7880 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7881 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7882 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7883 case ISD::SETUGT: 7884 case ISD::SETGT: 7885 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7886 LLVM_FALLTHROUGH; 7887 case ISD::SETOLE: 7888 case ISD::SETLE: 7889 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7890 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7891 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7892 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7893 } 7894 7895 SDValue Cmp; 7896 switch (CC) { 7897 default: break; // SETUO etc aren't handled by fsel. 7898 case ISD::SETNE: 7899 std::swap(TV, FV); 7900 LLVM_FALLTHROUGH; 7901 case ISD::SETEQ: 7902 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7903 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7904 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7905 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7906 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7907 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7908 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7909 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7910 case ISD::SETULT: 7911 case ISD::SETLT: 7912 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7913 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7914 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7915 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7916 case ISD::SETOGE: 7917 case ISD::SETGE: 7918 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7919 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7920 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7921 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7922 case ISD::SETUGT: 7923 case ISD::SETGT: 7924 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7925 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7926 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7927 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7928 case ISD::SETOLE: 7929 case ISD::SETLE: 7930 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7931 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7932 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7933 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7934 } 7935 return Op; 7936 } 7937 7938 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7939 const PPCSubtarget &Subtarget) { 7940 SDLoc dl(Op); 7941 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; 7942 SDValue Src = Op.getOperand(0); 7943 assert(Src.getValueType().isFloatingPoint()); 7944 if (Src.getValueType() == MVT::f32) 7945 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7946 SDValue Conv; 7947 switch (Op.getSimpleValueType().SimpleTy) { 7948 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7949 case MVT::i32: 7950 Conv = DAG.getNode( 7951 IsSigned ? PPCISD::FCTIWZ 7952 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7953 dl, MVT::f64, Src); 7954 break; 7955 case MVT::i64: 7956 assert((IsSigned || Subtarget.hasFPCVT()) && 7957 "i64 FP_TO_UINT is supported only with FPCVT"); 7958 Conv = DAG.getNode(IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ, dl, 7959 MVT::f64, Src); 7960 } 7961 return Conv; 7962 } 7963 7964 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7965 SelectionDAG &DAG, 7966 const SDLoc &dl) const { 7967 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7968 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; 7969 7970 // Convert the FP value to an int value through memory. 7971 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7972 (IsSigned || Subtarget.hasFPCVT()); 7973 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7974 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7975 MachinePointerInfo MPI = 7976 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7977 7978 // Emit a store to the stack slot. 7979 SDValue Chain; 7980 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7981 if (i32Stack) { 7982 MachineFunction &MF = DAG.getMachineFunction(); 7983 Alignment = Align(4); 7984 MachineMemOperand *MMO = 7985 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7986 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7987 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7988 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7989 } else 7990 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 7991 7992 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7993 // add in a bias on big endian. 7994 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7995 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7996 DAG.getConstant(4, dl, FIPtr.getValueType())); 7997 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7998 } 7999 8000 RLI.Chain = Chain; 8001 RLI.Ptr = FIPtr; 8002 RLI.MPI = MPI; 8003 RLI.Alignment = Alignment; 8004 } 8005 8006 /// Custom lowers floating point to integer conversions to use 8007 /// the direct move instructions available in ISA 2.07 to avoid the 8008 /// need for load/store combinations. 8009 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8010 SelectionDAG &DAG, 8011 const SDLoc &dl) const { 8012 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8013 return DAG.getNode(PPCISD::MFVSR, dl, Op.getSimpleValueType().SimpleTy, 8014 convertFPToInt(Op, DAG, Subtarget)); 8015 } 8016 8017 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8018 const SDLoc &dl) const { 8019 SDValue Src = Op.getOperand(0); 8020 // FP to INT conversions are legal for f128. 8021 if (Src.getValueType() == MVT::f128) 8022 return Op; 8023 8024 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8025 // PPC (the libcall is not available). 8026 if (Src.getValueType() == MVT::ppcf128) { 8027 if (Op.getValueType() == MVT::i32) { 8028 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8029 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8030 DAG.getIntPtrConstant(0, dl)); 8031 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8032 DAG.getIntPtrConstant(1, dl)); 8033 8034 // Add the two halves of the long double in round-to-zero mode. 8035 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8036 8037 // Now use a smaller FP_TO_SINT. 8038 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8039 } 8040 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8041 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8042 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8043 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8044 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8045 // FIXME: generated code sucks. 8046 // TODO: Are there fast-math-flags to propagate to this FSUB? 8047 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Tmp); 8048 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8049 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8050 DAG.getConstant(0x80000000, dl, MVT::i32)); 8051 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8052 return DAG.getSelectCC(dl, Src, Tmp, True, False, ISD::SETGE); 8053 } 8054 } 8055 8056 return SDValue(); 8057 } 8058 8059 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8060 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8061 8062 ReuseLoadInfo RLI; 8063 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8064 8065 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8066 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8067 } 8068 8069 // We're trying to insert a regular store, S, and then a load, L. If the 8070 // incoming value, O, is a load, we might just be able to have our load use the 8071 // address used by O. However, we don't know if anything else will store to 8072 // that address before we can load from it. To prevent this situation, we need 8073 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8074 // the same chain operand as O, we create a token factor from the chain results 8075 // of O and L, and we replace all uses of O's chain result with that token 8076 // factor (see spliceIntoChain below for this last part). 8077 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8078 ReuseLoadInfo &RLI, 8079 SelectionDAG &DAG, 8080 ISD::LoadExtType ET) const { 8081 SDLoc dl(Op); 8082 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8083 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8084 if (ET == ISD::NON_EXTLOAD && 8085 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8086 isOperationLegalOrCustom(Op.getOpcode(), 8087 Op.getOperand(0).getValueType())) { 8088 8089 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8090 return true; 8091 } 8092 8093 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8094 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8095 LD->isNonTemporal()) 8096 return false; 8097 if (LD->getMemoryVT() != MemVT) 8098 return false; 8099 8100 RLI.Ptr = LD->getBasePtr(); 8101 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8102 assert(LD->getAddressingMode() == ISD::PRE_INC && 8103 "Non-pre-inc AM on PPC?"); 8104 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8105 LD->getOffset()); 8106 } 8107 8108 RLI.Chain = LD->getChain(); 8109 RLI.MPI = LD->getPointerInfo(); 8110 RLI.IsDereferenceable = LD->isDereferenceable(); 8111 RLI.IsInvariant = LD->isInvariant(); 8112 RLI.Alignment = LD->getAlign(); 8113 RLI.AAInfo = LD->getAAInfo(); 8114 RLI.Ranges = LD->getRanges(); 8115 8116 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8117 return true; 8118 } 8119 8120 // Given the head of the old chain, ResChain, insert a token factor containing 8121 // it and NewResChain, and make users of ResChain now be users of that token 8122 // factor. 8123 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8124 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8125 SDValue NewResChain, 8126 SelectionDAG &DAG) const { 8127 if (!ResChain) 8128 return; 8129 8130 SDLoc dl(NewResChain); 8131 8132 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8133 NewResChain, DAG.getUNDEF(MVT::Other)); 8134 assert(TF.getNode() != NewResChain.getNode() && 8135 "A new TF really is required here"); 8136 8137 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8138 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8139 } 8140 8141 /// Analyze profitability of direct move 8142 /// prefer float load to int load plus direct move 8143 /// when there is no integer use of int load 8144 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8145 SDNode *Origin = Op.getOperand(0).getNode(); 8146 if (Origin->getOpcode() != ISD::LOAD) 8147 return true; 8148 8149 // If there is no LXSIBZX/LXSIHZX, like Power8, 8150 // prefer direct move if the memory size is 1 or 2 bytes. 8151 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8152 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8153 return true; 8154 8155 for (SDNode::use_iterator UI = Origin->use_begin(), 8156 UE = Origin->use_end(); 8157 UI != UE; ++UI) { 8158 8159 // Only look at the users of the loaded value. 8160 if (UI.getUse().get().getResNo() != 0) 8161 continue; 8162 8163 if (UI->getOpcode() != ISD::SINT_TO_FP && 8164 UI->getOpcode() != ISD::UINT_TO_FP) 8165 return true; 8166 } 8167 8168 return false; 8169 } 8170 8171 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8172 const PPCSubtarget &Subtarget) { 8173 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; 8174 SDLoc dl(Op); 8175 // If we have FCFIDS, then use it when converting to single-precision. 8176 // Otherwise, convert to double-precision and then round. 8177 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8178 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8179 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8180 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8181 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8182 } 8183 8184 /// Custom lowers integer to floating point conversions to use 8185 /// the direct move instructions available in ISA 2.07 to avoid the 8186 /// need for load/store combinations. 8187 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8188 SelectionDAG &DAG, 8189 const SDLoc &dl) const { 8190 assert((Op.getValueType() == MVT::f32 || 8191 Op.getValueType() == MVT::f64) && 8192 "Invalid floating point type as target of conversion"); 8193 assert(Subtarget.hasFPCVT() && 8194 "Int to FP conversions with direct moves require FPCVT"); 8195 SDValue Src = Op.getOperand(0); 8196 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8197 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8198 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8199 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8200 return convertIntToFP(Op, Mov, DAG, Subtarget); 8201 } 8202 8203 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8204 8205 EVT VecVT = Vec.getValueType(); 8206 assert(VecVT.isVector() && "Expected a vector type."); 8207 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8208 8209 EVT EltVT = VecVT.getVectorElementType(); 8210 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8211 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8212 8213 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8214 SmallVector<SDValue, 16> Ops(NumConcat); 8215 Ops[0] = Vec; 8216 SDValue UndefVec = DAG.getUNDEF(VecVT); 8217 for (unsigned i = 1; i < NumConcat; ++i) 8218 Ops[i] = UndefVec; 8219 8220 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8221 } 8222 8223 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8224 const SDLoc &dl) const { 8225 8226 unsigned Opc = Op.getOpcode(); 8227 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8228 "Unexpected conversion type"); 8229 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8230 "Supports conversions to v2f64/v4f32 only."); 8231 8232 bool SignedConv = Opc == ISD::SINT_TO_FP; 8233 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8234 8235 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8236 EVT WideVT = Wide.getValueType(); 8237 unsigned WideNumElts = WideVT.getVectorNumElements(); 8238 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8239 8240 SmallVector<int, 16> ShuffV; 8241 for (unsigned i = 0; i < WideNumElts; ++i) 8242 ShuffV.push_back(i + WideNumElts); 8243 8244 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8245 int SaveElts = FourEltRes ? 4 : 2; 8246 if (Subtarget.isLittleEndian()) 8247 for (int i = 0; i < SaveElts; i++) 8248 ShuffV[i * Stride] = i; 8249 else 8250 for (int i = 1; i <= SaveElts; i++) 8251 ShuffV[i * Stride - 1] = i - 1; 8252 8253 SDValue ShuffleSrc2 = 8254 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8255 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8256 8257 SDValue Extend; 8258 if (SignedConv) { 8259 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8260 EVT ExtVT = Op.getOperand(0).getValueType(); 8261 if (Subtarget.hasP9Altivec()) 8262 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8263 IntermediateVT.getVectorNumElements()); 8264 8265 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8266 DAG.getValueType(ExtVT)); 8267 } else 8268 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8269 8270 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8271 } 8272 8273 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8274 SelectionDAG &DAG) const { 8275 SDLoc dl(Op); 8276 SDValue Src = Op.getOperand(0); 8277 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; 8278 8279 EVT InVT = Src.getValueType(); 8280 EVT OutVT = Op.getValueType(); 8281 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8282 isOperationCustom(Op.getOpcode(), InVT)) 8283 return LowerINT_TO_FPVector(Op, DAG, dl); 8284 8285 // Conversions to f128 are legal. 8286 if (Op.getValueType() == MVT::f128) 8287 return Op; 8288 8289 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8290 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8291 return SDValue(); 8292 8293 if (Src.getValueType() == MVT::i1) 8294 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8295 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8296 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8297 8298 // If we have direct moves, we can do all the conversion, skip the store/load 8299 // however, without FPCVT we can't do most conversions. 8300 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8301 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8302 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8303 8304 assert((IsSigned || Subtarget.hasFPCVT()) && 8305 "UINT_TO_FP is supported only with FPCVT"); 8306 8307 if (Src.getValueType() == MVT::i64) { 8308 SDValue SINT = Src; 8309 // When converting to single-precision, we actually need to convert 8310 // to double-precision first and then round to single-precision. 8311 // To avoid double-rounding effects during that operation, we have 8312 // to prepare the input operand. Bits that might be truncated when 8313 // converting to double-precision are replaced by a bit that won't 8314 // be lost at this stage, but is below the single-precision rounding 8315 // position. 8316 // 8317 // However, if -enable-unsafe-fp-math is in effect, accept double 8318 // rounding to avoid the extra overhead. 8319 if (Op.getValueType() == MVT::f32 && 8320 !Subtarget.hasFPCVT() && 8321 !DAG.getTarget().Options.UnsafeFPMath) { 8322 8323 // Twiddle input to make sure the low 11 bits are zero. (If this 8324 // is the case, we are guaranteed the value will fit into the 53 bit 8325 // mantissa of an IEEE double-precision value without rounding.) 8326 // If any of those low 11 bits were not zero originally, make sure 8327 // bit 12 (value 2048) is set instead, so that the final rounding 8328 // to single-precision gets the correct result. 8329 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8330 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8331 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8332 Round, DAG.getConstant(2047, dl, MVT::i64)); 8333 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8334 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8335 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8336 8337 // However, we cannot use that value unconditionally: if the magnitude 8338 // of the input value is small, the bit-twiddling we did above might 8339 // end up visibly changing the output. Fortunately, in that case, we 8340 // don't need to twiddle bits since the original input will convert 8341 // exactly to double-precision floating-point already. Therefore, 8342 // construct a conditional to use the original value if the top 11 8343 // bits are all sign-bit copies, and use the rounded value computed 8344 // above otherwise. 8345 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8346 SINT, DAG.getConstant(53, dl, MVT::i32)); 8347 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8348 Cond, DAG.getConstant(1, dl, MVT::i64)); 8349 Cond = DAG.getSetCC( 8350 dl, 8351 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8352 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8353 8354 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8355 } 8356 8357 ReuseLoadInfo RLI; 8358 SDValue Bits; 8359 8360 MachineFunction &MF = DAG.getMachineFunction(); 8361 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8362 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8363 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8364 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8365 } else if (Subtarget.hasLFIWAX() && 8366 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8367 MachineMemOperand *MMO = 8368 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8369 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8370 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8371 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8372 DAG.getVTList(MVT::f64, MVT::Other), 8373 Ops, MVT::i32, MMO); 8374 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8375 } else if (Subtarget.hasFPCVT() && 8376 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8377 MachineMemOperand *MMO = 8378 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8379 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8380 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8381 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8382 DAG.getVTList(MVT::f64, MVT::Other), 8383 Ops, MVT::i32, MMO); 8384 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8385 } else if (((Subtarget.hasLFIWAX() && 8386 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8387 (Subtarget.hasFPCVT() && 8388 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8389 SINT.getOperand(0).getValueType() == MVT::i32) { 8390 MachineFrameInfo &MFI = MF.getFrameInfo(); 8391 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8392 8393 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8394 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8395 8396 SDValue Store = 8397 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8398 MachinePointerInfo::getFixedStack( 8399 DAG.getMachineFunction(), FrameIdx)); 8400 8401 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8402 "Expected an i32 store"); 8403 8404 RLI.Ptr = FIdx; 8405 RLI.Chain = Store; 8406 RLI.MPI = 8407 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8408 RLI.Alignment = Align(4); 8409 8410 MachineMemOperand *MMO = 8411 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8412 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8413 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8414 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8415 PPCISD::LFIWZX : PPCISD::LFIWAX, 8416 dl, DAG.getVTList(MVT::f64, MVT::Other), 8417 Ops, MVT::i32, MMO); 8418 } else 8419 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8420 8421 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget); 8422 8423 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8424 FP = DAG.getNode(ISD::FP_ROUND, dl, 8425 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8426 return FP; 8427 } 8428 8429 assert(Src.getValueType() == MVT::i32 && 8430 "Unhandled INT_TO_FP type in custom expander!"); 8431 // Since we only generate this in 64-bit mode, we can take advantage of 8432 // 64-bit registers. In particular, sign extend the input value into the 8433 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8434 // then lfd it and fcfid it. 8435 MachineFunction &MF = DAG.getMachineFunction(); 8436 MachineFrameInfo &MFI = MF.getFrameInfo(); 8437 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8438 8439 SDValue Ld; 8440 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8441 ReuseLoadInfo RLI; 8442 bool ReusingLoad; 8443 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8444 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8445 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8446 8447 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Src, FIdx, 8448 MachinePointerInfo::getFixedStack( 8449 DAG.getMachineFunction(), FrameIdx)); 8450 8451 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8452 "Expected an i32 store"); 8453 8454 RLI.Ptr = FIdx; 8455 RLI.Chain = Store; 8456 RLI.MPI = 8457 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8458 RLI.Alignment = Align(4); 8459 } 8460 8461 MachineMemOperand *MMO = 8462 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8463 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8464 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8465 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8466 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8467 MVT::i32, MMO); 8468 if (ReusingLoad) 8469 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8470 } else { 8471 assert(Subtarget.isPPC64() && 8472 "i32->FP without LFIWAX supported only on PPC64"); 8473 8474 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8475 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8476 8477 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8478 8479 // STD the extended value into the stack slot. 8480 SDValue Store = DAG.getStore( 8481 DAG.getEntryNode(), dl, Ext64, FIdx, 8482 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8483 8484 // Load the value as a double. 8485 Ld = DAG.getLoad( 8486 MVT::f64, dl, Store, FIdx, 8487 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8488 } 8489 8490 // FCFID it and return it. 8491 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget); 8492 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8493 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8494 DAG.getIntPtrConstant(0, dl)); 8495 return FP; 8496 } 8497 8498 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8499 SelectionDAG &DAG) const { 8500 SDLoc dl(Op); 8501 /* 8502 The rounding mode is in bits 30:31 of FPSR, and has the following 8503 settings: 8504 00 Round to nearest 8505 01 Round to 0 8506 10 Round to +inf 8507 11 Round to -inf 8508 8509 FLT_ROUNDS, on the other hand, expects the following: 8510 -1 Undefined 8511 0 Round to 0 8512 1 Round to nearest 8513 2 Round to +inf 8514 3 Round to -inf 8515 8516 To perform the conversion, we do: 8517 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8518 */ 8519 8520 MachineFunction &MF = DAG.getMachineFunction(); 8521 EVT VT = Op.getValueType(); 8522 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8523 8524 // Save FP Control Word to register 8525 SDValue Chain = Op.getOperand(0); 8526 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8527 Chain = MFFS.getValue(1); 8528 8529 // Save FP register to stack slot 8530 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8531 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8532 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8533 8534 // Load FP Control Word from low 32 bits of stack slot. 8535 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8536 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8537 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8538 Chain = CWD.getValue(1); 8539 8540 // Transform as necessary 8541 SDValue CWD1 = 8542 DAG.getNode(ISD::AND, dl, MVT::i32, 8543 CWD, DAG.getConstant(3, dl, MVT::i32)); 8544 SDValue CWD2 = 8545 DAG.getNode(ISD::SRL, dl, MVT::i32, 8546 DAG.getNode(ISD::AND, dl, MVT::i32, 8547 DAG.getNode(ISD::XOR, dl, MVT::i32, 8548 CWD, DAG.getConstant(3, dl, MVT::i32)), 8549 DAG.getConstant(3, dl, MVT::i32)), 8550 DAG.getConstant(1, dl, MVT::i32)); 8551 8552 SDValue RetVal = 8553 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8554 8555 RetVal = 8556 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8557 dl, VT, RetVal); 8558 8559 return DAG.getMergeValues({RetVal, Chain}, dl); 8560 } 8561 8562 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8563 EVT VT = Op.getValueType(); 8564 unsigned BitWidth = VT.getSizeInBits(); 8565 SDLoc dl(Op); 8566 assert(Op.getNumOperands() == 3 && 8567 VT == Op.getOperand(1).getValueType() && 8568 "Unexpected SHL!"); 8569 8570 // Expand into a bunch of logical ops. Note that these ops 8571 // depend on the PPC behavior for oversized shift amounts. 8572 SDValue Lo = Op.getOperand(0); 8573 SDValue Hi = Op.getOperand(1); 8574 SDValue Amt = Op.getOperand(2); 8575 EVT AmtVT = Amt.getValueType(); 8576 8577 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8578 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8579 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8580 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8581 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8582 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8583 DAG.getConstant(-BitWidth, dl, AmtVT)); 8584 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8585 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8586 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8587 SDValue OutOps[] = { OutLo, OutHi }; 8588 return DAG.getMergeValues(OutOps, dl); 8589 } 8590 8591 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8592 EVT VT = Op.getValueType(); 8593 SDLoc dl(Op); 8594 unsigned BitWidth = VT.getSizeInBits(); 8595 assert(Op.getNumOperands() == 3 && 8596 VT == Op.getOperand(1).getValueType() && 8597 "Unexpected SRL!"); 8598 8599 // Expand into a bunch of logical ops. Note that these ops 8600 // depend on the PPC behavior for oversized shift amounts. 8601 SDValue Lo = Op.getOperand(0); 8602 SDValue Hi = Op.getOperand(1); 8603 SDValue Amt = Op.getOperand(2); 8604 EVT AmtVT = Amt.getValueType(); 8605 8606 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8607 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8608 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8609 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8610 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8611 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8612 DAG.getConstant(-BitWidth, dl, AmtVT)); 8613 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8614 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8615 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8616 SDValue OutOps[] = { OutLo, OutHi }; 8617 return DAG.getMergeValues(OutOps, dl); 8618 } 8619 8620 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8621 SDLoc dl(Op); 8622 EVT VT = Op.getValueType(); 8623 unsigned BitWidth = VT.getSizeInBits(); 8624 assert(Op.getNumOperands() == 3 && 8625 VT == Op.getOperand(1).getValueType() && 8626 "Unexpected SRA!"); 8627 8628 // Expand into a bunch of logical ops, followed by a select_cc. 8629 SDValue Lo = Op.getOperand(0); 8630 SDValue Hi = Op.getOperand(1); 8631 SDValue Amt = Op.getOperand(2); 8632 EVT AmtVT = Amt.getValueType(); 8633 8634 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8635 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8636 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8637 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8638 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8639 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8640 DAG.getConstant(-BitWidth, dl, AmtVT)); 8641 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8642 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8643 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8644 Tmp4, Tmp6, ISD::SETLE); 8645 SDValue OutOps[] = { OutLo, OutHi }; 8646 return DAG.getMergeValues(OutOps, dl); 8647 } 8648 8649 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8650 SelectionDAG &DAG) const { 8651 SDLoc dl(Op); 8652 EVT VT = Op.getValueType(); 8653 unsigned BitWidth = VT.getSizeInBits(); 8654 8655 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8656 SDValue X = Op.getOperand(0); 8657 SDValue Y = Op.getOperand(1); 8658 SDValue Z = Op.getOperand(2); 8659 EVT AmtVT = Z.getValueType(); 8660 8661 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8662 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8663 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8664 // on PowerPC shift by BW being well defined. 8665 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8666 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8667 SDValue SubZ = 8668 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8669 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8670 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8671 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8672 } 8673 8674 //===----------------------------------------------------------------------===// 8675 // Vector related lowering. 8676 // 8677 8678 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8679 /// element size of SplatSize. Cast the result to VT. 8680 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8681 SelectionDAG &DAG, const SDLoc &dl) { 8682 static const MVT VTys[] = { // canonical VT to use for each size. 8683 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8684 }; 8685 8686 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8687 8688 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8689 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8690 SplatSize = 1; 8691 Val = 0xFF; 8692 } 8693 8694 EVT CanonicalVT = VTys[SplatSize-1]; 8695 8696 // Build a canonical splat for this value. 8697 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8698 } 8699 8700 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8701 /// specified intrinsic ID. 8702 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8703 const SDLoc &dl, EVT DestVT = MVT::Other) { 8704 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8705 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8706 DAG.getConstant(IID, dl, MVT::i32), Op); 8707 } 8708 8709 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8710 /// specified intrinsic ID. 8711 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8712 SelectionDAG &DAG, const SDLoc &dl, 8713 EVT DestVT = MVT::Other) { 8714 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8715 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8716 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8717 } 8718 8719 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8720 /// specified intrinsic ID. 8721 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8722 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8723 EVT DestVT = MVT::Other) { 8724 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8725 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8726 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8727 } 8728 8729 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8730 /// amount. The result has the specified value type. 8731 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8732 SelectionDAG &DAG, const SDLoc &dl) { 8733 // Force LHS/RHS to be the right type. 8734 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8735 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8736 8737 int Ops[16]; 8738 for (unsigned i = 0; i != 16; ++i) 8739 Ops[i] = i + Amt; 8740 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8741 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8742 } 8743 8744 /// Do we have an efficient pattern in a .td file for this node? 8745 /// 8746 /// \param V - pointer to the BuildVectorSDNode being matched 8747 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8748 /// 8749 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8750 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8751 /// the opposite is true (expansion is beneficial) are: 8752 /// - The node builds a vector out of integers that are not 32 or 64-bits 8753 /// - The node builds a vector out of constants 8754 /// - The node is a "load-and-splat" 8755 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8756 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8757 bool HasDirectMove, 8758 bool HasP8Vector) { 8759 EVT VecVT = V->getValueType(0); 8760 bool RightType = VecVT == MVT::v2f64 || 8761 (HasP8Vector && VecVT == MVT::v4f32) || 8762 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8763 if (!RightType) 8764 return false; 8765 8766 bool IsSplat = true; 8767 bool IsLoad = false; 8768 SDValue Op0 = V->getOperand(0); 8769 8770 // This function is called in a block that confirms the node is not a constant 8771 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8772 // different constants. 8773 if (V->isConstant()) 8774 return false; 8775 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8776 if (V->getOperand(i).isUndef()) 8777 return false; 8778 // We want to expand nodes that represent load-and-splat even if the 8779 // loaded value is a floating point truncation or conversion to int. 8780 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8781 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8782 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8783 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8784 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8785 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8786 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8787 IsLoad = true; 8788 // If the operands are different or the input is not a load and has more 8789 // uses than just this BV node, then it isn't a splat. 8790 if (V->getOperand(i) != Op0 || 8791 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8792 IsSplat = false; 8793 } 8794 return !(IsSplat && IsLoad); 8795 } 8796 8797 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8798 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8799 8800 SDLoc dl(Op); 8801 SDValue Op0 = Op->getOperand(0); 8802 8803 if ((Op.getValueType() != MVT::f128) || 8804 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8805 (Op0.getOperand(0).getValueType() != MVT::i64) || 8806 (Op0.getOperand(1).getValueType() != MVT::i64)) 8807 return SDValue(); 8808 8809 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8810 Op0.getOperand(1)); 8811 } 8812 8813 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8814 const SDValue *InputLoad = &Op; 8815 if (InputLoad->getOpcode() == ISD::BITCAST) 8816 InputLoad = &InputLoad->getOperand(0); 8817 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8818 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8819 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8820 InputLoad = &InputLoad->getOperand(0); 8821 } 8822 if (InputLoad->getOpcode() != ISD::LOAD) 8823 return nullptr; 8824 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8825 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8826 } 8827 8828 // Convert the argument APFloat to a single precision APFloat if there is no 8829 // loss in information during the conversion to single precision APFloat and the 8830 // resulting number is not a denormal number. Return true if successful. 8831 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8832 APFloat APFloatToConvert = ArgAPFloat; 8833 bool LosesInfo = true; 8834 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8835 &LosesInfo); 8836 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8837 if (Success) 8838 ArgAPFloat = APFloatToConvert; 8839 return Success; 8840 } 8841 8842 // Bitcast the argument APInt to a double and convert it to a single precision 8843 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8844 // argument if there is no loss in information during the conversion from 8845 // double to single precision APFloat and the resulting number is not a denormal 8846 // number. Return true if successful. 8847 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8848 double DpValue = ArgAPInt.bitsToDouble(); 8849 APFloat APFloatDp(DpValue); 8850 bool Success = convertToNonDenormSingle(APFloatDp); 8851 if (Success) 8852 ArgAPInt = APFloatDp.bitcastToAPInt(); 8853 return Success; 8854 } 8855 8856 // If this is a case we can't handle, return null and let the default 8857 // expansion code take care of it. If we CAN select this case, and if it 8858 // selects to a single instruction, return Op. Otherwise, if we can codegen 8859 // this case more efficiently than a constant pool load, lower it to the 8860 // sequence of ops that should be used. 8861 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8862 SelectionDAG &DAG) const { 8863 SDLoc dl(Op); 8864 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8865 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8866 8867 // Check if this is a splat of a constant value. 8868 APInt APSplatBits, APSplatUndef; 8869 unsigned SplatBitSize; 8870 bool HasAnyUndefs; 8871 bool BVNIsConstantSplat = 8872 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8873 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8874 8875 // If it is a splat of a double, check if we can shrink it to a 32 bit 8876 // non-denormal float which when converted back to double gives us the same 8877 // double. This is to exploit the XXSPLTIDP instruction. 8878 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 8879 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 8880 convertToNonDenormSingle(APSplatBits)) { 8881 SDValue SplatNode = DAG.getNode( 8882 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8883 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8884 return DAG.getBitcast(Op.getValueType(), SplatNode); 8885 } 8886 8887 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8888 8889 bool IsPermutedLoad = false; 8890 const SDValue *InputLoad = 8891 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8892 // Handle load-and-splat patterns as we have instructions that will do this 8893 // in one go. 8894 if (InputLoad && DAG.isSplatValue(Op, true)) { 8895 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8896 8897 // We have handling for 4 and 8 byte elements. 8898 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8899 8900 // Checking for a single use of this load, we have to check for vector 8901 // width (128 bits) / ElementSize uses (since each operand of the 8902 // BUILD_VECTOR is a separate use of the value. 8903 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8904 ((Subtarget.hasVSX() && ElementSize == 64) || 8905 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8906 SDValue Ops[] = { 8907 LD->getChain(), // Chain 8908 LD->getBasePtr(), // Ptr 8909 DAG.getValueType(Op.getValueType()) // VT 8910 }; 8911 return 8912 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8913 DAG.getVTList(Op.getValueType(), MVT::Other), 8914 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8915 } 8916 } 8917 8918 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8919 // lowered to VSX instructions under certain conditions. 8920 // Without VSX, there is no pattern more efficient than expanding the node. 8921 if (Subtarget.hasVSX() && 8922 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8923 Subtarget.hasP8Vector())) 8924 return Op; 8925 return SDValue(); 8926 } 8927 8928 uint64_t SplatBits = APSplatBits.getZExtValue(); 8929 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8930 unsigned SplatSize = SplatBitSize / 8; 8931 8932 // First, handle single instruction cases. 8933 8934 // All zeros? 8935 if (SplatBits == 0) { 8936 // Canonicalize all zero vectors to be v4i32. 8937 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8938 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8939 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8940 } 8941 return Op; 8942 } 8943 8944 // We have XXSPLTIW for constant splats four bytes wide. 8945 // Given vector length is a multiple of 4, 2-byte splats can be replaced 8946 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 8947 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 8948 // turned into a 4-byte splat of 0xABABABAB. 8949 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 8950 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 8951 Op.getValueType(), DAG, dl); 8952 8953 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 8954 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8955 dl); 8956 8957 // We have XXSPLTIB for constant splats one byte wide. 8958 if (Subtarget.hasP9Vector() && SplatSize == 1) 8959 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8960 dl); 8961 8962 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8963 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8964 (32-SplatBitSize)); 8965 if (SextVal >= -16 && SextVal <= 15) 8966 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 8967 dl); 8968 8969 // Two instruction sequences. 8970 8971 // If this value is in the range [-32,30] and is even, use: 8972 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8973 // If this value is in the range [17,31] and is odd, use: 8974 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8975 // If this value is in the range [-31,-17] and is odd, use: 8976 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8977 // Note the last two are three-instruction sequences. 8978 if (SextVal >= -32 && SextVal <= 31) { 8979 // To avoid having these optimizations undone by constant folding, 8980 // we convert to a pseudo that will be expanded later into one of 8981 // the above forms. 8982 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8983 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8984 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8985 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8986 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8987 if (VT == Op.getValueType()) 8988 return RetVal; 8989 else 8990 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8991 } 8992 8993 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8994 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8995 // for fneg/fabs. 8996 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8997 // Make -1 and vspltisw -1: 8998 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 8999 9000 // Make the VSLW intrinsic, computing 0x8000_0000. 9001 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9002 OnesV, DAG, dl); 9003 9004 // xor by OnesV to invert it. 9005 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9006 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9007 } 9008 9009 // Check to see if this is a wide variety of vsplti*, binop self cases. 9010 static const signed char SplatCsts[] = { 9011 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9012 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9013 }; 9014 9015 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9016 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9017 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9018 int i = SplatCsts[idx]; 9019 9020 // Figure out what shift amount will be used by altivec if shifted by i in 9021 // this splat size. 9022 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9023 9024 // vsplti + shl self. 9025 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9026 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9027 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9028 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9029 Intrinsic::ppc_altivec_vslw 9030 }; 9031 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9032 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9033 } 9034 9035 // vsplti + srl self. 9036 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9037 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9038 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9039 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9040 Intrinsic::ppc_altivec_vsrw 9041 }; 9042 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9043 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9044 } 9045 9046 // vsplti + sra self. 9047 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9048 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9049 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9050 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9051 Intrinsic::ppc_altivec_vsraw 9052 }; 9053 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9054 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9055 } 9056 9057 // vsplti + rol self. 9058 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9059 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9060 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9061 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9062 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9063 Intrinsic::ppc_altivec_vrlw 9064 }; 9065 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9066 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9067 } 9068 9069 // t = vsplti c, result = vsldoi t, t, 1 9070 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9071 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9072 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9073 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9074 } 9075 // t = vsplti c, result = vsldoi t, t, 2 9076 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9077 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9078 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9079 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9080 } 9081 // t = vsplti c, result = vsldoi t, t, 3 9082 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9083 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9084 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9085 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9086 } 9087 } 9088 9089 return SDValue(); 9090 } 9091 9092 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9093 /// the specified operations to build the shuffle. 9094 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9095 SDValue RHS, SelectionDAG &DAG, 9096 const SDLoc &dl) { 9097 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9098 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9099 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9100 9101 enum { 9102 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9103 OP_VMRGHW, 9104 OP_VMRGLW, 9105 OP_VSPLTISW0, 9106 OP_VSPLTISW1, 9107 OP_VSPLTISW2, 9108 OP_VSPLTISW3, 9109 OP_VSLDOI4, 9110 OP_VSLDOI8, 9111 OP_VSLDOI12 9112 }; 9113 9114 if (OpNum == OP_COPY) { 9115 if (LHSID == (1*9+2)*9+3) return LHS; 9116 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9117 return RHS; 9118 } 9119 9120 SDValue OpLHS, OpRHS; 9121 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9122 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9123 9124 int ShufIdxs[16]; 9125 switch (OpNum) { 9126 default: llvm_unreachable("Unknown i32 permute!"); 9127 case OP_VMRGHW: 9128 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9129 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9130 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9131 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9132 break; 9133 case OP_VMRGLW: 9134 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9135 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9136 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9137 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9138 break; 9139 case OP_VSPLTISW0: 9140 for (unsigned i = 0; i != 16; ++i) 9141 ShufIdxs[i] = (i&3)+0; 9142 break; 9143 case OP_VSPLTISW1: 9144 for (unsigned i = 0; i != 16; ++i) 9145 ShufIdxs[i] = (i&3)+4; 9146 break; 9147 case OP_VSPLTISW2: 9148 for (unsigned i = 0; i != 16; ++i) 9149 ShufIdxs[i] = (i&3)+8; 9150 break; 9151 case OP_VSPLTISW3: 9152 for (unsigned i = 0; i != 16; ++i) 9153 ShufIdxs[i] = (i&3)+12; 9154 break; 9155 case OP_VSLDOI4: 9156 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9157 case OP_VSLDOI8: 9158 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9159 case OP_VSLDOI12: 9160 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9161 } 9162 EVT VT = OpLHS.getValueType(); 9163 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9164 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9165 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9166 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9167 } 9168 9169 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9170 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9171 /// SDValue. 9172 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9173 SelectionDAG &DAG) const { 9174 const unsigned BytesInVector = 16; 9175 bool IsLE = Subtarget.isLittleEndian(); 9176 SDLoc dl(N); 9177 SDValue V1 = N->getOperand(0); 9178 SDValue V2 = N->getOperand(1); 9179 unsigned ShiftElts = 0, InsertAtByte = 0; 9180 bool Swap = false; 9181 9182 // Shifts required to get the byte we want at element 7. 9183 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9184 0, 15, 14, 13, 12, 11, 10, 9}; 9185 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9186 1, 2, 3, 4, 5, 6, 7, 8}; 9187 9188 ArrayRef<int> Mask = N->getMask(); 9189 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9190 9191 // For each mask element, find out if we're just inserting something 9192 // from V2 into V1 or vice versa. 9193 // Possible permutations inserting an element from V2 into V1: 9194 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9195 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9196 // ... 9197 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9198 // Inserting from V1 into V2 will be similar, except mask range will be 9199 // [16,31]. 9200 9201 bool FoundCandidate = false; 9202 // If both vector operands for the shuffle are the same vector, the mask 9203 // will contain only elements from the first one and the second one will be 9204 // undef. 9205 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9206 // Go through the mask of half-words to find an element that's being moved 9207 // from one vector to the other. 9208 for (unsigned i = 0; i < BytesInVector; ++i) { 9209 unsigned CurrentElement = Mask[i]; 9210 // If 2nd operand is undefined, we should only look for element 7 in the 9211 // Mask. 9212 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9213 continue; 9214 9215 bool OtherElementsInOrder = true; 9216 // Examine the other elements in the Mask to see if they're in original 9217 // order. 9218 for (unsigned j = 0; j < BytesInVector; ++j) { 9219 if (j == i) 9220 continue; 9221 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9222 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9223 // in which we always assume we're always picking from the 1st operand. 9224 int MaskOffset = 9225 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9226 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9227 OtherElementsInOrder = false; 9228 break; 9229 } 9230 } 9231 // If other elements are in original order, we record the number of shifts 9232 // we need to get the element we want into element 7. Also record which byte 9233 // in the vector we should insert into. 9234 if (OtherElementsInOrder) { 9235 // If 2nd operand is undefined, we assume no shifts and no swapping. 9236 if (V2.isUndef()) { 9237 ShiftElts = 0; 9238 Swap = false; 9239 } else { 9240 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9241 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9242 : BigEndianShifts[CurrentElement & 0xF]; 9243 Swap = CurrentElement < BytesInVector; 9244 } 9245 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9246 FoundCandidate = true; 9247 break; 9248 } 9249 } 9250 9251 if (!FoundCandidate) 9252 return SDValue(); 9253 9254 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9255 // optionally with VECSHL if shift is required. 9256 if (Swap) 9257 std::swap(V1, V2); 9258 if (V2.isUndef()) 9259 V2 = V1; 9260 if (ShiftElts) { 9261 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9262 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9263 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9264 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9265 } 9266 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9267 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9268 } 9269 9270 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9271 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9272 /// SDValue. 9273 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9274 SelectionDAG &DAG) const { 9275 const unsigned NumHalfWords = 8; 9276 const unsigned BytesInVector = NumHalfWords * 2; 9277 // Check that the shuffle is on half-words. 9278 if (!isNByteElemShuffleMask(N, 2, 1)) 9279 return SDValue(); 9280 9281 bool IsLE = Subtarget.isLittleEndian(); 9282 SDLoc dl(N); 9283 SDValue V1 = N->getOperand(0); 9284 SDValue V2 = N->getOperand(1); 9285 unsigned ShiftElts = 0, InsertAtByte = 0; 9286 bool Swap = false; 9287 9288 // Shifts required to get the half-word we want at element 3. 9289 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9290 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9291 9292 uint32_t Mask = 0; 9293 uint32_t OriginalOrderLow = 0x1234567; 9294 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9295 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9296 // 32-bit space, only need 4-bit nibbles per element. 9297 for (unsigned i = 0; i < NumHalfWords; ++i) { 9298 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9299 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9300 } 9301 9302 // For each mask element, find out if we're just inserting something 9303 // from V2 into V1 or vice versa. Possible permutations inserting an element 9304 // from V2 into V1: 9305 // X, 1, 2, 3, 4, 5, 6, 7 9306 // 0, X, 2, 3, 4, 5, 6, 7 9307 // 0, 1, X, 3, 4, 5, 6, 7 9308 // 0, 1, 2, X, 4, 5, 6, 7 9309 // 0, 1, 2, 3, X, 5, 6, 7 9310 // 0, 1, 2, 3, 4, X, 6, 7 9311 // 0, 1, 2, 3, 4, 5, X, 7 9312 // 0, 1, 2, 3, 4, 5, 6, X 9313 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9314 9315 bool FoundCandidate = false; 9316 // Go through the mask of half-words to find an element that's being moved 9317 // from one vector to the other. 9318 for (unsigned i = 0; i < NumHalfWords; ++i) { 9319 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9320 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9321 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9322 uint32_t TargetOrder = 0x0; 9323 9324 // If both vector operands for the shuffle are the same vector, the mask 9325 // will contain only elements from the first one and the second one will be 9326 // undef. 9327 if (V2.isUndef()) { 9328 ShiftElts = 0; 9329 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9330 TargetOrder = OriginalOrderLow; 9331 Swap = false; 9332 // Skip if not the correct element or mask of other elements don't equal 9333 // to our expected order. 9334 if (MaskOneElt == VINSERTHSrcElem && 9335 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9336 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9337 FoundCandidate = true; 9338 break; 9339 } 9340 } else { // If both operands are defined. 9341 // Target order is [8,15] if the current mask is between [0,7]. 9342 TargetOrder = 9343 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9344 // Skip if mask of other elements don't equal our expected order. 9345 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9346 // We only need the last 3 bits for the number of shifts. 9347 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9348 : BigEndianShifts[MaskOneElt & 0x7]; 9349 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9350 Swap = MaskOneElt < NumHalfWords; 9351 FoundCandidate = true; 9352 break; 9353 } 9354 } 9355 } 9356 9357 if (!FoundCandidate) 9358 return SDValue(); 9359 9360 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9361 // optionally with VECSHL if shift is required. 9362 if (Swap) 9363 std::swap(V1, V2); 9364 if (V2.isUndef()) 9365 V2 = V1; 9366 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9367 if (ShiftElts) { 9368 // Double ShiftElts because we're left shifting on v16i8 type. 9369 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9370 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9371 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9372 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9373 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9374 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9375 } 9376 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9377 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9378 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9379 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9380 } 9381 9382 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9383 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9384 /// return the default SDValue. 9385 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9386 SelectionDAG &DAG) const { 9387 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9388 // to v16i8. Peek through the bitcasts to get the actual operands. 9389 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9390 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9391 9392 auto ShuffleMask = SVN->getMask(); 9393 SDValue VecShuffle(SVN, 0); 9394 SDLoc DL(SVN); 9395 9396 // Check that we have a four byte shuffle. 9397 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9398 return SDValue(); 9399 9400 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9401 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9402 std::swap(LHS, RHS); 9403 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9404 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9405 } 9406 9407 // Ensure that the RHS is a vector of constants. 9408 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9409 if (!BVN) 9410 return SDValue(); 9411 9412 // Check if RHS is a splat of 4-bytes (or smaller). 9413 APInt APSplatValue, APSplatUndef; 9414 unsigned SplatBitSize; 9415 bool HasAnyUndefs; 9416 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9417 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9418 SplatBitSize > 32) 9419 return SDValue(); 9420 9421 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9422 // The instruction splats a constant C into two words of the source vector 9423 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9424 // Thus we check that the shuffle mask is the equivalent of 9425 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9426 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9427 // within each word are consecutive, so we only need to check the first byte. 9428 SDValue Index; 9429 bool IsLE = Subtarget.isLittleEndian(); 9430 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9431 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9432 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9433 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9434 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9435 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9436 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9437 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9438 else 9439 return SDValue(); 9440 9441 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9442 // for XXSPLTI32DX. 9443 unsigned SplatVal = APSplatValue.getZExtValue(); 9444 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9445 SplatVal |= (SplatVal << SplatBitSize); 9446 9447 SDValue SplatNode = DAG.getNode( 9448 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9449 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9450 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9451 } 9452 9453 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9454 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9455 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9456 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9457 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9458 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9459 assert(Op.getValueType() == MVT::v1i128 && 9460 "Only set v1i128 as custom, other type shouldn't reach here!"); 9461 SDLoc dl(Op); 9462 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9463 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9464 unsigned SHLAmt = N1.getConstantOperandVal(0); 9465 if (SHLAmt % 8 == 0) { 9466 SmallVector<int, 16> Mask(16, 0); 9467 std::iota(Mask.begin(), Mask.end(), 0); 9468 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9469 if (SDValue Shuffle = 9470 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9471 DAG.getUNDEF(MVT::v16i8), Mask)) 9472 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9473 } 9474 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9475 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9476 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9477 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9478 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9479 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9480 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9481 } 9482 9483 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9484 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9485 /// return the code it can be lowered into. Worst case, it can always be 9486 /// lowered into a vperm. 9487 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9488 SelectionDAG &DAG) const { 9489 SDLoc dl(Op); 9490 SDValue V1 = Op.getOperand(0); 9491 SDValue V2 = Op.getOperand(1); 9492 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9493 9494 // Any nodes that were combined in the target-independent combiner prior 9495 // to vector legalization will not be sent to the target combine. Try to 9496 // combine it here. 9497 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9498 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9499 return NewShuffle; 9500 Op = NewShuffle; 9501 SVOp = cast<ShuffleVectorSDNode>(Op); 9502 V1 = Op.getOperand(0); 9503 V2 = Op.getOperand(1); 9504 } 9505 EVT VT = Op.getValueType(); 9506 bool isLittleEndian = Subtarget.isLittleEndian(); 9507 9508 unsigned ShiftElts, InsertAtByte; 9509 bool Swap = false; 9510 9511 // If this is a load-and-splat, we can do that with a single instruction 9512 // in some cases. However if the load has multiple uses, we don't want to 9513 // combine it because that will just produce multiple loads. 9514 bool IsPermutedLoad = false; 9515 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9516 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9517 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9518 InputLoad->hasOneUse()) { 9519 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9520 int SplatIdx = 9521 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9522 9523 // The splat index for permuted loads will be in the left half of the vector 9524 // which is strictly wider than the loaded value by 8 bytes. So we need to 9525 // adjust the splat index to point to the correct address in memory. 9526 if (IsPermutedLoad) { 9527 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9528 SplatIdx += IsFourByte ? 2 : 1; 9529 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9530 "Splat of a value outside of the loaded memory"); 9531 } 9532 9533 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9534 // For 4-byte load-and-splat, we need Power9. 9535 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9536 uint64_t Offset = 0; 9537 if (IsFourByte) 9538 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9539 else 9540 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9541 9542 SDValue BasePtr = LD->getBasePtr(); 9543 if (Offset != 0) 9544 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9545 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9546 SDValue Ops[] = { 9547 LD->getChain(), // Chain 9548 BasePtr, // BasePtr 9549 DAG.getValueType(Op.getValueType()) // VT 9550 }; 9551 SDVTList VTL = 9552 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9553 SDValue LdSplt = 9554 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9555 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9556 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9557 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9558 return LdSplt; 9559 } 9560 } 9561 if (Subtarget.hasP9Vector() && 9562 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9563 isLittleEndian)) { 9564 if (Swap) 9565 std::swap(V1, V2); 9566 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9567 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9568 if (ShiftElts) { 9569 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9570 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9571 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9572 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9573 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9574 } 9575 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9576 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9577 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9578 } 9579 9580 if (Subtarget.hasPrefixInstrs()) { 9581 SDValue SplatInsertNode; 9582 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9583 return SplatInsertNode; 9584 } 9585 9586 if (Subtarget.hasP9Altivec()) { 9587 SDValue NewISDNode; 9588 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9589 return NewISDNode; 9590 9591 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9592 return NewISDNode; 9593 } 9594 9595 if (Subtarget.hasVSX() && 9596 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9597 if (Swap) 9598 std::swap(V1, V2); 9599 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9600 SDValue Conv2 = 9601 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9602 9603 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9604 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9605 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9606 } 9607 9608 if (Subtarget.hasVSX() && 9609 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9610 if (Swap) 9611 std::swap(V1, V2); 9612 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9613 SDValue Conv2 = 9614 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9615 9616 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9617 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9618 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9619 } 9620 9621 if (Subtarget.hasP9Vector()) { 9622 if (PPC::isXXBRHShuffleMask(SVOp)) { 9623 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9624 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9625 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9626 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9627 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9628 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9629 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9630 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9631 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9632 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9633 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9634 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9635 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9636 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9637 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9638 } 9639 } 9640 9641 if (Subtarget.hasVSX()) { 9642 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9643 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9644 9645 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9646 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9647 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9648 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9649 } 9650 9651 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9652 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9653 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9654 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9655 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9656 } 9657 } 9658 9659 // Cases that are handled by instructions that take permute immediates 9660 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9661 // selected by the instruction selector. 9662 if (V2.isUndef()) { 9663 if (PPC::isSplatShuffleMask(SVOp, 1) || 9664 PPC::isSplatShuffleMask(SVOp, 2) || 9665 PPC::isSplatShuffleMask(SVOp, 4) || 9666 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9667 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9668 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9669 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9670 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9671 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9672 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9673 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9674 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9675 (Subtarget.hasP8Altivec() && ( 9676 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9677 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9678 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9679 return Op; 9680 } 9681 } 9682 9683 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9684 // and produce a fixed permutation. If any of these match, do not lower to 9685 // VPERM. 9686 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9687 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9688 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9689 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9690 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9691 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9692 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9693 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9694 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9695 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9696 (Subtarget.hasP8Altivec() && ( 9697 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9698 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9699 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9700 return Op; 9701 9702 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9703 // perfect shuffle table to emit an optimal matching sequence. 9704 ArrayRef<int> PermMask = SVOp->getMask(); 9705 9706 unsigned PFIndexes[4]; 9707 bool isFourElementShuffle = true; 9708 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9709 unsigned EltNo = 8; // Start out undef. 9710 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9711 if (PermMask[i*4+j] < 0) 9712 continue; // Undef, ignore it. 9713 9714 unsigned ByteSource = PermMask[i*4+j]; 9715 if ((ByteSource & 3) != j) { 9716 isFourElementShuffle = false; 9717 break; 9718 } 9719 9720 if (EltNo == 8) { 9721 EltNo = ByteSource/4; 9722 } else if (EltNo != ByteSource/4) { 9723 isFourElementShuffle = false; 9724 break; 9725 } 9726 } 9727 PFIndexes[i] = EltNo; 9728 } 9729 9730 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9731 // perfect shuffle vector to determine if it is cost effective to do this as 9732 // discrete instructions, or whether we should use a vperm. 9733 // For now, we skip this for little endian until such time as we have a 9734 // little-endian perfect shuffle table. 9735 if (isFourElementShuffle && !isLittleEndian) { 9736 // Compute the index in the perfect shuffle table. 9737 unsigned PFTableIndex = 9738 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9739 9740 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9741 unsigned Cost = (PFEntry >> 30); 9742 9743 // Determining when to avoid vperm is tricky. Many things affect the cost 9744 // of vperm, particularly how many times the perm mask needs to be computed. 9745 // For example, if the perm mask can be hoisted out of a loop or is already 9746 // used (perhaps because there are multiple permutes with the same shuffle 9747 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9748 // the loop requires an extra register. 9749 // 9750 // As a compromise, we only emit discrete instructions if the shuffle can be 9751 // generated in 3 or fewer operations. When we have loop information 9752 // available, if this block is within a loop, we should avoid using vperm 9753 // for 3-operation perms and use a constant pool load instead. 9754 if (Cost < 3) 9755 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9756 } 9757 9758 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9759 // vector that will get spilled to the constant pool. 9760 if (V2.isUndef()) V2 = V1; 9761 9762 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9763 // that it is in input element units, not in bytes. Convert now. 9764 9765 // For little endian, the order of the input vectors is reversed, and 9766 // the permutation mask is complemented with respect to 31. This is 9767 // necessary to produce proper semantics with the big-endian-biased vperm 9768 // instruction. 9769 EVT EltVT = V1.getValueType().getVectorElementType(); 9770 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9771 9772 SmallVector<SDValue, 16> ResultMask; 9773 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9774 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9775 9776 for (unsigned j = 0; j != BytesPerElement; ++j) 9777 if (isLittleEndian) 9778 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9779 dl, MVT::i32)); 9780 else 9781 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9782 MVT::i32)); 9783 } 9784 9785 ShufflesHandledWithVPERM++; 9786 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9787 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9788 LLVM_DEBUG(SVOp->dump()); 9789 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9790 LLVM_DEBUG(VPermMask.dump()); 9791 9792 if (isLittleEndian) 9793 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9794 V2, V1, VPermMask); 9795 else 9796 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9797 V1, V2, VPermMask); 9798 } 9799 9800 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9801 /// vector comparison. If it is, return true and fill in Opc/isDot with 9802 /// information about the intrinsic. 9803 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9804 bool &isDot, const PPCSubtarget &Subtarget) { 9805 unsigned IntrinsicID = 9806 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9807 CompareOpc = -1; 9808 isDot = false; 9809 switch (IntrinsicID) { 9810 default: 9811 return false; 9812 // Comparison predicates. 9813 case Intrinsic::ppc_altivec_vcmpbfp_p: 9814 CompareOpc = 966; 9815 isDot = true; 9816 break; 9817 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9818 CompareOpc = 198; 9819 isDot = true; 9820 break; 9821 case Intrinsic::ppc_altivec_vcmpequb_p: 9822 CompareOpc = 6; 9823 isDot = true; 9824 break; 9825 case Intrinsic::ppc_altivec_vcmpequh_p: 9826 CompareOpc = 70; 9827 isDot = true; 9828 break; 9829 case Intrinsic::ppc_altivec_vcmpequw_p: 9830 CompareOpc = 134; 9831 isDot = true; 9832 break; 9833 case Intrinsic::ppc_altivec_vcmpequd_p: 9834 if (Subtarget.hasP8Altivec()) { 9835 CompareOpc = 199; 9836 isDot = true; 9837 } else 9838 return false; 9839 break; 9840 case Intrinsic::ppc_altivec_vcmpneb_p: 9841 case Intrinsic::ppc_altivec_vcmpneh_p: 9842 case Intrinsic::ppc_altivec_vcmpnew_p: 9843 case Intrinsic::ppc_altivec_vcmpnezb_p: 9844 case Intrinsic::ppc_altivec_vcmpnezh_p: 9845 case Intrinsic::ppc_altivec_vcmpnezw_p: 9846 if (Subtarget.hasP9Altivec()) { 9847 switch (IntrinsicID) { 9848 default: 9849 llvm_unreachable("Unknown comparison intrinsic."); 9850 case Intrinsic::ppc_altivec_vcmpneb_p: 9851 CompareOpc = 7; 9852 break; 9853 case Intrinsic::ppc_altivec_vcmpneh_p: 9854 CompareOpc = 71; 9855 break; 9856 case Intrinsic::ppc_altivec_vcmpnew_p: 9857 CompareOpc = 135; 9858 break; 9859 case Intrinsic::ppc_altivec_vcmpnezb_p: 9860 CompareOpc = 263; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpnezh_p: 9863 CompareOpc = 327; 9864 break; 9865 case Intrinsic::ppc_altivec_vcmpnezw_p: 9866 CompareOpc = 391; 9867 break; 9868 } 9869 isDot = true; 9870 } else 9871 return false; 9872 break; 9873 case Intrinsic::ppc_altivec_vcmpgefp_p: 9874 CompareOpc = 454; 9875 isDot = true; 9876 break; 9877 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9878 CompareOpc = 710; 9879 isDot = true; 9880 break; 9881 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9882 CompareOpc = 774; 9883 isDot = true; 9884 break; 9885 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9886 CompareOpc = 838; 9887 isDot = true; 9888 break; 9889 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9890 CompareOpc = 902; 9891 isDot = true; 9892 break; 9893 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9894 if (Subtarget.hasP8Altivec()) { 9895 CompareOpc = 967; 9896 isDot = true; 9897 } else 9898 return false; 9899 break; 9900 case Intrinsic::ppc_altivec_vcmpgtub_p: 9901 CompareOpc = 518; 9902 isDot = true; 9903 break; 9904 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9905 CompareOpc = 582; 9906 isDot = true; 9907 break; 9908 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9909 CompareOpc = 646; 9910 isDot = true; 9911 break; 9912 case Intrinsic::ppc_altivec_vcmpgtud_p: 9913 if (Subtarget.hasP8Altivec()) { 9914 CompareOpc = 711; 9915 isDot = true; 9916 } else 9917 return false; 9918 break; 9919 9920 // VSX predicate comparisons use the same infrastructure 9921 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9922 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9923 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9924 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9925 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9926 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9927 if (Subtarget.hasVSX()) { 9928 switch (IntrinsicID) { 9929 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9930 CompareOpc = 99; 9931 break; 9932 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9933 CompareOpc = 115; 9934 break; 9935 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9936 CompareOpc = 107; 9937 break; 9938 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9939 CompareOpc = 67; 9940 break; 9941 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9942 CompareOpc = 83; 9943 break; 9944 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9945 CompareOpc = 75; 9946 break; 9947 } 9948 isDot = true; 9949 } else 9950 return false; 9951 break; 9952 9953 // Normal Comparisons. 9954 case Intrinsic::ppc_altivec_vcmpbfp: 9955 CompareOpc = 966; 9956 break; 9957 case Intrinsic::ppc_altivec_vcmpeqfp: 9958 CompareOpc = 198; 9959 break; 9960 case Intrinsic::ppc_altivec_vcmpequb: 9961 CompareOpc = 6; 9962 break; 9963 case Intrinsic::ppc_altivec_vcmpequh: 9964 CompareOpc = 70; 9965 break; 9966 case Intrinsic::ppc_altivec_vcmpequw: 9967 CompareOpc = 134; 9968 break; 9969 case Intrinsic::ppc_altivec_vcmpequd: 9970 if (Subtarget.hasP8Altivec()) 9971 CompareOpc = 199; 9972 else 9973 return false; 9974 break; 9975 case Intrinsic::ppc_altivec_vcmpneb: 9976 case Intrinsic::ppc_altivec_vcmpneh: 9977 case Intrinsic::ppc_altivec_vcmpnew: 9978 case Intrinsic::ppc_altivec_vcmpnezb: 9979 case Intrinsic::ppc_altivec_vcmpnezh: 9980 case Intrinsic::ppc_altivec_vcmpnezw: 9981 if (Subtarget.hasP9Altivec()) 9982 switch (IntrinsicID) { 9983 default: 9984 llvm_unreachable("Unknown comparison intrinsic."); 9985 case Intrinsic::ppc_altivec_vcmpneb: 9986 CompareOpc = 7; 9987 break; 9988 case Intrinsic::ppc_altivec_vcmpneh: 9989 CompareOpc = 71; 9990 break; 9991 case Intrinsic::ppc_altivec_vcmpnew: 9992 CompareOpc = 135; 9993 break; 9994 case Intrinsic::ppc_altivec_vcmpnezb: 9995 CompareOpc = 263; 9996 break; 9997 case Intrinsic::ppc_altivec_vcmpnezh: 9998 CompareOpc = 327; 9999 break; 10000 case Intrinsic::ppc_altivec_vcmpnezw: 10001 CompareOpc = 391; 10002 break; 10003 } 10004 else 10005 return false; 10006 break; 10007 case Intrinsic::ppc_altivec_vcmpgefp: 10008 CompareOpc = 454; 10009 break; 10010 case Intrinsic::ppc_altivec_vcmpgtfp: 10011 CompareOpc = 710; 10012 break; 10013 case Intrinsic::ppc_altivec_vcmpgtsb: 10014 CompareOpc = 774; 10015 break; 10016 case Intrinsic::ppc_altivec_vcmpgtsh: 10017 CompareOpc = 838; 10018 break; 10019 case Intrinsic::ppc_altivec_vcmpgtsw: 10020 CompareOpc = 902; 10021 break; 10022 case Intrinsic::ppc_altivec_vcmpgtsd: 10023 if (Subtarget.hasP8Altivec()) 10024 CompareOpc = 967; 10025 else 10026 return false; 10027 break; 10028 case Intrinsic::ppc_altivec_vcmpgtub: 10029 CompareOpc = 518; 10030 break; 10031 case Intrinsic::ppc_altivec_vcmpgtuh: 10032 CompareOpc = 582; 10033 break; 10034 case Intrinsic::ppc_altivec_vcmpgtuw: 10035 CompareOpc = 646; 10036 break; 10037 case Intrinsic::ppc_altivec_vcmpgtud: 10038 if (Subtarget.hasP8Altivec()) 10039 CompareOpc = 711; 10040 else 10041 return false; 10042 break; 10043 } 10044 return true; 10045 } 10046 10047 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10048 /// lower, do it, otherwise return null. 10049 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10050 SelectionDAG &DAG) const { 10051 unsigned IntrinsicID = 10052 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10053 10054 SDLoc dl(Op); 10055 10056 if (IntrinsicID == Intrinsic::thread_pointer) { 10057 // Reads the thread pointer register, used for __builtin_thread_pointer. 10058 if (Subtarget.isPPC64()) 10059 return DAG.getRegister(PPC::X13, MVT::i64); 10060 return DAG.getRegister(PPC::R2, MVT::i32); 10061 } 10062 10063 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10064 // opcode number of the comparison. 10065 int CompareOpc; 10066 bool isDot; 10067 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10068 return SDValue(); // Don't custom lower most intrinsics. 10069 10070 // If this is a non-dot comparison, make the VCMP node and we are done. 10071 if (!isDot) { 10072 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10073 Op.getOperand(1), Op.getOperand(2), 10074 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10075 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10076 } 10077 10078 // Create the PPCISD altivec 'dot' comparison node. 10079 SDValue Ops[] = { 10080 Op.getOperand(2), // LHS 10081 Op.getOperand(3), // RHS 10082 DAG.getConstant(CompareOpc, dl, MVT::i32) 10083 }; 10084 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10085 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10086 10087 // Now that we have the comparison, emit a copy from the CR to a GPR. 10088 // This is flagged to the above dot comparison. 10089 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10090 DAG.getRegister(PPC::CR6, MVT::i32), 10091 CompNode.getValue(1)); 10092 10093 // Unpack the result based on how the target uses it. 10094 unsigned BitNo; // Bit # of CR6. 10095 bool InvertBit; // Invert result? 10096 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10097 default: // Can't happen, don't crash on invalid number though. 10098 case 0: // Return the value of the EQ bit of CR6. 10099 BitNo = 0; InvertBit = false; 10100 break; 10101 case 1: // Return the inverted value of the EQ bit of CR6. 10102 BitNo = 0; InvertBit = true; 10103 break; 10104 case 2: // Return the value of the LT bit of CR6. 10105 BitNo = 2; InvertBit = false; 10106 break; 10107 case 3: // Return the inverted value of the LT bit of CR6. 10108 BitNo = 2; InvertBit = true; 10109 break; 10110 } 10111 10112 // Shift the bit into the low position. 10113 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10114 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10115 // Isolate the bit. 10116 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10117 DAG.getConstant(1, dl, MVT::i32)); 10118 10119 // If we are supposed to, toggle the bit. 10120 if (InvertBit) 10121 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10122 DAG.getConstant(1, dl, MVT::i32)); 10123 return Flags; 10124 } 10125 10126 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10127 SelectionDAG &DAG) const { 10128 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10129 // the beginning of the argument list. 10130 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10131 SDLoc DL(Op); 10132 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10133 case Intrinsic::ppc_cfence: { 10134 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10135 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10136 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10137 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10138 Op.getOperand(ArgStart + 1)), 10139 Op.getOperand(0)), 10140 0); 10141 } 10142 default: 10143 break; 10144 } 10145 return SDValue(); 10146 } 10147 10148 // Lower scalar BSWAP64 to xxbrd. 10149 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10150 SDLoc dl(Op); 10151 // MTVSRDD 10152 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10153 Op.getOperand(0)); 10154 // XXBRD 10155 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10156 // MFVSRD 10157 int VectorIndex = 0; 10158 if (Subtarget.isLittleEndian()) 10159 VectorIndex = 1; 10160 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10161 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10162 return Op; 10163 } 10164 10165 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10166 // compared to a value that is atomically loaded (atomic loads zero-extend). 10167 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10168 SelectionDAG &DAG) const { 10169 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10170 "Expecting an atomic compare-and-swap here."); 10171 SDLoc dl(Op); 10172 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10173 EVT MemVT = AtomicNode->getMemoryVT(); 10174 if (MemVT.getSizeInBits() >= 32) 10175 return Op; 10176 10177 SDValue CmpOp = Op.getOperand(2); 10178 // If this is already correctly zero-extended, leave it alone. 10179 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10180 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10181 return Op; 10182 10183 // Clear the high bits of the compare operand. 10184 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10185 SDValue NewCmpOp = 10186 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10187 DAG.getConstant(MaskVal, dl, MVT::i32)); 10188 10189 // Replace the existing compare operand with the properly zero-extended one. 10190 SmallVector<SDValue, 4> Ops; 10191 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10192 Ops.push_back(AtomicNode->getOperand(i)); 10193 Ops[2] = NewCmpOp; 10194 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10195 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10196 auto NodeTy = 10197 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10198 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10199 } 10200 10201 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10202 SelectionDAG &DAG) const { 10203 SDLoc dl(Op); 10204 // Create a stack slot that is 16-byte aligned. 10205 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10206 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10207 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10208 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10209 10210 // Store the input value into Value#0 of the stack slot. 10211 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10212 MachinePointerInfo()); 10213 // Load it out. 10214 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10215 } 10216 10217 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10218 SelectionDAG &DAG) const { 10219 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10220 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10221 10222 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10223 // We have legal lowering for constant indices but not for variable ones. 10224 if (!C) 10225 return SDValue(); 10226 10227 EVT VT = Op.getValueType(); 10228 SDLoc dl(Op); 10229 SDValue V1 = Op.getOperand(0); 10230 SDValue V2 = Op.getOperand(1); 10231 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10232 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10233 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10234 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10235 unsigned InsertAtElement = C->getZExtValue(); 10236 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10237 if (Subtarget.isLittleEndian()) { 10238 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10239 } 10240 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10241 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10242 } 10243 return Op; 10244 } 10245 10246 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10247 SDLoc dl(Op); 10248 if (Op.getValueType() == MVT::v4i32) { 10249 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10250 10251 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10252 // +16 as shift amt. 10253 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10254 SDValue RHSSwap = // = vrlw RHS, 16 10255 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10256 10257 // Shrinkify inputs to v8i16. 10258 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10259 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10260 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10261 10262 // Low parts multiplied together, generating 32-bit results (we ignore the 10263 // top parts). 10264 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10265 LHS, RHS, DAG, dl, MVT::v4i32); 10266 10267 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10268 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10269 // Shift the high parts up 16 bits. 10270 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10271 Neg16, DAG, dl); 10272 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10273 } else if (Op.getValueType() == MVT::v16i8) { 10274 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10275 bool isLittleEndian = Subtarget.isLittleEndian(); 10276 10277 // Multiply the even 8-bit parts, producing 16-bit sums. 10278 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10279 LHS, RHS, DAG, dl, MVT::v8i16); 10280 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10281 10282 // Multiply the odd 8-bit parts, producing 16-bit sums. 10283 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10284 LHS, RHS, DAG, dl, MVT::v8i16); 10285 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10286 10287 // Merge the results together. Because vmuleub and vmuloub are 10288 // instructions with a big-endian bias, we must reverse the 10289 // element numbering and reverse the meaning of "odd" and "even" 10290 // when generating little endian code. 10291 int Ops[16]; 10292 for (unsigned i = 0; i != 8; ++i) { 10293 if (isLittleEndian) { 10294 Ops[i*2 ] = 2*i; 10295 Ops[i*2+1] = 2*i+16; 10296 } else { 10297 Ops[i*2 ] = 2*i+1; 10298 Ops[i*2+1] = 2*i+1+16; 10299 } 10300 } 10301 if (isLittleEndian) 10302 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10303 else 10304 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10305 } else { 10306 llvm_unreachable("Unknown mul to lower!"); 10307 } 10308 } 10309 10310 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10311 10312 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10313 10314 EVT VT = Op.getValueType(); 10315 assert(VT.isVector() && 10316 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10317 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10318 VT == MVT::v16i8) && 10319 "Unexpected vector element type!"); 10320 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10321 "Current subtarget doesn't support smax v2i64!"); 10322 10323 // For vector abs, it can be lowered to: 10324 // abs x 10325 // ==> 10326 // y = -x 10327 // smax(x, y) 10328 10329 SDLoc dl(Op); 10330 SDValue X = Op.getOperand(0); 10331 SDValue Zero = DAG.getConstant(0, dl, VT); 10332 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10333 10334 // SMAX patch https://reviews.llvm.org/D47332 10335 // hasn't landed yet, so use intrinsic first here. 10336 // TODO: Should use SMAX directly once SMAX patch landed 10337 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10338 if (VT == MVT::v2i64) 10339 BifID = Intrinsic::ppc_altivec_vmaxsd; 10340 else if (VT == MVT::v8i16) 10341 BifID = Intrinsic::ppc_altivec_vmaxsh; 10342 else if (VT == MVT::v16i8) 10343 BifID = Intrinsic::ppc_altivec_vmaxsb; 10344 10345 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10346 } 10347 10348 // Custom lowering for fpext vf32 to v2f64 10349 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10350 10351 assert(Op.getOpcode() == ISD::FP_EXTEND && 10352 "Should only be called for ISD::FP_EXTEND"); 10353 10354 // FIXME: handle extends from half precision float vectors on P9. 10355 // We only want to custom lower an extend from v2f32 to v2f64. 10356 if (Op.getValueType() != MVT::v2f64 || 10357 Op.getOperand(0).getValueType() != MVT::v2f32) 10358 return SDValue(); 10359 10360 SDLoc dl(Op); 10361 SDValue Op0 = Op.getOperand(0); 10362 10363 switch (Op0.getOpcode()) { 10364 default: 10365 return SDValue(); 10366 case ISD::EXTRACT_SUBVECTOR: { 10367 assert(Op0.getNumOperands() == 2 && 10368 isa<ConstantSDNode>(Op0->getOperand(1)) && 10369 "Node should have 2 operands with second one being a constant!"); 10370 10371 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10372 return SDValue(); 10373 10374 // Custom lower is only done for high or low doubleword. 10375 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10376 if (Idx % 2 != 0) 10377 return SDValue(); 10378 10379 // Since input is v4f32, at this point Idx is either 0 or 2. 10380 // Shift to get the doubleword position we want. 10381 int DWord = Idx >> 1; 10382 10383 // High and low word positions are different on little endian. 10384 if (Subtarget.isLittleEndian()) 10385 DWord ^= 0x1; 10386 10387 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10388 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10389 } 10390 case ISD::FADD: 10391 case ISD::FMUL: 10392 case ISD::FSUB: { 10393 SDValue NewLoad[2]; 10394 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10395 // Ensure both input are loads. 10396 SDValue LdOp = Op0.getOperand(i); 10397 if (LdOp.getOpcode() != ISD::LOAD) 10398 return SDValue(); 10399 // Generate new load node. 10400 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10401 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10402 NewLoad[i] = DAG.getMemIntrinsicNode( 10403 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10404 LD->getMemoryVT(), LD->getMemOperand()); 10405 } 10406 SDValue NewOp = 10407 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10408 NewLoad[1], Op0.getNode()->getFlags()); 10409 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10410 DAG.getConstant(0, dl, MVT::i32)); 10411 } 10412 case ISD::LOAD: { 10413 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10414 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10415 SDValue NewLd = DAG.getMemIntrinsicNode( 10416 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10417 LD->getMemoryVT(), LD->getMemOperand()); 10418 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10419 DAG.getConstant(0, dl, MVT::i32)); 10420 } 10421 } 10422 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10423 } 10424 10425 /// LowerOperation - Provide custom lowering hooks for some operations. 10426 /// 10427 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10428 switch (Op.getOpcode()) { 10429 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10430 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10431 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10432 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10433 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10434 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10435 case ISD::SETCC: return LowerSETCC(Op, DAG); 10436 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10437 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10438 10439 // Variable argument lowering. 10440 case ISD::VASTART: return LowerVASTART(Op, DAG); 10441 case ISD::VAARG: return LowerVAARG(Op, DAG); 10442 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10443 10444 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10445 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10446 case ISD::GET_DYNAMIC_AREA_OFFSET: 10447 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10448 10449 // Exception handling lowering. 10450 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10451 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10452 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10453 10454 case ISD::LOAD: return LowerLOAD(Op, DAG); 10455 case ISD::STORE: return LowerSTORE(Op, DAG); 10456 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10457 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10458 case ISD::FP_TO_UINT: 10459 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10460 case ISD::UINT_TO_FP: 10461 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10462 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10463 10464 // Lower 64-bit shifts. 10465 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10466 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10467 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10468 10469 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10470 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10471 10472 // Vector-related lowering. 10473 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10474 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10475 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10476 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10477 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10478 case ISD::MUL: return LowerMUL(Op, DAG); 10479 case ISD::ABS: return LowerABS(Op, DAG); 10480 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10481 case ISD::ROTL: return LowerROTL(Op, DAG); 10482 10483 // For counter-based loop handling. 10484 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10485 10486 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10487 10488 // Frame & Return address. 10489 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10490 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10491 10492 case ISD::INTRINSIC_VOID: 10493 return LowerINTRINSIC_VOID(Op, DAG); 10494 case ISD::BSWAP: 10495 return LowerBSWAP(Op, DAG); 10496 case ISD::ATOMIC_CMP_SWAP: 10497 return LowerATOMIC_CMP_SWAP(Op, DAG); 10498 } 10499 } 10500 10501 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10502 SmallVectorImpl<SDValue>&Results, 10503 SelectionDAG &DAG) const { 10504 SDLoc dl(N); 10505 switch (N->getOpcode()) { 10506 default: 10507 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10508 case ISD::READCYCLECOUNTER: { 10509 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10510 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10511 10512 Results.push_back( 10513 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10514 Results.push_back(RTB.getValue(2)); 10515 break; 10516 } 10517 case ISD::INTRINSIC_W_CHAIN: { 10518 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10519 Intrinsic::loop_decrement) 10520 break; 10521 10522 assert(N->getValueType(0) == MVT::i1 && 10523 "Unexpected result type for CTR decrement intrinsic"); 10524 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10525 N->getValueType(0)); 10526 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10527 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10528 N->getOperand(1)); 10529 10530 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10531 Results.push_back(NewInt.getValue(1)); 10532 break; 10533 } 10534 case ISD::VAARG: { 10535 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10536 return; 10537 10538 EVT VT = N->getValueType(0); 10539 10540 if (VT == MVT::i64) { 10541 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10542 10543 Results.push_back(NewNode); 10544 Results.push_back(NewNode.getValue(1)); 10545 } 10546 return; 10547 } 10548 case ISD::FP_TO_SINT: 10549 case ISD::FP_TO_UINT: 10550 // LowerFP_TO_INT() can only handle f32 and f64. 10551 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10552 return; 10553 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10554 return; 10555 case ISD::TRUNCATE: { 10556 EVT TrgVT = N->getValueType(0); 10557 EVT OpVT = N->getOperand(0).getValueType(); 10558 if (TrgVT.isVector() && 10559 isOperationCustom(N->getOpcode(), TrgVT) && 10560 OpVT.getSizeInBits() <= 128 && 10561 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10562 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10563 return; 10564 } 10565 case ISD::BITCAST: 10566 // Don't handle bitcast here. 10567 return; 10568 case ISD::FP_EXTEND: 10569 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10570 if (Lowered) 10571 Results.push_back(Lowered); 10572 return; 10573 } 10574 } 10575 10576 //===----------------------------------------------------------------------===// 10577 // Other Lowering Code 10578 //===----------------------------------------------------------------------===// 10579 10580 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10581 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10582 Function *Func = Intrinsic::getDeclaration(M, Id); 10583 return Builder.CreateCall(Func, {}); 10584 } 10585 10586 // The mappings for emitLeading/TrailingFence is taken from 10587 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10588 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10589 Instruction *Inst, 10590 AtomicOrdering Ord) const { 10591 if (Ord == AtomicOrdering::SequentiallyConsistent) 10592 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10593 if (isReleaseOrStronger(Ord)) 10594 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10595 return nullptr; 10596 } 10597 10598 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10599 Instruction *Inst, 10600 AtomicOrdering Ord) const { 10601 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10602 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10603 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10604 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10605 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10606 return Builder.CreateCall( 10607 Intrinsic::getDeclaration( 10608 Builder.GetInsertBlock()->getParent()->getParent(), 10609 Intrinsic::ppc_cfence, {Inst->getType()}), 10610 {Inst}); 10611 // FIXME: Can use isync for rmw operation. 10612 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10613 } 10614 return nullptr; 10615 } 10616 10617 MachineBasicBlock * 10618 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10619 unsigned AtomicSize, 10620 unsigned BinOpcode, 10621 unsigned CmpOpcode, 10622 unsigned CmpPred) const { 10623 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10624 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10625 10626 auto LoadMnemonic = PPC::LDARX; 10627 auto StoreMnemonic = PPC::STDCX; 10628 switch (AtomicSize) { 10629 default: 10630 llvm_unreachable("Unexpected size of atomic entity"); 10631 case 1: 10632 LoadMnemonic = PPC::LBARX; 10633 StoreMnemonic = PPC::STBCX; 10634 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10635 break; 10636 case 2: 10637 LoadMnemonic = PPC::LHARX; 10638 StoreMnemonic = PPC::STHCX; 10639 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10640 break; 10641 case 4: 10642 LoadMnemonic = PPC::LWARX; 10643 StoreMnemonic = PPC::STWCX; 10644 break; 10645 case 8: 10646 LoadMnemonic = PPC::LDARX; 10647 StoreMnemonic = PPC::STDCX; 10648 break; 10649 } 10650 10651 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10652 MachineFunction *F = BB->getParent(); 10653 MachineFunction::iterator It = ++BB->getIterator(); 10654 10655 Register dest = MI.getOperand(0).getReg(); 10656 Register ptrA = MI.getOperand(1).getReg(); 10657 Register ptrB = MI.getOperand(2).getReg(); 10658 Register incr = MI.getOperand(3).getReg(); 10659 DebugLoc dl = MI.getDebugLoc(); 10660 10661 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10662 MachineBasicBlock *loop2MBB = 10663 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10664 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10665 F->insert(It, loopMBB); 10666 if (CmpOpcode) 10667 F->insert(It, loop2MBB); 10668 F->insert(It, exitMBB); 10669 exitMBB->splice(exitMBB->begin(), BB, 10670 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10671 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10672 10673 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10674 Register TmpReg = (!BinOpcode) ? incr : 10675 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10676 : &PPC::GPRCRegClass); 10677 10678 // thisMBB: 10679 // ... 10680 // fallthrough --> loopMBB 10681 BB->addSuccessor(loopMBB); 10682 10683 // loopMBB: 10684 // l[wd]arx dest, ptr 10685 // add r0, dest, incr 10686 // st[wd]cx. r0, ptr 10687 // bne- loopMBB 10688 // fallthrough --> exitMBB 10689 10690 // For max/min... 10691 // loopMBB: 10692 // l[wd]arx dest, ptr 10693 // cmpl?[wd] incr, dest 10694 // bgt exitMBB 10695 // loop2MBB: 10696 // st[wd]cx. dest, ptr 10697 // bne- loopMBB 10698 // fallthrough --> exitMBB 10699 10700 BB = loopMBB; 10701 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10702 .addReg(ptrA).addReg(ptrB); 10703 if (BinOpcode) 10704 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10705 if (CmpOpcode) { 10706 // Signed comparisons of byte or halfword values must be sign-extended. 10707 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10708 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10709 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10710 ExtReg).addReg(dest); 10711 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10712 .addReg(incr).addReg(ExtReg); 10713 } else 10714 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10715 .addReg(incr).addReg(dest); 10716 10717 BuildMI(BB, dl, TII->get(PPC::BCC)) 10718 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10719 BB->addSuccessor(loop2MBB); 10720 BB->addSuccessor(exitMBB); 10721 BB = loop2MBB; 10722 } 10723 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10724 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10725 BuildMI(BB, dl, TII->get(PPC::BCC)) 10726 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10727 BB->addSuccessor(loopMBB); 10728 BB->addSuccessor(exitMBB); 10729 10730 // exitMBB: 10731 // ... 10732 BB = exitMBB; 10733 return BB; 10734 } 10735 10736 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10737 MachineInstr &MI, MachineBasicBlock *BB, 10738 bool is8bit, // operation 10739 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10740 // If we support part-word atomic mnemonics, just use them 10741 if (Subtarget.hasPartwordAtomics()) 10742 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10743 CmpPred); 10744 10745 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10746 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10747 // In 64 bit mode we have to use 64 bits for addresses, even though the 10748 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10749 // registers without caring whether they're 32 or 64, but here we're 10750 // doing actual arithmetic on the addresses. 10751 bool is64bit = Subtarget.isPPC64(); 10752 bool isLittleEndian = Subtarget.isLittleEndian(); 10753 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10754 10755 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10756 MachineFunction *F = BB->getParent(); 10757 MachineFunction::iterator It = ++BB->getIterator(); 10758 10759 Register dest = MI.getOperand(0).getReg(); 10760 Register ptrA = MI.getOperand(1).getReg(); 10761 Register ptrB = MI.getOperand(2).getReg(); 10762 Register incr = MI.getOperand(3).getReg(); 10763 DebugLoc dl = MI.getDebugLoc(); 10764 10765 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10766 MachineBasicBlock *loop2MBB = 10767 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10768 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10769 F->insert(It, loopMBB); 10770 if (CmpOpcode) 10771 F->insert(It, loop2MBB); 10772 F->insert(It, exitMBB); 10773 exitMBB->splice(exitMBB->begin(), BB, 10774 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10775 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10776 10777 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10778 const TargetRegisterClass *RC = 10779 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10780 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10781 10782 Register PtrReg = RegInfo.createVirtualRegister(RC); 10783 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10784 Register ShiftReg = 10785 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10786 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10787 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10788 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10789 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10790 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10791 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10792 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10793 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10794 Register Ptr1Reg; 10795 Register TmpReg = 10796 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10797 10798 // thisMBB: 10799 // ... 10800 // fallthrough --> loopMBB 10801 BB->addSuccessor(loopMBB); 10802 10803 // The 4-byte load must be aligned, while a char or short may be 10804 // anywhere in the word. Hence all this nasty bookkeeping code. 10805 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10806 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10807 // xori shift, shift1, 24 [16] 10808 // rlwinm ptr, ptr1, 0, 0, 29 10809 // slw incr2, incr, shift 10810 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10811 // slw mask, mask2, shift 10812 // loopMBB: 10813 // lwarx tmpDest, ptr 10814 // add tmp, tmpDest, incr2 10815 // andc tmp2, tmpDest, mask 10816 // and tmp3, tmp, mask 10817 // or tmp4, tmp3, tmp2 10818 // stwcx. tmp4, ptr 10819 // bne- loopMBB 10820 // fallthrough --> exitMBB 10821 // srw dest, tmpDest, shift 10822 if (ptrA != ZeroReg) { 10823 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10824 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10825 .addReg(ptrA) 10826 .addReg(ptrB); 10827 } else { 10828 Ptr1Reg = ptrB; 10829 } 10830 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10831 // mode. 10832 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10833 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10834 .addImm(3) 10835 .addImm(27) 10836 .addImm(is8bit ? 28 : 27); 10837 if (!isLittleEndian) 10838 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10839 .addReg(Shift1Reg) 10840 .addImm(is8bit ? 24 : 16); 10841 if (is64bit) 10842 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10843 .addReg(Ptr1Reg) 10844 .addImm(0) 10845 .addImm(61); 10846 else 10847 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10848 .addReg(Ptr1Reg) 10849 .addImm(0) 10850 .addImm(0) 10851 .addImm(29); 10852 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10853 if (is8bit) 10854 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10855 else { 10856 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10857 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10858 .addReg(Mask3Reg) 10859 .addImm(65535); 10860 } 10861 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10862 .addReg(Mask2Reg) 10863 .addReg(ShiftReg); 10864 10865 BB = loopMBB; 10866 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10867 .addReg(ZeroReg) 10868 .addReg(PtrReg); 10869 if (BinOpcode) 10870 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10871 .addReg(Incr2Reg) 10872 .addReg(TmpDestReg); 10873 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10874 .addReg(TmpDestReg) 10875 .addReg(MaskReg); 10876 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10877 if (CmpOpcode) { 10878 // For unsigned comparisons, we can directly compare the shifted values. 10879 // For signed comparisons we shift and sign extend. 10880 Register SReg = RegInfo.createVirtualRegister(GPRC); 10881 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10882 .addReg(TmpDestReg) 10883 .addReg(MaskReg); 10884 unsigned ValueReg = SReg; 10885 unsigned CmpReg = Incr2Reg; 10886 if (CmpOpcode == PPC::CMPW) { 10887 ValueReg = RegInfo.createVirtualRegister(GPRC); 10888 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10889 .addReg(SReg) 10890 .addReg(ShiftReg); 10891 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10892 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10893 .addReg(ValueReg); 10894 ValueReg = ValueSReg; 10895 CmpReg = incr; 10896 } 10897 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10898 .addReg(CmpReg) 10899 .addReg(ValueReg); 10900 BuildMI(BB, dl, TII->get(PPC::BCC)) 10901 .addImm(CmpPred) 10902 .addReg(PPC::CR0) 10903 .addMBB(exitMBB); 10904 BB->addSuccessor(loop2MBB); 10905 BB->addSuccessor(exitMBB); 10906 BB = loop2MBB; 10907 } 10908 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10909 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10910 .addReg(Tmp4Reg) 10911 .addReg(ZeroReg) 10912 .addReg(PtrReg); 10913 BuildMI(BB, dl, TII->get(PPC::BCC)) 10914 .addImm(PPC::PRED_NE) 10915 .addReg(PPC::CR0) 10916 .addMBB(loopMBB); 10917 BB->addSuccessor(loopMBB); 10918 BB->addSuccessor(exitMBB); 10919 10920 // exitMBB: 10921 // ... 10922 BB = exitMBB; 10923 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10924 .addReg(TmpDestReg) 10925 .addReg(ShiftReg); 10926 return BB; 10927 } 10928 10929 llvm::MachineBasicBlock * 10930 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10931 MachineBasicBlock *MBB) const { 10932 DebugLoc DL = MI.getDebugLoc(); 10933 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10934 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10935 10936 MachineFunction *MF = MBB->getParent(); 10937 MachineRegisterInfo &MRI = MF->getRegInfo(); 10938 10939 const BasicBlock *BB = MBB->getBasicBlock(); 10940 MachineFunction::iterator I = ++MBB->getIterator(); 10941 10942 Register DstReg = MI.getOperand(0).getReg(); 10943 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10944 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10945 Register mainDstReg = MRI.createVirtualRegister(RC); 10946 Register restoreDstReg = MRI.createVirtualRegister(RC); 10947 10948 MVT PVT = getPointerTy(MF->getDataLayout()); 10949 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10950 "Invalid Pointer Size!"); 10951 // For v = setjmp(buf), we generate 10952 // 10953 // thisMBB: 10954 // SjLjSetup mainMBB 10955 // bl mainMBB 10956 // v_restore = 1 10957 // b sinkMBB 10958 // 10959 // mainMBB: 10960 // buf[LabelOffset] = LR 10961 // v_main = 0 10962 // 10963 // sinkMBB: 10964 // v = phi(main, restore) 10965 // 10966 10967 MachineBasicBlock *thisMBB = MBB; 10968 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10969 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10970 MF->insert(I, mainMBB); 10971 MF->insert(I, sinkMBB); 10972 10973 MachineInstrBuilder MIB; 10974 10975 // Transfer the remainder of BB and its successor edges to sinkMBB. 10976 sinkMBB->splice(sinkMBB->begin(), MBB, 10977 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10978 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10979 10980 // Note that the structure of the jmp_buf used here is not compatible 10981 // with that used by libc, and is not designed to be. Specifically, it 10982 // stores only those 'reserved' registers that LLVM does not otherwise 10983 // understand how to spill. Also, by convention, by the time this 10984 // intrinsic is called, Clang has already stored the frame address in the 10985 // first slot of the buffer and stack address in the third. Following the 10986 // X86 target code, we'll store the jump address in the second slot. We also 10987 // need to save the TOC pointer (R2) to handle jumps between shared 10988 // libraries, and that will be stored in the fourth slot. The thread 10989 // identifier (R13) is not affected. 10990 10991 // thisMBB: 10992 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10993 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10994 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10995 10996 // Prepare IP either in reg. 10997 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10998 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10999 Register BufReg = MI.getOperand(1).getReg(); 11000 11001 if (Subtarget.is64BitELFABI()) { 11002 setUsesTOCBasePtr(*MBB->getParent()); 11003 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11004 .addReg(PPC::X2) 11005 .addImm(TOCOffset) 11006 .addReg(BufReg) 11007 .cloneMemRefs(MI); 11008 } 11009 11010 // Naked functions never have a base pointer, and so we use r1. For all 11011 // other functions, this decision must be delayed until during PEI. 11012 unsigned BaseReg; 11013 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11014 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11015 else 11016 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11017 11018 MIB = BuildMI(*thisMBB, MI, DL, 11019 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11020 .addReg(BaseReg) 11021 .addImm(BPOffset) 11022 .addReg(BufReg) 11023 .cloneMemRefs(MI); 11024 11025 // Setup 11026 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11027 MIB.addRegMask(TRI->getNoPreservedMask()); 11028 11029 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11030 11031 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11032 .addMBB(mainMBB); 11033 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11034 11035 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11036 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11037 11038 // mainMBB: 11039 // mainDstReg = 0 11040 MIB = 11041 BuildMI(mainMBB, DL, 11042 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11043 11044 // Store IP 11045 if (Subtarget.isPPC64()) { 11046 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11047 .addReg(LabelReg) 11048 .addImm(LabelOffset) 11049 .addReg(BufReg); 11050 } else { 11051 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11052 .addReg(LabelReg) 11053 .addImm(LabelOffset) 11054 .addReg(BufReg); 11055 } 11056 MIB.cloneMemRefs(MI); 11057 11058 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11059 mainMBB->addSuccessor(sinkMBB); 11060 11061 // sinkMBB: 11062 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11063 TII->get(PPC::PHI), DstReg) 11064 .addReg(mainDstReg).addMBB(mainMBB) 11065 .addReg(restoreDstReg).addMBB(thisMBB); 11066 11067 MI.eraseFromParent(); 11068 return sinkMBB; 11069 } 11070 11071 MachineBasicBlock * 11072 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11073 MachineBasicBlock *MBB) const { 11074 DebugLoc DL = MI.getDebugLoc(); 11075 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11076 11077 MachineFunction *MF = MBB->getParent(); 11078 MachineRegisterInfo &MRI = MF->getRegInfo(); 11079 11080 MVT PVT = getPointerTy(MF->getDataLayout()); 11081 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11082 "Invalid Pointer Size!"); 11083 11084 const TargetRegisterClass *RC = 11085 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11086 Register Tmp = MRI.createVirtualRegister(RC); 11087 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11088 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11089 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11090 unsigned BP = 11091 (PVT == MVT::i64) 11092 ? PPC::X30 11093 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11094 : PPC::R30); 11095 11096 MachineInstrBuilder MIB; 11097 11098 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11099 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11100 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11101 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11102 11103 Register BufReg = MI.getOperand(0).getReg(); 11104 11105 // Reload FP (the jumped-to function may not have had a 11106 // frame pointer, and if so, then its r31 will be restored 11107 // as necessary). 11108 if (PVT == MVT::i64) { 11109 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11110 .addImm(0) 11111 .addReg(BufReg); 11112 } else { 11113 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11114 .addImm(0) 11115 .addReg(BufReg); 11116 } 11117 MIB.cloneMemRefs(MI); 11118 11119 // Reload IP 11120 if (PVT == MVT::i64) { 11121 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11122 .addImm(LabelOffset) 11123 .addReg(BufReg); 11124 } else { 11125 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11126 .addImm(LabelOffset) 11127 .addReg(BufReg); 11128 } 11129 MIB.cloneMemRefs(MI); 11130 11131 // Reload SP 11132 if (PVT == MVT::i64) { 11133 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11134 .addImm(SPOffset) 11135 .addReg(BufReg); 11136 } else { 11137 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11138 .addImm(SPOffset) 11139 .addReg(BufReg); 11140 } 11141 MIB.cloneMemRefs(MI); 11142 11143 // Reload BP 11144 if (PVT == MVT::i64) { 11145 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11146 .addImm(BPOffset) 11147 .addReg(BufReg); 11148 } else { 11149 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11150 .addImm(BPOffset) 11151 .addReg(BufReg); 11152 } 11153 MIB.cloneMemRefs(MI); 11154 11155 // Reload TOC 11156 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11157 setUsesTOCBasePtr(*MBB->getParent()); 11158 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11159 .addImm(TOCOffset) 11160 .addReg(BufReg) 11161 .cloneMemRefs(MI); 11162 } 11163 11164 // Jump 11165 BuildMI(*MBB, MI, DL, 11166 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11167 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11168 11169 MI.eraseFromParent(); 11170 return MBB; 11171 } 11172 11173 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11174 // If the function specifically requests inline stack probes, emit them. 11175 if (MF.getFunction().hasFnAttribute("probe-stack")) 11176 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11177 "inline-asm"; 11178 return false; 11179 } 11180 11181 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11182 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11183 unsigned StackAlign = TFI->getStackAlignment(); 11184 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11185 "Unexpected stack alignment"); 11186 // The default stack probe size is 4096 if the function has no 11187 // stack-probe-size attribute. 11188 unsigned StackProbeSize = 4096; 11189 const Function &Fn = MF.getFunction(); 11190 if (Fn.hasFnAttribute("stack-probe-size")) 11191 Fn.getFnAttribute("stack-probe-size") 11192 .getValueAsString() 11193 .getAsInteger(0, StackProbeSize); 11194 // Round down to the stack alignment. 11195 StackProbeSize &= ~(StackAlign - 1); 11196 return StackProbeSize ? StackProbeSize : StackAlign; 11197 } 11198 11199 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11200 // into three phases. In the first phase, it uses pseudo instruction 11201 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11202 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11203 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11204 // MaxCallFrameSize so that it can calculate correct data area pointer. 11205 MachineBasicBlock * 11206 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11207 MachineBasicBlock *MBB) const { 11208 const bool isPPC64 = Subtarget.isPPC64(); 11209 MachineFunction *MF = MBB->getParent(); 11210 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11211 DebugLoc DL = MI.getDebugLoc(); 11212 const unsigned ProbeSize = getStackProbeSize(*MF); 11213 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11214 MachineRegisterInfo &MRI = MF->getRegInfo(); 11215 // The CFG of probing stack looks as 11216 // +-----+ 11217 // | MBB | 11218 // +--+--+ 11219 // | 11220 // +----v----+ 11221 // +--->+ TestMBB +---+ 11222 // | +----+----+ | 11223 // | | | 11224 // | +-----v----+ | 11225 // +---+ BlockMBB | | 11226 // +----------+ | 11227 // | 11228 // +---------+ | 11229 // | TailMBB +<--+ 11230 // +---------+ 11231 // In MBB, calculate previous frame pointer and final stack pointer. 11232 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11233 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11234 // TailMBB is spliced via \p MI. 11235 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11236 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11237 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11238 11239 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11240 MF->insert(MBBIter, TestMBB); 11241 MF->insert(MBBIter, BlockMBB); 11242 MF->insert(MBBIter, TailMBB); 11243 11244 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11245 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11246 11247 Register DstReg = MI.getOperand(0).getReg(); 11248 Register NegSizeReg = MI.getOperand(1).getReg(); 11249 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11250 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11251 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11252 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11253 11254 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11255 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11256 // NegSize. 11257 unsigned ProbeOpc; 11258 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11259 ProbeOpc = 11260 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11261 else 11262 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11263 // and NegSizeReg will be allocated in the same phyreg to avoid 11264 // redundant copy when NegSizeReg has only one use which is current MI and 11265 // will be replaced by PREPARE_PROBED_ALLOCA then. 11266 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11267 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11268 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11269 .addDef(ActualNegSizeReg) 11270 .addReg(NegSizeReg) 11271 .add(MI.getOperand(2)) 11272 .add(MI.getOperand(3)); 11273 11274 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11275 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11276 FinalStackPtr) 11277 .addReg(SPReg) 11278 .addReg(ActualNegSizeReg); 11279 11280 // Materialize a scratch register for update. 11281 int64_t NegProbeSize = -(int64_t)ProbeSize; 11282 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11283 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11284 if (!isInt<16>(NegProbeSize)) { 11285 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11286 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11287 .addImm(NegProbeSize >> 16); 11288 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11289 ScratchReg) 11290 .addReg(TempReg) 11291 .addImm(NegProbeSize & 0xFFFF); 11292 } else 11293 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11294 .addImm(NegProbeSize); 11295 11296 { 11297 // Probing leading residual part. 11298 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11299 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11300 .addReg(ActualNegSizeReg) 11301 .addReg(ScratchReg); 11302 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11303 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11304 .addReg(Div) 11305 .addReg(ScratchReg); 11306 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11307 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11308 .addReg(Mul) 11309 .addReg(ActualNegSizeReg); 11310 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11311 .addReg(FramePointer) 11312 .addReg(SPReg) 11313 .addReg(NegMod); 11314 } 11315 11316 { 11317 // Remaining part should be multiple of ProbeSize. 11318 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11319 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11320 .addReg(SPReg) 11321 .addReg(FinalStackPtr); 11322 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11323 .addImm(PPC::PRED_EQ) 11324 .addReg(CmpResult) 11325 .addMBB(TailMBB); 11326 TestMBB->addSuccessor(BlockMBB); 11327 TestMBB->addSuccessor(TailMBB); 11328 } 11329 11330 { 11331 // Touch the block. 11332 // |P...|P...|P... 11333 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11334 .addReg(FramePointer) 11335 .addReg(SPReg) 11336 .addReg(ScratchReg); 11337 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11338 BlockMBB->addSuccessor(TestMBB); 11339 } 11340 11341 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11342 // DYNAREAOFFSET pseudo instruction to get the future result. 11343 Register MaxCallFrameSizeReg = 11344 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11345 BuildMI(TailMBB, DL, 11346 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11347 MaxCallFrameSizeReg) 11348 .add(MI.getOperand(2)) 11349 .add(MI.getOperand(3)); 11350 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11351 .addReg(SPReg) 11352 .addReg(MaxCallFrameSizeReg); 11353 11354 // Splice instructions after MI to TailMBB. 11355 TailMBB->splice(TailMBB->end(), MBB, 11356 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11357 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11358 MBB->addSuccessor(TestMBB); 11359 11360 // Delete the pseudo instruction. 11361 MI.eraseFromParent(); 11362 11363 ++NumDynamicAllocaProbed; 11364 return TailMBB; 11365 } 11366 11367 MachineBasicBlock * 11368 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11369 MachineBasicBlock *BB) const { 11370 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11371 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11372 if (Subtarget.is64BitELFABI() && 11373 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11374 !Subtarget.isUsingPCRelativeCalls()) { 11375 // Call lowering should have added an r2 operand to indicate a dependence 11376 // on the TOC base pointer value. It can't however, because there is no 11377 // way to mark the dependence as implicit there, and so the stackmap code 11378 // will confuse it with a regular operand. Instead, add the dependence 11379 // here. 11380 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11381 } 11382 11383 return emitPatchPoint(MI, BB); 11384 } 11385 11386 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11387 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11388 return emitEHSjLjSetJmp(MI, BB); 11389 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11390 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11391 return emitEHSjLjLongJmp(MI, BB); 11392 } 11393 11394 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11395 11396 // To "insert" these instructions we actually have to insert their 11397 // control-flow patterns. 11398 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11399 MachineFunction::iterator It = ++BB->getIterator(); 11400 11401 MachineFunction *F = BB->getParent(); 11402 11403 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11404 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11405 MI.getOpcode() == PPC::SELECT_I8) { 11406 SmallVector<MachineOperand, 2> Cond; 11407 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11408 MI.getOpcode() == PPC::SELECT_CC_I8) 11409 Cond.push_back(MI.getOperand(4)); 11410 else 11411 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11412 Cond.push_back(MI.getOperand(1)); 11413 11414 DebugLoc dl = MI.getDebugLoc(); 11415 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11416 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11417 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11418 MI.getOpcode() == PPC::SELECT_CC_F8 || 11419 MI.getOpcode() == PPC::SELECT_CC_F16 || 11420 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11421 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11422 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11423 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11424 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11425 MI.getOpcode() == PPC::SELECT_CC_SPE || 11426 MI.getOpcode() == PPC::SELECT_F4 || 11427 MI.getOpcode() == PPC::SELECT_F8 || 11428 MI.getOpcode() == PPC::SELECT_F16 || 11429 MI.getOpcode() == PPC::SELECT_SPE || 11430 MI.getOpcode() == PPC::SELECT_SPE4 || 11431 MI.getOpcode() == PPC::SELECT_VRRC || 11432 MI.getOpcode() == PPC::SELECT_VSFRC || 11433 MI.getOpcode() == PPC::SELECT_VSSRC || 11434 MI.getOpcode() == PPC::SELECT_VSRC) { 11435 // The incoming instruction knows the destination vreg to set, the 11436 // condition code register to branch on, the true/false values to 11437 // select between, and a branch opcode to use. 11438 11439 // thisMBB: 11440 // ... 11441 // TrueVal = ... 11442 // cmpTY ccX, r1, r2 11443 // bCC copy1MBB 11444 // fallthrough --> copy0MBB 11445 MachineBasicBlock *thisMBB = BB; 11446 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11447 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11448 DebugLoc dl = MI.getDebugLoc(); 11449 F->insert(It, copy0MBB); 11450 F->insert(It, sinkMBB); 11451 11452 // Transfer the remainder of BB and its successor edges to sinkMBB. 11453 sinkMBB->splice(sinkMBB->begin(), BB, 11454 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11455 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11456 11457 // Next, add the true and fallthrough blocks as its successors. 11458 BB->addSuccessor(copy0MBB); 11459 BB->addSuccessor(sinkMBB); 11460 11461 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11462 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11463 MI.getOpcode() == PPC::SELECT_F16 || 11464 MI.getOpcode() == PPC::SELECT_SPE4 || 11465 MI.getOpcode() == PPC::SELECT_SPE || 11466 MI.getOpcode() == PPC::SELECT_VRRC || 11467 MI.getOpcode() == PPC::SELECT_VSFRC || 11468 MI.getOpcode() == PPC::SELECT_VSSRC || 11469 MI.getOpcode() == PPC::SELECT_VSRC) { 11470 BuildMI(BB, dl, TII->get(PPC::BC)) 11471 .addReg(MI.getOperand(1).getReg()) 11472 .addMBB(sinkMBB); 11473 } else { 11474 unsigned SelectPred = MI.getOperand(4).getImm(); 11475 BuildMI(BB, dl, TII->get(PPC::BCC)) 11476 .addImm(SelectPred) 11477 .addReg(MI.getOperand(1).getReg()) 11478 .addMBB(sinkMBB); 11479 } 11480 11481 // copy0MBB: 11482 // %FalseValue = ... 11483 // # fallthrough to sinkMBB 11484 BB = copy0MBB; 11485 11486 // Update machine-CFG edges 11487 BB->addSuccessor(sinkMBB); 11488 11489 // sinkMBB: 11490 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11491 // ... 11492 BB = sinkMBB; 11493 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11494 .addReg(MI.getOperand(3).getReg()) 11495 .addMBB(copy0MBB) 11496 .addReg(MI.getOperand(2).getReg()) 11497 .addMBB(thisMBB); 11498 } else if (MI.getOpcode() == PPC::ReadTB) { 11499 // To read the 64-bit time-base register on a 32-bit target, we read the 11500 // two halves. Should the counter have wrapped while it was being read, we 11501 // need to try again. 11502 // ... 11503 // readLoop: 11504 // mfspr Rx,TBU # load from TBU 11505 // mfspr Ry,TB # load from TB 11506 // mfspr Rz,TBU # load from TBU 11507 // cmpw crX,Rx,Rz # check if 'old'='new' 11508 // bne readLoop # branch if they're not equal 11509 // ... 11510 11511 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11512 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11513 DebugLoc dl = MI.getDebugLoc(); 11514 F->insert(It, readMBB); 11515 F->insert(It, sinkMBB); 11516 11517 // Transfer the remainder of BB and its successor edges to sinkMBB. 11518 sinkMBB->splice(sinkMBB->begin(), BB, 11519 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11520 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11521 11522 BB->addSuccessor(readMBB); 11523 BB = readMBB; 11524 11525 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11526 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11527 Register LoReg = MI.getOperand(0).getReg(); 11528 Register HiReg = MI.getOperand(1).getReg(); 11529 11530 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11531 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11532 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11533 11534 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11535 11536 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11537 .addReg(HiReg) 11538 .addReg(ReadAgainReg); 11539 BuildMI(BB, dl, TII->get(PPC::BCC)) 11540 .addImm(PPC::PRED_NE) 11541 .addReg(CmpReg) 11542 .addMBB(readMBB); 11543 11544 BB->addSuccessor(readMBB); 11545 BB->addSuccessor(sinkMBB); 11546 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11547 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11548 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11549 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11550 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11551 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11552 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11553 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11554 11555 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11556 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11557 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11558 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11559 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11560 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11561 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11562 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11563 11564 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11565 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11566 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11567 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11568 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11569 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11570 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11571 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11572 11573 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11574 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11575 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11576 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11577 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11578 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11579 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11580 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11581 11582 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11583 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11584 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11585 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11586 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11587 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11588 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11589 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11590 11591 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11592 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11593 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11594 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11595 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11596 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11597 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11598 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11599 11600 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11601 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11602 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11603 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11604 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11605 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11606 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11607 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11608 11609 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11610 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11611 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11612 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11613 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11614 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11615 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11616 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11617 11618 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11619 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11620 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11621 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11622 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11623 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11624 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11625 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11626 11627 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11628 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11629 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11630 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11631 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11632 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11633 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11634 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11635 11636 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11637 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11638 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11639 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11640 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11641 BB = EmitAtomicBinary(MI, BB, 4, 0); 11642 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11643 BB = EmitAtomicBinary(MI, BB, 8, 0); 11644 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11645 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11646 (Subtarget.hasPartwordAtomics() && 11647 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11648 (Subtarget.hasPartwordAtomics() && 11649 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11650 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11651 11652 auto LoadMnemonic = PPC::LDARX; 11653 auto StoreMnemonic = PPC::STDCX; 11654 switch (MI.getOpcode()) { 11655 default: 11656 llvm_unreachable("Compare and swap of unknown size"); 11657 case PPC::ATOMIC_CMP_SWAP_I8: 11658 LoadMnemonic = PPC::LBARX; 11659 StoreMnemonic = PPC::STBCX; 11660 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11661 break; 11662 case PPC::ATOMIC_CMP_SWAP_I16: 11663 LoadMnemonic = PPC::LHARX; 11664 StoreMnemonic = PPC::STHCX; 11665 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11666 break; 11667 case PPC::ATOMIC_CMP_SWAP_I32: 11668 LoadMnemonic = PPC::LWARX; 11669 StoreMnemonic = PPC::STWCX; 11670 break; 11671 case PPC::ATOMIC_CMP_SWAP_I64: 11672 LoadMnemonic = PPC::LDARX; 11673 StoreMnemonic = PPC::STDCX; 11674 break; 11675 } 11676 Register dest = MI.getOperand(0).getReg(); 11677 Register ptrA = MI.getOperand(1).getReg(); 11678 Register ptrB = MI.getOperand(2).getReg(); 11679 Register oldval = MI.getOperand(3).getReg(); 11680 Register newval = MI.getOperand(4).getReg(); 11681 DebugLoc dl = MI.getDebugLoc(); 11682 11683 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11684 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11685 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11686 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11687 F->insert(It, loop1MBB); 11688 F->insert(It, loop2MBB); 11689 F->insert(It, midMBB); 11690 F->insert(It, exitMBB); 11691 exitMBB->splice(exitMBB->begin(), BB, 11692 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11693 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11694 11695 // thisMBB: 11696 // ... 11697 // fallthrough --> loopMBB 11698 BB->addSuccessor(loop1MBB); 11699 11700 // loop1MBB: 11701 // l[bhwd]arx dest, ptr 11702 // cmp[wd] dest, oldval 11703 // bne- midMBB 11704 // loop2MBB: 11705 // st[bhwd]cx. newval, ptr 11706 // bne- loopMBB 11707 // b exitBB 11708 // midMBB: 11709 // st[bhwd]cx. dest, ptr 11710 // exitBB: 11711 BB = loop1MBB; 11712 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11713 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11714 .addReg(oldval) 11715 .addReg(dest); 11716 BuildMI(BB, dl, TII->get(PPC::BCC)) 11717 .addImm(PPC::PRED_NE) 11718 .addReg(PPC::CR0) 11719 .addMBB(midMBB); 11720 BB->addSuccessor(loop2MBB); 11721 BB->addSuccessor(midMBB); 11722 11723 BB = loop2MBB; 11724 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11725 .addReg(newval) 11726 .addReg(ptrA) 11727 .addReg(ptrB); 11728 BuildMI(BB, dl, TII->get(PPC::BCC)) 11729 .addImm(PPC::PRED_NE) 11730 .addReg(PPC::CR0) 11731 .addMBB(loop1MBB); 11732 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11733 BB->addSuccessor(loop1MBB); 11734 BB->addSuccessor(exitMBB); 11735 11736 BB = midMBB; 11737 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11738 .addReg(dest) 11739 .addReg(ptrA) 11740 .addReg(ptrB); 11741 BB->addSuccessor(exitMBB); 11742 11743 // exitMBB: 11744 // ... 11745 BB = exitMBB; 11746 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11747 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11748 // We must use 64-bit registers for addresses when targeting 64-bit, 11749 // since we're actually doing arithmetic on them. Other registers 11750 // can be 32-bit. 11751 bool is64bit = Subtarget.isPPC64(); 11752 bool isLittleEndian = Subtarget.isLittleEndian(); 11753 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11754 11755 Register dest = MI.getOperand(0).getReg(); 11756 Register ptrA = MI.getOperand(1).getReg(); 11757 Register ptrB = MI.getOperand(2).getReg(); 11758 Register oldval = MI.getOperand(3).getReg(); 11759 Register newval = MI.getOperand(4).getReg(); 11760 DebugLoc dl = MI.getDebugLoc(); 11761 11762 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11763 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11764 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11765 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11766 F->insert(It, loop1MBB); 11767 F->insert(It, loop2MBB); 11768 F->insert(It, midMBB); 11769 F->insert(It, exitMBB); 11770 exitMBB->splice(exitMBB->begin(), BB, 11771 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11772 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11773 11774 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11775 const TargetRegisterClass *RC = 11776 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11777 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11778 11779 Register PtrReg = RegInfo.createVirtualRegister(RC); 11780 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11781 Register ShiftReg = 11782 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11783 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11784 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11785 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11786 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11787 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11788 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11789 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11790 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11791 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11792 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11793 Register Ptr1Reg; 11794 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11795 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11796 // thisMBB: 11797 // ... 11798 // fallthrough --> loopMBB 11799 BB->addSuccessor(loop1MBB); 11800 11801 // The 4-byte load must be aligned, while a char or short may be 11802 // anywhere in the word. Hence all this nasty bookkeeping code. 11803 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11804 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11805 // xori shift, shift1, 24 [16] 11806 // rlwinm ptr, ptr1, 0, 0, 29 11807 // slw newval2, newval, shift 11808 // slw oldval2, oldval,shift 11809 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11810 // slw mask, mask2, shift 11811 // and newval3, newval2, mask 11812 // and oldval3, oldval2, mask 11813 // loop1MBB: 11814 // lwarx tmpDest, ptr 11815 // and tmp, tmpDest, mask 11816 // cmpw tmp, oldval3 11817 // bne- midMBB 11818 // loop2MBB: 11819 // andc tmp2, tmpDest, mask 11820 // or tmp4, tmp2, newval3 11821 // stwcx. tmp4, ptr 11822 // bne- loop1MBB 11823 // b exitBB 11824 // midMBB: 11825 // stwcx. tmpDest, ptr 11826 // exitBB: 11827 // srw dest, tmpDest, shift 11828 if (ptrA != ZeroReg) { 11829 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11830 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11831 .addReg(ptrA) 11832 .addReg(ptrB); 11833 } else { 11834 Ptr1Reg = ptrB; 11835 } 11836 11837 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11838 // mode. 11839 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11840 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11841 .addImm(3) 11842 .addImm(27) 11843 .addImm(is8bit ? 28 : 27); 11844 if (!isLittleEndian) 11845 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11846 .addReg(Shift1Reg) 11847 .addImm(is8bit ? 24 : 16); 11848 if (is64bit) 11849 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11850 .addReg(Ptr1Reg) 11851 .addImm(0) 11852 .addImm(61); 11853 else 11854 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11855 .addReg(Ptr1Reg) 11856 .addImm(0) 11857 .addImm(0) 11858 .addImm(29); 11859 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11860 .addReg(newval) 11861 .addReg(ShiftReg); 11862 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11863 .addReg(oldval) 11864 .addReg(ShiftReg); 11865 if (is8bit) 11866 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11867 else { 11868 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11869 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11870 .addReg(Mask3Reg) 11871 .addImm(65535); 11872 } 11873 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11874 .addReg(Mask2Reg) 11875 .addReg(ShiftReg); 11876 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11877 .addReg(NewVal2Reg) 11878 .addReg(MaskReg); 11879 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11880 .addReg(OldVal2Reg) 11881 .addReg(MaskReg); 11882 11883 BB = loop1MBB; 11884 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11885 .addReg(ZeroReg) 11886 .addReg(PtrReg); 11887 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11888 .addReg(TmpDestReg) 11889 .addReg(MaskReg); 11890 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11891 .addReg(TmpReg) 11892 .addReg(OldVal3Reg); 11893 BuildMI(BB, dl, TII->get(PPC::BCC)) 11894 .addImm(PPC::PRED_NE) 11895 .addReg(PPC::CR0) 11896 .addMBB(midMBB); 11897 BB->addSuccessor(loop2MBB); 11898 BB->addSuccessor(midMBB); 11899 11900 BB = loop2MBB; 11901 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11902 .addReg(TmpDestReg) 11903 .addReg(MaskReg); 11904 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11905 .addReg(Tmp2Reg) 11906 .addReg(NewVal3Reg); 11907 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11908 .addReg(Tmp4Reg) 11909 .addReg(ZeroReg) 11910 .addReg(PtrReg); 11911 BuildMI(BB, dl, TII->get(PPC::BCC)) 11912 .addImm(PPC::PRED_NE) 11913 .addReg(PPC::CR0) 11914 .addMBB(loop1MBB); 11915 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11916 BB->addSuccessor(loop1MBB); 11917 BB->addSuccessor(exitMBB); 11918 11919 BB = midMBB; 11920 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11921 .addReg(TmpDestReg) 11922 .addReg(ZeroReg) 11923 .addReg(PtrReg); 11924 BB->addSuccessor(exitMBB); 11925 11926 // exitMBB: 11927 // ... 11928 BB = exitMBB; 11929 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11930 .addReg(TmpReg) 11931 .addReg(ShiftReg); 11932 } else if (MI.getOpcode() == PPC::FADDrtz) { 11933 // This pseudo performs an FADD with rounding mode temporarily forced 11934 // to round-to-zero. We emit this via custom inserter since the FPSCR 11935 // is not modeled at the SelectionDAG level. 11936 Register Dest = MI.getOperand(0).getReg(); 11937 Register Src1 = MI.getOperand(1).getReg(); 11938 Register Src2 = MI.getOperand(2).getReg(); 11939 DebugLoc dl = MI.getDebugLoc(); 11940 11941 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11942 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11943 11944 // Save FPSCR value. 11945 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11946 11947 // Set rounding mode to round-to-zero. 11948 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 11949 .addImm(31) 11950 .addReg(PPC::RM, RegState::ImplicitDefine); 11951 11952 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 11953 .addImm(30) 11954 .addReg(PPC::RM, RegState::ImplicitDefine); 11955 11956 // Perform addition. 11957 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11958 11959 // Restore FPSCR value. 11960 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11961 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11962 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11963 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11964 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11965 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11966 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11967 ? PPC::ANDI8_rec 11968 : PPC::ANDI_rec; 11969 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11970 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11971 11972 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11973 Register Dest = RegInfo.createVirtualRegister( 11974 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11975 11976 DebugLoc Dl = MI.getDebugLoc(); 11977 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11978 .addReg(MI.getOperand(1).getReg()) 11979 .addImm(1); 11980 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11981 MI.getOperand(0).getReg()) 11982 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11983 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11984 DebugLoc Dl = MI.getDebugLoc(); 11985 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11986 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11987 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11988 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11989 MI.getOperand(0).getReg()) 11990 .addReg(CRReg); 11991 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11992 DebugLoc Dl = MI.getDebugLoc(); 11993 unsigned Imm = MI.getOperand(1).getImm(); 11994 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11995 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11996 MI.getOperand(0).getReg()) 11997 .addReg(PPC::CR0EQ); 11998 } else if (MI.getOpcode() == PPC::SETRNDi) { 11999 DebugLoc dl = MI.getDebugLoc(); 12000 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12001 12002 // Save FPSCR value. 12003 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12004 12005 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12006 // the following settings: 12007 // 00 Round to nearest 12008 // 01 Round to 0 12009 // 10 Round to +inf 12010 // 11 Round to -inf 12011 12012 // When the operand is immediate, using the two least significant bits of 12013 // the immediate to set the bits 62:63 of FPSCR. 12014 unsigned Mode = MI.getOperand(1).getImm(); 12015 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12016 .addImm(31) 12017 .addReg(PPC::RM, RegState::ImplicitDefine); 12018 12019 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12020 .addImm(30) 12021 .addReg(PPC::RM, RegState::ImplicitDefine); 12022 } else if (MI.getOpcode() == PPC::SETRND) { 12023 DebugLoc dl = MI.getDebugLoc(); 12024 12025 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12026 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12027 // If the target doesn't have DirectMove, we should use stack to do the 12028 // conversion, because the target doesn't have the instructions like mtvsrd 12029 // or mfvsrd to do this conversion directly. 12030 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12031 if (Subtarget.hasDirectMove()) { 12032 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12033 .addReg(SrcReg); 12034 } else { 12035 // Use stack to do the register copy. 12036 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12037 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12038 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12039 if (RC == &PPC::F8RCRegClass) { 12040 // Copy register from F8RCRegClass to G8RCRegclass. 12041 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12042 "Unsupported RegClass."); 12043 12044 StoreOp = PPC::STFD; 12045 LoadOp = PPC::LD; 12046 } else { 12047 // Copy register from G8RCRegClass to F8RCRegclass. 12048 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12049 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12050 "Unsupported RegClass."); 12051 } 12052 12053 MachineFrameInfo &MFI = F->getFrameInfo(); 12054 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12055 12056 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12057 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12058 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12059 MFI.getObjectAlign(FrameIdx)); 12060 12061 // Store the SrcReg into the stack. 12062 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12063 .addReg(SrcReg) 12064 .addImm(0) 12065 .addFrameIndex(FrameIdx) 12066 .addMemOperand(MMOStore); 12067 12068 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12069 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12070 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12071 MFI.getObjectAlign(FrameIdx)); 12072 12073 // Load from the stack where SrcReg is stored, and save to DestReg, 12074 // so we have done the RegClass conversion from RegClass::SrcReg to 12075 // RegClass::DestReg. 12076 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12077 .addImm(0) 12078 .addFrameIndex(FrameIdx) 12079 .addMemOperand(MMOLoad); 12080 } 12081 }; 12082 12083 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12084 12085 // Save FPSCR value. 12086 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12087 12088 // When the operand is gprc register, use two least significant bits of the 12089 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12090 // 12091 // copy OldFPSCRTmpReg, OldFPSCRReg 12092 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12093 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12094 // copy NewFPSCRReg, NewFPSCRTmpReg 12095 // mtfsf 255, NewFPSCRReg 12096 MachineOperand SrcOp = MI.getOperand(1); 12097 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12098 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12099 12100 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12101 12102 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12103 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12104 12105 // The first operand of INSERT_SUBREG should be a register which has 12106 // subregisters, we only care about its RegClass, so we should use an 12107 // IMPLICIT_DEF register. 12108 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12109 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12110 .addReg(ImDefReg) 12111 .add(SrcOp) 12112 .addImm(1); 12113 12114 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12115 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12116 .addReg(OldFPSCRTmpReg) 12117 .addReg(ExtSrcReg) 12118 .addImm(0) 12119 .addImm(62); 12120 12121 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12122 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12123 12124 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12125 // bits of FPSCR. 12126 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12127 .addImm(255) 12128 .addReg(NewFPSCRReg) 12129 .addImm(0) 12130 .addImm(0); 12131 } else if (MI.getOpcode() == PPC::SETFLM) { 12132 DebugLoc Dl = MI.getDebugLoc(); 12133 12134 // Result of setflm is previous FPSCR content, so we need to save it first. 12135 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12136 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12137 12138 // Put bits in 32:63 to FPSCR. 12139 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12140 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12141 .addImm(255) 12142 .addReg(NewFPSCRReg) 12143 .addImm(0) 12144 .addImm(0); 12145 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12146 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12147 return emitProbedAlloca(MI, BB); 12148 } else { 12149 llvm_unreachable("Unexpected instr type to insert"); 12150 } 12151 12152 MI.eraseFromParent(); // The pseudo instruction is gone now. 12153 return BB; 12154 } 12155 12156 //===----------------------------------------------------------------------===// 12157 // Target Optimization Hooks 12158 //===----------------------------------------------------------------------===// 12159 12160 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12161 // For the estimates, convergence is quadratic, so we essentially double the 12162 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12163 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12164 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12165 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12166 if (VT.getScalarType() == MVT::f64) 12167 RefinementSteps++; 12168 return RefinementSteps; 12169 } 12170 12171 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12172 int Enabled, int &RefinementSteps, 12173 bool &UseOneConstNR, 12174 bool Reciprocal) const { 12175 EVT VT = Operand.getValueType(); 12176 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12177 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12178 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12179 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12180 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12181 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12182 12183 // The Newton-Raphson computation with a single constant does not provide 12184 // enough accuracy on some CPUs. 12185 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12186 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12187 } 12188 return SDValue(); 12189 } 12190 12191 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12192 int Enabled, 12193 int &RefinementSteps) const { 12194 EVT VT = Operand.getValueType(); 12195 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12196 (VT == MVT::f64 && Subtarget.hasFRE()) || 12197 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12198 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12199 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12200 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12201 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12202 } 12203 return SDValue(); 12204 } 12205 12206 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12207 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12208 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12209 // enabled for division), this functionality is redundant with the default 12210 // combiner logic (once the division -> reciprocal/multiply transformation 12211 // has taken place). As a result, this matters more for older cores than for 12212 // newer ones. 12213 12214 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12215 // reciprocal if there are two or more FDIVs (for embedded cores with only 12216 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12217 switch (Subtarget.getCPUDirective()) { 12218 default: 12219 return 3; 12220 case PPC::DIR_440: 12221 case PPC::DIR_A2: 12222 case PPC::DIR_E500: 12223 case PPC::DIR_E500mc: 12224 case PPC::DIR_E5500: 12225 return 2; 12226 } 12227 } 12228 12229 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12230 // collapsed, and so we need to look through chains of them. 12231 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12232 int64_t& Offset, SelectionDAG &DAG) { 12233 if (DAG.isBaseWithConstantOffset(Loc)) { 12234 Base = Loc.getOperand(0); 12235 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12236 12237 // The base might itself be a base plus an offset, and if so, accumulate 12238 // that as well. 12239 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12240 } 12241 } 12242 12243 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12244 unsigned Bytes, int Dist, 12245 SelectionDAG &DAG) { 12246 if (VT.getSizeInBits() / 8 != Bytes) 12247 return false; 12248 12249 SDValue BaseLoc = Base->getBasePtr(); 12250 if (Loc.getOpcode() == ISD::FrameIndex) { 12251 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12252 return false; 12253 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12254 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12255 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12256 int FS = MFI.getObjectSize(FI); 12257 int BFS = MFI.getObjectSize(BFI); 12258 if (FS != BFS || FS != (int)Bytes) return false; 12259 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12260 } 12261 12262 SDValue Base1 = Loc, Base2 = BaseLoc; 12263 int64_t Offset1 = 0, Offset2 = 0; 12264 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12265 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12266 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12267 return true; 12268 12269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12270 const GlobalValue *GV1 = nullptr; 12271 const GlobalValue *GV2 = nullptr; 12272 Offset1 = 0; 12273 Offset2 = 0; 12274 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12275 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12276 if (isGA1 && isGA2 && GV1 == GV2) 12277 return Offset1 == (Offset2 + Dist*Bytes); 12278 return false; 12279 } 12280 12281 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12282 // not enforce equality of the chain operands. 12283 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12284 unsigned Bytes, int Dist, 12285 SelectionDAG &DAG) { 12286 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12287 EVT VT = LS->getMemoryVT(); 12288 SDValue Loc = LS->getBasePtr(); 12289 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12290 } 12291 12292 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12293 EVT VT; 12294 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12295 default: return false; 12296 case Intrinsic::ppc_altivec_lvx: 12297 case Intrinsic::ppc_altivec_lvxl: 12298 case Intrinsic::ppc_vsx_lxvw4x: 12299 case Intrinsic::ppc_vsx_lxvw4x_be: 12300 VT = MVT::v4i32; 12301 break; 12302 case Intrinsic::ppc_vsx_lxvd2x: 12303 case Intrinsic::ppc_vsx_lxvd2x_be: 12304 VT = MVT::v2f64; 12305 break; 12306 case Intrinsic::ppc_altivec_lvebx: 12307 VT = MVT::i8; 12308 break; 12309 case Intrinsic::ppc_altivec_lvehx: 12310 VT = MVT::i16; 12311 break; 12312 case Intrinsic::ppc_altivec_lvewx: 12313 VT = MVT::i32; 12314 break; 12315 } 12316 12317 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12318 } 12319 12320 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12321 EVT VT; 12322 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12323 default: return false; 12324 case Intrinsic::ppc_altivec_stvx: 12325 case Intrinsic::ppc_altivec_stvxl: 12326 case Intrinsic::ppc_vsx_stxvw4x: 12327 VT = MVT::v4i32; 12328 break; 12329 case Intrinsic::ppc_vsx_stxvd2x: 12330 VT = MVT::v2f64; 12331 break; 12332 case Intrinsic::ppc_vsx_stxvw4x_be: 12333 VT = MVT::v4i32; 12334 break; 12335 case Intrinsic::ppc_vsx_stxvd2x_be: 12336 VT = MVT::v2f64; 12337 break; 12338 case Intrinsic::ppc_altivec_stvebx: 12339 VT = MVT::i8; 12340 break; 12341 case Intrinsic::ppc_altivec_stvehx: 12342 VT = MVT::i16; 12343 break; 12344 case Intrinsic::ppc_altivec_stvewx: 12345 VT = MVT::i32; 12346 break; 12347 } 12348 12349 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12350 } 12351 12352 return false; 12353 } 12354 12355 // Return true is there is a nearyby consecutive load to the one provided 12356 // (regardless of alignment). We search up and down the chain, looking though 12357 // token factors and other loads (but nothing else). As a result, a true result 12358 // indicates that it is safe to create a new consecutive load adjacent to the 12359 // load provided. 12360 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12361 SDValue Chain = LD->getChain(); 12362 EVT VT = LD->getMemoryVT(); 12363 12364 SmallSet<SDNode *, 16> LoadRoots; 12365 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12366 SmallSet<SDNode *, 16> Visited; 12367 12368 // First, search up the chain, branching to follow all token-factor operands. 12369 // If we find a consecutive load, then we're done, otherwise, record all 12370 // nodes just above the top-level loads and token factors. 12371 while (!Queue.empty()) { 12372 SDNode *ChainNext = Queue.pop_back_val(); 12373 if (!Visited.insert(ChainNext).second) 12374 continue; 12375 12376 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12377 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12378 return true; 12379 12380 if (!Visited.count(ChainLD->getChain().getNode())) 12381 Queue.push_back(ChainLD->getChain().getNode()); 12382 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12383 for (const SDUse &O : ChainNext->ops()) 12384 if (!Visited.count(O.getNode())) 12385 Queue.push_back(O.getNode()); 12386 } else 12387 LoadRoots.insert(ChainNext); 12388 } 12389 12390 // Second, search down the chain, starting from the top-level nodes recorded 12391 // in the first phase. These top-level nodes are the nodes just above all 12392 // loads and token factors. Starting with their uses, recursively look though 12393 // all loads (just the chain uses) and token factors to find a consecutive 12394 // load. 12395 Visited.clear(); 12396 Queue.clear(); 12397 12398 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12399 IE = LoadRoots.end(); I != IE; ++I) { 12400 Queue.push_back(*I); 12401 12402 while (!Queue.empty()) { 12403 SDNode *LoadRoot = Queue.pop_back_val(); 12404 if (!Visited.insert(LoadRoot).second) 12405 continue; 12406 12407 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12408 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12409 return true; 12410 12411 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12412 UE = LoadRoot->use_end(); UI != UE; ++UI) 12413 if (((isa<MemSDNode>(*UI) && 12414 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12415 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12416 Queue.push_back(*UI); 12417 } 12418 } 12419 12420 return false; 12421 } 12422 12423 /// This function is called when we have proved that a SETCC node can be replaced 12424 /// by subtraction (and other supporting instructions) so that the result of 12425 /// comparison is kept in a GPR instead of CR. This function is purely for 12426 /// codegen purposes and has some flags to guide the codegen process. 12427 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12428 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12429 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12430 12431 // Zero extend the operands to the largest legal integer. Originally, they 12432 // must be of a strictly smaller size. 12433 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12434 DAG.getConstant(Size, DL, MVT::i32)); 12435 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12436 DAG.getConstant(Size, DL, MVT::i32)); 12437 12438 // Swap if needed. Depends on the condition code. 12439 if (Swap) 12440 std::swap(Op0, Op1); 12441 12442 // Subtract extended integers. 12443 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12444 12445 // Move the sign bit to the least significant position and zero out the rest. 12446 // Now the least significant bit carries the result of original comparison. 12447 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12448 DAG.getConstant(Size - 1, DL, MVT::i32)); 12449 auto Final = Shifted; 12450 12451 // Complement the result if needed. Based on the condition code. 12452 if (Complement) 12453 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12454 DAG.getConstant(1, DL, MVT::i64)); 12455 12456 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12457 } 12458 12459 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12460 DAGCombinerInfo &DCI) const { 12461 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12462 12463 SelectionDAG &DAG = DCI.DAG; 12464 SDLoc DL(N); 12465 12466 // Size of integers being compared has a critical role in the following 12467 // analysis, so we prefer to do this when all types are legal. 12468 if (!DCI.isAfterLegalizeDAG()) 12469 return SDValue(); 12470 12471 // If all users of SETCC extend its value to a legal integer type 12472 // then we replace SETCC with a subtraction 12473 for (SDNode::use_iterator UI = N->use_begin(), 12474 UE = N->use_end(); UI != UE; ++UI) { 12475 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12476 return SDValue(); 12477 } 12478 12479 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12480 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12481 12482 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12483 12484 if (OpSize < Size) { 12485 switch (CC) { 12486 default: break; 12487 case ISD::SETULT: 12488 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12489 case ISD::SETULE: 12490 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12491 case ISD::SETUGT: 12492 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12493 case ISD::SETUGE: 12494 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12495 } 12496 } 12497 12498 return SDValue(); 12499 } 12500 12501 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12502 DAGCombinerInfo &DCI) const { 12503 SelectionDAG &DAG = DCI.DAG; 12504 SDLoc dl(N); 12505 12506 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12507 // If we're tracking CR bits, we need to be careful that we don't have: 12508 // trunc(binary-ops(zext(x), zext(y))) 12509 // or 12510 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12511 // such that we're unnecessarily moving things into GPRs when it would be 12512 // better to keep them in CR bits. 12513 12514 // Note that trunc here can be an actual i1 trunc, or can be the effective 12515 // truncation that comes from a setcc or select_cc. 12516 if (N->getOpcode() == ISD::TRUNCATE && 12517 N->getValueType(0) != MVT::i1) 12518 return SDValue(); 12519 12520 if (N->getOperand(0).getValueType() != MVT::i32 && 12521 N->getOperand(0).getValueType() != MVT::i64) 12522 return SDValue(); 12523 12524 if (N->getOpcode() == ISD::SETCC || 12525 N->getOpcode() == ISD::SELECT_CC) { 12526 // If we're looking at a comparison, then we need to make sure that the 12527 // high bits (all except for the first) don't matter the result. 12528 ISD::CondCode CC = 12529 cast<CondCodeSDNode>(N->getOperand( 12530 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12531 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12532 12533 if (ISD::isSignedIntSetCC(CC)) { 12534 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12535 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12536 return SDValue(); 12537 } else if (ISD::isUnsignedIntSetCC(CC)) { 12538 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12539 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12540 !DAG.MaskedValueIsZero(N->getOperand(1), 12541 APInt::getHighBitsSet(OpBits, OpBits-1))) 12542 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12543 : SDValue()); 12544 } else { 12545 // This is neither a signed nor an unsigned comparison, just make sure 12546 // that the high bits are equal. 12547 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12548 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12549 12550 // We don't really care about what is known about the first bit (if 12551 // anything), so clear it in all masks prior to comparing them. 12552 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12553 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12554 12555 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12556 return SDValue(); 12557 } 12558 } 12559 12560 // We now know that the higher-order bits are irrelevant, we just need to 12561 // make sure that all of the intermediate operations are bit operations, and 12562 // all inputs are extensions. 12563 if (N->getOperand(0).getOpcode() != ISD::AND && 12564 N->getOperand(0).getOpcode() != ISD::OR && 12565 N->getOperand(0).getOpcode() != ISD::XOR && 12566 N->getOperand(0).getOpcode() != ISD::SELECT && 12567 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12568 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12569 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12570 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12571 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12572 return SDValue(); 12573 12574 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12575 N->getOperand(1).getOpcode() != ISD::AND && 12576 N->getOperand(1).getOpcode() != ISD::OR && 12577 N->getOperand(1).getOpcode() != ISD::XOR && 12578 N->getOperand(1).getOpcode() != ISD::SELECT && 12579 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12580 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12581 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12582 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12583 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12584 return SDValue(); 12585 12586 SmallVector<SDValue, 4> Inputs; 12587 SmallVector<SDValue, 8> BinOps, PromOps; 12588 SmallPtrSet<SDNode *, 16> Visited; 12589 12590 for (unsigned i = 0; i < 2; ++i) { 12591 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12592 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12593 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12594 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12595 isa<ConstantSDNode>(N->getOperand(i))) 12596 Inputs.push_back(N->getOperand(i)); 12597 else 12598 BinOps.push_back(N->getOperand(i)); 12599 12600 if (N->getOpcode() == ISD::TRUNCATE) 12601 break; 12602 } 12603 12604 // Visit all inputs, collect all binary operations (and, or, xor and 12605 // select) that are all fed by extensions. 12606 while (!BinOps.empty()) { 12607 SDValue BinOp = BinOps.back(); 12608 BinOps.pop_back(); 12609 12610 if (!Visited.insert(BinOp.getNode()).second) 12611 continue; 12612 12613 PromOps.push_back(BinOp); 12614 12615 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12616 // The condition of the select is not promoted. 12617 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12618 continue; 12619 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12620 continue; 12621 12622 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12623 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12624 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12625 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12626 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12627 Inputs.push_back(BinOp.getOperand(i)); 12628 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12629 BinOp.getOperand(i).getOpcode() == ISD::OR || 12630 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12631 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12632 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12633 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12634 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12635 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12636 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12637 BinOps.push_back(BinOp.getOperand(i)); 12638 } else { 12639 // We have an input that is not an extension or another binary 12640 // operation; we'll abort this transformation. 12641 return SDValue(); 12642 } 12643 } 12644 } 12645 12646 // Make sure that this is a self-contained cluster of operations (which 12647 // is not quite the same thing as saying that everything has only one 12648 // use). 12649 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12650 if (isa<ConstantSDNode>(Inputs[i])) 12651 continue; 12652 12653 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12654 UE = Inputs[i].getNode()->use_end(); 12655 UI != UE; ++UI) { 12656 SDNode *User = *UI; 12657 if (User != N && !Visited.count(User)) 12658 return SDValue(); 12659 12660 // Make sure that we're not going to promote the non-output-value 12661 // operand(s) or SELECT or SELECT_CC. 12662 // FIXME: Although we could sometimes handle this, and it does occur in 12663 // practice that one of the condition inputs to the select is also one of 12664 // the outputs, we currently can't deal with this. 12665 if (User->getOpcode() == ISD::SELECT) { 12666 if (User->getOperand(0) == Inputs[i]) 12667 return SDValue(); 12668 } else if (User->getOpcode() == ISD::SELECT_CC) { 12669 if (User->getOperand(0) == Inputs[i] || 12670 User->getOperand(1) == Inputs[i]) 12671 return SDValue(); 12672 } 12673 } 12674 } 12675 12676 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12677 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12678 UE = PromOps[i].getNode()->use_end(); 12679 UI != UE; ++UI) { 12680 SDNode *User = *UI; 12681 if (User != N && !Visited.count(User)) 12682 return SDValue(); 12683 12684 // Make sure that we're not going to promote the non-output-value 12685 // operand(s) or SELECT or SELECT_CC. 12686 // FIXME: Although we could sometimes handle this, and it does occur in 12687 // practice that one of the condition inputs to the select is also one of 12688 // the outputs, we currently can't deal with this. 12689 if (User->getOpcode() == ISD::SELECT) { 12690 if (User->getOperand(0) == PromOps[i]) 12691 return SDValue(); 12692 } else if (User->getOpcode() == ISD::SELECT_CC) { 12693 if (User->getOperand(0) == PromOps[i] || 12694 User->getOperand(1) == PromOps[i]) 12695 return SDValue(); 12696 } 12697 } 12698 } 12699 12700 // Replace all inputs with the extension operand. 12701 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12702 // Constants may have users outside the cluster of to-be-promoted nodes, 12703 // and so we need to replace those as we do the promotions. 12704 if (isa<ConstantSDNode>(Inputs[i])) 12705 continue; 12706 else 12707 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12708 } 12709 12710 std::list<HandleSDNode> PromOpHandles; 12711 for (auto &PromOp : PromOps) 12712 PromOpHandles.emplace_back(PromOp); 12713 12714 // Replace all operations (these are all the same, but have a different 12715 // (i1) return type). DAG.getNode will validate that the types of 12716 // a binary operator match, so go through the list in reverse so that 12717 // we've likely promoted both operands first. Any intermediate truncations or 12718 // extensions disappear. 12719 while (!PromOpHandles.empty()) { 12720 SDValue PromOp = PromOpHandles.back().getValue(); 12721 PromOpHandles.pop_back(); 12722 12723 if (PromOp.getOpcode() == ISD::TRUNCATE || 12724 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12725 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12726 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12727 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12728 PromOp.getOperand(0).getValueType() != MVT::i1) { 12729 // The operand is not yet ready (see comment below). 12730 PromOpHandles.emplace_front(PromOp); 12731 continue; 12732 } 12733 12734 SDValue RepValue = PromOp.getOperand(0); 12735 if (isa<ConstantSDNode>(RepValue)) 12736 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12737 12738 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12739 continue; 12740 } 12741 12742 unsigned C; 12743 switch (PromOp.getOpcode()) { 12744 default: C = 0; break; 12745 case ISD::SELECT: C = 1; break; 12746 case ISD::SELECT_CC: C = 2; break; 12747 } 12748 12749 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12750 PromOp.getOperand(C).getValueType() != MVT::i1) || 12751 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12752 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12753 // The to-be-promoted operands of this node have not yet been 12754 // promoted (this should be rare because we're going through the 12755 // list backward, but if one of the operands has several users in 12756 // this cluster of to-be-promoted nodes, it is possible). 12757 PromOpHandles.emplace_front(PromOp); 12758 continue; 12759 } 12760 12761 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12762 PromOp.getNode()->op_end()); 12763 12764 // If there are any constant inputs, make sure they're replaced now. 12765 for (unsigned i = 0; i < 2; ++i) 12766 if (isa<ConstantSDNode>(Ops[C+i])) 12767 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12768 12769 DAG.ReplaceAllUsesOfValueWith(PromOp, 12770 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12771 } 12772 12773 // Now we're left with the initial truncation itself. 12774 if (N->getOpcode() == ISD::TRUNCATE) 12775 return N->getOperand(0); 12776 12777 // Otherwise, this is a comparison. The operands to be compared have just 12778 // changed type (to i1), but everything else is the same. 12779 return SDValue(N, 0); 12780 } 12781 12782 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12783 DAGCombinerInfo &DCI) const { 12784 SelectionDAG &DAG = DCI.DAG; 12785 SDLoc dl(N); 12786 12787 // If we're tracking CR bits, we need to be careful that we don't have: 12788 // zext(binary-ops(trunc(x), trunc(y))) 12789 // or 12790 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12791 // such that we're unnecessarily moving things into CR bits that can more 12792 // efficiently stay in GPRs. Note that if we're not certain that the high 12793 // bits are set as required by the final extension, we still may need to do 12794 // some masking to get the proper behavior. 12795 12796 // This same functionality is important on PPC64 when dealing with 12797 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12798 // the return values of functions. Because it is so similar, it is handled 12799 // here as well. 12800 12801 if (N->getValueType(0) != MVT::i32 && 12802 N->getValueType(0) != MVT::i64) 12803 return SDValue(); 12804 12805 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12806 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12807 return SDValue(); 12808 12809 if (N->getOperand(0).getOpcode() != ISD::AND && 12810 N->getOperand(0).getOpcode() != ISD::OR && 12811 N->getOperand(0).getOpcode() != ISD::XOR && 12812 N->getOperand(0).getOpcode() != ISD::SELECT && 12813 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12814 return SDValue(); 12815 12816 SmallVector<SDValue, 4> Inputs; 12817 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12818 SmallPtrSet<SDNode *, 16> Visited; 12819 12820 // Visit all inputs, collect all binary operations (and, or, xor and 12821 // select) that are all fed by truncations. 12822 while (!BinOps.empty()) { 12823 SDValue BinOp = BinOps.back(); 12824 BinOps.pop_back(); 12825 12826 if (!Visited.insert(BinOp.getNode()).second) 12827 continue; 12828 12829 PromOps.push_back(BinOp); 12830 12831 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12832 // The condition of the select is not promoted. 12833 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12834 continue; 12835 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12836 continue; 12837 12838 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12839 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12840 Inputs.push_back(BinOp.getOperand(i)); 12841 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12842 BinOp.getOperand(i).getOpcode() == ISD::OR || 12843 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12844 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12845 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12846 BinOps.push_back(BinOp.getOperand(i)); 12847 } else { 12848 // We have an input that is not a truncation or another binary 12849 // operation; we'll abort this transformation. 12850 return SDValue(); 12851 } 12852 } 12853 } 12854 12855 // The operands of a select that must be truncated when the select is 12856 // promoted because the operand is actually part of the to-be-promoted set. 12857 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12858 12859 // Make sure that this is a self-contained cluster of operations (which 12860 // is not quite the same thing as saying that everything has only one 12861 // use). 12862 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12863 if (isa<ConstantSDNode>(Inputs[i])) 12864 continue; 12865 12866 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12867 UE = Inputs[i].getNode()->use_end(); 12868 UI != UE; ++UI) { 12869 SDNode *User = *UI; 12870 if (User != N && !Visited.count(User)) 12871 return SDValue(); 12872 12873 // If we're going to promote the non-output-value operand(s) or SELECT or 12874 // SELECT_CC, record them for truncation. 12875 if (User->getOpcode() == ISD::SELECT) { 12876 if (User->getOperand(0) == Inputs[i]) 12877 SelectTruncOp[0].insert(std::make_pair(User, 12878 User->getOperand(0).getValueType())); 12879 } else if (User->getOpcode() == ISD::SELECT_CC) { 12880 if (User->getOperand(0) == Inputs[i]) 12881 SelectTruncOp[0].insert(std::make_pair(User, 12882 User->getOperand(0).getValueType())); 12883 if (User->getOperand(1) == Inputs[i]) 12884 SelectTruncOp[1].insert(std::make_pair(User, 12885 User->getOperand(1).getValueType())); 12886 } 12887 } 12888 } 12889 12890 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12891 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12892 UE = PromOps[i].getNode()->use_end(); 12893 UI != UE; ++UI) { 12894 SDNode *User = *UI; 12895 if (User != N && !Visited.count(User)) 12896 return SDValue(); 12897 12898 // If we're going to promote the non-output-value operand(s) or SELECT or 12899 // SELECT_CC, record them for truncation. 12900 if (User->getOpcode() == ISD::SELECT) { 12901 if (User->getOperand(0) == PromOps[i]) 12902 SelectTruncOp[0].insert(std::make_pair(User, 12903 User->getOperand(0).getValueType())); 12904 } else if (User->getOpcode() == ISD::SELECT_CC) { 12905 if (User->getOperand(0) == PromOps[i]) 12906 SelectTruncOp[0].insert(std::make_pair(User, 12907 User->getOperand(0).getValueType())); 12908 if (User->getOperand(1) == PromOps[i]) 12909 SelectTruncOp[1].insert(std::make_pair(User, 12910 User->getOperand(1).getValueType())); 12911 } 12912 } 12913 } 12914 12915 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12916 bool ReallyNeedsExt = false; 12917 if (N->getOpcode() != ISD::ANY_EXTEND) { 12918 // If all of the inputs are not already sign/zero extended, then 12919 // we'll still need to do that at the end. 12920 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12921 if (isa<ConstantSDNode>(Inputs[i])) 12922 continue; 12923 12924 unsigned OpBits = 12925 Inputs[i].getOperand(0).getValueSizeInBits(); 12926 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12927 12928 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12929 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12930 APInt::getHighBitsSet(OpBits, 12931 OpBits-PromBits))) || 12932 (N->getOpcode() == ISD::SIGN_EXTEND && 12933 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12934 (OpBits-(PromBits-1)))) { 12935 ReallyNeedsExt = true; 12936 break; 12937 } 12938 } 12939 } 12940 12941 // Replace all inputs, either with the truncation operand, or a 12942 // truncation or extension to the final output type. 12943 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12944 // Constant inputs need to be replaced with the to-be-promoted nodes that 12945 // use them because they might have users outside of the cluster of 12946 // promoted nodes. 12947 if (isa<ConstantSDNode>(Inputs[i])) 12948 continue; 12949 12950 SDValue InSrc = Inputs[i].getOperand(0); 12951 if (Inputs[i].getValueType() == N->getValueType(0)) 12952 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12953 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12954 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12955 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12956 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12957 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12958 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12959 else 12960 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12961 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12962 } 12963 12964 std::list<HandleSDNode> PromOpHandles; 12965 for (auto &PromOp : PromOps) 12966 PromOpHandles.emplace_back(PromOp); 12967 12968 // Replace all operations (these are all the same, but have a different 12969 // (promoted) return type). DAG.getNode will validate that the types of 12970 // a binary operator match, so go through the list in reverse so that 12971 // we've likely promoted both operands first. 12972 while (!PromOpHandles.empty()) { 12973 SDValue PromOp = PromOpHandles.back().getValue(); 12974 PromOpHandles.pop_back(); 12975 12976 unsigned C; 12977 switch (PromOp.getOpcode()) { 12978 default: C = 0; break; 12979 case ISD::SELECT: C = 1; break; 12980 case ISD::SELECT_CC: C = 2; break; 12981 } 12982 12983 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12984 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12985 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12986 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12987 // The to-be-promoted operands of this node have not yet been 12988 // promoted (this should be rare because we're going through the 12989 // list backward, but if one of the operands has several users in 12990 // this cluster of to-be-promoted nodes, it is possible). 12991 PromOpHandles.emplace_front(PromOp); 12992 continue; 12993 } 12994 12995 // For SELECT and SELECT_CC nodes, we do a similar check for any 12996 // to-be-promoted comparison inputs. 12997 if (PromOp.getOpcode() == ISD::SELECT || 12998 PromOp.getOpcode() == ISD::SELECT_CC) { 12999 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13000 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13001 (SelectTruncOp[1].count(PromOp.getNode()) && 13002 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13003 PromOpHandles.emplace_front(PromOp); 13004 continue; 13005 } 13006 } 13007 13008 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13009 PromOp.getNode()->op_end()); 13010 13011 // If this node has constant inputs, then they'll need to be promoted here. 13012 for (unsigned i = 0; i < 2; ++i) { 13013 if (!isa<ConstantSDNode>(Ops[C+i])) 13014 continue; 13015 if (Ops[C+i].getValueType() == N->getValueType(0)) 13016 continue; 13017 13018 if (N->getOpcode() == ISD::SIGN_EXTEND) 13019 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13020 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13021 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13022 else 13023 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13024 } 13025 13026 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13027 // truncate them again to the original value type. 13028 if (PromOp.getOpcode() == ISD::SELECT || 13029 PromOp.getOpcode() == ISD::SELECT_CC) { 13030 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13031 if (SI0 != SelectTruncOp[0].end()) 13032 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13033 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13034 if (SI1 != SelectTruncOp[1].end()) 13035 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13036 } 13037 13038 DAG.ReplaceAllUsesOfValueWith(PromOp, 13039 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13040 } 13041 13042 // Now we're left with the initial extension itself. 13043 if (!ReallyNeedsExt) 13044 return N->getOperand(0); 13045 13046 // To zero extend, just mask off everything except for the first bit (in the 13047 // i1 case). 13048 if (N->getOpcode() == ISD::ZERO_EXTEND) 13049 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13050 DAG.getConstant(APInt::getLowBitsSet( 13051 N->getValueSizeInBits(0), PromBits), 13052 dl, N->getValueType(0))); 13053 13054 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13055 "Invalid extension type"); 13056 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13057 SDValue ShiftCst = 13058 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13059 return DAG.getNode( 13060 ISD::SRA, dl, N->getValueType(0), 13061 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13062 ShiftCst); 13063 } 13064 13065 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13066 DAGCombinerInfo &DCI) const { 13067 assert(N->getOpcode() == ISD::SETCC && 13068 "Should be called with a SETCC node"); 13069 13070 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13071 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13072 SDValue LHS = N->getOperand(0); 13073 SDValue RHS = N->getOperand(1); 13074 13075 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13076 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13077 LHS.hasOneUse()) 13078 std::swap(LHS, RHS); 13079 13080 // x == 0-y --> x+y == 0 13081 // x != 0-y --> x+y != 0 13082 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13083 RHS.hasOneUse()) { 13084 SDLoc DL(N); 13085 SelectionDAG &DAG = DCI.DAG; 13086 EVT VT = N->getValueType(0); 13087 EVT OpVT = LHS.getValueType(); 13088 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13089 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13090 } 13091 } 13092 13093 return DAGCombineTruncBoolExt(N, DCI); 13094 } 13095 13096 // Is this an extending load from an f32 to an f64? 13097 static bool isFPExtLoad(SDValue Op) { 13098 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13099 return LD->getExtensionType() == ISD::EXTLOAD && 13100 Op.getValueType() == MVT::f64; 13101 return false; 13102 } 13103 13104 /// Reduces the number of fp-to-int conversion when building a vector. 13105 /// 13106 /// If this vector is built out of floating to integer conversions, 13107 /// transform it to a vector built out of floating point values followed by a 13108 /// single floating to integer conversion of the vector. 13109 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13110 /// becomes (fptosi (build_vector ($A, $B, ...))) 13111 SDValue PPCTargetLowering:: 13112 combineElementTruncationToVectorTruncation(SDNode *N, 13113 DAGCombinerInfo &DCI) const { 13114 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13115 "Should be called with a BUILD_VECTOR node"); 13116 13117 SelectionDAG &DAG = DCI.DAG; 13118 SDLoc dl(N); 13119 13120 SDValue FirstInput = N->getOperand(0); 13121 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13122 "The input operand must be an fp-to-int conversion."); 13123 13124 // This combine happens after legalization so the fp_to_[su]i nodes are 13125 // already converted to PPCSISD nodes. 13126 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13127 if (FirstConversion == PPCISD::FCTIDZ || 13128 FirstConversion == PPCISD::FCTIDUZ || 13129 FirstConversion == PPCISD::FCTIWZ || 13130 FirstConversion == PPCISD::FCTIWUZ) { 13131 bool IsSplat = true; 13132 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13133 FirstConversion == PPCISD::FCTIWUZ; 13134 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13135 SmallVector<SDValue, 4> Ops; 13136 EVT TargetVT = N->getValueType(0); 13137 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13138 SDValue NextOp = N->getOperand(i); 13139 if (NextOp.getOpcode() != PPCISD::MFVSR) 13140 return SDValue(); 13141 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13142 if (NextConversion != FirstConversion) 13143 return SDValue(); 13144 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13145 // This is not valid if the input was originally double precision. It is 13146 // also not profitable to do unless this is an extending load in which 13147 // case doing this combine will allow us to combine consecutive loads. 13148 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13149 return SDValue(); 13150 if (N->getOperand(i) != FirstInput) 13151 IsSplat = false; 13152 } 13153 13154 // If this is a splat, we leave it as-is since there will be only a single 13155 // fp-to-int conversion followed by a splat of the integer. This is better 13156 // for 32-bit and smaller ints and neutral for 64-bit ints. 13157 if (IsSplat) 13158 return SDValue(); 13159 13160 // Now that we know we have the right type of node, get its operands 13161 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13162 SDValue In = N->getOperand(i).getOperand(0); 13163 if (Is32Bit) { 13164 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13165 // here, we know that all inputs are extending loads so this is safe). 13166 if (In.isUndef()) 13167 Ops.push_back(DAG.getUNDEF(SrcVT)); 13168 else { 13169 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13170 MVT::f32, In.getOperand(0), 13171 DAG.getIntPtrConstant(1, dl)); 13172 Ops.push_back(Trunc); 13173 } 13174 } else 13175 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13176 } 13177 13178 unsigned Opcode; 13179 if (FirstConversion == PPCISD::FCTIDZ || 13180 FirstConversion == PPCISD::FCTIWZ) 13181 Opcode = ISD::FP_TO_SINT; 13182 else 13183 Opcode = ISD::FP_TO_UINT; 13184 13185 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13186 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13187 return DAG.getNode(Opcode, dl, TargetVT, BV); 13188 } 13189 return SDValue(); 13190 } 13191 13192 /// Reduce the number of loads when building a vector. 13193 /// 13194 /// Building a vector out of multiple loads can be converted to a load 13195 /// of the vector type if the loads are consecutive. If the loads are 13196 /// consecutive but in descending order, a shuffle is added at the end 13197 /// to reorder the vector. 13198 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13199 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13200 "Should be called with a BUILD_VECTOR node"); 13201 13202 SDLoc dl(N); 13203 13204 // Return early for non byte-sized type, as they can't be consecutive. 13205 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13206 return SDValue(); 13207 13208 bool InputsAreConsecutiveLoads = true; 13209 bool InputsAreReverseConsecutive = true; 13210 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13211 SDValue FirstInput = N->getOperand(0); 13212 bool IsRoundOfExtLoad = false; 13213 13214 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13215 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13216 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13217 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13218 } 13219 // Not a build vector of (possibly fp_rounded) loads. 13220 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13221 N->getNumOperands() == 1) 13222 return SDValue(); 13223 13224 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13225 // If any inputs are fp_round(extload), they all must be. 13226 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13227 return SDValue(); 13228 13229 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13230 N->getOperand(i); 13231 if (NextInput.getOpcode() != ISD::LOAD) 13232 return SDValue(); 13233 13234 SDValue PreviousInput = 13235 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13236 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13237 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13238 13239 // If any inputs are fp_round(extload), they all must be. 13240 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13241 return SDValue(); 13242 13243 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13244 InputsAreConsecutiveLoads = false; 13245 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13246 InputsAreReverseConsecutive = false; 13247 13248 // Exit early if the loads are neither consecutive nor reverse consecutive. 13249 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13250 return SDValue(); 13251 } 13252 13253 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13254 "The loads cannot be both consecutive and reverse consecutive."); 13255 13256 SDValue FirstLoadOp = 13257 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13258 SDValue LastLoadOp = 13259 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13260 N->getOperand(N->getNumOperands()-1); 13261 13262 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13263 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13264 if (InputsAreConsecutiveLoads) { 13265 assert(LD1 && "Input needs to be a LoadSDNode."); 13266 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13267 LD1->getBasePtr(), LD1->getPointerInfo(), 13268 LD1->getAlignment()); 13269 } 13270 if (InputsAreReverseConsecutive) { 13271 assert(LDL && "Input needs to be a LoadSDNode."); 13272 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13273 LDL->getBasePtr(), LDL->getPointerInfo(), 13274 LDL->getAlignment()); 13275 SmallVector<int, 16> Ops; 13276 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13277 Ops.push_back(i); 13278 13279 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13280 DAG.getUNDEF(N->getValueType(0)), Ops); 13281 } 13282 return SDValue(); 13283 } 13284 13285 // This function adds the required vector_shuffle needed to get 13286 // the elements of the vector extract in the correct position 13287 // as specified by the CorrectElems encoding. 13288 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13289 SDValue Input, uint64_t Elems, 13290 uint64_t CorrectElems) { 13291 SDLoc dl(N); 13292 13293 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13294 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13295 13296 // Knowing the element indices being extracted from the original 13297 // vector and the order in which they're being inserted, just put 13298 // them at element indices required for the instruction. 13299 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13300 if (DAG.getDataLayout().isLittleEndian()) 13301 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13302 else 13303 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13304 CorrectElems = CorrectElems >> 8; 13305 Elems = Elems >> 8; 13306 } 13307 13308 SDValue Shuffle = 13309 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13310 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13311 13312 EVT VT = N->getValueType(0); 13313 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13314 13315 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13316 Input.getValueType().getVectorElementType(), 13317 VT.getVectorNumElements()); 13318 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13319 DAG.getValueType(ExtVT)); 13320 } 13321 13322 // Look for build vector patterns where input operands come from sign 13323 // extended vector_extract elements of specific indices. If the correct indices 13324 // aren't used, add a vector shuffle to fix up the indices and create 13325 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13326 // during instruction selection. 13327 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13328 // This array encodes the indices that the vector sign extend instructions 13329 // extract from when extending from one type to another for both BE and LE. 13330 // The right nibble of each byte corresponds to the LE incides. 13331 // and the left nibble of each byte corresponds to the BE incides. 13332 // For example: 0x3074B8FC byte->word 13333 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13334 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13335 // For example: 0x000070F8 byte->double word 13336 // For LE: the allowed indices are: 0x0,0x8 13337 // For BE: the allowed indices are: 0x7,0xF 13338 uint64_t TargetElems[] = { 13339 0x3074B8FC, // b->w 13340 0x000070F8, // b->d 13341 0x10325476, // h->w 13342 0x00003074, // h->d 13343 0x00001032, // w->d 13344 }; 13345 13346 uint64_t Elems = 0; 13347 int Index; 13348 SDValue Input; 13349 13350 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13351 if (!Op) 13352 return false; 13353 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13354 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13355 return false; 13356 13357 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13358 // of the right width. 13359 SDValue Extract = Op.getOperand(0); 13360 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13361 Extract = Extract.getOperand(0); 13362 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13363 return false; 13364 13365 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13366 if (!ExtOp) 13367 return false; 13368 13369 Index = ExtOp->getZExtValue(); 13370 if (Input && Input != Extract.getOperand(0)) 13371 return false; 13372 13373 if (!Input) 13374 Input = Extract.getOperand(0); 13375 13376 Elems = Elems << 8; 13377 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13378 Elems |= Index; 13379 13380 return true; 13381 }; 13382 13383 // If the build vector operands aren't sign extended vector extracts, 13384 // of the same input vector, then return. 13385 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13386 if (!isSExtOfVecExtract(N->getOperand(i))) { 13387 return SDValue(); 13388 } 13389 } 13390 13391 // If the vector extract indicies are not correct, add the appropriate 13392 // vector_shuffle. 13393 int TgtElemArrayIdx; 13394 int InputSize = Input.getValueType().getScalarSizeInBits(); 13395 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13396 if (InputSize + OutputSize == 40) 13397 TgtElemArrayIdx = 0; 13398 else if (InputSize + OutputSize == 72) 13399 TgtElemArrayIdx = 1; 13400 else if (InputSize + OutputSize == 48) 13401 TgtElemArrayIdx = 2; 13402 else if (InputSize + OutputSize == 80) 13403 TgtElemArrayIdx = 3; 13404 else if (InputSize + OutputSize == 96) 13405 TgtElemArrayIdx = 4; 13406 else 13407 return SDValue(); 13408 13409 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13410 CorrectElems = DAG.getDataLayout().isLittleEndian() 13411 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13412 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13413 if (Elems != CorrectElems) { 13414 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13415 } 13416 13417 // Regular lowering will catch cases where a shuffle is not needed. 13418 return SDValue(); 13419 } 13420 13421 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13422 DAGCombinerInfo &DCI) const { 13423 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13424 "Should be called with a BUILD_VECTOR node"); 13425 13426 SelectionDAG &DAG = DCI.DAG; 13427 SDLoc dl(N); 13428 13429 if (!Subtarget.hasVSX()) 13430 return SDValue(); 13431 13432 // The target independent DAG combiner will leave a build_vector of 13433 // float-to-int conversions intact. We can generate MUCH better code for 13434 // a float-to-int conversion of a vector of floats. 13435 SDValue FirstInput = N->getOperand(0); 13436 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13437 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13438 if (Reduced) 13439 return Reduced; 13440 } 13441 13442 // If we're building a vector out of consecutive loads, just load that 13443 // vector type. 13444 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13445 if (Reduced) 13446 return Reduced; 13447 13448 // If we're building a vector out of extended elements from another vector 13449 // we have P9 vector integer extend instructions. The code assumes legal 13450 // input types (i.e. it can't handle things like v4i16) so do not run before 13451 // legalization. 13452 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13453 Reduced = combineBVOfVecSExt(N, DAG); 13454 if (Reduced) 13455 return Reduced; 13456 } 13457 13458 13459 if (N->getValueType(0) != MVT::v2f64) 13460 return SDValue(); 13461 13462 // Looking for: 13463 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13464 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13465 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13466 return SDValue(); 13467 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13468 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13469 return SDValue(); 13470 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13471 return SDValue(); 13472 13473 SDValue Ext1 = FirstInput.getOperand(0); 13474 SDValue Ext2 = N->getOperand(1).getOperand(0); 13475 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13476 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13477 return SDValue(); 13478 13479 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13480 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13481 if (!Ext1Op || !Ext2Op) 13482 return SDValue(); 13483 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13484 Ext1.getOperand(0) != Ext2.getOperand(0)) 13485 return SDValue(); 13486 13487 int FirstElem = Ext1Op->getZExtValue(); 13488 int SecondElem = Ext2Op->getZExtValue(); 13489 int SubvecIdx; 13490 if (FirstElem == 0 && SecondElem == 1) 13491 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13492 else if (FirstElem == 2 && SecondElem == 3) 13493 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13494 else 13495 return SDValue(); 13496 13497 SDValue SrcVec = Ext1.getOperand(0); 13498 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13499 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13500 return DAG.getNode(NodeType, dl, MVT::v2f64, 13501 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13502 } 13503 13504 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13505 DAGCombinerInfo &DCI) const { 13506 assert((N->getOpcode() == ISD::SINT_TO_FP || 13507 N->getOpcode() == ISD::UINT_TO_FP) && 13508 "Need an int -> FP conversion node here"); 13509 13510 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13511 return SDValue(); 13512 13513 SelectionDAG &DAG = DCI.DAG; 13514 SDLoc dl(N); 13515 SDValue Op(N, 0); 13516 13517 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13518 // from the hardware. 13519 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13520 return SDValue(); 13521 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13522 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13523 return SDValue(); 13524 13525 SDValue FirstOperand(Op.getOperand(0)); 13526 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13527 (FirstOperand.getValueType() == MVT::i8 || 13528 FirstOperand.getValueType() == MVT::i16); 13529 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13530 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13531 bool DstDouble = Op.getValueType() == MVT::f64; 13532 unsigned ConvOp = Signed ? 13533 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13534 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13535 SDValue WidthConst = 13536 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13537 dl, false); 13538 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13539 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13540 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13541 DAG.getVTList(MVT::f64, MVT::Other), 13542 Ops, MVT::i8, LDN->getMemOperand()); 13543 13544 // For signed conversion, we need to sign-extend the value in the VSR 13545 if (Signed) { 13546 SDValue ExtOps[] = { Ld, WidthConst }; 13547 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13548 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13549 } else 13550 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13551 } 13552 13553 13554 // For i32 intermediate values, unfortunately, the conversion functions 13555 // leave the upper 32 bits of the value are undefined. Within the set of 13556 // scalar instructions, we have no method for zero- or sign-extending the 13557 // value. Thus, we cannot handle i32 intermediate values here. 13558 if (Op.getOperand(0).getValueType() == MVT::i32) 13559 return SDValue(); 13560 13561 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13562 "UINT_TO_FP is supported only with FPCVT"); 13563 13564 // If we have FCFIDS, then use it when converting to single-precision. 13565 // Otherwise, convert to double-precision and then round. 13566 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13567 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13568 : PPCISD::FCFIDS) 13569 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13570 : PPCISD::FCFID); 13571 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13572 ? MVT::f32 13573 : MVT::f64; 13574 13575 // If we're converting from a float, to an int, and back to a float again, 13576 // then we don't need the store/load pair at all. 13577 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13578 Subtarget.hasFPCVT()) || 13579 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13580 SDValue Src = Op.getOperand(0).getOperand(0); 13581 if (Src.getValueType() == MVT::f32) { 13582 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13583 DCI.AddToWorklist(Src.getNode()); 13584 } else if (Src.getValueType() != MVT::f64) { 13585 // Make sure that we don't pick up a ppc_fp128 source value. 13586 return SDValue(); 13587 } 13588 13589 unsigned FCTOp = 13590 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13591 PPCISD::FCTIDUZ; 13592 13593 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13594 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13595 13596 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13597 FP = DAG.getNode(ISD::FP_ROUND, dl, 13598 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13599 DCI.AddToWorklist(FP.getNode()); 13600 } 13601 13602 return FP; 13603 } 13604 13605 return SDValue(); 13606 } 13607 13608 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13609 // builtins) into loads with swaps. 13610 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13611 DAGCombinerInfo &DCI) const { 13612 SelectionDAG &DAG = DCI.DAG; 13613 SDLoc dl(N); 13614 SDValue Chain; 13615 SDValue Base; 13616 MachineMemOperand *MMO; 13617 13618 switch (N->getOpcode()) { 13619 default: 13620 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13621 case ISD::LOAD: { 13622 LoadSDNode *LD = cast<LoadSDNode>(N); 13623 Chain = LD->getChain(); 13624 Base = LD->getBasePtr(); 13625 MMO = LD->getMemOperand(); 13626 // If the MMO suggests this isn't a load of a full vector, leave 13627 // things alone. For a built-in, we have to make the change for 13628 // correctness, so if there is a size problem that will be a bug. 13629 if (MMO->getSize() < 16) 13630 return SDValue(); 13631 break; 13632 } 13633 case ISD::INTRINSIC_W_CHAIN: { 13634 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13635 Chain = Intrin->getChain(); 13636 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13637 // us what we want. Get operand 2 instead. 13638 Base = Intrin->getOperand(2); 13639 MMO = Intrin->getMemOperand(); 13640 break; 13641 } 13642 } 13643 13644 MVT VecTy = N->getValueType(0).getSimpleVT(); 13645 13646 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13647 // aligned and the type is a vector with elements up to 4 bytes 13648 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13649 VecTy.getScalarSizeInBits() <= 32) { 13650 return SDValue(); 13651 } 13652 13653 SDValue LoadOps[] = { Chain, Base }; 13654 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13655 DAG.getVTList(MVT::v2f64, MVT::Other), 13656 LoadOps, MVT::v2f64, MMO); 13657 13658 DCI.AddToWorklist(Load.getNode()); 13659 Chain = Load.getValue(1); 13660 SDValue Swap = DAG.getNode( 13661 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13662 DCI.AddToWorklist(Swap.getNode()); 13663 13664 // Add a bitcast if the resulting load type doesn't match v2f64. 13665 if (VecTy != MVT::v2f64) { 13666 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13667 DCI.AddToWorklist(N.getNode()); 13668 // Package {bitcast value, swap's chain} to match Load's shape. 13669 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13670 N, Swap.getValue(1)); 13671 } 13672 13673 return Swap; 13674 } 13675 13676 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13677 // builtins) into stores with swaps. 13678 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13679 DAGCombinerInfo &DCI) const { 13680 SelectionDAG &DAG = DCI.DAG; 13681 SDLoc dl(N); 13682 SDValue Chain; 13683 SDValue Base; 13684 unsigned SrcOpnd; 13685 MachineMemOperand *MMO; 13686 13687 switch (N->getOpcode()) { 13688 default: 13689 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13690 case ISD::STORE: { 13691 StoreSDNode *ST = cast<StoreSDNode>(N); 13692 Chain = ST->getChain(); 13693 Base = ST->getBasePtr(); 13694 MMO = ST->getMemOperand(); 13695 SrcOpnd = 1; 13696 // If the MMO suggests this isn't a store of a full vector, leave 13697 // things alone. For a built-in, we have to make the change for 13698 // correctness, so if there is a size problem that will be a bug. 13699 if (MMO->getSize() < 16) 13700 return SDValue(); 13701 break; 13702 } 13703 case ISD::INTRINSIC_VOID: { 13704 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13705 Chain = Intrin->getChain(); 13706 // Intrin->getBasePtr() oddly does not get what we want. 13707 Base = Intrin->getOperand(3); 13708 MMO = Intrin->getMemOperand(); 13709 SrcOpnd = 2; 13710 break; 13711 } 13712 } 13713 13714 SDValue Src = N->getOperand(SrcOpnd); 13715 MVT VecTy = Src.getValueType().getSimpleVT(); 13716 13717 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13718 // aligned and the type is a vector with elements up to 4 bytes 13719 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13720 VecTy.getScalarSizeInBits() <= 32) { 13721 return SDValue(); 13722 } 13723 13724 // All stores are done as v2f64 and possible bit cast. 13725 if (VecTy != MVT::v2f64) { 13726 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13727 DCI.AddToWorklist(Src.getNode()); 13728 } 13729 13730 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13731 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13732 DCI.AddToWorklist(Swap.getNode()); 13733 Chain = Swap.getValue(1); 13734 SDValue StoreOps[] = { Chain, Swap, Base }; 13735 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13736 DAG.getVTList(MVT::Other), 13737 StoreOps, VecTy, MMO); 13738 DCI.AddToWorklist(Store.getNode()); 13739 return Store; 13740 } 13741 13742 // Handle DAG combine for STORE (FP_TO_INT F). 13743 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13744 DAGCombinerInfo &DCI) const { 13745 13746 SelectionDAG &DAG = DCI.DAG; 13747 SDLoc dl(N); 13748 unsigned Opcode = N->getOperand(1).getOpcode(); 13749 13750 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13751 && "Not a FP_TO_INT Instruction!"); 13752 13753 SDValue Val = N->getOperand(1).getOperand(0); 13754 EVT Op1VT = N->getOperand(1).getValueType(); 13755 EVT ResVT = Val.getValueType(); 13756 13757 // Floating point types smaller than 32 bits are not legal on Power. 13758 if (ResVT.getScalarSizeInBits() < 32) 13759 return SDValue(); 13760 13761 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13762 bool ValidTypeForStoreFltAsInt = 13763 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13764 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13765 13766 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13767 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13768 return SDValue(); 13769 13770 // Extend f32 values to f64 13771 if (ResVT.getScalarSizeInBits() == 32) { 13772 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13773 DCI.AddToWorklist(Val.getNode()); 13774 } 13775 13776 // Set signed or unsigned conversion opcode. 13777 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13778 PPCISD::FP_TO_SINT_IN_VSR : 13779 PPCISD::FP_TO_UINT_IN_VSR; 13780 13781 Val = DAG.getNode(ConvOpcode, 13782 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13783 DCI.AddToWorklist(Val.getNode()); 13784 13785 // Set number of bytes being converted. 13786 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13787 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13788 DAG.getIntPtrConstant(ByteSize, dl, false), 13789 DAG.getValueType(Op1VT) }; 13790 13791 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13792 DAG.getVTList(MVT::Other), Ops, 13793 cast<StoreSDNode>(N)->getMemoryVT(), 13794 cast<StoreSDNode>(N)->getMemOperand()); 13795 13796 DCI.AddToWorklist(Val.getNode()); 13797 return Val; 13798 } 13799 13800 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 13801 // Check that the source of the element keeps flipping 13802 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 13803 bool PrevElemFromFirstVec = Mask[0] < NumElts; 13804 for (int i = 1, e = Mask.size(); i < e; i++) { 13805 if (PrevElemFromFirstVec && Mask[i] < NumElts) 13806 return false; 13807 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 13808 return false; 13809 PrevElemFromFirstVec = !PrevElemFromFirstVec; 13810 } 13811 return true; 13812 } 13813 13814 static bool isSplatBV(SDValue Op) { 13815 if (Op.getOpcode() != ISD::BUILD_VECTOR) 13816 return false; 13817 SDValue FirstOp; 13818 13819 // Find first non-undef input. 13820 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 13821 FirstOp = Op.getOperand(i); 13822 if (!FirstOp.isUndef()) 13823 break; 13824 } 13825 13826 // All inputs are undef or the same as the first non-undef input. 13827 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 13828 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 13829 return false; 13830 return true; 13831 } 13832 13833 static SDValue isScalarToVec(SDValue Op) { 13834 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13835 return Op; 13836 if (Op.getOpcode() != ISD::BITCAST) 13837 return SDValue(); 13838 Op = Op.getOperand(0); 13839 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13840 return Op; 13841 return SDValue(); 13842 } 13843 13844 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 13845 int LHSMaxIdx, int RHSMinIdx, 13846 int RHSMaxIdx, int HalfVec) { 13847 for (int i = 0, e = ShuffV.size(); i < e; i++) { 13848 int Idx = ShuffV[i]; 13849 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 13850 ShuffV[i] += HalfVec; 13851 } 13852 return; 13853 } 13854 13855 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 13856 // the original is: 13857 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 13858 // In such a case, just change the shuffle mask to extract the element 13859 // from the permuted index. 13860 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 13861 SDLoc dl(OrigSToV); 13862 EVT VT = OrigSToV.getValueType(); 13863 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 13864 "Expecting a SCALAR_TO_VECTOR here"); 13865 SDValue Input = OrigSToV.getOperand(0); 13866 13867 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13868 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 13869 SDValue OrigVector = Input.getOperand(0); 13870 13871 // Can't handle non-const element indices or different vector types 13872 // for the input to the extract and the output of the scalar_to_vector. 13873 if (Idx && VT == OrigVector.getValueType()) { 13874 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 13875 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 13876 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 13877 } 13878 } 13879 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 13880 OrigSToV.getOperand(0)); 13881 } 13882 13883 // On little endian subtargets, combine shuffles such as: 13884 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 13885 // into: 13886 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 13887 // because the latter can be matched to a single instruction merge. 13888 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 13889 // to put the value into element zero. Adjust the shuffle mask so that the 13890 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 13891 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 13892 SelectionDAG &DAG) const { 13893 SDValue LHS = SVN->getOperand(0); 13894 SDValue RHS = SVN->getOperand(1); 13895 auto Mask = SVN->getMask(); 13896 int NumElts = LHS.getValueType().getVectorNumElements(); 13897 SDValue Res(SVN, 0); 13898 SDLoc dl(SVN); 13899 13900 // None of these combines are useful on big endian systems since the ISA 13901 // already has a big endian bias. 13902 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13903 return Res; 13904 13905 // If this is not a shuffle of a shuffle and the first element comes from 13906 // the second vector, canonicalize to the commuted form. This will make it 13907 // more likely to match one of the single instruction patterns. 13908 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 13909 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 13910 std::swap(LHS, RHS); 13911 Res = DAG.getCommutedVectorShuffle(*SVN); 13912 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13913 } 13914 13915 // Adjust the shuffle mask if either input vector comes from a 13916 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 13917 // form (to prevent the need for a swap). 13918 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 13919 SDValue SToVLHS = isScalarToVec(LHS); 13920 SDValue SToVRHS = isScalarToVec(RHS); 13921 if (SToVLHS || SToVRHS) { 13922 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 13923 : SToVRHS.getValueType().getVectorNumElements(); 13924 int NumEltsOut = ShuffV.size(); 13925 13926 // Initially assume that neither input is permuted. These will be adjusted 13927 // accordingly if either input is. 13928 int LHSMaxIdx = -1; 13929 int RHSMinIdx = -1; 13930 int RHSMaxIdx = -1; 13931 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 13932 13933 // Get the permuted scalar to vector nodes for the source(s) that come from 13934 // ISD::SCALAR_TO_VECTOR. 13935 if (SToVLHS) { 13936 // Set up the values for the shuffle vector fixup. 13937 LHSMaxIdx = NumEltsOut / NumEltsIn; 13938 SToVLHS = getSToVPermuted(SToVLHS, DAG); 13939 if (SToVLHS.getValueType() != LHS.getValueType()) 13940 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 13941 LHS = SToVLHS; 13942 } 13943 if (SToVRHS) { 13944 RHSMinIdx = NumEltsOut; 13945 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 13946 SToVRHS = getSToVPermuted(SToVRHS, DAG); 13947 if (SToVRHS.getValueType() != RHS.getValueType()) 13948 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 13949 RHS = SToVRHS; 13950 } 13951 13952 // Fix up the shuffle mask to reflect where the desired element actually is. 13953 // The minimum and maximum indices that correspond to element zero for both 13954 // the LHS and RHS are computed and will control which shuffle mask entries 13955 // are to be changed. For example, if the RHS is permuted, any shuffle mask 13956 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 13957 // HalfVec to refer to the corresponding element in the permuted vector. 13958 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 13959 HalfVec); 13960 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 13961 13962 // We may have simplified away the shuffle. We won't be able to do anything 13963 // further with it here. 13964 if (!isa<ShuffleVectorSDNode>(Res)) 13965 return Res; 13966 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13967 } 13968 13969 // The common case after we commuted the shuffle is that the RHS is a splat 13970 // and we have elements coming in from the splat at indices that are not 13971 // conducive to using a merge. 13972 // Example: 13973 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 13974 if (!isSplatBV(RHS)) 13975 return Res; 13976 13977 // We are looking for a mask such that all even elements are from 13978 // one vector and all odd elements from the other. 13979 if (!isAlternatingShuffMask(Mask, NumElts)) 13980 return Res; 13981 13982 // Adjust the mask so we are pulling in the same index from the splat 13983 // as the index from the interesting vector in consecutive elements. 13984 // Example (even elements from first vector): 13985 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 13986 if (Mask[0] < NumElts) 13987 for (int i = 1, e = Mask.size(); i < e; i += 2) 13988 ShuffV[i] = (ShuffV[i - 1] + NumElts); 13989 // Example (odd elements from first vector): 13990 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 13991 else 13992 for (int i = 0, e = Mask.size(); i < e; i += 2) 13993 ShuffV[i] = (ShuffV[i + 1] + NumElts); 13994 13995 // If the RHS has undefs, we need to remove them since we may have created 13996 // a shuffle that adds those instead of the splat value. 13997 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 13998 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 13999 14000 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14001 return Res; 14002 } 14003 14004 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14005 LSBaseSDNode *LSBase, 14006 DAGCombinerInfo &DCI) const { 14007 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14008 "Not a reverse memop pattern!"); 14009 14010 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14011 auto Mask = SVN->getMask(); 14012 int i = 0; 14013 auto I = Mask.rbegin(); 14014 auto E = Mask.rend(); 14015 14016 for (; I != E; ++I) { 14017 if (*I != i) 14018 return false; 14019 i++; 14020 } 14021 return true; 14022 }; 14023 14024 SelectionDAG &DAG = DCI.DAG; 14025 EVT VT = SVN->getValueType(0); 14026 14027 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14028 return SDValue(); 14029 14030 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14031 // See comment in PPCVSXSwapRemoval.cpp. 14032 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14033 if (!Subtarget.hasP9Vector()) 14034 return SDValue(); 14035 14036 if(!IsElementReverse(SVN)) 14037 return SDValue(); 14038 14039 if (LSBase->getOpcode() == ISD::LOAD) { 14040 SDLoc dl(SVN); 14041 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14042 return DAG.getMemIntrinsicNode( 14043 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14044 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14045 } 14046 14047 if (LSBase->getOpcode() == ISD::STORE) { 14048 SDLoc dl(LSBase); 14049 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14050 LSBase->getBasePtr()}; 14051 return DAG.getMemIntrinsicNode( 14052 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14053 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14054 } 14055 14056 llvm_unreachable("Expected a load or store node here"); 14057 } 14058 14059 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14060 DAGCombinerInfo &DCI) const { 14061 SelectionDAG &DAG = DCI.DAG; 14062 SDLoc dl(N); 14063 switch (N->getOpcode()) { 14064 default: break; 14065 case ISD::ADD: 14066 return combineADD(N, DCI); 14067 case ISD::SHL: 14068 return combineSHL(N, DCI); 14069 case ISD::SRA: 14070 return combineSRA(N, DCI); 14071 case ISD::SRL: 14072 return combineSRL(N, DCI); 14073 case ISD::MUL: 14074 return combineMUL(N, DCI); 14075 case ISD::FMA: 14076 case PPCISD::FNMSUB: 14077 return combineFMALike(N, DCI); 14078 case PPCISD::SHL: 14079 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14080 return N->getOperand(0); 14081 break; 14082 case PPCISD::SRL: 14083 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14084 return N->getOperand(0); 14085 break; 14086 case PPCISD::SRA: 14087 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14088 if (C->isNullValue() || // 0 >>s V -> 0. 14089 C->isAllOnesValue()) // -1 >>s V -> -1. 14090 return N->getOperand(0); 14091 } 14092 break; 14093 case ISD::SIGN_EXTEND: 14094 case ISD::ZERO_EXTEND: 14095 case ISD::ANY_EXTEND: 14096 return DAGCombineExtBoolTrunc(N, DCI); 14097 case ISD::TRUNCATE: 14098 return combineTRUNCATE(N, DCI); 14099 case ISD::SETCC: 14100 if (SDValue CSCC = combineSetCC(N, DCI)) 14101 return CSCC; 14102 LLVM_FALLTHROUGH; 14103 case ISD::SELECT_CC: 14104 return DAGCombineTruncBoolExt(N, DCI); 14105 case ISD::SINT_TO_FP: 14106 case ISD::UINT_TO_FP: 14107 return combineFPToIntToFP(N, DCI); 14108 case ISD::VECTOR_SHUFFLE: 14109 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14110 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14111 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14112 } 14113 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14114 case ISD::STORE: { 14115 14116 EVT Op1VT = N->getOperand(1).getValueType(); 14117 unsigned Opcode = N->getOperand(1).getOpcode(); 14118 14119 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14120 SDValue Val= combineStoreFPToInt(N, DCI); 14121 if (Val) 14122 return Val; 14123 } 14124 14125 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14126 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14127 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14128 if (Val) 14129 return Val; 14130 } 14131 14132 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14133 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14134 N->getOperand(1).getNode()->hasOneUse() && 14135 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14136 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14137 14138 // STBRX can only handle simple types and it makes no sense to store less 14139 // two bytes in byte-reversed order. 14140 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14141 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14142 break; 14143 14144 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14145 // Do an any-extend to 32-bits if this is a half-word input. 14146 if (BSwapOp.getValueType() == MVT::i16) 14147 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14148 14149 // If the type of BSWAP operand is wider than stored memory width 14150 // it need to be shifted to the right side before STBRX. 14151 if (Op1VT.bitsGT(mVT)) { 14152 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14153 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14154 DAG.getConstant(Shift, dl, MVT::i32)); 14155 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14156 if (Op1VT == MVT::i64) 14157 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14158 } 14159 14160 SDValue Ops[] = { 14161 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14162 }; 14163 return 14164 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14165 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14166 cast<StoreSDNode>(N)->getMemOperand()); 14167 } 14168 14169 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14170 // So it can increase the chance of CSE constant construction. 14171 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14172 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14173 // Need to sign-extended to 64-bits to handle negative values. 14174 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14175 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14176 MemVT.getSizeInBits()); 14177 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14178 14179 // DAG.getTruncStore() can't be used here because it doesn't accept 14180 // the general (base + offset) addressing mode. 14181 // So we use UpdateNodeOperands and setTruncatingStore instead. 14182 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14183 N->getOperand(3)); 14184 cast<StoreSDNode>(N)->setTruncatingStore(true); 14185 return SDValue(N, 0); 14186 } 14187 14188 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14189 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14190 if (Op1VT.isSimple()) { 14191 MVT StoreVT = Op1VT.getSimpleVT(); 14192 if (Subtarget.needsSwapsForVSXMemOps() && 14193 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14194 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14195 return expandVSXStoreForLE(N, DCI); 14196 } 14197 break; 14198 } 14199 case ISD::LOAD: { 14200 LoadSDNode *LD = cast<LoadSDNode>(N); 14201 EVT VT = LD->getValueType(0); 14202 14203 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14204 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14205 if (VT.isSimple()) { 14206 MVT LoadVT = VT.getSimpleVT(); 14207 if (Subtarget.needsSwapsForVSXMemOps() && 14208 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14209 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14210 return expandVSXLoadForLE(N, DCI); 14211 } 14212 14213 // We sometimes end up with a 64-bit integer load, from which we extract 14214 // two single-precision floating-point numbers. This happens with 14215 // std::complex<float>, and other similar structures, because of the way we 14216 // canonicalize structure copies. However, if we lack direct moves, 14217 // then the final bitcasts from the extracted integer values to the 14218 // floating-point numbers turn into store/load pairs. Even with direct moves, 14219 // just loading the two floating-point numbers is likely better. 14220 auto ReplaceTwoFloatLoad = [&]() { 14221 if (VT != MVT::i64) 14222 return false; 14223 14224 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14225 LD->isVolatile()) 14226 return false; 14227 14228 // We're looking for a sequence like this: 14229 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14230 // t16: i64 = srl t13, Constant:i32<32> 14231 // t17: i32 = truncate t16 14232 // t18: f32 = bitcast t17 14233 // t19: i32 = truncate t13 14234 // t20: f32 = bitcast t19 14235 14236 if (!LD->hasNUsesOfValue(2, 0)) 14237 return false; 14238 14239 auto UI = LD->use_begin(); 14240 while (UI.getUse().getResNo() != 0) ++UI; 14241 SDNode *Trunc = *UI++; 14242 while (UI.getUse().getResNo() != 0) ++UI; 14243 SDNode *RightShift = *UI; 14244 if (Trunc->getOpcode() != ISD::TRUNCATE) 14245 std::swap(Trunc, RightShift); 14246 14247 if (Trunc->getOpcode() != ISD::TRUNCATE || 14248 Trunc->getValueType(0) != MVT::i32 || 14249 !Trunc->hasOneUse()) 14250 return false; 14251 if (RightShift->getOpcode() != ISD::SRL || 14252 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14253 RightShift->getConstantOperandVal(1) != 32 || 14254 !RightShift->hasOneUse()) 14255 return false; 14256 14257 SDNode *Trunc2 = *RightShift->use_begin(); 14258 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14259 Trunc2->getValueType(0) != MVT::i32 || 14260 !Trunc2->hasOneUse()) 14261 return false; 14262 14263 SDNode *Bitcast = *Trunc->use_begin(); 14264 SDNode *Bitcast2 = *Trunc2->use_begin(); 14265 14266 if (Bitcast->getOpcode() != ISD::BITCAST || 14267 Bitcast->getValueType(0) != MVT::f32) 14268 return false; 14269 if (Bitcast2->getOpcode() != ISD::BITCAST || 14270 Bitcast2->getValueType(0) != MVT::f32) 14271 return false; 14272 14273 if (Subtarget.isLittleEndian()) 14274 std::swap(Bitcast, Bitcast2); 14275 14276 // Bitcast has the second float (in memory-layout order) and Bitcast2 14277 // has the first one. 14278 14279 SDValue BasePtr = LD->getBasePtr(); 14280 if (LD->isIndexed()) { 14281 assert(LD->getAddressingMode() == ISD::PRE_INC && 14282 "Non-pre-inc AM on PPC?"); 14283 BasePtr = 14284 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14285 LD->getOffset()); 14286 } 14287 14288 auto MMOFlags = 14289 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14290 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14291 LD->getPointerInfo(), LD->getAlignment(), 14292 MMOFlags, LD->getAAInfo()); 14293 SDValue AddPtr = 14294 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14295 BasePtr, DAG.getIntPtrConstant(4, dl)); 14296 SDValue FloatLoad2 = DAG.getLoad( 14297 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14298 LD->getPointerInfo().getWithOffset(4), 14299 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14300 14301 if (LD->isIndexed()) { 14302 // Note that DAGCombine should re-form any pre-increment load(s) from 14303 // what is produced here if that makes sense. 14304 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14305 } 14306 14307 DCI.CombineTo(Bitcast2, FloatLoad); 14308 DCI.CombineTo(Bitcast, FloatLoad2); 14309 14310 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14311 SDValue(FloatLoad2.getNode(), 1)); 14312 return true; 14313 }; 14314 14315 if (ReplaceTwoFloatLoad()) 14316 return SDValue(N, 0); 14317 14318 EVT MemVT = LD->getMemoryVT(); 14319 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14320 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14321 if (LD->isUnindexed() && VT.isVector() && 14322 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14323 // P8 and later hardware should just use LOAD. 14324 !Subtarget.hasP8Vector() && 14325 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14326 VT == MVT::v4f32))) && 14327 LD->getAlign() < ABIAlignment) { 14328 // This is a type-legal unaligned Altivec load. 14329 SDValue Chain = LD->getChain(); 14330 SDValue Ptr = LD->getBasePtr(); 14331 bool isLittleEndian = Subtarget.isLittleEndian(); 14332 14333 // This implements the loading of unaligned vectors as described in 14334 // the venerable Apple Velocity Engine overview. Specifically: 14335 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14336 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14337 // 14338 // The general idea is to expand a sequence of one or more unaligned 14339 // loads into an alignment-based permutation-control instruction (lvsl 14340 // or lvsr), a series of regular vector loads (which always truncate 14341 // their input address to an aligned address), and a series of 14342 // permutations. The results of these permutations are the requested 14343 // loaded values. The trick is that the last "extra" load is not taken 14344 // from the address you might suspect (sizeof(vector) bytes after the 14345 // last requested load), but rather sizeof(vector) - 1 bytes after the 14346 // last requested vector. The point of this is to avoid a page fault if 14347 // the base address happened to be aligned. This works because if the 14348 // base address is aligned, then adding less than a full vector length 14349 // will cause the last vector in the sequence to be (re)loaded. 14350 // Otherwise, the next vector will be fetched as you might suspect was 14351 // necessary. 14352 14353 // We might be able to reuse the permutation generation from 14354 // a different base address offset from this one by an aligned amount. 14355 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14356 // optimization later. 14357 Intrinsic::ID Intr, IntrLD, IntrPerm; 14358 MVT PermCntlTy, PermTy, LDTy; 14359 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14360 : Intrinsic::ppc_altivec_lvsl; 14361 IntrLD = Intrinsic::ppc_altivec_lvx; 14362 IntrPerm = Intrinsic::ppc_altivec_vperm; 14363 PermCntlTy = MVT::v16i8; 14364 PermTy = MVT::v4i32; 14365 LDTy = MVT::v4i32; 14366 14367 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14368 14369 // Create the new MMO for the new base load. It is like the original MMO, 14370 // but represents an area in memory almost twice the vector size centered 14371 // on the original address. If the address is unaligned, we might start 14372 // reading up to (sizeof(vector)-1) bytes below the address of the 14373 // original unaligned load. 14374 MachineFunction &MF = DAG.getMachineFunction(); 14375 MachineMemOperand *BaseMMO = 14376 MF.getMachineMemOperand(LD->getMemOperand(), 14377 -(long)MemVT.getStoreSize()+1, 14378 2*MemVT.getStoreSize()-1); 14379 14380 // Create the new base load. 14381 SDValue LDXIntID = 14382 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14383 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14384 SDValue BaseLoad = 14385 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14386 DAG.getVTList(PermTy, MVT::Other), 14387 BaseLoadOps, LDTy, BaseMMO); 14388 14389 // Note that the value of IncOffset (which is provided to the next 14390 // load's pointer info offset value, and thus used to calculate the 14391 // alignment), and the value of IncValue (which is actually used to 14392 // increment the pointer value) are different! This is because we 14393 // require the next load to appear to be aligned, even though it 14394 // is actually offset from the base pointer by a lesser amount. 14395 int IncOffset = VT.getSizeInBits() / 8; 14396 int IncValue = IncOffset; 14397 14398 // Walk (both up and down) the chain looking for another load at the real 14399 // (aligned) offset (the alignment of the other load does not matter in 14400 // this case). If found, then do not use the offset reduction trick, as 14401 // that will prevent the loads from being later combined (as they would 14402 // otherwise be duplicates). 14403 if (!findConsecutiveLoad(LD, DAG)) 14404 --IncValue; 14405 14406 SDValue Increment = 14407 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14408 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14409 14410 MachineMemOperand *ExtraMMO = 14411 MF.getMachineMemOperand(LD->getMemOperand(), 14412 1, 2*MemVT.getStoreSize()-1); 14413 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14414 SDValue ExtraLoad = 14415 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14416 DAG.getVTList(PermTy, MVT::Other), 14417 ExtraLoadOps, LDTy, ExtraMMO); 14418 14419 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14420 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14421 14422 // Because vperm has a big-endian bias, we must reverse the order 14423 // of the input vectors and complement the permute control vector 14424 // when generating little endian code. We have already handled the 14425 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14426 // and ExtraLoad here. 14427 SDValue Perm; 14428 if (isLittleEndian) 14429 Perm = BuildIntrinsicOp(IntrPerm, 14430 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14431 else 14432 Perm = BuildIntrinsicOp(IntrPerm, 14433 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14434 14435 if (VT != PermTy) 14436 Perm = Subtarget.hasAltivec() 14437 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14438 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14439 DAG.getTargetConstant(1, dl, MVT::i64)); 14440 // second argument is 1 because this rounding 14441 // is always exact. 14442 14443 // The output of the permutation is our loaded result, the TokenFactor is 14444 // our new chain. 14445 DCI.CombineTo(N, Perm, TF); 14446 return SDValue(N, 0); 14447 } 14448 } 14449 break; 14450 case ISD::INTRINSIC_WO_CHAIN: { 14451 bool isLittleEndian = Subtarget.isLittleEndian(); 14452 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14453 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14454 : Intrinsic::ppc_altivec_lvsl); 14455 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14456 SDValue Add = N->getOperand(1); 14457 14458 int Bits = 4 /* 16 byte alignment */; 14459 14460 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14461 APInt::getAllOnesValue(Bits /* alignment */) 14462 .zext(Add.getScalarValueSizeInBits()))) { 14463 SDNode *BasePtr = Add->getOperand(0).getNode(); 14464 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14465 UE = BasePtr->use_end(); 14466 UI != UE; ++UI) { 14467 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14468 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14469 IID) { 14470 // We've found another LVSL/LVSR, and this address is an aligned 14471 // multiple of that one. The results will be the same, so use the 14472 // one we've just found instead. 14473 14474 return SDValue(*UI, 0); 14475 } 14476 } 14477 } 14478 14479 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14480 SDNode *BasePtr = Add->getOperand(0).getNode(); 14481 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14482 UE = BasePtr->use_end(); UI != UE; ++UI) { 14483 if (UI->getOpcode() == ISD::ADD && 14484 isa<ConstantSDNode>(UI->getOperand(1)) && 14485 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14486 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14487 (1ULL << Bits) == 0) { 14488 SDNode *OtherAdd = *UI; 14489 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14490 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14491 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14492 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14493 return SDValue(*VI, 0); 14494 } 14495 } 14496 } 14497 } 14498 } 14499 } 14500 14501 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14502 // Expose the vabsduw/h/b opportunity for down stream 14503 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14504 (IID == Intrinsic::ppc_altivec_vmaxsw || 14505 IID == Intrinsic::ppc_altivec_vmaxsh || 14506 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14507 SDValue V1 = N->getOperand(1); 14508 SDValue V2 = N->getOperand(2); 14509 if ((V1.getSimpleValueType() == MVT::v4i32 || 14510 V1.getSimpleValueType() == MVT::v8i16 || 14511 V1.getSimpleValueType() == MVT::v16i8) && 14512 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14513 // (0-a, a) 14514 if (V1.getOpcode() == ISD::SUB && 14515 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14516 V1.getOperand(1) == V2) { 14517 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14518 } 14519 // (a, 0-a) 14520 if (V2.getOpcode() == ISD::SUB && 14521 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14522 V2.getOperand(1) == V1) { 14523 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14524 } 14525 // (x-y, y-x) 14526 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14527 V1.getOperand(0) == V2.getOperand(1) && 14528 V1.getOperand(1) == V2.getOperand(0)) { 14529 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14530 } 14531 } 14532 } 14533 } 14534 14535 break; 14536 case ISD::INTRINSIC_W_CHAIN: 14537 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14538 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14539 if (Subtarget.needsSwapsForVSXMemOps()) { 14540 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14541 default: 14542 break; 14543 case Intrinsic::ppc_vsx_lxvw4x: 14544 case Intrinsic::ppc_vsx_lxvd2x: 14545 return expandVSXLoadForLE(N, DCI); 14546 } 14547 } 14548 break; 14549 case ISD::INTRINSIC_VOID: 14550 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14551 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14552 if (Subtarget.needsSwapsForVSXMemOps()) { 14553 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14554 default: 14555 break; 14556 case Intrinsic::ppc_vsx_stxvw4x: 14557 case Intrinsic::ppc_vsx_stxvd2x: 14558 return expandVSXStoreForLE(N, DCI); 14559 } 14560 } 14561 break; 14562 case ISD::BSWAP: 14563 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14564 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14565 N->getOperand(0).hasOneUse() && 14566 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14567 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14568 N->getValueType(0) == MVT::i64))) { 14569 SDValue Load = N->getOperand(0); 14570 LoadSDNode *LD = cast<LoadSDNode>(Load); 14571 // Create the byte-swapping load. 14572 SDValue Ops[] = { 14573 LD->getChain(), // Chain 14574 LD->getBasePtr(), // Ptr 14575 DAG.getValueType(N->getValueType(0)) // VT 14576 }; 14577 SDValue BSLoad = 14578 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14579 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14580 MVT::i64 : MVT::i32, MVT::Other), 14581 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14582 14583 // If this is an i16 load, insert the truncate. 14584 SDValue ResVal = BSLoad; 14585 if (N->getValueType(0) == MVT::i16) 14586 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14587 14588 // First, combine the bswap away. This makes the value produced by the 14589 // load dead. 14590 DCI.CombineTo(N, ResVal); 14591 14592 // Next, combine the load away, we give it a bogus result value but a real 14593 // chain result. The result value is dead because the bswap is dead. 14594 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14595 14596 // Return N so it doesn't get rechecked! 14597 return SDValue(N, 0); 14598 } 14599 break; 14600 case PPCISD::VCMP: 14601 // If a VCMPo node already exists with exactly the same operands as this 14602 // node, use its result instead of this node (VCMPo computes both a CR6 and 14603 // a normal output). 14604 // 14605 if (!N->getOperand(0).hasOneUse() && 14606 !N->getOperand(1).hasOneUse() && 14607 !N->getOperand(2).hasOneUse()) { 14608 14609 // Scan all of the users of the LHS, looking for VCMPo's that match. 14610 SDNode *VCMPoNode = nullptr; 14611 14612 SDNode *LHSN = N->getOperand(0).getNode(); 14613 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14614 UI != E; ++UI) 14615 if (UI->getOpcode() == PPCISD::VCMPo && 14616 UI->getOperand(1) == N->getOperand(1) && 14617 UI->getOperand(2) == N->getOperand(2) && 14618 UI->getOperand(0) == N->getOperand(0)) { 14619 VCMPoNode = *UI; 14620 break; 14621 } 14622 14623 // If there is no VCMPo node, or if the flag value has a single use, don't 14624 // transform this. 14625 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14626 break; 14627 14628 // Look at the (necessarily single) use of the flag value. If it has a 14629 // chain, this transformation is more complex. Note that multiple things 14630 // could use the value result, which we should ignore. 14631 SDNode *FlagUser = nullptr; 14632 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14633 FlagUser == nullptr; ++UI) { 14634 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14635 SDNode *User = *UI; 14636 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14637 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14638 FlagUser = User; 14639 break; 14640 } 14641 } 14642 } 14643 14644 // If the user is a MFOCRF instruction, we know this is safe. 14645 // Otherwise we give up for right now. 14646 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14647 return SDValue(VCMPoNode, 0); 14648 } 14649 break; 14650 case ISD::BRCOND: { 14651 SDValue Cond = N->getOperand(1); 14652 SDValue Target = N->getOperand(2); 14653 14654 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14655 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14656 Intrinsic::loop_decrement) { 14657 14658 // We now need to make the intrinsic dead (it cannot be instruction 14659 // selected). 14660 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14661 assert(Cond.getNode()->hasOneUse() && 14662 "Counter decrement has more than one use"); 14663 14664 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14665 N->getOperand(0), Target); 14666 } 14667 } 14668 break; 14669 case ISD::BR_CC: { 14670 // If this is a branch on an altivec predicate comparison, lower this so 14671 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14672 // lowering is done pre-legalize, because the legalizer lowers the predicate 14673 // compare down to code that is difficult to reassemble. 14674 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14675 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14676 14677 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14678 // value. If so, pass-through the AND to get to the intrinsic. 14679 if (LHS.getOpcode() == ISD::AND && 14680 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14681 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14682 Intrinsic::loop_decrement && 14683 isa<ConstantSDNode>(LHS.getOperand(1)) && 14684 !isNullConstant(LHS.getOperand(1))) 14685 LHS = LHS.getOperand(0); 14686 14687 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14688 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14689 Intrinsic::loop_decrement && 14690 isa<ConstantSDNode>(RHS)) { 14691 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14692 "Counter decrement comparison is not EQ or NE"); 14693 14694 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14695 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14696 (CC == ISD::SETNE && !Val); 14697 14698 // We now need to make the intrinsic dead (it cannot be instruction 14699 // selected). 14700 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14701 assert(LHS.getNode()->hasOneUse() && 14702 "Counter decrement has more than one use"); 14703 14704 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14705 N->getOperand(0), N->getOperand(4)); 14706 } 14707 14708 int CompareOpc; 14709 bool isDot; 14710 14711 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14712 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14713 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14714 assert(isDot && "Can't compare against a vector result!"); 14715 14716 // If this is a comparison against something other than 0/1, then we know 14717 // that the condition is never/always true. 14718 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14719 if (Val != 0 && Val != 1) { 14720 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14721 return N->getOperand(0); 14722 // Always !=, turn it into an unconditional branch. 14723 return DAG.getNode(ISD::BR, dl, MVT::Other, 14724 N->getOperand(0), N->getOperand(4)); 14725 } 14726 14727 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14728 14729 // Create the PPCISD altivec 'dot' comparison node. 14730 SDValue Ops[] = { 14731 LHS.getOperand(2), // LHS of compare 14732 LHS.getOperand(3), // RHS of compare 14733 DAG.getConstant(CompareOpc, dl, MVT::i32) 14734 }; 14735 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14736 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14737 14738 // Unpack the result based on how the target uses it. 14739 PPC::Predicate CompOpc; 14740 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14741 default: // Can't happen, don't crash on invalid number though. 14742 case 0: // Branch on the value of the EQ bit of CR6. 14743 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14744 break; 14745 case 1: // Branch on the inverted value of the EQ bit of CR6. 14746 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14747 break; 14748 case 2: // Branch on the value of the LT bit of CR6. 14749 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14750 break; 14751 case 3: // Branch on the inverted value of the LT bit of CR6. 14752 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14753 break; 14754 } 14755 14756 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14757 DAG.getConstant(CompOpc, dl, MVT::i32), 14758 DAG.getRegister(PPC::CR6, MVT::i32), 14759 N->getOperand(4), CompNode.getValue(1)); 14760 } 14761 break; 14762 } 14763 case ISD::BUILD_VECTOR: 14764 return DAGCombineBuildVector(N, DCI); 14765 case ISD::ABS: 14766 return combineABS(N, DCI); 14767 case ISD::VSELECT: 14768 return combineVSelect(N, DCI); 14769 } 14770 14771 return SDValue(); 14772 } 14773 14774 SDValue 14775 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14776 SelectionDAG &DAG, 14777 SmallVectorImpl<SDNode *> &Created) const { 14778 // fold (sdiv X, pow2) 14779 EVT VT = N->getValueType(0); 14780 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14781 return SDValue(); 14782 if ((VT != MVT::i32 && VT != MVT::i64) || 14783 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14784 return SDValue(); 14785 14786 SDLoc DL(N); 14787 SDValue N0 = N->getOperand(0); 14788 14789 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14790 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14791 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14792 14793 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14794 Created.push_back(Op.getNode()); 14795 14796 if (IsNegPow2) { 14797 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14798 Created.push_back(Op.getNode()); 14799 } 14800 14801 return Op; 14802 } 14803 14804 //===----------------------------------------------------------------------===// 14805 // Inline Assembly Support 14806 //===----------------------------------------------------------------------===// 14807 14808 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14809 KnownBits &Known, 14810 const APInt &DemandedElts, 14811 const SelectionDAG &DAG, 14812 unsigned Depth) const { 14813 Known.resetAll(); 14814 switch (Op.getOpcode()) { 14815 default: break; 14816 case PPCISD::LBRX: { 14817 // lhbrx is known to have the top bits cleared out. 14818 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14819 Known.Zero = 0xFFFF0000; 14820 break; 14821 } 14822 case ISD::INTRINSIC_WO_CHAIN: { 14823 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14824 default: break; 14825 case Intrinsic::ppc_altivec_vcmpbfp_p: 14826 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14827 case Intrinsic::ppc_altivec_vcmpequb_p: 14828 case Intrinsic::ppc_altivec_vcmpequh_p: 14829 case Intrinsic::ppc_altivec_vcmpequw_p: 14830 case Intrinsic::ppc_altivec_vcmpequd_p: 14831 case Intrinsic::ppc_altivec_vcmpgefp_p: 14832 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14833 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14834 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14835 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14836 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14837 case Intrinsic::ppc_altivec_vcmpgtub_p: 14838 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14839 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14840 case Intrinsic::ppc_altivec_vcmpgtud_p: 14841 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14842 break; 14843 } 14844 } 14845 } 14846 } 14847 14848 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14849 switch (Subtarget.getCPUDirective()) { 14850 default: break; 14851 case PPC::DIR_970: 14852 case PPC::DIR_PWR4: 14853 case PPC::DIR_PWR5: 14854 case PPC::DIR_PWR5X: 14855 case PPC::DIR_PWR6: 14856 case PPC::DIR_PWR6X: 14857 case PPC::DIR_PWR7: 14858 case PPC::DIR_PWR8: 14859 case PPC::DIR_PWR9: 14860 case PPC::DIR_PWR10: 14861 case PPC::DIR_PWR_FUTURE: { 14862 if (!ML) 14863 break; 14864 14865 if (!DisableInnermostLoopAlign32) { 14866 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14867 // so that we can decrease cache misses and branch-prediction misses. 14868 // Actual alignment of the loop will depend on the hotness check and other 14869 // logic in alignBlocks. 14870 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14871 return Align(32); 14872 } 14873 14874 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14875 14876 // For small loops (between 5 and 8 instructions), align to a 32-byte 14877 // boundary so that the entire loop fits in one instruction-cache line. 14878 uint64_t LoopSize = 0; 14879 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14880 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14881 LoopSize += TII->getInstSizeInBytes(*J); 14882 if (LoopSize > 32) 14883 break; 14884 } 14885 14886 if (LoopSize > 16 && LoopSize <= 32) 14887 return Align(32); 14888 14889 break; 14890 } 14891 } 14892 14893 return TargetLowering::getPrefLoopAlignment(ML); 14894 } 14895 14896 /// getConstraintType - Given a constraint, return the type of 14897 /// constraint it is for this target. 14898 PPCTargetLowering::ConstraintType 14899 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14900 if (Constraint.size() == 1) { 14901 switch (Constraint[0]) { 14902 default: break; 14903 case 'b': 14904 case 'r': 14905 case 'f': 14906 case 'd': 14907 case 'v': 14908 case 'y': 14909 return C_RegisterClass; 14910 case 'Z': 14911 // FIXME: While Z does indicate a memory constraint, it specifically 14912 // indicates an r+r address (used in conjunction with the 'y' modifier 14913 // in the replacement string). Currently, we're forcing the base 14914 // register to be r0 in the asm printer (which is interpreted as zero) 14915 // and forming the complete address in the second register. This is 14916 // suboptimal. 14917 return C_Memory; 14918 } 14919 } else if (Constraint == "wc") { // individual CR bits. 14920 return C_RegisterClass; 14921 } else if (Constraint == "wa" || Constraint == "wd" || 14922 Constraint == "wf" || Constraint == "ws" || 14923 Constraint == "wi" || Constraint == "ww") { 14924 return C_RegisterClass; // VSX registers. 14925 } 14926 return TargetLowering::getConstraintType(Constraint); 14927 } 14928 14929 /// Examine constraint type and operand type and determine a weight value. 14930 /// This object must already have been set up with the operand type 14931 /// and the current alternative constraint selected. 14932 TargetLowering::ConstraintWeight 14933 PPCTargetLowering::getSingleConstraintMatchWeight( 14934 AsmOperandInfo &info, const char *constraint) const { 14935 ConstraintWeight weight = CW_Invalid; 14936 Value *CallOperandVal = info.CallOperandVal; 14937 // If we don't have a value, we can't do a match, 14938 // but allow it at the lowest weight. 14939 if (!CallOperandVal) 14940 return CW_Default; 14941 Type *type = CallOperandVal->getType(); 14942 14943 // Look at the constraint type. 14944 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14945 return CW_Register; // an individual CR bit. 14946 else if ((StringRef(constraint) == "wa" || 14947 StringRef(constraint) == "wd" || 14948 StringRef(constraint) == "wf") && 14949 type->isVectorTy()) 14950 return CW_Register; 14951 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14952 return CW_Register; // just hold 64-bit integers data. 14953 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14954 return CW_Register; 14955 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14956 return CW_Register; 14957 14958 switch (*constraint) { 14959 default: 14960 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14961 break; 14962 case 'b': 14963 if (type->isIntegerTy()) 14964 weight = CW_Register; 14965 break; 14966 case 'f': 14967 if (type->isFloatTy()) 14968 weight = CW_Register; 14969 break; 14970 case 'd': 14971 if (type->isDoubleTy()) 14972 weight = CW_Register; 14973 break; 14974 case 'v': 14975 if (type->isVectorTy()) 14976 weight = CW_Register; 14977 break; 14978 case 'y': 14979 weight = CW_Register; 14980 break; 14981 case 'Z': 14982 weight = CW_Memory; 14983 break; 14984 } 14985 return weight; 14986 } 14987 14988 std::pair<unsigned, const TargetRegisterClass *> 14989 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14990 StringRef Constraint, 14991 MVT VT) const { 14992 if (Constraint.size() == 1) { 14993 // GCC RS6000 Constraint Letters 14994 switch (Constraint[0]) { 14995 case 'b': // R1-R31 14996 if (VT == MVT::i64 && Subtarget.isPPC64()) 14997 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14998 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14999 case 'r': // R0-R31 15000 if (VT == MVT::i64 && Subtarget.isPPC64()) 15001 return std::make_pair(0U, &PPC::G8RCRegClass); 15002 return std::make_pair(0U, &PPC::GPRCRegClass); 15003 // 'd' and 'f' constraints are both defined to be "the floating point 15004 // registers", where one is for 32-bit and the other for 64-bit. We don't 15005 // really care overly much here so just give them all the same reg classes. 15006 case 'd': 15007 case 'f': 15008 if (Subtarget.hasSPE()) { 15009 if (VT == MVT::f32 || VT == MVT::i32) 15010 return std::make_pair(0U, &PPC::GPRCRegClass); 15011 if (VT == MVT::f64 || VT == MVT::i64) 15012 return std::make_pair(0U, &PPC::SPERCRegClass); 15013 } else { 15014 if (VT == MVT::f32 || VT == MVT::i32) 15015 return std::make_pair(0U, &PPC::F4RCRegClass); 15016 if (VT == MVT::f64 || VT == MVT::i64) 15017 return std::make_pair(0U, &PPC::F8RCRegClass); 15018 } 15019 break; 15020 case 'v': 15021 if (Subtarget.hasAltivec()) 15022 return std::make_pair(0U, &PPC::VRRCRegClass); 15023 break; 15024 case 'y': // crrc 15025 return std::make_pair(0U, &PPC::CRRCRegClass); 15026 } 15027 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15028 // An individual CR bit. 15029 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15030 } else if ((Constraint == "wa" || Constraint == "wd" || 15031 Constraint == "wf" || Constraint == "wi") && 15032 Subtarget.hasVSX()) { 15033 return std::make_pair(0U, &PPC::VSRCRegClass); 15034 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15035 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15036 return std::make_pair(0U, &PPC::VSSRCRegClass); 15037 else 15038 return std::make_pair(0U, &PPC::VSFRCRegClass); 15039 } 15040 15041 // If we name a VSX register, we can't defer to the base class because it 15042 // will not recognize the correct register (their names will be VSL{0-31} 15043 // and V{0-31} so they won't match). So we match them here. 15044 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15045 int VSNum = atoi(Constraint.data() + 3); 15046 assert(VSNum >= 0 && VSNum <= 63 && 15047 "Attempted to access a vsr out of range"); 15048 if (VSNum < 32) 15049 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15050 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15051 } 15052 std::pair<unsigned, const TargetRegisterClass *> R = 15053 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15054 15055 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15056 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15057 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15058 // register. 15059 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15060 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15061 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15062 PPC::GPRCRegClass.contains(R.first)) 15063 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15064 PPC::sub_32, &PPC::G8RCRegClass), 15065 &PPC::G8RCRegClass); 15066 15067 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15068 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15069 R.first = PPC::CR0; 15070 R.second = &PPC::CRRCRegClass; 15071 } 15072 15073 return R; 15074 } 15075 15076 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15077 /// vector. If it is invalid, don't add anything to Ops. 15078 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15079 std::string &Constraint, 15080 std::vector<SDValue>&Ops, 15081 SelectionDAG &DAG) const { 15082 SDValue Result; 15083 15084 // Only support length 1 constraints. 15085 if (Constraint.length() > 1) return; 15086 15087 char Letter = Constraint[0]; 15088 switch (Letter) { 15089 default: break; 15090 case 'I': 15091 case 'J': 15092 case 'K': 15093 case 'L': 15094 case 'M': 15095 case 'N': 15096 case 'O': 15097 case 'P': { 15098 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15099 if (!CST) return; // Must be an immediate to match. 15100 SDLoc dl(Op); 15101 int64_t Value = CST->getSExtValue(); 15102 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15103 // numbers are printed as such. 15104 switch (Letter) { 15105 default: llvm_unreachable("Unknown constraint letter!"); 15106 case 'I': // "I" is a signed 16-bit constant. 15107 if (isInt<16>(Value)) 15108 Result = DAG.getTargetConstant(Value, dl, TCVT); 15109 break; 15110 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15111 if (isShiftedUInt<16, 16>(Value)) 15112 Result = DAG.getTargetConstant(Value, dl, TCVT); 15113 break; 15114 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15115 if (isShiftedInt<16, 16>(Value)) 15116 Result = DAG.getTargetConstant(Value, dl, TCVT); 15117 break; 15118 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15119 if (isUInt<16>(Value)) 15120 Result = DAG.getTargetConstant(Value, dl, TCVT); 15121 break; 15122 case 'M': // "M" is a constant that is greater than 31. 15123 if (Value > 31) 15124 Result = DAG.getTargetConstant(Value, dl, TCVT); 15125 break; 15126 case 'N': // "N" is a positive constant that is an exact power of two. 15127 if (Value > 0 && isPowerOf2_64(Value)) 15128 Result = DAG.getTargetConstant(Value, dl, TCVT); 15129 break; 15130 case 'O': // "O" is the constant zero. 15131 if (Value == 0) 15132 Result = DAG.getTargetConstant(Value, dl, TCVT); 15133 break; 15134 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15135 if (isInt<16>(-Value)) 15136 Result = DAG.getTargetConstant(Value, dl, TCVT); 15137 break; 15138 } 15139 break; 15140 } 15141 } 15142 15143 if (Result.getNode()) { 15144 Ops.push_back(Result); 15145 return; 15146 } 15147 15148 // Handle standard constraint letters. 15149 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15150 } 15151 15152 // isLegalAddressingMode - Return true if the addressing mode represented 15153 // by AM is legal for this target, for a load/store of the specified type. 15154 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15155 const AddrMode &AM, Type *Ty, 15156 unsigned AS, 15157 Instruction *I) const { 15158 // Vector type r+i form is supported since power9 as DQ form. We don't check 15159 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15160 // imm form is preferred and the offset can be adjusted to use imm form later 15161 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15162 // max offset to check legal addressing mode, we should be a little aggressive 15163 // to contain other offsets for that LSRUse. 15164 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15165 return false; 15166 15167 // PPC allows a sign-extended 16-bit immediate field. 15168 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15169 return false; 15170 15171 // No global is ever allowed as a base. 15172 if (AM.BaseGV) 15173 return false; 15174 15175 // PPC only support r+r, 15176 switch (AM.Scale) { 15177 case 0: // "r+i" or just "i", depending on HasBaseReg. 15178 break; 15179 case 1: 15180 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15181 return false; 15182 // Otherwise we have r+r or r+i. 15183 break; 15184 case 2: 15185 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15186 return false; 15187 // Allow 2*r as r+r. 15188 break; 15189 default: 15190 // No other scales are supported. 15191 return false; 15192 } 15193 15194 return true; 15195 } 15196 15197 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15198 SelectionDAG &DAG) const { 15199 MachineFunction &MF = DAG.getMachineFunction(); 15200 MachineFrameInfo &MFI = MF.getFrameInfo(); 15201 MFI.setReturnAddressIsTaken(true); 15202 15203 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15204 return SDValue(); 15205 15206 SDLoc dl(Op); 15207 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15208 15209 // Make sure the function does not optimize away the store of the RA to 15210 // the stack. 15211 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15212 FuncInfo->setLRStoreRequired(); 15213 bool isPPC64 = Subtarget.isPPC64(); 15214 auto PtrVT = getPointerTy(MF.getDataLayout()); 15215 15216 if (Depth > 0) { 15217 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15218 SDValue Offset = 15219 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15220 isPPC64 ? MVT::i64 : MVT::i32); 15221 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15222 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15223 MachinePointerInfo()); 15224 } 15225 15226 // Just load the return address off the stack. 15227 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15228 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15229 MachinePointerInfo()); 15230 } 15231 15232 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15233 SelectionDAG &DAG) const { 15234 SDLoc dl(Op); 15235 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15236 15237 MachineFunction &MF = DAG.getMachineFunction(); 15238 MachineFrameInfo &MFI = MF.getFrameInfo(); 15239 MFI.setFrameAddressIsTaken(true); 15240 15241 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15242 bool isPPC64 = PtrVT == MVT::i64; 15243 15244 // Naked functions never have a frame pointer, and so we use r1. For all 15245 // other functions, this decision must be delayed until during PEI. 15246 unsigned FrameReg; 15247 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15248 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15249 else 15250 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15251 15252 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15253 PtrVT); 15254 while (Depth--) 15255 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15256 FrameAddr, MachinePointerInfo()); 15257 return FrameAddr; 15258 } 15259 15260 // FIXME? Maybe this could be a TableGen attribute on some registers and 15261 // this table could be generated automatically from RegInfo. 15262 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15263 const MachineFunction &MF) const { 15264 bool isPPC64 = Subtarget.isPPC64(); 15265 15266 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15267 if (!is64Bit && VT != LLT::scalar(32)) 15268 report_fatal_error("Invalid register global variable type"); 15269 15270 Register Reg = StringSwitch<Register>(RegName) 15271 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15272 .Case("r2", isPPC64 ? Register() : PPC::R2) 15273 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15274 .Default(Register()); 15275 15276 if (Reg) 15277 return Reg; 15278 report_fatal_error("Invalid register name global variable"); 15279 } 15280 15281 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15282 // 32-bit SVR4 ABI access everything as got-indirect. 15283 if (Subtarget.is32BitELFABI()) 15284 return true; 15285 15286 // AIX accesses everything indirectly through the TOC, which is similar to 15287 // the GOT. 15288 if (Subtarget.isAIXABI()) 15289 return true; 15290 15291 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15292 // If it is small or large code model, module locals are accessed 15293 // indirectly by loading their address from .toc/.got. 15294 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15295 return true; 15296 15297 // JumpTable and BlockAddress are accessed as got-indirect. 15298 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15299 return true; 15300 15301 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15302 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15303 15304 return false; 15305 } 15306 15307 bool 15308 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15309 // The PowerPC target isn't yet aware of offsets. 15310 return false; 15311 } 15312 15313 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15314 const CallInst &I, 15315 MachineFunction &MF, 15316 unsigned Intrinsic) const { 15317 switch (Intrinsic) { 15318 case Intrinsic::ppc_altivec_lvx: 15319 case Intrinsic::ppc_altivec_lvxl: 15320 case Intrinsic::ppc_altivec_lvebx: 15321 case Intrinsic::ppc_altivec_lvehx: 15322 case Intrinsic::ppc_altivec_lvewx: 15323 case Intrinsic::ppc_vsx_lxvd2x: 15324 case Intrinsic::ppc_vsx_lxvw4x: { 15325 EVT VT; 15326 switch (Intrinsic) { 15327 case Intrinsic::ppc_altivec_lvebx: 15328 VT = MVT::i8; 15329 break; 15330 case Intrinsic::ppc_altivec_lvehx: 15331 VT = MVT::i16; 15332 break; 15333 case Intrinsic::ppc_altivec_lvewx: 15334 VT = MVT::i32; 15335 break; 15336 case Intrinsic::ppc_vsx_lxvd2x: 15337 VT = MVT::v2f64; 15338 break; 15339 default: 15340 VT = MVT::v4i32; 15341 break; 15342 } 15343 15344 Info.opc = ISD::INTRINSIC_W_CHAIN; 15345 Info.memVT = VT; 15346 Info.ptrVal = I.getArgOperand(0); 15347 Info.offset = -VT.getStoreSize()+1; 15348 Info.size = 2*VT.getStoreSize()-1; 15349 Info.align = Align(1); 15350 Info.flags = MachineMemOperand::MOLoad; 15351 return true; 15352 } 15353 case Intrinsic::ppc_altivec_stvx: 15354 case Intrinsic::ppc_altivec_stvxl: 15355 case Intrinsic::ppc_altivec_stvebx: 15356 case Intrinsic::ppc_altivec_stvehx: 15357 case Intrinsic::ppc_altivec_stvewx: 15358 case Intrinsic::ppc_vsx_stxvd2x: 15359 case Intrinsic::ppc_vsx_stxvw4x: { 15360 EVT VT; 15361 switch (Intrinsic) { 15362 case Intrinsic::ppc_altivec_stvebx: 15363 VT = MVT::i8; 15364 break; 15365 case Intrinsic::ppc_altivec_stvehx: 15366 VT = MVT::i16; 15367 break; 15368 case Intrinsic::ppc_altivec_stvewx: 15369 VT = MVT::i32; 15370 break; 15371 case Intrinsic::ppc_vsx_stxvd2x: 15372 VT = MVT::v2f64; 15373 break; 15374 default: 15375 VT = MVT::v4i32; 15376 break; 15377 } 15378 15379 Info.opc = ISD::INTRINSIC_VOID; 15380 Info.memVT = VT; 15381 Info.ptrVal = I.getArgOperand(1); 15382 Info.offset = -VT.getStoreSize()+1; 15383 Info.size = 2*VT.getStoreSize()-1; 15384 Info.align = Align(1); 15385 Info.flags = MachineMemOperand::MOStore; 15386 return true; 15387 } 15388 default: 15389 break; 15390 } 15391 15392 return false; 15393 } 15394 15395 /// It returns EVT::Other if the type should be determined using generic 15396 /// target-independent logic. 15397 EVT PPCTargetLowering::getOptimalMemOpType( 15398 const MemOp &Op, const AttributeList &FuncAttributes) const { 15399 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15400 // We should use Altivec/VSX loads and stores when available. For unaligned 15401 // addresses, unaligned VSX loads are only fast starting with the P8. 15402 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15403 (Op.isAligned(Align(16)) || 15404 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15405 return MVT::v4i32; 15406 } 15407 15408 if (Subtarget.isPPC64()) { 15409 return MVT::i64; 15410 } 15411 15412 return MVT::i32; 15413 } 15414 15415 /// Returns true if it is beneficial to convert a load of a constant 15416 /// to just the constant itself. 15417 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15418 Type *Ty) const { 15419 assert(Ty->isIntegerTy()); 15420 15421 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15422 return !(BitSize == 0 || BitSize > 64); 15423 } 15424 15425 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15426 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15427 return false; 15428 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15429 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15430 return NumBits1 == 64 && NumBits2 == 32; 15431 } 15432 15433 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15434 if (!VT1.isInteger() || !VT2.isInteger()) 15435 return false; 15436 unsigned NumBits1 = VT1.getSizeInBits(); 15437 unsigned NumBits2 = VT2.getSizeInBits(); 15438 return NumBits1 == 64 && NumBits2 == 32; 15439 } 15440 15441 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15442 // Generally speaking, zexts are not free, but they are free when they can be 15443 // folded with other operations. 15444 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15445 EVT MemVT = LD->getMemoryVT(); 15446 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15447 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15448 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15449 LD->getExtensionType() == ISD::ZEXTLOAD)) 15450 return true; 15451 } 15452 15453 // FIXME: Add other cases... 15454 // - 32-bit shifts with a zext to i64 15455 // - zext after ctlz, bswap, etc. 15456 // - zext after and by a constant mask 15457 15458 return TargetLowering::isZExtFree(Val, VT2); 15459 } 15460 15461 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15462 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15463 "invalid fpext types"); 15464 // Extending to float128 is not free. 15465 if (DestVT == MVT::f128) 15466 return false; 15467 return true; 15468 } 15469 15470 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15471 return isInt<16>(Imm) || isUInt<16>(Imm); 15472 } 15473 15474 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15475 return isInt<16>(Imm) || isUInt<16>(Imm); 15476 } 15477 15478 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15479 unsigned, 15480 unsigned, 15481 MachineMemOperand::Flags, 15482 bool *Fast) const { 15483 if (DisablePPCUnaligned) 15484 return false; 15485 15486 // PowerPC supports unaligned memory access for simple non-vector types. 15487 // Although accessing unaligned addresses is not as efficient as accessing 15488 // aligned addresses, it is generally more efficient than manual expansion, 15489 // and generally only traps for software emulation when crossing page 15490 // boundaries. 15491 15492 if (!VT.isSimple()) 15493 return false; 15494 15495 if (VT.isFloatingPoint() && !VT.isVector() && 15496 !Subtarget.allowsUnalignedFPAccess()) 15497 return false; 15498 15499 if (VT.getSimpleVT().isVector()) { 15500 if (Subtarget.hasVSX()) { 15501 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15502 VT != MVT::v4f32 && VT != MVT::v4i32) 15503 return false; 15504 } else { 15505 return false; 15506 } 15507 } 15508 15509 if (VT == MVT::ppcf128) 15510 return false; 15511 15512 if (Fast) 15513 *Fast = true; 15514 15515 return true; 15516 } 15517 15518 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15519 EVT VT) const { 15520 return isFMAFasterThanFMulAndFAdd( 15521 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15522 } 15523 15524 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15525 Type *Ty) const { 15526 switch (Ty->getScalarType()->getTypeID()) { 15527 case Type::FloatTyID: 15528 case Type::DoubleTyID: 15529 return true; 15530 case Type::FP128TyID: 15531 return Subtarget.hasP9Vector(); 15532 default: 15533 return false; 15534 } 15535 } 15536 15537 // FIXME: add more patterns which are not profitable to hoist. 15538 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15539 if (!I->hasOneUse()) 15540 return true; 15541 15542 Instruction *User = I->user_back(); 15543 assert(User && "A single use instruction with no uses."); 15544 15545 switch (I->getOpcode()) { 15546 case Instruction::FMul: { 15547 // Don't break FMA, PowerPC prefers FMA. 15548 if (User->getOpcode() != Instruction::FSub && 15549 User->getOpcode() != Instruction::FAdd) 15550 return true; 15551 15552 const TargetOptions &Options = getTargetMachine().Options; 15553 const Function *F = I->getFunction(); 15554 const DataLayout &DL = F->getParent()->getDataLayout(); 15555 Type *Ty = User->getOperand(0)->getType(); 15556 15557 return !( 15558 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15559 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15560 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15561 } 15562 case Instruction::Load: { 15563 // Don't break "store (load float*)" pattern, this pattern will be combined 15564 // to "store (load int32)" in later InstCombine pass. See function 15565 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15566 // cycles than loading a 32 bit integer. 15567 LoadInst *LI = cast<LoadInst>(I); 15568 // For the loads that combineLoadToOperationType does nothing, like 15569 // ordered load, it should be profitable to hoist them. 15570 // For swifterror load, it can only be used for pointer to pointer type, so 15571 // later type check should get rid of this case. 15572 if (!LI->isUnordered()) 15573 return true; 15574 15575 if (User->getOpcode() != Instruction::Store) 15576 return true; 15577 15578 if (I->getType()->getTypeID() != Type::FloatTyID) 15579 return true; 15580 15581 return false; 15582 } 15583 default: 15584 return true; 15585 } 15586 return true; 15587 } 15588 15589 const MCPhysReg * 15590 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15591 // LR is a callee-save register, but we must treat it as clobbered by any call 15592 // site. Hence we include LR in the scratch registers, which are in turn added 15593 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15594 // to CTR, which is used by any indirect call. 15595 static const MCPhysReg ScratchRegs[] = { 15596 PPC::X12, PPC::LR8, PPC::CTR8, 0 15597 }; 15598 15599 return ScratchRegs; 15600 } 15601 15602 Register PPCTargetLowering::getExceptionPointerRegister( 15603 const Constant *PersonalityFn) const { 15604 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15605 } 15606 15607 Register PPCTargetLowering::getExceptionSelectorRegister( 15608 const Constant *PersonalityFn) const { 15609 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15610 } 15611 15612 bool 15613 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15614 EVT VT , unsigned DefinedValues) const { 15615 if (VT == MVT::v2i64) 15616 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15617 15618 if (Subtarget.hasVSX()) 15619 return true; 15620 15621 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15622 } 15623 15624 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15625 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15626 return TargetLowering::getSchedulingPreference(N); 15627 15628 return Sched::ILP; 15629 } 15630 15631 // Create a fast isel object. 15632 FastISel * 15633 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15634 const TargetLibraryInfo *LibInfo) const { 15635 return PPC::createFastISel(FuncInfo, LibInfo); 15636 } 15637 15638 // 'Inverted' means the FMA opcode after negating one multiplicand. 15639 // For example, (fma -a b c) = (fnmsub a b c) 15640 static unsigned invertFMAOpcode(unsigned Opc) { 15641 switch (Opc) { 15642 default: 15643 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15644 case ISD::FMA: 15645 return PPCISD::FNMSUB; 15646 case PPCISD::FNMSUB: 15647 return ISD::FMA; 15648 } 15649 } 15650 15651 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15652 bool LegalOps, bool OptForSize, 15653 NegatibleCost &Cost, 15654 unsigned Depth) const { 15655 if (Depth > SelectionDAG::MaxRecursionDepth) 15656 return SDValue(); 15657 15658 unsigned Opc = Op.getOpcode(); 15659 EVT VT = Op.getValueType(); 15660 SDNodeFlags Flags = Op.getNode()->getFlags(); 15661 15662 switch (Opc) { 15663 case PPCISD::FNMSUB: 15664 if (!Op.hasOneUse() || !isTypeLegal(VT)) 15665 break; 15666 15667 const TargetOptions &Options = getTargetMachine().Options; 15668 SDValue N0 = Op.getOperand(0); 15669 SDValue N1 = Op.getOperand(1); 15670 SDValue N2 = Op.getOperand(2); 15671 SDLoc Loc(Op); 15672 15673 NegatibleCost N2Cost = NegatibleCost::Expensive; 15674 SDValue NegN2 = 15675 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15676 15677 if (!NegN2) 15678 return SDValue(); 15679 15680 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15681 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15682 // These transformations may change sign of zeroes. For example, 15683 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15684 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15685 // Try and choose the cheaper one to negate. 15686 NegatibleCost N0Cost = NegatibleCost::Expensive; 15687 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15688 N0Cost, Depth + 1); 15689 15690 NegatibleCost N1Cost = NegatibleCost::Expensive; 15691 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15692 N1Cost, Depth + 1); 15693 15694 if (NegN0 && N0Cost <= N1Cost) { 15695 Cost = std::min(N0Cost, N2Cost); 15696 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15697 } else if (NegN1) { 15698 Cost = std::min(N1Cost, N2Cost); 15699 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15700 } 15701 } 15702 15703 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15704 if (isOperationLegal(ISD::FMA, VT)) { 15705 Cost = N2Cost; 15706 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15707 } 15708 15709 break; 15710 } 15711 15712 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15713 Cost, Depth); 15714 } 15715 15716 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15717 bool PPCTargetLowering::useLoadStackGuardNode() const { 15718 if (!Subtarget.isTargetLinux()) 15719 return TargetLowering::useLoadStackGuardNode(); 15720 return true; 15721 } 15722 15723 // Override to disable global variable loading on Linux. 15724 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15725 if (!Subtarget.isTargetLinux()) 15726 return TargetLowering::insertSSPDeclarations(M); 15727 } 15728 15729 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15730 bool ForCodeSize) const { 15731 if (!VT.isSimple() || !Subtarget.hasVSX()) 15732 return false; 15733 15734 switch(VT.getSimpleVT().SimpleTy) { 15735 default: 15736 // For FP types that are currently not supported by PPC backend, return 15737 // false. Examples: f16, f80. 15738 return false; 15739 case MVT::f32: 15740 case MVT::f64: 15741 if (Subtarget.hasPrefixInstrs()) { 15742 // With prefixed instructions, we can materialize anything that can be 15743 // represented with a 32-bit immediate, not just positive zero. 15744 APFloat APFloatOfImm = Imm; 15745 return convertToNonDenormSingle(APFloatOfImm); 15746 } 15747 LLVM_FALLTHROUGH; 15748 case MVT::ppcf128: 15749 return Imm.isPosZero(); 15750 } 15751 } 15752 15753 // For vector shift operation op, fold 15754 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15755 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15756 SelectionDAG &DAG) { 15757 SDValue N0 = N->getOperand(0); 15758 SDValue N1 = N->getOperand(1); 15759 EVT VT = N0.getValueType(); 15760 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15761 unsigned Opcode = N->getOpcode(); 15762 unsigned TargetOpcode; 15763 15764 switch (Opcode) { 15765 default: 15766 llvm_unreachable("Unexpected shift operation"); 15767 case ISD::SHL: 15768 TargetOpcode = PPCISD::SHL; 15769 break; 15770 case ISD::SRL: 15771 TargetOpcode = PPCISD::SRL; 15772 break; 15773 case ISD::SRA: 15774 TargetOpcode = PPCISD::SRA; 15775 break; 15776 } 15777 15778 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15779 N1->getOpcode() == ISD::AND) 15780 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15781 if (Mask->getZExtValue() == OpSizeInBits - 1) 15782 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15783 15784 return SDValue(); 15785 } 15786 15787 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15788 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15789 return Value; 15790 15791 SDValue N0 = N->getOperand(0); 15792 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15793 if (!Subtarget.isISA3_0() || 15794 N0.getOpcode() != ISD::SIGN_EXTEND || 15795 N0.getOperand(0).getValueType() != MVT::i32 || 15796 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15797 return SDValue(); 15798 15799 // We can't save an operation here if the value is already extended, and 15800 // the existing shift is easier to combine. 15801 SDValue ExtsSrc = N0.getOperand(0); 15802 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15803 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15804 return SDValue(); 15805 15806 SDLoc DL(N0); 15807 SDValue ShiftBy = SDValue(CN1, 0); 15808 // We want the shift amount to be i32 on the extswli, but the shift could 15809 // have an i64. 15810 if (ShiftBy.getValueType() == MVT::i64) 15811 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15812 15813 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15814 ShiftBy); 15815 } 15816 15817 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15818 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15819 return Value; 15820 15821 return SDValue(); 15822 } 15823 15824 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15825 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15826 return Value; 15827 15828 return SDValue(); 15829 } 15830 15831 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15832 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15833 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15834 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15835 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15836 const PPCSubtarget &Subtarget) { 15837 if (!Subtarget.isPPC64()) 15838 return SDValue(); 15839 15840 SDValue LHS = N->getOperand(0); 15841 SDValue RHS = N->getOperand(1); 15842 15843 auto isZextOfCompareWithConstant = [](SDValue Op) { 15844 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15845 Op.getValueType() != MVT::i64) 15846 return false; 15847 15848 SDValue Cmp = Op.getOperand(0); 15849 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15850 Cmp.getOperand(0).getValueType() != MVT::i64) 15851 return false; 15852 15853 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15854 int64_t NegConstant = 0 - Constant->getSExtValue(); 15855 // Due to the limitations of the addi instruction, 15856 // -C is required to be [-32768, 32767]. 15857 return isInt<16>(NegConstant); 15858 } 15859 15860 return false; 15861 }; 15862 15863 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15864 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15865 15866 // If there is a pattern, canonicalize a zext operand to the RHS. 15867 if (LHSHasPattern && !RHSHasPattern) 15868 std::swap(LHS, RHS); 15869 else if (!LHSHasPattern && !RHSHasPattern) 15870 return SDValue(); 15871 15872 SDLoc DL(N); 15873 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15874 SDValue Cmp = RHS.getOperand(0); 15875 SDValue Z = Cmp.getOperand(0); 15876 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15877 15878 assert(Constant && "Constant Should not be a null pointer."); 15879 int64_t NegConstant = 0 - Constant->getSExtValue(); 15880 15881 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15882 default: break; 15883 case ISD::SETNE: { 15884 // when C == 0 15885 // --> addze X, (addic Z, -1).carry 15886 // / 15887 // add X, (zext(setne Z, C))-- 15888 // \ when -32768 <= -C <= 32767 && C != 0 15889 // --> addze X, (addic (addi Z, -C), -1).carry 15890 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15891 DAG.getConstant(NegConstant, DL, MVT::i64)); 15892 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15893 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15894 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15895 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15896 SDValue(Addc.getNode(), 1)); 15897 } 15898 case ISD::SETEQ: { 15899 // when C == 0 15900 // --> addze X, (subfic Z, 0).carry 15901 // / 15902 // add X, (zext(sete Z, C))-- 15903 // \ when -32768 <= -C <= 32767 && C != 0 15904 // --> addze X, (subfic (addi Z, -C), 0).carry 15905 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15906 DAG.getConstant(NegConstant, DL, MVT::i64)); 15907 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15908 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15909 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15910 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15911 SDValue(Subc.getNode(), 1)); 15912 } 15913 } 15914 15915 return SDValue(); 15916 } 15917 15918 // Transform 15919 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 15920 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 15921 // In this case both C1 and C2 must be known constants. 15922 // C1+C2 must fit into a 34 bit signed integer. 15923 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 15924 const PPCSubtarget &Subtarget) { 15925 if (!Subtarget.isUsingPCRelativeCalls()) 15926 return SDValue(); 15927 15928 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 15929 // If we find that node try to cast the Global Address and the Constant. 15930 SDValue LHS = N->getOperand(0); 15931 SDValue RHS = N->getOperand(1); 15932 15933 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 15934 std::swap(LHS, RHS); 15935 15936 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 15937 return SDValue(); 15938 15939 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 15940 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 15941 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 15942 15943 // Check that both casts succeeded. 15944 if (!GSDN || !ConstNode) 15945 return SDValue(); 15946 15947 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 15948 SDLoc DL(GSDN); 15949 15950 // The signed int offset needs to fit in 34 bits. 15951 if (!isInt<34>(NewOffset)) 15952 return SDValue(); 15953 15954 // The new global address is a copy of the old global address except 15955 // that it has the updated Offset. 15956 SDValue GA = 15957 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 15958 NewOffset, GSDN->getTargetFlags()); 15959 SDValue MatPCRel = 15960 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 15961 return MatPCRel; 15962 } 15963 15964 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15965 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15966 return Value; 15967 15968 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 15969 return Value; 15970 15971 return SDValue(); 15972 } 15973 15974 // Detect TRUNCATE operations on bitcasts of float128 values. 15975 // What we are looking for here is the situtation where we extract a subset 15976 // of bits from a 128 bit float. 15977 // This can be of two forms: 15978 // 1) BITCAST of f128 feeding TRUNCATE 15979 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15980 // The reason this is required is because we do not have a legal i128 type 15981 // and so we want to prevent having to store the f128 and then reload part 15982 // of it. 15983 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15984 DAGCombinerInfo &DCI) const { 15985 // If we are using CRBits then try that first. 15986 if (Subtarget.useCRBits()) { 15987 // Check if CRBits did anything and return that if it did. 15988 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15989 return CRTruncValue; 15990 } 15991 15992 SDLoc dl(N); 15993 SDValue Op0 = N->getOperand(0); 15994 15995 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 15996 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 15997 EVT VT = N->getValueType(0); 15998 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15999 return SDValue(); 16000 SDValue Sub = Op0.getOperand(0); 16001 if (Sub.getOpcode() == ISD::SUB) { 16002 SDValue SubOp0 = Sub.getOperand(0); 16003 SDValue SubOp1 = Sub.getOperand(1); 16004 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16005 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16006 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16007 SubOp1.getOperand(0), 16008 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16009 } 16010 } 16011 } 16012 16013 // Looking for a truncate of i128 to i64. 16014 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16015 return SDValue(); 16016 16017 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16018 16019 // SRL feeding TRUNCATE. 16020 if (Op0.getOpcode() == ISD::SRL) { 16021 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16022 // The right shift has to be by 64 bits. 16023 if (!ConstNode || ConstNode->getZExtValue() != 64) 16024 return SDValue(); 16025 16026 // Switch the element number to extract. 16027 EltToExtract = EltToExtract ? 0 : 1; 16028 // Update Op0 past the SRL. 16029 Op0 = Op0.getOperand(0); 16030 } 16031 16032 // BITCAST feeding a TRUNCATE possibly via SRL. 16033 if (Op0.getOpcode() == ISD::BITCAST && 16034 Op0.getValueType() == MVT::i128 && 16035 Op0.getOperand(0).getValueType() == MVT::f128) { 16036 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16037 return DCI.DAG.getNode( 16038 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16039 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16040 } 16041 return SDValue(); 16042 } 16043 16044 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16045 SelectionDAG &DAG = DCI.DAG; 16046 16047 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16048 if (!ConstOpOrElement) 16049 return SDValue(); 16050 16051 // An imul is usually smaller than the alternative sequence for legal type. 16052 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16053 isOperationLegal(ISD::MUL, N->getValueType(0))) 16054 return SDValue(); 16055 16056 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16057 switch (this->Subtarget.getCPUDirective()) { 16058 default: 16059 // TODO: enhance the condition for subtarget before pwr8 16060 return false; 16061 case PPC::DIR_PWR8: 16062 // type mul add shl 16063 // scalar 4 1 1 16064 // vector 7 2 2 16065 return true; 16066 case PPC::DIR_PWR9: 16067 case PPC::DIR_PWR10: 16068 case PPC::DIR_PWR_FUTURE: 16069 // type mul add shl 16070 // scalar 5 2 2 16071 // vector 7 2 2 16072 16073 // The cycle RATIO of related operations are showed as a table above. 16074 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16075 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16076 // are 4, it is always profitable; but for 3 instrs patterns 16077 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16078 // So we should only do it for vector type. 16079 return IsAddOne && IsNeg ? VT.isVector() : true; 16080 } 16081 }; 16082 16083 EVT VT = N->getValueType(0); 16084 SDLoc DL(N); 16085 16086 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16087 bool IsNeg = MulAmt.isNegative(); 16088 APInt MulAmtAbs = MulAmt.abs(); 16089 16090 if ((MulAmtAbs - 1).isPowerOf2()) { 16091 // (mul x, 2^N + 1) => (add (shl x, N), x) 16092 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16093 16094 if (!IsProfitable(IsNeg, true, VT)) 16095 return SDValue(); 16096 16097 SDValue Op0 = N->getOperand(0); 16098 SDValue Op1 = 16099 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16100 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16101 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16102 16103 if (!IsNeg) 16104 return Res; 16105 16106 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16107 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16108 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16109 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16110 16111 if (!IsProfitable(IsNeg, false, VT)) 16112 return SDValue(); 16113 16114 SDValue Op0 = N->getOperand(0); 16115 SDValue Op1 = 16116 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16117 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16118 16119 if (!IsNeg) 16120 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16121 else 16122 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16123 16124 } else { 16125 return SDValue(); 16126 } 16127 } 16128 16129 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16130 // in combiner since we need to check SD flags and other subtarget features. 16131 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16132 DAGCombinerInfo &DCI) const { 16133 SDValue N0 = N->getOperand(0); 16134 SDValue N1 = N->getOperand(1); 16135 SDValue N2 = N->getOperand(2); 16136 SDNodeFlags Flags = N->getFlags(); 16137 EVT VT = N->getValueType(0); 16138 SelectionDAG &DAG = DCI.DAG; 16139 const TargetOptions &Options = getTargetMachine().Options; 16140 unsigned Opc = N->getOpcode(); 16141 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16142 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16143 SDLoc Loc(N); 16144 16145 if (!isOperationLegal(ISD::FMA, VT)) 16146 return SDValue(); 16147 16148 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16149 // since (fnmsub a b c)=-0 while c-ab=+0. 16150 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16151 return SDValue(); 16152 16153 // (fma (fneg a) b c) => (fnmsub a b c) 16154 // (fnmsub (fneg a) b c) => (fma a b c) 16155 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16156 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16157 16158 // (fma a (fneg b) c) => (fnmsub a b c) 16159 // (fnmsub a (fneg b) c) => (fma a b c) 16160 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16161 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16162 16163 return SDValue(); 16164 } 16165 16166 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16167 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16168 if (!Subtarget.is64BitELFABI()) 16169 return false; 16170 16171 // If not a tail call then no need to proceed. 16172 if (!CI->isTailCall()) 16173 return false; 16174 16175 // If sibling calls have been disabled and tail-calls aren't guaranteed 16176 // there is no reason to duplicate. 16177 auto &TM = getTargetMachine(); 16178 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16179 return false; 16180 16181 // Can't tail call a function called indirectly, or if it has variadic args. 16182 const Function *Callee = CI->getCalledFunction(); 16183 if (!Callee || Callee->isVarArg()) 16184 return false; 16185 16186 // Make sure the callee and caller calling conventions are eligible for tco. 16187 const Function *Caller = CI->getParent()->getParent(); 16188 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16189 CI->getCallingConv())) 16190 return false; 16191 16192 // If the function is local then we have a good chance at tail-calling it 16193 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16194 } 16195 16196 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16197 if (!Subtarget.hasVSX()) 16198 return false; 16199 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16200 return true; 16201 return VT == MVT::f32 || VT == MVT::f64 || 16202 VT == MVT::v4f32 || VT == MVT::v2f64; 16203 } 16204 16205 bool PPCTargetLowering:: 16206 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16207 const Value *Mask = AndI.getOperand(1); 16208 // If the mask is suitable for andi. or andis. we should sink the and. 16209 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16210 // Can't handle constants wider than 64-bits. 16211 if (CI->getBitWidth() > 64) 16212 return false; 16213 int64_t ConstVal = CI->getZExtValue(); 16214 return isUInt<16>(ConstVal) || 16215 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16216 } 16217 16218 // For non-constant masks, we can always use the record-form and. 16219 return true; 16220 } 16221 16222 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16223 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16224 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16225 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16226 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16227 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16228 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16229 assert(Subtarget.hasP9Altivec() && 16230 "Only combine this when P9 altivec supported!"); 16231 EVT VT = N->getValueType(0); 16232 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16233 return SDValue(); 16234 16235 SelectionDAG &DAG = DCI.DAG; 16236 SDLoc dl(N); 16237 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16238 // Even for signed integers, if it's known to be positive (as signed 16239 // integer) due to zero-extended inputs. 16240 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16241 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16242 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16243 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16244 (SubOpcd1 == ISD::ZERO_EXTEND || 16245 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16246 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16247 N->getOperand(0)->getOperand(0), 16248 N->getOperand(0)->getOperand(1), 16249 DAG.getTargetConstant(0, dl, MVT::i32)); 16250 } 16251 16252 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16253 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16254 N->getOperand(0).hasOneUse()) { 16255 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16256 N->getOperand(0)->getOperand(0), 16257 N->getOperand(0)->getOperand(1), 16258 DAG.getTargetConstant(1, dl, MVT::i32)); 16259 } 16260 } 16261 16262 return SDValue(); 16263 } 16264 16265 // For type v4i32/v8ii16/v16i8, transform 16266 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16267 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16268 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16269 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16270 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16271 DAGCombinerInfo &DCI) const { 16272 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16273 assert(Subtarget.hasP9Altivec() && 16274 "Only combine this when P9 altivec supported!"); 16275 16276 SelectionDAG &DAG = DCI.DAG; 16277 SDLoc dl(N); 16278 SDValue Cond = N->getOperand(0); 16279 SDValue TrueOpnd = N->getOperand(1); 16280 SDValue FalseOpnd = N->getOperand(2); 16281 EVT VT = N->getOperand(1).getValueType(); 16282 16283 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16284 FalseOpnd.getOpcode() != ISD::SUB) 16285 return SDValue(); 16286 16287 // ABSD only available for type v4i32/v8i16/v16i8 16288 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16289 return SDValue(); 16290 16291 // At least to save one more dependent computation 16292 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16293 return SDValue(); 16294 16295 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16296 16297 // Can only handle unsigned comparison here 16298 switch (CC) { 16299 default: 16300 return SDValue(); 16301 case ISD::SETUGT: 16302 case ISD::SETUGE: 16303 break; 16304 case ISD::SETULT: 16305 case ISD::SETULE: 16306 std::swap(TrueOpnd, FalseOpnd); 16307 break; 16308 } 16309 16310 SDValue CmpOpnd1 = Cond.getOperand(0); 16311 SDValue CmpOpnd2 = Cond.getOperand(1); 16312 16313 // SETCC CmpOpnd1 CmpOpnd2 cond 16314 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16315 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16316 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16317 TrueOpnd.getOperand(1) == CmpOpnd2 && 16318 FalseOpnd.getOperand(0) == CmpOpnd2 && 16319 FalseOpnd.getOperand(1) == CmpOpnd1) { 16320 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16321 CmpOpnd1, CmpOpnd2, 16322 DAG.getTargetConstant(0, dl, MVT::i32)); 16323 } 16324 16325 return SDValue(); 16326 } 16327