1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/CallingConv.h" 20 #include "llvm/Constants.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/Function.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 40 CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, 42 CCState &State); 43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 44 MVT &LocVT, 45 CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, 47 CCState &State); 48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 49 MVT &LocVT, 50 CCValAssign::LocInfo &LocInfo, 51 ISD::ArgFlagsTy &ArgFlags, 52 CCState &State); 53 54 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 55 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 58 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 59 60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65 } 66 67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 70 71 setPow2DivIsCheap(); 72 73 // Use _setjmp/_longjmp instead of setjmp/longjmp. 74 setUseUnderscoreSetJmp(true); 75 setUseUnderscoreLongJmp(true); 76 77 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 78 // arguments are at least 4/8 bytes aligned. 79 bool isPPC64 = Subtarget->isPPC64(); 80 setMinStackArgumentAlignment(isPPC64 ? 8:4); 81 82 // Set up the register classes. 83 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 87 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 88 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 89 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 90 91 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 92 93 // PowerPC has pre-inc load and store's. 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 102 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 103 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 104 105 // This is used in the ppcf128->int sequence. Note it has different semantics 106 // from FP_ROUND: that rounds to nearest, this rounds to zero. 107 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 108 109 // We do not currently implement these libm ops for PowerPC. 110 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 111 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 112 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 113 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 114 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 115 116 // PowerPC has no SREM/UREM instructions 117 setOperationAction(ISD::SREM, MVT::i32, Expand); 118 setOperationAction(ISD::UREM, MVT::i32, Expand); 119 setOperationAction(ISD::SREM, MVT::i64, Expand); 120 setOperationAction(ISD::UREM, MVT::i64, Expand); 121 122 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 123 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 124 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 125 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 126 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 127 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 128 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 129 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 130 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 131 132 // We don't support sin/cos/sqrt/fmod/pow 133 setOperationAction(ISD::FSIN , MVT::f64, Expand); 134 setOperationAction(ISD::FCOS , MVT::f64, Expand); 135 setOperationAction(ISD::FREM , MVT::f64, Expand); 136 setOperationAction(ISD::FPOW , MVT::f64, Expand); 137 setOperationAction(ISD::FMA , MVT::f64, Legal); 138 setOperationAction(ISD::FSIN , MVT::f32, Expand); 139 setOperationAction(ISD::FCOS , MVT::f32, Expand); 140 setOperationAction(ISD::FREM , MVT::f32, Expand); 141 setOperationAction(ISD::FPOW , MVT::f32, Expand); 142 setOperationAction(ISD::FMA , MVT::f32, Legal); 143 144 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 145 146 // If we're enabling GP optimizations, use hardware square root 147 if (!Subtarget->hasFSQRT()) { 148 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 149 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 150 } 151 152 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 153 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 154 155 // PowerPC does not have BSWAP, CTPOP or CTTZ 156 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 157 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 158 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 159 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 160 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 161 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 162 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 163 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 164 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 165 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 166 167 // PowerPC does not have ROTR 168 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 169 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 170 171 // PowerPC does not have Select 172 setOperationAction(ISD::SELECT, MVT::i32, Expand); 173 setOperationAction(ISD::SELECT, MVT::i64, Expand); 174 setOperationAction(ISD::SELECT, MVT::f32, Expand); 175 setOperationAction(ISD::SELECT, MVT::f64, Expand); 176 177 // PowerPC wants to turn select_cc of FP into fsel when possible. 178 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 179 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 180 181 // PowerPC wants to optimize integer setcc a bit 182 setOperationAction(ISD::SETCC, MVT::i32, Custom); 183 184 // PowerPC does not have BRCOND which requires SetCC 185 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 186 187 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 188 189 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 190 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 191 192 // PowerPC does not have [U|S]INT_TO_FP 193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 194 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 195 196 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 197 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 198 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 199 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 200 201 // We cannot sextinreg(i1). Expand to shifts. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 204 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 205 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 206 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 207 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 208 209 210 // We want to legalize GlobalAddress and ConstantPool nodes into the 211 // appropriate instructions to materialize the address. 212 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 213 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 214 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 215 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 216 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 217 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 218 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 219 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 220 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 221 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 222 223 // TRAP is legal. 224 setOperationAction(ISD::TRAP, MVT::Other, Legal); 225 226 // TRAMPOLINE is custom lowered. 227 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 228 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 229 230 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 231 setOperationAction(ISD::VASTART , MVT::Other, Custom); 232 233 if (Subtarget->isSVR4ABI()) { 234 if (isPPC64) { 235 // VAARG always uses double-word chunks, so promote anything smaller. 236 setOperationAction(ISD::VAARG, MVT::i1, Promote); 237 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 238 setOperationAction(ISD::VAARG, MVT::i8, Promote); 239 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 240 setOperationAction(ISD::VAARG, MVT::i16, Promote); 241 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 242 setOperationAction(ISD::VAARG, MVT::i32, Promote); 243 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 244 setOperationAction(ISD::VAARG, MVT::Other, Expand); 245 } else { 246 // VAARG is custom lowered with the 32-bit SVR4 ABI. 247 setOperationAction(ISD::VAARG, MVT::Other, Custom); 248 setOperationAction(ISD::VAARG, MVT::i64, Custom); 249 } 250 } else 251 setOperationAction(ISD::VAARG, MVT::Other, Expand); 252 253 // Use the default implementation. 254 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 255 setOperationAction(ISD::VAEND , MVT::Other, Expand); 256 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 257 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 258 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 259 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 260 261 // We want to custom lower some of our intrinsics. 262 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 263 264 // Comparisons that require checking two conditions. 265 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 266 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 267 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 268 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 269 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 270 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 271 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 272 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 273 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 274 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 275 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 276 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 277 278 if (Subtarget->has64BitSupport()) { 279 // They also have instructions for converting between i64 and fp. 280 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 281 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 282 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 283 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 284 // This is just the low 32 bits of a (signed) fp->i64 conversion. 285 // We cannot do this with Promote because i64 is not a legal type. 286 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 287 288 // FIXME: disable this lowered code. This generates 64-bit register values, 289 // and we don't model the fact that the top part is clobbered by calls. We 290 // need to flag these together so that the value isn't live across a call. 291 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 292 } else { 293 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 294 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 295 } 296 297 if (Subtarget->use64BitRegs()) { 298 // 64-bit PowerPC implementations can support i64 types directly 299 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 300 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 301 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 302 // 64-bit PowerPC wants to expand i128 shifts itself. 303 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 304 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 305 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 306 } else { 307 // 32-bit PowerPC wants to expand i64 shifts itself. 308 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 309 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 310 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 311 } 312 313 if (Subtarget->hasAltivec()) { 314 // First set operation action for all vector types to expand. Then we 315 // will selectively turn on ones that can be effectively codegen'd. 316 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 317 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 318 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 319 320 // add/sub are legal for all supported vector VT's. 321 setOperationAction(ISD::ADD , VT, Legal); 322 setOperationAction(ISD::SUB , VT, Legal); 323 324 // We promote all shuffles to v16i8. 325 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 326 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 327 328 // We promote all non-typed operations to v4i32. 329 setOperationAction(ISD::AND , VT, Promote); 330 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 331 setOperationAction(ISD::OR , VT, Promote); 332 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 333 setOperationAction(ISD::XOR , VT, Promote); 334 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 335 setOperationAction(ISD::LOAD , VT, Promote); 336 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 337 setOperationAction(ISD::SELECT, VT, Promote); 338 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 339 setOperationAction(ISD::STORE, VT, Promote); 340 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 341 342 // No other operations are legal. 343 setOperationAction(ISD::MUL , VT, Expand); 344 setOperationAction(ISD::SDIV, VT, Expand); 345 setOperationAction(ISD::SREM, VT, Expand); 346 setOperationAction(ISD::UDIV, VT, Expand); 347 setOperationAction(ISD::UREM, VT, Expand); 348 setOperationAction(ISD::FDIV, VT, Expand); 349 setOperationAction(ISD::FNEG, VT, Expand); 350 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 351 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 352 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 353 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 354 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 355 setOperationAction(ISD::UDIVREM, VT, Expand); 356 setOperationAction(ISD::SDIVREM, VT, Expand); 357 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::CTPOP, VT, Expand); 360 setOperationAction(ISD::CTLZ, VT, Expand); 361 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 362 setOperationAction(ISD::CTTZ, VT, Expand); 363 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 364 } 365 366 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 367 // with merges, splats, etc. 368 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 369 370 setOperationAction(ISD::AND , MVT::v4i32, Legal); 371 setOperationAction(ISD::OR , MVT::v4i32, Legal); 372 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 373 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 374 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 375 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 376 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 377 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 378 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 379 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 380 381 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 382 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 383 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 384 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 385 386 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 387 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 388 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 389 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 390 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 391 392 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 393 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 394 395 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 396 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 397 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 398 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 399 } 400 401 if (Subtarget->has64BitSupport()) { 402 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 404 } 405 406 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 407 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 408 409 setBooleanContents(ZeroOrOneBooleanContent); 410 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 411 412 if (isPPC64) { 413 setStackPointerRegisterToSaveRestore(PPC::X1); 414 setExceptionPointerRegister(PPC::X3); 415 setExceptionSelectorRegister(PPC::X4); 416 } else { 417 setStackPointerRegisterToSaveRestore(PPC::R1); 418 setExceptionPointerRegister(PPC::R3); 419 setExceptionSelectorRegister(PPC::R4); 420 } 421 422 // We have target-specific dag combine patterns for the following nodes: 423 setTargetDAGCombine(ISD::SINT_TO_FP); 424 setTargetDAGCombine(ISD::STORE); 425 setTargetDAGCombine(ISD::BR_CC); 426 setTargetDAGCombine(ISD::BSWAP); 427 428 // Darwin long double math library functions have $LDBL128 appended. 429 if (Subtarget->isDarwin()) { 430 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 431 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 432 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 433 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 434 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 435 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 436 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 437 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 438 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 439 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 440 } 441 442 setMinFunctionAlignment(2); 443 if (PPCSubTarget.isDarwin()) 444 setPrefFunctionAlignment(4); 445 446 if (isPPC64 && Subtarget->isJITCodeModel()) 447 // Temporary workaround for the inability of PPC64 JIT to handle jump 448 // tables. 449 setSupportJumpTables(false); 450 451 setInsertFencesForAtomic(true); 452 453 setSchedulingPreference(Sched::Hybrid); 454 455 computeRegisterProperties(); 456 457 // The Freescale cores does better with aggressive inlining of memcpy and 458 // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). 459 if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc || 460 Subtarget->getDarwinDirective() == PPC::DIR_E5500) { 461 maxStoresPerMemset = 32; 462 maxStoresPerMemsetOptSize = 16; 463 maxStoresPerMemcpy = 32; 464 maxStoresPerMemcpyOptSize = 8; 465 maxStoresPerMemmove = 32; 466 maxStoresPerMemmoveOptSize = 8; 467 468 setPrefFunctionAlignment(4); 469 benefitFromCodePlacementOpt = true; 470 } 471 } 472 473 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 474 /// function arguments in the caller parameter area. 475 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 476 const TargetMachine &TM = getTargetMachine(); 477 // Darwin passes everything on 4 byte boundary. 478 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 479 return 4; 480 481 // 16byte and wider vectors are passed on 16byte boundary. 482 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 483 if (VTy->getBitWidth() >= 128) 484 return 16; 485 486 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 487 if (PPCSubTarget.isPPC64()) 488 return 8; 489 490 return 4; 491 } 492 493 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 494 switch (Opcode) { 495 default: return 0; 496 case PPCISD::FSEL: return "PPCISD::FSEL"; 497 case PPCISD::FCFID: return "PPCISD::FCFID"; 498 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 499 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 500 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 501 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 502 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 503 case PPCISD::VPERM: return "PPCISD::VPERM"; 504 case PPCISD::Hi: return "PPCISD::Hi"; 505 case PPCISD::Lo: return "PPCISD::Lo"; 506 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 507 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 508 case PPCISD::LOAD: return "PPCISD::LOAD"; 509 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 510 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 511 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 512 case PPCISD::SRL: return "PPCISD::SRL"; 513 case PPCISD::SRA: return "PPCISD::SRA"; 514 case PPCISD::SHL: return "PPCISD::SHL"; 515 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 516 case PPCISD::STD_32: return "PPCISD::STD_32"; 517 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 518 case PPCISD::CALL_NOP_SVR4: return "PPCISD::CALL_NOP_SVR4"; 519 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 520 case PPCISD::NOP: return "PPCISD::NOP"; 521 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 522 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 523 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 524 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 525 case PPCISD::MFCR: return "PPCISD::MFCR"; 526 case PPCISD::VCMP: return "PPCISD::VCMP"; 527 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 528 case PPCISD::LBRX: return "PPCISD::LBRX"; 529 case PPCISD::STBRX: return "PPCISD::STBRX"; 530 case PPCISD::LARX: return "PPCISD::LARX"; 531 case PPCISD::STCX: return "PPCISD::STCX"; 532 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 533 case PPCISD::MFFS: return "PPCISD::MFFS"; 534 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 535 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 536 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 537 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 538 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 539 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 540 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 541 } 542 } 543 544 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 545 if (!VT.isVector()) 546 return MVT::i32; 547 return VT.changeVectorElementTypeToInteger(); 548 } 549 550 //===----------------------------------------------------------------------===// 551 // Node matching predicates, for use by the tblgen matching code. 552 //===----------------------------------------------------------------------===// 553 554 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 555 static bool isFloatingPointZero(SDValue Op) { 556 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 557 return CFP->getValueAPF().isZero(); 558 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 559 // Maybe this has already been legalized into the constant pool? 560 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 561 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 562 return CFP->getValueAPF().isZero(); 563 } 564 return false; 565 } 566 567 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 568 /// true if Op is undef or if it matches the specified value. 569 static bool isConstantOrUndef(int Op, int Val) { 570 return Op < 0 || Op == Val; 571 } 572 573 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 574 /// VPKUHUM instruction. 575 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 576 if (!isUnary) { 577 for (unsigned i = 0; i != 16; ++i) 578 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 579 return false; 580 } else { 581 for (unsigned i = 0; i != 8; ++i) 582 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 583 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 584 return false; 585 } 586 return true; 587 } 588 589 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 590 /// VPKUWUM instruction. 591 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 592 if (!isUnary) { 593 for (unsigned i = 0; i != 16; i += 2) 594 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 595 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 596 return false; 597 } else { 598 for (unsigned i = 0; i != 8; i += 2) 599 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 600 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 601 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 602 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 603 return false; 604 } 605 return true; 606 } 607 608 /// isVMerge - Common function, used to match vmrg* shuffles. 609 /// 610 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 611 unsigned LHSStart, unsigned RHSStart) { 612 assert(N->getValueType(0) == MVT::v16i8 && 613 "PPC only supports shuffles by bytes!"); 614 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 615 "Unsupported merge size!"); 616 617 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 618 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 619 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 620 LHSStart+j+i*UnitSize) || 621 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 622 RHSStart+j+i*UnitSize)) 623 return false; 624 } 625 return true; 626 } 627 628 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 629 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 630 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 631 bool isUnary) { 632 if (!isUnary) 633 return isVMerge(N, UnitSize, 8, 24); 634 return isVMerge(N, UnitSize, 8, 8); 635 } 636 637 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 638 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 639 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 640 bool isUnary) { 641 if (!isUnary) 642 return isVMerge(N, UnitSize, 0, 16); 643 return isVMerge(N, UnitSize, 0, 0); 644 } 645 646 647 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 648 /// amount, otherwise return -1. 649 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 650 assert(N->getValueType(0) == MVT::v16i8 && 651 "PPC only supports shuffles by bytes!"); 652 653 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 654 655 // Find the first non-undef value in the shuffle mask. 656 unsigned i; 657 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 658 /*search*/; 659 660 if (i == 16) return -1; // all undef. 661 662 // Otherwise, check to see if the rest of the elements are consecutively 663 // numbered from this value. 664 unsigned ShiftAmt = SVOp->getMaskElt(i); 665 if (ShiftAmt < i) return -1; 666 ShiftAmt -= i; 667 668 if (!isUnary) { 669 // Check the rest of the elements to see if they are consecutive. 670 for (++i; i != 16; ++i) 671 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 672 return -1; 673 } else { 674 // Check the rest of the elements to see if they are consecutive. 675 for (++i; i != 16; ++i) 676 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 677 return -1; 678 } 679 return ShiftAmt; 680 } 681 682 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 683 /// specifies a splat of a single element that is suitable for input to 684 /// VSPLTB/VSPLTH/VSPLTW. 685 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 686 assert(N->getValueType(0) == MVT::v16i8 && 687 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 688 689 // This is a splat operation if each element of the permute is the same, and 690 // if the value doesn't reference the second vector. 691 unsigned ElementBase = N->getMaskElt(0); 692 693 // FIXME: Handle UNDEF elements too! 694 if (ElementBase >= 16) 695 return false; 696 697 // Check that the indices are consecutive, in the case of a multi-byte element 698 // splatted with a v16i8 mask. 699 for (unsigned i = 1; i != EltSize; ++i) 700 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 701 return false; 702 703 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 704 if (N->getMaskElt(i) < 0) continue; 705 for (unsigned j = 0; j != EltSize; ++j) 706 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 707 return false; 708 } 709 return true; 710 } 711 712 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 713 /// are -0.0. 714 bool PPC::isAllNegativeZeroVector(SDNode *N) { 715 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 716 717 APInt APVal, APUndef; 718 unsigned BitSize; 719 bool HasAnyUndefs; 720 721 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 722 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 723 return CFP->getValueAPF().isNegZero(); 724 725 return false; 726 } 727 728 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 729 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 730 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 731 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 732 assert(isSplatShuffleMask(SVOp, EltSize)); 733 return SVOp->getMaskElt(0) / EltSize; 734 } 735 736 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 737 /// by using a vspltis[bhw] instruction of the specified element size, return 738 /// the constant being splatted. The ByteSize field indicates the number of 739 /// bytes of each element [124] -> [bhw]. 740 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 741 SDValue OpVal(0, 0); 742 743 // If ByteSize of the splat is bigger than the element size of the 744 // build_vector, then we have a case where we are checking for a splat where 745 // multiple elements of the buildvector are folded together into a single 746 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 747 unsigned EltSize = 16/N->getNumOperands(); 748 if (EltSize < ByteSize) { 749 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 750 SDValue UniquedVals[4]; 751 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 752 753 // See if all of the elements in the buildvector agree across. 754 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 755 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 756 // If the element isn't a constant, bail fully out. 757 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 758 759 760 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 761 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 762 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 763 return SDValue(); // no match. 764 } 765 766 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 767 // either constant or undef values that are identical for each chunk. See 768 // if these chunks can form into a larger vspltis*. 769 770 // Check to see if all of the leading entries are either 0 or -1. If 771 // neither, then this won't fit into the immediate field. 772 bool LeadingZero = true; 773 bool LeadingOnes = true; 774 for (unsigned i = 0; i != Multiple-1; ++i) { 775 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 776 777 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 778 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 779 } 780 // Finally, check the least significant entry. 781 if (LeadingZero) { 782 if (UniquedVals[Multiple-1].getNode() == 0) 783 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 784 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 785 if (Val < 16) 786 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 787 } 788 if (LeadingOnes) { 789 if (UniquedVals[Multiple-1].getNode() == 0) 790 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 791 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 792 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 793 return DAG.getTargetConstant(Val, MVT::i32); 794 } 795 796 return SDValue(); 797 } 798 799 // Check to see if this buildvec has a single non-undef value in its elements. 800 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 801 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 802 if (OpVal.getNode() == 0) 803 OpVal = N->getOperand(i); 804 else if (OpVal != N->getOperand(i)) 805 return SDValue(); 806 } 807 808 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 809 810 unsigned ValSizeInBytes = EltSize; 811 uint64_t Value = 0; 812 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 813 Value = CN->getZExtValue(); 814 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 815 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 816 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 817 } 818 819 // If the splat value is larger than the element value, then we can never do 820 // this splat. The only case that we could fit the replicated bits into our 821 // immediate field for would be zero, and we prefer to use vxor for it. 822 if (ValSizeInBytes < ByteSize) return SDValue(); 823 824 // If the element value is larger than the splat value, cut it in half and 825 // check to see if the two halves are equal. Continue doing this until we 826 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 827 while (ValSizeInBytes > ByteSize) { 828 ValSizeInBytes >>= 1; 829 830 // If the top half equals the bottom half, we're still ok. 831 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 832 (Value & ((1 << (8*ValSizeInBytes))-1))) 833 return SDValue(); 834 } 835 836 // Properly sign extend the value. 837 int MaskVal = SignExtend32(Value, ByteSize * 8); 838 839 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 840 if (MaskVal == 0) return SDValue(); 841 842 // Finally, if this value fits in a 5 bit sext field, return it 843 if (SignExtend32<5>(MaskVal) == MaskVal) 844 return DAG.getTargetConstant(MaskVal, MVT::i32); 845 return SDValue(); 846 } 847 848 //===----------------------------------------------------------------------===// 849 // Addressing Mode Selection 850 //===----------------------------------------------------------------------===// 851 852 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 853 /// or 64-bit immediate, and if the value can be accurately represented as a 854 /// sign extension from a 16-bit value. If so, this returns true and the 855 /// immediate. 856 static bool isIntS16Immediate(SDNode *N, short &Imm) { 857 if (N->getOpcode() != ISD::Constant) 858 return false; 859 860 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 861 if (N->getValueType(0) == MVT::i32) 862 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 863 else 864 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 865 } 866 static bool isIntS16Immediate(SDValue Op, short &Imm) { 867 return isIntS16Immediate(Op.getNode(), Imm); 868 } 869 870 871 /// SelectAddressRegReg - Given the specified addressed, check to see if it 872 /// can be represented as an indexed [r+r] operation. Returns false if it 873 /// can be more efficiently represented with [r+imm]. 874 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 875 SDValue &Index, 876 SelectionDAG &DAG) const { 877 short imm = 0; 878 if (N.getOpcode() == ISD::ADD) { 879 if (isIntS16Immediate(N.getOperand(1), imm)) 880 return false; // r+i 881 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 882 return false; // r+i 883 884 Base = N.getOperand(0); 885 Index = N.getOperand(1); 886 return true; 887 } else if (N.getOpcode() == ISD::OR) { 888 if (isIntS16Immediate(N.getOperand(1), imm)) 889 return false; // r+i can fold it if we can. 890 891 // If this is an or of disjoint bitfields, we can codegen this as an add 892 // (for better address arithmetic) if the LHS and RHS of the OR are provably 893 // disjoint. 894 APInt LHSKnownZero, LHSKnownOne; 895 APInt RHSKnownZero, RHSKnownOne; 896 DAG.ComputeMaskedBits(N.getOperand(0), 897 LHSKnownZero, LHSKnownOne); 898 899 if (LHSKnownZero.getBoolValue()) { 900 DAG.ComputeMaskedBits(N.getOperand(1), 901 RHSKnownZero, RHSKnownOne); 902 // If all of the bits are known zero on the LHS or RHS, the add won't 903 // carry. 904 if (~(LHSKnownZero | RHSKnownZero) == 0) { 905 Base = N.getOperand(0); 906 Index = N.getOperand(1); 907 return true; 908 } 909 } 910 } 911 912 return false; 913 } 914 915 /// Returns true if the address N can be represented by a base register plus 916 /// a signed 16-bit displacement [r+imm], and if it is not better 917 /// represented as reg+reg. 918 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 919 SDValue &Base, 920 SelectionDAG &DAG) const { 921 // FIXME dl should come from parent load or store, not from address 922 DebugLoc dl = N.getDebugLoc(); 923 // If this can be more profitably realized as r+r, fail. 924 if (SelectAddressRegReg(N, Disp, Base, DAG)) 925 return false; 926 927 if (N.getOpcode() == ISD::ADD) { 928 short imm = 0; 929 if (isIntS16Immediate(N.getOperand(1), imm)) { 930 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 931 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 932 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 933 } else { 934 Base = N.getOperand(0); 935 } 936 return true; // [r+i] 937 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 938 // Match LOAD (ADD (X, Lo(G))). 939 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 940 && "Cannot handle constant offsets yet!"); 941 Disp = N.getOperand(1).getOperand(0); // The global address. 942 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 943 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 944 Disp.getOpcode() == ISD::TargetConstantPool || 945 Disp.getOpcode() == ISD::TargetJumpTable); 946 Base = N.getOperand(0); 947 return true; // [&g+r] 948 } 949 } else if (N.getOpcode() == ISD::OR) { 950 short imm = 0; 951 if (isIntS16Immediate(N.getOperand(1), imm)) { 952 // If this is an or of disjoint bitfields, we can codegen this as an add 953 // (for better address arithmetic) if the LHS and RHS of the OR are 954 // provably disjoint. 955 APInt LHSKnownZero, LHSKnownOne; 956 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 957 958 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 959 // If all of the bits are known zero on the LHS or RHS, the add won't 960 // carry. 961 Base = N.getOperand(0); 962 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 963 return true; 964 } 965 } 966 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 967 // Loading from a constant address. 968 969 // If this address fits entirely in a 16-bit sext immediate field, codegen 970 // this as "d, 0" 971 short Imm; 972 if (isIntS16Immediate(CN, Imm)) { 973 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 974 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 975 CN->getValueType(0)); 976 return true; 977 } 978 979 // Handle 32-bit sext immediates with LIS + addr mode. 980 if (CN->getValueType(0) == MVT::i32 || 981 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 982 int Addr = (int)CN->getZExtValue(); 983 984 // Otherwise, break this down into an LIS + disp. 985 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 986 987 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 988 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 989 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 990 return true; 991 } 992 } 993 994 Disp = DAG.getTargetConstant(0, getPointerTy()); 995 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 996 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 997 else 998 Base = N; 999 return true; // [r+0] 1000 } 1001 1002 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1003 /// represented as an indexed [r+r] operation. 1004 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1005 SDValue &Index, 1006 SelectionDAG &DAG) const { 1007 // Check to see if we can easily represent this as an [r+r] address. This 1008 // will fail if it thinks that the address is more profitably represented as 1009 // reg+imm, e.g. where imm = 0. 1010 if (SelectAddressRegReg(N, Base, Index, DAG)) 1011 return true; 1012 1013 // If the operand is an addition, always emit this as [r+r], since this is 1014 // better (for code size, and execution, as the memop does the add for free) 1015 // than emitting an explicit add. 1016 if (N.getOpcode() == ISD::ADD) { 1017 Base = N.getOperand(0); 1018 Index = N.getOperand(1); 1019 return true; 1020 } 1021 1022 // Otherwise, do it the hard way, using R0 as the base register. 1023 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1024 N.getValueType()); 1025 Index = N; 1026 return true; 1027 } 1028 1029 /// SelectAddressRegImmShift - Returns true if the address N can be 1030 /// represented by a base register plus a signed 14-bit displacement 1031 /// [r+imm*4]. Suitable for use by STD and friends. 1032 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 1033 SDValue &Base, 1034 SelectionDAG &DAG) const { 1035 // FIXME dl should come from the parent load or store, not the address 1036 DebugLoc dl = N.getDebugLoc(); 1037 // If this can be more profitably realized as r+r, fail. 1038 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1039 return false; 1040 1041 if (N.getOpcode() == ISD::ADD) { 1042 short imm = 0; 1043 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1044 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1045 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1046 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1047 } else { 1048 Base = N.getOperand(0); 1049 } 1050 return true; // [r+i] 1051 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1052 // Match LOAD (ADD (X, Lo(G))). 1053 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1054 && "Cannot handle constant offsets yet!"); 1055 Disp = N.getOperand(1).getOperand(0); // The global address. 1056 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1057 Disp.getOpcode() == ISD::TargetConstantPool || 1058 Disp.getOpcode() == ISD::TargetJumpTable); 1059 Base = N.getOperand(0); 1060 return true; // [&g+r] 1061 } 1062 } else if (N.getOpcode() == ISD::OR) { 1063 short imm = 0; 1064 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1065 // If this is an or of disjoint bitfields, we can codegen this as an add 1066 // (for better address arithmetic) if the LHS and RHS of the OR are 1067 // provably disjoint. 1068 APInt LHSKnownZero, LHSKnownOne; 1069 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1070 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1071 // If all of the bits are known zero on the LHS or RHS, the add won't 1072 // carry. 1073 Base = N.getOperand(0); 1074 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1075 return true; 1076 } 1077 } 1078 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1079 // Loading from a constant address. Verify low two bits are clear. 1080 if ((CN->getZExtValue() & 3) == 0) { 1081 // If this address fits entirely in a 14-bit sext immediate field, codegen 1082 // this as "d, 0" 1083 short Imm; 1084 if (isIntS16Immediate(CN, Imm)) { 1085 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1086 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1087 CN->getValueType(0)); 1088 return true; 1089 } 1090 1091 // Fold the low-part of 32-bit absolute addresses into addr mode. 1092 if (CN->getValueType(0) == MVT::i32 || 1093 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1094 int Addr = (int)CN->getZExtValue(); 1095 1096 // Otherwise, break this down into an LIS + disp. 1097 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1098 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1099 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1100 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1101 return true; 1102 } 1103 } 1104 } 1105 1106 Disp = DAG.getTargetConstant(0, getPointerTy()); 1107 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1108 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1109 else 1110 Base = N; 1111 return true; // [r+0] 1112 } 1113 1114 1115 /// getPreIndexedAddressParts - returns true by value, base pointer and 1116 /// offset pointer and addressing mode by reference if the node's address 1117 /// can be legally represented as pre-indexed load / store address. 1118 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1119 SDValue &Offset, 1120 ISD::MemIndexedMode &AM, 1121 SelectionDAG &DAG) const { 1122 if (DisablePPCPreinc) return false; 1123 1124 SDValue Ptr; 1125 EVT VT; 1126 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1127 Ptr = LD->getBasePtr(); 1128 VT = LD->getMemoryVT(); 1129 1130 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1131 Ptr = ST->getBasePtr(); 1132 VT = ST->getMemoryVT(); 1133 } else 1134 return false; 1135 1136 // PowerPC doesn't have preinc load/store instructions for vectors. 1137 if (VT.isVector()) 1138 return false; 1139 1140 if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) { 1141 AM = ISD::PRE_INC; 1142 return true; 1143 } 1144 1145 // LDU/STU use reg+imm*4, others use reg+imm. 1146 if (VT != MVT::i64) { 1147 // reg + imm 1148 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1149 return false; 1150 } else { 1151 // reg + imm * 4. 1152 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1153 return false; 1154 } 1155 1156 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1157 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1158 // sext i32 to i64 when addr mode is r+i. 1159 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1160 LD->getExtensionType() == ISD::SEXTLOAD && 1161 isa<ConstantSDNode>(Offset)) 1162 return false; 1163 } 1164 1165 AM = ISD::PRE_INC; 1166 return true; 1167 } 1168 1169 //===----------------------------------------------------------------------===// 1170 // LowerOperation implementation 1171 //===----------------------------------------------------------------------===// 1172 1173 /// GetLabelAccessInfo - Return true if we should reference labels using a 1174 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1175 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1176 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1177 HiOpFlags = PPCII::MO_HA16; 1178 LoOpFlags = PPCII::MO_LO16; 1179 1180 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1181 // non-darwin platform. We don't support PIC on other platforms yet. 1182 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1183 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1184 if (isPIC) { 1185 HiOpFlags |= PPCII::MO_PIC_FLAG; 1186 LoOpFlags |= PPCII::MO_PIC_FLAG; 1187 } 1188 1189 // If this is a reference to a global value that requires a non-lazy-ptr, make 1190 // sure that instruction lowering adds it. 1191 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1192 HiOpFlags |= PPCII::MO_NLP_FLAG; 1193 LoOpFlags |= PPCII::MO_NLP_FLAG; 1194 1195 if (GV->hasHiddenVisibility()) { 1196 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1197 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1198 } 1199 } 1200 1201 return isPIC; 1202 } 1203 1204 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1205 SelectionDAG &DAG) { 1206 EVT PtrVT = HiPart.getValueType(); 1207 SDValue Zero = DAG.getConstant(0, PtrVT); 1208 DebugLoc DL = HiPart.getDebugLoc(); 1209 1210 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1211 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1212 1213 // With PIC, the first instruction is actually "GR+hi(&G)". 1214 if (isPIC) 1215 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1216 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1217 1218 // Generate non-pic code that has direct accesses to the constant pool. 1219 // The address of the global is just (hi(&g)+lo(&g)). 1220 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1221 } 1222 1223 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 EVT PtrVT = Op.getValueType(); 1226 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1227 const Constant *C = CP->getConstVal(); 1228 1229 // 64-bit SVR4 ABI code is always position-independent. 1230 // The actual address of the GlobalValue is stored in the TOC. 1231 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1232 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 1233 return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA, 1234 DAG.getRegister(PPC::X2, MVT::i64)); 1235 } 1236 1237 unsigned MOHiFlag, MOLoFlag; 1238 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1239 SDValue CPIHi = 1240 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1241 SDValue CPILo = 1242 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1243 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1244 } 1245 1246 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1247 EVT PtrVT = Op.getValueType(); 1248 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1249 1250 // 64-bit SVR4 ABI code is always position-independent. 1251 // The actual address of the GlobalValue is stored in the TOC. 1252 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1253 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1254 return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA, 1255 DAG.getRegister(PPC::X2, MVT::i64)); 1256 } 1257 1258 unsigned MOHiFlag, MOLoFlag; 1259 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1260 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1261 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1262 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1263 } 1264 1265 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1266 SelectionDAG &DAG) const { 1267 EVT PtrVT = Op.getValueType(); 1268 1269 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1270 1271 unsigned MOHiFlag, MOLoFlag; 1272 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1273 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 1274 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 1275 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1276 } 1277 1278 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 1281 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1282 DebugLoc dl = GA->getDebugLoc(); 1283 const GlobalValue *GV = GA->getGlobal(); 1284 EVT PtrVT = getPointerTy(); 1285 bool is64bit = PPCSubTarget.isPPC64(); 1286 1287 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 1288 1289 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1290 PPCII::MO_TPREL16_HA); 1291 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1292 PPCII::MO_TPREL16_LO); 1293 1294 if (model != TLSModel::LocalExec) 1295 llvm_unreachable("only local-exec TLS mode supported"); 1296 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 1297 is64bit ? MVT::i64 : MVT::i32); 1298 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 1299 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 1300 } 1301 1302 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1303 SelectionDAG &DAG) const { 1304 EVT PtrVT = Op.getValueType(); 1305 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1306 DebugLoc DL = GSDN->getDebugLoc(); 1307 const GlobalValue *GV = GSDN->getGlobal(); 1308 1309 // 64-bit SVR4 ABI code is always position-independent. 1310 // The actual address of the GlobalValue is stored in the TOC. 1311 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1312 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1313 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1314 DAG.getRegister(PPC::X2, MVT::i64)); 1315 } 1316 1317 unsigned MOHiFlag, MOLoFlag; 1318 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1319 1320 SDValue GAHi = 1321 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1322 SDValue GALo = 1323 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1324 1325 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1326 1327 // If the global reference is actually to a non-lazy-pointer, we have to do an 1328 // extra load to get the address of the global. 1329 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1330 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1331 false, false, false, 0); 1332 return Ptr; 1333 } 1334 1335 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1336 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1337 DebugLoc dl = Op.getDebugLoc(); 1338 1339 // If we're comparing for equality to zero, expose the fact that this is 1340 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1341 // fold the new nodes. 1342 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1343 if (C->isNullValue() && CC == ISD::SETEQ) { 1344 EVT VT = Op.getOperand(0).getValueType(); 1345 SDValue Zext = Op.getOperand(0); 1346 if (VT.bitsLT(MVT::i32)) { 1347 VT = MVT::i32; 1348 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1349 } 1350 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1351 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1352 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1353 DAG.getConstant(Log2b, MVT::i32)); 1354 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1355 } 1356 // Leave comparisons against 0 and -1 alone for now, since they're usually 1357 // optimized. FIXME: revisit this when we can custom lower all setcc 1358 // optimizations. 1359 if (C->isAllOnesValue() || C->isNullValue()) 1360 return SDValue(); 1361 } 1362 1363 // If we have an integer seteq/setne, turn it into a compare against zero 1364 // by xor'ing the rhs with the lhs, which is faster than setting a 1365 // condition register, reading it back out, and masking the correct bit. The 1366 // normal approach here uses sub to do this instead of xor. Using xor exposes 1367 // the result to other bit-twiddling opportunities. 1368 EVT LHSVT = Op.getOperand(0).getValueType(); 1369 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1370 EVT VT = Op.getValueType(); 1371 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1372 Op.getOperand(1)); 1373 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1374 } 1375 return SDValue(); 1376 } 1377 1378 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1379 const PPCSubtarget &Subtarget) const { 1380 SDNode *Node = Op.getNode(); 1381 EVT VT = Node->getValueType(0); 1382 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1383 SDValue InChain = Node->getOperand(0); 1384 SDValue VAListPtr = Node->getOperand(1); 1385 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1386 DebugLoc dl = Node->getDebugLoc(); 1387 1388 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1389 1390 // gpr_index 1391 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1392 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1393 false, false, 0); 1394 InChain = GprIndex.getValue(1); 1395 1396 if (VT == MVT::i64) { 1397 // Check if GprIndex is even 1398 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1399 DAG.getConstant(1, MVT::i32)); 1400 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1401 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1402 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1403 DAG.getConstant(1, MVT::i32)); 1404 // Align GprIndex to be even if it isn't 1405 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1406 GprIndex); 1407 } 1408 1409 // fpr index is 1 byte after gpr 1410 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1411 DAG.getConstant(1, MVT::i32)); 1412 1413 // fpr 1414 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1415 FprPtr, MachinePointerInfo(SV), MVT::i8, 1416 false, false, 0); 1417 InChain = FprIndex.getValue(1); 1418 1419 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1420 DAG.getConstant(8, MVT::i32)); 1421 1422 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1423 DAG.getConstant(4, MVT::i32)); 1424 1425 // areas 1426 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1427 MachinePointerInfo(), false, false, 1428 false, 0); 1429 InChain = OverflowArea.getValue(1); 1430 1431 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1432 MachinePointerInfo(), false, false, 1433 false, 0); 1434 InChain = RegSaveArea.getValue(1); 1435 1436 // select overflow_area if index > 8 1437 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1438 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1439 1440 // adjustment constant gpr_index * 4/8 1441 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1442 VT.isInteger() ? GprIndex : FprIndex, 1443 DAG.getConstant(VT.isInteger() ? 4 : 8, 1444 MVT::i32)); 1445 1446 // OurReg = RegSaveArea + RegConstant 1447 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1448 RegConstant); 1449 1450 // Floating types are 32 bytes into RegSaveArea 1451 if (VT.isFloatingPoint()) 1452 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1453 DAG.getConstant(32, MVT::i32)); 1454 1455 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1456 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1457 VT.isInteger() ? GprIndex : FprIndex, 1458 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1459 MVT::i32)); 1460 1461 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1462 VT.isInteger() ? VAListPtr : FprPtr, 1463 MachinePointerInfo(SV), 1464 MVT::i8, false, false, 0); 1465 1466 // determine if we should load from reg_save_area or overflow_area 1467 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1468 1469 // increase overflow_area by 4/8 if gpr/fpr > 8 1470 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1471 DAG.getConstant(VT.isInteger() ? 4 : 8, 1472 MVT::i32)); 1473 1474 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1475 OverflowAreaPlusN); 1476 1477 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1478 OverflowAreaPtr, 1479 MachinePointerInfo(), 1480 MVT::i32, false, false, 0); 1481 1482 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1483 false, false, false, 0); 1484 } 1485 1486 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1487 SelectionDAG &DAG) const { 1488 return Op.getOperand(0); 1489 } 1490 1491 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1492 SelectionDAG &DAG) const { 1493 SDValue Chain = Op.getOperand(0); 1494 SDValue Trmp = Op.getOperand(1); // trampoline 1495 SDValue FPtr = Op.getOperand(2); // nested function 1496 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1497 DebugLoc dl = Op.getDebugLoc(); 1498 1499 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1500 bool isPPC64 = (PtrVT == MVT::i64); 1501 Type *IntPtrTy = 1502 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( 1503 *DAG.getContext()); 1504 1505 TargetLowering::ArgListTy Args; 1506 TargetLowering::ArgListEntry Entry; 1507 1508 Entry.Ty = IntPtrTy; 1509 Entry.Node = Trmp; Args.push_back(Entry); 1510 1511 // TrampSize == (isPPC64 ? 48 : 40); 1512 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1513 isPPC64 ? MVT::i64 : MVT::i32); 1514 Args.push_back(Entry); 1515 1516 Entry.Node = FPtr; Args.push_back(Entry); 1517 Entry.Node = Nest; Args.push_back(Entry); 1518 1519 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1520 TargetLowering::CallLoweringInfo CLI(Chain, 1521 Type::getVoidTy(*DAG.getContext()), 1522 false, false, false, false, 0, 1523 CallingConv::C, 1524 /*isTailCall=*/false, 1525 /*doesNotRet=*/false, 1526 /*isReturnValueUsed=*/true, 1527 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1528 Args, DAG, dl); 1529 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 1530 1531 return CallResult.second; 1532 } 1533 1534 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1535 const PPCSubtarget &Subtarget) const { 1536 MachineFunction &MF = DAG.getMachineFunction(); 1537 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1538 1539 DebugLoc dl = Op.getDebugLoc(); 1540 1541 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1542 // vastart just stores the address of the VarArgsFrameIndex slot into the 1543 // memory location argument. 1544 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1545 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1546 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1547 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1548 MachinePointerInfo(SV), 1549 false, false, 0); 1550 } 1551 1552 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1553 // We suppose the given va_list is already allocated. 1554 // 1555 // typedef struct { 1556 // char gpr; /* index into the array of 8 GPRs 1557 // * stored in the register save area 1558 // * gpr=0 corresponds to r3, 1559 // * gpr=1 to r4, etc. 1560 // */ 1561 // char fpr; /* index into the array of 8 FPRs 1562 // * stored in the register save area 1563 // * fpr=0 corresponds to f1, 1564 // * fpr=1 to f2, etc. 1565 // */ 1566 // char *overflow_arg_area; 1567 // /* location on stack that holds 1568 // * the next overflow argument 1569 // */ 1570 // char *reg_save_area; 1571 // /* where r3:r10 and f1:f8 (if saved) 1572 // * are stored 1573 // */ 1574 // } va_list[1]; 1575 1576 1577 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1578 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1579 1580 1581 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1582 1583 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1584 PtrVT); 1585 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1586 PtrVT); 1587 1588 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1589 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1590 1591 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1592 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1593 1594 uint64_t FPROffset = 1; 1595 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1596 1597 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1598 1599 // Store first byte : number of int regs 1600 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1601 Op.getOperand(1), 1602 MachinePointerInfo(SV), 1603 MVT::i8, false, false, 0); 1604 uint64_t nextOffset = FPROffset; 1605 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1606 ConstFPROffset); 1607 1608 // Store second byte : number of float regs 1609 SDValue secondStore = 1610 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1611 MachinePointerInfo(SV, nextOffset), MVT::i8, 1612 false, false, 0); 1613 nextOffset += StackOffset; 1614 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1615 1616 // Store second word : arguments given on stack 1617 SDValue thirdStore = 1618 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1619 MachinePointerInfo(SV, nextOffset), 1620 false, false, 0); 1621 nextOffset += FrameOffset; 1622 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1623 1624 // Store third word : arguments given in registers 1625 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1626 MachinePointerInfo(SV, nextOffset), 1627 false, false, 0); 1628 1629 } 1630 1631 #include "PPCGenCallingConv.inc" 1632 1633 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1634 CCValAssign::LocInfo &LocInfo, 1635 ISD::ArgFlagsTy &ArgFlags, 1636 CCState &State) { 1637 return true; 1638 } 1639 1640 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1641 MVT &LocVT, 1642 CCValAssign::LocInfo &LocInfo, 1643 ISD::ArgFlagsTy &ArgFlags, 1644 CCState &State) { 1645 static const uint16_t ArgRegs[] = { 1646 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1647 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1648 }; 1649 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1650 1651 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1652 1653 // Skip one register if the first unallocated register has an even register 1654 // number and there are still argument registers available which have not been 1655 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1656 // need to skip a register if RegNum is odd. 1657 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1658 State.AllocateReg(ArgRegs[RegNum]); 1659 } 1660 1661 // Always return false here, as this function only makes sure that the first 1662 // unallocated register has an odd register number and does not actually 1663 // allocate a register for the current argument. 1664 return false; 1665 } 1666 1667 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1668 MVT &LocVT, 1669 CCValAssign::LocInfo &LocInfo, 1670 ISD::ArgFlagsTy &ArgFlags, 1671 CCState &State) { 1672 static const uint16_t ArgRegs[] = { 1673 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1674 PPC::F8 1675 }; 1676 1677 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1678 1679 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1680 1681 // If there is only one Floating-point register left we need to put both f64 1682 // values of a split ppc_fp128 value on the stack. 1683 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1684 State.AllocateReg(ArgRegs[RegNum]); 1685 } 1686 1687 // Always return false here, as this function only makes sure that the two f64 1688 // values a ppc_fp128 value is split into are both passed in registers or both 1689 // passed on the stack and does not actually allocate a register for the 1690 // current argument. 1691 return false; 1692 } 1693 1694 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1695 /// on Darwin. 1696 static const uint16_t *GetFPR() { 1697 static const uint16_t FPR[] = { 1698 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1699 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1700 }; 1701 1702 return FPR; 1703 } 1704 1705 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1706 /// the stack. 1707 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1708 unsigned PtrByteSize) { 1709 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1710 if (Flags.isByVal()) 1711 ArgSize = Flags.getByValSize(); 1712 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1713 1714 return ArgSize; 1715 } 1716 1717 SDValue 1718 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1719 CallingConv::ID CallConv, bool isVarArg, 1720 const SmallVectorImpl<ISD::InputArg> 1721 &Ins, 1722 DebugLoc dl, SelectionDAG &DAG, 1723 SmallVectorImpl<SDValue> &InVals) 1724 const { 1725 if (PPCSubTarget.isSVR4ABI()) { 1726 if (PPCSubTarget.isPPC64()) 1727 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 1728 dl, DAG, InVals); 1729 else 1730 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 1731 dl, DAG, InVals); 1732 } else { 1733 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1734 dl, DAG, InVals); 1735 } 1736 } 1737 1738 SDValue 1739 PPCTargetLowering::LowerFormalArguments_32SVR4( 1740 SDValue Chain, 1741 CallingConv::ID CallConv, bool isVarArg, 1742 const SmallVectorImpl<ISD::InputArg> 1743 &Ins, 1744 DebugLoc dl, SelectionDAG &DAG, 1745 SmallVectorImpl<SDValue> &InVals) const { 1746 1747 // 32-bit SVR4 ABI Stack Frame Layout: 1748 // +-----------------------------------+ 1749 // +--> | Back chain | 1750 // | +-----------------------------------+ 1751 // | | Floating-point register save area | 1752 // | +-----------------------------------+ 1753 // | | General register save area | 1754 // | +-----------------------------------+ 1755 // | | CR save word | 1756 // | +-----------------------------------+ 1757 // | | VRSAVE save word | 1758 // | +-----------------------------------+ 1759 // | | Alignment padding | 1760 // | +-----------------------------------+ 1761 // | | Vector register save area | 1762 // | +-----------------------------------+ 1763 // | | Local variable space | 1764 // | +-----------------------------------+ 1765 // | | Parameter list area | 1766 // | +-----------------------------------+ 1767 // | | LR save word | 1768 // | +-----------------------------------+ 1769 // SP--> +--- | Back chain | 1770 // +-----------------------------------+ 1771 // 1772 // Specifications: 1773 // System V Application Binary Interface PowerPC Processor Supplement 1774 // AltiVec Technology Programming Interface Manual 1775 1776 MachineFunction &MF = DAG.getMachineFunction(); 1777 MachineFrameInfo *MFI = MF.getFrameInfo(); 1778 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1779 1780 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1781 // Potential tail calls could cause overwriting of argument stack slots. 1782 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1783 (CallConv == CallingConv::Fast)); 1784 unsigned PtrByteSize = 4; 1785 1786 // Assign locations to all of the incoming arguments. 1787 SmallVector<CCValAssign, 16> ArgLocs; 1788 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1789 getTargetMachine(), ArgLocs, *DAG.getContext()); 1790 1791 // Reserve space for the linkage area on the stack. 1792 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1793 1794 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1795 1796 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1797 CCValAssign &VA = ArgLocs[i]; 1798 1799 // Arguments stored in registers. 1800 if (VA.isRegLoc()) { 1801 const TargetRegisterClass *RC; 1802 EVT ValVT = VA.getValVT(); 1803 1804 switch (ValVT.getSimpleVT().SimpleTy) { 1805 default: 1806 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1807 case MVT::i32: 1808 RC = &PPC::GPRCRegClass; 1809 break; 1810 case MVT::f32: 1811 RC = &PPC::F4RCRegClass; 1812 break; 1813 case MVT::f64: 1814 RC = &PPC::F8RCRegClass; 1815 break; 1816 case MVT::v16i8: 1817 case MVT::v8i16: 1818 case MVT::v4i32: 1819 case MVT::v4f32: 1820 RC = &PPC::VRRCRegClass; 1821 break; 1822 } 1823 1824 // Transform the arguments stored in physical registers into virtual ones. 1825 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1826 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1827 1828 InVals.push_back(ArgValue); 1829 } else { 1830 // Argument stored in memory. 1831 assert(VA.isMemLoc()); 1832 1833 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1834 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1835 isImmutable); 1836 1837 // Create load nodes to retrieve arguments from the stack. 1838 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1839 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1840 MachinePointerInfo(), 1841 false, false, false, 0)); 1842 } 1843 } 1844 1845 // Assign locations to all of the incoming aggregate by value arguments. 1846 // Aggregates passed by value are stored in the local variable space of the 1847 // caller's stack frame, right above the parameter list area. 1848 SmallVector<CCValAssign, 16> ByValArgLocs; 1849 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1850 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1851 1852 // Reserve stack space for the allocations in CCInfo. 1853 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1854 1855 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1856 1857 // Area that is at least reserved in the caller of this function. 1858 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1859 1860 // Set the size that is at least reserved in caller of this function. Tail 1861 // call optimized function's reserved stack space needs to be aligned so that 1862 // taking the difference between two stack areas will result in an aligned 1863 // stack. 1864 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1865 1866 MinReservedArea = 1867 std::max(MinReservedArea, 1868 PPCFrameLowering::getMinCallFrameSize(false, false)); 1869 1870 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1871 getStackAlignment(); 1872 unsigned AlignMask = TargetAlign-1; 1873 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1874 1875 FI->setMinReservedArea(MinReservedArea); 1876 1877 SmallVector<SDValue, 8> MemOps; 1878 1879 // If the function takes variable number of arguments, make a frame index for 1880 // the start of the first vararg value... for expansion of llvm.va_start. 1881 if (isVarArg) { 1882 static const uint16_t GPArgRegs[] = { 1883 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1884 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1885 }; 1886 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1887 1888 static const uint16_t FPArgRegs[] = { 1889 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1890 PPC::F8 1891 }; 1892 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1893 1894 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1895 NumGPArgRegs)); 1896 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1897 NumFPArgRegs)); 1898 1899 // Make room for NumGPArgRegs and NumFPArgRegs. 1900 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1901 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1902 1903 FuncInfo->setVarArgsStackOffset( 1904 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1905 CCInfo.getNextStackOffset(), true)); 1906 1907 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1908 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1909 1910 // The fixed integer arguments of a variadic function are stored to the 1911 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1912 // the result of va_next. 1913 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1914 // Get an existing live-in vreg, or add a new one. 1915 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1916 if (!VReg) 1917 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1918 1919 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1920 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1921 MachinePointerInfo(), false, false, 0); 1922 MemOps.push_back(Store); 1923 // Increment the address by four for the next argument to store 1924 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1925 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1926 } 1927 1928 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1929 // is set. 1930 // The double arguments are stored to the VarArgsFrameIndex 1931 // on the stack. 1932 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1933 // Get an existing live-in vreg, or add a new one. 1934 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1935 if (!VReg) 1936 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1937 1938 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1939 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1940 MachinePointerInfo(), false, false, 0); 1941 MemOps.push_back(Store); 1942 // Increment the address by eight for the next argument to store 1943 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1944 PtrVT); 1945 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1946 } 1947 } 1948 1949 if (!MemOps.empty()) 1950 Chain = DAG.getNode(ISD::TokenFactor, dl, 1951 MVT::Other, &MemOps[0], MemOps.size()); 1952 1953 return Chain; 1954 } 1955 1956 SDValue 1957 PPCTargetLowering::LowerFormalArguments_64SVR4( 1958 SDValue Chain, 1959 CallingConv::ID CallConv, bool isVarArg, 1960 const SmallVectorImpl<ISD::InputArg> 1961 &Ins, 1962 DebugLoc dl, SelectionDAG &DAG, 1963 SmallVectorImpl<SDValue> &InVals) const { 1964 // TODO: add description of PPC stack frame format, or at least some docs. 1965 // 1966 MachineFunction &MF = DAG.getMachineFunction(); 1967 MachineFrameInfo *MFI = MF.getFrameInfo(); 1968 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1969 1970 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1971 // Potential tail calls could cause overwriting of argument stack slots. 1972 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1973 (CallConv == CallingConv::Fast)); 1974 unsigned PtrByteSize = 8; 1975 1976 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); 1977 // Area that is at least reserved in caller of this function. 1978 unsigned MinReservedArea = ArgOffset; 1979 1980 static const uint16_t GPR[] = { 1981 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1982 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1983 }; 1984 1985 static const uint16_t *FPR = GetFPR(); 1986 1987 static const uint16_t VR[] = { 1988 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1989 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1990 }; 1991 1992 const unsigned Num_GPR_Regs = array_lengthof(GPR); 1993 const unsigned Num_FPR_Regs = 13; 1994 const unsigned Num_VR_Regs = array_lengthof(VR); 1995 1996 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1997 1998 // Add DAG nodes to load the arguments or copy them out of registers. On 1999 // entry to a function on PPC, the arguments start after the linkage area, 2000 // although the first ones are often in registers. 2001 2002 SmallVector<SDValue, 8> MemOps; 2003 unsigned nAltivecParamsAtEnd = 0; 2004 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 2005 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) { 2006 SDValue ArgVal; 2007 bool needsLoad = false; 2008 EVT ObjectVT = Ins[ArgNo].VT; 2009 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 2010 unsigned ArgSize = ObjSize; 2011 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2012 2013 unsigned CurArgOffset = ArgOffset; 2014 2015 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 2016 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 2017 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 2018 if (isVarArg) { 2019 MinReservedArea = ((MinReservedArea+15)/16)*16; 2020 MinReservedArea += CalculateStackSlotSize(ObjectVT, 2021 Flags, 2022 PtrByteSize); 2023 } else 2024 nAltivecParamsAtEnd++; 2025 } else 2026 // Calculate min reserved area. 2027 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 2028 Flags, 2029 PtrByteSize); 2030 2031 // FIXME the codegen can be much improved in some cases. 2032 // We do not have to keep everything in memory. 2033 if (Flags.isByVal()) { 2034 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2035 ObjSize = Flags.getByValSize(); 2036 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2037 // All aggregates smaller than 8 bytes must be passed right-justified. 2038 if (ObjSize < PtrByteSize) 2039 CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize); 2040 // The value of the object is its address. 2041 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 2042 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2043 InVals.push_back(FIN); 2044 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 2045 if (GPR_idx != Num_GPR_Regs) { 2046 unsigned VReg; 2047 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2048 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2049 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 2050 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 2051 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2052 MachinePointerInfo(FuncArg, 2053 CurArgOffset), 2054 ObjType, false, false, 0); 2055 MemOps.push_back(Store); 2056 ++GPR_idx; 2057 } 2058 2059 ArgOffset += PtrByteSize; 2060 2061 continue; 2062 } 2063 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2064 // Store whatever pieces of the object are in registers 2065 // to memory. ArgOffset will be the address of the beginning 2066 // of the object. 2067 if (GPR_idx != Num_GPR_Regs) { 2068 unsigned VReg; 2069 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2070 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2071 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2072 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2073 SDValue Shifted = Val; 2074 2075 // For 64-bit SVR4, small structs come in right-adjusted. 2076 // Shift them left so the following logic works as expected. 2077 if (ObjSize < 8) { 2078 SDValue ShiftAmt = DAG.getConstant(64 - 8 * ObjSize, PtrVT); 2079 Shifted = DAG.getNode(ISD::SHL, dl, PtrVT, Val, ShiftAmt); 2080 } 2081 2082 SDValue Store = DAG.getStore(Val.getValue(1), dl, Shifted, FIN, 2083 MachinePointerInfo(FuncArg, ArgOffset), 2084 false, false, 0); 2085 MemOps.push_back(Store); 2086 ++GPR_idx; 2087 ArgOffset += PtrByteSize; 2088 } else { 2089 ArgOffset += ArgSize - j; 2090 break; 2091 } 2092 } 2093 continue; 2094 } 2095 2096 switch (ObjectVT.getSimpleVT().SimpleTy) { 2097 default: llvm_unreachable("Unhandled argument type!"); 2098 case MVT::i32: 2099 case MVT::i64: 2100 if (GPR_idx != Num_GPR_Regs) { 2101 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2102 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2103 2104 if (ObjectVT == MVT::i32) { 2105 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2106 // value to MVT::i64 and then truncate to the correct register size. 2107 if (Flags.isSExt()) 2108 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2109 DAG.getValueType(ObjectVT)); 2110 else if (Flags.isZExt()) 2111 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2112 DAG.getValueType(ObjectVT)); 2113 2114 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2115 } 2116 2117 ++GPR_idx; 2118 } else { 2119 needsLoad = true; 2120 ArgSize = PtrByteSize; 2121 } 2122 ArgOffset += 8; 2123 break; 2124 2125 case MVT::f32: 2126 case MVT::f64: 2127 // Every 8 bytes of argument space consumes one of the GPRs available for 2128 // argument passing. 2129 if (GPR_idx != Num_GPR_Regs) { 2130 ++GPR_idx; 2131 } 2132 if (FPR_idx != Num_FPR_Regs) { 2133 unsigned VReg; 2134 2135 if (ObjectVT == MVT::f32) 2136 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2137 else 2138 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2139 2140 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2141 ++FPR_idx; 2142 } else { 2143 needsLoad = true; 2144 ArgSize = PtrByteSize; 2145 } 2146 2147 ArgOffset += 8; 2148 break; 2149 case MVT::v4f32: 2150 case MVT::v4i32: 2151 case MVT::v8i16: 2152 case MVT::v16i8: 2153 // Note that vector arguments in registers don't reserve stack space, 2154 // except in varargs functions. 2155 if (VR_idx != Num_VR_Regs) { 2156 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2157 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2158 if (isVarArg) { 2159 while ((ArgOffset % 16) != 0) { 2160 ArgOffset += PtrByteSize; 2161 if (GPR_idx != Num_GPR_Regs) 2162 GPR_idx++; 2163 } 2164 ArgOffset += 16; 2165 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2166 } 2167 ++VR_idx; 2168 } else { 2169 // Vectors are aligned. 2170 ArgOffset = ((ArgOffset+15)/16)*16; 2171 CurArgOffset = ArgOffset; 2172 ArgOffset += 16; 2173 needsLoad = true; 2174 } 2175 break; 2176 } 2177 2178 // We need to load the argument to a virtual register if we determined 2179 // above that we ran out of physical registers of the appropriate type. 2180 if (needsLoad) { 2181 int FI = MFI->CreateFixedObject(ObjSize, 2182 CurArgOffset + (ArgSize - ObjSize), 2183 isImmutable); 2184 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2185 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2186 false, false, false, 0); 2187 } 2188 2189 InVals.push_back(ArgVal); 2190 } 2191 2192 // Set the size that is at least reserved in caller of this function. Tail 2193 // call optimized function's reserved stack space needs to be aligned so that 2194 // taking the difference between two stack areas will result in an aligned 2195 // stack. 2196 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2197 // Add the Altivec parameters at the end, if needed. 2198 if (nAltivecParamsAtEnd) { 2199 MinReservedArea = ((MinReservedArea+15)/16)*16; 2200 MinReservedArea += 16*nAltivecParamsAtEnd; 2201 } 2202 MinReservedArea = 2203 std::max(MinReservedArea, 2204 PPCFrameLowering::getMinCallFrameSize(true, true)); 2205 unsigned TargetAlign 2206 = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2207 getStackAlignment(); 2208 unsigned AlignMask = TargetAlign-1; 2209 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2210 FI->setMinReservedArea(MinReservedArea); 2211 2212 // If the function takes variable number of arguments, make a frame index for 2213 // the start of the first vararg value... for expansion of llvm.va_start. 2214 if (isVarArg) { 2215 int Depth = ArgOffset; 2216 2217 FuncInfo->setVarArgsFrameIndex( 2218 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2219 Depth, true)); 2220 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2221 2222 // If this function is vararg, store any remaining integer argument regs 2223 // to their spots on the stack so that they may be loaded by deferencing the 2224 // result of va_next. 2225 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2226 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2227 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2228 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2229 MachinePointerInfo(), false, false, 0); 2230 MemOps.push_back(Store); 2231 // Increment the address by four for the next argument to store 2232 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2233 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2234 } 2235 } 2236 2237 if (!MemOps.empty()) 2238 Chain = DAG.getNode(ISD::TokenFactor, dl, 2239 MVT::Other, &MemOps[0], MemOps.size()); 2240 2241 return Chain; 2242 } 2243 2244 SDValue 2245 PPCTargetLowering::LowerFormalArguments_Darwin( 2246 SDValue Chain, 2247 CallingConv::ID CallConv, bool isVarArg, 2248 const SmallVectorImpl<ISD::InputArg> 2249 &Ins, 2250 DebugLoc dl, SelectionDAG &DAG, 2251 SmallVectorImpl<SDValue> &InVals) const { 2252 // TODO: add description of PPC stack frame format, or at least some docs. 2253 // 2254 MachineFunction &MF = DAG.getMachineFunction(); 2255 MachineFrameInfo *MFI = MF.getFrameInfo(); 2256 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2257 2258 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2259 bool isPPC64 = PtrVT == MVT::i64; 2260 // Potential tail calls could cause overwriting of argument stack slots. 2261 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2262 (CallConv == CallingConv::Fast)); 2263 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2264 2265 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 2266 // Area that is at least reserved in caller of this function. 2267 unsigned MinReservedArea = ArgOffset; 2268 2269 static const uint16_t GPR_32[] = { // 32-bit registers. 2270 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2271 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2272 }; 2273 static const uint16_t GPR_64[] = { // 64-bit registers. 2274 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 2275 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 2276 }; 2277 2278 static const uint16_t *FPR = GetFPR(); 2279 2280 static const uint16_t VR[] = { 2281 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 2282 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 2283 }; 2284 2285 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 2286 const unsigned Num_FPR_Regs = 13; 2287 const unsigned Num_VR_Regs = array_lengthof( VR); 2288 2289 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 2290 2291 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 2292 2293 // In 32-bit non-varargs functions, the stack space for vectors is after the 2294 // stack space for non-vectors. We do not use this space unless we have 2295 // too many vectors to fit in registers, something that only occurs in 2296 // constructed examples:), but we have to walk the arglist to figure 2297 // that out...for the pathological case, compute VecArgOffset as the 2298 // start of the vector parameter area. Computing VecArgOffset is the 2299 // entire point of the following loop. 2300 unsigned VecArgOffset = ArgOffset; 2301 if (!isVarArg && !isPPC64) { 2302 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 2303 ++ArgNo) { 2304 EVT ObjectVT = Ins[ArgNo].VT; 2305 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2306 2307 if (Flags.isByVal()) { 2308 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 2309 unsigned ObjSize = Flags.getByValSize(); 2310 unsigned ArgSize = 2311 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2312 VecArgOffset += ArgSize; 2313 continue; 2314 } 2315 2316 switch(ObjectVT.getSimpleVT().SimpleTy) { 2317 default: llvm_unreachable("Unhandled argument type!"); 2318 case MVT::i32: 2319 case MVT::f32: 2320 VecArgOffset += 4; 2321 break; 2322 case MVT::i64: // PPC64 2323 case MVT::f64: 2324 // FIXME: We are guaranteed to be !isPPC64 at this point. 2325 // Does MVT::i64 apply? 2326 VecArgOffset += 8; 2327 break; 2328 case MVT::v4f32: 2329 case MVT::v4i32: 2330 case MVT::v8i16: 2331 case MVT::v16i8: 2332 // Nothing to do, we're only looking at Nonvector args here. 2333 break; 2334 } 2335 } 2336 } 2337 // We've found where the vector parameter area in memory is. Skip the 2338 // first 12 parameters; these don't use that memory. 2339 VecArgOffset = ((VecArgOffset+15)/16)*16; 2340 VecArgOffset += 12*16; 2341 2342 // Add DAG nodes to load the arguments or copy them out of registers. On 2343 // entry to a function on PPC, the arguments start after the linkage area, 2344 // although the first ones are often in registers. 2345 2346 SmallVector<SDValue, 8> MemOps; 2347 unsigned nAltivecParamsAtEnd = 0; 2348 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 2349 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) { 2350 SDValue ArgVal; 2351 bool needsLoad = false; 2352 EVT ObjectVT = Ins[ArgNo].VT; 2353 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 2354 unsigned ArgSize = ObjSize; 2355 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2356 2357 unsigned CurArgOffset = ArgOffset; 2358 2359 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 2360 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 2361 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 2362 if (isVarArg || isPPC64) { 2363 MinReservedArea = ((MinReservedArea+15)/16)*16; 2364 MinReservedArea += CalculateStackSlotSize(ObjectVT, 2365 Flags, 2366 PtrByteSize); 2367 } else nAltivecParamsAtEnd++; 2368 } else 2369 // Calculate min reserved area. 2370 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 2371 Flags, 2372 PtrByteSize); 2373 2374 // FIXME the codegen can be much improved in some cases. 2375 // We do not have to keep everything in memory. 2376 if (Flags.isByVal()) { 2377 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2378 ObjSize = Flags.getByValSize(); 2379 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2380 // Objects of size 1 and 2 are right justified, everything else is 2381 // left justified. This means the memory address is adjusted forwards. 2382 if (ObjSize==1 || ObjSize==2) { 2383 CurArgOffset = CurArgOffset + (4 - ObjSize); 2384 } 2385 // The value of the object is its address. 2386 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 2387 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2388 InVals.push_back(FIN); 2389 if (ObjSize==1 || ObjSize==2) { 2390 if (GPR_idx != Num_GPR_Regs) { 2391 unsigned VReg; 2392 if (isPPC64) 2393 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2394 else 2395 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2396 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2397 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 2398 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 2399 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2400 MachinePointerInfo(FuncArg, 2401 CurArgOffset), 2402 ObjType, false, false, 0); 2403 MemOps.push_back(Store); 2404 ++GPR_idx; 2405 } 2406 2407 ArgOffset += PtrByteSize; 2408 2409 continue; 2410 } 2411 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2412 // Store whatever pieces of the object are in registers 2413 // to memory. ArgOffset will be the address of the beginning 2414 // of the object. 2415 if (GPR_idx != Num_GPR_Regs) { 2416 unsigned VReg; 2417 if (isPPC64) 2418 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2419 else 2420 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2421 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2422 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2423 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2424 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2425 MachinePointerInfo(FuncArg, ArgOffset), 2426 false, false, 0); 2427 MemOps.push_back(Store); 2428 ++GPR_idx; 2429 ArgOffset += PtrByteSize; 2430 } else { 2431 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2432 break; 2433 } 2434 } 2435 continue; 2436 } 2437 2438 switch (ObjectVT.getSimpleVT().SimpleTy) { 2439 default: llvm_unreachable("Unhandled argument type!"); 2440 case MVT::i32: 2441 if (!isPPC64) { 2442 if (GPR_idx != Num_GPR_Regs) { 2443 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2444 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2445 ++GPR_idx; 2446 } else { 2447 needsLoad = true; 2448 ArgSize = PtrByteSize; 2449 } 2450 // All int arguments reserve stack space in the Darwin ABI. 2451 ArgOffset += PtrByteSize; 2452 break; 2453 } 2454 // FALLTHROUGH 2455 case MVT::i64: // PPC64 2456 if (GPR_idx != Num_GPR_Regs) { 2457 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2458 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2459 2460 if (ObjectVT == MVT::i32) { 2461 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2462 // value to MVT::i64 and then truncate to the correct register size. 2463 if (Flags.isSExt()) 2464 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2465 DAG.getValueType(ObjectVT)); 2466 else if (Flags.isZExt()) 2467 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2468 DAG.getValueType(ObjectVT)); 2469 2470 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2471 } 2472 2473 ++GPR_idx; 2474 } else { 2475 needsLoad = true; 2476 ArgSize = PtrByteSize; 2477 } 2478 // All int arguments reserve stack space in the Darwin ABI. 2479 ArgOffset += 8; 2480 break; 2481 2482 case MVT::f32: 2483 case MVT::f64: 2484 // Every 4 bytes of argument space consumes one of the GPRs available for 2485 // argument passing. 2486 if (GPR_idx != Num_GPR_Regs) { 2487 ++GPR_idx; 2488 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2489 ++GPR_idx; 2490 } 2491 if (FPR_idx != Num_FPR_Regs) { 2492 unsigned VReg; 2493 2494 if (ObjectVT == MVT::f32) 2495 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2496 else 2497 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2498 2499 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2500 ++FPR_idx; 2501 } else { 2502 needsLoad = true; 2503 } 2504 2505 // All FP arguments reserve stack space in the Darwin ABI. 2506 ArgOffset += isPPC64 ? 8 : ObjSize; 2507 break; 2508 case MVT::v4f32: 2509 case MVT::v4i32: 2510 case MVT::v8i16: 2511 case MVT::v16i8: 2512 // Note that vector arguments in registers don't reserve stack space, 2513 // except in varargs functions. 2514 if (VR_idx != Num_VR_Regs) { 2515 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2516 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2517 if (isVarArg) { 2518 while ((ArgOffset % 16) != 0) { 2519 ArgOffset += PtrByteSize; 2520 if (GPR_idx != Num_GPR_Regs) 2521 GPR_idx++; 2522 } 2523 ArgOffset += 16; 2524 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2525 } 2526 ++VR_idx; 2527 } else { 2528 if (!isVarArg && !isPPC64) { 2529 // Vectors go after all the nonvectors. 2530 CurArgOffset = VecArgOffset; 2531 VecArgOffset += 16; 2532 } else { 2533 // Vectors are aligned. 2534 ArgOffset = ((ArgOffset+15)/16)*16; 2535 CurArgOffset = ArgOffset; 2536 ArgOffset += 16; 2537 } 2538 needsLoad = true; 2539 } 2540 break; 2541 } 2542 2543 // We need to load the argument to a virtual register if we determined above 2544 // that we ran out of physical registers of the appropriate type. 2545 if (needsLoad) { 2546 int FI = MFI->CreateFixedObject(ObjSize, 2547 CurArgOffset + (ArgSize - ObjSize), 2548 isImmutable); 2549 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2550 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2551 false, false, false, 0); 2552 } 2553 2554 InVals.push_back(ArgVal); 2555 } 2556 2557 // Set the size that is at least reserved in caller of this function. Tail 2558 // call optimized function's reserved stack space needs to be aligned so that 2559 // taking the difference between two stack areas will result in an aligned 2560 // stack. 2561 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2562 // Add the Altivec parameters at the end, if needed. 2563 if (nAltivecParamsAtEnd) { 2564 MinReservedArea = ((MinReservedArea+15)/16)*16; 2565 MinReservedArea += 16*nAltivecParamsAtEnd; 2566 } 2567 MinReservedArea = 2568 std::max(MinReservedArea, 2569 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2570 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2571 getStackAlignment(); 2572 unsigned AlignMask = TargetAlign-1; 2573 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2574 FI->setMinReservedArea(MinReservedArea); 2575 2576 // If the function takes variable number of arguments, make a frame index for 2577 // the start of the first vararg value... for expansion of llvm.va_start. 2578 if (isVarArg) { 2579 int Depth = ArgOffset; 2580 2581 FuncInfo->setVarArgsFrameIndex( 2582 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2583 Depth, true)); 2584 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2585 2586 // If this function is vararg, store any remaining integer argument regs 2587 // to their spots on the stack so that they may be loaded by deferencing the 2588 // result of va_next. 2589 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2590 unsigned VReg; 2591 2592 if (isPPC64) 2593 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2594 else 2595 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2596 2597 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2598 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2599 MachinePointerInfo(), false, false, 0); 2600 MemOps.push_back(Store); 2601 // Increment the address by four for the next argument to store 2602 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2603 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2604 } 2605 } 2606 2607 if (!MemOps.empty()) 2608 Chain = DAG.getNode(ISD::TokenFactor, dl, 2609 MVT::Other, &MemOps[0], MemOps.size()); 2610 2611 return Chain; 2612 } 2613 2614 /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus 2615 /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI. 2616 static unsigned 2617 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2618 bool isPPC64, 2619 bool isVarArg, 2620 unsigned CC, 2621 const SmallVectorImpl<ISD::OutputArg> 2622 &Outs, 2623 const SmallVectorImpl<SDValue> &OutVals, 2624 unsigned &nAltivecParamsAtEnd) { 2625 // Count how many bytes are to be pushed on the stack, including the linkage 2626 // area, and parameter passing area. We start with 24/48 bytes, which is 2627 // prereserved space for [SP][CR][LR][3 x unused]. 2628 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2629 unsigned NumOps = Outs.size(); 2630 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2631 2632 // Add up all the space actually used. 2633 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2634 // they all go in registers, but we must reserve stack space for them for 2635 // possible use by the caller. In varargs or 64-bit calls, parameters are 2636 // assigned stack space in order, with padding so Altivec parameters are 2637 // 16-byte aligned. 2638 nAltivecParamsAtEnd = 0; 2639 for (unsigned i = 0; i != NumOps; ++i) { 2640 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2641 EVT ArgVT = Outs[i].VT; 2642 // Varargs Altivec parameters are padded to a 16 byte boundary. 2643 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2644 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2645 if (!isVarArg && !isPPC64) { 2646 // Non-varargs Altivec parameters go after all the non-Altivec 2647 // parameters; handle those later so we know how much padding we need. 2648 nAltivecParamsAtEnd++; 2649 continue; 2650 } 2651 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2652 NumBytes = ((NumBytes+15)/16)*16; 2653 } 2654 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2655 } 2656 2657 // Allow for Altivec parameters at the end, if needed. 2658 if (nAltivecParamsAtEnd) { 2659 NumBytes = ((NumBytes+15)/16)*16; 2660 NumBytes += 16*nAltivecParamsAtEnd; 2661 } 2662 2663 // The prolog code of the callee may store up to 8 GPR argument registers to 2664 // the stack, allowing va_start to index over them in memory if its varargs. 2665 // Because we cannot tell if this is needed on the caller side, we have to 2666 // conservatively assume that it is needed. As such, make sure we have at 2667 // least enough stack space for the caller to store the 8 GPRs. 2668 NumBytes = std::max(NumBytes, 2669 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2670 2671 // Tail call needs the stack to be aligned. 2672 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2673 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2674 getFrameLowering()->getStackAlignment(); 2675 unsigned AlignMask = TargetAlign-1; 2676 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2677 } 2678 2679 return NumBytes; 2680 } 2681 2682 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2683 /// adjusted to accommodate the arguments for the tailcall. 2684 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2685 unsigned ParamSize) { 2686 2687 if (!isTailCall) return 0; 2688 2689 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2690 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2691 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2692 // Remember only if the new adjustement is bigger. 2693 if (SPDiff < FI->getTailCallSPDelta()) 2694 FI->setTailCallSPDelta(SPDiff); 2695 2696 return SPDiff; 2697 } 2698 2699 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2700 /// for tail call optimization. Targets which want to do tail call 2701 /// optimization should implement this function. 2702 bool 2703 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2704 CallingConv::ID CalleeCC, 2705 bool isVarArg, 2706 const SmallVectorImpl<ISD::InputArg> &Ins, 2707 SelectionDAG& DAG) const { 2708 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2709 return false; 2710 2711 // Variable argument functions are not supported. 2712 if (isVarArg) 2713 return false; 2714 2715 MachineFunction &MF = DAG.getMachineFunction(); 2716 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2717 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2718 // Functions containing by val parameters are not supported. 2719 for (unsigned i = 0; i != Ins.size(); i++) { 2720 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2721 if (Flags.isByVal()) return false; 2722 } 2723 2724 // Non PIC/GOT tail calls are supported. 2725 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2726 return true; 2727 2728 // At the moment we can only do local tail calls (in same module, hidden 2729 // or protected) if we are generating PIC. 2730 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2731 return G->getGlobal()->hasHiddenVisibility() 2732 || G->getGlobal()->hasProtectedVisibility(); 2733 } 2734 2735 return false; 2736 } 2737 2738 /// isCallCompatibleAddress - Return the immediate to use if the specified 2739 /// 32-bit value is representable in the immediate field of a BxA instruction. 2740 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2741 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2742 if (!C) return 0; 2743 2744 int Addr = C->getZExtValue(); 2745 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2746 SignExtend32<26>(Addr) != Addr) 2747 return 0; // Top 6 bits have to be sext of immediate. 2748 2749 return DAG.getConstant((int)C->getZExtValue() >> 2, 2750 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2751 } 2752 2753 namespace { 2754 2755 struct TailCallArgumentInfo { 2756 SDValue Arg; 2757 SDValue FrameIdxOp; 2758 int FrameIdx; 2759 2760 TailCallArgumentInfo() : FrameIdx(0) {} 2761 }; 2762 2763 } 2764 2765 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2766 static void 2767 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2768 SDValue Chain, 2769 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2770 SmallVector<SDValue, 8> &MemOpChains, 2771 DebugLoc dl) { 2772 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2773 SDValue Arg = TailCallArgs[i].Arg; 2774 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2775 int FI = TailCallArgs[i].FrameIdx; 2776 // Store relative to framepointer. 2777 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2778 MachinePointerInfo::getFixedStack(FI), 2779 false, false, 0)); 2780 } 2781 } 2782 2783 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2784 /// the appropriate stack slot for the tail call optimized function call. 2785 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2786 MachineFunction &MF, 2787 SDValue Chain, 2788 SDValue OldRetAddr, 2789 SDValue OldFP, 2790 int SPDiff, 2791 bool isPPC64, 2792 bool isDarwinABI, 2793 DebugLoc dl) { 2794 if (SPDiff) { 2795 // Calculate the new stack slot for the return address. 2796 int SlotSize = isPPC64 ? 8 : 4; 2797 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2798 isDarwinABI); 2799 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2800 NewRetAddrLoc, true); 2801 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2802 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2803 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2804 MachinePointerInfo::getFixedStack(NewRetAddr), 2805 false, false, 0); 2806 2807 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2808 // slot as the FP is never overwritten. 2809 if (isDarwinABI) { 2810 int NewFPLoc = 2811 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2812 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2813 true); 2814 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2815 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2816 MachinePointerInfo::getFixedStack(NewFPIdx), 2817 false, false, 0); 2818 } 2819 } 2820 return Chain; 2821 } 2822 2823 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2824 /// the position of the argument. 2825 static void 2826 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2827 SDValue Arg, int SPDiff, unsigned ArgOffset, 2828 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2829 int Offset = ArgOffset + SPDiff; 2830 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2831 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2832 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2833 SDValue FIN = DAG.getFrameIndex(FI, VT); 2834 TailCallArgumentInfo Info; 2835 Info.Arg = Arg; 2836 Info.FrameIdxOp = FIN; 2837 Info.FrameIdx = FI; 2838 TailCallArguments.push_back(Info); 2839 } 2840 2841 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2842 /// stack slot. Returns the chain as result and the loaded frame pointers in 2843 /// LROpOut/FPOpout. Used when tail calling. 2844 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2845 int SPDiff, 2846 SDValue Chain, 2847 SDValue &LROpOut, 2848 SDValue &FPOpOut, 2849 bool isDarwinABI, 2850 DebugLoc dl) const { 2851 if (SPDiff) { 2852 // Load the LR and FP stack slot for later adjusting. 2853 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2854 LROpOut = getReturnAddrFrameIndex(DAG); 2855 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2856 false, false, false, 0); 2857 Chain = SDValue(LROpOut.getNode(), 1); 2858 2859 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2860 // slot as the FP is never overwritten. 2861 if (isDarwinABI) { 2862 FPOpOut = getFramePointerFrameIndex(DAG); 2863 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2864 false, false, false, 0); 2865 Chain = SDValue(FPOpOut.getNode(), 1); 2866 } 2867 } 2868 return Chain; 2869 } 2870 2871 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2872 /// by "Src" to address "Dst" of size "Size". Alignment information is 2873 /// specified by the specific parameter attribute. The copy will be passed as 2874 /// a byval function parameter. 2875 /// Sometimes what we are copying is the end of a larger object, the part that 2876 /// does not fit in registers. 2877 static SDValue 2878 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2879 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2880 DebugLoc dl) { 2881 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2882 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2883 false, false, MachinePointerInfo(0), 2884 MachinePointerInfo(0)); 2885 } 2886 2887 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2888 /// tail calls. 2889 static void 2890 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2891 SDValue Arg, SDValue PtrOff, int SPDiff, 2892 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2893 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2894 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2895 DebugLoc dl) { 2896 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2897 if (!isTailCall) { 2898 if (isVector) { 2899 SDValue StackPtr; 2900 if (isPPC64) 2901 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2902 else 2903 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2904 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2905 DAG.getConstant(ArgOffset, PtrVT)); 2906 } 2907 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2908 MachinePointerInfo(), false, false, 0)); 2909 // Calculate and remember argument location. 2910 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2911 TailCallArguments); 2912 } 2913 2914 static 2915 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2916 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2917 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2918 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2919 MachineFunction &MF = DAG.getMachineFunction(); 2920 2921 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2922 // might overwrite each other in case of tail call optimization. 2923 SmallVector<SDValue, 8> MemOpChains2; 2924 // Do not flag preceding copytoreg stuff together with the following stuff. 2925 InFlag = SDValue(); 2926 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2927 MemOpChains2, dl); 2928 if (!MemOpChains2.empty()) 2929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2930 &MemOpChains2[0], MemOpChains2.size()); 2931 2932 // Store the return address to the appropriate stack slot. 2933 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2934 isPPC64, isDarwinABI, dl); 2935 2936 // Emit callseq_end just before tailcall node. 2937 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2938 DAG.getIntPtrConstant(0, true), InFlag); 2939 InFlag = Chain.getValue(1); 2940 } 2941 2942 static 2943 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2944 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2945 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2946 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2947 const PPCSubtarget &PPCSubTarget) { 2948 2949 bool isPPC64 = PPCSubTarget.isPPC64(); 2950 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2951 2952 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2953 NodeTys.push_back(MVT::Other); // Returns a chain 2954 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2955 2956 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2957 2958 bool needIndirectCall = true; 2959 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2960 // If this is an absolute destination address, use the munged value. 2961 Callee = SDValue(Dest, 0); 2962 needIndirectCall = false; 2963 } 2964 2965 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2966 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2967 // Use indirect calls for ALL functions calls in JIT mode, since the 2968 // far-call stubs may be outside relocation limits for a BL instruction. 2969 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2970 unsigned OpFlags = 0; 2971 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2972 (PPCSubTarget.getTargetTriple().isMacOSX() && 2973 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2974 (G->getGlobal()->isDeclaration() || 2975 G->getGlobal()->isWeakForLinker())) { 2976 // PC-relative references to external symbols should go through $stub, 2977 // unless we're building with the leopard linker or later, which 2978 // automatically synthesizes these stubs. 2979 OpFlags = PPCII::MO_DARWIN_STUB; 2980 } 2981 2982 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2983 // every direct call is) turn it into a TargetGlobalAddress / 2984 // TargetExternalSymbol node so that legalize doesn't hack it. 2985 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2986 Callee.getValueType(), 2987 0, OpFlags); 2988 needIndirectCall = false; 2989 } 2990 } 2991 2992 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2993 unsigned char OpFlags = 0; 2994 2995 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2996 (PPCSubTarget.getTargetTriple().isMacOSX() && 2997 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2998 // PC-relative references to external symbols should go through $stub, 2999 // unless we're building with the leopard linker or later, which 3000 // automatically synthesizes these stubs. 3001 OpFlags = PPCII::MO_DARWIN_STUB; 3002 } 3003 3004 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 3005 OpFlags); 3006 needIndirectCall = false; 3007 } 3008 3009 if (needIndirectCall) { 3010 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 3011 // to do the call, we can't use PPCISD::CALL. 3012 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 3013 3014 if (isSVR4ABI && isPPC64) { 3015 // Function pointers in the 64-bit SVR4 ABI do not point to the function 3016 // entry point, but to the function descriptor (the function entry point 3017 // address is part of the function descriptor though). 3018 // The function descriptor is a three doubleword structure with the 3019 // following fields: function entry point, TOC base address and 3020 // environment pointer. 3021 // Thus for a call through a function pointer, the following actions need 3022 // to be performed: 3023 // 1. Save the TOC of the caller in the TOC save area of its stack 3024 // frame (this is done in LowerCall_Darwin_Or_64SVR4()). 3025 // 2. Load the address of the function entry point from the function 3026 // descriptor. 3027 // 3. Load the TOC of the callee from the function descriptor into r2. 3028 // 4. Load the environment pointer from the function descriptor into 3029 // r11. 3030 // 5. Branch to the function entry point address. 3031 // 6. On return of the callee, the TOC of the caller needs to be 3032 // restored (this is done in FinishCall()). 3033 // 3034 // All those operations are flagged together to ensure that no other 3035 // operations can be scheduled in between. E.g. without flagging the 3036 // operations together, a TOC access in the caller could be scheduled 3037 // between the load of the callee TOC and the branch to the callee, which 3038 // results in the TOC access going through the TOC of the callee instead 3039 // of going through the TOC of the caller, which leads to incorrect code. 3040 3041 // Load the address of the function entry point from the function 3042 // descriptor. 3043 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 3044 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 3045 InFlag.getNode() ? 3 : 2); 3046 Chain = LoadFuncPtr.getValue(1); 3047 InFlag = LoadFuncPtr.getValue(2); 3048 3049 // Load environment pointer into r11. 3050 // Offset of the environment pointer within the function descriptor. 3051 SDValue PtrOff = DAG.getIntPtrConstant(16); 3052 3053 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 3054 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 3055 InFlag); 3056 Chain = LoadEnvPtr.getValue(1); 3057 InFlag = LoadEnvPtr.getValue(2); 3058 3059 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 3060 InFlag); 3061 Chain = EnvVal.getValue(0); 3062 InFlag = EnvVal.getValue(1); 3063 3064 // Load TOC of the callee into r2. We are using a target-specific load 3065 // with r2 hard coded, because the result of a target-independent load 3066 // would never go directly into r2, since r2 is a reserved register (which 3067 // prevents the register allocator from allocating it), resulting in an 3068 // additional register being allocated and an unnecessary move instruction 3069 // being generated. 3070 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3071 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 3072 Callee, InFlag); 3073 Chain = LoadTOCPtr.getValue(0); 3074 InFlag = LoadTOCPtr.getValue(1); 3075 3076 MTCTROps[0] = Chain; 3077 MTCTROps[1] = LoadFuncPtr; 3078 MTCTROps[2] = InFlag; 3079 } 3080 3081 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 3082 2 + (InFlag.getNode() != 0)); 3083 InFlag = Chain.getValue(1); 3084 3085 NodeTys.clear(); 3086 NodeTys.push_back(MVT::Other); 3087 NodeTys.push_back(MVT::Glue); 3088 Ops.push_back(Chain); 3089 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 3090 Callee.setNode(0); 3091 // Add CTR register as callee so a bctr can be emitted later. 3092 if (isTailCall) 3093 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 3094 } 3095 3096 // If this is a direct call, pass the chain and the callee. 3097 if (Callee.getNode()) { 3098 Ops.push_back(Chain); 3099 Ops.push_back(Callee); 3100 } 3101 // If this is a tail call add stack pointer delta. 3102 if (isTailCall) 3103 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 3104 3105 // Add argument registers to the end of the list so that they are known live 3106 // into the call. 3107 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 3108 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 3109 RegsToPass[i].second.getValueType())); 3110 3111 return CallOpc; 3112 } 3113 3114 static 3115 bool isLocalCall(const SDValue &Callee) 3116 { 3117 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3118 return !G->getGlobal()->isDeclaration() && 3119 !G->getGlobal()->isWeakForLinker(); 3120 return false; 3121 } 3122 3123 SDValue 3124 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 3125 CallingConv::ID CallConv, bool isVarArg, 3126 const SmallVectorImpl<ISD::InputArg> &Ins, 3127 DebugLoc dl, SelectionDAG &DAG, 3128 SmallVectorImpl<SDValue> &InVals) const { 3129 3130 SmallVector<CCValAssign, 16> RVLocs; 3131 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3132 getTargetMachine(), RVLocs, *DAG.getContext()); 3133 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 3134 3135 // Copy all of the result registers out of their specified physreg. 3136 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 3137 CCValAssign &VA = RVLocs[i]; 3138 EVT VT = VA.getValVT(); 3139 assert(VA.isRegLoc() && "Can only return in registers!"); 3140 Chain = DAG.getCopyFromReg(Chain, dl, 3141 VA.getLocReg(), VT, InFlag).getValue(1); 3142 InVals.push_back(Chain.getValue(0)); 3143 InFlag = Chain.getValue(2); 3144 } 3145 3146 return Chain; 3147 } 3148 3149 SDValue 3150 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 3151 bool isTailCall, bool isVarArg, 3152 SelectionDAG &DAG, 3153 SmallVector<std::pair<unsigned, SDValue>, 8> 3154 &RegsToPass, 3155 SDValue InFlag, SDValue Chain, 3156 SDValue &Callee, 3157 int SPDiff, unsigned NumBytes, 3158 const SmallVectorImpl<ISD::InputArg> &Ins, 3159 SmallVectorImpl<SDValue> &InVals) const { 3160 std::vector<EVT> NodeTys; 3161 SmallVector<SDValue, 8> Ops; 3162 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 3163 isTailCall, RegsToPass, Ops, NodeTys, 3164 PPCSubTarget); 3165 3166 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 3167 if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 3168 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 3169 3170 // When performing tail call optimization the callee pops its arguments off 3171 // the stack. Account for this here so these bytes can be pushed back on in 3172 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 3173 int BytesCalleePops = 3174 (CallConv == CallingConv::Fast && 3175 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 3176 3177 // Add a register mask operand representing the call-preserved registers. 3178 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 3179 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 3180 assert(Mask && "Missing call preserved mask for calling convention"); 3181 Ops.push_back(DAG.getRegisterMask(Mask)); 3182 3183 if (InFlag.getNode()) 3184 Ops.push_back(InFlag); 3185 3186 // Emit tail call. 3187 if (isTailCall) { 3188 // If this is the first return lowered for this function, add the regs 3189 // to the liveout set for the function. 3190 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3191 SmallVector<CCValAssign, 16> RVLocs; 3192 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3193 getTargetMachine(), RVLocs, *DAG.getContext()); 3194 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 3195 for (unsigned i = 0; i != RVLocs.size(); ++i) 3196 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3197 } 3198 3199 assert(((Callee.getOpcode() == ISD::Register && 3200 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 3201 Callee.getOpcode() == ISD::TargetExternalSymbol || 3202 Callee.getOpcode() == ISD::TargetGlobalAddress || 3203 isa<ConstantSDNode>(Callee)) && 3204 "Expecting an global address, external symbol, absolute value or register"); 3205 3206 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 3207 } 3208 3209 // Add a NOP immediately after the branch instruction when using the 64-bit 3210 // SVR4 ABI. At link time, if caller and callee are in a different module and 3211 // thus have a different TOC, the call will be replaced with a call to a stub 3212 // function which saves the current TOC, loads the TOC of the callee and 3213 // branches to the callee. The NOP will be replaced with a load instruction 3214 // which restores the TOC of the caller from the TOC save slot of the current 3215 // stack frame. If caller and callee belong to the same module (and have the 3216 // same TOC), the NOP will remain unchanged. 3217 3218 bool needsTOCRestore = false; 3219 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 3220 if (CallOpc == PPCISD::BCTRL_SVR4) { 3221 // This is a call through a function pointer. 3222 // Restore the caller TOC from the save area into R2. 3223 // See PrepareCall() for more information about calls through function 3224 // pointers in the 64-bit SVR4 ABI. 3225 // We are using a target-specific load with r2 hard coded, because the 3226 // result of a target-independent load would never go directly into r2, 3227 // since r2 is a reserved register (which prevents the register allocator 3228 // from allocating it), resulting in an additional register being 3229 // allocated and an unnecessary move instruction being generated. 3230 needsTOCRestore = true; 3231 } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) { 3232 // Otherwise insert NOP for non-local calls. 3233 CallOpc = PPCISD::CALL_NOP_SVR4; 3234 } 3235 } 3236 3237 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 3238 InFlag = Chain.getValue(1); 3239 3240 if (needsTOCRestore) { 3241 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3242 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 3243 InFlag = Chain.getValue(1); 3244 } 3245 3246 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 3247 DAG.getIntPtrConstant(BytesCalleePops, true), 3248 InFlag); 3249 if (!Ins.empty()) 3250 InFlag = Chain.getValue(1); 3251 3252 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 3253 Ins, dl, DAG, InVals); 3254 } 3255 3256 SDValue 3257 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 3258 SmallVectorImpl<SDValue> &InVals) const { 3259 SelectionDAG &DAG = CLI.DAG; 3260 DebugLoc &dl = CLI.DL; 3261 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3262 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3263 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3264 SDValue Chain = CLI.Chain; 3265 SDValue Callee = CLI.Callee; 3266 bool &isTailCall = CLI.IsTailCall; 3267 CallingConv::ID CallConv = CLI.CallConv; 3268 bool isVarArg = CLI.IsVarArg; 3269 3270 if (isTailCall) 3271 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 3272 Ins, DAG); 3273 3274 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 3275 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 3276 isTailCall, Outs, OutVals, Ins, 3277 dl, DAG, InVals); 3278 3279 return LowerCall_Darwin_Or_64SVR4(Chain, Callee, CallConv, isVarArg, 3280 isTailCall, Outs, OutVals, Ins, 3281 dl, DAG, InVals); 3282 } 3283 3284 SDValue 3285 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 3286 CallingConv::ID CallConv, bool isVarArg, 3287 bool isTailCall, 3288 const SmallVectorImpl<ISD::OutputArg> &Outs, 3289 const SmallVectorImpl<SDValue> &OutVals, 3290 const SmallVectorImpl<ISD::InputArg> &Ins, 3291 DebugLoc dl, SelectionDAG &DAG, 3292 SmallVectorImpl<SDValue> &InVals) const { 3293 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 3294 // of the 32-bit SVR4 ABI stack frame layout. 3295 3296 assert((CallConv == CallingConv::C || 3297 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 3298 3299 unsigned PtrByteSize = 4; 3300 3301 MachineFunction &MF = DAG.getMachineFunction(); 3302 3303 // Mark this function as potentially containing a function that contains a 3304 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3305 // and restoring the callers stack pointer in this functions epilog. This is 3306 // done because by tail calling the called function might overwrite the value 3307 // in this function's (MF) stack pointer stack slot 0(SP). 3308 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3309 CallConv == CallingConv::Fast) 3310 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3311 3312 // Count how many bytes are to be pushed on the stack, including the linkage 3313 // area, parameter list area and the part of the local variable space which 3314 // contains copies of aggregates which are passed by value. 3315 3316 // Assign locations to all of the outgoing arguments. 3317 SmallVector<CCValAssign, 16> ArgLocs; 3318 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3319 getTargetMachine(), ArgLocs, *DAG.getContext()); 3320 3321 // Reserve space for the linkage area on the stack. 3322 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 3323 3324 if (isVarArg) { 3325 // Handle fixed and variable vector arguments differently. 3326 // Fixed vector arguments go into registers as long as registers are 3327 // available. Variable vector arguments always go into memory. 3328 unsigned NumArgs = Outs.size(); 3329 3330 for (unsigned i = 0; i != NumArgs; ++i) { 3331 MVT ArgVT = Outs[i].VT; 3332 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3333 bool Result; 3334 3335 if (Outs[i].IsFixed) { 3336 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 3337 CCInfo); 3338 } else { 3339 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 3340 ArgFlags, CCInfo); 3341 } 3342 3343 if (Result) { 3344 #ifndef NDEBUG 3345 errs() << "Call operand #" << i << " has unhandled type " 3346 << EVT(ArgVT).getEVTString() << "\n"; 3347 #endif 3348 llvm_unreachable(0); 3349 } 3350 } 3351 } else { 3352 // All arguments are treated the same. 3353 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 3354 } 3355 3356 // Assign locations to all of the outgoing aggregate by value arguments. 3357 SmallVector<CCValAssign, 16> ByValArgLocs; 3358 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3359 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 3360 3361 // Reserve stack space for the allocations in CCInfo. 3362 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3363 3364 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 3365 3366 // Size of the linkage area, parameter list area and the part of the local 3367 // space variable where copies of aggregates which are passed by value are 3368 // stored. 3369 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 3370 3371 // Calculate by how many bytes the stack has to be adjusted in case of tail 3372 // call optimization. 3373 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3374 3375 // Adjust the stack pointer for the new arguments... 3376 // These operations are automatically eliminated by the prolog/epilog pass 3377 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3378 SDValue CallSeqStart = Chain; 3379 3380 // Load the return address and frame pointer so it can be moved somewhere else 3381 // later. 3382 SDValue LROp, FPOp; 3383 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 3384 dl); 3385 3386 // Set up a copy of the stack pointer for use loading and storing any 3387 // arguments that may not fit in the registers available for argument 3388 // passing. 3389 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3390 3391 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3392 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3393 SmallVector<SDValue, 8> MemOpChains; 3394 3395 bool seenFloatArg = false; 3396 // Walk the register/memloc assignments, inserting copies/loads. 3397 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 3398 i != e; 3399 ++i) { 3400 CCValAssign &VA = ArgLocs[i]; 3401 SDValue Arg = OutVals[i]; 3402 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3403 3404 if (Flags.isByVal()) { 3405 // Argument is an aggregate which is passed by value, thus we need to 3406 // create a copy of it in the local variable space of the current stack 3407 // frame (which is the stack frame of the caller) and pass the address of 3408 // this copy to the callee. 3409 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 3410 CCValAssign &ByValVA = ByValArgLocs[j++]; 3411 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 3412 3413 // Memory reserved in the local variable space of the callers stack frame. 3414 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 3415 3416 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3417 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3418 3419 // Create a copy of the argument in the local area of the current 3420 // stack frame. 3421 SDValue MemcpyCall = 3422 CreateCopyOfByValArgument(Arg, PtrOff, 3423 CallSeqStart.getNode()->getOperand(0), 3424 Flags, DAG, dl); 3425 3426 // This must go outside the CALLSEQ_START..END. 3427 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3428 CallSeqStart.getNode()->getOperand(1)); 3429 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3430 NewCallSeqStart.getNode()); 3431 Chain = CallSeqStart = NewCallSeqStart; 3432 3433 // Pass the address of the aggregate copy on the stack either in a 3434 // physical register or in the parameter list area of the current stack 3435 // frame to the callee. 3436 Arg = PtrOff; 3437 } 3438 3439 if (VA.isRegLoc()) { 3440 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3441 // Put argument in a physical register. 3442 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3443 } else { 3444 // Put argument in the parameter list area of the current stack frame. 3445 assert(VA.isMemLoc()); 3446 unsigned LocMemOffset = VA.getLocMemOffset(); 3447 3448 if (!isTailCall) { 3449 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3450 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3451 3452 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3453 MachinePointerInfo(), 3454 false, false, 0)); 3455 } else { 3456 // Calculate and remember argument location. 3457 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3458 TailCallArguments); 3459 } 3460 } 3461 } 3462 3463 if (!MemOpChains.empty()) 3464 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3465 &MemOpChains[0], MemOpChains.size()); 3466 3467 // Build a sequence of copy-to-reg nodes chained together with token chain 3468 // and flag operands which copy the outgoing args into the appropriate regs. 3469 SDValue InFlag; 3470 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3471 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3472 RegsToPass[i].second, InFlag); 3473 InFlag = Chain.getValue(1); 3474 } 3475 3476 // Set CR bit 6 to true if this is a vararg call with floating args passed in 3477 // registers. 3478 if (isVarArg) { 3479 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 3480 SDValue Ops[] = { Chain, InFlag }; 3481 3482 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 3483 dl, VTs, Ops, InFlag.getNode() ? 2 : 1); 3484 3485 InFlag = Chain.getValue(1); 3486 } 3487 3488 if (isTailCall) 3489 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3490 false, TailCallArguments); 3491 3492 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3493 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3494 Ins, InVals); 3495 } 3496 3497 SDValue 3498 PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee, 3499 CallingConv::ID CallConv, bool isVarArg, 3500 bool isTailCall, 3501 const SmallVectorImpl<ISD::OutputArg> &Outs, 3502 const SmallVectorImpl<SDValue> &OutVals, 3503 const SmallVectorImpl<ISD::InputArg> &Ins, 3504 DebugLoc dl, SelectionDAG &DAG, 3505 SmallVectorImpl<SDValue> &InVals) const { 3506 3507 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 3508 3509 unsigned NumOps = Outs.size(); 3510 3511 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3512 bool isPPC64 = PtrVT == MVT::i64; 3513 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3514 3515 MachineFunction &MF = DAG.getMachineFunction(); 3516 3517 // Mark this function as potentially containing a function that contains a 3518 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3519 // and restoring the callers stack pointer in this functions epilog. This is 3520 // done because by tail calling the called function might overwrite the value 3521 // in this function's (MF) stack pointer stack slot 0(SP). 3522 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3523 CallConv == CallingConv::Fast) 3524 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3525 3526 unsigned nAltivecParamsAtEnd = 0; 3527 3528 // Count how many bytes are to be pushed on the stack, including the linkage 3529 // area, and parameter passing area. We start with 24/48 bytes, which is 3530 // prereserved space for [SP][CR][LR][3 x unused]. 3531 unsigned NumBytes = 3532 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3533 Outs, OutVals, 3534 nAltivecParamsAtEnd); 3535 3536 // Calculate by how many bytes the stack has to be adjusted in case of tail 3537 // call optimization. 3538 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3539 3540 // To protect arguments on the stack from being clobbered in a tail call, 3541 // force all the loads to happen before doing any other lowering. 3542 if (isTailCall) 3543 Chain = DAG.getStackArgumentTokenFactor(Chain); 3544 3545 // Adjust the stack pointer for the new arguments... 3546 // These operations are automatically eliminated by the prolog/epilog pass 3547 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3548 SDValue CallSeqStart = Chain; 3549 3550 // Load the return address and frame pointer so it can be move somewhere else 3551 // later. 3552 SDValue LROp, FPOp; 3553 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3554 dl); 3555 3556 // Set up a copy of the stack pointer for use loading and storing any 3557 // arguments that may not fit in the registers available for argument 3558 // passing. 3559 SDValue StackPtr; 3560 if (isPPC64) 3561 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3562 else 3563 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3564 3565 // Figure out which arguments are going to go in registers, and which in 3566 // memory. Also, if this is a vararg function, floating point operations 3567 // must be stored to our stack, and loaded into integer regs as well, if 3568 // any integer regs are available for argument passing. 3569 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3570 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3571 3572 static const uint16_t GPR_32[] = { // 32-bit registers. 3573 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3574 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3575 }; 3576 static const uint16_t GPR_64[] = { // 64-bit registers. 3577 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3578 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3579 }; 3580 static const uint16_t *FPR = GetFPR(); 3581 3582 static const uint16_t VR[] = { 3583 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3584 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3585 }; 3586 const unsigned NumGPRs = array_lengthof(GPR_32); 3587 const unsigned NumFPRs = 13; 3588 const unsigned NumVRs = array_lengthof(VR); 3589 3590 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 3591 3592 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3593 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3594 3595 SmallVector<SDValue, 8> MemOpChains; 3596 for (unsigned i = 0; i != NumOps; ++i) { 3597 SDValue Arg = OutVals[i]; 3598 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3599 3600 // PtrOff will be used to store the current argument to the stack if a 3601 // register cannot be found for it. 3602 SDValue PtrOff; 3603 3604 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3605 3606 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3607 3608 // On PPC64, promote integers to 64-bit values. 3609 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3610 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3611 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3612 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3613 } 3614 3615 // FIXME memcpy is used way more than necessary. Correctness first. 3616 // Note: "by value" is code for passing a structure by value, not 3617 // basic types. 3618 if (Flags.isByVal()) { 3619 // Note: Size includes alignment padding, so 3620 // struct x { short a; char b; } 3621 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 3622 // These are the proper values we need for right-justifying the 3623 // aggregate in a parameter register for 64-bit SVR4. 3624 unsigned Size = Flags.getByValSize(); 3625 // FOR DARWIN ONLY: Very small objects are passed right-justified. 3626 // Everything else is passed left-justified. 3627 // FOR 64-BIT SVR4: All aggregates smaller than 8 bytes must 3628 // be passed right-justified. 3629 if (Size==1 || Size==2 || 3630 (Size==4 && isSVR4ABI)) { 3631 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 3632 if (GPR_idx != NumGPRs) { 3633 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3634 MachinePointerInfo(), VT, 3635 false, false, 0); 3636 MemOpChains.push_back(Load.getValue(1)); 3637 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3638 3639 ArgOffset += PtrByteSize; 3640 } else { 3641 SDValue Const = DAG.getConstant(PtrByteSize - Size, 3642 PtrOff.getValueType()); 3643 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3644 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3645 CallSeqStart.getNode()->getOperand(0), 3646 Flags, DAG, dl); 3647 // The MEMCPY must go outside the CALLSEQ_START..END. 3648 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3649 CallSeqStart.getNode()->getOperand(1)); 3650 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3651 NewCallSeqStart.getNode()); 3652 Chain = CallSeqStart = NewCallSeqStart; 3653 ArgOffset += PtrByteSize; 3654 } 3655 continue; 3656 } else if (isSVR4ABI && GPR_idx == NumGPRs && Size < 8) { 3657 // Case: Size is 3, 5, 6, or 7 for SVR4 and we're out of registers. 3658 // This is the same case as 1, 2, and 4 for SVR4 with no registers. 3659 // FIXME: Separate into 64-bit SVR4 and Darwin versions of this 3660 // function, and combine the duplicated code chunks. 3661 SDValue Const = DAG.getConstant(PtrByteSize - Size, 3662 PtrOff.getValueType()); 3663 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3664 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3665 CallSeqStart.getNode()->getOperand(0), 3666 Flags, DAG, dl); 3667 // The MEMCPY must go outside the CALLSEQ_START..END. 3668 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3669 CallSeqStart.getNode()->getOperand(1)); 3670 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3671 NewCallSeqStart.getNode()); 3672 Chain = CallSeqStart = NewCallSeqStart; 3673 ArgOffset += PtrByteSize; 3674 continue; 3675 } 3676 // Copy entire object into memory. There are cases where gcc-generated 3677 // code assumes it is there, even if it could be put entirely into 3678 // registers. (This is not what the doc says.) 3679 3680 // FIXME: The above statement is likely due to a misunderstanding of the 3681 // documents. At least for 64-bit SVR4, all arguments must be copied 3682 // into the parameter area BY THE CALLEE in the event that the callee 3683 // takes the address of any formal argument. That has not yet been 3684 // implemented. However, it is reasonable to use the stack area as a 3685 // staging area for the register load. 3686 3687 // Skip this for small aggregates under 64-bit SVR4, as we will use 3688 // the same slot for a right-justified copy, below. 3689 if (Size >= 8 || !isSVR4ABI) { 3690 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3691 CallSeqStart.getNode()->getOperand(0), 3692 Flags, DAG, dl); 3693 // This must go outside the CALLSEQ_START..END. 3694 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3695 CallSeqStart.getNode()->getOperand(1)); 3696 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3697 NewCallSeqStart.getNode()); 3698 Chain = CallSeqStart = NewCallSeqStart; 3699 } 3700 3701 // FOR 64-BIT SVR4: When a register is available, pass the 3702 // aggregate right-justified. 3703 if (isSVR4ABI && Size < 8 && GPR_idx != NumGPRs) { 3704 // The easiest way to get this right-justified in a register 3705 // is to copy the structure into the rightmost portion of a 3706 // local variable slot, then load the whole slot into the 3707 // register. 3708 // FIXME: The memcpy seems to produce pretty awful code for 3709 // small aggregates, particularly for packed ones. 3710 // FIXME: It would be preferable to use the slot in the 3711 // parameter save area instead of a new local variable. 3712 SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); 3713 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3714 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3715 CallSeqStart.getNode()->getOperand(0), 3716 Flags, DAG, dl); 3717 3718 // Place the memcpy outside the CALLSEQ_START..END. 3719 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3720 CallSeqStart.getNode()->getOperand(1)); 3721 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3722 NewCallSeqStart.getNode()); 3723 Chain = CallSeqStart = NewCallSeqStart; 3724 3725 // Load the slot into the register. 3726 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 3727 MachinePointerInfo(), 3728 false, false, false, 0); 3729 MemOpChains.push_back(Load.getValue(1)); 3730 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3731 3732 // Done with this argument. 3733 ArgOffset += PtrByteSize; 3734 continue; 3735 } 3736 3737 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 3738 // copy the pieces of the object that fit into registers from the 3739 // parameter save area. 3740 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3741 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3742 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3743 if (GPR_idx != NumGPRs) { 3744 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3745 MachinePointerInfo(), 3746 false, false, false, 0); 3747 MemOpChains.push_back(Load.getValue(1)); 3748 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3749 ArgOffset += PtrByteSize; 3750 } else { 3751 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3752 break; 3753 } 3754 } 3755 continue; 3756 } 3757 3758 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3759 default: llvm_unreachable("Unexpected ValueType for argument!"); 3760 case MVT::i32: 3761 case MVT::i64: 3762 if (GPR_idx != NumGPRs) { 3763 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3764 } else { 3765 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3766 isPPC64, isTailCall, false, MemOpChains, 3767 TailCallArguments, dl); 3768 } 3769 ArgOffset += PtrByteSize; 3770 break; 3771 case MVT::f32: 3772 case MVT::f64: 3773 if (FPR_idx != NumFPRs) { 3774 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3775 3776 if (isVarArg) { 3777 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3778 MachinePointerInfo(), false, false, 0); 3779 MemOpChains.push_back(Store); 3780 3781 // Float varargs are always shadowed in available integer registers 3782 if (GPR_idx != NumGPRs) { 3783 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3784 MachinePointerInfo(), false, false, 3785 false, 0); 3786 MemOpChains.push_back(Load.getValue(1)); 3787 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3788 } 3789 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3790 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3791 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3792 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3793 MachinePointerInfo(), 3794 false, false, false, 0); 3795 MemOpChains.push_back(Load.getValue(1)); 3796 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3797 } 3798 } else { 3799 // If we have any FPRs remaining, we may also have GPRs remaining. 3800 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3801 // GPRs. 3802 if (GPR_idx != NumGPRs) 3803 ++GPR_idx; 3804 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3805 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3806 ++GPR_idx; 3807 } 3808 } else { 3809 // Single-precision floating-point values are mapped to the 3810 // second (rightmost) word of the stack doubleword. 3811 if (Arg.getValueType() == MVT::f32 && isPPC64 && isSVR4ABI) { 3812 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3813 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3814 } 3815 3816 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3817 isPPC64, isTailCall, false, MemOpChains, 3818 TailCallArguments, dl); 3819 } 3820 if (isPPC64) 3821 ArgOffset += 8; 3822 else 3823 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3824 break; 3825 case MVT::v4f32: 3826 case MVT::v4i32: 3827 case MVT::v8i16: 3828 case MVT::v16i8: 3829 if (isVarArg) { 3830 // These go aligned on the stack, or in the corresponding R registers 3831 // when within range. The Darwin PPC ABI doc claims they also go in 3832 // V registers; in fact gcc does this only for arguments that are 3833 // prototyped, not for those that match the ... We do it for all 3834 // arguments, seems to work. 3835 while (ArgOffset % 16 !=0) { 3836 ArgOffset += PtrByteSize; 3837 if (GPR_idx != NumGPRs) 3838 GPR_idx++; 3839 } 3840 // We could elide this store in the case where the object fits 3841 // entirely in R registers. Maybe later. 3842 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3843 DAG.getConstant(ArgOffset, PtrVT)); 3844 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3845 MachinePointerInfo(), false, false, 0); 3846 MemOpChains.push_back(Store); 3847 if (VR_idx != NumVRs) { 3848 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3849 MachinePointerInfo(), 3850 false, false, false, 0); 3851 MemOpChains.push_back(Load.getValue(1)); 3852 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3853 } 3854 ArgOffset += 16; 3855 for (unsigned i=0; i<16; i+=PtrByteSize) { 3856 if (GPR_idx == NumGPRs) 3857 break; 3858 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3859 DAG.getConstant(i, PtrVT)); 3860 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3861 false, false, false, 0); 3862 MemOpChains.push_back(Load.getValue(1)); 3863 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3864 } 3865 break; 3866 } 3867 3868 // Non-varargs Altivec params generally go in registers, but have 3869 // stack space allocated at the end. 3870 if (VR_idx != NumVRs) { 3871 // Doesn't have GPR space allocated. 3872 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3873 } else if (nAltivecParamsAtEnd==0) { 3874 // We are emitting Altivec params in order. 3875 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3876 isPPC64, isTailCall, true, MemOpChains, 3877 TailCallArguments, dl); 3878 ArgOffset += 16; 3879 } 3880 break; 3881 } 3882 } 3883 // If all Altivec parameters fit in registers, as they usually do, 3884 // they get stack space following the non-Altivec parameters. We 3885 // don't track this here because nobody below needs it. 3886 // If there are more Altivec parameters than fit in registers emit 3887 // the stores here. 3888 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3889 unsigned j = 0; 3890 // Offset is aligned; skip 1st 12 params which go in V registers. 3891 ArgOffset = ((ArgOffset+15)/16)*16; 3892 ArgOffset += 12*16; 3893 for (unsigned i = 0; i != NumOps; ++i) { 3894 SDValue Arg = OutVals[i]; 3895 EVT ArgType = Outs[i].VT; 3896 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3897 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3898 if (++j > NumVRs) { 3899 SDValue PtrOff; 3900 // We are emitting Altivec params in order. 3901 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3902 isPPC64, isTailCall, true, MemOpChains, 3903 TailCallArguments, dl); 3904 ArgOffset += 16; 3905 } 3906 } 3907 } 3908 } 3909 3910 if (!MemOpChains.empty()) 3911 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3912 &MemOpChains[0], MemOpChains.size()); 3913 3914 // Check if this is an indirect call (MTCTR/BCTRL). 3915 // See PrepareCall() for more information about calls through function 3916 // pointers in the 64-bit SVR4 ABI. 3917 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3918 !dyn_cast<GlobalAddressSDNode>(Callee) && 3919 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3920 !isBLACompatibleAddress(Callee, DAG)) { 3921 // Load r2 into a virtual register and store it to the TOC save area. 3922 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3923 // TOC save area offset. 3924 SDValue PtrOff = DAG.getIntPtrConstant(40); 3925 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3926 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3927 false, false, 0); 3928 } 3929 3930 // On Darwin, R12 must contain the address of an indirect callee. This does 3931 // not mean the MTCTR instruction must use R12; it's easier to model this as 3932 // an extra parameter, so do that. 3933 if (!isTailCall && 3934 !dyn_cast<GlobalAddressSDNode>(Callee) && 3935 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3936 !isBLACompatibleAddress(Callee, DAG)) 3937 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3938 PPC::R12), Callee)); 3939 3940 // Build a sequence of copy-to-reg nodes chained together with token chain 3941 // and flag operands which copy the outgoing args into the appropriate regs. 3942 SDValue InFlag; 3943 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3944 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3945 RegsToPass[i].second, InFlag); 3946 InFlag = Chain.getValue(1); 3947 } 3948 3949 if (isTailCall) 3950 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3951 FPOp, true, TailCallArguments); 3952 3953 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3954 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3955 Ins, InVals); 3956 } 3957 3958 bool 3959 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3960 MachineFunction &MF, bool isVarArg, 3961 const SmallVectorImpl<ISD::OutputArg> &Outs, 3962 LLVMContext &Context) const { 3963 SmallVector<CCValAssign, 16> RVLocs; 3964 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 3965 RVLocs, Context); 3966 return CCInfo.CheckReturn(Outs, RetCC_PPC); 3967 } 3968 3969 SDValue 3970 PPCTargetLowering::LowerReturn(SDValue Chain, 3971 CallingConv::ID CallConv, bool isVarArg, 3972 const SmallVectorImpl<ISD::OutputArg> &Outs, 3973 const SmallVectorImpl<SDValue> &OutVals, 3974 DebugLoc dl, SelectionDAG &DAG) const { 3975 3976 SmallVector<CCValAssign, 16> RVLocs; 3977 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3978 getTargetMachine(), RVLocs, *DAG.getContext()); 3979 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3980 3981 // If this is the first return lowered for this function, add the regs to the 3982 // liveout set for the function. 3983 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3984 for (unsigned i = 0; i != RVLocs.size(); ++i) 3985 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3986 } 3987 3988 SDValue Flag; 3989 3990 // Copy the result values into the output registers. 3991 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3992 CCValAssign &VA = RVLocs[i]; 3993 assert(VA.isRegLoc() && "Can only return in registers!"); 3994 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3995 OutVals[i], Flag); 3996 Flag = Chain.getValue(1); 3997 } 3998 3999 if (Flag.getNode()) 4000 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 4001 else 4002 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 4003 } 4004 4005 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 4006 const PPCSubtarget &Subtarget) const { 4007 // When we pop the dynamic allocation we need to restore the SP link. 4008 DebugLoc dl = Op.getDebugLoc(); 4009 4010 // Get the corect type for pointers. 4011 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4012 4013 // Construct the stack pointer operand. 4014 bool isPPC64 = Subtarget.isPPC64(); 4015 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 4016 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 4017 4018 // Get the operands for the STACKRESTORE. 4019 SDValue Chain = Op.getOperand(0); 4020 SDValue SaveSP = Op.getOperand(1); 4021 4022 // Load the old link SP. 4023 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 4024 MachinePointerInfo(), 4025 false, false, false, 0); 4026 4027 // Restore the stack pointer. 4028 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 4029 4030 // Store the old link SP. 4031 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 4032 false, false, 0); 4033 } 4034 4035 4036 4037 SDValue 4038 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 4039 MachineFunction &MF = DAG.getMachineFunction(); 4040 bool isPPC64 = PPCSubTarget.isPPC64(); 4041 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 4042 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4043 4044 // Get current frame pointer save index. The users of this index will be 4045 // primarily DYNALLOC instructions. 4046 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 4047 int RASI = FI->getReturnAddrSaveIndex(); 4048 4049 // If the frame pointer save index hasn't been defined yet. 4050 if (!RASI) { 4051 // Find out what the fix offset of the frame pointer save area. 4052 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 4053 // Allocate the frame index for frame pointer save area. 4054 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 4055 // Save the result. 4056 FI->setReturnAddrSaveIndex(RASI); 4057 } 4058 return DAG.getFrameIndex(RASI, PtrVT); 4059 } 4060 4061 SDValue 4062 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 4063 MachineFunction &MF = DAG.getMachineFunction(); 4064 bool isPPC64 = PPCSubTarget.isPPC64(); 4065 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 4066 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4067 4068 // Get current frame pointer save index. The users of this index will be 4069 // primarily DYNALLOC instructions. 4070 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 4071 int FPSI = FI->getFramePointerSaveIndex(); 4072 4073 // If the frame pointer save index hasn't been defined yet. 4074 if (!FPSI) { 4075 // Find out what the fix offset of the frame pointer save area. 4076 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 4077 isDarwinABI); 4078 4079 // Allocate the frame index for frame pointer save area. 4080 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 4081 // Save the result. 4082 FI->setFramePointerSaveIndex(FPSI); 4083 } 4084 return DAG.getFrameIndex(FPSI, PtrVT); 4085 } 4086 4087 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 4088 SelectionDAG &DAG, 4089 const PPCSubtarget &Subtarget) const { 4090 // Get the inputs. 4091 SDValue Chain = Op.getOperand(0); 4092 SDValue Size = Op.getOperand(1); 4093 DebugLoc dl = Op.getDebugLoc(); 4094 4095 // Get the corect type for pointers. 4096 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4097 // Negate the size. 4098 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 4099 DAG.getConstant(0, PtrVT), Size); 4100 // Construct a node for the frame pointer save index. 4101 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 4102 // Build a DYNALLOC node. 4103 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 4104 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 4105 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 4106 } 4107 4108 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 4109 /// possible. 4110 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 4111 // Not FP? Not a fsel. 4112 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 4113 !Op.getOperand(2).getValueType().isFloatingPoint()) 4114 return Op; 4115 4116 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 4117 4118 // Cannot handle SETEQ/SETNE. 4119 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 4120 4121 EVT ResVT = Op.getValueType(); 4122 EVT CmpVT = Op.getOperand(0).getValueType(); 4123 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4124 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 4125 DebugLoc dl = Op.getDebugLoc(); 4126 4127 // If the RHS of the comparison is a 0.0, we don't need to do the 4128 // subtraction at all. 4129 if (isFloatingPointZero(RHS)) 4130 switch (CC) { 4131 default: break; // SETUO etc aren't handled by fsel. 4132 case ISD::SETULT: 4133 case ISD::SETLT: 4134 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 4135 case ISD::SETOGE: 4136 case ISD::SETGE: 4137 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 4138 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 4139 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 4140 case ISD::SETUGT: 4141 case ISD::SETGT: 4142 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 4143 case ISD::SETOLE: 4144 case ISD::SETLE: 4145 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 4146 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 4147 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 4148 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 4149 } 4150 4151 SDValue Cmp; 4152 switch (CC) { 4153 default: break; // SETUO etc aren't handled by fsel. 4154 case ISD::SETULT: 4155 case ISD::SETLT: 4156 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 4157 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4158 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4159 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 4160 case ISD::SETOGE: 4161 case ISD::SETGE: 4162 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 4163 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4164 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4165 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 4166 case ISD::SETUGT: 4167 case ISD::SETGT: 4168 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 4169 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4170 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4171 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 4172 case ISD::SETOLE: 4173 case ISD::SETLE: 4174 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 4175 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 4176 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 4177 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 4178 } 4179 return Op; 4180 } 4181 4182 // FIXME: Split this code up when LegalizeDAGTypes lands. 4183 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 4184 DebugLoc dl) const { 4185 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 4186 SDValue Src = Op.getOperand(0); 4187 if (Src.getValueType() == MVT::f32) 4188 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 4189 4190 SDValue Tmp; 4191 switch (Op.getValueType().getSimpleVT().SimpleTy) { 4192 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 4193 case MVT::i32: 4194 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 4195 PPCISD::FCTIDZ, 4196 dl, MVT::f64, Src); 4197 break; 4198 case MVT::i64: 4199 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 4200 break; 4201 } 4202 4203 // Convert the FP value to an int value through memory. 4204 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 4205 4206 // Emit a store to the stack slot. 4207 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 4208 MachinePointerInfo(), false, false, 0); 4209 4210 // Result is a load from the stack slot. If loading 4 bytes, make sure to 4211 // add in a bias. 4212 if (Op.getValueType() == MVT::i32) 4213 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 4214 DAG.getConstant(4, FIPtr.getValueType())); 4215 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 4216 false, false, false, 0); 4217 } 4218 4219 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 4220 SelectionDAG &DAG) const { 4221 DebugLoc dl = Op.getDebugLoc(); 4222 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 4223 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 4224 return SDValue(); 4225 4226 if (Op.getOperand(0).getValueType() == MVT::i64) { 4227 SDValue SINT = Op.getOperand(0); 4228 // When converting to single-precision, we actually need to convert 4229 // to double-precision first and then round to single-precision. 4230 // To avoid double-rounding effects during that operation, we have 4231 // to prepare the input operand. Bits that might be truncated when 4232 // converting to double-precision are replaced by a bit that won't 4233 // be lost at this stage, but is below the single-precision rounding 4234 // position. 4235 // 4236 // However, if -enable-unsafe-fp-math is in effect, accept double 4237 // rounding to avoid the extra overhead. 4238 if (Op.getValueType() == MVT::f32 && 4239 !DAG.getTarget().Options.UnsafeFPMath) { 4240 4241 // Twiddle input to make sure the low 11 bits are zero. (If this 4242 // is the case, we are guaranteed the value will fit into the 53 bit 4243 // mantissa of an IEEE double-precision value without rounding.) 4244 // If any of those low 11 bits were not zero originally, make sure 4245 // bit 12 (value 2048) is set instead, so that the final rounding 4246 // to single-precision gets the correct result. 4247 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 4248 SINT, DAG.getConstant(2047, MVT::i64)); 4249 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 4250 Round, DAG.getConstant(2047, MVT::i64)); 4251 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 4252 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 4253 Round, DAG.getConstant(-2048, MVT::i64)); 4254 4255 // However, we cannot use that value unconditionally: if the magnitude 4256 // of the input value is small, the bit-twiddling we did above might 4257 // end up visibly changing the output. Fortunately, in that case, we 4258 // don't need to twiddle bits since the original input will convert 4259 // exactly to double-precision floating-point already. Therefore, 4260 // construct a conditional to use the original value if the top 11 4261 // bits are all sign-bit copies, and use the rounded value computed 4262 // above otherwise. 4263 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 4264 SINT, DAG.getConstant(53, MVT::i32)); 4265 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 4266 Cond, DAG.getConstant(1, MVT::i64)); 4267 Cond = DAG.getSetCC(dl, MVT::i32, 4268 Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); 4269 4270 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 4271 } 4272 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 4273 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 4274 if (Op.getValueType() == MVT::f32) 4275 FP = DAG.getNode(ISD::FP_ROUND, dl, 4276 MVT::f32, FP, DAG.getIntPtrConstant(0)); 4277 return FP; 4278 } 4279 4280 assert(Op.getOperand(0).getValueType() == MVT::i32 && 4281 "Unhandled SINT_TO_FP type in custom expander!"); 4282 // Since we only generate this in 64-bit mode, we can take advantage of 4283 // 64-bit registers. In particular, sign extend the input value into the 4284 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 4285 // then lfd it and fcfid it. 4286 MachineFunction &MF = DAG.getMachineFunction(); 4287 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 4288 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 4289 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4290 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4291 4292 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 4293 Op.getOperand(0)); 4294 4295 // STD the extended value into the stack slot. 4296 MachineMemOperand *MMO = 4297 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 4298 MachineMemOperand::MOStore, 8, 8); 4299 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 4300 SDValue Store = 4301 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 4302 Ops, 4, MVT::i64, MMO); 4303 // Load the value as a double. 4304 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 4305 false, false, false, 0); 4306 4307 // FCFID it and return it. 4308 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 4309 if (Op.getValueType() == MVT::f32) 4310 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 4311 return FP; 4312 } 4313 4314 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 4315 SelectionDAG &DAG) const { 4316 DebugLoc dl = Op.getDebugLoc(); 4317 /* 4318 The rounding mode is in bits 30:31 of FPSR, and has the following 4319 settings: 4320 00 Round to nearest 4321 01 Round to 0 4322 10 Round to +inf 4323 11 Round to -inf 4324 4325 FLT_ROUNDS, on the other hand, expects the following: 4326 -1 Undefined 4327 0 Round to 0 4328 1 Round to nearest 4329 2 Round to +inf 4330 3 Round to -inf 4331 4332 To perform the conversion, we do: 4333 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 4334 */ 4335 4336 MachineFunction &MF = DAG.getMachineFunction(); 4337 EVT VT = Op.getValueType(); 4338 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4339 std::vector<EVT> NodeTys; 4340 SDValue MFFSreg, InFlag; 4341 4342 // Save FP Control Word to register 4343 NodeTys.push_back(MVT::f64); // return register 4344 NodeTys.push_back(MVT::Glue); // unused in this context 4345 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4346 4347 // Save FP register to stack slot 4348 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 4349 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 4350 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 4351 StackSlot, MachinePointerInfo(), false, false,0); 4352 4353 // Load FP Control Word from low 32 bits of stack slot. 4354 SDValue Four = DAG.getConstant(4, PtrVT); 4355 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 4356 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 4357 false, false, false, 0); 4358 4359 // Transform as necessary 4360 SDValue CWD1 = 4361 DAG.getNode(ISD::AND, dl, MVT::i32, 4362 CWD, DAG.getConstant(3, MVT::i32)); 4363 SDValue CWD2 = 4364 DAG.getNode(ISD::SRL, dl, MVT::i32, 4365 DAG.getNode(ISD::AND, dl, MVT::i32, 4366 DAG.getNode(ISD::XOR, dl, MVT::i32, 4367 CWD, DAG.getConstant(3, MVT::i32)), 4368 DAG.getConstant(3, MVT::i32)), 4369 DAG.getConstant(1, MVT::i32)); 4370 4371 SDValue RetVal = 4372 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 4373 4374 return DAG.getNode((VT.getSizeInBits() < 16 ? 4375 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 4376 } 4377 4378 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 4379 EVT VT = Op.getValueType(); 4380 unsigned BitWidth = VT.getSizeInBits(); 4381 DebugLoc dl = Op.getDebugLoc(); 4382 assert(Op.getNumOperands() == 3 && 4383 VT == Op.getOperand(1).getValueType() && 4384 "Unexpected SHL!"); 4385 4386 // Expand into a bunch of logical ops. Note that these ops 4387 // depend on the PPC behavior for oversized shift amounts. 4388 SDValue Lo = Op.getOperand(0); 4389 SDValue Hi = Op.getOperand(1); 4390 SDValue Amt = Op.getOperand(2); 4391 EVT AmtVT = Amt.getValueType(); 4392 4393 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4394 DAG.getConstant(BitWidth, AmtVT), Amt); 4395 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 4396 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 4397 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 4398 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4399 DAG.getConstant(-BitWidth, AmtVT)); 4400 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 4401 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 4402 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 4403 SDValue OutOps[] = { OutLo, OutHi }; 4404 return DAG.getMergeValues(OutOps, 2, dl); 4405 } 4406 4407 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 4408 EVT VT = Op.getValueType(); 4409 DebugLoc dl = Op.getDebugLoc(); 4410 unsigned BitWidth = VT.getSizeInBits(); 4411 assert(Op.getNumOperands() == 3 && 4412 VT == Op.getOperand(1).getValueType() && 4413 "Unexpected SRL!"); 4414 4415 // Expand into a bunch of logical ops. Note that these ops 4416 // depend on the PPC behavior for oversized shift amounts. 4417 SDValue Lo = Op.getOperand(0); 4418 SDValue Hi = Op.getOperand(1); 4419 SDValue Amt = Op.getOperand(2); 4420 EVT AmtVT = Amt.getValueType(); 4421 4422 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4423 DAG.getConstant(BitWidth, AmtVT), Amt); 4424 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 4425 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 4426 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 4427 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4428 DAG.getConstant(-BitWidth, AmtVT)); 4429 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 4430 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 4431 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 4432 SDValue OutOps[] = { OutLo, OutHi }; 4433 return DAG.getMergeValues(OutOps, 2, dl); 4434 } 4435 4436 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 4437 DebugLoc dl = Op.getDebugLoc(); 4438 EVT VT = Op.getValueType(); 4439 unsigned BitWidth = VT.getSizeInBits(); 4440 assert(Op.getNumOperands() == 3 && 4441 VT == Op.getOperand(1).getValueType() && 4442 "Unexpected SRA!"); 4443 4444 // Expand into a bunch of logical ops, followed by a select_cc. 4445 SDValue Lo = Op.getOperand(0); 4446 SDValue Hi = Op.getOperand(1); 4447 SDValue Amt = Op.getOperand(2); 4448 EVT AmtVT = Amt.getValueType(); 4449 4450 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 4451 DAG.getConstant(BitWidth, AmtVT), Amt); 4452 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 4453 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 4454 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 4455 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 4456 DAG.getConstant(-BitWidth, AmtVT)); 4457 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 4458 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 4459 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 4460 Tmp4, Tmp6, ISD::SETLE); 4461 SDValue OutOps[] = { OutLo, OutHi }; 4462 return DAG.getMergeValues(OutOps, 2, dl); 4463 } 4464 4465 //===----------------------------------------------------------------------===// 4466 // Vector related lowering. 4467 // 4468 4469 /// BuildSplatI - Build a canonical splati of Val with an element size of 4470 /// SplatSize. Cast the result to VT. 4471 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 4472 SelectionDAG &DAG, DebugLoc dl) { 4473 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 4474 4475 static const EVT VTys[] = { // canonical VT to use for each size. 4476 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 4477 }; 4478 4479 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 4480 4481 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 4482 if (Val == -1) 4483 SplatSize = 1; 4484 4485 EVT CanonicalVT = VTys[SplatSize-1]; 4486 4487 // Build a canonical splat for this value. 4488 SDValue Elt = DAG.getConstant(Val, MVT::i32); 4489 SmallVector<SDValue, 8> Ops; 4490 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 4491 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 4492 &Ops[0], Ops.size()); 4493 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 4494 } 4495 4496 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 4497 /// specified intrinsic ID. 4498 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 4499 SelectionDAG &DAG, DebugLoc dl, 4500 EVT DestVT = MVT::Other) { 4501 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 4502 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4503 DAG.getConstant(IID, MVT::i32), LHS, RHS); 4504 } 4505 4506 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 4507 /// specified intrinsic ID. 4508 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 4509 SDValue Op2, SelectionDAG &DAG, 4510 DebugLoc dl, EVT DestVT = MVT::Other) { 4511 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 4512 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4513 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 4514 } 4515 4516 4517 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 4518 /// amount. The result has the specified value type. 4519 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 4520 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 4521 // Force LHS/RHS to be the right type. 4522 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 4523 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 4524 4525 int Ops[16]; 4526 for (unsigned i = 0; i != 16; ++i) 4527 Ops[i] = i + Amt; 4528 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 4529 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4530 } 4531 4532 // If this is a case we can't handle, return null and let the default 4533 // expansion code take care of it. If we CAN select this case, and if it 4534 // selects to a single instruction, return Op. Otherwise, if we can codegen 4535 // this case more efficiently than a constant pool load, lower it to the 4536 // sequence of ops that should be used. 4537 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 4538 SelectionDAG &DAG) const { 4539 DebugLoc dl = Op.getDebugLoc(); 4540 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 4541 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 4542 4543 // Check if this is a splat of a constant value. 4544 APInt APSplatBits, APSplatUndef; 4545 unsigned SplatBitSize; 4546 bool HasAnyUndefs; 4547 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 4548 HasAnyUndefs, 0, true) || SplatBitSize > 32) 4549 return SDValue(); 4550 4551 unsigned SplatBits = APSplatBits.getZExtValue(); 4552 unsigned SplatUndef = APSplatUndef.getZExtValue(); 4553 unsigned SplatSize = SplatBitSize / 8; 4554 4555 // First, handle single instruction cases. 4556 4557 // All zeros? 4558 if (SplatBits == 0) { 4559 // Canonicalize all zero vectors to be v4i32. 4560 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 4561 SDValue Z = DAG.getConstant(0, MVT::i32); 4562 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 4563 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 4564 } 4565 return Op; 4566 } 4567 4568 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 4569 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 4570 (32-SplatBitSize)); 4571 if (SextVal >= -16 && SextVal <= 15) 4572 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 4573 4574 4575 // Two instruction sequences. 4576 4577 // If this value is in the range [-32,30] and is even, use: 4578 // tmp = VSPLTI[bhw], result = add tmp, tmp 4579 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 4580 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 4581 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 4582 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4583 } 4584 4585 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 4586 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 4587 // for fneg/fabs. 4588 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 4589 // Make -1 and vspltisw -1: 4590 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 4591 4592 // Make the VSLW intrinsic, computing 0x8000_0000. 4593 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 4594 OnesV, DAG, dl); 4595 4596 // xor by OnesV to invert it. 4597 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 4598 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4599 } 4600 4601 // Check to see if this is a wide variety of vsplti*, binop self cases. 4602 static const signed char SplatCsts[] = { 4603 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 4604 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 4605 }; 4606 4607 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4608 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4609 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4610 int i = SplatCsts[idx]; 4611 4612 // Figure out what shift amount will be used by altivec if shifted by i in 4613 // this splat size. 4614 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4615 4616 // vsplti + shl self. 4617 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 4618 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4619 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4620 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4621 Intrinsic::ppc_altivec_vslw 4622 }; 4623 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4624 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4625 } 4626 4627 // vsplti + srl self. 4628 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4629 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4630 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4631 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4632 Intrinsic::ppc_altivec_vsrw 4633 }; 4634 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4635 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4636 } 4637 4638 // vsplti + sra self. 4639 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4640 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4641 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4642 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4643 Intrinsic::ppc_altivec_vsraw 4644 }; 4645 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4646 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4647 } 4648 4649 // vsplti + rol self. 4650 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4651 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4652 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4653 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4654 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4655 Intrinsic::ppc_altivec_vrlw 4656 }; 4657 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4658 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4659 } 4660 4661 // t = vsplti c, result = vsldoi t, t, 1 4662 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 4663 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4664 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4665 } 4666 // t = vsplti c, result = vsldoi t, t, 2 4667 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 4668 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4669 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4670 } 4671 // t = vsplti c, result = vsldoi t, t, 3 4672 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4673 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4674 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4675 } 4676 } 4677 4678 // Three instruction sequences. 4679 4680 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4681 if (SextVal >= 0 && SextVal <= 31) { 4682 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4683 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4684 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4685 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4686 } 4687 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4688 if (SextVal >= -31 && SextVal <= 0) { 4689 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4690 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4691 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4692 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4693 } 4694 4695 return SDValue(); 4696 } 4697 4698 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4699 /// the specified operations to build the shuffle. 4700 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4701 SDValue RHS, SelectionDAG &DAG, 4702 DebugLoc dl) { 4703 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4704 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4705 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4706 4707 enum { 4708 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4709 OP_VMRGHW, 4710 OP_VMRGLW, 4711 OP_VSPLTISW0, 4712 OP_VSPLTISW1, 4713 OP_VSPLTISW2, 4714 OP_VSPLTISW3, 4715 OP_VSLDOI4, 4716 OP_VSLDOI8, 4717 OP_VSLDOI12 4718 }; 4719 4720 if (OpNum == OP_COPY) { 4721 if (LHSID == (1*9+2)*9+3) return LHS; 4722 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4723 return RHS; 4724 } 4725 4726 SDValue OpLHS, OpRHS; 4727 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4728 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4729 4730 int ShufIdxs[16]; 4731 switch (OpNum) { 4732 default: llvm_unreachable("Unknown i32 permute!"); 4733 case OP_VMRGHW: 4734 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4735 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4736 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4737 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4738 break; 4739 case OP_VMRGLW: 4740 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4741 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4742 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4743 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4744 break; 4745 case OP_VSPLTISW0: 4746 for (unsigned i = 0; i != 16; ++i) 4747 ShufIdxs[i] = (i&3)+0; 4748 break; 4749 case OP_VSPLTISW1: 4750 for (unsigned i = 0; i != 16; ++i) 4751 ShufIdxs[i] = (i&3)+4; 4752 break; 4753 case OP_VSPLTISW2: 4754 for (unsigned i = 0; i != 16; ++i) 4755 ShufIdxs[i] = (i&3)+8; 4756 break; 4757 case OP_VSPLTISW3: 4758 for (unsigned i = 0; i != 16; ++i) 4759 ShufIdxs[i] = (i&3)+12; 4760 break; 4761 case OP_VSLDOI4: 4762 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4763 case OP_VSLDOI8: 4764 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4765 case OP_VSLDOI12: 4766 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4767 } 4768 EVT VT = OpLHS.getValueType(); 4769 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4770 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4771 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4772 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4773 } 4774 4775 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4776 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4777 /// return the code it can be lowered into. Worst case, it can always be 4778 /// lowered into a vperm. 4779 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4780 SelectionDAG &DAG) const { 4781 DebugLoc dl = Op.getDebugLoc(); 4782 SDValue V1 = Op.getOperand(0); 4783 SDValue V2 = Op.getOperand(1); 4784 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4785 EVT VT = Op.getValueType(); 4786 4787 // Cases that are handled by instructions that take permute immediates 4788 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4789 // selected by the instruction selector. 4790 if (V2.getOpcode() == ISD::UNDEF) { 4791 if (PPC::isSplatShuffleMask(SVOp, 1) || 4792 PPC::isSplatShuffleMask(SVOp, 2) || 4793 PPC::isSplatShuffleMask(SVOp, 4) || 4794 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4795 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4796 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4797 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4798 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4799 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4800 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4801 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4802 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4803 return Op; 4804 } 4805 } 4806 4807 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4808 // and produce a fixed permutation. If any of these match, do not lower to 4809 // VPERM. 4810 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4811 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4812 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4813 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4814 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4815 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4816 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4817 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4818 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4819 return Op; 4820 4821 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4822 // perfect shuffle table to emit an optimal matching sequence. 4823 ArrayRef<int> PermMask = SVOp->getMask(); 4824 4825 unsigned PFIndexes[4]; 4826 bool isFourElementShuffle = true; 4827 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4828 unsigned EltNo = 8; // Start out undef. 4829 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4830 if (PermMask[i*4+j] < 0) 4831 continue; // Undef, ignore it. 4832 4833 unsigned ByteSource = PermMask[i*4+j]; 4834 if ((ByteSource & 3) != j) { 4835 isFourElementShuffle = false; 4836 break; 4837 } 4838 4839 if (EltNo == 8) { 4840 EltNo = ByteSource/4; 4841 } else if (EltNo != ByteSource/4) { 4842 isFourElementShuffle = false; 4843 break; 4844 } 4845 } 4846 PFIndexes[i] = EltNo; 4847 } 4848 4849 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4850 // perfect shuffle vector to determine if it is cost effective to do this as 4851 // discrete instructions, or whether we should use a vperm. 4852 if (isFourElementShuffle) { 4853 // Compute the index in the perfect shuffle table. 4854 unsigned PFTableIndex = 4855 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4856 4857 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4858 unsigned Cost = (PFEntry >> 30); 4859 4860 // Determining when to avoid vperm is tricky. Many things affect the cost 4861 // of vperm, particularly how many times the perm mask needs to be computed. 4862 // For example, if the perm mask can be hoisted out of a loop or is already 4863 // used (perhaps because there are multiple permutes with the same shuffle 4864 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4865 // the loop requires an extra register. 4866 // 4867 // As a compromise, we only emit discrete instructions if the shuffle can be 4868 // generated in 3 or fewer operations. When we have loop information 4869 // available, if this block is within a loop, we should avoid using vperm 4870 // for 3-operation perms and use a constant pool load instead. 4871 if (Cost < 3) 4872 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4873 } 4874 4875 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4876 // vector that will get spilled to the constant pool. 4877 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4878 4879 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4880 // that it is in input element units, not in bytes. Convert now. 4881 EVT EltVT = V1.getValueType().getVectorElementType(); 4882 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4883 4884 SmallVector<SDValue, 16> ResultMask; 4885 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4886 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4887 4888 for (unsigned j = 0; j != BytesPerElement; ++j) 4889 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4890 MVT::i32)); 4891 } 4892 4893 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4894 &ResultMask[0], ResultMask.size()); 4895 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4896 } 4897 4898 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4899 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4900 /// information about the intrinsic. 4901 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4902 bool &isDot) { 4903 unsigned IntrinsicID = 4904 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4905 CompareOpc = -1; 4906 isDot = false; 4907 switch (IntrinsicID) { 4908 default: return false; 4909 // Comparison predicates. 4910 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4911 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4912 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4913 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4914 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4915 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4916 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4917 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4918 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4919 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4920 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4921 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4922 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4923 4924 // Normal Comparisons. 4925 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4926 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4927 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4928 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4929 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4930 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4931 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4932 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4933 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4934 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4935 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4936 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4937 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4938 } 4939 return true; 4940 } 4941 4942 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4943 /// lower, do it, otherwise return null. 4944 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4945 SelectionDAG &DAG) const { 4946 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4947 // opcode number of the comparison. 4948 DebugLoc dl = Op.getDebugLoc(); 4949 int CompareOpc; 4950 bool isDot; 4951 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4952 return SDValue(); // Don't custom lower most intrinsics. 4953 4954 // If this is a non-dot comparison, make the VCMP node and we are done. 4955 if (!isDot) { 4956 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4957 Op.getOperand(1), Op.getOperand(2), 4958 DAG.getConstant(CompareOpc, MVT::i32)); 4959 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4960 } 4961 4962 // Create the PPCISD altivec 'dot' comparison node. 4963 SDValue Ops[] = { 4964 Op.getOperand(2), // LHS 4965 Op.getOperand(3), // RHS 4966 DAG.getConstant(CompareOpc, MVT::i32) 4967 }; 4968 std::vector<EVT> VTs; 4969 VTs.push_back(Op.getOperand(2).getValueType()); 4970 VTs.push_back(MVT::Glue); 4971 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4972 4973 // Now that we have the comparison, emit a copy from the CR to a GPR. 4974 // This is flagged to the above dot comparison. 4975 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4976 DAG.getRegister(PPC::CR6, MVT::i32), 4977 CompNode.getValue(1)); 4978 4979 // Unpack the result based on how the target uses it. 4980 unsigned BitNo; // Bit # of CR6. 4981 bool InvertBit; // Invert result? 4982 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4983 default: // Can't happen, don't crash on invalid number though. 4984 case 0: // Return the value of the EQ bit of CR6. 4985 BitNo = 0; InvertBit = false; 4986 break; 4987 case 1: // Return the inverted value of the EQ bit of CR6. 4988 BitNo = 0; InvertBit = true; 4989 break; 4990 case 2: // Return the value of the LT bit of CR6. 4991 BitNo = 2; InvertBit = false; 4992 break; 4993 case 3: // Return the inverted value of the LT bit of CR6. 4994 BitNo = 2; InvertBit = true; 4995 break; 4996 } 4997 4998 // Shift the bit into the low position. 4999 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 5000 DAG.getConstant(8-(3-BitNo), MVT::i32)); 5001 // Isolate the bit. 5002 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 5003 DAG.getConstant(1, MVT::i32)); 5004 5005 // If we are supposed to, toggle the bit. 5006 if (InvertBit) 5007 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 5008 DAG.getConstant(1, MVT::i32)); 5009 return Flags; 5010 } 5011 5012 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 5013 SelectionDAG &DAG) const { 5014 DebugLoc dl = Op.getDebugLoc(); 5015 // Create a stack slot that is 16-byte aligned. 5016 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 5017 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 5018 EVT PtrVT = getPointerTy(); 5019 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 5020 5021 // Store the input value into Value#0 of the stack slot. 5022 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 5023 Op.getOperand(0), FIdx, MachinePointerInfo(), 5024 false, false, 0); 5025 // Load it out. 5026 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 5027 false, false, false, 0); 5028 } 5029 5030 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 5031 DebugLoc dl = Op.getDebugLoc(); 5032 if (Op.getValueType() == MVT::v4i32) { 5033 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5034 5035 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 5036 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 5037 5038 SDValue RHSSwap = // = vrlw RHS, 16 5039 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 5040 5041 // Shrinkify inputs to v8i16. 5042 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 5043 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 5044 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 5045 5046 // Low parts multiplied together, generating 32-bit results (we ignore the 5047 // top parts). 5048 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 5049 LHS, RHS, DAG, dl, MVT::v4i32); 5050 5051 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 5052 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 5053 // Shift the high parts up 16 bits. 5054 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 5055 Neg16, DAG, dl); 5056 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 5057 } else if (Op.getValueType() == MVT::v8i16) { 5058 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5059 5060 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 5061 5062 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 5063 LHS, RHS, Zero, DAG, dl); 5064 } else if (Op.getValueType() == MVT::v16i8) { 5065 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5066 5067 // Multiply the even 8-bit parts, producing 16-bit sums. 5068 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 5069 LHS, RHS, DAG, dl, MVT::v8i16); 5070 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 5071 5072 // Multiply the odd 8-bit parts, producing 16-bit sums. 5073 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 5074 LHS, RHS, DAG, dl, MVT::v8i16); 5075 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 5076 5077 // Merge the results together. 5078 int Ops[16]; 5079 for (unsigned i = 0; i != 8; ++i) { 5080 Ops[i*2 ] = 2*i+1; 5081 Ops[i*2+1] = 2*i+1+16; 5082 } 5083 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 5084 } else { 5085 llvm_unreachable("Unknown mul to lower!"); 5086 } 5087 } 5088 5089 /// LowerOperation - Provide custom lowering hooks for some operations. 5090 /// 5091 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5092 switch (Op.getOpcode()) { 5093 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 5094 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5095 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 5096 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 5097 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5098 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 5099 case ISD::SETCC: return LowerSETCC(Op, DAG); 5100 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 5101 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 5102 case ISD::VASTART: 5103 return LowerVASTART(Op, DAG, PPCSubTarget); 5104 5105 case ISD::VAARG: 5106 return LowerVAARG(Op, DAG, PPCSubTarget); 5107 5108 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 5109 case ISD::DYNAMIC_STACKALLOC: 5110 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 5111 5112 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 5113 case ISD::FP_TO_UINT: 5114 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 5115 Op.getDebugLoc()); 5116 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 5117 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5118 5119 // Lower 64-bit shifts. 5120 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 5121 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 5122 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 5123 5124 // Vector-related lowering. 5125 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 5126 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5127 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5128 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 5129 case ISD::MUL: return LowerMUL(Op, DAG); 5130 5131 // Frame & Return address. 5132 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5133 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5134 } 5135 } 5136 5137 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 5138 SmallVectorImpl<SDValue>&Results, 5139 SelectionDAG &DAG) const { 5140 const TargetMachine &TM = getTargetMachine(); 5141 DebugLoc dl = N->getDebugLoc(); 5142 switch (N->getOpcode()) { 5143 default: 5144 llvm_unreachable("Do not know how to custom type legalize this operation!"); 5145 case ISD::VAARG: { 5146 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 5147 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 5148 return; 5149 5150 EVT VT = N->getValueType(0); 5151 5152 if (VT == MVT::i64) { 5153 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 5154 5155 Results.push_back(NewNode); 5156 Results.push_back(NewNode.getValue(1)); 5157 } 5158 return; 5159 } 5160 case ISD::FP_ROUND_INREG: { 5161 assert(N->getValueType(0) == MVT::ppcf128); 5162 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 5163 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 5164 MVT::f64, N->getOperand(0), 5165 DAG.getIntPtrConstant(0)); 5166 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 5167 MVT::f64, N->getOperand(0), 5168 DAG.getIntPtrConstant(1)); 5169 5170 // This sequence changes FPSCR to do round-to-zero, adds the two halves 5171 // of the long double, and puts FPSCR back the way it was. We do not 5172 // actually model FPSCR. 5173 std::vector<EVT> NodeTys; 5174 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 5175 5176 NodeTys.push_back(MVT::f64); // Return register 5177 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 5178 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 5179 MFFSreg = Result.getValue(0); 5180 InFlag = Result.getValue(1); 5181 5182 NodeTys.clear(); 5183 NodeTys.push_back(MVT::Glue); // Returns a flag 5184 Ops[0] = DAG.getConstant(31, MVT::i32); 5185 Ops[1] = InFlag; 5186 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 5187 InFlag = Result.getValue(0); 5188 5189 NodeTys.clear(); 5190 NodeTys.push_back(MVT::Glue); // Returns a flag 5191 Ops[0] = DAG.getConstant(30, MVT::i32); 5192 Ops[1] = InFlag; 5193 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 5194 InFlag = Result.getValue(0); 5195 5196 NodeTys.clear(); 5197 NodeTys.push_back(MVT::f64); // result of add 5198 NodeTys.push_back(MVT::Glue); // Returns a flag 5199 Ops[0] = Lo; 5200 Ops[1] = Hi; 5201 Ops[2] = InFlag; 5202 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 5203 FPreg = Result.getValue(0); 5204 InFlag = Result.getValue(1); 5205 5206 NodeTys.clear(); 5207 NodeTys.push_back(MVT::f64); 5208 Ops[0] = DAG.getConstant(1, MVT::i32); 5209 Ops[1] = MFFSreg; 5210 Ops[2] = FPreg; 5211 Ops[3] = InFlag; 5212 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 5213 FPreg = Result.getValue(0); 5214 5215 // We know the low half is about to be thrown away, so just use something 5216 // convenient. 5217 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 5218 FPreg, FPreg)); 5219 return; 5220 } 5221 case ISD::FP_TO_SINT: 5222 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 5223 return; 5224 } 5225 } 5226 5227 5228 //===----------------------------------------------------------------------===// 5229 // Other Lowering Code 5230 //===----------------------------------------------------------------------===// 5231 5232 MachineBasicBlock * 5233 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 5234 bool is64bit, unsigned BinOpcode) const { 5235 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 5236 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5237 5238 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5239 MachineFunction *F = BB->getParent(); 5240 MachineFunction::iterator It = BB; 5241 ++It; 5242 5243 unsigned dest = MI->getOperand(0).getReg(); 5244 unsigned ptrA = MI->getOperand(1).getReg(); 5245 unsigned ptrB = MI->getOperand(2).getReg(); 5246 unsigned incr = MI->getOperand(3).getReg(); 5247 DebugLoc dl = MI->getDebugLoc(); 5248 5249 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 5250 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5251 F->insert(It, loopMBB); 5252 F->insert(It, exitMBB); 5253 exitMBB->splice(exitMBB->begin(), BB, 5254 llvm::next(MachineBasicBlock::iterator(MI)), 5255 BB->end()); 5256 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5257 5258 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5259 unsigned TmpReg = (!BinOpcode) ? incr : 5260 RegInfo.createVirtualRegister( 5261 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5262 (const TargetRegisterClass *) &PPC::GPRCRegClass); 5263 5264 // thisMBB: 5265 // ... 5266 // fallthrough --> loopMBB 5267 BB->addSuccessor(loopMBB); 5268 5269 // loopMBB: 5270 // l[wd]arx dest, ptr 5271 // add r0, dest, incr 5272 // st[wd]cx. r0, ptr 5273 // bne- loopMBB 5274 // fallthrough --> exitMBB 5275 BB = loopMBB; 5276 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5277 .addReg(ptrA).addReg(ptrB); 5278 if (BinOpcode) 5279 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 5280 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5281 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 5282 BuildMI(BB, dl, TII->get(PPC::BCC)) 5283 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 5284 BB->addSuccessor(loopMBB); 5285 BB->addSuccessor(exitMBB); 5286 5287 // exitMBB: 5288 // ... 5289 BB = exitMBB; 5290 return BB; 5291 } 5292 5293 MachineBasicBlock * 5294 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 5295 MachineBasicBlock *BB, 5296 bool is8bit, // operation 5297 unsigned BinOpcode) const { 5298 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 5299 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5300 // In 64 bit mode we have to use 64 bits for addresses, even though the 5301 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 5302 // registers without caring whether they're 32 or 64, but here we're 5303 // doing actual arithmetic on the addresses. 5304 bool is64bit = PPCSubTarget.isPPC64(); 5305 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5306 5307 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5308 MachineFunction *F = BB->getParent(); 5309 MachineFunction::iterator It = BB; 5310 ++It; 5311 5312 unsigned dest = MI->getOperand(0).getReg(); 5313 unsigned ptrA = MI->getOperand(1).getReg(); 5314 unsigned ptrB = MI->getOperand(2).getReg(); 5315 unsigned incr = MI->getOperand(3).getReg(); 5316 DebugLoc dl = MI->getDebugLoc(); 5317 5318 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 5319 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5320 F->insert(It, loopMBB); 5321 F->insert(It, exitMBB); 5322 exitMBB->splice(exitMBB->begin(), BB, 5323 llvm::next(MachineBasicBlock::iterator(MI)), 5324 BB->end()); 5325 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5326 5327 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5328 const TargetRegisterClass *RC = 5329 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5330 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5331 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5332 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5333 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5334 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 5335 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5336 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5337 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5338 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5339 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 5340 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5341 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5342 unsigned Ptr1Reg; 5343 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 5344 5345 // thisMBB: 5346 // ... 5347 // fallthrough --> loopMBB 5348 BB->addSuccessor(loopMBB); 5349 5350 // The 4-byte load must be aligned, while a char or short may be 5351 // anywhere in the word. Hence all this nasty bookkeeping code. 5352 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5353 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5354 // xori shift, shift1, 24 [16] 5355 // rlwinm ptr, ptr1, 0, 0, 29 5356 // slw incr2, incr, shift 5357 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5358 // slw mask, mask2, shift 5359 // loopMBB: 5360 // lwarx tmpDest, ptr 5361 // add tmp, tmpDest, incr2 5362 // andc tmp2, tmpDest, mask 5363 // and tmp3, tmp, mask 5364 // or tmp4, tmp3, tmp2 5365 // stwcx. tmp4, ptr 5366 // bne- loopMBB 5367 // fallthrough --> exitMBB 5368 // srw dest, tmpDest, shift 5369 if (ptrA != ZeroReg) { 5370 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5371 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5372 .addReg(ptrA).addReg(ptrB); 5373 } else { 5374 Ptr1Reg = ptrB; 5375 } 5376 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5377 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5378 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5379 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5380 if (is64bit) 5381 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5382 .addReg(Ptr1Reg).addImm(0).addImm(61); 5383 else 5384 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5385 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5386 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 5387 .addReg(incr).addReg(ShiftReg); 5388 if (is8bit) 5389 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5390 else { 5391 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5392 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 5393 } 5394 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5395 .addReg(Mask2Reg).addReg(ShiftReg); 5396 5397 BB = loopMBB; 5398 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5399 .addReg(ZeroReg).addReg(PtrReg); 5400 if (BinOpcode) 5401 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 5402 .addReg(Incr2Reg).addReg(TmpDestReg); 5403 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 5404 .addReg(TmpDestReg).addReg(MaskReg); 5405 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 5406 .addReg(TmpReg).addReg(MaskReg); 5407 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 5408 .addReg(Tmp3Reg).addReg(Tmp2Reg); 5409 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5410 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 5411 BuildMI(BB, dl, TII->get(PPC::BCC)) 5412 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 5413 BB->addSuccessor(loopMBB); 5414 BB->addSuccessor(exitMBB); 5415 5416 // exitMBB: 5417 // ... 5418 BB = exitMBB; 5419 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 5420 .addReg(ShiftReg); 5421 return BB; 5422 } 5423 5424 MachineBasicBlock * 5425 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 5426 MachineBasicBlock *BB) const { 5427 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5428 5429 // To "insert" these instructions we actually have to insert their 5430 // control-flow patterns. 5431 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5432 MachineFunction::iterator It = BB; 5433 ++It; 5434 5435 MachineFunction *F = BB->getParent(); 5436 5437 if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 5438 MI->getOpcode() == PPC::SELECT_CC_I8)) { 5439 unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ? 5440 PPC::ISEL8 : PPC::ISEL; 5441 unsigned SelectPred = MI->getOperand(4).getImm(); 5442 DebugLoc dl = MI->getDebugLoc(); 5443 5444 // The SelectPred is ((BI << 5) | BO) for a BCC 5445 unsigned BO = SelectPred & 0xF; 5446 assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel"); 5447 5448 unsigned TrueOpNo, FalseOpNo; 5449 if (BO == 12) { 5450 TrueOpNo = 2; 5451 FalseOpNo = 3; 5452 } else { 5453 TrueOpNo = 3; 5454 FalseOpNo = 2; 5455 SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred); 5456 } 5457 5458 BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg()) 5459 .addReg(MI->getOperand(TrueOpNo).getReg()) 5460 .addReg(MI->getOperand(FalseOpNo).getReg()) 5461 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()); 5462 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 5463 MI->getOpcode() == PPC::SELECT_CC_I8 || 5464 MI->getOpcode() == PPC::SELECT_CC_F4 || 5465 MI->getOpcode() == PPC::SELECT_CC_F8 || 5466 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 5467 5468 5469 // The incoming instruction knows the destination vreg to set, the 5470 // condition code register to branch on, the true/false values to 5471 // select between, and a branch opcode to use. 5472 5473 // thisMBB: 5474 // ... 5475 // TrueVal = ... 5476 // cmpTY ccX, r1, r2 5477 // bCC copy1MBB 5478 // fallthrough --> copy0MBB 5479 MachineBasicBlock *thisMBB = BB; 5480 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 5481 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 5482 unsigned SelectPred = MI->getOperand(4).getImm(); 5483 DebugLoc dl = MI->getDebugLoc(); 5484 F->insert(It, copy0MBB); 5485 F->insert(It, sinkMBB); 5486 5487 // Transfer the remainder of BB and its successor edges to sinkMBB. 5488 sinkMBB->splice(sinkMBB->begin(), BB, 5489 llvm::next(MachineBasicBlock::iterator(MI)), 5490 BB->end()); 5491 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 5492 5493 // Next, add the true and fallthrough blocks as its successors. 5494 BB->addSuccessor(copy0MBB); 5495 BB->addSuccessor(sinkMBB); 5496 5497 BuildMI(BB, dl, TII->get(PPC::BCC)) 5498 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 5499 5500 // copy0MBB: 5501 // %FalseValue = ... 5502 // # fallthrough to sinkMBB 5503 BB = copy0MBB; 5504 5505 // Update machine-CFG edges 5506 BB->addSuccessor(sinkMBB); 5507 5508 // sinkMBB: 5509 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 5510 // ... 5511 BB = sinkMBB; 5512 BuildMI(*BB, BB->begin(), dl, 5513 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 5514 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 5515 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 5516 } 5517 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 5518 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 5519 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 5520 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 5521 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 5522 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 5523 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 5524 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 5525 5526 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 5527 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 5528 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 5529 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 5530 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 5531 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 5532 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 5533 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 5534 5535 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 5536 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 5537 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 5538 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 5539 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 5540 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 5541 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 5542 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 5543 5544 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 5545 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 5546 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 5547 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 5548 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 5549 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 5550 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 5551 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 5552 5553 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 5554 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 5555 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 5556 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 5557 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 5558 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 5559 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 5560 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 5561 5562 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 5563 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 5564 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 5565 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 5566 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 5567 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 5568 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 5569 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 5570 5571 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 5572 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 5573 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 5574 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 5575 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 5576 BB = EmitAtomicBinary(MI, BB, false, 0); 5577 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 5578 BB = EmitAtomicBinary(MI, BB, true, 0); 5579 5580 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 5581 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 5582 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 5583 5584 unsigned dest = MI->getOperand(0).getReg(); 5585 unsigned ptrA = MI->getOperand(1).getReg(); 5586 unsigned ptrB = MI->getOperand(2).getReg(); 5587 unsigned oldval = MI->getOperand(3).getReg(); 5588 unsigned newval = MI->getOperand(4).getReg(); 5589 DebugLoc dl = MI->getDebugLoc(); 5590 5591 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5592 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5593 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5594 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5595 F->insert(It, loop1MBB); 5596 F->insert(It, loop2MBB); 5597 F->insert(It, midMBB); 5598 F->insert(It, exitMBB); 5599 exitMBB->splice(exitMBB->begin(), BB, 5600 llvm::next(MachineBasicBlock::iterator(MI)), 5601 BB->end()); 5602 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5603 5604 // thisMBB: 5605 // ... 5606 // fallthrough --> loopMBB 5607 BB->addSuccessor(loop1MBB); 5608 5609 // loop1MBB: 5610 // l[wd]arx dest, ptr 5611 // cmp[wd] dest, oldval 5612 // bne- midMBB 5613 // loop2MBB: 5614 // st[wd]cx. newval, ptr 5615 // bne- loopMBB 5616 // b exitBB 5617 // midMBB: 5618 // st[wd]cx. dest, ptr 5619 // exitBB: 5620 BB = loop1MBB; 5621 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5622 .addReg(ptrA).addReg(ptrB); 5623 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 5624 .addReg(oldval).addReg(dest); 5625 BuildMI(BB, dl, TII->get(PPC::BCC)) 5626 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5627 BB->addSuccessor(loop2MBB); 5628 BB->addSuccessor(midMBB); 5629 5630 BB = loop2MBB; 5631 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5632 .addReg(newval).addReg(ptrA).addReg(ptrB); 5633 BuildMI(BB, dl, TII->get(PPC::BCC)) 5634 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5635 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5636 BB->addSuccessor(loop1MBB); 5637 BB->addSuccessor(exitMBB); 5638 5639 BB = midMBB; 5640 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5641 .addReg(dest).addReg(ptrA).addReg(ptrB); 5642 BB->addSuccessor(exitMBB); 5643 5644 // exitMBB: 5645 // ... 5646 BB = exitMBB; 5647 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5648 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5649 // We must use 64-bit registers for addresses when targeting 64-bit, 5650 // since we're actually doing arithmetic on them. Other registers 5651 // can be 32-bit. 5652 bool is64bit = PPCSubTarget.isPPC64(); 5653 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5654 5655 unsigned dest = MI->getOperand(0).getReg(); 5656 unsigned ptrA = MI->getOperand(1).getReg(); 5657 unsigned ptrB = MI->getOperand(2).getReg(); 5658 unsigned oldval = MI->getOperand(3).getReg(); 5659 unsigned newval = MI->getOperand(4).getReg(); 5660 DebugLoc dl = MI->getDebugLoc(); 5661 5662 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5663 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5664 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5665 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5666 F->insert(It, loop1MBB); 5667 F->insert(It, loop2MBB); 5668 F->insert(It, midMBB); 5669 F->insert(It, exitMBB); 5670 exitMBB->splice(exitMBB->begin(), BB, 5671 llvm::next(MachineBasicBlock::iterator(MI)), 5672 BB->end()); 5673 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5674 5675 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5676 const TargetRegisterClass *RC = 5677 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5678 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5679 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5680 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5681 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5682 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5683 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5684 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5685 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5686 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5687 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5688 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5689 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5690 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5691 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5692 unsigned Ptr1Reg; 5693 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5694 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5695 // thisMBB: 5696 // ... 5697 // fallthrough --> loopMBB 5698 BB->addSuccessor(loop1MBB); 5699 5700 // The 4-byte load must be aligned, while a char or short may be 5701 // anywhere in the word. Hence all this nasty bookkeeping code. 5702 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5703 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5704 // xori shift, shift1, 24 [16] 5705 // rlwinm ptr, ptr1, 0, 0, 29 5706 // slw newval2, newval, shift 5707 // slw oldval2, oldval,shift 5708 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5709 // slw mask, mask2, shift 5710 // and newval3, newval2, mask 5711 // and oldval3, oldval2, mask 5712 // loop1MBB: 5713 // lwarx tmpDest, ptr 5714 // and tmp, tmpDest, mask 5715 // cmpw tmp, oldval3 5716 // bne- midMBB 5717 // loop2MBB: 5718 // andc tmp2, tmpDest, mask 5719 // or tmp4, tmp2, newval3 5720 // stwcx. tmp4, ptr 5721 // bne- loop1MBB 5722 // b exitBB 5723 // midMBB: 5724 // stwcx. tmpDest, ptr 5725 // exitBB: 5726 // srw dest, tmpDest, shift 5727 if (ptrA != ZeroReg) { 5728 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5729 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5730 .addReg(ptrA).addReg(ptrB); 5731 } else { 5732 Ptr1Reg = ptrB; 5733 } 5734 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5735 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5736 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5737 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5738 if (is64bit) 5739 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5740 .addReg(Ptr1Reg).addImm(0).addImm(61); 5741 else 5742 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5743 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5744 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5745 .addReg(newval).addReg(ShiftReg); 5746 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5747 .addReg(oldval).addReg(ShiftReg); 5748 if (is8bit) 5749 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5750 else { 5751 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5752 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5753 .addReg(Mask3Reg).addImm(65535); 5754 } 5755 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5756 .addReg(Mask2Reg).addReg(ShiftReg); 5757 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5758 .addReg(NewVal2Reg).addReg(MaskReg); 5759 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5760 .addReg(OldVal2Reg).addReg(MaskReg); 5761 5762 BB = loop1MBB; 5763 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5764 .addReg(ZeroReg).addReg(PtrReg); 5765 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5766 .addReg(TmpDestReg).addReg(MaskReg); 5767 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5768 .addReg(TmpReg).addReg(OldVal3Reg); 5769 BuildMI(BB, dl, TII->get(PPC::BCC)) 5770 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5771 BB->addSuccessor(loop2MBB); 5772 BB->addSuccessor(midMBB); 5773 5774 BB = loop2MBB; 5775 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5776 .addReg(TmpDestReg).addReg(MaskReg); 5777 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5778 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5779 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5780 .addReg(ZeroReg).addReg(PtrReg); 5781 BuildMI(BB, dl, TII->get(PPC::BCC)) 5782 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5783 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5784 BB->addSuccessor(loop1MBB); 5785 BB->addSuccessor(exitMBB); 5786 5787 BB = midMBB; 5788 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5789 .addReg(ZeroReg).addReg(PtrReg); 5790 BB->addSuccessor(exitMBB); 5791 5792 // exitMBB: 5793 // ... 5794 BB = exitMBB; 5795 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5796 .addReg(ShiftReg); 5797 } else { 5798 llvm_unreachable("Unexpected instr type to insert"); 5799 } 5800 5801 MI->eraseFromParent(); // The pseudo instruction is gone now. 5802 return BB; 5803 } 5804 5805 //===----------------------------------------------------------------------===// 5806 // Target Optimization Hooks 5807 //===----------------------------------------------------------------------===// 5808 5809 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5810 DAGCombinerInfo &DCI) const { 5811 const TargetMachine &TM = getTargetMachine(); 5812 SelectionDAG &DAG = DCI.DAG; 5813 DebugLoc dl = N->getDebugLoc(); 5814 switch (N->getOpcode()) { 5815 default: break; 5816 case PPCISD::SHL: 5817 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5818 if (C->isNullValue()) // 0 << V -> 0. 5819 return N->getOperand(0); 5820 } 5821 break; 5822 case PPCISD::SRL: 5823 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5824 if (C->isNullValue()) // 0 >>u V -> 0. 5825 return N->getOperand(0); 5826 } 5827 break; 5828 case PPCISD::SRA: 5829 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5830 if (C->isNullValue() || // 0 >>s V -> 0. 5831 C->isAllOnesValue()) // -1 >>s V -> -1. 5832 return N->getOperand(0); 5833 } 5834 break; 5835 5836 case ISD::SINT_TO_FP: 5837 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5838 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5839 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5840 // We allow the src/dst to be either f32/f64, but the intermediate 5841 // type must be i64. 5842 if (N->getOperand(0).getValueType() == MVT::i64 && 5843 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5844 SDValue Val = N->getOperand(0).getOperand(0); 5845 if (Val.getValueType() == MVT::f32) { 5846 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5847 DCI.AddToWorklist(Val.getNode()); 5848 } 5849 5850 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5851 DCI.AddToWorklist(Val.getNode()); 5852 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5853 DCI.AddToWorklist(Val.getNode()); 5854 if (N->getValueType(0) == MVT::f32) { 5855 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5856 DAG.getIntPtrConstant(0)); 5857 DCI.AddToWorklist(Val.getNode()); 5858 } 5859 return Val; 5860 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5861 // If the intermediate type is i32, we can avoid the load/store here 5862 // too. 5863 } 5864 } 5865 } 5866 break; 5867 case ISD::STORE: 5868 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5869 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5870 !cast<StoreSDNode>(N)->isTruncatingStore() && 5871 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5872 N->getOperand(1).getValueType() == MVT::i32 && 5873 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5874 SDValue Val = N->getOperand(1).getOperand(0); 5875 if (Val.getValueType() == MVT::f32) { 5876 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5877 DCI.AddToWorklist(Val.getNode()); 5878 } 5879 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5880 DCI.AddToWorklist(Val.getNode()); 5881 5882 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5883 N->getOperand(2), N->getOperand(3)); 5884 DCI.AddToWorklist(Val.getNode()); 5885 return Val; 5886 } 5887 5888 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5889 if (cast<StoreSDNode>(N)->isUnindexed() && 5890 N->getOperand(1).getOpcode() == ISD::BSWAP && 5891 N->getOperand(1).getNode()->hasOneUse() && 5892 (N->getOperand(1).getValueType() == MVT::i32 || 5893 N->getOperand(1).getValueType() == MVT::i16)) { 5894 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5895 // Do an any-extend to 32-bits if this is a half-word input. 5896 if (BSwapOp.getValueType() == MVT::i16) 5897 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5898 5899 SDValue Ops[] = { 5900 N->getOperand(0), BSwapOp, N->getOperand(2), 5901 DAG.getValueType(N->getOperand(1).getValueType()) 5902 }; 5903 return 5904 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5905 Ops, array_lengthof(Ops), 5906 cast<StoreSDNode>(N)->getMemoryVT(), 5907 cast<StoreSDNode>(N)->getMemOperand()); 5908 } 5909 break; 5910 case ISD::BSWAP: 5911 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5912 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5913 N->getOperand(0).hasOneUse() && 5914 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5915 SDValue Load = N->getOperand(0); 5916 LoadSDNode *LD = cast<LoadSDNode>(Load); 5917 // Create the byte-swapping load. 5918 SDValue Ops[] = { 5919 LD->getChain(), // Chain 5920 LD->getBasePtr(), // Ptr 5921 DAG.getValueType(N->getValueType(0)) // VT 5922 }; 5923 SDValue BSLoad = 5924 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5925 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5926 LD->getMemoryVT(), LD->getMemOperand()); 5927 5928 // If this is an i16 load, insert the truncate. 5929 SDValue ResVal = BSLoad; 5930 if (N->getValueType(0) == MVT::i16) 5931 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5932 5933 // First, combine the bswap away. This makes the value produced by the 5934 // load dead. 5935 DCI.CombineTo(N, ResVal); 5936 5937 // Next, combine the load away, we give it a bogus result value but a real 5938 // chain result. The result value is dead because the bswap is dead. 5939 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5940 5941 // Return N so it doesn't get rechecked! 5942 return SDValue(N, 0); 5943 } 5944 5945 break; 5946 case PPCISD::VCMP: { 5947 // If a VCMPo node already exists with exactly the same operands as this 5948 // node, use its result instead of this node (VCMPo computes both a CR6 and 5949 // a normal output). 5950 // 5951 if (!N->getOperand(0).hasOneUse() && 5952 !N->getOperand(1).hasOneUse() && 5953 !N->getOperand(2).hasOneUse()) { 5954 5955 // Scan all of the users of the LHS, looking for VCMPo's that match. 5956 SDNode *VCMPoNode = 0; 5957 5958 SDNode *LHSN = N->getOperand(0).getNode(); 5959 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5960 UI != E; ++UI) 5961 if (UI->getOpcode() == PPCISD::VCMPo && 5962 UI->getOperand(1) == N->getOperand(1) && 5963 UI->getOperand(2) == N->getOperand(2) && 5964 UI->getOperand(0) == N->getOperand(0)) { 5965 VCMPoNode = *UI; 5966 break; 5967 } 5968 5969 // If there is no VCMPo node, or if the flag value has a single use, don't 5970 // transform this. 5971 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5972 break; 5973 5974 // Look at the (necessarily single) use of the flag value. If it has a 5975 // chain, this transformation is more complex. Note that multiple things 5976 // could use the value result, which we should ignore. 5977 SDNode *FlagUser = 0; 5978 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5979 FlagUser == 0; ++UI) { 5980 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5981 SDNode *User = *UI; 5982 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5983 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5984 FlagUser = User; 5985 break; 5986 } 5987 } 5988 } 5989 5990 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5991 // give up for right now. 5992 if (FlagUser->getOpcode() == PPCISD::MFCR) 5993 return SDValue(VCMPoNode, 0); 5994 } 5995 break; 5996 } 5997 case ISD::BR_CC: { 5998 // If this is a branch on an altivec predicate comparison, lower this so 5999 // that we don't have to do a MFCR: instead, branch directly on CR6. This 6000 // lowering is done pre-legalize, because the legalizer lowers the predicate 6001 // compare down to code that is difficult to reassemble. 6002 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 6003 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 6004 int CompareOpc; 6005 bool isDot; 6006 6007 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 6008 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 6009 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 6010 assert(isDot && "Can't compare against a vector result!"); 6011 6012 // If this is a comparison against something other than 0/1, then we know 6013 // that the condition is never/always true. 6014 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 6015 if (Val != 0 && Val != 1) { 6016 if (CC == ISD::SETEQ) // Cond never true, remove branch. 6017 return N->getOperand(0); 6018 // Always !=, turn it into an unconditional branch. 6019 return DAG.getNode(ISD::BR, dl, MVT::Other, 6020 N->getOperand(0), N->getOperand(4)); 6021 } 6022 6023 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 6024 6025 // Create the PPCISD altivec 'dot' comparison node. 6026 std::vector<EVT> VTs; 6027 SDValue Ops[] = { 6028 LHS.getOperand(2), // LHS of compare 6029 LHS.getOperand(3), // RHS of compare 6030 DAG.getConstant(CompareOpc, MVT::i32) 6031 }; 6032 VTs.push_back(LHS.getOperand(2).getValueType()); 6033 VTs.push_back(MVT::Glue); 6034 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 6035 6036 // Unpack the result based on how the target uses it. 6037 PPC::Predicate CompOpc; 6038 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 6039 default: // Can't happen, don't crash on invalid number though. 6040 case 0: // Branch on the value of the EQ bit of CR6. 6041 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 6042 break; 6043 case 1: // Branch on the inverted value of the EQ bit of CR6. 6044 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 6045 break; 6046 case 2: // Branch on the value of the LT bit of CR6. 6047 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 6048 break; 6049 case 3: // Branch on the inverted value of the LT bit of CR6. 6050 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 6051 break; 6052 } 6053 6054 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 6055 DAG.getConstant(CompOpc, MVT::i32), 6056 DAG.getRegister(PPC::CR6, MVT::i32), 6057 N->getOperand(4), CompNode.getValue(1)); 6058 } 6059 break; 6060 } 6061 } 6062 6063 return SDValue(); 6064 } 6065 6066 //===----------------------------------------------------------------------===// 6067 // Inline Assembly Support 6068 //===----------------------------------------------------------------------===// 6069 6070 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 6071 APInt &KnownZero, 6072 APInt &KnownOne, 6073 const SelectionDAG &DAG, 6074 unsigned Depth) const { 6075 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 6076 switch (Op.getOpcode()) { 6077 default: break; 6078 case PPCISD::LBRX: { 6079 // lhbrx is known to have the top bits cleared out. 6080 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 6081 KnownZero = 0xFFFF0000; 6082 break; 6083 } 6084 case ISD::INTRINSIC_WO_CHAIN: { 6085 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 6086 default: break; 6087 case Intrinsic::ppc_altivec_vcmpbfp_p: 6088 case Intrinsic::ppc_altivec_vcmpeqfp_p: 6089 case Intrinsic::ppc_altivec_vcmpequb_p: 6090 case Intrinsic::ppc_altivec_vcmpequh_p: 6091 case Intrinsic::ppc_altivec_vcmpequw_p: 6092 case Intrinsic::ppc_altivec_vcmpgefp_p: 6093 case Intrinsic::ppc_altivec_vcmpgtfp_p: 6094 case Intrinsic::ppc_altivec_vcmpgtsb_p: 6095 case Intrinsic::ppc_altivec_vcmpgtsh_p: 6096 case Intrinsic::ppc_altivec_vcmpgtsw_p: 6097 case Intrinsic::ppc_altivec_vcmpgtub_p: 6098 case Intrinsic::ppc_altivec_vcmpgtuh_p: 6099 case Intrinsic::ppc_altivec_vcmpgtuw_p: 6100 KnownZero = ~1U; // All bits but the low one are known to be zero. 6101 break; 6102 } 6103 } 6104 } 6105 } 6106 6107 6108 /// getConstraintType - Given a constraint, return the type of 6109 /// constraint it is for this target. 6110 PPCTargetLowering::ConstraintType 6111 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 6112 if (Constraint.size() == 1) { 6113 switch (Constraint[0]) { 6114 default: break; 6115 case 'b': 6116 case 'r': 6117 case 'f': 6118 case 'v': 6119 case 'y': 6120 return C_RegisterClass; 6121 } 6122 } 6123 return TargetLowering::getConstraintType(Constraint); 6124 } 6125 6126 /// Examine constraint type and operand type and determine a weight value. 6127 /// This object must already have been set up with the operand type 6128 /// and the current alternative constraint selected. 6129 TargetLowering::ConstraintWeight 6130 PPCTargetLowering::getSingleConstraintMatchWeight( 6131 AsmOperandInfo &info, const char *constraint) const { 6132 ConstraintWeight weight = CW_Invalid; 6133 Value *CallOperandVal = info.CallOperandVal; 6134 // If we don't have a value, we can't do a match, 6135 // but allow it at the lowest weight. 6136 if (CallOperandVal == NULL) 6137 return CW_Default; 6138 Type *type = CallOperandVal->getType(); 6139 // Look at the constraint type. 6140 switch (*constraint) { 6141 default: 6142 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 6143 break; 6144 case 'b': 6145 if (type->isIntegerTy()) 6146 weight = CW_Register; 6147 break; 6148 case 'f': 6149 if (type->isFloatTy()) 6150 weight = CW_Register; 6151 break; 6152 case 'd': 6153 if (type->isDoubleTy()) 6154 weight = CW_Register; 6155 break; 6156 case 'v': 6157 if (type->isVectorTy()) 6158 weight = CW_Register; 6159 break; 6160 case 'y': 6161 weight = CW_Register; 6162 break; 6163 } 6164 return weight; 6165 } 6166 6167 std::pair<unsigned, const TargetRegisterClass*> 6168 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 6169 EVT VT) const { 6170 if (Constraint.size() == 1) { 6171 // GCC RS6000 Constraint Letters 6172 switch (Constraint[0]) { 6173 case 'b': // R1-R31 6174 case 'r': // R0-R31 6175 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 6176 return std::make_pair(0U, &PPC::G8RCRegClass); 6177 return std::make_pair(0U, &PPC::GPRCRegClass); 6178 case 'f': 6179 if (VT == MVT::f32) 6180 return std::make_pair(0U, &PPC::F4RCRegClass); 6181 if (VT == MVT::f64) 6182 return std::make_pair(0U, &PPC::F8RCRegClass); 6183 break; 6184 case 'v': 6185 return std::make_pair(0U, &PPC::VRRCRegClass); 6186 case 'y': // crrc 6187 return std::make_pair(0U, &PPC::CRRCRegClass); 6188 } 6189 } 6190 6191 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 6192 } 6193 6194 6195 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6196 /// vector. If it is invalid, don't add anything to Ops. 6197 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 6198 std::string &Constraint, 6199 std::vector<SDValue>&Ops, 6200 SelectionDAG &DAG) const { 6201 SDValue Result(0,0); 6202 6203 // Only support length 1 constraints. 6204 if (Constraint.length() > 1) return; 6205 6206 char Letter = Constraint[0]; 6207 switch (Letter) { 6208 default: break; 6209 case 'I': 6210 case 'J': 6211 case 'K': 6212 case 'L': 6213 case 'M': 6214 case 'N': 6215 case 'O': 6216 case 'P': { 6217 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 6218 if (!CST) return; // Must be an immediate to match. 6219 unsigned Value = CST->getZExtValue(); 6220 switch (Letter) { 6221 default: llvm_unreachable("Unknown constraint letter!"); 6222 case 'I': // "I" is a signed 16-bit constant. 6223 if ((short)Value == (int)Value) 6224 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6225 break; 6226 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 6227 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 6228 if ((short)Value == 0) 6229 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6230 break; 6231 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 6232 if ((Value >> 16) == 0) 6233 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6234 break; 6235 case 'M': // "M" is a constant that is greater than 31. 6236 if (Value > 31) 6237 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6238 break; 6239 case 'N': // "N" is a positive constant that is an exact power of two. 6240 if ((int)Value > 0 && isPowerOf2_32(Value)) 6241 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6242 break; 6243 case 'O': // "O" is the constant zero. 6244 if (Value == 0) 6245 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6246 break; 6247 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 6248 if ((short)-Value == (int)-Value) 6249 Result = DAG.getTargetConstant(Value, Op.getValueType()); 6250 break; 6251 } 6252 break; 6253 } 6254 } 6255 6256 if (Result.getNode()) { 6257 Ops.push_back(Result); 6258 return; 6259 } 6260 6261 // Handle standard constraint letters. 6262 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6263 } 6264 6265 // isLegalAddressingMode - Return true if the addressing mode represented 6266 // by AM is legal for this target, for a load/store of the specified type. 6267 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 6268 Type *Ty) const { 6269 // FIXME: PPC does not allow r+i addressing modes for vectors! 6270 6271 // PPC allows a sign-extended 16-bit immediate field. 6272 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 6273 return false; 6274 6275 // No global is ever allowed as a base. 6276 if (AM.BaseGV) 6277 return false; 6278 6279 // PPC only support r+r, 6280 switch (AM.Scale) { 6281 case 0: // "r+i" or just "i", depending on HasBaseReg. 6282 break; 6283 case 1: 6284 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 6285 return false; 6286 // Otherwise we have r+r or r+i. 6287 break; 6288 case 2: 6289 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 6290 return false; 6291 // Allow 2*r as r+r. 6292 break; 6293 default: 6294 // No other scales are supported. 6295 return false; 6296 } 6297 6298 return true; 6299 } 6300 6301 /// isLegalAddressImmediate - Return true if the integer value can be used 6302 /// as the offset of the target addressing mode for load / store of the 6303 /// given type. 6304 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 6305 // PPC allows a sign-extended 16-bit immediate field. 6306 return (V > -(1 << 16) && V < (1 << 16)-1); 6307 } 6308 6309 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const { 6310 return false; 6311 } 6312 6313 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 6314 SelectionDAG &DAG) const { 6315 MachineFunction &MF = DAG.getMachineFunction(); 6316 MachineFrameInfo *MFI = MF.getFrameInfo(); 6317 MFI->setReturnAddressIsTaken(true); 6318 6319 DebugLoc dl = Op.getDebugLoc(); 6320 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6321 6322 // Make sure the function does not optimize away the store of the RA to 6323 // the stack. 6324 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6325 FuncInfo->setLRStoreRequired(); 6326 bool isPPC64 = PPCSubTarget.isPPC64(); 6327 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 6328 6329 if (Depth > 0) { 6330 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 6331 SDValue Offset = 6332 6333 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 6334 isPPC64? MVT::i64 : MVT::i32); 6335 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 6336 DAG.getNode(ISD::ADD, dl, getPointerTy(), 6337 FrameAddr, Offset), 6338 MachinePointerInfo(), false, false, false, 0); 6339 } 6340 6341 // Just load the return address off the stack. 6342 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 6343 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 6344 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 6345 } 6346 6347 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 6348 SelectionDAG &DAG) const { 6349 DebugLoc dl = Op.getDebugLoc(); 6350 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6351 6352 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 6353 bool isPPC64 = PtrVT == MVT::i64; 6354 6355 MachineFunction &MF = DAG.getMachineFunction(); 6356 MachineFrameInfo *MFI = MF.getFrameInfo(); 6357 MFI->setFrameAddressIsTaken(true); 6358 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 6359 MFI->hasVarSizedObjects()) && 6360 MFI->getStackSize() && 6361 !MF.getFunction()->getFnAttributes(). 6362 hasAttribute(Attributes::Naked); 6363 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 6364 (is31 ? PPC::R31 : PPC::R1); 6365 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 6366 PtrVT); 6367 while (Depth--) 6368 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 6369 FrameAddr, MachinePointerInfo(), false, false, 6370 false, 0); 6371 return FrameAddr; 6372 } 6373 6374 bool 6375 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 6376 // The PowerPC target isn't yet aware of offsets. 6377 return false; 6378 } 6379 6380 /// getOptimalMemOpType - Returns the target specific optimal type for load 6381 /// and store operations as a result of memset, memcpy, and memmove 6382 /// lowering. If DstAlign is zero that means it's safe to destination 6383 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 6384 /// means there isn't a need to check it against alignment requirement, 6385 /// probably because the source does not need to be loaded. If 6386 /// 'IsZeroVal' is true, that means it's safe to return a 6387 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 6388 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 6389 /// constant so it does not need to be loaded. 6390 /// It returns EVT::Other if the type should be determined using generic 6391 /// target-independent logic. 6392 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 6393 unsigned DstAlign, unsigned SrcAlign, 6394 bool IsZeroVal, 6395 bool MemcpyStrSrc, 6396 MachineFunction &MF) const { 6397 if (this->PPCSubTarget.isPPC64()) { 6398 return MVT::i64; 6399 } else { 6400 return MVT::i32; 6401 } 6402 } 6403 6404 /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than 6405 /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to 6406 /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd 6407 /// is expanded to mul + add. 6408 bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const { 6409 if (!VT.isSimple()) 6410 return false; 6411 6412 switch (VT.getSimpleVT().SimpleTy) { 6413 case MVT::f32: 6414 case MVT::f64: 6415 case MVT::v4f32: 6416 return true; 6417 default: 6418 break; 6419 } 6420 6421 return false; 6422 } 6423 6424 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 6425 if (DisableILPPref) 6426 return TargetLowering::getSchedulingPreference(N); 6427 6428 return Sched::ILP; 6429 } 6430 6431