1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/VectorExtras.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Constants.h" 30 #include "llvm/Function.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/DerivedTypes.h" 38 using namespace llvm; 39 40 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 41 CCValAssign::LocInfo &LocInfo, 42 ISD::ArgFlagsTy &ArgFlags, 43 CCState &State); 44 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 45 MVT &LocVT, 46 CCValAssign::LocInfo &LocInfo, 47 ISD::ArgFlagsTy &ArgFlags, 48 CCState &State); 49 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 50 MVT &LocVT, 51 CCValAssign::LocInfo &LocInfo, 52 ISD::ArgFlagsTy &ArgFlags, 53 CCState &State); 54 55 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 56 cl::desc("enable preincrement load/store generation on PPC (experimental)"), 57 cl::Hidden); 58 59 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 60 if (TM.getSubtargetImpl()->isDarwin()) 61 return new TargetLoweringObjectFileMachO(); 62 63 return new TargetLoweringObjectFileELF(); 64 } 65 66 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 67 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 68 69 setPow2DivIsCheap(); 70 71 // Use _setjmp/_longjmp instead of setjmp/longjmp. 72 setUseUnderscoreSetJmp(true); 73 setUseUnderscoreLongJmp(true); 74 75 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 76 // arguments are at least 4/8 bytes aligned. 77 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 78 79 // Set up the register classes. 80 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 81 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 82 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 83 84 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 85 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 86 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 87 88 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 89 90 // PowerPC has pre-inc load and store's. 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 101 102 // This is used in the ppcf128->int sequence. Note it has different semantics 103 // from FP_ROUND: that rounds to nearest, this rounds to zero. 104 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 105 106 // We do not currently implment this libm ops for PowerPC. 107 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 108 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 109 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 110 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 111 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 112 113 // PowerPC has no SREM/UREM instructions 114 setOperationAction(ISD::SREM, MVT::i32, Expand); 115 setOperationAction(ISD::UREM, MVT::i32, Expand); 116 setOperationAction(ISD::SREM, MVT::i64, Expand); 117 setOperationAction(ISD::UREM, MVT::i64, Expand); 118 119 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 120 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 121 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 122 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 123 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 124 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 125 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 126 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 127 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 128 129 // We don't support sin/cos/sqrt/fmod/pow 130 setOperationAction(ISD::FSIN , MVT::f64, Expand); 131 setOperationAction(ISD::FCOS , MVT::f64, Expand); 132 setOperationAction(ISD::FREM , MVT::f64, Expand); 133 setOperationAction(ISD::FPOW , MVT::f64, Expand); 134 setOperationAction(ISD::FMA , MVT::f64, Expand); 135 setOperationAction(ISD::FSIN , MVT::f32, Expand); 136 setOperationAction(ISD::FCOS , MVT::f32, Expand); 137 setOperationAction(ISD::FREM , MVT::f32, Expand); 138 setOperationAction(ISD::FPOW , MVT::f32, Expand); 139 setOperationAction(ISD::FMA , MVT::f32, Expand); 140 141 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 142 143 // If we're enabling GP optimizations, use hardware square root 144 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 145 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 146 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 147 } 148 149 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 150 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 151 152 // PowerPC does not have BSWAP, CTPOP or CTTZ 153 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 154 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 155 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 156 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 157 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 158 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 159 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 160 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 161 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 162 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 163 164 // PowerPC does not have ROTR 165 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 166 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 167 168 // PowerPC does not have Select 169 setOperationAction(ISD::SELECT, MVT::i32, Expand); 170 setOperationAction(ISD::SELECT, MVT::i64, Expand); 171 setOperationAction(ISD::SELECT, MVT::f32, Expand); 172 setOperationAction(ISD::SELECT, MVT::f64, Expand); 173 174 // PowerPC wants to turn select_cc of FP into fsel when possible. 175 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 176 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 177 178 // PowerPC wants to optimize integer setcc a bit 179 setOperationAction(ISD::SETCC, MVT::i32, Custom); 180 181 // PowerPC does not have BRCOND which requires SetCC 182 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 183 184 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 185 186 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 187 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 188 189 // PowerPC does not have [U|S]INT_TO_FP 190 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 191 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 192 193 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 194 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 195 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 196 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 197 198 // We cannot sextinreg(i1). Expand to shifts. 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 202 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 203 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 204 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 205 206 207 // We want to legalize GlobalAddress and ConstantPool nodes into the 208 // appropriate instructions to materialize the address. 209 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 210 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 211 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 212 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 213 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 214 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 215 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 216 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 217 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 218 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 219 220 // TRAP is legal. 221 setOperationAction(ISD::TRAP, MVT::Other, Legal); 222 223 // TRAMPOLINE is custom lowered. 224 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 225 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 226 227 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 228 setOperationAction(ISD::VASTART , MVT::Other, Custom); 229 230 // VAARG is custom lowered with the 32-bit SVR4 ABI. 231 if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 232 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) { 233 setOperationAction(ISD::VAARG, MVT::Other, Custom); 234 setOperationAction(ISD::VAARG, MVT::i64, Custom); 235 } else 236 setOperationAction(ISD::VAARG, MVT::Other, Expand); 237 238 // Use the default implementation. 239 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 240 setOperationAction(ISD::VAEND , MVT::Other, Expand); 241 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 242 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 243 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 244 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 245 246 // We want to custom lower some of our intrinsics. 247 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 248 249 // Comparisons that require checking two conditions. 250 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 251 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 252 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 253 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 254 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 255 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 256 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 257 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 258 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 259 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 260 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 261 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 262 263 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 264 // They also have instructions for converting between i64 and fp. 265 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 266 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 267 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 268 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 269 // This is just the low 32 bits of a (signed) fp->i64 conversion. 270 // We cannot do this with Promote because i64 is not a legal type. 271 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 272 273 // FIXME: disable this lowered code. This generates 64-bit register values, 274 // and we don't model the fact that the top part is clobbered by calls. We 275 // need to flag these together so that the value isn't live across a call. 276 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 277 } else { 278 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 279 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 280 } 281 282 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 283 // 64-bit PowerPC implementations can support i64 types directly 284 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 285 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 286 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 287 // 64-bit PowerPC wants to expand i128 shifts itself. 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 290 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 291 } else { 292 // 32-bit PowerPC wants to expand i64 shifts itself. 293 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 294 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 295 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 296 } 297 298 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 299 // First set operation action for all vector types to expand. Then we 300 // will selectively turn on ones that can be effectively codegen'd. 301 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 302 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 303 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 304 305 // add/sub are legal for all supported vector VT's. 306 setOperationAction(ISD::ADD , VT, Legal); 307 setOperationAction(ISD::SUB , VT, Legal); 308 309 // We promote all shuffles to v16i8. 310 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 311 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 312 313 // We promote all non-typed operations to v4i32. 314 setOperationAction(ISD::AND , VT, Promote); 315 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 316 setOperationAction(ISD::OR , VT, Promote); 317 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 318 setOperationAction(ISD::XOR , VT, Promote); 319 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 320 setOperationAction(ISD::LOAD , VT, Promote); 321 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 322 setOperationAction(ISD::SELECT, VT, Promote); 323 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 324 setOperationAction(ISD::STORE, VT, Promote); 325 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 326 327 // No other operations are legal. 328 setOperationAction(ISD::MUL , VT, Expand); 329 setOperationAction(ISD::SDIV, VT, Expand); 330 setOperationAction(ISD::SREM, VT, Expand); 331 setOperationAction(ISD::UDIV, VT, Expand); 332 setOperationAction(ISD::UREM, VT, Expand); 333 setOperationAction(ISD::FDIV, VT, Expand); 334 setOperationAction(ISD::FNEG, VT, Expand); 335 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 336 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 337 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 338 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 339 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 340 setOperationAction(ISD::UDIVREM, VT, Expand); 341 setOperationAction(ISD::SDIVREM, VT, Expand); 342 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 343 setOperationAction(ISD::FPOW, VT, Expand); 344 setOperationAction(ISD::CTPOP, VT, Expand); 345 setOperationAction(ISD::CTLZ, VT, Expand); 346 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 347 setOperationAction(ISD::CTTZ, VT, Expand); 348 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 349 } 350 351 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 352 // with merges, splats, etc. 353 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 354 355 setOperationAction(ISD::AND , MVT::v4i32, Legal); 356 setOperationAction(ISD::OR , MVT::v4i32, Legal); 357 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 358 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 359 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 360 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 361 362 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 363 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 364 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 365 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 366 367 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 368 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 369 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 370 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 371 372 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 373 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 374 375 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 376 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 377 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 378 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 379 } 380 381 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 382 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 383 384 setBooleanContents(ZeroOrOneBooleanContent); 385 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 386 387 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 388 setStackPointerRegisterToSaveRestore(PPC::X1); 389 setExceptionPointerRegister(PPC::X3); 390 setExceptionSelectorRegister(PPC::X4); 391 } else { 392 setStackPointerRegisterToSaveRestore(PPC::R1); 393 setExceptionPointerRegister(PPC::R3); 394 setExceptionSelectorRegister(PPC::R4); 395 } 396 397 // We have target-specific dag combine patterns for the following nodes: 398 setTargetDAGCombine(ISD::SINT_TO_FP); 399 setTargetDAGCombine(ISD::STORE); 400 setTargetDAGCombine(ISD::BR_CC); 401 setTargetDAGCombine(ISD::BSWAP); 402 403 // Darwin long double math library functions have $LDBL128 appended. 404 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 405 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 406 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 407 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 408 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 409 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 410 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 411 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 412 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 413 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 414 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 415 } 416 417 setMinFunctionAlignment(2); 418 if (PPCSubTarget.isDarwin()) 419 setPrefFunctionAlignment(4); 420 421 setInsertFencesForAtomic(true); 422 423 setSchedulingPreference(Sched::Hybrid); 424 425 computeRegisterProperties(); 426 } 427 428 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 429 /// function arguments in the caller parameter area. 430 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 431 const TargetMachine &TM = getTargetMachine(); 432 // Darwin passes everything on 4 byte boundary. 433 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 434 return 4; 435 // FIXME SVR4 TBD 436 return 4; 437 } 438 439 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 440 switch (Opcode) { 441 default: return 0; 442 case PPCISD::FSEL: return "PPCISD::FSEL"; 443 case PPCISD::FCFID: return "PPCISD::FCFID"; 444 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 445 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 446 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 447 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 448 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 449 case PPCISD::VPERM: return "PPCISD::VPERM"; 450 case PPCISD::Hi: return "PPCISD::Hi"; 451 case PPCISD::Lo: return "PPCISD::Lo"; 452 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 453 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 454 case PPCISD::LOAD: return "PPCISD::LOAD"; 455 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 456 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 457 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 458 case PPCISD::SRL: return "PPCISD::SRL"; 459 case PPCISD::SRA: return "PPCISD::SRA"; 460 case PPCISD::SHL: return "PPCISD::SHL"; 461 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 462 case PPCISD::STD_32: return "PPCISD::STD_32"; 463 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 464 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 465 case PPCISD::NOP: return "PPCISD::NOP"; 466 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 467 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 468 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 469 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 470 case PPCISD::MFCR: return "PPCISD::MFCR"; 471 case PPCISD::VCMP: return "PPCISD::VCMP"; 472 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 473 case PPCISD::LBRX: return "PPCISD::LBRX"; 474 case PPCISD::STBRX: return "PPCISD::STBRX"; 475 case PPCISD::LARX: return "PPCISD::LARX"; 476 case PPCISD::STCX: return "PPCISD::STCX"; 477 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 478 case PPCISD::MFFS: return "PPCISD::MFFS"; 479 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 480 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 481 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 482 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 483 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 484 } 485 } 486 487 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 488 return MVT::i32; 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Node matching predicates, for use by the tblgen matching code. 493 //===----------------------------------------------------------------------===// 494 495 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 496 static bool isFloatingPointZero(SDValue Op) { 497 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 498 return CFP->getValueAPF().isZero(); 499 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 500 // Maybe this has already been legalized into the constant pool? 501 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 502 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 503 return CFP->getValueAPF().isZero(); 504 } 505 return false; 506 } 507 508 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 509 /// true if Op is undef or if it matches the specified value. 510 static bool isConstantOrUndef(int Op, int Val) { 511 return Op < 0 || Op == Val; 512 } 513 514 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 515 /// VPKUHUM instruction. 516 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 517 if (!isUnary) { 518 for (unsigned i = 0; i != 16; ++i) 519 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 520 return false; 521 } else { 522 for (unsigned i = 0; i != 8; ++i) 523 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 524 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 525 return false; 526 } 527 return true; 528 } 529 530 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 531 /// VPKUWUM instruction. 532 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 533 if (!isUnary) { 534 for (unsigned i = 0; i != 16; i += 2) 535 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 536 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 537 return false; 538 } else { 539 for (unsigned i = 0; i != 8; i += 2) 540 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 541 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 542 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 543 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 544 return false; 545 } 546 return true; 547 } 548 549 /// isVMerge - Common function, used to match vmrg* shuffles. 550 /// 551 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 552 unsigned LHSStart, unsigned RHSStart) { 553 assert(N->getValueType(0) == MVT::v16i8 && 554 "PPC only supports shuffles by bytes!"); 555 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 556 "Unsupported merge size!"); 557 558 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 559 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 560 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 561 LHSStart+j+i*UnitSize) || 562 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 563 RHSStart+j+i*UnitSize)) 564 return false; 565 } 566 return true; 567 } 568 569 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 570 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 571 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 572 bool isUnary) { 573 if (!isUnary) 574 return isVMerge(N, UnitSize, 8, 24); 575 return isVMerge(N, UnitSize, 8, 8); 576 } 577 578 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 579 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 580 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 581 bool isUnary) { 582 if (!isUnary) 583 return isVMerge(N, UnitSize, 0, 16); 584 return isVMerge(N, UnitSize, 0, 0); 585 } 586 587 588 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 589 /// amount, otherwise return -1. 590 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 591 assert(N->getValueType(0) == MVT::v16i8 && 592 "PPC only supports shuffles by bytes!"); 593 594 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 595 596 // Find the first non-undef value in the shuffle mask. 597 unsigned i; 598 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 599 /*search*/; 600 601 if (i == 16) return -1; // all undef. 602 603 // Otherwise, check to see if the rest of the elements are consecutively 604 // numbered from this value. 605 unsigned ShiftAmt = SVOp->getMaskElt(i); 606 if (ShiftAmt < i) return -1; 607 ShiftAmt -= i; 608 609 if (!isUnary) { 610 // Check the rest of the elements to see if they are consecutive. 611 for (++i; i != 16; ++i) 612 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 613 return -1; 614 } else { 615 // Check the rest of the elements to see if they are consecutive. 616 for (++i; i != 16; ++i) 617 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 618 return -1; 619 } 620 return ShiftAmt; 621 } 622 623 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 624 /// specifies a splat of a single element that is suitable for input to 625 /// VSPLTB/VSPLTH/VSPLTW. 626 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 627 assert(N->getValueType(0) == MVT::v16i8 && 628 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 629 630 // This is a splat operation if each element of the permute is the same, and 631 // if the value doesn't reference the second vector. 632 unsigned ElementBase = N->getMaskElt(0); 633 634 // FIXME: Handle UNDEF elements too! 635 if (ElementBase >= 16) 636 return false; 637 638 // Check that the indices are consecutive, in the case of a multi-byte element 639 // splatted with a v16i8 mask. 640 for (unsigned i = 1; i != EltSize; ++i) 641 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 642 return false; 643 644 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 645 if (N->getMaskElt(i) < 0) continue; 646 for (unsigned j = 0; j != EltSize; ++j) 647 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 648 return false; 649 } 650 return true; 651 } 652 653 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 654 /// are -0.0. 655 bool PPC::isAllNegativeZeroVector(SDNode *N) { 656 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 657 658 APInt APVal, APUndef; 659 unsigned BitSize; 660 bool HasAnyUndefs; 661 662 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 663 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 664 return CFP->getValueAPF().isNegZero(); 665 666 return false; 667 } 668 669 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 670 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 671 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 672 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 673 assert(isSplatShuffleMask(SVOp, EltSize)); 674 return SVOp->getMaskElt(0) / EltSize; 675 } 676 677 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 678 /// by using a vspltis[bhw] instruction of the specified element size, return 679 /// the constant being splatted. The ByteSize field indicates the number of 680 /// bytes of each element [124] -> [bhw]. 681 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 682 SDValue OpVal(0, 0); 683 684 // If ByteSize of the splat is bigger than the element size of the 685 // build_vector, then we have a case where we are checking for a splat where 686 // multiple elements of the buildvector are folded together into a single 687 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 688 unsigned EltSize = 16/N->getNumOperands(); 689 if (EltSize < ByteSize) { 690 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 691 SDValue UniquedVals[4]; 692 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 693 694 // See if all of the elements in the buildvector agree across. 695 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 696 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 697 // If the element isn't a constant, bail fully out. 698 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 699 700 701 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 702 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 703 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 704 return SDValue(); // no match. 705 } 706 707 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 708 // either constant or undef values that are identical for each chunk. See 709 // if these chunks can form into a larger vspltis*. 710 711 // Check to see if all of the leading entries are either 0 or -1. If 712 // neither, then this won't fit into the immediate field. 713 bool LeadingZero = true; 714 bool LeadingOnes = true; 715 for (unsigned i = 0; i != Multiple-1; ++i) { 716 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 717 718 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 719 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 720 } 721 // Finally, check the least significant entry. 722 if (LeadingZero) { 723 if (UniquedVals[Multiple-1].getNode() == 0) 724 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 725 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 726 if (Val < 16) 727 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 728 } 729 if (LeadingOnes) { 730 if (UniquedVals[Multiple-1].getNode() == 0) 731 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 732 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 733 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 734 return DAG.getTargetConstant(Val, MVT::i32); 735 } 736 737 return SDValue(); 738 } 739 740 // Check to see if this buildvec has a single non-undef value in its elements. 741 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 742 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 743 if (OpVal.getNode() == 0) 744 OpVal = N->getOperand(i); 745 else if (OpVal != N->getOperand(i)) 746 return SDValue(); 747 } 748 749 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 750 751 unsigned ValSizeInBytes = EltSize; 752 uint64_t Value = 0; 753 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 754 Value = CN->getZExtValue(); 755 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 756 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 757 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 758 } 759 760 // If the splat value is larger than the element value, then we can never do 761 // this splat. The only case that we could fit the replicated bits into our 762 // immediate field for would be zero, and we prefer to use vxor for it. 763 if (ValSizeInBytes < ByteSize) return SDValue(); 764 765 // If the element value is larger than the splat value, cut it in half and 766 // check to see if the two halves are equal. Continue doing this until we 767 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 768 while (ValSizeInBytes > ByteSize) { 769 ValSizeInBytes >>= 1; 770 771 // If the top half equals the bottom half, we're still ok. 772 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 773 (Value & ((1 << (8*ValSizeInBytes))-1))) 774 return SDValue(); 775 } 776 777 // Properly sign extend the value. 778 int ShAmt = (4-ByteSize)*8; 779 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 780 781 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 782 if (MaskVal == 0) return SDValue(); 783 784 // Finally, if this value fits in a 5 bit sext field, return it 785 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 786 return DAG.getTargetConstant(MaskVal, MVT::i32); 787 return SDValue(); 788 } 789 790 //===----------------------------------------------------------------------===// 791 // Addressing Mode Selection 792 //===----------------------------------------------------------------------===// 793 794 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 795 /// or 64-bit immediate, and if the value can be accurately represented as a 796 /// sign extension from a 16-bit value. If so, this returns true and the 797 /// immediate. 798 static bool isIntS16Immediate(SDNode *N, short &Imm) { 799 if (N->getOpcode() != ISD::Constant) 800 return false; 801 802 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 803 if (N->getValueType(0) == MVT::i32) 804 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 805 else 806 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 807 } 808 static bool isIntS16Immediate(SDValue Op, short &Imm) { 809 return isIntS16Immediate(Op.getNode(), Imm); 810 } 811 812 813 /// SelectAddressRegReg - Given the specified addressed, check to see if it 814 /// can be represented as an indexed [r+r] operation. Returns false if it 815 /// can be more efficiently represented with [r+imm]. 816 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 817 SDValue &Index, 818 SelectionDAG &DAG) const { 819 short imm = 0; 820 if (N.getOpcode() == ISD::ADD) { 821 if (isIntS16Immediate(N.getOperand(1), imm)) 822 return false; // r+i 823 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 824 return false; // r+i 825 826 Base = N.getOperand(0); 827 Index = N.getOperand(1); 828 return true; 829 } else if (N.getOpcode() == ISD::OR) { 830 if (isIntS16Immediate(N.getOperand(1), imm)) 831 return false; // r+i can fold it if we can. 832 833 // If this is an or of disjoint bitfields, we can codegen this as an add 834 // (for better address arithmetic) if the LHS and RHS of the OR are provably 835 // disjoint. 836 APInt LHSKnownZero, LHSKnownOne; 837 APInt RHSKnownZero, RHSKnownOne; 838 DAG.ComputeMaskedBits(N.getOperand(0), 839 APInt::getAllOnesValue(N.getOperand(0) 840 .getValueSizeInBits()), 841 LHSKnownZero, LHSKnownOne); 842 843 if (LHSKnownZero.getBoolValue()) { 844 DAG.ComputeMaskedBits(N.getOperand(1), 845 APInt::getAllOnesValue(N.getOperand(1) 846 .getValueSizeInBits()), 847 RHSKnownZero, RHSKnownOne); 848 // If all of the bits are known zero on the LHS or RHS, the add won't 849 // carry. 850 if (~(LHSKnownZero | RHSKnownZero) == 0) { 851 Base = N.getOperand(0); 852 Index = N.getOperand(1); 853 return true; 854 } 855 } 856 } 857 858 return false; 859 } 860 861 /// Returns true if the address N can be represented by a base register plus 862 /// a signed 16-bit displacement [r+imm], and if it is not better 863 /// represented as reg+reg. 864 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 865 SDValue &Base, 866 SelectionDAG &DAG) const { 867 // FIXME dl should come from parent load or store, not from address 868 DebugLoc dl = N.getDebugLoc(); 869 // If this can be more profitably realized as r+r, fail. 870 if (SelectAddressRegReg(N, Disp, Base, DAG)) 871 return false; 872 873 if (N.getOpcode() == ISD::ADD) { 874 short imm = 0; 875 if (isIntS16Immediate(N.getOperand(1), imm)) { 876 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 877 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 878 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 879 } else { 880 Base = N.getOperand(0); 881 } 882 return true; // [r+i] 883 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 884 // Match LOAD (ADD (X, Lo(G))). 885 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 886 && "Cannot handle constant offsets yet!"); 887 Disp = N.getOperand(1).getOperand(0); // The global address. 888 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 889 Disp.getOpcode() == ISD::TargetConstantPool || 890 Disp.getOpcode() == ISD::TargetJumpTable); 891 Base = N.getOperand(0); 892 return true; // [&g+r] 893 } 894 } else if (N.getOpcode() == ISD::OR) { 895 short imm = 0; 896 if (isIntS16Immediate(N.getOperand(1), imm)) { 897 // If this is an or of disjoint bitfields, we can codegen this as an add 898 // (for better address arithmetic) if the LHS and RHS of the OR are 899 // provably disjoint. 900 APInt LHSKnownZero, LHSKnownOne; 901 DAG.ComputeMaskedBits(N.getOperand(0), 902 APInt::getAllOnesValue(N.getOperand(0) 903 .getValueSizeInBits()), 904 LHSKnownZero, LHSKnownOne); 905 906 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 907 // If all of the bits are known zero on the LHS or RHS, the add won't 908 // carry. 909 Base = N.getOperand(0); 910 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 911 return true; 912 } 913 } 914 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 915 // Loading from a constant address. 916 917 // If this address fits entirely in a 16-bit sext immediate field, codegen 918 // this as "d, 0" 919 short Imm; 920 if (isIntS16Immediate(CN, Imm)) { 921 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 922 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 923 CN->getValueType(0)); 924 return true; 925 } 926 927 // Handle 32-bit sext immediates with LIS + addr mode. 928 if (CN->getValueType(0) == MVT::i32 || 929 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 930 int Addr = (int)CN->getZExtValue(); 931 932 // Otherwise, break this down into an LIS + disp. 933 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 934 935 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 936 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 937 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 938 return true; 939 } 940 } 941 942 Disp = DAG.getTargetConstant(0, getPointerTy()); 943 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 944 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 945 else 946 Base = N; 947 return true; // [r+0] 948 } 949 950 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 951 /// represented as an indexed [r+r] operation. 952 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 953 SDValue &Index, 954 SelectionDAG &DAG) const { 955 // Check to see if we can easily represent this as an [r+r] address. This 956 // will fail if it thinks that the address is more profitably represented as 957 // reg+imm, e.g. where imm = 0. 958 if (SelectAddressRegReg(N, Base, Index, DAG)) 959 return true; 960 961 // If the operand is an addition, always emit this as [r+r], since this is 962 // better (for code size, and execution, as the memop does the add for free) 963 // than emitting an explicit add. 964 if (N.getOpcode() == ISD::ADD) { 965 Base = N.getOperand(0); 966 Index = N.getOperand(1); 967 return true; 968 } 969 970 // Otherwise, do it the hard way, using R0 as the base register. 971 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 972 N.getValueType()); 973 Index = N; 974 return true; 975 } 976 977 /// SelectAddressRegImmShift - Returns true if the address N can be 978 /// represented by a base register plus a signed 14-bit displacement 979 /// [r+imm*4]. Suitable for use by STD and friends. 980 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 981 SDValue &Base, 982 SelectionDAG &DAG) const { 983 // FIXME dl should come from the parent load or store, not the address 984 DebugLoc dl = N.getDebugLoc(); 985 // If this can be more profitably realized as r+r, fail. 986 if (SelectAddressRegReg(N, Disp, Base, DAG)) 987 return false; 988 989 if (N.getOpcode() == ISD::ADD) { 990 short imm = 0; 991 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 992 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 993 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 994 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 995 } else { 996 Base = N.getOperand(0); 997 } 998 return true; // [r+i] 999 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1000 // Match LOAD (ADD (X, Lo(G))). 1001 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1002 && "Cannot handle constant offsets yet!"); 1003 Disp = N.getOperand(1).getOperand(0); // The global address. 1004 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1005 Disp.getOpcode() == ISD::TargetConstantPool || 1006 Disp.getOpcode() == ISD::TargetJumpTable); 1007 Base = N.getOperand(0); 1008 return true; // [&g+r] 1009 } 1010 } else if (N.getOpcode() == ISD::OR) { 1011 short imm = 0; 1012 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1013 // If this is an or of disjoint bitfields, we can codegen this as an add 1014 // (for better address arithmetic) if the LHS and RHS of the OR are 1015 // provably disjoint. 1016 APInt LHSKnownZero, LHSKnownOne; 1017 DAG.ComputeMaskedBits(N.getOperand(0), 1018 APInt::getAllOnesValue(N.getOperand(0) 1019 .getValueSizeInBits()), 1020 LHSKnownZero, LHSKnownOne); 1021 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1022 // If all of the bits are known zero on the LHS or RHS, the add won't 1023 // carry. 1024 Base = N.getOperand(0); 1025 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1026 return true; 1027 } 1028 } 1029 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1030 // Loading from a constant address. Verify low two bits are clear. 1031 if ((CN->getZExtValue() & 3) == 0) { 1032 // If this address fits entirely in a 14-bit sext immediate field, codegen 1033 // this as "d, 0" 1034 short Imm; 1035 if (isIntS16Immediate(CN, Imm)) { 1036 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1037 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1038 CN->getValueType(0)); 1039 return true; 1040 } 1041 1042 // Fold the low-part of 32-bit absolute addresses into addr mode. 1043 if (CN->getValueType(0) == MVT::i32 || 1044 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1045 int Addr = (int)CN->getZExtValue(); 1046 1047 // Otherwise, break this down into an LIS + disp. 1048 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1049 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1050 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1051 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1052 return true; 1053 } 1054 } 1055 } 1056 1057 Disp = DAG.getTargetConstant(0, getPointerTy()); 1058 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1059 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1060 else 1061 Base = N; 1062 return true; // [r+0] 1063 } 1064 1065 1066 /// getPreIndexedAddressParts - returns true by value, base pointer and 1067 /// offset pointer and addressing mode by reference if the node's address 1068 /// can be legally represented as pre-indexed load / store address. 1069 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1070 SDValue &Offset, 1071 ISD::MemIndexedMode &AM, 1072 SelectionDAG &DAG) const { 1073 // Disabled by default for now. 1074 if (!EnablePPCPreinc) return false; 1075 1076 SDValue Ptr; 1077 EVT VT; 1078 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1079 Ptr = LD->getBasePtr(); 1080 VT = LD->getMemoryVT(); 1081 1082 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1083 Ptr = ST->getBasePtr(); 1084 VT = ST->getMemoryVT(); 1085 } else 1086 return false; 1087 1088 // PowerPC doesn't have preinc load/store instructions for vectors. 1089 if (VT.isVector()) 1090 return false; 1091 1092 // TODO: Check reg+reg first. 1093 1094 // LDU/STU use reg+imm*4, others use reg+imm. 1095 if (VT != MVT::i64) { 1096 // reg + imm 1097 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1098 return false; 1099 } else { 1100 // reg + imm * 4. 1101 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1102 return false; 1103 } 1104 1105 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1106 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1107 // sext i32 to i64 when addr mode is r+i. 1108 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1109 LD->getExtensionType() == ISD::SEXTLOAD && 1110 isa<ConstantSDNode>(Offset)) 1111 return false; 1112 } 1113 1114 AM = ISD::PRE_INC; 1115 return true; 1116 } 1117 1118 //===----------------------------------------------------------------------===// 1119 // LowerOperation implementation 1120 //===----------------------------------------------------------------------===// 1121 1122 /// GetLabelAccessInfo - Return true if we should reference labels using a 1123 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1124 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1125 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1126 HiOpFlags = PPCII::MO_HA16; 1127 LoOpFlags = PPCII::MO_LO16; 1128 1129 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1130 // non-darwin platform. We don't support PIC on other platforms yet. 1131 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1132 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1133 if (isPIC) { 1134 HiOpFlags |= PPCII::MO_PIC_FLAG; 1135 LoOpFlags |= PPCII::MO_PIC_FLAG; 1136 } 1137 1138 // If this is a reference to a global value that requires a non-lazy-ptr, make 1139 // sure that instruction lowering adds it. 1140 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1141 HiOpFlags |= PPCII::MO_NLP_FLAG; 1142 LoOpFlags |= PPCII::MO_NLP_FLAG; 1143 1144 if (GV->hasHiddenVisibility()) { 1145 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1146 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1147 } 1148 } 1149 1150 return isPIC; 1151 } 1152 1153 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1154 SelectionDAG &DAG) { 1155 EVT PtrVT = HiPart.getValueType(); 1156 SDValue Zero = DAG.getConstant(0, PtrVT); 1157 DebugLoc DL = HiPart.getDebugLoc(); 1158 1159 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1160 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1161 1162 // With PIC, the first instruction is actually "GR+hi(&G)". 1163 if (isPIC) 1164 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1165 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1166 1167 // Generate non-pic code that has direct accesses to the constant pool. 1168 // The address of the global is just (hi(&g)+lo(&g)). 1169 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1170 } 1171 1172 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1173 SelectionDAG &DAG) const { 1174 EVT PtrVT = Op.getValueType(); 1175 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1176 const Constant *C = CP->getConstVal(); 1177 1178 unsigned MOHiFlag, MOLoFlag; 1179 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1180 SDValue CPIHi = 1181 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1182 SDValue CPILo = 1183 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1184 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1185 } 1186 1187 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1188 EVT PtrVT = Op.getValueType(); 1189 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1190 1191 unsigned MOHiFlag, MOLoFlag; 1192 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1193 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1194 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1195 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1196 } 1197 1198 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1199 SelectionDAG &DAG) const { 1200 EVT PtrVT = Op.getValueType(); 1201 1202 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1203 1204 unsigned MOHiFlag, MOLoFlag; 1205 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1206 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1207 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1208 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1209 } 1210 1211 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 EVT PtrVT = Op.getValueType(); 1214 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1215 DebugLoc DL = GSDN->getDebugLoc(); 1216 const GlobalValue *GV = GSDN->getGlobal(); 1217 1218 // 64-bit SVR4 ABI code is always position-independent. 1219 // The actual address of the GlobalValue is stored in the TOC. 1220 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1221 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1222 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1223 DAG.getRegister(PPC::X2, MVT::i64)); 1224 } 1225 1226 unsigned MOHiFlag, MOLoFlag; 1227 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1228 1229 SDValue GAHi = 1230 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1231 SDValue GALo = 1232 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1233 1234 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1235 1236 // If the global reference is actually to a non-lazy-pointer, we have to do an 1237 // extra load to get the address of the global. 1238 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1239 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1240 false, false, false, 0); 1241 return Ptr; 1242 } 1243 1244 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1245 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1246 DebugLoc dl = Op.getDebugLoc(); 1247 1248 // If we're comparing for equality to zero, expose the fact that this is 1249 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1250 // fold the new nodes. 1251 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1252 if (C->isNullValue() && CC == ISD::SETEQ) { 1253 EVT VT = Op.getOperand(0).getValueType(); 1254 SDValue Zext = Op.getOperand(0); 1255 if (VT.bitsLT(MVT::i32)) { 1256 VT = MVT::i32; 1257 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1258 } 1259 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1260 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1261 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1262 DAG.getConstant(Log2b, MVT::i32)); 1263 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1264 } 1265 // Leave comparisons against 0 and -1 alone for now, since they're usually 1266 // optimized. FIXME: revisit this when we can custom lower all setcc 1267 // optimizations. 1268 if (C->isAllOnesValue() || C->isNullValue()) 1269 return SDValue(); 1270 } 1271 1272 // If we have an integer seteq/setne, turn it into a compare against zero 1273 // by xor'ing the rhs with the lhs, which is faster than setting a 1274 // condition register, reading it back out, and masking the correct bit. The 1275 // normal approach here uses sub to do this instead of xor. Using xor exposes 1276 // the result to other bit-twiddling opportunities. 1277 EVT LHSVT = Op.getOperand(0).getValueType(); 1278 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1279 EVT VT = Op.getValueType(); 1280 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1281 Op.getOperand(1)); 1282 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1283 } 1284 return SDValue(); 1285 } 1286 1287 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1288 const PPCSubtarget &Subtarget) const { 1289 SDNode *Node = Op.getNode(); 1290 EVT VT = Node->getValueType(0); 1291 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1292 SDValue InChain = Node->getOperand(0); 1293 SDValue VAListPtr = Node->getOperand(1); 1294 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1295 DebugLoc dl = Node->getDebugLoc(); 1296 1297 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1298 1299 // gpr_index 1300 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1301 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1302 false, false, 0); 1303 InChain = GprIndex.getValue(1); 1304 1305 if (VT == MVT::i64) { 1306 // Check if GprIndex is even 1307 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1308 DAG.getConstant(1, MVT::i32)); 1309 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1310 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1311 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1312 DAG.getConstant(1, MVT::i32)); 1313 // Align GprIndex to be even if it isn't 1314 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1315 GprIndex); 1316 } 1317 1318 // fpr index is 1 byte after gpr 1319 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1320 DAG.getConstant(1, MVT::i32)); 1321 1322 // fpr 1323 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1324 FprPtr, MachinePointerInfo(SV), MVT::i8, 1325 false, false, 0); 1326 InChain = FprIndex.getValue(1); 1327 1328 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1329 DAG.getConstant(8, MVT::i32)); 1330 1331 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1332 DAG.getConstant(4, MVT::i32)); 1333 1334 // areas 1335 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1336 MachinePointerInfo(), false, false, 1337 false, 0); 1338 InChain = OverflowArea.getValue(1); 1339 1340 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1341 MachinePointerInfo(), false, false, 1342 false, 0); 1343 InChain = RegSaveArea.getValue(1); 1344 1345 // select overflow_area if index > 8 1346 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1347 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1348 1349 // adjustment constant gpr_index * 4/8 1350 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1351 VT.isInteger() ? GprIndex : FprIndex, 1352 DAG.getConstant(VT.isInteger() ? 4 : 8, 1353 MVT::i32)); 1354 1355 // OurReg = RegSaveArea + RegConstant 1356 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1357 RegConstant); 1358 1359 // Floating types are 32 bytes into RegSaveArea 1360 if (VT.isFloatingPoint()) 1361 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1362 DAG.getConstant(32, MVT::i32)); 1363 1364 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1365 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1366 VT.isInteger() ? GprIndex : FprIndex, 1367 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1368 MVT::i32)); 1369 1370 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1371 VT.isInteger() ? VAListPtr : FprPtr, 1372 MachinePointerInfo(SV), 1373 MVT::i8, false, false, 0); 1374 1375 // determine if we should load from reg_save_area or overflow_area 1376 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1377 1378 // increase overflow_area by 4/8 if gpr/fpr > 8 1379 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1380 DAG.getConstant(VT.isInteger() ? 4 : 8, 1381 MVT::i32)); 1382 1383 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1384 OverflowAreaPlusN); 1385 1386 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1387 OverflowAreaPtr, 1388 MachinePointerInfo(), 1389 MVT::i32, false, false, 0); 1390 1391 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1392 false, false, false, 0); 1393 } 1394 1395 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1396 SelectionDAG &DAG) const { 1397 return Op.getOperand(0); 1398 } 1399 1400 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1401 SelectionDAG &DAG) const { 1402 SDValue Chain = Op.getOperand(0); 1403 SDValue Trmp = Op.getOperand(1); // trampoline 1404 SDValue FPtr = Op.getOperand(2); // nested function 1405 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1406 DebugLoc dl = Op.getDebugLoc(); 1407 1408 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1409 bool isPPC64 = (PtrVT == MVT::i64); 1410 Type *IntPtrTy = 1411 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1412 *DAG.getContext()); 1413 1414 TargetLowering::ArgListTy Args; 1415 TargetLowering::ArgListEntry Entry; 1416 1417 Entry.Ty = IntPtrTy; 1418 Entry.Node = Trmp; Args.push_back(Entry); 1419 1420 // TrampSize == (isPPC64 ? 48 : 40); 1421 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1422 isPPC64 ? MVT::i64 : MVT::i32); 1423 Args.push_back(Entry); 1424 1425 Entry.Node = FPtr; Args.push_back(Entry); 1426 Entry.Node = Nest; Args.push_back(Entry); 1427 1428 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1429 std::pair<SDValue, SDValue> CallResult = 1430 LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), 1431 false, false, false, false, 0, CallingConv::C, false, 1432 /*isReturnValueUsed=*/true, 1433 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1434 Args, DAG, dl); 1435 1436 return CallResult.second; 1437 } 1438 1439 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1440 const PPCSubtarget &Subtarget) const { 1441 MachineFunction &MF = DAG.getMachineFunction(); 1442 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1443 1444 DebugLoc dl = Op.getDebugLoc(); 1445 1446 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1447 // vastart just stores the address of the VarArgsFrameIndex slot into the 1448 // memory location argument. 1449 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1450 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1451 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1452 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1453 MachinePointerInfo(SV), 1454 false, false, 0); 1455 } 1456 1457 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1458 // We suppose the given va_list is already allocated. 1459 // 1460 // typedef struct { 1461 // char gpr; /* index into the array of 8 GPRs 1462 // * stored in the register save area 1463 // * gpr=0 corresponds to r3, 1464 // * gpr=1 to r4, etc. 1465 // */ 1466 // char fpr; /* index into the array of 8 FPRs 1467 // * stored in the register save area 1468 // * fpr=0 corresponds to f1, 1469 // * fpr=1 to f2, etc. 1470 // */ 1471 // char *overflow_arg_area; 1472 // /* location on stack that holds 1473 // * the next overflow argument 1474 // */ 1475 // char *reg_save_area; 1476 // /* where r3:r10 and f1:f8 (if saved) 1477 // * are stored 1478 // */ 1479 // } va_list[1]; 1480 1481 1482 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1483 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1484 1485 1486 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1487 1488 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1489 PtrVT); 1490 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1491 PtrVT); 1492 1493 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1494 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1495 1496 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1497 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1498 1499 uint64_t FPROffset = 1; 1500 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1501 1502 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1503 1504 // Store first byte : number of int regs 1505 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1506 Op.getOperand(1), 1507 MachinePointerInfo(SV), 1508 MVT::i8, false, false, 0); 1509 uint64_t nextOffset = FPROffset; 1510 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1511 ConstFPROffset); 1512 1513 // Store second byte : number of float regs 1514 SDValue secondStore = 1515 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1516 MachinePointerInfo(SV, nextOffset), MVT::i8, 1517 false, false, 0); 1518 nextOffset += StackOffset; 1519 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1520 1521 // Store second word : arguments given on stack 1522 SDValue thirdStore = 1523 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1524 MachinePointerInfo(SV, nextOffset), 1525 false, false, 0); 1526 nextOffset += FrameOffset; 1527 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1528 1529 // Store third word : arguments given in registers 1530 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1531 MachinePointerInfo(SV, nextOffset), 1532 false, false, 0); 1533 1534 } 1535 1536 #include "PPCGenCallingConv.inc" 1537 1538 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1539 CCValAssign::LocInfo &LocInfo, 1540 ISD::ArgFlagsTy &ArgFlags, 1541 CCState &State) { 1542 return true; 1543 } 1544 1545 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1546 MVT &LocVT, 1547 CCValAssign::LocInfo &LocInfo, 1548 ISD::ArgFlagsTy &ArgFlags, 1549 CCState &State) { 1550 static const unsigned ArgRegs[] = { 1551 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1552 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1553 }; 1554 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1555 1556 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1557 1558 // Skip one register if the first unallocated register has an even register 1559 // number and there are still argument registers available which have not been 1560 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1561 // need to skip a register if RegNum is odd. 1562 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1563 State.AllocateReg(ArgRegs[RegNum]); 1564 } 1565 1566 // Always return false here, as this function only makes sure that the first 1567 // unallocated register has an odd register number and does not actually 1568 // allocate a register for the current argument. 1569 return false; 1570 } 1571 1572 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1573 MVT &LocVT, 1574 CCValAssign::LocInfo &LocInfo, 1575 ISD::ArgFlagsTy &ArgFlags, 1576 CCState &State) { 1577 static const unsigned ArgRegs[] = { 1578 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1579 PPC::F8 1580 }; 1581 1582 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1583 1584 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1585 1586 // If there is only one Floating-point register left we need to put both f64 1587 // values of a split ppc_fp128 value on the stack. 1588 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1589 State.AllocateReg(ArgRegs[RegNum]); 1590 } 1591 1592 // Always return false here, as this function only makes sure that the two f64 1593 // values a ppc_fp128 value is split into are both passed in registers or both 1594 // passed on the stack and does not actually allocate a register for the 1595 // current argument. 1596 return false; 1597 } 1598 1599 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1600 /// on Darwin. 1601 static const unsigned *GetFPR() { 1602 static const unsigned FPR[] = { 1603 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1604 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1605 }; 1606 1607 return FPR; 1608 } 1609 1610 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1611 /// the stack. 1612 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1613 unsigned PtrByteSize) { 1614 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1615 if (Flags.isByVal()) 1616 ArgSize = Flags.getByValSize(); 1617 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1618 1619 return ArgSize; 1620 } 1621 1622 SDValue 1623 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1624 CallingConv::ID CallConv, bool isVarArg, 1625 const SmallVectorImpl<ISD::InputArg> 1626 &Ins, 1627 DebugLoc dl, SelectionDAG &DAG, 1628 SmallVectorImpl<SDValue> &InVals) 1629 const { 1630 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1631 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1632 dl, DAG, InVals); 1633 } else { 1634 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1635 dl, DAG, InVals); 1636 } 1637 } 1638 1639 SDValue 1640 PPCTargetLowering::LowerFormalArguments_SVR4( 1641 SDValue Chain, 1642 CallingConv::ID CallConv, bool isVarArg, 1643 const SmallVectorImpl<ISD::InputArg> 1644 &Ins, 1645 DebugLoc dl, SelectionDAG &DAG, 1646 SmallVectorImpl<SDValue> &InVals) const { 1647 1648 // 32-bit SVR4 ABI Stack Frame Layout: 1649 // +-----------------------------------+ 1650 // +--> | Back chain | 1651 // | +-----------------------------------+ 1652 // | | Floating-point register save area | 1653 // | +-----------------------------------+ 1654 // | | General register save area | 1655 // | +-----------------------------------+ 1656 // | | CR save word | 1657 // | +-----------------------------------+ 1658 // | | VRSAVE save word | 1659 // | +-----------------------------------+ 1660 // | | Alignment padding | 1661 // | +-----------------------------------+ 1662 // | | Vector register save area | 1663 // | +-----------------------------------+ 1664 // | | Local variable space | 1665 // | +-----------------------------------+ 1666 // | | Parameter list area | 1667 // | +-----------------------------------+ 1668 // | | LR save word | 1669 // | +-----------------------------------+ 1670 // SP--> +--- | Back chain | 1671 // +-----------------------------------+ 1672 // 1673 // Specifications: 1674 // System V Application Binary Interface PowerPC Processor Supplement 1675 // AltiVec Technology Programming Interface Manual 1676 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 MachineFrameInfo *MFI = MF.getFrameInfo(); 1679 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1680 1681 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1682 // Potential tail calls could cause overwriting of argument stack slots. 1683 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1684 (CallConv == CallingConv::Fast)); 1685 unsigned PtrByteSize = 4; 1686 1687 // Assign locations to all of the incoming arguments. 1688 SmallVector<CCValAssign, 16> ArgLocs; 1689 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1690 getTargetMachine(), ArgLocs, *DAG.getContext()); 1691 1692 // Reserve space for the linkage area on the stack. 1693 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1694 1695 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1696 1697 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1698 CCValAssign &VA = ArgLocs[i]; 1699 1700 // Arguments stored in registers. 1701 if (VA.isRegLoc()) { 1702 TargetRegisterClass *RC; 1703 EVT ValVT = VA.getValVT(); 1704 1705 switch (ValVT.getSimpleVT().SimpleTy) { 1706 default: 1707 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1708 case MVT::i32: 1709 RC = PPC::GPRCRegisterClass; 1710 break; 1711 case MVT::f32: 1712 RC = PPC::F4RCRegisterClass; 1713 break; 1714 case MVT::f64: 1715 RC = PPC::F8RCRegisterClass; 1716 break; 1717 case MVT::v16i8: 1718 case MVT::v8i16: 1719 case MVT::v4i32: 1720 case MVT::v4f32: 1721 RC = PPC::VRRCRegisterClass; 1722 break; 1723 } 1724 1725 // Transform the arguments stored in physical registers into virtual ones. 1726 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1727 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1728 1729 InVals.push_back(ArgValue); 1730 } else { 1731 // Argument stored in memory. 1732 assert(VA.isMemLoc()); 1733 1734 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1735 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1736 isImmutable); 1737 1738 // Create load nodes to retrieve arguments from the stack. 1739 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1740 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1741 MachinePointerInfo(), 1742 false, false, false, 0)); 1743 } 1744 } 1745 1746 // Assign locations to all of the incoming aggregate by value arguments. 1747 // Aggregates passed by value are stored in the local variable space of the 1748 // caller's stack frame, right above the parameter list area. 1749 SmallVector<CCValAssign, 16> ByValArgLocs; 1750 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1751 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1752 1753 // Reserve stack space for the allocations in CCInfo. 1754 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1755 1756 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1757 1758 // Area that is at least reserved in the caller of this function. 1759 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1760 1761 // Set the size that is at least reserved in caller of this function. Tail 1762 // call optimized function's reserved stack space needs to be aligned so that 1763 // taking the difference between two stack areas will result in an aligned 1764 // stack. 1765 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1766 1767 MinReservedArea = 1768 std::max(MinReservedArea, 1769 PPCFrameLowering::getMinCallFrameSize(false, false)); 1770 1771 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1772 getStackAlignment(); 1773 unsigned AlignMask = TargetAlign-1; 1774 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1775 1776 FI->setMinReservedArea(MinReservedArea); 1777 1778 SmallVector<SDValue, 8> MemOps; 1779 1780 // If the function takes variable number of arguments, make a frame index for 1781 // the start of the first vararg value... for expansion of llvm.va_start. 1782 if (isVarArg) { 1783 static const unsigned GPArgRegs[] = { 1784 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1785 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1786 }; 1787 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1788 1789 static const unsigned FPArgRegs[] = { 1790 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1791 PPC::F8 1792 }; 1793 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1794 1795 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1796 NumGPArgRegs)); 1797 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1798 NumFPArgRegs)); 1799 1800 // Make room for NumGPArgRegs and NumFPArgRegs. 1801 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1802 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1803 1804 FuncInfo->setVarArgsStackOffset( 1805 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1806 CCInfo.getNextStackOffset(), true)); 1807 1808 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1809 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1810 1811 // The fixed integer arguments of a variadic function are stored to the 1812 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1813 // the result of va_next. 1814 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1815 // Get an existing live-in vreg, or add a new one. 1816 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1817 if (!VReg) 1818 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1819 1820 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1821 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1822 MachinePointerInfo(), false, false, 0); 1823 MemOps.push_back(Store); 1824 // Increment the address by four for the next argument to store 1825 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1826 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1827 } 1828 1829 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1830 // is set. 1831 // The double arguments are stored to the VarArgsFrameIndex 1832 // on the stack. 1833 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1834 // Get an existing live-in vreg, or add a new one. 1835 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1836 if (!VReg) 1837 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1838 1839 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1840 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1841 MachinePointerInfo(), false, false, 0); 1842 MemOps.push_back(Store); 1843 // Increment the address by eight for the next argument to store 1844 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1845 PtrVT); 1846 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1847 } 1848 } 1849 1850 if (!MemOps.empty()) 1851 Chain = DAG.getNode(ISD::TokenFactor, dl, 1852 MVT::Other, &MemOps[0], MemOps.size()); 1853 1854 return Chain; 1855 } 1856 1857 SDValue 1858 PPCTargetLowering::LowerFormalArguments_Darwin( 1859 SDValue Chain, 1860 CallingConv::ID CallConv, bool isVarArg, 1861 const SmallVectorImpl<ISD::InputArg> 1862 &Ins, 1863 DebugLoc dl, SelectionDAG &DAG, 1864 SmallVectorImpl<SDValue> &InVals) const { 1865 // TODO: add description of PPC stack frame format, or at least some docs. 1866 // 1867 MachineFunction &MF = DAG.getMachineFunction(); 1868 MachineFrameInfo *MFI = MF.getFrameInfo(); 1869 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1870 1871 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1872 bool isPPC64 = PtrVT == MVT::i64; 1873 // Potential tail calls could cause overwriting of argument stack slots. 1874 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1875 (CallConv == CallingConv::Fast)); 1876 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1877 1878 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1879 // Area that is at least reserved in caller of this function. 1880 unsigned MinReservedArea = ArgOffset; 1881 1882 static const unsigned GPR_32[] = { // 32-bit registers. 1883 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1884 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1885 }; 1886 static const unsigned GPR_64[] = { // 64-bit registers. 1887 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1888 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1889 }; 1890 1891 static const unsigned *FPR = GetFPR(); 1892 1893 static const unsigned VR[] = { 1894 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1895 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1896 }; 1897 1898 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1899 const unsigned Num_FPR_Regs = 13; 1900 const unsigned Num_VR_Regs = array_lengthof( VR); 1901 1902 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1903 1904 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1905 1906 // In 32-bit non-varargs functions, the stack space for vectors is after the 1907 // stack space for non-vectors. We do not use this space unless we have 1908 // too many vectors to fit in registers, something that only occurs in 1909 // constructed examples:), but we have to walk the arglist to figure 1910 // that out...for the pathological case, compute VecArgOffset as the 1911 // start of the vector parameter area. Computing VecArgOffset is the 1912 // entire point of the following loop. 1913 unsigned VecArgOffset = ArgOffset; 1914 if (!isVarArg && !isPPC64) { 1915 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1916 ++ArgNo) { 1917 EVT ObjectVT = Ins[ArgNo].VT; 1918 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1919 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1920 1921 if (Flags.isByVal()) { 1922 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1923 ObjSize = Flags.getByValSize(); 1924 unsigned ArgSize = 1925 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1926 VecArgOffset += ArgSize; 1927 continue; 1928 } 1929 1930 switch(ObjectVT.getSimpleVT().SimpleTy) { 1931 default: llvm_unreachable("Unhandled argument type!"); 1932 case MVT::i32: 1933 case MVT::f32: 1934 VecArgOffset += isPPC64 ? 8 : 4; 1935 break; 1936 case MVT::i64: // PPC64 1937 case MVT::f64: 1938 VecArgOffset += 8; 1939 break; 1940 case MVT::v4f32: 1941 case MVT::v4i32: 1942 case MVT::v8i16: 1943 case MVT::v16i8: 1944 // Nothing to do, we're only looking at Nonvector args here. 1945 break; 1946 } 1947 } 1948 } 1949 // We've found where the vector parameter area in memory is. Skip the 1950 // first 12 parameters; these don't use that memory. 1951 VecArgOffset = ((VecArgOffset+15)/16)*16; 1952 VecArgOffset += 12*16; 1953 1954 // Add DAG nodes to load the arguments or copy them out of registers. On 1955 // entry to a function on PPC, the arguments start after the linkage area, 1956 // although the first ones are often in registers. 1957 1958 SmallVector<SDValue, 8> MemOps; 1959 unsigned nAltivecParamsAtEnd = 0; 1960 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1961 SDValue ArgVal; 1962 bool needsLoad = false; 1963 EVT ObjectVT = Ins[ArgNo].VT; 1964 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1965 unsigned ArgSize = ObjSize; 1966 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1967 1968 unsigned CurArgOffset = ArgOffset; 1969 1970 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1971 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1972 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1973 if (isVarArg || isPPC64) { 1974 MinReservedArea = ((MinReservedArea+15)/16)*16; 1975 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1976 Flags, 1977 PtrByteSize); 1978 } else nAltivecParamsAtEnd++; 1979 } else 1980 // Calculate min reserved area. 1981 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1982 Flags, 1983 PtrByteSize); 1984 1985 // FIXME the codegen can be much improved in some cases. 1986 // We do not have to keep everything in memory. 1987 if (Flags.isByVal()) { 1988 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1989 ObjSize = Flags.getByValSize(); 1990 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1991 // Objects of size 1 and 2 are right justified, everything else is 1992 // left justified. This means the memory address is adjusted forwards. 1993 if (ObjSize==1 || ObjSize==2) { 1994 CurArgOffset = CurArgOffset + (4 - ObjSize); 1995 } 1996 // The value of the object is its address. 1997 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1998 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1999 InVals.push_back(FIN); 2000 if (ObjSize==1 || ObjSize==2) { 2001 if (GPR_idx != Num_GPR_Regs) { 2002 unsigned VReg; 2003 if (isPPC64) 2004 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2005 else 2006 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2007 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2008 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2009 MachinePointerInfo(), 2010 ObjSize==1 ? MVT::i8 : MVT::i16, 2011 false, false, 0); 2012 MemOps.push_back(Store); 2013 ++GPR_idx; 2014 } 2015 2016 ArgOffset += PtrByteSize; 2017 2018 continue; 2019 } 2020 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2021 // Store whatever pieces of the object are in registers 2022 // to memory. ArgVal will be address of the beginning of 2023 // the object. 2024 if (GPR_idx != Num_GPR_Regs) { 2025 unsigned VReg; 2026 if (isPPC64) 2027 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2028 else 2029 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2030 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2031 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2032 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2033 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2034 MachinePointerInfo(), 2035 false, false, 0); 2036 MemOps.push_back(Store); 2037 ++GPR_idx; 2038 ArgOffset += PtrByteSize; 2039 } else { 2040 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2041 break; 2042 } 2043 } 2044 continue; 2045 } 2046 2047 switch (ObjectVT.getSimpleVT().SimpleTy) { 2048 default: llvm_unreachable("Unhandled argument type!"); 2049 case MVT::i32: 2050 if (!isPPC64) { 2051 if (GPR_idx != Num_GPR_Regs) { 2052 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2053 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2054 ++GPR_idx; 2055 } else { 2056 needsLoad = true; 2057 ArgSize = PtrByteSize; 2058 } 2059 // All int arguments reserve stack space in the Darwin ABI. 2060 ArgOffset += PtrByteSize; 2061 break; 2062 } 2063 // FALLTHROUGH 2064 case MVT::i64: // PPC64 2065 if (GPR_idx != Num_GPR_Regs) { 2066 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2067 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2068 2069 if (ObjectVT == MVT::i32) { 2070 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2071 // value to MVT::i64 and then truncate to the correct register size. 2072 if (Flags.isSExt()) 2073 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2074 DAG.getValueType(ObjectVT)); 2075 else if (Flags.isZExt()) 2076 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2077 DAG.getValueType(ObjectVT)); 2078 2079 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2080 } 2081 2082 ++GPR_idx; 2083 } else { 2084 needsLoad = true; 2085 ArgSize = PtrByteSize; 2086 } 2087 // All int arguments reserve stack space in the Darwin ABI. 2088 ArgOffset += 8; 2089 break; 2090 2091 case MVT::f32: 2092 case MVT::f64: 2093 // Every 4 bytes of argument space consumes one of the GPRs available for 2094 // argument passing. 2095 if (GPR_idx != Num_GPR_Regs) { 2096 ++GPR_idx; 2097 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2098 ++GPR_idx; 2099 } 2100 if (FPR_idx != Num_FPR_Regs) { 2101 unsigned VReg; 2102 2103 if (ObjectVT == MVT::f32) 2104 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2105 else 2106 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2107 2108 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2109 ++FPR_idx; 2110 } else { 2111 needsLoad = true; 2112 } 2113 2114 // All FP arguments reserve stack space in the Darwin ABI. 2115 ArgOffset += isPPC64 ? 8 : ObjSize; 2116 break; 2117 case MVT::v4f32: 2118 case MVT::v4i32: 2119 case MVT::v8i16: 2120 case MVT::v16i8: 2121 // Note that vector arguments in registers don't reserve stack space, 2122 // except in varargs functions. 2123 if (VR_idx != Num_VR_Regs) { 2124 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2125 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2126 if (isVarArg) { 2127 while ((ArgOffset % 16) != 0) { 2128 ArgOffset += PtrByteSize; 2129 if (GPR_idx != Num_GPR_Regs) 2130 GPR_idx++; 2131 } 2132 ArgOffset += 16; 2133 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2134 } 2135 ++VR_idx; 2136 } else { 2137 if (!isVarArg && !isPPC64) { 2138 // Vectors go after all the nonvectors. 2139 CurArgOffset = VecArgOffset; 2140 VecArgOffset += 16; 2141 } else { 2142 // Vectors are aligned. 2143 ArgOffset = ((ArgOffset+15)/16)*16; 2144 CurArgOffset = ArgOffset; 2145 ArgOffset += 16; 2146 } 2147 needsLoad = true; 2148 } 2149 break; 2150 } 2151 2152 // We need to load the argument to a virtual register if we determined above 2153 // that we ran out of physical registers of the appropriate type. 2154 if (needsLoad) { 2155 int FI = MFI->CreateFixedObject(ObjSize, 2156 CurArgOffset + (ArgSize - ObjSize), 2157 isImmutable); 2158 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2159 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2160 false, false, false, 0); 2161 } 2162 2163 InVals.push_back(ArgVal); 2164 } 2165 2166 // Set the size that is at least reserved in caller of this function. Tail 2167 // call optimized function's reserved stack space needs to be aligned so that 2168 // taking the difference between two stack areas will result in an aligned 2169 // stack. 2170 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2171 // Add the Altivec parameters at the end, if needed. 2172 if (nAltivecParamsAtEnd) { 2173 MinReservedArea = ((MinReservedArea+15)/16)*16; 2174 MinReservedArea += 16*nAltivecParamsAtEnd; 2175 } 2176 MinReservedArea = 2177 std::max(MinReservedArea, 2178 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2179 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2180 getStackAlignment(); 2181 unsigned AlignMask = TargetAlign-1; 2182 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2183 FI->setMinReservedArea(MinReservedArea); 2184 2185 // If the function takes variable number of arguments, make a frame index for 2186 // the start of the first vararg value... for expansion of llvm.va_start. 2187 if (isVarArg) { 2188 int Depth = ArgOffset; 2189 2190 FuncInfo->setVarArgsFrameIndex( 2191 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2192 Depth, true)); 2193 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2194 2195 // If this function is vararg, store any remaining integer argument regs 2196 // to their spots on the stack so that they may be loaded by deferencing the 2197 // result of va_next. 2198 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2199 unsigned VReg; 2200 2201 if (isPPC64) 2202 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2203 else 2204 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2205 2206 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2207 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2208 MachinePointerInfo(), false, false, 0); 2209 MemOps.push_back(Store); 2210 // Increment the address by four for the next argument to store 2211 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2212 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2213 } 2214 } 2215 2216 if (!MemOps.empty()) 2217 Chain = DAG.getNode(ISD::TokenFactor, dl, 2218 MVT::Other, &MemOps[0], MemOps.size()); 2219 2220 return Chain; 2221 } 2222 2223 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2224 /// linkage area for the Darwin ABI. 2225 static unsigned 2226 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2227 bool isPPC64, 2228 bool isVarArg, 2229 unsigned CC, 2230 const SmallVectorImpl<ISD::OutputArg> 2231 &Outs, 2232 const SmallVectorImpl<SDValue> &OutVals, 2233 unsigned &nAltivecParamsAtEnd) { 2234 // Count how many bytes are to be pushed on the stack, including the linkage 2235 // area, and parameter passing area. We start with 24/48 bytes, which is 2236 // prereserved space for [SP][CR][LR][3 x unused]. 2237 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2238 unsigned NumOps = Outs.size(); 2239 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2240 2241 // Add up all the space actually used. 2242 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2243 // they all go in registers, but we must reserve stack space for them for 2244 // possible use by the caller. In varargs or 64-bit calls, parameters are 2245 // assigned stack space in order, with padding so Altivec parameters are 2246 // 16-byte aligned. 2247 nAltivecParamsAtEnd = 0; 2248 for (unsigned i = 0; i != NumOps; ++i) { 2249 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2250 EVT ArgVT = Outs[i].VT; 2251 // Varargs Altivec parameters are padded to a 16 byte boundary. 2252 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2253 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2254 if (!isVarArg && !isPPC64) { 2255 // Non-varargs Altivec parameters go after all the non-Altivec 2256 // parameters; handle those later so we know how much padding we need. 2257 nAltivecParamsAtEnd++; 2258 continue; 2259 } 2260 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2261 NumBytes = ((NumBytes+15)/16)*16; 2262 } 2263 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2264 } 2265 2266 // Allow for Altivec parameters at the end, if needed. 2267 if (nAltivecParamsAtEnd) { 2268 NumBytes = ((NumBytes+15)/16)*16; 2269 NumBytes += 16*nAltivecParamsAtEnd; 2270 } 2271 2272 // The prolog code of the callee may store up to 8 GPR argument registers to 2273 // the stack, allowing va_start to index over them in memory if its varargs. 2274 // Because we cannot tell if this is needed on the caller side, we have to 2275 // conservatively assume that it is needed. As such, make sure we have at 2276 // least enough stack space for the caller to store the 8 GPRs. 2277 NumBytes = std::max(NumBytes, 2278 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2279 2280 // Tail call needs the stack to be aligned. 2281 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2282 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2283 getFrameLowering()->getStackAlignment(); 2284 unsigned AlignMask = TargetAlign-1; 2285 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2286 } 2287 2288 return NumBytes; 2289 } 2290 2291 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2292 /// adjusted to accommodate the arguments for the tailcall. 2293 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2294 unsigned ParamSize) { 2295 2296 if (!isTailCall) return 0; 2297 2298 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2299 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2300 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2301 // Remember only if the new adjustement is bigger. 2302 if (SPDiff < FI->getTailCallSPDelta()) 2303 FI->setTailCallSPDelta(SPDiff); 2304 2305 return SPDiff; 2306 } 2307 2308 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2309 /// for tail call optimization. Targets which want to do tail call 2310 /// optimization should implement this function. 2311 bool 2312 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2313 CallingConv::ID CalleeCC, 2314 bool isVarArg, 2315 const SmallVectorImpl<ISD::InputArg> &Ins, 2316 SelectionDAG& DAG) const { 2317 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2318 return false; 2319 2320 // Variable argument functions are not supported. 2321 if (isVarArg) 2322 return false; 2323 2324 MachineFunction &MF = DAG.getMachineFunction(); 2325 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2326 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2327 // Functions containing by val parameters are not supported. 2328 for (unsigned i = 0; i != Ins.size(); i++) { 2329 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2330 if (Flags.isByVal()) return false; 2331 } 2332 2333 // Non PIC/GOT tail calls are supported. 2334 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2335 return true; 2336 2337 // At the moment we can only do local tail calls (in same module, hidden 2338 // or protected) if we are generating PIC. 2339 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2340 return G->getGlobal()->hasHiddenVisibility() 2341 || G->getGlobal()->hasProtectedVisibility(); 2342 } 2343 2344 return false; 2345 } 2346 2347 /// isCallCompatibleAddress - Return the immediate to use if the specified 2348 /// 32-bit value is representable in the immediate field of a BxA instruction. 2349 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2351 if (!C) return 0; 2352 2353 int Addr = C->getZExtValue(); 2354 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2355 (Addr << 6 >> 6) != Addr) 2356 return 0; // Top 6 bits have to be sext of immediate. 2357 2358 return DAG.getConstant((int)C->getZExtValue() >> 2, 2359 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2360 } 2361 2362 namespace { 2363 2364 struct TailCallArgumentInfo { 2365 SDValue Arg; 2366 SDValue FrameIdxOp; 2367 int FrameIdx; 2368 2369 TailCallArgumentInfo() : FrameIdx(0) {} 2370 }; 2371 2372 } 2373 2374 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2375 static void 2376 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2377 SDValue Chain, 2378 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2379 SmallVector<SDValue, 8> &MemOpChains, 2380 DebugLoc dl) { 2381 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2382 SDValue Arg = TailCallArgs[i].Arg; 2383 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2384 int FI = TailCallArgs[i].FrameIdx; 2385 // Store relative to framepointer. 2386 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2387 MachinePointerInfo::getFixedStack(FI), 2388 false, false, 0)); 2389 } 2390 } 2391 2392 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2393 /// the appropriate stack slot for the tail call optimized function call. 2394 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2395 MachineFunction &MF, 2396 SDValue Chain, 2397 SDValue OldRetAddr, 2398 SDValue OldFP, 2399 int SPDiff, 2400 bool isPPC64, 2401 bool isDarwinABI, 2402 DebugLoc dl) { 2403 if (SPDiff) { 2404 // Calculate the new stack slot for the return address. 2405 int SlotSize = isPPC64 ? 8 : 4; 2406 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2407 isDarwinABI); 2408 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2409 NewRetAddrLoc, true); 2410 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2411 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2412 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2413 MachinePointerInfo::getFixedStack(NewRetAddr), 2414 false, false, 0); 2415 2416 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2417 // slot as the FP is never overwritten. 2418 if (isDarwinABI) { 2419 int NewFPLoc = 2420 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2421 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2422 true); 2423 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2424 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2425 MachinePointerInfo::getFixedStack(NewFPIdx), 2426 false, false, 0); 2427 } 2428 } 2429 return Chain; 2430 } 2431 2432 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2433 /// the position of the argument. 2434 static void 2435 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2436 SDValue Arg, int SPDiff, unsigned ArgOffset, 2437 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2438 int Offset = ArgOffset + SPDiff; 2439 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2440 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2441 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2442 SDValue FIN = DAG.getFrameIndex(FI, VT); 2443 TailCallArgumentInfo Info; 2444 Info.Arg = Arg; 2445 Info.FrameIdxOp = FIN; 2446 Info.FrameIdx = FI; 2447 TailCallArguments.push_back(Info); 2448 } 2449 2450 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2451 /// stack slot. Returns the chain as result and the loaded frame pointers in 2452 /// LROpOut/FPOpout. Used when tail calling. 2453 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2454 int SPDiff, 2455 SDValue Chain, 2456 SDValue &LROpOut, 2457 SDValue &FPOpOut, 2458 bool isDarwinABI, 2459 DebugLoc dl) const { 2460 if (SPDiff) { 2461 // Load the LR and FP stack slot for later adjusting. 2462 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2463 LROpOut = getReturnAddrFrameIndex(DAG); 2464 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2465 false, false, false, 0); 2466 Chain = SDValue(LROpOut.getNode(), 1); 2467 2468 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2469 // slot as the FP is never overwritten. 2470 if (isDarwinABI) { 2471 FPOpOut = getFramePointerFrameIndex(DAG); 2472 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2473 false, false, false, 0); 2474 Chain = SDValue(FPOpOut.getNode(), 1); 2475 } 2476 } 2477 return Chain; 2478 } 2479 2480 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2481 /// by "Src" to address "Dst" of size "Size". Alignment information is 2482 /// specified by the specific parameter attribute. The copy will be passed as 2483 /// a byval function parameter. 2484 /// Sometimes what we are copying is the end of a larger object, the part that 2485 /// does not fit in registers. 2486 static SDValue 2487 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2488 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2489 DebugLoc dl) { 2490 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2491 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2492 false, false, MachinePointerInfo(0), 2493 MachinePointerInfo(0)); 2494 } 2495 2496 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2497 /// tail calls. 2498 static void 2499 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2500 SDValue Arg, SDValue PtrOff, int SPDiff, 2501 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2502 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2503 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2504 DebugLoc dl) { 2505 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2506 if (!isTailCall) { 2507 if (isVector) { 2508 SDValue StackPtr; 2509 if (isPPC64) 2510 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2511 else 2512 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2513 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2514 DAG.getConstant(ArgOffset, PtrVT)); 2515 } 2516 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2517 MachinePointerInfo(), false, false, 0)); 2518 // Calculate and remember argument location. 2519 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2520 TailCallArguments); 2521 } 2522 2523 static 2524 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2525 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2526 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2527 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2528 MachineFunction &MF = DAG.getMachineFunction(); 2529 2530 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2531 // might overwrite each other in case of tail call optimization. 2532 SmallVector<SDValue, 8> MemOpChains2; 2533 // Do not flag preceding copytoreg stuff together with the following stuff. 2534 InFlag = SDValue(); 2535 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2536 MemOpChains2, dl); 2537 if (!MemOpChains2.empty()) 2538 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2539 &MemOpChains2[0], MemOpChains2.size()); 2540 2541 // Store the return address to the appropriate stack slot. 2542 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2543 isPPC64, isDarwinABI, dl); 2544 2545 // Emit callseq_end just before tailcall node. 2546 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2547 DAG.getIntPtrConstant(0, true), InFlag); 2548 InFlag = Chain.getValue(1); 2549 } 2550 2551 static 2552 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2553 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2554 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2555 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2556 const PPCSubtarget &PPCSubTarget) { 2557 2558 bool isPPC64 = PPCSubTarget.isPPC64(); 2559 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2560 2561 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2562 NodeTys.push_back(MVT::Other); // Returns a chain 2563 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2564 2565 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2566 2567 bool needIndirectCall = true; 2568 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2569 // If this is an absolute destination address, use the munged value. 2570 Callee = SDValue(Dest, 0); 2571 needIndirectCall = false; 2572 } 2573 2574 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2575 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2576 // Use indirect calls for ALL functions calls in JIT mode, since the 2577 // far-call stubs may be outside relocation limits for a BL instruction. 2578 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2579 unsigned OpFlags = 0; 2580 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2581 (PPCSubTarget.getTargetTriple().isMacOSX() && 2582 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2583 (G->getGlobal()->isDeclaration() || 2584 G->getGlobal()->isWeakForLinker())) { 2585 // PC-relative references to external symbols should go through $stub, 2586 // unless we're building with the leopard linker or later, which 2587 // automatically synthesizes these stubs. 2588 OpFlags = PPCII::MO_DARWIN_STUB; 2589 } 2590 2591 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2592 // every direct call is) turn it into a TargetGlobalAddress / 2593 // TargetExternalSymbol node so that legalize doesn't hack it. 2594 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2595 Callee.getValueType(), 2596 0, OpFlags); 2597 needIndirectCall = false; 2598 } 2599 } 2600 2601 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2602 unsigned char OpFlags = 0; 2603 2604 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2605 (PPCSubTarget.getTargetTriple().isMacOSX() && 2606 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2607 // PC-relative references to external symbols should go through $stub, 2608 // unless we're building with the leopard linker or later, which 2609 // automatically synthesizes these stubs. 2610 OpFlags = PPCII::MO_DARWIN_STUB; 2611 } 2612 2613 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2614 OpFlags); 2615 needIndirectCall = false; 2616 } 2617 2618 if (needIndirectCall) { 2619 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2620 // to do the call, we can't use PPCISD::CALL. 2621 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2622 2623 if (isSVR4ABI && isPPC64) { 2624 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2625 // entry point, but to the function descriptor (the function entry point 2626 // address is part of the function descriptor though). 2627 // The function descriptor is a three doubleword structure with the 2628 // following fields: function entry point, TOC base address and 2629 // environment pointer. 2630 // Thus for a call through a function pointer, the following actions need 2631 // to be performed: 2632 // 1. Save the TOC of the caller in the TOC save area of its stack 2633 // frame (this is done in LowerCall_Darwin()). 2634 // 2. Load the address of the function entry point from the function 2635 // descriptor. 2636 // 3. Load the TOC of the callee from the function descriptor into r2. 2637 // 4. Load the environment pointer from the function descriptor into 2638 // r11. 2639 // 5. Branch to the function entry point address. 2640 // 6. On return of the callee, the TOC of the caller needs to be 2641 // restored (this is done in FinishCall()). 2642 // 2643 // All those operations are flagged together to ensure that no other 2644 // operations can be scheduled in between. E.g. without flagging the 2645 // operations together, a TOC access in the caller could be scheduled 2646 // between the load of the callee TOC and the branch to the callee, which 2647 // results in the TOC access going through the TOC of the callee instead 2648 // of going through the TOC of the caller, which leads to incorrect code. 2649 2650 // Load the address of the function entry point from the function 2651 // descriptor. 2652 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2653 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2654 InFlag.getNode() ? 3 : 2); 2655 Chain = LoadFuncPtr.getValue(1); 2656 InFlag = LoadFuncPtr.getValue(2); 2657 2658 // Load environment pointer into r11. 2659 // Offset of the environment pointer within the function descriptor. 2660 SDValue PtrOff = DAG.getIntPtrConstant(16); 2661 2662 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2663 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2664 InFlag); 2665 Chain = LoadEnvPtr.getValue(1); 2666 InFlag = LoadEnvPtr.getValue(2); 2667 2668 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2669 InFlag); 2670 Chain = EnvVal.getValue(0); 2671 InFlag = EnvVal.getValue(1); 2672 2673 // Load TOC of the callee into r2. We are using a target-specific load 2674 // with r2 hard coded, because the result of a target-independent load 2675 // would never go directly into r2, since r2 is a reserved register (which 2676 // prevents the register allocator from allocating it), resulting in an 2677 // additional register being allocated and an unnecessary move instruction 2678 // being generated. 2679 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2680 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2681 Callee, InFlag); 2682 Chain = LoadTOCPtr.getValue(0); 2683 InFlag = LoadTOCPtr.getValue(1); 2684 2685 MTCTROps[0] = Chain; 2686 MTCTROps[1] = LoadFuncPtr; 2687 MTCTROps[2] = InFlag; 2688 } 2689 2690 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2691 2 + (InFlag.getNode() != 0)); 2692 InFlag = Chain.getValue(1); 2693 2694 NodeTys.clear(); 2695 NodeTys.push_back(MVT::Other); 2696 NodeTys.push_back(MVT::Glue); 2697 Ops.push_back(Chain); 2698 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2699 Callee.setNode(0); 2700 // Add CTR register as callee so a bctr can be emitted later. 2701 if (isTailCall) 2702 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2703 } 2704 2705 // If this is a direct call, pass the chain and the callee. 2706 if (Callee.getNode()) { 2707 Ops.push_back(Chain); 2708 Ops.push_back(Callee); 2709 } 2710 // If this is a tail call add stack pointer delta. 2711 if (isTailCall) 2712 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2713 2714 // Add argument registers to the end of the list so that they are known live 2715 // into the call. 2716 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2717 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2718 RegsToPass[i].second.getValueType())); 2719 2720 return CallOpc; 2721 } 2722 2723 SDValue 2724 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2725 CallingConv::ID CallConv, bool isVarArg, 2726 const SmallVectorImpl<ISD::InputArg> &Ins, 2727 DebugLoc dl, SelectionDAG &DAG, 2728 SmallVectorImpl<SDValue> &InVals) const { 2729 2730 SmallVector<CCValAssign, 16> RVLocs; 2731 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2732 getTargetMachine(), RVLocs, *DAG.getContext()); 2733 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2734 2735 // Copy all of the result registers out of their specified physreg. 2736 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2737 CCValAssign &VA = RVLocs[i]; 2738 EVT VT = VA.getValVT(); 2739 assert(VA.isRegLoc() && "Can only return in registers!"); 2740 Chain = DAG.getCopyFromReg(Chain, dl, 2741 VA.getLocReg(), VT, InFlag).getValue(1); 2742 InVals.push_back(Chain.getValue(0)); 2743 InFlag = Chain.getValue(2); 2744 } 2745 2746 return Chain; 2747 } 2748 2749 SDValue 2750 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2751 bool isTailCall, bool isVarArg, 2752 SelectionDAG &DAG, 2753 SmallVector<std::pair<unsigned, SDValue>, 8> 2754 &RegsToPass, 2755 SDValue InFlag, SDValue Chain, 2756 SDValue &Callee, 2757 int SPDiff, unsigned NumBytes, 2758 const SmallVectorImpl<ISD::InputArg> &Ins, 2759 SmallVectorImpl<SDValue> &InVals) const { 2760 std::vector<EVT> NodeTys; 2761 SmallVector<SDValue, 8> Ops; 2762 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2763 isTailCall, RegsToPass, Ops, NodeTys, 2764 PPCSubTarget); 2765 2766 // When performing tail call optimization the callee pops its arguments off 2767 // the stack. Account for this here so these bytes can be pushed back on in 2768 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2769 int BytesCalleePops = 2770 (CallConv == CallingConv::Fast && 2771 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 2772 2773 if (InFlag.getNode()) 2774 Ops.push_back(InFlag); 2775 2776 // Emit tail call. 2777 if (isTailCall) { 2778 // If this is the first return lowered for this function, add the regs 2779 // to the liveout set for the function. 2780 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2781 SmallVector<CCValAssign, 16> RVLocs; 2782 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2783 getTargetMachine(), RVLocs, *DAG.getContext()); 2784 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2785 for (unsigned i = 0; i != RVLocs.size(); ++i) 2786 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2787 } 2788 2789 assert(((Callee.getOpcode() == ISD::Register && 2790 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2791 Callee.getOpcode() == ISD::TargetExternalSymbol || 2792 Callee.getOpcode() == ISD::TargetGlobalAddress || 2793 isa<ConstantSDNode>(Callee)) && 2794 "Expecting an global address, external symbol, absolute value or register"); 2795 2796 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2797 } 2798 2799 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2800 InFlag = Chain.getValue(1); 2801 2802 // Add a NOP immediately after the branch instruction when using the 64-bit 2803 // SVR4 ABI. At link time, if caller and callee are in a different module and 2804 // thus have a different TOC, the call will be replaced with a call to a stub 2805 // function which saves the current TOC, loads the TOC of the callee and 2806 // branches to the callee. The NOP will be replaced with a load instruction 2807 // which restores the TOC of the caller from the TOC save slot of the current 2808 // stack frame. If caller and callee belong to the same module (and have the 2809 // same TOC), the NOP will remain unchanged. 2810 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2811 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2812 if (CallOpc == PPCISD::BCTRL_SVR4) { 2813 // This is a call through a function pointer. 2814 // Restore the caller TOC from the save area into R2. 2815 // See PrepareCall() for more information about calls through function 2816 // pointers in the 64-bit SVR4 ABI. 2817 // We are using a target-specific load with r2 hard coded, because the 2818 // result of a target-independent load would never go directly into r2, 2819 // since r2 is a reserved register (which prevents the register allocator 2820 // from allocating it), resulting in an additional register being 2821 // allocated and an unnecessary move instruction being generated. 2822 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2823 InFlag = Chain.getValue(1); 2824 } else { 2825 // Otherwise insert NOP. 2826 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2827 } 2828 } 2829 2830 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2831 DAG.getIntPtrConstant(BytesCalleePops, true), 2832 InFlag); 2833 if (!Ins.empty()) 2834 InFlag = Chain.getValue(1); 2835 2836 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2837 Ins, dl, DAG, InVals); 2838 } 2839 2840 SDValue 2841 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2842 CallingConv::ID CallConv, bool isVarArg, 2843 bool &isTailCall, 2844 const SmallVectorImpl<ISD::OutputArg> &Outs, 2845 const SmallVectorImpl<SDValue> &OutVals, 2846 const SmallVectorImpl<ISD::InputArg> &Ins, 2847 DebugLoc dl, SelectionDAG &DAG, 2848 SmallVectorImpl<SDValue> &InVals) const { 2849 if (isTailCall) 2850 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2851 Ins, DAG); 2852 2853 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2854 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2855 isTailCall, Outs, OutVals, Ins, 2856 dl, DAG, InVals); 2857 2858 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2859 isTailCall, Outs, OutVals, Ins, 2860 dl, DAG, InVals); 2861 } 2862 2863 SDValue 2864 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2865 CallingConv::ID CallConv, bool isVarArg, 2866 bool isTailCall, 2867 const SmallVectorImpl<ISD::OutputArg> &Outs, 2868 const SmallVectorImpl<SDValue> &OutVals, 2869 const SmallVectorImpl<ISD::InputArg> &Ins, 2870 DebugLoc dl, SelectionDAG &DAG, 2871 SmallVectorImpl<SDValue> &InVals) const { 2872 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2873 // of the 32-bit SVR4 ABI stack frame layout. 2874 2875 assert((CallConv == CallingConv::C || 2876 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2877 2878 unsigned PtrByteSize = 4; 2879 2880 MachineFunction &MF = DAG.getMachineFunction(); 2881 2882 // Mark this function as potentially containing a function that contains a 2883 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2884 // and restoring the callers stack pointer in this functions epilog. This is 2885 // done because by tail calling the called function might overwrite the value 2886 // in this function's (MF) stack pointer stack slot 0(SP). 2887 if (getTargetMachine().Options.GuaranteedTailCallOpt && 2888 CallConv == CallingConv::Fast) 2889 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2890 2891 // Count how many bytes are to be pushed on the stack, including the linkage 2892 // area, parameter list area and the part of the local variable space which 2893 // contains copies of aggregates which are passed by value. 2894 2895 // Assign locations to all of the outgoing arguments. 2896 SmallVector<CCValAssign, 16> ArgLocs; 2897 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2898 getTargetMachine(), ArgLocs, *DAG.getContext()); 2899 2900 // Reserve space for the linkage area on the stack. 2901 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2902 2903 if (isVarArg) { 2904 // Handle fixed and variable vector arguments differently. 2905 // Fixed vector arguments go into registers as long as registers are 2906 // available. Variable vector arguments always go into memory. 2907 unsigned NumArgs = Outs.size(); 2908 2909 for (unsigned i = 0; i != NumArgs; ++i) { 2910 MVT ArgVT = Outs[i].VT; 2911 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2912 bool Result; 2913 2914 if (Outs[i].IsFixed) { 2915 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2916 CCInfo); 2917 } else { 2918 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2919 ArgFlags, CCInfo); 2920 } 2921 2922 if (Result) { 2923 #ifndef NDEBUG 2924 errs() << "Call operand #" << i << " has unhandled type " 2925 << EVT(ArgVT).getEVTString() << "\n"; 2926 #endif 2927 llvm_unreachable(0); 2928 } 2929 } 2930 } else { 2931 // All arguments are treated the same. 2932 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2933 } 2934 2935 // Assign locations to all of the outgoing aggregate by value arguments. 2936 SmallVector<CCValAssign, 16> ByValArgLocs; 2937 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2938 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 2939 2940 // Reserve stack space for the allocations in CCInfo. 2941 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2942 2943 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2944 2945 // Size of the linkage area, parameter list area and the part of the local 2946 // space variable where copies of aggregates which are passed by value are 2947 // stored. 2948 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2949 2950 // Calculate by how many bytes the stack has to be adjusted in case of tail 2951 // call optimization. 2952 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2953 2954 // Adjust the stack pointer for the new arguments... 2955 // These operations are automatically eliminated by the prolog/epilog pass 2956 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2957 SDValue CallSeqStart = Chain; 2958 2959 // Load the return address and frame pointer so it can be moved somewhere else 2960 // later. 2961 SDValue LROp, FPOp; 2962 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2963 dl); 2964 2965 // Set up a copy of the stack pointer for use loading and storing any 2966 // arguments that may not fit in the registers available for argument 2967 // passing. 2968 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2969 2970 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2971 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2972 SmallVector<SDValue, 8> MemOpChains; 2973 2974 bool seenFloatArg = false; 2975 // Walk the register/memloc assignments, inserting copies/loads. 2976 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2977 i != e; 2978 ++i) { 2979 CCValAssign &VA = ArgLocs[i]; 2980 SDValue Arg = OutVals[i]; 2981 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2982 2983 if (Flags.isByVal()) { 2984 // Argument is an aggregate which is passed by value, thus we need to 2985 // create a copy of it in the local variable space of the current stack 2986 // frame (which is the stack frame of the caller) and pass the address of 2987 // this copy to the callee. 2988 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2989 CCValAssign &ByValVA = ByValArgLocs[j++]; 2990 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2991 2992 // Memory reserved in the local variable space of the callers stack frame. 2993 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2994 2995 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2996 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2997 2998 // Create a copy of the argument in the local area of the current 2999 // stack frame. 3000 SDValue MemcpyCall = 3001 CreateCopyOfByValArgument(Arg, PtrOff, 3002 CallSeqStart.getNode()->getOperand(0), 3003 Flags, DAG, dl); 3004 3005 // This must go outside the CALLSEQ_START..END. 3006 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3007 CallSeqStart.getNode()->getOperand(1)); 3008 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3009 NewCallSeqStart.getNode()); 3010 Chain = CallSeqStart = NewCallSeqStart; 3011 3012 // Pass the address of the aggregate copy on the stack either in a 3013 // physical register or in the parameter list area of the current stack 3014 // frame to the callee. 3015 Arg = PtrOff; 3016 } 3017 3018 if (VA.isRegLoc()) { 3019 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3020 // Put argument in a physical register. 3021 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3022 } else { 3023 // Put argument in the parameter list area of the current stack frame. 3024 assert(VA.isMemLoc()); 3025 unsigned LocMemOffset = VA.getLocMemOffset(); 3026 3027 if (!isTailCall) { 3028 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3029 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3030 3031 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3032 MachinePointerInfo(), 3033 false, false, 0)); 3034 } else { 3035 // Calculate and remember argument location. 3036 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3037 TailCallArguments); 3038 } 3039 } 3040 } 3041 3042 if (!MemOpChains.empty()) 3043 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3044 &MemOpChains[0], MemOpChains.size()); 3045 3046 // Set CR6 to true if this is a vararg call with floating args passed in 3047 // registers. 3048 if (isVarArg) { 3049 SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET, 3050 dl, MVT::i32), 0); 3051 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3052 } 3053 3054 // Build a sequence of copy-to-reg nodes chained together with token chain 3055 // and flag operands which copy the outgoing args into the appropriate regs. 3056 SDValue InFlag; 3057 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3058 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3059 RegsToPass[i].second, InFlag); 3060 InFlag = Chain.getValue(1); 3061 } 3062 3063 if (isTailCall) 3064 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3065 false, TailCallArguments); 3066 3067 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3068 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3069 Ins, InVals); 3070 } 3071 3072 SDValue 3073 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3074 CallingConv::ID CallConv, bool isVarArg, 3075 bool isTailCall, 3076 const SmallVectorImpl<ISD::OutputArg> &Outs, 3077 const SmallVectorImpl<SDValue> &OutVals, 3078 const SmallVectorImpl<ISD::InputArg> &Ins, 3079 DebugLoc dl, SelectionDAG &DAG, 3080 SmallVectorImpl<SDValue> &InVals) const { 3081 3082 unsigned NumOps = Outs.size(); 3083 3084 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3085 bool isPPC64 = PtrVT == MVT::i64; 3086 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3087 3088 MachineFunction &MF = DAG.getMachineFunction(); 3089 3090 // Mark this function as potentially containing a function that contains a 3091 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3092 // and restoring the callers stack pointer in this functions epilog. This is 3093 // done because by tail calling the called function might overwrite the value 3094 // in this function's (MF) stack pointer stack slot 0(SP). 3095 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3096 CallConv == CallingConv::Fast) 3097 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3098 3099 unsigned nAltivecParamsAtEnd = 0; 3100 3101 // Count how many bytes are to be pushed on the stack, including the linkage 3102 // area, and parameter passing area. We start with 24/48 bytes, which is 3103 // prereserved space for [SP][CR][LR][3 x unused]. 3104 unsigned NumBytes = 3105 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3106 Outs, OutVals, 3107 nAltivecParamsAtEnd); 3108 3109 // Calculate by how many bytes the stack has to be adjusted in case of tail 3110 // call optimization. 3111 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3112 3113 // To protect arguments on the stack from being clobbered in a tail call, 3114 // force all the loads to happen before doing any other lowering. 3115 if (isTailCall) 3116 Chain = DAG.getStackArgumentTokenFactor(Chain); 3117 3118 // Adjust the stack pointer for the new arguments... 3119 // These operations are automatically eliminated by the prolog/epilog pass 3120 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3121 SDValue CallSeqStart = Chain; 3122 3123 // Load the return address and frame pointer so it can be move somewhere else 3124 // later. 3125 SDValue LROp, FPOp; 3126 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3127 dl); 3128 3129 // Set up a copy of the stack pointer for use loading and storing any 3130 // arguments that may not fit in the registers available for argument 3131 // passing. 3132 SDValue StackPtr; 3133 if (isPPC64) 3134 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3135 else 3136 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3137 3138 // Figure out which arguments are going to go in registers, and which in 3139 // memory. Also, if this is a vararg function, floating point operations 3140 // must be stored to our stack, and loaded into integer regs as well, if 3141 // any integer regs are available for argument passing. 3142 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3143 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3144 3145 static const unsigned GPR_32[] = { // 32-bit registers. 3146 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3147 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3148 }; 3149 static const unsigned GPR_64[] = { // 64-bit registers. 3150 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3151 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3152 }; 3153 static const unsigned *FPR = GetFPR(); 3154 3155 static const unsigned VR[] = { 3156 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3157 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3158 }; 3159 const unsigned NumGPRs = array_lengthof(GPR_32); 3160 const unsigned NumFPRs = 13; 3161 const unsigned NumVRs = array_lengthof(VR); 3162 3163 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3164 3165 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3166 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3167 3168 SmallVector<SDValue, 8> MemOpChains; 3169 for (unsigned i = 0; i != NumOps; ++i) { 3170 SDValue Arg = OutVals[i]; 3171 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3172 3173 // PtrOff will be used to store the current argument to the stack if a 3174 // register cannot be found for it. 3175 SDValue PtrOff; 3176 3177 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3178 3179 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3180 3181 // On PPC64, promote integers to 64-bit values. 3182 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3183 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3184 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3185 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3186 } 3187 3188 // FIXME memcpy is used way more than necessary. Correctness first. 3189 if (Flags.isByVal()) { 3190 unsigned Size = Flags.getByValSize(); 3191 if (Size==1 || Size==2) { 3192 // Very small objects are passed right-justified. 3193 // Everything else is passed left-justified. 3194 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3195 if (GPR_idx != NumGPRs) { 3196 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3197 MachinePointerInfo(), VT, 3198 false, false, 0); 3199 MemOpChains.push_back(Load.getValue(1)); 3200 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3201 3202 ArgOffset += PtrByteSize; 3203 } else { 3204 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3205 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3206 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3207 CallSeqStart.getNode()->getOperand(0), 3208 Flags, DAG, dl); 3209 // This must go outside the CALLSEQ_START..END. 3210 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3211 CallSeqStart.getNode()->getOperand(1)); 3212 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3213 NewCallSeqStart.getNode()); 3214 Chain = CallSeqStart = NewCallSeqStart; 3215 ArgOffset += PtrByteSize; 3216 } 3217 continue; 3218 } 3219 // Copy entire object into memory. There are cases where gcc-generated 3220 // code assumes it is there, even if it could be put entirely into 3221 // registers. (This is not what the doc says.) 3222 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3223 CallSeqStart.getNode()->getOperand(0), 3224 Flags, DAG, dl); 3225 // This must go outside the CALLSEQ_START..END. 3226 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3227 CallSeqStart.getNode()->getOperand(1)); 3228 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3229 Chain = CallSeqStart = NewCallSeqStart; 3230 // And copy the pieces of it that fit into registers. 3231 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3232 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3233 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3234 if (GPR_idx != NumGPRs) { 3235 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3236 MachinePointerInfo(), 3237 false, false, false, 0); 3238 MemOpChains.push_back(Load.getValue(1)); 3239 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3240 ArgOffset += PtrByteSize; 3241 } else { 3242 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3243 break; 3244 } 3245 } 3246 continue; 3247 } 3248 3249 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3250 default: llvm_unreachable("Unexpected ValueType for argument!"); 3251 case MVT::i32: 3252 case MVT::i64: 3253 if (GPR_idx != NumGPRs) { 3254 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3255 } else { 3256 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3257 isPPC64, isTailCall, false, MemOpChains, 3258 TailCallArguments, dl); 3259 } 3260 ArgOffset += PtrByteSize; 3261 break; 3262 case MVT::f32: 3263 case MVT::f64: 3264 if (FPR_idx != NumFPRs) { 3265 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3266 3267 if (isVarArg) { 3268 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3269 MachinePointerInfo(), false, false, 0); 3270 MemOpChains.push_back(Store); 3271 3272 // Float varargs are always shadowed in available integer registers 3273 if (GPR_idx != NumGPRs) { 3274 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3275 MachinePointerInfo(), false, false, 3276 false, 0); 3277 MemOpChains.push_back(Load.getValue(1)); 3278 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3279 } 3280 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3281 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3282 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3283 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3284 MachinePointerInfo(), 3285 false, false, false, 0); 3286 MemOpChains.push_back(Load.getValue(1)); 3287 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3288 } 3289 } else { 3290 // If we have any FPRs remaining, we may also have GPRs remaining. 3291 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3292 // GPRs. 3293 if (GPR_idx != NumGPRs) 3294 ++GPR_idx; 3295 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3296 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3297 ++GPR_idx; 3298 } 3299 } else { 3300 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3301 isPPC64, isTailCall, false, MemOpChains, 3302 TailCallArguments, dl); 3303 } 3304 if (isPPC64) 3305 ArgOffset += 8; 3306 else 3307 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3308 break; 3309 case MVT::v4f32: 3310 case MVT::v4i32: 3311 case MVT::v8i16: 3312 case MVT::v16i8: 3313 if (isVarArg) { 3314 // These go aligned on the stack, or in the corresponding R registers 3315 // when within range. The Darwin PPC ABI doc claims they also go in 3316 // V registers; in fact gcc does this only for arguments that are 3317 // prototyped, not for those that match the ... We do it for all 3318 // arguments, seems to work. 3319 while (ArgOffset % 16 !=0) { 3320 ArgOffset += PtrByteSize; 3321 if (GPR_idx != NumGPRs) 3322 GPR_idx++; 3323 } 3324 // We could elide this store in the case where the object fits 3325 // entirely in R registers. Maybe later. 3326 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3327 DAG.getConstant(ArgOffset, PtrVT)); 3328 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3329 MachinePointerInfo(), false, false, 0); 3330 MemOpChains.push_back(Store); 3331 if (VR_idx != NumVRs) { 3332 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3333 MachinePointerInfo(), 3334 false, false, false, 0); 3335 MemOpChains.push_back(Load.getValue(1)); 3336 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3337 } 3338 ArgOffset += 16; 3339 for (unsigned i=0; i<16; i+=PtrByteSize) { 3340 if (GPR_idx == NumGPRs) 3341 break; 3342 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3343 DAG.getConstant(i, PtrVT)); 3344 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3345 false, false, false, 0); 3346 MemOpChains.push_back(Load.getValue(1)); 3347 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3348 } 3349 break; 3350 } 3351 3352 // Non-varargs Altivec params generally go in registers, but have 3353 // stack space allocated at the end. 3354 if (VR_idx != NumVRs) { 3355 // Doesn't have GPR space allocated. 3356 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3357 } else if (nAltivecParamsAtEnd==0) { 3358 // We are emitting Altivec params in order. 3359 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3360 isPPC64, isTailCall, true, MemOpChains, 3361 TailCallArguments, dl); 3362 ArgOffset += 16; 3363 } 3364 break; 3365 } 3366 } 3367 // If all Altivec parameters fit in registers, as they usually do, 3368 // they get stack space following the non-Altivec parameters. We 3369 // don't track this here because nobody below needs it. 3370 // If there are more Altivec parameters than fit in registers emit 3371 // the stores here. 3372 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3373 unsigned j = 0; 3374 // Offset is aligned; skip 1st 12 params which go in V registers. 3375 ArgOffset = ((ArgOffset+15)/16)*16; 3376 ArgOffset += 12*16; 3377 for (unsigned i = 0; i != NumOps; ++i) { 3378 SDValue Arg = OutVals[i]; 3379 EVT ArgType = Outs[i].VT; 3380 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3381 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3382 if (++j > NumVRs) { 3383 SDValue PtrOff; 3384 // We are emitting Altivec params in order. 3385 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3386 isPPC64, isTailCall, true, MemOpChains, 3387 TailCallArguments, dl); 3388 ArgOffset += 16; 3389 } 3390 } 3391 } 3392 } 3393 3394 if (!MemOpChains.empty()) 3395 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3396 &MemOpChains[0], MemOpChains.size()); 3397 3398 // Check if this is an indirect call (MTCTR/BCTRL). 3399 // See PrepareCall() for more information about calls through function 3400 // pointers in the 64-bit SVR4 ABI. 3401 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3402 !dyn_cast<GlobalAddressSDNode>(Callee) && 3403 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3404 !isBLACompatibleAddress(Callee, DAG)) { 3405 // Load r2 into a virtual register and store it to the TOC save area. 3406 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3407 // TOC save area offset. 3408 SDValue PtrOff = DAG.getIntPtrConstant(40); 3409 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3410 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3411 false, false, 0); 3412 } 3413 3414 // On Darwin, R12 must contain the address of an indirect callee. This does 3415 // not mean the MTCTR instruction must use R12; it's easier to model this as 3416 // an extra parameter, so do that. 3417 if (!isTailCall && 3418 !dyn_cast<GlobalAddressSDNode>(Callee) && 3419 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3420 !isBLACompatibleAddress(Callee, DAG)) 3421 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3422 PPC::R12), Callee)); 3423 3424 // Build a sequence of copy-to-reg nodes chained together with token chain 3425 // and flag operands which copy the outgoing args into the appropriate regs. 3426 SDValue InFlag; 3427 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3428 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3429 RegsToPass[i].second, InFlag); 3430 InFlag = Chain.getValue(1); 3431 } 3432 3433 if (isTailCall) 3434 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3435 FPOp, true, TailCallArguments); 3436 3437 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3438 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3439 Ins, InVals); 3440 } 3441 3442 bool 3443 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3444 MachineFunction &MF, bool isVarArg, 3445 const SmallVectorImpl<ISD::OutputArg> &Outs, 3446 LLVMContext &Context) const { 3447 SmallVector<CCValAssign, 16> RVLocs; 3448 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 3449 RVLocs, Context); 3450 return CCInfo.CheckReturn(Outs, RetCC_PPC); 3451 } 3452 3453 SDValue 3454 PPCTargetLowering::LowerReturn(SDValue Chain, 3455 CallingConv::ID CallConv, bool isVarArg, 3456 const SmallVectorImpl<ISD::OutputArg> &Outs, 3457 const SmallVectorImpl<SDValue> &OutVals, 3458 DebugLoc dl, SelectionDAG &DAG) const { 3459 3460 SmallVector<CCValAssign, 16> RVLocs; 3461 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3462 getTargetMachine(), RVLocs, *DAG.getContext()); 3463 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3464 3465 // If this is the first return lowered for this function, add the regs to the 3466 // liveout set for the function. 3467 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3468 for (unsigned i = 0; i != RVLocs.size(); ++i) 3469 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3470 } 3471 3472 SDValue Flag; 3473 3474 // Copy the result values into the output registers. 3475 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3476 CCValAssign &VA = RVLocs[i]; 3477 assert(VA.isRegLoc() && "Can only return in registers!"); 3478 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3479 OutVals[i], Flag); 3480 Flag = Chain.getValue(1); 3481 } 3482 3483 if (Flag.getNode()) 3484 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3485 else 3486 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3487 } 3488 3489 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3490 const PPCSubtarget &Subtarget) const { 3491 // When we pop the dynamic allocation we need to restore the SP link. 3492 DebugLoc dl = Op.getDebugLoc(); 3493 3494 // Get the corect type for pointers. 3495 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3496 3497 // Construct the stack pointer operand. 3498 bool isPPC64 = Subtarget.isPPC64(); 3499 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3500 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3501 3502 // Get the operands for the STACKRESTORE. 3503 SDValue Chain = Op.getOperand(0); 3504 SDValue SaveSP = Op.getOperand(1); 3505 3506 // Load the old link SP. 3507 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3508 MachinePointerInfo(), 3509 false, false, false, 0); 3510 3511 // Restore the stack pointer. 3512 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3513 3514 // Store the old link SP. 3515 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3516 false, false, 0); 3517 } 3518 3519 3520 3521 SDValue 3522 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3523 MachineFunction &MF = DAG.getMachineFunction(); 3524 bool isPPC64 = PPCSubTarget.isPPC64(); 3525 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3526 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3527 3528 // Get current frame pointer save index. The users of this index will be 3529 // primarily DYNALLOC instructions. 3530 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3531 int RASI = FI->getReturnAddrSaveIndex(); 3532 3533 // If the frame pointer save index hasn't been defined yet. 3534 if (!RASI) { 3535 // Find out what the fix offset of the frame pointer save area. 3536 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3537 // Allocate the frame index for frame pointer save area. 3538 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3539 // Save the result. 3540 FI->setReturnAddrSaveIndex(RASI); 3541 } 3542 return DAG.getFrameIndex(RASI, PtrVT); 3543 } 3544 3545 SDValue 3546 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3547 MachineFunction &MF = DAG.getMachineFunction(); 3548 bool isPPC64 = PPCSubTarget.isPPC64(); 3549 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3550 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3551 3552 // Get current frame pointer save index. The users of this index will be 3553 // primarily DYNALLOC instructions. 3554 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3555 int FPSI = FI->getFramePointerSaveIndex(); 3556 3557 // If the frame pointer save index hasn't been defined yet. 3558 if (!FPSI) { 3559 // Find out what the fix offset of the frame pointer save area. 3560 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3561 isDarwinABI); 3562 3563 // Allocate the frame index for frame pointer save area. 3564 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3565 // Save the result. 3566 FI->setFramePointerSaveIndex(FPSI); 3567 } 3568 return DAG.getFrameIndex(FPSI, PtrVT); 3569 } 3570 3571 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3572 SelectionDAG &DAG, 3573 const PPCSubtarget &Subtarget) const { 3574 // Get the inputs. 3575 SDValue Chain = Op.getOperand(0); 3576 SDValue Size = Op.getOperand(1); 3577 DebugLoc dl = Op.getDebugLoc(); 3578 3579 // Get the corect type for pointers. 3580 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3581 // Negate the size. 3582 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3583 DAG.getConstant(0, PtrVT), Size); 3584 // Construct a node for the frame pointer save index. 3585 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3586 // Build a DYNALLOC node. 3587 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3588 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3589 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3590 } 3591 3592 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3593 /// possible. 3594 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3595 // Not FP? Not a fsel. 3596 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3597 !Op.getOperand(2).getValueType().isFloatingPoint()) 3598 return Op; 3599 3600 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3601 3602 // Cannot handle SETEQ/SETNE. 3603 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3604 3605 EVT ResVT = Op.getValueType(); 3606 EVT CmpVT = Op.getOperand(0).getValueType(); 3607 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3608 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3609 DebugLoc dl = Op.getDebugLoc(); 3610 3611 // If the RHS of the comparison is a 0.0, we don't need to do the 3612 // subtraction at all. 3613 if (isFloatingPointZero(RHS)) 3614 switch (CC) { 3615 default: break; // SETUO etc aren't handled by fsel. 3616 case ISD::SETULT: 3617 case ISD::SETLT: 3618 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3619 case ISD::SETOGE: 3620 case ISD::SETGE: 3621 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3622 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3623 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3624 case ISD::SETUGT: 3625 case ISD::SETGT: 3626 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3627 case ISD::SETOLE: 3628 case ISD::SETLE: 3629 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3630 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3631 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3632 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3633 } 3634 3635 SDValue Cmp; 3636 switch (CC) { 3637 default: break; // SETUO etc aren't handled by fsel. 3638 case ISD::SETULT: 3639 case ISD::SETLT: 3640 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3641 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3642 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3643 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3644 case ISD::SETOGE: 3645 case ISD::SETGE: 3646 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3647 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3648 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3649 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3650 case ISD::SETUGT: 3651 case ISD::SETGT: 3652 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3653 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3654 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3655 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3656 case ISD::SETOLE: 3657 case ISD::SETLE: 3658 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3659 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3660 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3661 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3662 } 3663 return Op; 3664 } 3665 3666 // FIXME: Split this code up when LegalizeDAGTypes lands. 3667 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3668 DebugLoc dl) const { 3669 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3670 SDValue Src = Op.getOperand(0); 3671 if (Src.getValueType() == MVT::f32) 3672 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3673 3674 SDValue Tmp; 3675 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3676 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3677 case MVT::i32: 3678 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3679 PPCISD::FCTIDZ, 3680 dl, MVT::f64, Src); 3681 break; 3682 case MVT::i64: 3683 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3684 break; 3685 } 3686 3687 // Convert the FP value to an int value through memory. 3688 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3689 3690 // Emit a store to the stack slot. 3691 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3692 MachinePointerInfo(), false, false, 0); 3693 3694 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3695 // add in a bias. 3696 if (Op.getValueType() == MVT::i32) 3697 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3698 DAG.getConstant(4, FIPtr.getValueType())); 3699 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3700 false, false, false, 0); 3701 } 3702 3703 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3704 SelectionDAG &DAG) const { 3705 DebugLoc dl = Op.getDebugLoc(); 3706 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3707 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3708 return SDValue(); 3709 3710 if (Op.getOperand(0).getValueType() == MVT::i64) { 3711 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3712 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3713 if (Op.getValueType() == MVT::f32) 3714 FP = DAG.getNode(ISD::FP_ROUND, dl, 3715 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3716 return FP; 3717 } 3718 3719 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3720 "Unhandled SINT_TO_FP type in custom expander!"); 3721 // Since we only generate this in 64-bit mode, we can take advantage of 3722 // 64-bit registers. In particular, sign extend the input value into the 3723 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3724 // then lfd it and fcfid it. 3725 MachineFunction &MF = DAG.getMachineFunction(); 3726 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3727 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3728 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3729 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3730 3731 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3732 Op.getOperand(0)); 3733 3734 // STD the extended value into the stack slot. 3735 MachineMemOperand *MMO = 3736 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3737 MachineMemOperand::MOStore, 8, 8); 3738 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3739 SDValue Store = 3740 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3741 Ops, 4, MVT::i64, MMO); 3742 // Load the value as a double. 3743 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3744 false, false, false, 0); 3745 3746 // FCFID it and return it. 3747 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3748 if (Op.getValueType() == MVT::f32) 3749 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3750 return FP; 3751 } 3752 3753 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3754 SelectionDAG &DAG) const { 3755 DebugLoc dl = Op.getDebugLoc(); 3756 /* 3757 The rounding mode is in bits 30:31 of FPSR, and has the following 3758 settings: 3759 00 Round to nearest 3760 01 Round to 0 3761 10 Round to +inf 3762 11 Round to -inf 3763 3764 FLT_ROUNDS, on the other hand, expects the following: 3765 -1 Undefined 3766 0 Round to 0 3767 1 Round to nearest 3768 2 Round to +inf 3769 3 Round to -inf 3770 3771 To perform the conversion, we do: 3772 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3773 */ 3774 3775 MachineFunction &MF = DAG.getMachineFunction(); 3776 EVT VT = Op.getValueType(); 3777 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3778 std::vector<EVT> NodeTys; 3779 SDValue MFFSreg, InFlag; 3780 3781 // Save FP Control Word to register 3782 NodeTys.push_back(MVT::f64); // return register 3783 NodeTys.push_back(MVT::Glue); // unused in this context 3784 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3785 3786 // Save FP register to stack slot 3787 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3788 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3789 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3790 StackSlot, MachinePointerInfo(), false, false,0); 3791 3792 // Load FP Control Word from low 32 bits of stack slot. 3793 SDValue Four = DAG.getConstant(4, PtrVT); 3794 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3795 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3796 false, false, false, 0); 3797 3798 // Transform as necessary 3799 SDValue CWD1 = 3800 DAG.getNode(ISD::AND, dl, MVT::i32, 3801 CWD, DAG.getConstant(3, MVT::i32)); 3802 SDValue CWD2 = 3803 DAG.getNode(ISD::SRL, dl, MVT::i32, 3804 DAG.getNode(ISD::AND, dl, MVT::i32, 3805 DAG.getNode(ISD::XOR, dl, MVT::i32, 3806 CWD, DAG.getConstant(3, MVT::i32)), 3807 DAG.getConstant(3, MVT::i32)), 3808 DAG.getConstant(1, MVT::i32)); 3809 3810 SDValue RetVal = 3811 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3812 3813 return DAG.getNode((VT.getSizeInBits() < 16 ? 3814 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3815 } 3816 3817 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3818 EVT VT = Op.getValueType(); 3819 unsigned BitWidth = VT.getSizeInBits(); 3820 DebugLoc dl = Op.getDebugLoc(); 3821 assert(Op.getNumOperands() == 3 && 3822 VT == Op.getOperand(1).getValueType() && 3823 "Unexpected SHL!"); 3824 3825 // Expand into a bunch of logical ops. Note that these ops 3826 // depend on the PPC behavior for oversized shift amounts. 3827 SDValue Lo = Op.getOperand(0); 3828 SDValue Hi = Op.getOperand(1); 3829 SDValue Amt = Op.getOperand(2); 3830 EVT AmtVT = Amt.getValueType(); 3831 3832 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3833 DAG.getConstant(BitWidth, AmtVT), Amt); 3834 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3835 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3836 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3837 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3838 DAG.getConstant(-BitWidth, AmtVT)); 3839 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3840 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3841 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3842 SDValue OutOps[] = { OutLo, OutHi }; 3843 return DAG.getMergeValues(OutOps, 2, dl); 3844 } 3845 3846 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3847 EVT VT = Op.getValueType(); 3848 DebugLoc dl = Op.getDebugLoc(); 3849 unsigned BitWidth = VT.getSizeInBits(); 3850 assert(Op.getNumOperands() == 3 && 3851 VT == Op.getOperand(1).getValueType() && 3852 "Unexpected SRL!"); 3853 3854 // Expand into a bunch of logical ops. Note that these ops 3855 // depend on the PPC behavior for oversized shift amounts. 3856 SDValue Lo = Op.getOperand(0); 3857 SDValue Hi = Op.getOperand(1); 3858 SDValue Amt = Op.getOperand(2); 3859 EVT AmtVT = Amt.getValueType(); 3860 3861 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3862 DAG.getConstant(BitWidth, AmtVT), Amt); 3863 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3864 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3865 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3866 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3867 DAG.getConstant(-BitWidth, AmtVT)); 3868 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3869 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3870 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3871 SDValue OutOps[] = { OutLo, OutHi }; 3872 return DAG.getMergeValues(OutOps, 2, dl); 3873 } 3874 3875 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3876 DebugLoc dl = Op.getDebugLoc(); 3877 EVT VT = Op.getValueType(); 3878 unsigned BitWidth = VT.getSizeInBits(); 3879 assert(Op.getNumOperands() == 3 && 3880 VT == Op.getOperand(1).getValueType() && 3881 "Unexpected SRA!"); 3882 3883 // Expand into a bunch of logical ops, followed by a select_cc. 3884 SDValue Lo = Op.getOperand(0); 3885 SDValue Hi = Op.getOperand(1); 3886 SDValue Amt = Op.getOperand(2); 3887 EVT AmtVT = Amt.getValueType(); 3888 3889 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3890 DAG.getConstant(BitWidth, AmtVT), Amt); 3891 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3892 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3893 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3894 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3895 DAG.getConstant(-BitWidth, AmtVT)); 3896 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3897 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3898 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3899 Tmp4, Tmp6, ISD::SETLE); 3900 SDValue OutOps[] = { OutLo, OutHi }; 3901 return DAG.getMergeValues(OutOps, 2, dl); 3902 } 3903 3904 //===----------------------------------------------------------------------===// 3905 // Vector related lowering. 3906 // 3907 3908 /// BuildSplatI - Build a canonical splati of Val with an element size of 3909 /// SplatSize. Cast the result to VT. 3910 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3911 SelectionDAG &DAG, DebugLoc dl) { 3912 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3913 3914 static const EVT VTys[] = { // canonical VT to use for each size. 3915 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3916 }; 3917 3918 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3919 3920 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3921 if (Val == -1) 3922 SplatSize = 1; 3923 3924 EVT CanonicalVT = VTys[SplatSize-1]; 3925 3926 // Build a canonical splat for this value. 3927 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3928 SmallVector<SDValue, 8> Ops; 3929 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3930 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3931 &Ops[0], Ops.size()); 3932 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3933 } 3934 3935 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3936 /// specified intrinsic ID. 3937 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3938 SelectionDAG &DAG, DebugLoc dl, 3939 EVT DestVT = MVT::Other) { 3940 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3941 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3942 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3943 } 3944 3945 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3946 /// specified intrinsic ID. 3947 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3948 SDValue Op2, SelectionDAG &DAG, 3949 DebugLoc dl, EVT DestVT = MVT::Other) { 3950 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3951 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3952 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3953 } 3954 3955 3956 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3957 /// amount. The result has the specified value type. 3958 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3959 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3960 // Force LHS/RHS to be the right type. 3961 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3962 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3963 3964 int Ops[16]; 3965 for (unsigned i = 0; i != 16; ++i) 3966 Ops[i] = i + Amt; 3967 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3968 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3969 } 3970 3971 // If this is a case we can't handle, return null and let the default 3972 // expansion code take care of it. If we CAN select this case, and if it 3973 // selects to a single instruction, return Op. Otherwise, if we can codegen 3974 // this case more efficiently than a constant pool load, lower it to the 3975 // sequence of ops that should be used. 3976 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3977 SelectionDAG &DAG) const { 3978 DebugLoc dl = Op.getDebugLoc(); 3979 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3980 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3981 3982 // Check if this is a splat of a constant value. 3983 APInt APSplatBits, APSplatUndef; 3984 unsigned SplatBitSize; 3985 bool HasAnyUndefs; 3986 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3987 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3988 return SDValue(); 3989 3990 unsigned SplatBits = APSplatBits.getZExtValue(); 3991 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3992 unsigned SplatSize = SplatBitSize / 8; 3993 3994 // First, handle single instruction cases. 3995 3996 // All zeros? 3997 if (SplatBits == 0) { 3998 // Canonicalize all zero vectors to be v4i32. 3999 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 4000 SDValue Z = DAG.getConstant(0, MVT::i32); 4001 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 4002 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 4003 } 4004 return Op; 4005 } 4006 4007 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 4008 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 4009 (32-SplatBitSize)); 4010 if (SextVal >= -16 && SextVal <= 15) 4011 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 4012 4013 4014 // Two instruction sequences. 4015 4016 // If this value is in the range [-32,30] and is even, use: 4017 // tmp = VSPLTI[bhw], result = add tmp, tmp 4018 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 4019 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 4020 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 4021 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4022 } 4023 4024 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 4025 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 4026 // for fneg/fabs. 4027 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 4028 // Make -1 and vspltisw -1: 4029 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 4030 4031 // Make the VSLW intrinsic, computing 0x8000_0000. 4032 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 4033 OnesV, DAG, dl); 4034 4035 // xor by OnesV to invert it. 4036 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 4037 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4038 } 4039 4040 // Check to see if this is a wide variety of vsplti*, binop self cases. 4041 static const signed char SplatCsts[] = { 4042 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 4043 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 4044 }; 4045 4046 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4047 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4048 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4049 int i = SplatCsts[idx]; 4050 4051 // Figure out what shift amount will be used by altivec if shifted by i in 4052 // this splat size. 4053 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4054 4055 // vsplti + shl self. 4056 if (SextVal == (i << (int)TypeShiftAmt)) { 4057 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4058 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4059 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4060 Intrinsic::ppc_altivec_vslw 4061 }; 4062 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4063 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4064 } 4065 4066 // vsplti + srl self. 4067 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4068 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4069 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4070 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4071 Intrinsic::ppc_altivec_vsrw 4072 }; 4073 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4074 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4075 } 4076 4077 // vsplti + sra self. 4078 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4079 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4080 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4081 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4082 Intrinsic::ppc_altivec_vsraw 4083 }; 4084 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4085 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4086 } 4087 4088 // vsplti + rol self. 4089 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4090 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4091 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4092 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4093 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4094 Intrinsic::ppc_altivec_vrlw 4095 }; 4096 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4097 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4098 } 4099 4100 // t = vsplti c, result = vsldoi t, t, 1 4101 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4102 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4103 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4104 } 4105 // t = vsplti c, result = vsldoi t, t, 2 4106 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4107 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4108 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4109 } 4110 // t = vsplti c, result = vsldoi t, t, 3 4111 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4112 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4113 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4114 } 4115 } 4116 4117 // Three instruction sequences. 4118 4119 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4120 if (SextVal >= 0 && SextVal <= 31) { 4121 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4122 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4123 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4124 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4125 } 4126 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4127 if (SextVal >= -31 && SextVal <= 0) { 4128 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4129 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4130 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4131 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4132 } 4133 4134 return SDValue(); 4135 } 4136 4137 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4138 /// the specified operations to build the shuffle. 4139 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4140 SDValue RHS, SelectionDAG &DAG, 4141 DebugLoc dl) { 4142 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4143 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4144 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4145 4146 enum { 4147 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4148 OP_VMRGHW, 4149 OP_VMRGLW, 4150 OP_VSPLTISW0, 4151 OP_VSPLTISW1, 4152 OP_VSPLTISW2, 4153 OP_VSPLTISW3, 4154 OP_VSLDOI4, 4155 OP_VSLDOI8, 4156 OP_VSLDOI12 4157 }; 4158 4159 if (OpNum == OP_COPY) { 4160 if (LHSID == (1*9+2)*9+3) return LHS; 4161 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4162 return RHS; 4163 } 4164 4165 SDValue OpLHS, OpRHS; 4166 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4167 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4168 4169 int ShufIdxs[16]; 4170 switch (OpNum) { 4171 default: llvm_unreachable("Unknown i32 permute!"); 4172 case OP_VMRGHW: 4173 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4174 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4175 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4176 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4177 break; 4178 case OP_VMRGLW: 4179 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4180 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4181 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4182 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4183 break; 4184 case OP_VSPLTISW0: 4185 for (unsigned i = 0; i != 16; ++i) 4186 ShufIdxs[i] = (i&3)+0; 4187 break; 4188 case OP_VSPLTISW1: 4189 for (unsigned i = 0; i != 16; ++i) 4190 ShufIdxs[i] = (i&3)+4; 4191 break; 4192 case OP_VSPLTISW2: 4193 for (unsigned i = 0; i != 16; ++i) 4194 ShufIdxs[i] = (i&3)+8; 4195 break; 4196 case OP_VSPLTISW3: 4197 for (unsigned i = 0; i != 16; ++i) 4198 ShufIdxs[i] = (i&3)+12; 4199 break; 4200 case OP_VSLDOI4: 4201 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4202 case OP_VSLDOI8: 4203 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4204 case OP_VSLDOI12: 4205 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4206 } 4207 EVT VT = OpLHS.getValueType(); 4208 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4209 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4210 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4211 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4212 } 4213 4214 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4215 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4216 /// return the code it can be lowered into. Worst case, it can always be 4217 /// lowered into a vperm. 4218 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4219 SelectionDAG &DAG) const { 4220 DebugLoc dl = Op.getDebugLoc(); 4221 SDValue V1 = Op.getOperand(0); 4222 SDValue V2 = Op.getOperand(1); 4223 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4224 EVT VT = Op.getValueType(); 4225 4226 // Cases that are handled by instructions that take permute immediates 4227 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4228 // selected by the instruction selector. 4229 if (V2.getOpcode() == ISD::UNDEF) { 4230 if (PPC::isSplatShuffleMask(SVOp, 1) || 4231 PPC::isSplatShuffleMask(SVOp, 2) || 4232 PPC::isSplatShuffleMask(SVOp, 4) || 4233 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4234 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4235 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4236 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4237 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4238 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4239 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4240 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4241 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4242 return Op; 4243 } 4244 } 4245 4246 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4247 // and produce a fixed permutation. If any of these match, do not lower to 4248 // VPERM. 4249 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4250 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4251 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4252 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4253 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4254 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4255 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4256 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4257 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4258 return Op; 4259 4260 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4261 // perfect shuffle table to emit an optimal matching sequence. 4262 SmallVector<int, 16> PermMask; 4263 SVOp->getMask(PermMask); 4264 4265 unsigned PFIndexes[4]; 4266 bool isFourElementShuffle = true; 4267 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4268 unsigned EltNo = 8; // Start out undef. 4269 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4270 if (PermMask[i*4+j] < 0) 4271 continue; // Undef, ignore it. 4272 4273 unsigned ByteSource = PermMask[i*4+j]; 4274 if ((ByteSource & 3) != j) { 4275 isFourElementShuffle = false; 4276 break; 4277 } 4278 4279 if (EltNo == 8) { 4280 EltNo = ByteSource/4; 4281 } else if (EltNo != ByteSource/4) { 4282 isFourElementShuffle = false; 4283 break; 4284 } 4285 } 4286 PFIndexes[i] = EltNo; 4287 } 4288 4289 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4290 // perfect shuffle vector to determine if it is cost effective to do this as 4291 // discrete instructions, or whether we should use a vperm. 4292 if (isFourElementShuffle) { 4293 // Compute the index in the perfect shuffle table. 4294 unsigned PFTableIndex = 4295 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4296 4297 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4298 unsigned Cost = (PFEntry >> 30); 4299 4300 // Determining when to avoid vperm is tricky. Many things affect the cost 4301 // of vperm, particularly how many times the perm mask needs to be computed. 4302 // For example, if the perm mask can be hoisted out of a loop or is already 4303 // used (perhaps because there are multiple permutes with the same shuffle 4304 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4305 // the loop requires an extra register. 4306 // 4307 // As a compromise, we only emit discrete instructions if the shuffle can be 4308 // generated in 3 or fewer operations. When we have loop information 4309 // available, if this block is within a loop, we should avoid using vperm 4310 // for 3-operation perms and use a constant pool load instead. 4311 if (Cost < 3) 4312 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4313 } 4314 4315 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4316 // vector that will get spilled to the constant pool. 4317 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4318 4319 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4320 // that it is in input element units, not in bytes. Convert now. 4321 EVT EltVT = V1.getValueType().getVectorElementType(); 4322 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4323 4324 SmallVector<SDValue, 16> ResultMask; 4325 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4326 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4327 4328 for (unsigned j = 0; j != BytesPerElement; ++j) 4329 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4330 MVT::i32)); 4331 } 4332 4333 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4334 &ResultMask[0], ResultMask.size()); 4335 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4336 } 4337 4338 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4339 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4340 /// information about the intrinsic. 4341 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4342 bool &isDot) { 4343 unsigned IntrinsicID = 4344 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4345 CompareOpc = -1; 4346 isDot = false; 4347 switch (IntrinsicID) { 4348 default: return false; 4349 // Comparison predicates. 4350 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4351 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4352 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4353 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4354 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4355 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4356 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4357 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4358 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4359 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4360 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4361 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4362 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4363 4364 // Normal Comparisons. 4365 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4366 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4367 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4368 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4369 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4370 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4371 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4372 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4373 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4374 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4375 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4376 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4377 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4378 } 4379 return true; 4380 } 4381 4382 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4383 /// lower, do it, otherwise return null. 4384 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4387 // opcode number of the comparison. 4388 DebugLoc dl = Op.getDebugLoc(); 4389 int CompareOpc; 4390 bool isDot; 4391 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4392 return SDValue(); // Don't custom lower most intrinsics. 4393 4394 // If this is a non-dot comparison, make the VCMP node and we are done. 4395 if (!isDot) { 4396 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4397 Op.getOperand(1), Op.getOperand(2), 4398 DAG.getConstant(CompareOpc, MVT::i32)); 4399 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4400 } 4401 4402 // Create the PPCISD altivec 'dot' comparison node. 4403 SDValue Ops[] = { 4404 Op.getOperand(2), // LHS 4405 Op.getOperand(3), // RHS 4406 DAG.getConstant(CompareOpc, MVT::i32) 4407 }; 4408 std::vector<EVT> VTs; 4409 VTs.push_back(Op.getOperand(2).getValueType()); 4410 VTs.push_back(MVT::Glue); 4411 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4412 4413 // Now that we have the comparison, emit a copy from the CR to a GPR. 4414 // This is flagged to the above dot comparison. 4415 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4416 DAG.getRegister(PPC::CR6, MVT::i32), 4417 CompNode.getValue(1)); 4418 4419 // Unpack the result based on how the target uses it. 4420 unsigned BitNo; // Bit # of CR6. 4421 bool InvertBit; // Invert result? 4422 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4423 default: // Can't happen, don't crash on invalid number though. 4424 case 0: // Return the value of the EQ bit of CR6. 4425 BitNo = 0; InvertBit = false; 4426 break; 4427 case 1: // Return the inverted value of the EQ bit of CR6. 4428 BitNo = 0; InvertBit = true; 4429 break; 4430 case 2: // Return the value of the LT bit of CR6. 4431 BitNo = 2; InvertBit = false; 4432 break; 4433 case 3: // Return the inverted value of the LT bit of CR6. 4434 BitNo = 2; InvertBit = true; 4435 break; 4436 } 4437 4438 // Shift the bit into the low position. 4439 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4440 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4441 // Isolate the bit. 4442 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4443 DAG.getConstant(1, MVT::i32)); 4444 4445 // If we are supposed to, toggle the bit. 4446 if (InvertBit) 4447 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4448 DAG.getConstant(1, MVT::i32)); 4449 return Flags; 4450 } 4451 4452 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4453 SelectionDAG &DAG) const { 4454 DebugLoc dl = Op.getDebugLoc(); 4455 // Create a stack slot that is 16-byte aligned. 4456 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4457 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4458 EVT PtrVT = getPointerTy(); 4459 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4460 4461 // Store the input value into Value#0 of the stack slot. 4462 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4463 Op.getOperand(0), FIdx, MachinePointerInfo(), 4464 false, false, 0); 4465 // Load it out. 4466 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4467 false, false, false, 0); 4468 } 4469 4470 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4471 DebugLoc dl = Op.getDebugLoc(); 4472 if (Op.getValueType() == MVT::v4i32) { 4473 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4474 4475 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4476 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4477 4478 SDValue RHSSwap = // = vrlw RHS, 16 4479 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4480 4481 // Shrinkify inputs to v8i16. 4482 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4483 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4484 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4485 4486 // Low parts multiplied together, generating 32-bit results (we ignore the 4487 // top parts). 4488 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4489 LHS, RHS, DAG, dl, MVT::v4i32); 4490 4491 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4492 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4493 // Shift the high parts up 16 bits. 4494 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4495 Neg16, DAG, dl); 4496 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4497 } else if (Op.getValueType() == MVT::v8i16) { 4498 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4499 4500 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4501 4502 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4503 LHS, RHS, Zero, DAG, dl); 4504 } else if (Op.getValueType() == MVT::v16i8) { 4505 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4506 4507 // Multiply the even 8-bit parts, producing 16-bit sums. 4508 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4509 LHS, RHS, DAG, dl, MVT::v8i16); 4510 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4511 4512 // Multiply the odd 8-bit parts, producing 16-bit sums. 4513 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4514 LHS, RHS, DAG, dl, MVT::v8i16); 4515 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4516 4517 // Merge the results together. 4518 int Ops[16]; 4519 for (unsigned i = 0; i != 8; ++i) { 4520 Ops[i*2 ] = 2*i+1; 4521 Ops[i*2+1] = 2*i+1+16; 4522 } 4523 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4524 } else { 4525 llvm_unreachable("Unknown mul to lower!"); 4526 } 4527 } 4528 4529 /// LowerOperation - Provide custom lowering hooks for some operations. 4530 /// 4531 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4532 switch (Op.getOpcode()) { 4533 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4534 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4535 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4536 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4537 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4538 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4539 case ISD::SETCC: return LowerSETCC(Op, DAG); 4540 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 4541 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 4542 case ISD::VASTART: 4543 return LowerVASTART(Op, DAG, PPCSubTarget); 4544 4545 case ISD::VAARG: 4546 return LowerVAARG(Op, DAG, PPCSubTarget); 4547 4548 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4549 case ISD::DYNAMIC_STACKALLOC: 4550 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4551 4552 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4553 case ISD::FP_TO_UINT: 4554 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4555 Op.getDebugLoc()); 4556 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4557 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4558 4559 // Lower 64-bit shifts. 4560 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4561 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4562 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4563 4564 // Vector-related lowering. 4565 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4566 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4567 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4568 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4569 case ISD::MUL: return LowerMUL(Op, DAG); 4570 4571 // Frame & Return address. 4572 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4573 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4574 } 4575 return SDValue(); 4576 } 4577 4578 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4579 SmallVectorImpl<SDValue>&Results, 4580 SelectionDAG &DAG) const { 4581 const TargetMachine &TM = getTargetMachine(); 4582 DebugLoc dl = N->getDebugLoc(); 4583 switch (N->getOpcode()) { 4584 default: 4585 assert(false && "Do not know how to custom type legalize this operation!"); 4586 return; 4587 case ISD::VAARG: { 4588 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4589 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4590 return; 4591 4592 EVT VT = N->getValueType(0); 4593 4594 if (VT == MVT::i64) { 4595 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4596 4597 Results.push_back(NewNode); 4598 Results.push_back(NewNode.getValue(1)); 4599 } 4600 return; 4601 } 4602 case ISD::FP_ROUND_INREG: { 4603 assert(N->getValueType(0) == MVT::ppcf128); 4604 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4605 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4606 MVT::f64, N->getOperand(0), 4607 DAG.getIntPtrConstant(0)); 4608 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4609 MVT::f64, N->getOperand(0), 4610 DAG.getIntPtrConstant(1)); 4611 4612 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4613 // of the long double, and puts FPSCR back the way it was. We do not 4614 // actually model FPSCR. 4615 std::vector<EVT> NodeTys; 4616 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4617 4618 NodeTys.push_back(MVT::f64); // Return register 4619 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4620 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4621 MFFSreg = Result.getValue(0); 4622 InFlag = Result.getValue(1); 4623 4624 NodeTys.clear(); 4625 NodeTys.push_back(MVT::Glue); // Returns a flag 4626 Ops[0] = DAG.getConstant(31, MVT::i32); 4627 Ops[1] = InFlag; 4628 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4629 InFlag = Result.getValue(0); 4630 4631 NodeTys.clear(); 4632 NodeTys.push_back(MVT::Glue); // Returns a flag 4633 Ops[0] = DAG.getConstant(30, MVT::i32); 4634 Ops[1] = InFlag; 4635 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4636 InFlag = Result.getValue(0); 4637 4638 NodeTys.clear(); 4639 NodeTys.push_back(MVT::f64); // result of add 4640 NodeTys.push_back(MVT::Glue); // Returns a flag 4641 Ops[0] = Lo; 4642 Ops[1] = Hi; 4643 Ops[2] = InFlag; 4644 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4645 FPreg = Result.getValue(0); 4646 InFlag = Result.getValue(1); 4647 4648 NodeTys.clear(); 4649 NodeTys.push_back(MVT::f64); 4650 Ops[0] = DAG.getConstant(1, MVT::i32); 4651 Ops[1] = MFFSreg; 4652 Ops[2] = FPreg; 4653 Ops[3] = InFlag; 4654 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4655 FPreg = Result.getValue(0); 4656 4657 // We know the low half is about to be thrown away, so just use something 4658 // convenient. 4659 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4660 FPreg, FPreg)); 4661 return; 4662 } 4663 case ISD::FP_TO_SINT: 4664 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4665 return; 4666 } 4667 } 4668 4669 4670 //===----------------------------------------------------------------------===// 4671 // Other Lowering Code 4672 //===----------------------------------------------------------------------===// 4673 4674 MachineBasicBlock * 4675 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4676 bool is64bit, unsigned BinOpcode) const { 4677 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4678 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4679 4680 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4681 MachineFunction *F = BB->getParent(); 4682 MachineFunction::iterator It = BB; 4683 ++It; 4684 4685 unsigned dest = MI->getOperand(0).getReg(); 4686 unsigned ptrA = MI->getOperand(1).getReg(); 4687 unsigned ptrB = MI->getOperand(2).getReg(); 4688 unsigned incr = MI->getOperand(3).getReg(); 4689 DebugLoc dl = MI->getDebugLoc(); 4690 4691 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4692 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4693 F->insert(It, loopMBB); 4694 F->insert(It, exitMBB); 4695 exitMBB->splice(exitMBB->begin(), BB, 4696 llvm::next(MachineBasicBlock::iterator(MI)), 4697 BB->end()); 4698 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4699 4700 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4701 unsigned TmpReg = (!BinOpcode) ? incr : 4702 RegInfo.createVirtualRegister( 4703 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4704 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4705 4706 // thisMBB: 4707 // ... 4708 // fallthrough --> loopMBB 4709 BB->addSuccessor(loopMBB); 4710 4711 // loopMBB: 4712 // l[wd]arx dest, ptr 4713 // add r0, dest, incr 4714 // st[wd]cx. r0, ptr 4715 // bne- loopMBB 4716 // fallthrough --> exitMBB 4717 BB = loopMBB; 4718 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4719 .addReg(ptrA).addReg(ptrB); 4720 if (BinOpcode) 4721 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4722 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4723 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4724 BuildMI(BB, dl, TII->get(PPC::BCC)) 4725 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4726 BB->addSuccessor(loopMBB); 4727 BB->addSuccessor(exitMBB); 4728 4729 // exitMBB: 4730 // ... 4731 BB = exitMBB; 4732 return BB; 4733 } 4734 4735 MachineBasicBlock * 4736 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4737 MachineBasicBlock *BB, 4738 bool is8bit, // operation 4739 unsigned BinOpcode) const { 4740 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4741 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4742 // In 64 bit mode we have to use 64 bits for addresses, even though the 4743 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4744 // registers without caring whether they're 32 or 64, but here we're 4745 // doing actual arithmetic on the addresses. 4746 bool is64bit = PPCSubTarget.isPPC64(); 4747 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4748 4749 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4750 MachineFunction *F = BB->getParent(); 4751 MachineFunction::iterator It = BB; 4752 ++It; 4753 4754 unsigned dest = MI->getOperand(0).getReg(); 4755 unsigned ptrA = MI->getOperand(1).getReg(); 4756 unsigned ptrB = MI->getOperand(2).getReg(); 4757 unsigned incr = MI->getOperand(3).getReg(); 4758 DebugLoc dl = MI->getDebugLoc(); 4759 4760 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4761 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4762 F->insert(It, loopMBB); 4763 F->insert(It, exitMBB); 4764 exitMBB->splice(exitMBB->begin(), BB, 4765 llvm::next(MachineBasicBlock::iterator(MI)), 4766 BB->end()); 4767 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4768 4769 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4770 const TargetRegisterClass *RC = 4771 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4772 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4773 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4774 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4775 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4776 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4777 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4778 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4779 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4780 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4781 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4782 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4783 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4784 unsigned Ptr1Reg; 4785 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4786 4787 // thisMBB: 4788 // ... 4789 // fallthrough --> loopMBB 4790 BB->addSuccessor(loopMBB); 4791 4792 // The 4-byte load must be aligned, while a char or short may be 4793 // anywhere in the word. Hence all this nasty bookkeeping code. 4794 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4795 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4796 // xori shift, shift1, 24 [16] 4797 // rlwinm ptr, ptr1, 0, 0, 29 4798 // slw incr2, incr, shift 4799 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4800 // slw mask, mask2, shift 4801 // loopMBB: 4802 // lwarx tmpDest, ptr 4803 // add tmp, tmpDest, incr2 4804 // andc tmp2, tmpDest, mask 4805 // and tmp3, tmp, mask 4806 // or tmp4, tmp3, tmp2 4807 // stwcx. tmp4, ptr 4808 // bne- loopMBB 4809 // fallthrough --> exitMBB 4810 // srw dest, tmpDest, shift 4811 if (ptrA != ZeroReg) { 4812 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4813 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4814 .addReg(ptrA).addReg(ptrB); 4815 } else { 4816 Ptr1Reg = ptrB; 4817 } 4818 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4819 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4820 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4821 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4822 if (is64bit) 4823 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4824 .addReg(Ptr1Reg).addImm(0).addImm(61); 4825 else 4826 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4827 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4828 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4829 .addReg(incr).addReg(ShiftReg); 4830 if (is8bit) 4831 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4832 else { 4833 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4834 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4835 } 4836 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4837 .addReg(Mask2Reg).addReg(ShiftReg); 4838 4839 BB = loopMBB; 4840 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4841 .addReg(ZeroReg).addReg(PtrReg); 4842 if (BinOpcode) 4843 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4844 .addReg(Incr2Reg).addReg(TmpDestReg); 4845 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4846 .addReg(TmpDestReg).addReg(MaskReg); 4847 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4848 .addReg(TmpReg).addReg(MaskReg); 4849 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4850 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4851 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4852 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4853 BuildMI(BB, dl, TII->get(PPC::BCC)) 4854 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4855 BB->addSuccessor(loopMBB); 4856 BB->addSuccessor(exitMBB); 4857 4858 // exitMBB: 4859 // ... 4860 BB = exitMBB; 4861 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4862 .addReg(ShiftReg); 4863 return BB; 4864 } 4865 4866 MachineBasicBlock * 4867 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4868 MachineBasicBlock *BB) const { 4869 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4870 4871 // To "insert" these instructions we actually have to insert their 4872 // control-flow patterns. 4873 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4874 MachineFunction::iterator It = BB; 4875 ++It; 4876 4877 MachineFunction *F = BB->getParent(); 4878 4879 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4880 MI->getOpcode() == PPC::SELECT_CC_I8 || 4881 MI->getOpcode() == PPC::SELECT_CC_F4 || 4882 MI->getOpcode() == PPC::SELECT_CC_F8 || 4883 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4884 4885 // The incoming instruction knows the destination vreg to set, the 4886 // condition code register to branch on, the true/false values to 4887 // select between, and a branch opcode to use. 4888 4889 // thisMBB: 4890 // ... 4891 // TrueVal = ... 4892 // cmpTY ccX, r1, r2 4893 // bCC copy1MBB 4894 // fallthrough --> copy0MBB 4895 MachineBasicBlock *thisMBB = BB; 4896 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4897 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4898 unsigned SelectPred = MI->getOperand(4).getImm(); 4899 DebugLoc dl = MI->getDebugLoc(); 4900 F->insert(It, copy0MBB); 4901 F->insert(It, sinkMBB); 4902 4903 // Transfer the remainder of BB and its successor edges to sinkMBB. 4904 sinkMBB->splice(sinkMBB->begin(), BB, 4905 llvm::next(MachineBasicBlock::iterator(MI)), 4906 BB->end()); 4907 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4908 4909 // Next, add the true and fallthrough blocks as its successors. 4910 BB->addSuccessor(copy0MBB); 4911 BB->addSuccessor(sinkMBB); 4912 4913 BuildMI(BB, dl, TII->get(PPC::BCC)) 4914 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4915 4916 // copy0MBB: 4917 // %FalseValue = ... 4918 // # fallthrough to sinkMBB 4919 BB = copy0MBB; 4920 4921 // Update machine-CFG edges 4922 BB->addSuccessor(sinkMBB); 4923 4924 // sinkMBB: 4925 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4926 // ... 4927 BB = sinkMBB; 4928 BuildMI(*BB, BB->begin(), dl, 4929 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4930 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4931 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4932 } 4933 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4934 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4935 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4936 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4937 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4938 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4939 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4940 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4941 4942 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4943 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4944 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4945 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4946 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4947 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4948 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4949 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4950 4951 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4952 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4953 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4954 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4955 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4956 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4957 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4958 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4959 4960 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4961 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4962 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4963 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4964 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4965 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4966 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4967 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4968 4969 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4970 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4971 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4972 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4973 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4974 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4975 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4976 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4977 4978 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4979 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4980 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4981 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4982 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4983 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4984 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4985 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4986 4987 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4988 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4989 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4990 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4991 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4992 BB = EmitAtomicBinary(MI, BB, false, 0); 4993 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4994 BB = EmitAtomicBinary(MI, BB, true, 0); 4995 4996 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4997 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4998 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4999 5000 unsigned dest = MI->getOperand(0).getReg(); 5001 unsigned ptrA = MI->getOperand(1).getReg(); 5002 unsigned ptrB = MI->getOperand(2).getReg(); 5003 unsigned oldval = MI->getOperand(3).getReg(); 5004 unsigned newval = MI->getOperand(4).getReg(); 5005 DebugLoc dl = MI->getDebugLoc(); 5006 5007 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5008 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5009 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5010 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5011 F->insert(It, loop1MBB); 5012 F->insert(It, loop2MBB); 5013 F->insert(It, midMBB); 5014 F->insert(It, exitMBB); 5015 exitMBB->splice(exitMBB->begin(), BB, 5016 llvm::next(MachineBasicBlock::iterator(MI)), 5017 BB->end()); 5018 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5019 5020 // thisMBB: 5021 // ... 5022 // fallthrough --> loopMBB 5023 BB->addSuccessor(loop1MBB); 5024 5025 // loop1MBB: 5026 // l[wd]arx dest, ptr 5027 // cmp[wd] dest, oldval 5028 // bne- midMBB 5029 // loop2MBB: 5030 // st[wd]cx. newval, ptr 5031 // bne- loopMBB 5032 // b exitBB 5033 // midMBB: 5034 // st[wd]cx. dest, ptr 5035 // exitBB: 5036 BB = loop1MBB; 5037 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5038 .addReg(ptrA).addReg(ptrB); 5039 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 5040 .addReg(oldval).addReg(dest); 5041 BuildMI(BB, dl, TII->get(PPC::BCC)) 5042 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5043 BB->addSuccessor(loop2MBB); 5044 BB->addSuccessor(midMBB); 5045 5046 BB = loop2MBB; 5047 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5048 .addReg(newval).addReg(ptrA).addReg(ptrB); 5049 BuildMI(BB, dl, TII->get(PPC::BCC)) 5050 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5051 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5052 BB->addSuccessor(loop1MBB); 5053 BB->addSuccessor(exitMBB); 5054 5055 BB = midMBB; 5056 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5057 .addReg(dest).addReg(ptrA).addReg(ptrB); 5058 BB->addSuccessor(exitMBB); 5059 5060 // exitMBB: 5061 // ... 5062 BB = exitMBB; 5063 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5064 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5065 // We must use 64-bit registers for addresses when targeting 64-bit, 5066 // since we're actually doing arithmetic on them. Other registers 5067 // can be 32-bit. 5068 bool is64bit = PPCSubTarget.isPPC64(); 5069 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5070 5071 unsigned dest = MI->getOperand(0).getReg(); 5072 unsigned ptrA = MI->getOperand(1).getReg(); 5073 unsigned ptrB = MI->getOperand(2).getReg(); 5074 unsigned oldval = MI->getOperand(3).getReg(); 5075 unsigned newval = MI->getOperand(4).getReg(); 5076 DebugLoc dl = MI->getDebugLoc(); 5077 5078 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5079 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5080 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5081 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5082 F->insert(It, loop1MBB); 5083 F->insert(It, loop2MBB); 5084 F->insert(It, midMBB); 5085 F->insert(It, exitMBB); 5086 exitMBB->splice(exitMBB->begin(), BB, 5087 llvm::next(MachineBasicBlock::iterator(MI)), 5088 BB->end()); 5089 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5090 5091 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5092 const TargetRegisterClass *RC = 5093 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5094 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5095 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5096 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5097 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5098 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5099 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5100 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5101 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5102 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5103 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5104 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5105 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5106 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5107 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5108 unsigned Ptr1Reg; 5109 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5110 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5111 // thisMBB: 5112 // ... 5113 // fallthrough --> loopMBB 5114 BB->addSuccessor(loop1MBB); 5115 5116 // The 4-byte load must be aligned, while a char or short may be 5117 // anywhere in the word. Hence all this nasty bookkeeping code. 5118 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5119 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5120 // xori shift, shift1, 24 [16] 5121 // rlwinm ptr, ptr1, 0, 0, 29 5122 // slw newval2, newval, shift 5123 // slw oldval2, oldval,shift 5124 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5125 // slw mask, mask2, shift 5126 // and newval3, newval2, mask 5127 // and oldval3, oldval2, mask 5128 // loop1MBB: 5129 // lwarx tmpDest, ptr 5130 // and tmp, tmpDest, mask 5131 // cmpw tmp, oldval3 5132 // bne- midMBB 5133 // loop2MBB: 5134 // andc tmp2, tmpDest, mask 5135 // or tmp4, tmp2, newval3 5136 // stwcx. tmp4, ptr 5137 // bne- loop1MBB 5138 // b exitBB 5139 // midMBB: 5140 // stwcx. tmpDest, ptr 5141 // exitBB: 5142 // srw dest, tmpDest, shift 5143 if (ptrA != ZeroReg) { 5144 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5145 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5146 .addReg(ptrA).addReg(ptrB); 5147 } else { 5148 Ptr1Reg = ptrB; 5149 } 5150 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5151 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5152 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5153 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5154 if (is64bit) 5155 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5156 .addReg(Ptr1Reg).addImm(0).addImm(61); 5157 else 5158 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5159 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5160 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5161 .addReg(newval).addReg(ShiftReg); 5162 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5163 .addReg(oldval).addReg(ShiftReg); 5164 if (is8bit) 5165 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5166 else { 5167 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5168 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5169 .addReg(Mask3Reg).addImm(65535); 5170 } 5171 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5172 .addReg(Mask2Reg).addReg(ShiftReg); 5173 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5174 .addReg(NewVal2Reg).addReg(MaskReg); 5175 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5176 .addReg(OldVal2Reg).addReg(MaskReg); 5177 5178 BB = loop1MBB; 5179 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5180 .addReg(ZeroReg).addReg(PtrReg); 5181 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5182 .addReg(TmpDestReg).addReg(MaskReg); 5183 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5184 .addReg(TmpReg).addReg(OldVal3Reg); 5185 BuildMI(BB, dl, TII->get(PPC::BCC)) 5186 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5187 BB->addSuccessor(loop2MBB); 5188 BB->addSuccessor(midMBB); 5189 5190 BB = loop2MBB; 5191 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5192 .addReg(TmpDestReg).addReg(MaskReg); 5193 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5194 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5195 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5196 .addReg(ZeroReg).addReg(PtrReg); 5197 BuildMI(BB, dl, TII->get(PPC::BCC)) 5198 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5199 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5200 BB->addSuccessor(loop1MBB); 5201 BB->addSuccessor(exitMBB); 5202 5203 BB = midMBB; 5204 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5205 .addReg(ZeroReg).addReg(PtrReg); 5206 BB->addSuccessor(exitMBB); 5207 5208 // exitMBB: 5209 // ... 5210 BB = exitMBB; 5211 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5212 .addReg(ShiftReg); 5213 } else { 5214 llvm_unreachable("Unexpected instr type to insert"); 5215 } 5216 5217 MI->eraseFromParent(); // The pseudo instruction is gone now. 5218 return BB; 5219 } 5220 5221 //===----------------------------------------------------------------------===// 5222 // Target Optimization Hooks 5223 //===----------------------------------------------------------------------===// 5224 5225 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5226 DAGCombinerInfo &DCI) const { 5227 const TargetMachine &TM = getTargetMachine(); 5228 SelectionDAG &DAG = DCI.DAG; 5229 DebugLoc dl = N->getDebugLoc(); 5230 switch (N->getOpcode()) { 5231 default: break; 5232 case PPCISD::SHL: 5233 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5234 if (C->isNullValue()) // 0 << V -> 0. 5235 return N->getOperand(0); 5236 } 5237 break; 5238 case PPCISD::SRL: 5239 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5240 if (C->isNullValue()) // 0 >>u V -> 0. 5241 return N->getOperand(0); 5242 } 5243 break; 5244 case PPCISD::SRA: 5245 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5246 if (C->isNullValue() || // 0 >>s V -> 0. 5247 C->isAllOnesValue()) // -1 >>s V -> -1. 5248 return N->getOperand(0); 5249 } 5250 break; 5251 5252 case ISD::SINT_TO_FP: 5253 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5254 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5255 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5256 // We allow the src/dst to be either f32/f64, but the intermediate 5257 // type must be i64. 5258 if (N->getOperand(0).getValueType() == MVT::i64 && 5259 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5260 SDValue Val = N->getOperand(0).getOperand(0); 5261 if (Val.getValueType() == MVT::f32) { 5262 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5263 DCI.AddToWorklist(Val.getNode()); 5264 } 5265 5266 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5267 DCI.AddToWorklist(Val.getNode()); 5268 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5269 DCI.AddToWorklist(Val.getNode()); 5270 if (N->getValueType(0) == MVT::f32) { 5271 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5272 DAG.getIntPtrConstant(0)); 5273 DCI.AddToWorklist(Val.getNode()); 5274 } 5275 return Val; 5276 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5277 // If the intermediate type is i32, we can avoid the load/store here 5278 // too. 5279 } 5280 } 5281 } 5282 break; 5283 case ISD::STORE: 5284 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5285 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5286 !cast<StoreSDNode>(N)->isTruncatingStore() && 5287 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5288 N->getOperand(1).getValueType() == MVT::i32 && 5289 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5290 SDValue Val = N->getOperand(1).getOperand(0); 5291 if (Val.getValueType() == MVT::f32) { 5292 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5293 DCI.AddToWorklist(Val.getNode()); 5294 } 5295 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5296 DCI.AddToWorklist(Val.getNode()); 5297 5298 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5299 N->getOperand(2), N->getOperand(3)); 5300 DCI.AddToWorklist(Val.getNode()); 5301 return Val; 5302 } 5303 5304 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5305 if (cast<StoreSDNode>(N)->isUnindexed() && 5306 N->getOperand(1).getOpcode() == ISD::BSWAP && 5307 N->getOperand(1).getNode()->hasOneUse() && 5308 (N->getOperand(1).getValueType() == MVT::i32 || 5309 N->getOperand(1).getValueType() == MVT::i16)) { 5310 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5311 // Do an any-extend to 32-bits if this is a half-word input. 5312 if (BSwapOp.getValueType() == MVT::i16) 5313 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5314 5315 SDValue Ops[] = { 5316 N->getOperand(0), BSwapOp, N->getOperand(2), 5317 DAG.getValueType(N->getOperand(1).getValueType()) 5318 }; 5319 return 5320 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5321 Ops, array_lengthof(Ops), 5322 cast<StoreSDNode>(N)->getMemoryVT(), 5323 cast<StoreSDNode>(N)->getMemOperand()); 5324 } 5325 break; 5326 case ISD::BSWAP: 5327 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5328 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5329 N->getOperand(0).hasOneUse() && 5330 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5331 SDValue Load = N->getOperand(0); 5332 LoadSDNode *LD = cast<LoadSDNode>(Load); 5333 // Create the byte-swapping load. 5334 SDValue Ops[] = { 5335 LD->getChain(), // Chain 5336 LD->getBasePtr(), // Ptr 5337 DAG.getValueType(N->getValueType(0)) // VT 5338 }; 5339 SDValue BSLoad = 5340 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5341 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5342 LD->getMemoryVT(), LD->getMemOperand()); 5343 5344 // If this is an i16 load, insert the truncate. 5345 SDValue ResVal = BSLoad; 5346 if (N->getValueType(0) == MVT::i16) 5347 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5348 5349 // First, combine the bswap away. This makes the value produced by the 5350 // load dead. 5351 DCI.CombineTo(N, ResVal); 5352 5353 // Next, combine the load away, we give it a bogus result value but a real 5354 // chain result. The result value is dead because the bswap is dead. 5355 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5356 5357 // Return N so it doesn't get rechecked! 5358 return SDValue(N, 0); 5359 } 5360 5361 break; 5362 case PPCISD::VCMP: { 5363 // If a VCMPo node already exists with exactly the same operands as this 5364 // node, use its result instead of this node (VCMPo computes both a CR6 and 5365 // a normal output). 5366 // 5367 if (!N->getOperand(0).hasOneUse() && 5368 !N->getOperand(1).hasOneUse() && 5369 !N->getOperand(2).hasOneUse()) { 5370 5371 // Scan all of the users of the LHS, looking for VCMPo's that match. 5372 SDNode *VCMPoNode = 0; 5373 5374 SDNode *LHSN = N->getOperand(0).getNode(); 5375 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5376 UI != E; ++UI) 5377 if (UI->getOpcode() == PPCISD::VCMPo && 5378 UI->getOperand(1) == N->getOperand(1) && 5379 UI->getOperand(2) == N->getOperand(2) && 5380 UI->getOperand(0) == N->getOperand(0)) { 5381 VCMPoNode = *UI; 5382 break; 5383 } 5384 5385 // If there is no VCMPo node, or if the flag value has a single use, don't 5386 // transform this. 5387 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5388 break; 5389 5390 // Look at the (necessarily single) use of the flag value. If it has a 5391 // chain, this transformation is more complex. Note that multiple things 5392 // could use the value result, which we should ignore. 5393 SDNode *FlagUser = 0; 5394 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5395 FlagUser == 0; ++UI) { 5396 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5397 SDNode *User = *UI; 5398 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5399 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5400 FlagUser = User; 5401 break; 5402 } 5403 } 5404 } 5405 5406 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5407 // give up for right now. 5408 if (FlagUser->getOpcode() == PPCISD::MFCR) 5409 return SDValue(VCMPoNode, 0); 5410 } 5411 break; 5412 } 5413 case ISD::BR_CC: { 5414 // If this is a branch on an altivec predicate comparison, lower this so 5415 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5416 // lowering is done pre-legalize, because the legalizer lowers the predicate 5417 // compare down to code that is difficult to reassemble. 5418 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5419 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5420 int CompareOpc; 5421 bool isDot; 5422 5423 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5424 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5425 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5426 assert(isDot && "Can't compare against a vector result!"); 5427 5428 // If this is a comparison against something other than 0/1, then we know 5429 // that the condition is never/always true. 5430 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5431 if (Val != 0 && Val != 1) { 5432 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5433 return N->getOperand(0); 5434 // Always !=, turn it into an unconditional branch. 5435 return DAG.getNode(ISD::BR, dl, MVT::Other, 5436 N->getOperand(0), N->getOperand(4)); 5437 } 5438 5439 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5440 5441 // Create the PPCISD altivec 'dot' comparison node. 5442 std::vector<EVT> VTs; 5443 SDValue Ops[] = { 5444 LHS.getOperand(2), // LHS of compare 5445 LHS.getOperand(3), // RHS of compare 5446 DAG.getConstant(CompareOpc, MVT::i32) 5447 }; 5448 VTs.push_back(LHS.getOperand(2).getValueType()); 5449 VTs.push_back(MVT::Glue); 5450 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5451 5452 // Unpack the result based on how the target uses it. 5453 PPC::Predicate CompOpc; 5454 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5455 default: // Can't happen, don't crash on invalid number though. 5456 case 0: // Branch on the value of the EQ bit of CR6. 5457 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5458 break; 5459 case 1: // Branch on the inverted value of the EQ bit of CR6. 5460 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5461 break; 5462 case 2: // Branch on the value of the LT bit of CR6. 5463 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5464 break; 5465 case 3: // Branch on the inverted value of the LT bit of CR6. 5466 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5467 break; 5468 } 5469 5470 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5471 DAG.getConstant(CompOpc, MVT::i32), 5472 DAG.getRegister(PPC::CR6, MVT::i32), 5473 N->getOperand(4), CompNode.getValue(1)); 5474 } 5475 break; 5476 } 5477 } 5478 5479 return SDValue(); 5480 } 5481 5482 //===----------------------------------------------------------------------===// 5483 // Inline Assembly Support 5484 //===----------------------------------------------------------------------===// 5485 5486 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5487 const APInt &Mask, 5488 APInt &KnownZero, 5489 APInt &KnownOne, 5490 const SelectionDAG &DAG, 5491 unsigned Depth) const { 5492 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5493 switch (Op.getOpcode()) { 5494 default: break; 5495 case PPCISD::LBRX: { 5496 // lhbrx is known to have the top bits cleared out. 5497 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5498 KnownZero = 0xFFFF0000; 5499 break; 5500 } 5501 case ISD::INTRINSIC_WO_CHAIN: { 5502 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5503 default: break; 5504 case Intrinsic::ppc_altivec_vcmpbfp_p: 5505 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5506 case Intrinsic::ppc_altivec_vcmpequb_p: 5507 case Intrinsic::ppc_altivec_vcmpequh_p: 5508 case Intrinsic::ppc_altivec_vcmpequw_p: 5509 case Intrinsic::ppc_altivec_vcmpgefp_p: 5510 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5511 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5512 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5513 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5514 case Intrinsic::ppc_altivec_vcmpgtub_p: 5515 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5516 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5517 KnownZero = ~1U; // All bits but the low one are known to be zero. 5518 break; 5519 } 5520 } 5521 } 5522 } 5523 5524 5525 /// getConstraintType - Given a constraint, return the type of 5526 /// constraint it is for this target. 5527 PPCTargetLowering::ConstraintType 5528 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5529 if (Constraint.size() == 1) { 5530 switch (Constraint[0]) { 5531 default: break; 5532 case 'b': 5533 case 'r': 5534 case 'f': 5535 case 'v': 5536 case 'y': 5537 return C_RegisterClass; 5538 } 5539 } 5540 return TargetLowering::getConstraintType(Constraint); 5541 } 5542 5543 /// Examine constraint type and operand type and determine a weight value. 5544 /// This object must already have been set up with the operand type 5545 /// and the current alternative constraint selected. 5546 TargetLowering::ConstraintWeight 5547 PPCTargetLowering::getSingleConstraintMatchWeight( 5548 AsmOperandInfo &info, const char *constraint) const { 5549 ConstraintWeight weight = CW_Invalid; 5550 Value *CallOperandVal = info.CallOperandVal; 5551 // If we don't have a value, we can't do a match, 5552 // but allow it at the lowest weight. 5553 if (CallOperandVal == NULL) 5554 return CW_Default; 5555 Type *type = CallOperandVal->getType(); 5556 // Look at the constraint type. 5557 switch (*constraint) { 5558 default: 5559 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5560 break; 5561 case 'b': 5562 if (type->isIntegerTy()) 5563 weight = CW_Register; 5564 break; 5565 case 'f': 5566 if (type->isFloatTy()) 5567 weight = CW_Register; 5568 break; 5569 case 'd': 5570 if (type->isDoubleTy()) 5571 weight = CW_Register; 5572 break; 5573 case 'v': 5574 if (type->isVectorTy()) 5575 weight = CW_Register; 5576 break; 5577 case 'y': 5578 weight = CW_Register; 5579 break; 5580 } 5581 return weight; 5582 } 5583 5584 std::pair<unsigned, const TargetRegisterClass*> 5585 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5586 EVT VT) const { 5587 if (Constraint.size() == 1) { 5588 // GCC RS6000 Constraint Letters 5589 switch (Constraint[0]) { 5590 case 'b': // R1-R31 5591 case 'r': // R0-R31 5592 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5593 return std::make_pair(0U, PPC::G8RCRegisterClass); 5594 return std::make_pair(0U, PPC::GPRCRegisterClass); 5595 case 'f': 5596 if (VT == MVT::f32) 5597 return std::make_pair(0U, PPC::F4RCRegisterClass); 5598 else if (VT == MVT::f64) 5599 return std::make_pair(0U, PPC::F8RCRegisterClass); 5600 break; 5601 case 'v': 5602 return std::make_pair(0U, PPC::VRRCRegisterClass); 5603 case 'y': // crrc 5604 return std::make_pair(0U, PPC::CRRCRegisterClass); 5605 } 5606 } 5607 5608 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5609 } 5610 5611 5612 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5613 /// vector. If it is invalid, don't add anything to Ops. 5614 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5615 std::string &Constraint, 5616 std::vector<SDValue>&Ops, 5617 SelectionDAG &DAG) const { 5618 SDValue Result(0,0); 5619 5620 // Only support length 1 constraints. 5621 if (Constraint.length() > 1) return; 5622 5623 char Letter = Constraint[0]; 5624 switch (Letter) { 5625 default: break; 5626 case 'I': 5627 case 'J': 5628 case 'K': 5629 case 'L': 5630 case 'M': 5631 case 'N': 5632 case 'O': 5633 case 'P': { 5634 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5635 if (!CST) return; // Must be an immediate to match. 5636 unsigned Value = CST->getZExtValue(); 5637 switch (Letter) { 5638 default: llvm_unreachable("Unknown constraint letter!"); 5639 case 'I': // "I" is a signed 16-bit constant. 5640 if ((short)Value == (int)Value) 5641 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5642 break; 5643 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5644 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5645 if ((short)Value == 0) 5646 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5647 break; 5648 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5649 if ((Value >> 16) == 0) 5650 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5651 break; 5652 case 'M': // "M" is a constant that is greater than 31. 5653 if (Value > 31) 5654 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5655 break; 5656 case 'N': // "N" is a positive constant that is an exact power of two. 5657 if ((int)Value > 0 && isPowerOf2_32(Value)) 5658 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5659 break; 5660 case 'O': // "O" is the constant zero. 5661 if (Value == 0) 5662 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5663 break; 5664 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5665 if ((short)-Value == (int)-Value) 5666 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5667 break; 5668 } 5669 break; 5670 } 5671 } 5672 5673 if (Result.getNode()) { 5674 Ops.push_back(Result); 5675 return; 5676 } 5677 5678 // Handle standard constraint letters. 5679 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5680 } 5681 5682 // isLegalAddressingMode - Return true if the addressing mode represented 5683 // by AM is legal for this target, for a load/store of the specified type. 5684 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5685 Type *Ty) const { 5686 // FIXME: PPC does not allow r+i addressing modes for vectors! 5687 5688 // PPC allows a sign-extended 16-bit immediate field. 5689 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5690 return false; 5691 5692 // No global is ever allowed as a base. 5693 if (AM.BaseGV) 5694 return false; 5695 5696 // PPC only support r+r, 5697 switch (AM.Scale) { 5698 case 0: // "r+i" or just "i", depending on HasBaseReg. 5699 break; 5700 case 1: 5701 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5702 return false; 5703 // Otherwise we have r+r or r+i. 5704 break; 5705 case 2: 5706 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5707 return false; 5708 // Allow 2*r as r+r. 5709 break; 5710 default: 5711 // No other scales are supported. 5712 return false; 5713 } 5714 5715 return true; 5716 } 5717 5718 /// isLegalAddressImmediate - Return true if the integer value can be used 5719 /// as the offset of the target addressing mode for load / store of the 5720 /// given type. 5721 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5722 // PPC allows a sign-extended 16-bit immediate field. 5723 return (V > -(1 << 16) && V < (1 << 16)-1); 5724 } 5725 5726 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5727 return false; 5728 } 5729 5730 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5731 SelectionDAG &DAG) const { 5732 MachineFunction &MF = DAG.getMachineFunction(); 5733 MachineFrameInfo *MFI = MF.getFrameInfo(); 5734 MFI->setReturnAddressIsTaken(true); 5735 5736 DebugLoc dl = Op.getDebugLoc(); 5737 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5738 5739 // Make sure the function does not optimize away the store of the RA to 5740 // the stack. 5741 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5742 FuncInfo->setLRStoreRequired(); 5743 bool isPPC64 = PPCSubTarget.isPPC64(); 5744 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5745 5746 if (Depth > 0) { 5747 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5748 SDValue Offset = 5749 5750 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5751 isPPC64? MVT::i64 : MVT::i32); 5752 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5753 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5754 FrameAddr, Offset), 5755 MachinePointerInfo(), false, false, false, 0); 5756 } 5757 5758 // Just load the return address off the stack. 5759 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5760 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5761 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 5762 } 5763 5764 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5765 SelectionDAG &DAG) const { 5766 DebugLoc dl = Op.getDebugLoc(); 5767 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5768 5769 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5770 bool isPPC64 = PtrVT == MVT::i64; 5771 5772 MachineFunction &MF = DAG.getMachineFunction(); 5773 MachineFrameInfo *MFI = MF.getFrameInfo(); 5774 MFI->setFrameAddressIsTaken(true); 5775 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 5776 MFI->hasVarSizedObjects()) && 5777 MFI->getStackSize() && 5778 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5779 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5780 (is31 ? PPC::R31 : PPC::R1); 5781 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5782 PtrVT); 5783 while (Depth--) 5784 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5785 FrameAddr, MachinePointerInfo(), false, false, 5786 false, 0); 5787 return FrameAddr; 5788 } 5789 5790 bool 5791 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5792 // The PowerPC target isn't yet aware of offsets. 5793 return false; 5794 } 5795 5796 /// getOptimalMemOpType - Returns the target specific optimal type for load 5797 /// and store operations as a result of memset, memcpy, and memmove 5798 /// lowering. If DstAlign is zero that means it's safe to destination 5799 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5800 /// means there isn't a need to check it against alignment requirement, 5801 /// probably because the source does not need to be loaded. If 5802 /// 'IsZeroVal' is true, that means it's safe to return a 5803 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5804 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5805 /// constant so it does not need to be loaded. 5806 /// It returns EVT::Other if the type should be determined using generic 5807 /// target-independent logic. 5808 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5809 unsigned DstAlign, unsigned SrcAlign, 5810 bool IsZeroVal, 5811 bool MemcpyStrSrc, 5812 MachineFunction &MF) const { 5813 if (this->PPCSubTarget.isPPC64()) { 5814 return MVT::i64; 5815 } else { 5816 return MVT::i32; 5817 } 5818 } 5819